


Lecture Notes in Computer Science 6361
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany



Tianzi Jiang Nassir Navab
Josien P.W. Pluim Max A. Viergever (Eds.)

Medical Image Computing
and Computer-Assisted
Intervention – MICCAI 2010

13th International Conference
Beijing, China, September 20-24, 2010
Proceedings, Part I

13



Volume Editors

Tianzi Jiang
The Chinese Academy of Sciences, Institute of Automation
Beijing 100080, P. R. China
E-mail: jiangtz@nlpr.ia.ac.cn

Nassir Navab
Technische Universität München, Institut für Informatik I16
Boltzmannstr. 3, 85748 Garching, Germany
E-mail: navab@cs.tum.edu

Josien P.W. Pluim
Max A. Viergever
University Medical Center Utrecht, QS.459
Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
E-mail: j.pluim@umcutrecht.nl, max@isi.uu.nl

Library of Congress Control Number: 2010933822

CR Subject Classification (1998): I.4, I.5, I.2.10, I.3.5, J.3, I.6

LNCS Sublibrary: SL 6 – Image Processing, Computer Vision, Pattern Recognition,
and Graphics

ISSN 0302-9743
ISBN-10 3-642-15704-1 Springer Berlin Heidelberg New York
ISBN-13 978-3-642-15704-2 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

springer.com

© Springer-Verlag Berlin Heidelberg 2010
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper 06/3180



Preface

The 13th International Conference on Medical Image Computing and Computer-
Assisted Intervention, MICCAI 2010, was held in Beijing, China from 20-24
September, 2010. The venue was the China National Convention Center (CNCC),
China’s largest and newest conference center with excellent facilities and a prime
location in the heart of the Olympic Green, adjacent to characteristic construc-
tions like the Bird’s Nest (National Stadium) and the Water Cube (National
Aquatics Center).

MICCAI is the foremost international scientific event in the field of medical
image computing and computer-assisted interventions. The annual conference
has a high scientific standard by virtue of the threshold for acceptance, and
accordingly MICCAI has built up a track record of attracting leading scientists,
engineers and clinicians from a wide range of technical and biomedical disciplines.

This year, we received 786 submissions, well in line with the previous two
conferences in New York and London. Three program chairs and a program
committee of 31 scientists, all with a recognized standing in the field of the
conference, were responsible for the selection of the papers. The review process
was set up such that each paper was considered by the three program chairs,
two program committee members, and a minimum of three external reviewers.
The review process was double-blind, so the reviewers did not know the identity
of the authors of the submission.

After a careful evaluation procedure, in which all controversial and gray area
papers were discussed individually, we arrived at a total of 251 accepted papers
for MICCAI 2010, of which 45 were selected for podium presentation and 206
for poster presentation. The acceptance percentage (32%) was in keeping with
that of previous MICCAI conferences. All 251 papers are included in the three
MICCAI 2010 LNCS volumes.

We are greatly indebted to the reviewers and to the members of the program
committee for their invaluable efforts in critically assessing and evaluating the
submissions in a very short time frame.

The annual MICCAI event has, in addition to its main conference, a rising
number of satellite tutorials and workshops, organized on the day before and the
day after the main conference. This year’s call for submission for tutorials and
workshops led to a record number of proposals, of which a significant fraction
had to be rejected because of space and time limitations. The final program
hosted eight tutorials, which together gave a comprehensive overview of many
areas of the field, and provided rich educational material especially aimed at
PhD students and postdoctoral researchers.

The 15 workshops gave - mostly younger - researchers the opportunity to
present their work, often in an early stage of their investigations, so that they
could obtain useful feedback from more experienced scientists in the field. The
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workshop subjects highlighted topics that were not all fully covered in the main
conference, and thus added to the diversity of the MICCAI program. In par-
ticular, several workshops offered so-called challenges in which researchers were
in competition to best segment or register a set of clinical images with ground
truth provided by medical experts. We are grateful to the tutorial and workshop
committees, in particular to the chairs Dinggang Shen and Bram van Ginneken,
for making these satellite events a success.

Highlights of the conference were the two keynote lectures. Professor Alan C.
Evans of the McConnell Brain Imaging Centre, Montreal Neurological Institute,
McGill University, Montreal, Canada described recent activity in brain network
modeling with an emphasis on anatomical correlation analysis in his presenta-
tion “Network Analysis of Cortical Anatomy”. Professor Guang-Zhong Yang of
the Royal Society/Wolfson Medical Image Computing Laboratory, Imperial Col-
lege, London, UK outlined key clinical challenges and research opportunities in
developing minimally invasive surgery systems in his presentation “Snake and
Lobster - A Feast for MICCAI?”.

MICCAI 2010 would not have been feasible without the efforts of many people
behind the scenes. We are particularly indebted to the local organizing commit-
tee in Beijing, consisting of Nianming Zuo, Yong Liu, Ming Song, Bing Liu,
Bizhen Hong, Shaomei Wang, and Gangqin Zhang, all of the Institute of Au-
tomation of the Chinese Academy of Sciences, for their excellent work before
and during the conference, and to Jacqueline Wermers for her outstanding assis-
tance with the editorial work in compiling the three Springer LNCS books that
contain the proceedings of this conference.

We are obliged to the Board of the MICCAI Society for the opportunity to
organize this prestigious conference, and to many of the Society Board and Staff
members for valuable and continuous advice and support through all phases of
the preparation.

A special word of thanks goes to our sponsors, who generously provided
financial support of the conference as a whole, or of specific activities. This
greatly helped us with the overall organization of the meeting, as well as allowed
us to award prizes for best papers in various categories and travel stipends to
an appreciable number of student participants.

It was our great pleasure to welcome the attendees to Beijing for this exciting
MICCAI 2010 conference and its satellite tutorials and workshops. The 14th
International Conference on Medical Image Computing and Computer-Assisted
Intervention will be held in Toronto, Canada, from 15-21 September 2011. We
look forward to seeing you there.

September 2010 Tianzi Jiang
Nassir Navab
Josien Pluim

Max Viergever
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Gábor Székely ETH Zürich, Switzerland

MICCAI Society, Board of Directors

Nicholas Ayache INRIA Sophia Antipolis, France
Kevin Cleary Georgetown University, USA
James Duncan (President) Yale University, USA
Gabor Fichtinger Queen’s University, Canada
Polina Golland Massachusetts Institute of Technology, USA
Tianzi Jiang Institute of Automation, CAS, China
Nassir Navab Technische Universität München, Germany
Alison Noble University of Oxford, UK
Sébastien Ourselin University College London, UK
Ichiro Sakuma University of Tokyo, Japan
Sandy Wells Harvard Medical School, USA
Guang-Zhong Yang Imperial College London, UK



VIII Organization

Program Committee

Christian Barillot IRISA Rennes, France
Albert Chung Hong Kong UST, China
Gabor Fichtinger Queen’s University, Canada
Alejandro Frangi Universitat Pompeu Fabra, Spain
Jim Gee University of Pennsylvania, USA
Bram van Ginneken Radboud University Nijmegen, The Netherlands
Polina Golland Massachusetts Institute of Technology, USA
David Hawkes University College London, UK
Xiaoping Hu Emory University, USA
Hongen Liao University of Tokyo, Japan
Huafeng Liu Zhejiang University, China
Cristian Lorenz Philips Research Lab Hamburg, Germany
Frederik Maes University of Leuven, Belgium
Anne Martel University of Toronto, Canada
Kensaku Mori Nagoya University, Japan
Mads Nielsen University of Copenhagen, Denmark
Poul Nielsen University of Auckland, New Zealand
Wiro Niessen Erasmus MC Rotterdam, The Netherlands
Xiaochuan Pan University of Chicago, USA
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Noël, Peter
Nolte, Lutz
Noonan, David
Oda, Masahiro
O’Donnell, Lauren
O’Donnell, Thomas
Ogier, Arnaud
Oguz, Ipek
Olabarriaga, Silvia
Olmos, Salvador
Olszewski, Mark
Orkisz, Maciej
Otake, Yoshito
Ourselin, Sébastien
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Paragios, Nikos
Pasternak, Ofer
Patriciu, Alexandru
Pavani, Sri Kaushik
Payan, Yohan
Peitgen, Heinz-Otto
Pennec, Xavier
Penney, Graeme
Petersen, Kersten
Petr, Jan
Peyrat, Jean-Marc
Pham, Dzung
Pichon, Eric
Pike, Bruce
Pitiot, Alain
Pizarro, Luis
Pohl, Kilian Maria
Poignet, Philippe
Prager, Richard
Prastawa, Marcel
Prause, Guido
Prima, Sylvain
Prince, Jerry
Promayon, Emmanuel
Qi, Jinyi



Organization XIII

Qian, Xiaoning
Radeva, Petia
Rajagopal, Vijayaraghavan
Rajpoot, Nasir
Rangarajan, Anand
Rasche, Volker
Reichl, Tobias
Reinhardt, Joseph
Rexilius, Jan
Reyes, Mauricio
Rhode, Kawal
Ribbens, Annemie
Ridgway, Gerard
Rittscher, Jens
Rivaz, Hassan
Riviere, Cameron
Robb, Richard
Robinson, Emma
Rohlfing, Torsten
Rohling, Robert
Rohr, Karl
Rougon, Nicolas
Rousseau, François
Russakoff, Daniel
Sabuncu, Mert Rory
Sachse, Frank
Sakuma, Ichiro
Salvado, Olivier
Samani, Abbas
Sanchez, Clara
Savadjiev, Peter
Schaap, Michiel
Scherrer, Benoit
Schnabel, Julia
Schweikard, Achim
Sebastian, Rafa
Sermesant, Maxime
Shams, Ramtin
Shechter, Guy
Shi, Yonggang
Shi, Yundi
Shimizu, Akinobu
Siddiqi, Kaleem
Sidky, Emil
Siewerdsen, Jeffrey

Simaan, Nabil
Skrinjar, Oskar
Slagmolen, Pieter
Sled, John
Smal, Ihor
Smeets, Dirk
Smelyanskiy, Mikhail
So, Wai King
Sommer, Stefan
Song, Xubo
Sonka, Milan
Sørensen, Lauge
Spillmann, Jonas
Sporring, Jon
Staal, Joes
Staib, Lawrence
Staring, Marius
Stewart, James
Stoyanov, Danail
Studholme, Colin
Styner, Martin
Suarez, Ralph
Subramanian, Navneeth
Sukno, Federico
Summers, Ronald
Suzuki, Kenji
Szczerba, Dominik
Szilagyi, Laszlo
Tanner, Christine
Tao, Xiaodong
Tasdizen, Tolga
Taylor, Chris
Taylor, Russell
Taylor, Zeike
Tek, Huseyin
Ter Haar Romeny, Bart
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Awards Presented at the 12th International Conference
on Medical Image Computing and Computer-Assisted
Intervention, MICCAI 2009, London

MICCAI Society Enduring Impact Award
The Enduring Impact Award is the highest award of the Medical Image Com-
puting and Computer-Assisted Intervention Society. It is a career award for
continued excellence in the MICCAI research field. The 2009 Enduring Impact
Award was presented to Ron Kikinis, Harvard Medical School, USA.

MICCAI Society Fellowships
MICCAI Fellowships are bestowed annually on a small number of senior members
of the Society in recognition of substantial scientific contributions to the MICCAI
research field and service to the MICCAI community. The first fellowships were
presented in 2009, to
Nicholas Ayache (INRIA Sophia-Antipolis, France)
Alan Colchester (University of Kent, UK)
Takeyoshi Dohi (University of Tokyo, Japan)
Guido Gerig (University of Utah, USA)
David Hawkes (University College London, UK)
Karl Heinz Höhne (University of Hamburg, Germany)
Ron Kikinis (Harvard Medical School, USA)
Terry Peters (Robarts Research Institute, Canada)
Richard Robb (Mayo Clinic, USA)
Chris Taylor (University of Manchester, UK)
Russ Taylor (Johns Hopkins University, USA)
Max Viergever (University Medical Center Utrecht, The Netherlands).

MedIA-MICCAI Prize
The 2009 MedIA-MICCAI Prize for the best paper in the special MICCAI issue
of Medical Image Analysis, sponsored by Elsevier, was awarded to
Vicky Wang (University of Auckland, New Zealand)
for the article “Modelling passive diastolic mechanics with quantitative MRI of
cardiac structure and function”, authored by Vicky Y. Wang, Hoi I. Lam, Daniel
B. Ennis, Brett R. Cowan, Alistair A. Young, and Martyn P. Nash.

Best Paper in Navigation
The prize for the best paper in the MICCAI 2009 conference in the area of nav-
igation, sponsored by Medtronic, was awarded to
Wolfgang Wein (Siemens Corporate Research, Princeton, USA)
for the article: “Towards guidance of electrophysiological procedures with real-
time 3D intracardiac echocardiography fusion to C-arm CT”, authored by Wolf-
gang Wein, Estelle Camus, Matthias John, Mamadou Diallo, Christophe Duong,
Amin Al-Ahmad, Rebecca Fahrig, Ali Khamene, and Chenyang Xu.
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Best Paper in Computer-Assisted Intervention Systems and Medical Robotics
The prize for the best paper in the MICCAI 2009 conference in the area of
computer-assisted intervention systems and medical robotics, sponsored by In-
tuitive Surgical, was awarded to
Marcin Balicki (Johns Hopkins University, USA)
for the article “Single fiber optical coherence tomography microsurgical instru-
ments for computer and robot-assisted retinal surgery”, authored by Marcin
Balicki, Jae-Ho Han, Iulian Iordachita, Peter Gehlbach, James Handa, Russell
Taylor, Jin Kang.

MICCAI Young Scientist Awards
The Young Scientist Awards are stimulation prizes awarded to the best first
authors of MICCAI contributions in distinct subject areas. The nominees had
to be a full-time student at a recognized university at - or within the two years
before - the time of submission. The 2009 MICCAI Young Scientist Awards were
presented to
Tammy Riklin Raviv (MIT, USA), for the article “Joint segmentation of im-
age ensembles via latent atlases”
Christopher Rohkohl (Friedrich-Alexander University, Germany), for the ar-
ticle “‘Interventional 4-D motion estimation and reconstruction of cardiac vas-
culature without motion”
Peter Savadjiev (Harvard Medical School, USA), for the article “Local white
matter geometry indices from diffusion tensor gradients”
Lejing Wang (TU Munich, Germany), for the article “Parallax-free long bone
X-ray image stitching”
Yiyi Wei (INRIA Lille, France; LIAMA CASIA, China), for the article “Toward
real-time simulation of blood-coil interaction during aneurysm embolization”.
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Alexandra Durr, Jean-François Mangin, Stéphane Lehericy, and
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Automatic Lung Lobe Segmentation Using Particles, Thin Plate
Splines, and Maximum a Posteriori Estimation . . . . . . . . . . . . . . . . . . . . . . 163
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Automated Macular Pathology Diagnosis in
Retinal OCT Images Using Multi-Scale Spatial

Pyramid with Local Binary Patterns
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Abstract. We address a novel problem domain in the analysis of optical

coherence tomography (OCT) images: the diagnosis of multiple macular

pathologies in retinal OCT images. The goal is to identify the presence of

normal macula and each of three types of macular pathologies, namely,

macular hole, macular edema, and age-related macular degeneration, in

the OCT slice centered at the fovea. We use a machine learning ap-

proach based on global image descriptors formed from a multi-scale spa-

tial pyramid. Our local descriptors are dimension-reduced Local Binary

Pattern histograms, which are capable of encoding texture information

from OCT images of the retina. Our representation operates at multiple

spatial scales and granularities, leading to robust performance. We use

2-class Support Vector Machine classifiers to identify the presence of nor-

mal macula and each of the three pathologies. We conducted extensive

experiments on a large dataset consisting of 326 OCT scans from 136

patients. The results show that the proposed method is very effective.

1 Introduction

Optical Coherence Tomography (OCT) is a non-contact, non-invasive 3-D imag-
ing technique which performs optical sectioning at micron resolution. It has been
widely adopted as the standard of care in ophthalmology for identifying the pres-
ence of disease and its progression [1]. This technology measures the optical back
scattering of the tissues, making it possible to visualize intraocular structures,
such as the macula and the optic nerve. An example 3D ocular OCT scan is
given in Fig. 1a. The ability to visualize the internal structures of the retina
(the z-axis direction in Fig. 1a) makes it possible to diagnose diseases, such as
glaucoma and macular hole, objectively and quantitatively.

Although OCT imaging technology continues to evolve, technology for auto-
mated OCT image analysis and interpretation has not kept pace. With OCT
data being generated at increasingly higher sampling rates, there is a strong
need for automated analysis to support disease screening and diagnosis. This
need is amplified by the fact that an ophthalmologist making a diagnosis under

T. Jiang et al. (Eds.): MICCAI 2010, Part I, LNCS 6361, pp. 1–9, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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(a)

Z

X

(b) (c) (d)

Fig. 1. (a) Example 3D macular OCT scan. (b)(c)(d) Example x-z slice with (b) MH

(red), ME (blue), and AMD (green), (c) shadowing effects, (d) a detached tissue.

(a) Normal Macula (b) Macular Hole

(c) Macular Edema (d) Age-related M. Degeneration

Fig. 2. Characteristics of (a) normal macula: a smooth depression shows at the center

(fovea), (b) macular hole (MH): a partial or full hole formation at the fovea, (c) macular

edema (ME) : retinal thickening and liquid accumulation appears as black blobs around

the fovea, (d) age-related macular degeneration (AMD): irregular contours usually

extruded in dome shapes appear at the bottom layer of the retina.

standard clinical conditions does not have the assistance of a radiologist in in-
terpreting OCT data. There have been several prior works addressing topics in
ocular OCT image processing, such as intra-retinal layer segmentation [2] and
local quality assessment [3]. However, to our knowledge, there has been no prior
work on automated macular pathology identification in OCT images.

The macula is located at the center of the retina and is responsible for highly-
sensitive, accurate vision. Acute maculopathy can lead to the loss of central
vision and even blindness. For example, a particular type of maculopathy, called
age-related macular degeneration (AMD), is the leading cause of visual loss
among elderly persons. The Beaver Dam Eye Study reported that 30% of in-
dividuals aged 75 and older have some form of AMD, which has increasingly
important social and economic impact in the United States [4]. The screening
and diagnosis of maculopathy is a substantial public health problem.

We present a method for automatically identifying macular pathologies given
a manually-selected x-z 2D slice centered at the fovea in a retinal OCT scan.
Specifically, we identify the presence of the normal macula and each of the follow-
ing macular pathologies, macular hole (MH)1, macular edema (ME), and AMD.

1 For simplicity, we include both macular hole and macular pseudohole in MH category.
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Fig. 2 gives example images for each pathology. Note that multiple patholo-
gies can coexist in one eye, as depicted in Fig. 1b. In this case, the automated
identification tool should report the existence of each pathology.

2 Approach

Automated pathology identification in ocular OCT images is complicated by
four factors. First, the co-existence of pathologies can complicate the overall ap-
pearance (see Fig.1b). Second, the measurement of reflectivity of the tissue is
affected by the optical properties of the overlaying tissues [1], e.g, opaque me-
dia or the high rate of light absorption by blood vessels will produce shadowing
effects (see Fig.1c). Third, a variety of proliferated or detached tissues can ap-
pear, e.g. membrane or floaters (see Fig.1d). Fourth, a portion of the image may
have low quality due to imperfect imaging [3]. As a result of this high variabil-
ity, attempts to hand-craft a set of features or rules to identify each pathology
are unlikely to succeed. Instead, we propose to use a pattern-based global im-
age representation combined with machine learning techniques to automatically
discover the discriminative patterns for each pathology from training examples.

Our method consists of the following three steps, which are illustrated in
Fig. 3. First, image alignment is performed to reduce the appearance variation
across scans. Second, we construct a global descriptor for the aligned image by us-
ing multi-scale spatial pyramid (MSSP) and the dimension-reduced Local Binary
Pattern (LBP) histogram [5] based on Principle Component Analysis (PCA), in
order to represent the retina at different spatial scales and granularities. Finally,
for each pathology, we train a 2-class non-linear Support Vector Machine (SVM)
[6] with radial basis function (RBF) kernel using a labeled training set. We now
describe each step in detail.

2.1 Retina Alignment

Since the imaged retinas have large variations in their inclination angles, po-
sitions, and natural curvatures across scans, as shown in Fig.2, it is desirable

original image

aligned image

global representation local descriptor

concatenated 
global descriptor

level-0

level-1

level-2

...
...

...

alignment
b)

c)

d)

a) threshold

median

morphological op.

curve-fittinge)
warping

multi-scale spatial pyramid

f)

Fig. 3. Stages in the constructing of the global image descriptor
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Multi-Scale Spatial Pyramid (MSSP) Spatial Pyramid (SP)

level-2 level-2level-1 level-0 level-1 level-0

Fig. 4. Structures of a 3-level MSSP and SP. The green lines indicate the overlapped

blocks which can also be added in the global representation.

to roughly align the retinas to reduce these variations before constructing our
feature representation. To this end, we use a simple procedure as follows: (1)
threshold the original image (Fig 3, a) to detect most of the retina structures
(Fig 3, b); then, apply a median filter to remove noise and thin detached tissues
(Fig 3, c); (2) find the entire retina by using morphological closing and then
opening; by closing, we fill-up black blobs inside the retina, and by opening, to
remove thin or small objects outside the retina (Fig 3, d); (3) fit the found retina
with a quadratic curve by using least-square curve fitting (Fig 3, e); (4) warp
the retina to be approximately horizontal by translating each column according
to the fitted curve, and crop it in the z-direction (Fig 3, f).

2.2 Multi-Scale Spatial Pyramid (MSSP)

There are three motivations for our choice of a global spatially-distributed feature
representation for OCT imagery based on MSSP. First, pathologies are often
localized to specific retinal areas, making it important to encode spatial location.
Second, the context provided by the overall appearance of the retina is important
for correct interpretation; e.g., in Fig. 1c, we can distinguish between a shadow
and macular hole only in the context of the entire slice. Third, pathologies can
exhibit discriminating characteristics at both small and large scales. Thus, both
micro-patterns and macro-patterns should be represented. For these reasons,
we use a global image representation which preserves spatial organization in
conjunction with multi-scale modeling.

We propose to use the multi-scale version of spatial pyramid (SP) [7], denoted
as MSSP, to capture the geometry of the aligned retina at multiple scales and
spatial resolutions. This global framework, MSSP, was recently proposed in [8],
where it was successfully applied to challenging scene classification tasks. For
clarity, in Fig.4, we illustrate the differences between a 3-level MSSP2 and SP
frameworks. The local features computed from all spatial blocks are concatenated
in a predefined order to form an overall global descriptor, as illustrated in Fig. 3.
Note that we also add the features from the overlapped blocks (the green blocks
in Fig. 4) to reduce boundary effects.

2 To form a k-level MSSP, for each level l (0 ≤ l ≤ (k − 1)), we rescale the original

image by 2l−k+1 using bilinear interpolation, and divide the rescaled image into 2l

blocks in each dimension.
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2.3 Histogram of LBP and Dimensionality Reduction

Local binary pattern (LBP) [5] is a non-parametric kernel which summarizes
the local structure around a pixel. LBP is known to be a highly discriminative
operator and has been successfully applied to several tasks in computer vision
[9,8] and medical imaging [10,11].

While there are several types of LBP, we follow [9,10,11] in adopting LBP8,1

to capture the micro-patterns that reside in each local block. The LBP8,1 oper-
ator derives an 8 bit binary code by comparing the center pixel to each of its 8
nearest neighbors in a 3× 3 neighborhood (see Fig. 5a). The resulting 8 bits are
concatenated circularly to form an LBP code in the range [0 255]. For each block
of pixels in the MSSP, we compute the histogram of LBP codes to encode the
statistical distribution of different micro-patterns, such as spots, edges, corners,
and flat areas [5]. Histogram descriptors have proven to be an effective means to
aggregate local intensity patterns into global discriminative features. In partic-
ular, they avoid the need to precisely localize discriminating image structures,
which can be difficult to do in complex and highly variable OCT images. Since
we compute LBP histogram in both original and rescaled image blocks, the dis-
tribution of both micro-patterns and macro-patterns can be encoded. Note that
many previous works applied LBP only in the original image [9,10,11], which
may not capture the large-scale patterns effectively.

Although a single LBP8,1 histogram has only 256 bins, the concatenation
of histograms from each block to form the global feature vector results in an
impractically high dimension. We adopt PCA to reduce the dimension of LBP
histogram, as proposed in [8]. We denote it as LBP pca

8,1 .
It is important to note that previous works [9,10] employing LBP histogram

features have adopted an alternative approach to dimensionality reduction, called
uniform LBP [5], which we have found to be less effective than LBP pca

8,1 for AMD
category. An LBP pattern is called uniform if it contains at most two bitwise
transitions, as demonstrated in Fig. 5b. A histogram of LBPu2

8,1 is formed by
retaining occurrences of each of 58 uniform patterns and putting all occurrences
of 198 non-uniform patterns, denoted as LBP¬u2

8,1 , to a single bin, resulting in
59 bins in total. It was observed in [5] that LBPu2

8,1 occupied 90% of all LBP8,1

patterns in pixel count, when computed from image textures; however, as re-
cently noted in [12], when LBP codes are computed in the rescaled images,
LBPu2

8,1 may no longer be in the majority. More importantly, the distribution of
individual LBP¬u2

8,1 patterns can contain important distinctive information for
category discrimination, despite of its low counts (see Fig. 6). To advocate the
use of PCA for LBP dimension reduction, we will compare the performance of
using LBP pca

8,1 , LBPu2
8,1, and LBP8,1 in Section 3.

2.4 Classification Using Support Vector Machine (SVM)

After computing global features, we train a 2-class non-linear SVM with RBF
kernel and probabilistic output [6] for each pathology using a 1 vs. the rest
approach. The probability scores for each classifier are compared to a set of
decision thresholds to determine the corresponding sensitivities and specificities.
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Fig. 5. Examples of (a) LBP8,1 code computation, (b) uniform and non-uniform LBP
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:

Fig. 6. Visualization of LBP u2
8,1 and LBP¬u2

8,1 on example level-0 images. All LBP¬u2
8,1

are shown in red in the 2nd row, and the individual LBP¬u2
8,1 codes are shown in gray-

level in the 3rd row. We find that although LBP¬u2
8,1 patterns have low counts, most of

them reside in the important contours and can therefore be useful for discrimination.

3 Experimental Results

We collected a dataset consisting of 326 macular spectral-domain OCT scans
from 136 patients. The original resolution of the scans was either 200x200x1024
or 512x128x1024 scanned in 6x6x2 mm volume in width(x), height(y) and
depth(z). We rescaled all x-z slices to 200x200. For each scan, the x-z slice cen-
tered at the fovea and the pathologies it contained was identified independently
by two expert ophthalmologists. Among all 326 scans, 96.2% of the selected
fovea-centered slices from the two experts were within 4 slice distance; for these
scans, the labeling agreement for normal macula, ME, MH, AMD is 98.6%,
91.7%, 96.5%, 92.0%, at the patient-level respectively. This imperfect agreement
provides further evidence of the need for an objective computer-aided diagnosis
tool. We used the labels from one ophthalmologist as the ground truth.

The statistics of the labeled dataset are as follows. We have 67 positive and
259 negative scans for normal macula, 205 and 121 for ME, 81 and 245 for
MH, 103 and 223 for AMD. From the standpoint of patient statistics, we have
57 positive and 79 negative patients for normal macula, 87 and 49 for ME, 34
and 102 for MH, 36 and 100 for AMD. We used 10-fold cross validation at the
patient level; i.e., 10% of positive and negative patients were put in the testing
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set for each run. Here, for a specific pathology, the patients that have at least
one positive scan were counted as positive patients; also, all images from the
same patient were put together in either the training or testing set. We used one
fold of training data to do SVM model selection based on the area under the
receiver operator characteristic curve (AUC) performance, and fixed the found
best parameters throughout all the experiments. We normalized the sensitivity
and specificity values across patients and used AUC as the comparison metric.

To validate the performance of LBP histograms as features, we compared
them to several other popular descriptors, including mean and standard devia-
tion of intensity (M,S), intensity histogram (I), and orientation histogram (O).
Each feature is employed with a 3-level MSSP with overlapped blocks3. The
orientation histogram [13] is formed from the gradient direction and magnitude
computed from 2 × 2 neighborhoods. For I and O features, we used the quan-
tization of 32 bins in intensity and angle, respectively, since this produced the
best results. For LBP histogram, we quantize the intensity image to 32 levels be-
fore LBP encoding in order to suppress pixel noise. This quantization improves
the accuracy of LBP by about 0.8% on average. For LBP pca

8,1 computation, the
principle axes were derived from the training images of each fold separately.

Overall, from Table 1, LBP pca
8,1 (32) achieved the best average performance. In

details, we find for normal macula and ME, the AUC are above 0.95 for almost
all descriptors; this can be attributed to the reduced variation in appearance
for the normal category and to the large amount of positive training data for
ME. The AUC results of MH and AMD are lower, which can be due to their
greater appearance variation and lack of data. In these two categories, LBP with
dimension reduction (LBPu2

8,1 and LBP pca
8,1 ) outperforms the other descriptors by

a clear margin. Note that the use of all 256 bins of LBP histogram gives the worst
results, presumably due to overfitting in the high dimensional feature space.

We then compare the results of LBPu2
8,1 and LBP pca

8,1 . From Table 1, LBPu2
8,1

and LBP pca
8,1 have similar performance for the first three categories, where the

pathologies are described mostly by smooth or global shape changes. In AMD
category, however, LBP pca

8,1 (32) is clearly superior to LBPu2
8,1. Our conjecture is

that since AMD is characterized by the irregular contours of the bottom retinal
layer, the removal of individual non-uniform patterns, as used in LBPu2

8,1, can
result in the loss of important discriminative information. Finally, the use of first
32 principal components seems sufficient for category discrimination.

In Table 2, we compare the performance of 3-level multi-scale spatial pyramid
(MSSP) with a 3-level spatial pyramid (SP) and single level-2 spatial division
(SL)4. MSSP achieves the best overall performance; in AMD category, MSSP
outperforms the other frameworks with a large margin (0.888 vs. 0.826). When
features from the overlapped blocks are also used (denoted as “+O”), the per-
formance of all frameworks is improved.

3 If the feature dimension of the block descriptor is d, a 3-level MSSP with the over-

lapped blocks will result in a global descriptor of length d×31, where 31 is the total

number of blocks.
4 Only 4 × 4 = 16 spatial blocks derived from the original image were used.
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Table 1. The AUC results obtained from using different local block descriptors. Num-

ber in parenthesis represents the feature dimension of each local descriptor.

Pa./Feature M,S(2) I(32) O(32) LBP u2
8,1(59) LBP pca

8,1 (32) LBP pca
8,1 (59) LBP8,1(256)

Normal M. 0.965 0.970 0.983 0.991 0.987 0.991 0.931

ME 0.951 0.963 0.958 0.965 0.962 0.962 0.845

MH 0.714 0.826 0.845 0.901 0.894 0.879 0.774

AMD 0.784 0.824 0.857 0.867 0.888 0.885 0.693

Ave. of all 0.854 0.895 0.911 0.931 0.933 0.929 0.811

Ave. of MH,AMD 0.749 0.825 0.851 0.884 0.891 0.882 0.734

Table 2. The AUC results obtained from employing different global frameworks with

LBP pca
8,1 (32) local descriptors. “+O”: add the overlapped blocks.

Pa./Framework MSSP SP SL MSSP+O SP+O SL+O

Normal M. 0.985 0.979 0.984 0.987 0.984 0.987

ME 0.957 0.949 0.951 0.962 0.960 0.961

MH 0.891 0.880 0.872 0.894 0.895 0.893

AMD 0.888 0.826 0.826 0.888 0.849 0.843

Ave. of all 0.930 0.909 0.908 0.933 0.922 0.921

4 Conclusion and Future work

In this paper, we propose an effective approach to diagnose multiple macular
pathologies in retinal OCT images. First, we align the slices to reduce their
appearance variations. Then, we construct our global image descriptor by using
multi-scale spatial pyramid (MSSP), combined with dimension-reduced LBP his-
togram based on PCA as the local descriptors. This approach encodes both the
geometry and textures of the retina in a principled way. A binary non-linear
SVM classifier is trained for each pathology to identify its presence. We evaluate
our approach by comparing its performance with that of other popular global
representation and local descriptors. Our results demonstrate the effectiveness
and validity of the proposed approach.

There are several future directions we plan to explore. First, we will investi-
gate the effects of including other complimentary features, e.g., encoding shape
features from the edge image, so that more discriminative representation can be
constructed. Second, we would like to apply a similar method to automatically
localize the slice of the anatomic landmark (e.g. fovea) in the 3D scan. Third,
we plan to extend our approach to additional retinal pathologies.
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Abstract. A promising approach for the automatic classification of nor-

mal and acute rejection transplants from Dynamic Contrast Enhanced

Magnetic Resonance Imaging (DCE-MRI) is proposed. The proposed ap-

proach consists of three main steps. The first step segments the kidney

from the surrounding abdominal tissues by a level-set based deformable

model with a speed function that accounts for a learned spatially variant

statistical shape prior, 1st-order visual appearance descriptors of the con-

tour interior and exterior (associated with the object and background,

respectively), and a spatially invariant 2nd-order homogeneity descriptor.

In the second step, to handle local object deformations due to kidney mo-

tion caused by patient breathing, we proposed a new nonrigid approach

to align the object by solving Laplace’s equation between closed equis-

paced contours (iso-contours) of the reference and target objects. Finally,

the perfusion curves that show the transportation of the contrast agent

into the tissue are obtained from the segmented kidneys and used in the

classification of normal and acute rejection transplants. Applications of

the proposed approach yield promising results that would, in the near fu-

ture, replace the use of current technologies such as nuclear imaging and

ultrasonography, which are not specific enough to determine the type of

kidney dysfunction.

1 Introduction

In the United States, approximately 12,000 renal transplants are performed an-
nually [1], and considering the limited supply of donor organs, every effort is
made to salvage the transplanted kidney [2]. However, acute rejection - the im-
munological response of the human immune system to the foreign kidney - is
the most important cause of graft failure after renal transplantation, and the
differential diagnosis of acute transplant dysfunction remains a difficult clinical
problem. Recently, a fairly new imaging technique, Dynamic Contrast-Enhanced
Magnetic Resonance Imaging (DCE-MRI), has gained a considerable attention
� Corresponding author.

T. Jiang et al. (Eds.): MICCAI 2010, Part I, LNCS 6361, pp. 10–18, 2010.
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for detecting acute renal rejection due to its ability to yield anatomical infor-
mation. However, developing a noninvasive CAD system from DCE-MRI still a
challenging problem due to the following reasons: (i) the spatial resolution of the
dynamic MR images is low due to fast scanning, (ii) the images suffer from the
motion induced by the breathing patient which necessitates advanced registra-
tion techniques, and (iii) the intensity of the kidney changes non-uniformly as
the contrast agent perfuse into the cortex which complicates the segmentation
procedures.

To the best of our knowledge, a limited work on the dynamic MRI to overcome
the problems of registration and segmentation has been done. For the registra-
tion problem, Gerig et al. [3] proposed using Hough transform to register the
edges in an image to the edges of a mask and Giele [4] introduced a phase dif-
ference movement detection method to correct kidney displacements. Both of
these studies required building a mask manually by drawing the kidney contour
on a 2D DCE-MRI image, followed by the registration of the time frames to this
mask.

For the segmentation problem, Boykov et al. [5] presented the use of graph
cuts using Markov models, where the energy is minimized depending on the
manually exerted seed points. Giele [4] used image subtraction to obtain a mask
and closed the possible gaps by using hull function.

Following these studies, a multi-step registration approach was introduced
by Sun et al. [6]. Initially, the edges are aligned using an image gradient based
similarity measure considering only translational motion. Once roughly aligned,
a high-contrast image is subtracted from a pre-contrast image to obtain a kidney
contour, which is then propagated over the other frames searching for the rigid
registration parameters. For the segmentation of the cortex and medulla, a level
sets approach was used.

2 Methods

In this paper we introduce a new and automated approach (i) to segment the
kidney from its background and (ii) to correct for the motion artifacts caused
by breathing and patient motion. The steps of the proposed CAD system is
illustrated in Fig. 1, with details outlined below.

2.1 Segmentation

Geometric level-set based deformable models are popular and powerful tools in
segmenting medical images because of the flexibility and independence of param-
eterizations of an evolving contour on the xy-plane [7]. The object-background
boundary at each moment t is represented by a zero level φt(x, y) = 0 of an
implicit level-set function – a distance map φt(x, y) of the signed minimum Eu-
clidean distances from every point (x, y) to the boundary (negative for interior
and positive for exterior points). The distance map is evolved iteratively as [8]:

φn+1(x, y) = φn(x, y)− τVn(x, y)|∇φn(x, y)| (1)
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Fig. 1. The proposed CAD system

where n denotes the time instants t = nτ with step τ > 0; Vn(x, y) is a speed
function guiding the evolution, and ∇φn = [∂φn

∂x , ∂φn

∂y ] is the gradient of φn(x, y).
Unfortunately, conventional speed functions accounting for image intensities

(e.g., [9]), object edges (e.g., [10]), an intensity gradient vector flow (e.g., [11]),
etc., are unsuccessful on very noisy images with low object-background intensity
gradients. Additional prior shape knowledge (e.g., [12]) results in more effective
segmentation. But, speed functions based solely on the shape priors lead to large
segmentation errors under discontinuous object boundaries, large image noise,
and image inhomogeneities.

To overcome these limitations, a new speed function (introduced in our re-
cent work [13]) combining the mean curvature of an evolving contour with a
spatially variant joint Markov- Gibbs Random Field (MGRF) model of a gray
scale image, g, and its binary object-background map, m, is used to control the
evolution magnitude and direction at every step. The speed function in Eq.(1) is
: V (x, y) = ϑ(x, y)κ; where κ is the mean contour curvature and ϑ(x, y) specifies
the evolution magnitude and direction [13]:

ϑ(x, y) =
{
−P1:x,y if P1:x,y > P0:x,y

P0:x,y otherwise (2)

where

P1:x,y = W1:x,y

W1:x,y+W0:x,y
;P0:x,y = 1− P1:x,y

W1:x,y = p(q|1)ph:x,y(1)ps:x,y(1)
W0:x,y = p(q|0) (1− ph:x,y(1)) (1− ps:x,y(1))

and p(q|1) and p(q|0) are the object and background marginal densities obtained
by the LCDG model [14], respectively and q is the gray level value at location
(x, y); ph:x,y(1) is the probability of transition to the object label in the Markov
Random Filed (MRF) Potts model at (x, y) at the current evolution step; and
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ps:x,y(1) and ps:x,y(0) = 1− ps:x,y(1) are the empirical object-background prob-
abilities for the manually segmented training images co-aligned by a rigid 2D
transformation maximizing their mutual information [15], respectively. (please
see [13] for more comprehensive details).

A step by step illustration of estimated densities using the LCDG model [14]
is illustrated in Fig. 2 and some segmentation results for different MRI kidney
images and their associated errors are shown in Fig. 3. Table 2 presents segmen-
tation results for the MRI kidney images for ten of the subjects employed in this
study (sample of the testing data).

(a) (b)

(c) (d)

Fig. 2. (a) Typical MR kidney image,

its gray level density estimation (the fi-

nal estimated density (in red) for the

empirical density (in blue)), (c) LCDG

components, and (d) the final marginal

estimated densities using the LCDG

model [14](d).

error = 0.52% error =0.39%

error =1.27% error =1.83%

Fig. 3. Segmentation results using the

proposed approach. Errors are w.r.t the

radiologist segmentation.

2.2 Nonrigid Registration

The registration is the main issue in DCE-MRI sequences. This is due to pa-
tient & breathing movements. Although a tremendous number of nonrigid image
registration techniques (e.g., [16,17,18]) have been developed, more robust, ef-
ficient, and sophisticated registration techniques are required. The centerpiece
of this paper is the application of Laplace’s equation in a nonrigid registration
approach to find the corresponding pixel pairs between target and reference ob-
jects. Mathematically, Laplace’s equation is a second-order partial differential
equation for a scalar field Ψ that is enclosed between two surfaces (e.g., A and
B in Fig. 4) and takes the form:

∇2Ψ =
∂2Ψ

∂x2
+

∂2Ψ

∂y2
= 0 (3)



14 F. Khalifa et al.

Fig. 4. Two dimensional exam-

ple of the Laplace method

(a) (b)

(c) (d)

Fig. 5. The distance maps (a, b) and the isocon-

tours (c, d) of the two kidneys

Solving Laplace’s equation between the enclosed surfaces results in intermediate
equipotential surfaces (dashed lines in Fig. 4) and field lines (streamlines) that
connect both surfaces A and B. These field lines are defined as being everywhere
orthogonal to all equipotential surfaces (e.g., the line connecting the points PA

and PB in Fig. 4). Nonrigid registration based on Laplace’s equation effectively
overcomes patient movement & breathing problems and consists of the following
steps:

1. First, generate the distance maps inside the kidney regions as shown in
Fig. 5 (a, b).

2. Second, use these distance maps to generate equispaced separated iso-
contours as shown in Fig. 5 (c, d).

3. Third, solve Eq. (3) between respective iso-contours to find the corresponding
pixel pairs in both target and reference objects.

In general, the number of iso-contours depend on the accuracy and the speed
which the user needs to achieve. An illustration of the power of Laplace’s equa-
tion to find the corresponding pixel pairs is shown in Fig. 6. The first case em-
ploys no cross-overlap between the target and reference images’ edges (Fig. 6 (a,
b)), and the second case employs a cross-overlap between the images’ edges
(Fig. 6 (c, d)). Figure. 7 shows a two dimensional illustration of how the solu-
tion of Laplace’s equation is used to determine the corresponding pixel pairs. A
potential Ψ is found in the interior area enclosed by both surfaces A and B in
Fig. 7 by solving Eq. (3) such that Ψ is maximum at A and minimum at B. Then
the electric filed vectors, Ex = ∂Ψ

∂x , and Ey = ∂Ψ
∂y , in the interior area between

A and B are used to find the corresponding pixel pairs as shown in Fig. 7. An
enlarged portion of Fig. 7 (a) around a streamline is shown in Fig. 7 (b), and a
checkerboard visualization for one kidney object before and after applying the
nonrigid registration is shown in Fig. 8 (a) and (b), respectively.
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(a) (b) (c) (d)

Fig. 6. Rotated kidney objects (a, c) with respect to the reference image edges (in

blue), and the solution of Laplace’s equation (b, d) to find the corresponding pixels.

(a) (b)

Fig. 7. Electric filed vectors in the area be-

tween two inclosed regions A (in blue) and B

(in green) (a), an enlarged section around the

indicated streamline (b)

(a)

(b)

Fig. 8. Checkerboard visualiza-

tion before (a), and after (b) reg-

istration

Table 1. Accuracy of the proposed registration algorithm (all units are in mm)

Simulated Displacement
Small Moderate Large

Maximum Simulated Displacement 1.70 0.70 19.99

Average Simulated Displacement 0.60 2.30 9.10

St. dev. of Simulated Displacement 0.40 10.80 1.10

Alignment Error

Maximum Alignment Error 0.50 1.21 1.71

Average Alignment Error 0.30 0.90 1.15

St. dev. of Alignment Error 0.21 0.31 1.13
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Validation of the Proposed Local-Registration Approach: To validate the
proposed local registration, we simulated local deformations on the real DCE-
MRI data set using the free form deformation (FFD) approach [16] that simulates
local displacements with 2D cubic B-splines. To measure the registration accu-
racy, three different types of deformation fields, namely, with small, moderate,
and large deformations indicated in Table 1, were generated with the FFD. Our
registration model has been applied to each type of deformation, and the accu-
racy has been quantitatively assessed by comparing the simulated and recovered
pixel displacements.

3 Results and Conclusions

The ultimate goal of the proposed algorithms is to successfully construct the
renograms (mean intensity signal curves) from the DCE-MRI sequences, showing
the behavior of the kidney as the contrast agent perfuses into the transplant. In
acute rejection patients, the DCE-MRI images show a delayed perfusion pattern
and a reduced cortical enhancement. We tested the above algorithms on twenty-
six patients, four of whom are shown in Fig. 9. The normal patient shows the
expected abrupt increase to the higher signal intensities and the valley with a
small slope. The acute rejection patients show a delay in reaching their peak
signal intensities. From these observations, we have been able to conclude that
the time-to-peak signal intensity, and the slope between the first peak and the
signal measured from the last image in the sequence are the major two features
in the renograms of the segmented kidney for classification.

To distinguish between normal and acute renal rejection, we used a kn-nearest
neighbor classifier to learn statistical characteristics from the renogram of the
training sets of both normal and acute renal rejection. In our approach we used
50% of the data for the training and the other 50% for testing. For testing data,
kn-nearest neighbor based classification succeeded in classifying 12 out of 13

Table 2. Accuracy of our segmen-

tation algorithm

Error%

Subject Min Max Mean St. dev.

First 0.62 1.20 1.03 0.98

Second 0.88 1.81 1.14 1.05

Third 0.76 2.12 1.35 1.20

Forth 0.90 2.50 1.82 1.54

Fifth 1.01 2.76 2.10 1.78

Sixth 1.20 3.30 2.23 2.01

Seventh 0.56 1.05 0.82 0.90

Eighth 0.30 0.96 0.78 0.85

Ninth 0.23 0.53 0.38 0.43

Tenth 1.10 1.65 1.22 0.65

Fig. 9. Normalized average intensity from four

subjects w.r.t. scan number. Subjects 1, and 2

(in red) are normal, and Subjects 3, and 4 (in

blue) are acute rejection.
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correctly (92.31%). For the training data the kn-nearest neighbor based classi-
fication classifies all of them correctly, so the over all accuracy of the proposed
approach is 96.15%.

In this paper, we presented a framework for the detection of acute renal rejec-
tion from Dynamic Contrast Enhanced Magnetic Resonance Images (DCE-MRI)
that includes segmentation of kidneys from abdomen images, nonrigid registra-
tion, and kn-Nearest Neighbor based classification. For segmentation of kidneys,
we introduced a new geometric deformable model that evolves with the gray-level
information of a given abdomen image, spatial information, and the shape infor-
mation. Following segmentation, we introduced a nonrigid registration approach
that deforms the kidney object on iso-contours instead of a square lattice, which
provides more degrees of freedom to obtain accurate deformation. After nonrigid
registration, the renogram of the segmented kidney for the whole sequence of a
patient is calculated. The features extracted from these renograms undergo kn-
nearest neighbor based classification to understand if the transplanted kidney is
undergoing acute rejection or if it is functioning normally. Applications of the
proposed approach yield promising results that would, in the near future, replace
the use of current technologies to determine the type of kidney dysfunction.
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Abstract. Precise segmentation and identification of thoracic verte-

brae is important for many medical imaging applications whereas it

remains challenging due to vertebra’s complex shape and varied neigh-

boring structures. In this paper, a new method based on learned bone-

structure edge detectors and a coarse-to-fine deformable surface model

is proposed to segment and identify vertebrae in 3D CT thoracic images.

In the training stage, a discriminative classifier for object-specific edge

detection is trained using steerable features and statistical shape models

for 12 thoracic vertebrae are also learned. In the run-time, we design

a new coarse-to-fine, two-stage segmentation strategy: subregions of a

vertebra first deforms together as a group; then vertebra mesh vertices

in a smaller neighborhood move group-wise, to progressively drive the

deformable model towards edge response maps by optimizing a prob-

ability cost function. In this manner, the smoothness and topology of

vertebra’s shapes are guaranteed. This algorithm performs successfully

with reliable mean point-to-surface errors 0.95±0.91 mm on 40 volumes.

Consequently a vertebra identification scheme is also proposed via mean

surface meshes matching. We achieve a success rate of 73.1% using a sin-

gle vertebra, and over 95% for 8 or more vertebra which is comparable

or slightly better than state-of-the-art [1].

1 Introduction

A precise vertebra segmentation and identification method is in high demand
due to its important impact in many orthopaedic, neurological and oncologi-
cal applications. In this paper, we focus on thoracic vertebra where accurate
segmentation and identification of them can directly eliminate false findings on
lung nodules in computer aided diagnosis system [2]. However, this task remains
challenging due to vertebra’s complexity, i.e., within-class shape variation and
different neighboring structures.

Several methods have been reported addressing segmentation and/or identi-
fication of vertebra under different modalities, e.g., magnetic resonance imaging
(MRI) or computed tomography (CT). Yao et al. [3] present a method to auto-
matically extract and partition the spinal cord in CT images, and a surface-based

T. Jiang et al. (Eds.): MICCAI 2010, Part I, LNCS 6361, pp. 19–27, 2010.
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registration approach for automatic lumbar vertebra identification is described
in [4], where no identification was carried out in both work. Recently, Klinder et
al. [1] propose a model-based solution for vertebra detection, segmentation and
identification in CT images. They achieved very competitive identification rates
of > 70% for a single vertebra and 100% for 16 or more vertebrae. However, their
identification algorithm is based on vertebra appearance model (i.e., an averaged
volume block) spatial registration and matching which is very computationally
consuming (20 ∼ 30 minutes).

In this paper, we present a new automatic vertebra segmentation and iden-
tification method. Although this work mainly focuses on thoracic vertebra (for
potential lung applications), our approach can be easily extended to cervical
and lumbar vertebrae. The main contributions of this paper are summarized as
follows. First, we introduce a learning based bone structure edge detection al-
gorithm, including efficient and effective gradient steerable features and robust
training data sampling. Second, a hierarchical, coarse-to-fine deformable surface
based segmentation method is proposed based on the response maps from the
learned edge detector, followed with an efficient vertebra identification method
using mean shapes. Finally, the promising results of segmentation and identifi-
cation are presented, compared with the state-of-the-art [1].

2 Method

Due to complex neighboring structures around vertebra and imaging noise, com-
mon edge detectors, e.g., Canny operator, often produce leaking and spurious
edge. To achieve robust edge detection, we develop a learning-based object spe-
cific edge detection algorithm, similar to semantic object-level boundary lin-
eation in natural images [5].

2.1 Supervised Bone Edge Detection

We manually segmented 12 thoracic vertebrae from 20 CT volumes for training,
and generated corresponding triangulated surfaces using Marching Cube algo-
rithm, with about 10,000 triangular faces per vertebra model. It is observed that
along the normal direction of the bone boundary, the intensity values roughly
form a ridge pattern. Our new set of steerable features is designed to describe
the characteristics of boundary appearance, which make it feasible for statistical
training.

Gradient steerable features: For each triangle face of the surface mesh,
we take 5 sampling points (called a sampling parcel) along the face normal
direction with one voxel interval. Specially, given x a point on the normal line
and n the unit normal vector, the sampling parcel associated with x is

P(x) = {x− 2n, x− n, x, x + n, x + 2n}

For each of the 5 sampling points we compute three features: intensity I, projec-
tions of gradient onto the normal direction ∇1I ·n,∇2I ·n, where ∇1I and ∇2I
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are gradient vectors computed using derivative of Gaussian with two different
kernel scales. Totally, the feature vector of a point x, denoted by F(x), has 15
elements:

F(x) = {I(y),∇1I(y) · n,∇2I(y) · n|y ∈ P(x)}

Fig. 1 illustrates the sampling parcel and its associated features. Our steerable
features are indeed oriented-gradient pattern descriptor with easy computation.

Vertebra edge detector training: The training samples of positive and
negative boundary voxels are obtained from manually segmented vertebra mesh
as below. For a triangle face center c, we define the boundary parcel as

P(c) = {c− 2n, c− n, c, c + n, c + 2n}

interior parcel as

P(c− 3n) = {c− 5n, c− 4n, c− 3n, c− 2n, c− n}

and exterior parcel as

P(c + 3n) = {c + n, c + 2n, c + 3n, c + 4n, c + 5n}

That is, the interior parcel is 3 voxels away backward from boundary parcel while
exterior parcel is the 3 voxels forward, where 3 is adjustable. The corresponding
feature vectors F(c),F(c− 3n),F(c+ 3n) can be also computed. Then we label
F(c) as positive class (i.e., boundary), and assign both F(c− 3n) and F(c+3n)
as negative class (i.e., non-boundary), as Fig. 2 (left). Thus, each triangle face
provides one positive data and two negative data. Given one vertebra surface
mesh with about 10,000 faces, sufficient and adequate training feature vectors
are obtained. Note that a single and unified bony edge detector will be learned
for all 12 thoracic vertebrae. Compared with implicit, object“inside-outside”
learning1 [6], our boundary/non-boundary delineation strategy directly focuses

Fig. 1. Steerable features of x. Five

red dots indicate sampling parcel

associated with x. Yellow arrow in-

dicates the normal direction. Red

and black arrows indicate gradient

∇I and projection ∇I · n.

on modeling the runtime boundary local-
ization process (i.e., explicitly moving to-
wards classified boundary positives), and is
expected to have higher precision.

The feature vectors depend on the normal
direction of triangle faces so that the edge de-
tector is sensitive to the initialization of the
surface template. In our experimental setup,
the surface model is first roughly registered
with images by automatic detection [7,8] or
manual alignment, thus the normal direction
of the surface model can not perfectly coin-
cide with the true bony normal. To make the
detector more robust to mis-alignment errors
1 The boundary has to be further inferred from the transition of (object) internal

positives and external negatives [6] which may not be trivial.
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and the later deformable model convergent, it is important that we synthesize
some “noisy” training samples by stress testing. Particularly, we add some ran-
dom disturbances to the orientations and scales of the template model so that
the template surface model does not accurately overlap with the manual seg-
mentation. Considering a similarity transform, a random number between 0.9
and 1.1 for each of the three scales, and a random angle between − π

10 and π
10 for

each of the three orientation angles are used. The true boundary parcels, as well
as interior and exterior parcels are defined using ground truth positions but with
disturbed template surface normals. Refer to Fig. 2 (middle) for an illustrative
example. Their corresponding feature vectors are consequently calculated (with
the disturbed face normals) and added into our training sets. The random dis-
turbance process is repeated 10 times for each training mesh to guarantee we
get enough noisy samples. We then train an Linear or Quadartic Discriminant
(LDA, QDA) classifier based on the combined non-disturbed and disturbed fea-
ture vectors. Both LDA and QDA are evaluated and we find that LDA yields
more robust results. The experiment results are computed with LDA. Finally,
given a voxel x and its feature vector F(x), our classifier will assign a value
L(x) ∈ [0, 1.0] which indicates the likelihood of x being boundary point.

2.2 Segmentation: Coarse-to-Fine Deformation

The main idea of segmentation is to deform the surface template mesh towards
boundary points detected by the learned edge detector. After the surface tem-
plate is initially positioned into a new volume, (The template can be initialized
using similar strategies as marginal space learning [7,8]) edge detector calcu-
lates the edge likelihoods L(x) for voxels along the normal directions of all mesh
faces, where a response map can be generated. As shown in Fig. 2 (Right), this
response map is informative but unavoidably noisy. To guarantee the surface
shape topology and smoothness during deformation/segmentation, we propose
a hierarchical deformation scheme of first performing deformation of subregions;

Fig. 2. Left: Surface template perfectly aligned with the true boundary. Middle:
Disturbed Surface template overlapped within the volume. Green plus and Yellow

minus signs are positive or negative sample samples, respectively. Right: Response

map of vertebra edge detection in the section view of 3D CT volume. The red curve

indicates the template surface while the green dots are the voxels classified as boundary

points with likelihood values > 0.8.
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then performing patch-wise deformation, i.e., points in the same neighborhood
move together.

Deformation of subregions: We manually divide the surface mesh into
12 subregions, as indicated by Fig. 3. In order to maintain the shape of these
subregions, a similarity transformation to each subregion is applied such that the
total response of edge detection is maximum in the transformed configuration.
For a subregion S and some face center f on it, we intend to find a similarity
transformation T̂ satisfying

T̂ = arg max
T∈T

∑
f∈S

L(T (f)) (1)

where T is the set of similarity transformations T . Searching the optimal T in-
volves the 9-dimensional parameters space of (Tx, Ty, Tz, Sx, Sy, Sz, θx, θy, θz). If
we perform a exhaustive search with 5 grid steps for each parameters, then
possible transformation is 59 which is computationally infeasible. To reduce
the search space, we perform a three-stage search. First, search for (Tx, Ty, Tz)
with displacement {−4,−2, 0, 2, 4} voxels for each translation; second, with fixed
(T̂x, T̂y, T̂z), search for (Sx, Sy, Sz) with discretization grids of {0.8, 0.9, 1.0, 1.1,
1.2} for each scaling; third, with fixed optimal translation and scaling, search for
(θx, θy, θz) with intervals of {−π/10,−π/20, 0, π/20, π/10} for each orientation.
In this way, we need to only consider 53 × 3 = 375 possible poses and select the
one with the strongest response as T̂ . This heuristic searching strategy turns
out to be effective in capturing the true pose of subregions though it might be
suboptimal. Fig. 4(a) illustrates the searching process.

After the optimal similarity transfor-

Fig. 3. Subregions of the surface.

Subregions are illustrated in different

colors.

mation is found for each subregions, a
smooth deformation of the whole surface
can be obtained using simple Gaussian
smoothing. Let S1, S2, ..., S12 denote the
twelve subregions, and T1, T2, ..., T12 be
the corresponding optimal transform. De-
note v an arbitrary vertex in the template
surface and u a vertex in a certain subre-
gion. Then the new position of v is

v′ = v + λ

12∑
i=1

∑
w∈Si

(Ti(w) − w)K(w − v)

where K(x) = e−
x2

2σ2 is the Gaussian ker-
nel and λ is a regulation parameter. Fig. 4 (b) shows the result of “deformation
of subregion” stage. One can see the surface mesh is more closely aligned with
the true boundary through “articulated” similarity moves, although in several
area, the surface mesh still has a certain distance from the true boundary. This
will be solved by the finer-scale deformation strategy described below.

Deformation of patches: After deforming the subregions, the surface mesh
is approximately overlap with the vertebra’s boundary in CT volume. Next, we
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(a) (b) (c) (d)

Fig. 4. (a,b) Deformation of left transverse process. (a) Dot curves indicate searching

of transformations of this subregion. In this case, the orange curve indicates the optimal

position. (b) Subregion deformation result. (c,d) Deformation of patches. (c) Dot curve

indicate displacing a patch in the normal direction for search of strongest response. The

green dots indicates the optimal displacement. (d) Patch deformation result.

perform deformation on local neighborhoods of 200 patches divided from each
vertebra mesh surface (each patch may contain 50 faces approximately). For
each patch (denoted as PT ), we compute its mean normal by this formula:

n̄ =
1
N

∑
f∈PT

n(f) (2)

where f is a face in the patch and n(f) is the unit normal of the face. Then
the patch is moved along its mean normal direction in search of the strongest
response, that is, we optimize this term:

î = argmax
i

∑
f∈S

L(f + in̄) (3)

where the search range is limited in i = −6,−5, ...5, 6. Fig. 4(c) shows the a patch
is displaced along its mean normal direction in search for the boundary. After
all patches find their optimal displacement, a smooth deformation of surface
is again obtained by Gaussian smoothing. Fig. 4 (d) shows the segmentation
result of “deformation of patches” stage. Clearly, the surface mesh now can
accurately capture the true boundary of the vertebra. The two-stage, coarse-to-
fine deformation of surface model guarantees the accuracy of segmentation as
well as the smoothness of the shapes, using articulated similarity transforms and
nonrigid transform respectively.

2.3 Identification Using Mean Shapes

We applied the segmentation algorithm to 40 volumes at 1mm by 1mm by 1mm
resolution, and 15 ∼ 20 surface meshes are obtained per thoracic vertebra, due
to missing vertebra in some volume. Vertex correspondence across meshes for
each vertebra is also directly available since surface meshes are deformed by
the same template. Therefore we can compute the mean vertebra shapes by
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simply taking the arithmetical mean of corresponding vertices’ positions. There
are 12 thoracic vertebrae, namely T1, T2, ..., T12. Vertebra identification is
to label a segmented vertebra to be one of the twelve. In this context, given
a single vertebra subvolume, we carry out the identification process by testing
which mean shape has the maximum response. Specially, we feed the 12 mean
shapes to the vertebra volume one after another, and calculate the supervised
edge response scores without deformation. The mean shape with the strongest
response is determined as the label of this vertebra.

Let M1,M2, ...,M12 denote the twelve mean shapes and f is an arbitrary face
center in the mean shapes. One way to calculate the responses is computing the
overall likelihood of boundary,

î = argmax
i

∑
f∈Mi

L(f) (4)

Another way is to count the number of faces with high probability to be boundary
point,

î = argmax
i

∑
f∈Mi

1L(f)>α (5)

where α is a threshold. We find the second method is more robust against outliers
and noise, by tolerating up to (1 − α) portion of data being polluted or not at
the correct spatial configuration, and take α = 0.8 which is used for following
experiments. We also extend the identification method to multiple vertebrae,
i.e., a vertebra string. By using more context, multiple vertebrae identification
is expected to have higher success rate.

3 Result

We apply our automatic segmentation algorithm to 40 volumes of thoracic scans
and the evaluation is performed using four-fold cross validation. In implemen-
tation, we run the subregion deformation step multiple (m) times followed by
patch-based deformation n times, where m and n are empirically optimized to
be 3 and 4, respectively. The supervised edge detection is performed at each it-
eration to reflect the runtime vertebra mesh surface configuration. In Fig. 5, we
show some segmentation examples in axial, sagittal or coronal view, for visual
inspection. To quantitatively evaluate our segmentation algorithm, we use the
distance of a vertex on the fitted mesh to the closest mesh point (not necessarily
a vertex) of the ground truth mesh which is generated from manual segmenta-
tion. The mean point-to-surface error and the standard deviation for individual

Table 1. Mean point-to-surface error and standard deviation for individual vertebra

vertebra T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12

mean error (mm) 1.05 1.11 1.03 0.93 0.99 0.92 0.83 0.75 0.89 0.79 0.94 1.21

std deviation(mm) 0.96 0.97 1.04 1.03 1.31 0.92 0.56 0.59 0.68 0.50 0.63 1.16
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Fig. 5. Segmentation results of chosen volume in axial or sagittal or coronal view.

Different vertebrae are featured in different colors.

individual success rates string success rates

Fig. 6. Identification success rate of individual vertebra and stringed vertebrae

vertebra is shown in Table 1. Highly reliable and accurate segmentation results
have been achieved, with the overall final mean error of 0.95 ± 0.91 mm. [1]
reports a comparable accuracy level at 1.12± 1.04 mm.

For identification, we have an average success rate of 73.1% using single ver-
tebra. This success rate also varies regarding to a specific vertebra where the
rates for T 5, T 6, T 7, T 8 as ≤ 60% are especially lower than others because these
four vertebrae look alike. Furthermore, when exploiting vertebra string for iden-
tification, the success rate is improved and increases with longer string. With
a string of 7 or 8 and more vertebrae, we achieve over 91% or > 95% success
rates, whereas rates are ≈ 71% for one vertebra, ≈ 87%, 89% for 7 or 8 vertebra
strings in [1]. The success rates of individual and stringed vertebra identification
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(via mean mesh shapes) are comparable or better than [1] using intensity based
matching, as shown in Fig. 6.

A volumetric mean appearance model is used for vertebra identification in [1],
which seems more comprehensive than our shape information alone. However we
observe that in real cases, the variability of neighboring structures is quite large
due to patients’ pose variation. The adjacent vertebrae can be so close to each
other where the boundary even can not be clearly distinguished; or, successive
vertebrae are apart from each other with a large distance. Thus, the neighboring
structures are not necessarily positive factors in the identification procedure. A
clean shape model without surrounding structures may be of advantage and our
identification results are indeed slightly better.

4 Conclusion

In this paper, a hierarchical thoracic vertebra segmentation and identification
method is presented. We propose learning-based edge detectors using steer-
able gradient features. The segmentation applies a surface deformable model by
adopting a new two-stage “coarse-to-fine” deformation scheme: first subregion
based articulated similarity deformation and then nonrigid local patch deforma-
tion. The segmentation result is satisfying with point-to-surface error 0.95±0.91
mm. We also use the generated mean shape model of each thoracic vertebra for
identification process. Both our segmentation and identification performance is
compared favorably against the state-of-the-art [1].
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Abstract. Lymph node detection and measurement is a difficult and

important part of cancer treatment. In this paper we present a robust

and effective learning-based method for the automatic detection of solid

lymph nodes from Computed Tomography data. The contributions of

the paper are the following. First, it presents a learning based approach

to lymph node detection based on Marginal Space Learning. Second, it

presents an efficient MRF-based segmentation method for solid lymph

nodes. Third, it presents two new sets of features, one set self-aligning to

the local gradients and another set based on the segmentation result. An

extensive evaluation on 101 volumes containing 362 lymph nodes shows

that this method obtains a 82.3% detection rate at 1 false positive per

volume, with an average running time of 5-20 seconds per volume.

1 Introduction

Fig. 1. Diagram of the axillary lymph

node detection system

Lymph node (LN) analysis is a difficult
task and accounts for a significant part
of daily clinical work in Radiology. In
particular, automatic lymph node detec-
tion and segmentation is important for
cancer staging and treatment monitoring.
Lymph nodes nearby primary cancer re-
gions are routinely assessed by clinicians
to monitor disease progress and effective-
ness of the cancer treatment. The assess-
ment is usually based on 3D Computed
Tomography (CT) data. When the cancer
treatment is successful, the lymph nodes
decrease in size. Since finding the lymph
nodes is time consuming and highly dependent on the observer’s experience, a
system for automatic lymph node detection and measurement is desired. For
follow-up studies, the system could further report the size change for each major
lymph node.
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There is a limited amount of work directed to automatic lymph node detection
[4,5,7]. These works target mediastinal [5], abdominal [7] and neck [4] lymph
nodes while our work targets axillary lymph nodes. The axillary lymph nodes
are far from airways or major vessels, so a segmentation of the vessels or airways
is not necessary.

Previous work [5] relied on Hessian-based blobness measures and other filters
for removing lymph node false positives. Our work comes from a learning per-
spective, where the appropriate features that discriminate the lymph nodes from
the negatives are learned from training examples. Blobness measures could also
be included in the feature set of our system.

Fig. 2. The lymph nodes are marked

with bounding boxes and labeled as

solid(green) and non-solid (blue)

The idea of coupling segmentation with
detection has been recently proposed in
the computer vision literature [8]. Our
work also combines segmentation with ob-
ject detection, but in a different way.
First, our segmentation method produces
a defined object boundary whereas [8] has
a fuzzy boundary. Second, our work is ori-
ented towards detecting 3D lymph nodes,
which have a high degree of shape vari-
ability. In contrast, [8] detects 2D objects
of specific shapes such as cars, cows and
humans. Third, the segmentation is con-
structed differently in our work, using a
Gaussian MRF and gradient descent as
opposed to [8] where it is constructed in
a greedy way from a number of patches.
Fourth, our work constructs segmentation-based features that are used to train
a classifier, whereas [8] obtains a probability from the segmentation hypotheses
by voting.

The diagram of the proposed solid lymph node detection and segmentation
method is shown in Fig. 1. For speed and accuracy, the axillary regions are
extracted automatically as described in Section 2.1. About 1500 lymph node
center candidates per axillary region are generated using a two-stage detector
described in Section 2.3. Each candidate is segmented as described in Section
2.4. Finally, a verification stage described in Section 2.5 gives the final result.

2 Proposed Method for Solid Lymph Node Detection
and Segmentation

The proposed lymph node detection and segmentation system first detects can-
didate lymph node centers using a learning based approach. Each candidate is
used by a segmentation module to extract a candidate lymph node boundary.
A learning-based verification stage uses features obtained from the data and the
extracted boundary to score the candidates and keep only the best ones.



30 A. Barbu et al.

2.1 Axillary Region Extraction

To constrain the search, the two axillary regions are detected and cropped auto-
matically; the axillary lymph node detection is performed on these two cropped
subvolumes. The axillary subvolumes are obtained by first detecting the lung
tips, with an approach similar to [9]. This can be done very reliably and is not
the object of this paper. Relative to the two lung tip locations (x, y, z), subvol-
umes of size 220× 220× 220 voxels (at 1.5mm resolution) are cropped, with the
upper-left corner at (x + 20, y − 135, z − 131) for the left lung and upper-right
corner at (x − 20, y − 135, z − 131) for the right lung.

2.2 Axillary Lymph Node Annotation

All axillary lymph nodes of size at least 10mm have been annotated by placing
bounding boxes around them, as shown in Figure 2. The lymph nodes are labeled
as solid or non-solid depending whether they have a homogeneous interior or not.
Enlarged lymph nodes with a solid interior are of particular clinical interest since
they are believed to have a higher probability of being malignant than lymph
nodes that for example have a fatty core.

2.3 Candidate Lymph Node Detection

Fig. 3. Self align-

ing features are

computed along 14

directions relative to

candidate position

Lymph node center candidates are detected in the axillary
subvolumes ignoring the lymph node size, in the spirit of
Marginal Space Learning [12]. Marginal Space Learning is
an object detection technique where object candidates are
first detected in a subspace where many object parameters
(e.g. size, orientation, etc) are ignored. The candidates are
refined by searching for the missing parameters using ap-
propriate detectors.

The LN candidates are detected in two stages. The ini-
tial set of LN candidates are all voxels in the axillary sub-
volumes with intensity in the interval [-100,200]HU. Then,
these candidates are evaluated using a fast detector based
on Haar features followed by a second detector based on self-aligning gradient
features. These two types of features are described below.

1. Haar-Based Features. The first stage of lymph node detection is a trained
cascade of Adaboost classifiers trained using 92,000 3D Haar features [10].

2. Self-Aligning Features. The second stage uses a set of features self-aligned
to high gradients. The features are computed based on rays casted in 14 di-
rections in 3D space from each candidate location. These 14 directions are
(±1, 0, 0), (0,±1, 0), (0, 0,±1), and also (±1,±1,±1). Of the 14 directions, 10
are shown in Fig. 3.
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Fig. 4. In each direc-

tion, local gradient

maxima above differ-

ent thresholds τj are

found

In each direction di, 1 ≤ i ≤ 14, local maxima of the
gradient above each of 10 thresholds τj = 10j, 1 ≤ j ≤ 10
(see Figure 4), are found at three scales sk = 1/2k, 1 ≤ k ≤
3. Based on them, the following features are evaluated:

– Each of the 24 types of features types (gradient mag-
nitude, angle, intensity value, etc) described in [12] at
each of the first three local maxima for each di, τj , sk.

– Each of the 24 types of features types computed half
way between the candidate location and each of the
first three local maxima, for each di, τj , sk.

– The distance to each of the first three local maxima
for each di, τj , sk.

– The differences between distances to the corresponding
first three local maxima in any combination of two
different directions di, dj for each τk, sl.

This way about 64,000 features are obtained.
The best 1500 candidates above a threshold are kept for each axillary subvol-

ume. An example of detected candidates is shown in Figure 8 (left). For each
candidate location, a segmentation is obtained as described below.

2.4 Candidate Lymph Node Segmentation

Fig. 5. Sphere tri-

angulation with 162

vertices and 320

triangles

The segmentation algorithm is specially designed for de-
tecting clinically highly relevant solid lymph nodes. The
solid lymph nodes have a blob-like shape that can be de-
scribed by using a radial function r : S2 → R defined
on the sphere in 3D, representing the distance from the
lymph node center to the boundary in all directions. In
this work, the sphere has been discretized using a trian-
gulation with 162 vertices, 480 edges and 320 triangles, as
shown in Figure 5. Example of lymph node segmentations
with this sphere triangulation are shown in Fig. 8. This
representation is similar to the shape representation in [3].

Fig. 6. Measure-

ments yi are found

for each direction di

as the most probable

boundary location

Each of the 162 sphere vertices represents a direction di.
Given a candidate lymph node location C obtained by the
candidate detector described in Section 2.3, a segmenta-
tion using this location as the center is determined by the
radii ri, i = 1, ..., N for all directions di, where N = 162 in
our case. These radii form a vector r = (r1, ..., rN ).

The lymph nodes exhibit high shape variability, making
it difficult to describe them using generative models such
as PCA. To find the segmentation vector r we adopt an
approach similar to the Active Shape Models [2], but using
a robust data cost, gradient optimization and a Gaussian
MRF shape prior instead of a PCA model.
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Fig. 7. The segmen-

tation uses a robust

cost and a Gaus-

sian MRF to obtain

a smooth result that

fits most of the yi

Given the candidate location C, the most likely lymph
node boundary locations yi, i = 1, ..., 162 are found in each
direction di as

yi = arg min
r∈(0,Rmax)

|I(C) − I(C + (r + 1)di)| > 50 (1)

From the measurement vector y = (y1, . . . , y162), the seg-
mentation r is obtained by minimizing the following energy
function

E(r) = α
∑

i

ρ(ri − yi) +
∑

i

1
2|∂i|

∑
j∈∂i

(ri − rj)2 (2)

where ρ(x) = ln(1 + x2/2) and ∂i are the neighbors of i
on the sphere mesh.

The first term is the data term, while the second term
is the Gaussian MRF prior. If a measurement yi does not
exist, its corresponding term is removed from the data term of eq. (2).

Using the robust cost function ensures that any sporadic outliers in the mea-
surements yi are ignored. This is illustrated in Figure 7.

Minimization is done by gradient descent, starting with r = y as initializa-
tion. The energy gradient can be computed analytically, obtaining the update
iteration:

ri ← ri − η

(
α

ri − yi

1 + (ri − yi)2/2
+ ri −

∑
j∈∂i rj

|∂i|

)
(3)

In practice, we use η = 0.1 and 1000 gradient update iterations, while α = 1.6.
Other segmentation methods such as [3,6,11] could possibly be used, but they

lack a robust data term, making them more prone to oversegmentations in low
gradient locations.

Fig. 8. Left: Detected candidates. middle, right: Detected lymph nodes. right: The

method can also handle lymph node conglomerates.
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2.5 Final Lymph Node Verification

For each of the candidate lymph node centers obtained using the Candidate
detector from Section 2.3, a segmentation with 162 vertices is obtained as de-
scribed in Section 2.4. The segmentation is used to obtain more informative
features for the final evaluation of the lymph node candidates. From the seg-
mentation, a bounding box is extracted for each lymph node. Candidates whose
second largest bounding box size is less than 9mm are automatically rejected.

The following features are computed from the segmentation result
– Each of the 24 features types (gradient magnitude, angle, intensity value, etc)

from [12] are computed at the 162 segmentation vertices. For each feature
type, the 162 values are sorted in decreasing order.

– For each of the 24 feature types, the 81 sums of feature values at the pairs
of opposite vertices are computed and sorted in decreasing order.

– The 81 diameters (distances between opposite vertices relative to the segmen-
tation center) are sorted in decreasing order. For each diameter the following
features are computed:
1. The size of each diameter.
2. Asymmetry of each diameter, i.e. the ratio of the larger radius over the

smaller radius.
3. The ratio of the i-th sorted diameter and the j-th diameter for all 1 ≤

i < j ≤ 81.
4. For each of the 24 feature types, the max or min of the feature values at

the two diameter ends.
5. For each of the 24 feature types, the max or min of the feature values

half way to the diameter ends.

In total there are about 17,000 features.
The classifier trained with these features assigns a score pi to each candidate

i, a higher score meaning a higher likelihood to be a lymph node. All candidates
with the score below a threshold τ are automatically removed. On the remaining
candidates, a non-maximum suppression scheme is implemented as follows: The
algorithm repeats adding the remaining candidate of highest score and removing
all candidates close to it. In practice, we chose Nmax = 25 so on each axillary
region, a maximum of 25 lymph nodes are detected.

Algorithm 1. Non-maximal Suppression
Input: Candidates ci = (xi, yi, zi) with scores pi > τ and bounding boxes bi.

Output: Set D of detected lymph nodes.

1: Find the candidate ci with highest score pi.

2: if ci exists then initialize D = {i} else D = ∅, stop.

3: for n = 2 to Nmax do
4: Remove candidates cj inside any box bi, i ∈ D.

5: Find remaining candidate cj of highest score p.

6: if cj exists then add j to detected set: D ← D ∪ {j} else stop.

7: end for
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Two examples of detected and segmented lymph nodes are shown in red in
Figure 8, middle and right. The method can detect parts of lymph node con-
glomerates as shown in Figure 8, right.

Training details. The training parameters of the three classifiers are given in
Table 1. For comparison, a Random Forest [1] classifier with 50 trees was also
trained on the segmentation-based features for the verification step.

Table 1. Training details for the three classifiers

Classifier Features Type # Weak TPR FPR

1 Haar AdaBoost cascade 20,50 98% 1%

2 self-aligning AdaBoost cascade 30,90,270 94% 0.7 − 1%

3 segmentation-based AdaBoost 27

3 Experimental Validation

The experiments are performed on a dataset containing 101 CT volumes. All
volumes have been converted to 1.5mm isotropic voxel size. In the 101 volumes,
a total of 362 solid lymph nodes and 323 non-solid lymph nodes have been found
and annotated.

Out of the 101 cases, the region extraction failed only on the left side of one
patient that actually had the left lung removed.

The experimental results below are based on a six-fold cross-validation. The
CT volumes were divided into six disjoint sets. For each fold, the union of five
of the sets was used to train the three classifiers and the remaining set was used
for evaluation. Training all three classifiers for each fold took about five hours.

Fig. 9. Detection results with six-fold

cross-validation on 101 volumes containing

362 lymph nodes

Evaluation Methodology. Since the
solid lymph nodes are often very sim-
ilar and difficult to distinguish from
the non-solid ones, we adopted the fol-
lowing evaluation measure for the de-
tection results. A solid lymph node is
considered detected if there exists a
detection with the center inside the
lymph node bounding box. A detection
is considered false positive if its cen-
ter is not inside any annotated solid or
non-solid lymph node. Thus any detec-
tion on a non-solid lymph node is nei-
ther considered a positive nor a false
alarm.

Results. Using this evaluation mea-
sure, we obtained the ROC curves
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shown in Figure 9. The solid black curve represents the ROC curve of the system
with the verification step having 27 Adaboost classifiers while the interrupted
red curve being the ROC of the system with the verification step trained as
a Random Forest with 50 trees. For comparison, we show in green color the
ROC curve of the LN candidate detector. Thus, the verification step based on
segmentation has a great impact on the overall performance of the system.

We also evaluated a system in which the segmentation and verification steps
are removed and replaced with a lymph node detector that searches the scale of
the lymph node bounding box. This detector is trained using steerable features,
as described in [12]. For each of the lymph node candidates, this detector searches
890 combinations of the three lymph node sizes and reports the bounding box
of highest score above a threshold. Non-maximal suppression as described in
Algorithm 1 is used to further reduce the number of detections. The results using
this “scale detector” are shown as a dotted blue curve in Figure 9. This shows
that the segmentation-based detector has a much better performance than the
scale detector. An added benefit is the fact that the segmentation based detector
is about 5 times faster than the scale detector.

Table 2. Detection results and comparison with other methods

Method Target Area # cases Size of nodes TPR FP/vol PPV Time/vol

Ours Axillary 101 > 10.0mm 82.3% 1.0 74.9% 5-20sec

Feuerstein [5] Mediastinum 5 > 1.5mm 82.1% 113.4 13.3% 1-6min

Kitasaka [7] Abdomen 5 > 5.0mm 57.0% 58 30.3% 2-3h

Dornheim [4] Neck 1 > 8.0mm 100% - 76.3% 17min

A comparison with other lymph node detection methods present in the liter-
ature is shown in Table 2. Our method achieves a detection rate of 82.3% at 1
false positive per volume, i.e. a 74.9% Positive Predictive Value. This compares
favorably with the previous work [5,7]. Dornheim[4] obtains a better detection
rate but is evaluated on a single volume, which cannot be considered anywhere
close to a thorough evaluation. Moreover, our method is also the fastest, because
of the use of the lymph node center detector that ignores the lymph node size
and shape and potentially eliminating millions of expensive verifications.

4 Conclusion and Future Work

In this paper, we presented a novel method for automated lymph node analysis
based on integrating segmentation with a learning-based detector.

While we address the more restricted problem of solid axillary lymph node
detection, we obtain better results with a more thorough evaluation (101 cases
compared to 5 cases in [5,7]). At the same time, the proposed method is faster
than any of the other existing lymph node detection methods.

In the axillary region, there are no airways or intestines to segment. Neverthe-
less, a vessel segmentation could further improve the accuracy of our approach.
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In the future, we plan to study the improvement brought by using more than
one segmentation at each candidate location. We also plan to use the proposed
method for segmenting abdominal and mediastinal lymph nodes and also differ-
ent types of lesions.
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Abstract. In this paper, we propose to classify medical images using

dissimilarities computed between collections of regions of interest. The

images are mapped into a dissimilarity space using an image dissimilarity

measure, and a standard vector space-based classifier is applied in this

space. The classification output of this approach can be used in com-

puter aided-diagnosis problems where the goal is to detect the presence

of abnormal regions or to quantify the extent or severity of abnormalities

in these regions. The proposed approach is applied to quantify chronic

obstructive pulmonary disease in computed tomography (CT) images,

achieving an area under the receiver operating characteristic curve of

0.817. This is significantly better compared to combining individual re-

gion classifications into an overall image classification, and compared to

common computerized quantitative measures in pulmonary CT.

1 Introduction

Quantification of abnormality in medical images often involves classification of
regions of interest (ROIs), and combination of individual ROI classification out-
puts into one global measure of disease for the entire image [1,2,3,4,5,6,7]. These
measures may, e.g., express a probability of the presence of certain abnormalities
or reflect the extent or severity of disease.

A global image measure based on the fusion of several independent ROI clas-
sifications disregards the fact that the ROIs belong to a certain image in the
classification step. Moreover, in some cases only global image labels are avail-
able, while the images are still represented by ROIs in order to capture localized
abnormalities. In some studies, this is handled by propagating the image label
to the ROIs within that image, which again allows fusion of individual ROI clas-
sifications, to obtain a global image measure [4,5,6]. However, an image showing
abnormality will generally comprise both healthy and abnormal regions, and the
above approach, incorrectly, labels ROIs without abnormality in such an image
as abnormal.

T. Jiang et al. (Eds.): MICCAI 2010, Part I, LNCS 6361, pp. 37–44, 2010.
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In this paper, we propose to classify medical images using dissimilarities com-
puted directly between the images, where the images are represented by a col-
lection of regions. In this approach, all ROIs in an image contribute when that
image is compared to other images, thereby taking into account that the ROIs
collectively constitute that image. Further, problems where only a global image
label is available are handled automatically since the classification is done at
the image level. The images are mapped into a dissimilarity space [8] in which
a standard vector space-based classifier can be directly applied, and the soft
output of this classifier is used as quantitative measure of disease. The measure
used to compute the dissimilarity between two images is the crucial component
in this approach, and we evaluate four different image dissimilarity measures in
the experiments.

The proposed approach is applied to quantify chronic obstructive pulmonary
disease (COPD) in volumetric pulmonary computed tomography (CT) images
using texture. Several general purpose classifiers built in the obtained image
dissimilarity spaces are evaluated and compared to image classification by fusion
of individual ROI classifications as was used in [6].

2 Image Dissimilarity Space

We propose to represent a set of images {I1, . . . , In} by their pair-wise dissim-
ilarities d(Ii, Ij) and build classifiers on the obtained dissimilarity representa-
tion [8]. From the matrix of pair-wise image dissimilarities D = [d(Ii, Ij)]n×n

computed from the set of images, there exist different ways of arriving at a
feature vector space where traditional vector space methods can be applied. In
this work, we consider the dissimilarity space approach [8]. An image dissim-
ilarity space is constructed of dimension equal to the size of the training set
|T | = |{J1, . . . , Jm}| = m, where each dimension corresponds to the dissimilar-
ity to a certain training set image J . All images I are represented as single points
in this space, and are positioned according to their dissimilarities to the training
set images D(I, T ) = [d(I, J1), . . . , d(I, Jm)]. The image dissimilarity measure is
a function from two images, represented as sets of ROIs, to a non-negative scalar
d(·, ·) : P(S) × P(S) → R+ where S is the set of all possible ROIs and P(S) is
the power set of S. It is in this part of the proposed approach that the ROIs are
taken collectively into account.

3 Image Dissimilarity Measures

The main issue in obtaining the image dissimilarity space, is the definition of
d(·, ·). Since the application in this paper is quantification of COPD in pulmonary
CT images based on textural appearance in the ROIs, we will focus on image
dissimilarity measures suitable for this purpose. In texture-based classification
of lung tissue, the texture is sometimes assumed stationary [3,4,6,7]. We will
make the same assumption and, therefore, disregard the spatial location of the
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ROIs within the lungs. The following are then desirable properties of an image
dissimilarity measure for quantification of COPD:

1. Spatial location within the image does not matter. ROIs should be compared
solely based on the textural appearance within those regions.

2. The amount of diseased tissue does matter. An image with many abnormal
regions is more diseased than an image with few abnormal regions.

3. The appearance of abnormal tissue does matter. Two images with abnormal
regions of the same size but with different types of abnormalities should be
considered different.

A simple and straightforward image dissimilarity measure between two images,
I1 and I2, having the above properties is the sum of all pair-wise ROI dissimi-
larities:

dsum(I1, I2) =
∑
i,j

Δ(x1i,x2j) (1)

where x1i is the i’th ROI in I1 and Δ(·, ·) is a texture appearance dissimilarity
measure between two ROIs. However, when all ROIs in one image are compared
to all ROIs in the other image, the discriminative information of abnormality
present in only a few ROIs may be lost. One way to avoid this is to match every
ROI in one image with the most similar ROI in the other image. This is the
minimum sum distance [9]:

dms(I1, I2) =
∑

i

min
j

Δ(x1i,x2j) +
∑

j

min
i

Δ(x2j ,x1i). (2)

However, this image dissimilarity measure allows several ROIs in one image to
be matched with the same ROI in the other image. This may not be desirable
for quantifying COPD since an image with a small abnormal area is considered
similar to an image with a large abnormal area. The image dissimilarity measure
proposed in the following is a trade-off between dsum and dms; it is the sum
of several pair-wise ROI dissimilarities, where only one-to-one matchings are
allowed, thereby considering images with a small abnormal area as dissimilar to
images with a large abnormal area.

3.1 Bipartite Graph Matching-Based Image Dissimilarity Measure

The dissimilarity between two images, or sets of ROIs, I1 = {x1i}n and I2 =
{x2i}n, can be expressed as the minimum linear sum assignment between the
two sets according to Δ(·, ·). This can be seen as assigning the ROIs in one set to
the ROIs in the other set in a way such that the two sets are as similar as possible
while only allowing one-to-one matchings. Let G = (I1 ∪ I2, E) be a weighted
undirected bipartite graph with node sets I1 and I2 where |I1| = |I2| = n, edge
set E = {{x1i,x2j} : i, j = 1, . . . , n}, and with weight Δ(x1i,x2j) associated
with each edge {x1i,x2j} ∈ E. The resulting graph is illustrated in Figure 1.
A subset M of E is called a perfect matching, or assignment, if every node of
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Fig. 1. Illustration of the graph considered when computing the dissimilarity between

two images, I1 and I2, in (4). All edges have an associated weight Δ(x1i,x2j) that

expresses the textural dissimilarity between the two corresponding ROIs x1i and x2j .

The edges in the perfect matching with minimum weight M∗ are shown as solid lines,

and the remaining edges, not in M∗, are shown as dashed lines.

G is incident with exactly one edge in M . The perfect matching with minimum
weight M∗ is given by

M∗ = argmin
M

∑
{x1i,x2j}∈M

Δ(x1i,x2j) : M is a perfect matching. (3)

This problem can be solved efficiently using the Hungarian algorithm [10]. The
resulting image dissimilarity measure is thus

dla(I1, I2) =
∑

{x1i,x2j}∈M∗
Δ(x1i,x2j) (4)

where M∗ is obtained via (3). No normalization is needed since the images con-
tain an equal amount of ROIs, i.e., n ROIs. Although not used in this work, the
formulation can also be relaxed to handle images containing a varying number of
ROIs. This will result in an image dissimilarity measure that does not obey the
triangle inequality due to partial matches of images. However, this is no problem
in the dissimilarity space appraoch.

4 Experiments

4.1 Data

The data consists of 296 low-dose volumetric CT images from the Danish Lung
Cancer Screening Trial with the following scan parameters: tube voltage 120 kV,
exposure 40 mAs, slice thickness 1 mm, and in-plane resolution ranging from 0.72
to 0.78 mm. 144 images are from subjects diagnosed as healthy and 152 images
are from subjects diagnosed with moderate to very severe COPD. Both groups
are diagnosed according to spirometry [11].
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4.2 Evaluation

The image dissimilarity-based approach is applied by building classifiers in the
CT image dissimilarity spaces obtained using d(·, ·). This is compared to using
d(·, ·) directly as distance in a k nearest neighbor classifier (kNN), which for k = 1
corresponds to template matching, and to fusing individual ROI classifications,
classified using kNN, for image classification [6]. A posterior probability of each
image being positive is obtained using leave-one-out estimation, and receiver
operating characteristic (ROC) analysis is used to evaluate the different methods
by means of the area under the ROC curve (AUC). The CT image dissimilarity
spaces considered in each leave-out trial are of dimension equal to the size of the
training set, i.e., 295-dimensional.

Apart from the three image dissimilarity measures described in Section 3,
(1), (2), and (4), we also experiment with the Hausdorff distance [9], dh. This
is a classical point set distance measure that do not obey the second property
described in Section 3, since it ultimately rely on the dissimilarity between two
single ROIs, or points, one from each image. Thus, a total of four different CT
image dissimilarity representations are considered in the experiments, one based
on each of the four image dissimilarity measures dsum, dms, dla, and dh.

4.3 Classifiers

All CT images are represented by a set of 50 ROIs of size 41×41×41 voxels that
each are described by three filter response histograms capturing the local image
texture. The filters are: Laplacian of Gaussian (LG) at scale 0.6 mm, gradient
magnitude (GM) at scale 4.8 mm, and Gaussian curvature (GC) at scale 4.8
mm. The ROI size as well as the filters are selected based on the results in [6].
The ROI dissimilarity measure used in all experiments is based on the L1-norm
between the filter response histograms: Δ(x1,x2) = L1(hLG(x1), hLG(x2)) +
L1(hGM (x1), hGM (x2)) + L1(hGC(x1), hGC(x2))) where hi(x) is the response
histogram of filter i computed in ROI x.

A SVM with a linear kernel and trade-off parameter C = 1 is applied in the
obtained CT image dissimilarity spaces. kNN is applied in the following three
ways: in the image dissimilarity spaces, using the image dissimilarities directly
as distance, and using ROI dissimilarity directly for ROI classification followed
by fusion. k = 1 is used as well as k =

√
n where n is the number of proto-

types [12]. When classifying CT images, this is k = �
√

295� = 17, and when
classifying ROIs, this is k = �

√
(295× 50)� = 121. The following combination

rules are considered for fusing individual ROI classifications into image classi-
fications: quantile-based fusion schemes with quantiles ranging from 0.01, i.e.,
the minimum rule, to 1.00, i.e., the maximum rule, and the mean rule [13]. We
also compare to two common CT-based quantitative measures, namely, rela-
tive area of emphysema (RA) and percentile density (PD) using the common
thresholds of −950 Hounsfield units (HU) and 15% respectively [14]. These mea-
sures are computed from the entire lung fields and are denote RA950 and PD15,
respectively.
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4.4 Results

Table 1 shows the estimated AUCs for all the classifiers. The best CT image-
dissimilarity based classifier, SVM built in CT image dissimilarity space using
dla, achieves an AUC of 0.817. This is better than the best performing mean rule
ROI fusion-based classifier, 121NN, which achieves an AUC of 0.751. The common
CT-based measures, RA950 and PD15, perform worse than all the texture-based
measures. The quantile-rule only performed better than the mean rule in the ROI
classification fusion in one case, 121NN using maximum rule achieved an AUC of
0.757, and they are therefore not reported in Table 1. SVM in image dissimilarity
space using dla or dsum is significantly better, with p = 0.0028 and p = 0.0270,
respectively, than 121NN using the mean rule, while SVM using dms is not, with
p = 0.085, according to DeLong, DeLong, and Clarke-Pearson’s test [15].

Table 1. AUCs for COPD diagnosis. Left: The results of classification in image dis-

similarity space, as well as using the image dissimilarities directly in kNN. Right: The

results of fusion of individual ROI classification outputs for image classification using

the mean rule. The best performing classifier in each approach is marked in bold-face.

in image using d(·, ·)
dissimilarity space directly

SVM 1NN 17NN 1NN 17NN

dh 0.609 0.522 0.624 0.566 0.668

dsum(1) 0.793 0.619 0.643 0.504 0.663

dms (2) 0.795 0.632 0.725 0.600 0.768

dla (4) 0.817 0.612 0.671 0.593 0.741

fusion of

ROI classifications

1NN 0.721

121NN 0.751

RA950 0.585

PD15 0.589

5 Discussion

Image dissimilarity measures that match each ROI of one image to an ROI of the
other image, under some restrictions, are expected to work well for quantification
of COPD within the proposed framework, mainly because more information is
taken into account, but also due to increased robustness to noisy ROIs. This is
in contrast to measures relying on the match between two ROIs only, such as
the Hausdorff distance that is included in the experiments for the sake of com-
pleteness. Further, the main argument for building a more global decision rule,
such as SVM in a dissimilarity space, instead of applying kNN using the dissim-
ilarity directly as distance is better utilization of the training data and therefore
reduced sensitivity to noisy prototypes [8]. This may explain why SVM with
a linear kernel built in the dissimilarity space obtained using dla is the best
performing of the CT image dissimilarity-based approaches. However, validation
on an unseen data set would be needed to draw a final conclusion on this. The
experiments showed that SVM with a linear kernel built in the CT image dissim-
ilarity space obtained using dla performed significantly better than using kNN
for ROI classification together with the mean rule for CT image classification
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(p < 0.05). This implies that performing the classification at image level, taking
into account that an image is in fact a collection of ROIs that collectively con-
stitute that image, is beneficial compared to classifying ROIs individually, while
disregarding the fact that they do belong to a certain image.

The computational complexity of the proposed approach using either of the
image dissimilarities (1), (2), or (4), in terms of the number of times Δ(·, ·) is
evaluated in order to classify a CT image, is the same compared to using the
image dissimilarities directly as distance in kNN and to fusion of ROI classifica-
tions that are classified using kNN. All approaches require a total of 50×50×295
evaluations of Δ(·, ·) for classification of a CT image.

When an image is represented by a collection of ROIs and only a label for the
entire image is available, the problem of classifying the image can be formulated
as a multiple instance learning (MIL) problem [16]. Fusion of independent ROI
classifications in order to arrive at an overall image classification can be seen
as a “simple” algorithm for solving such a problem. In this paper, we propose
to use the dissimilarity-based approach of Pekalska et al. [8] on image dissim-
ilarities for solving MIL problems in medical imaging. The approach is similar
in spirit to various kernel-based MIL algorithms, such as [17]. The dissimilarity-
based approach, however, puts less restrictions on the proximity measure used
for comparing objects. Kernel-based approaches require the kernel to be positive
definite, which excludes well-known proximity measures such as the Hausdorff
distance [9] as well as the bipartite graph matching image dissimilarity measure
proposed in this work. Within our framework such measures can be used without
any problem.

In conclusion, dissimilarities computed directly between medial images, where
the images are represented by a collection of ROIs, was proposed for image clas-
sification. This is an alternative to fusion of individual ROI classifications within
the images. A SVM built in a dissimilarity space using an image dissimilarity
measure based on a minimum sum perfect matching in a weighted bipartite
graph, with ROIs as nodes and the textural dissimilarity between two ROIs as
edge weight, achieved an AUC of 0.817 on a COPD quantification problem in
volumetric pulmonary CT.
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Abstract. In this paper, a novel segmentation method for liver vascu-

lature is presented, intended for numerical simulation of radio frequency

ablation (RFA). The developed method is a semiautomatic hybrid based

on multi-scale vessel enhancement combined with ridge-oriented region

growing and skeleton-based postprocessing. In addition, an interactive

tool for segmentation refinement was developed. Four instances of three-

phase contrast enhanced computed tomography (CT) images of porcine

liver were used in the evaluation. The results showed improved accu-

racy over common approaches and illustrated the method’s suitability

for simulation purposes.

1 Introduction

Primary liver cancer is the fifth most common cancer worldwide and cause of
more than 500 000 deaths a year. While only 5–15% of the patients can be
treated surgically, there are others who may benefit from ablation treatments [1].
Radiofrequency ablation (RFA) has recently become the standard treatment for
small non-resectable liver tumours, and it can achieve survival rates that are
comparable to surgical resection with an improvement over competitive ablation
treatments [2].

In RFA, a tumour is destroyed thermally by an electric current passing thro-
ugh a needle-like electrode. Due to the lack of viable planning and limitations
in monitoring equipment, assessment of the treatment during or right after the
procedure is almost impossible. The problem is pronounced in the vicinity of
blood vessels acting as heat sinks and locally interfering the heat propagation [3].
A possible solution is based on numerical simulation of the heat transfer [4].

A subject-specific geometric model is a prerequisite for numerical simulation.
Among the most challenging tasks is the segmentation of the hepatic vasculature
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including the hepatic artery, portal vein and hepatic vein. A number of vessel
segmentation methods have been proposed for different application domains, see
review [5]. The most utilized methods for liver applications are based on the work
of Selle et al. [6], which successfully combines region growing- and skeleton-based
approaches. An RFA simulation approach based on the method was described
in [7]. An alternative approach is based on bottom-up tracking [8].

This paper describes a novel, semiautomatic hybrid method for vessel extrac-
tion. The method resembles the popular skeleton-based approach first introduced
by Selle et al., but it was further augmented with multi-scale and matched filter
approaches [9], tracking schemes and mathematical morphology. Many aspects
of the original approach have been revised; most of all, its sensitivity for small
vessels has been improved. Furthermore, an interactive tool is introduced for
efficient cutting and editing of vessel branches designed especially from the sim-
ulation point of view. Finally, a quantitative and qualitative evaluation of the
method’s performance is presented.

2 Methods

Vessels are segmented from three-phase contrast enhanced CT images, arterial,
portal venous and hepatic venous phases distinctly, which are registered, cor-
rected to isotropic according to their smallest dimension and normalized between
gray-value range of interest [10].

2.1 Vessel Enhancement

Vessel enhancement filters, a family of multi-scale filters, are a powerful combi-
nation of vessel extraction and image denoising, which employ matched differ-
ential operators to enhance 3-D tubular structures of different sizes. This work
is based on a Hessian tube model [9], in which local scale-dependent second
order variations around a tubular structure are characterized by the eigenval-
ues of the Hessian matrix of a Gaussian filtered image fσ = Gσ ∗ I with the
standard deviation σ chosen according to the vessel size. Given the eigenvalues
|λ1| ≤ |λ2| ≤ |λ3|, in case of a tube, the condition

|λ1| ≈ 0
|λ2| � λ1

|λ2| ≈ |λ3|
(1)

should correspond to the maximal probability, according to which the corre-
sponding filter response [11] is given by

u(x, σ) =
(

1− ||λ2| − |λ3||
|λ2|+ |λ3|

)(
2
3
λ1 − λ2 − λ3

)
. (2)

In this work, the computationally intensive multi-scale convolution is replaced
by an image-pyramid approach commonly used in solving ordinary differential
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equations. The approach scales the image grid instead of the convolution kernel
(σ), and the filter response is computed in a top down fashion by propagating
the filter responses from each level, and keeping a voxel wise maximum at each,
or, more formally, by

ud(x) = ud(x)
uk(x) = max {uk(x), L(uk+1(x))} , k = d− 1, ..., 0
U(x) = u0(x),

(3)

where d is the coarsest level, uk(x) denotes the filter response at level k, and
L is a trilinear upsampling operator. Four-point average is used as a restriction
operator. The blurring effect resulting from upsampling is compensated by

Û(x) = (1− ξ∇I)U(x), (4)

where ξ ∈ [0, 1] is the sharpening factor.

2.2 Iterative Ridge-Oriented Region Growing

The coarse phase segmentation of the filtered image is obtained by wave-front
propagation, the implementation of which is based on the fast marching [12].
Such a wave-front advancing monotonically with a speed F (x) obeys a nonlinear
Eikonal equation

|∇T (x)|F (x) = 1.0, (5)

where T (x) is the time at which the front crosses the point x. Vice versa, the
crossing time t defines the region

R(t) = {x|T (x ≤ t)} . (6)

The advantages of a wave-front lay on support for complex, e.g., edge-based
stopping function, and spatial and directional control over the propagation, e.g.,
preservation of topology. In this work, a wave-front constrained to i) vessel ge-
ometry by a global threshold and ii) topology homeomorphic to a sphere by a
topological consistency check [13], is initiated at the seed point close to the vessel
opening, and propagated along the vessel tree. In this sense, the speed decreases
to zero below the threshold, and thus the stopping time can be defined as a large
number.

After coarse phase, discontinuities and small vessels are handled in the de-
tail phase, which is a ridge-oriented alternative to earlier locally adaptive region
schemes, e.g., adaptive directional growing [14] or progressive region growing [15].
The method is closely related to minimum-spanning tree and shortest path al-
gorithms, but differs from the usual merging and reconnection schemes [10].

The detail phase is initiated at the boundary of the coarse segmentation.
It then follows the steps of the watershed transform [16], but contrary to it,
the path is saved as an acyclic graph [17]. It can be thought of as propagating
both at the watershed line (intensity ridge) and towards the watershed minima.
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The watershed line can be automatically extracted by using heuristic measures,
like branch-length, number of ramifications and ridge curvature. It is intended
for small vessels, for which a Gaussian intensity profile holds true. Indeed, the
centrelines are likely to be at the locus of intensity maxima after the filtering.

The tracking proceeds until a termination condition or a lower bound for
the intensity is met, after which the tracks are labelled. Subsequently, another,
marker-controlled watershed transform is applied to the gradient magnitude im-
age∇U(x) is applied to extract the boundaries of the tracked vessels. The results
are then inspected, and the connected components of the vessel branches are re-
moved if their mass or shape exceeds limits that are considered to correspond to
a vessel. The ridge-oriented region growing is a sequence of operations, which,
when iterated, is likely to improve the results.

2.3 Post-processing in Skeleton-Domain

The skeleton of the binary image is extracted using a top-down minimum-cost
traversal along two distance fields, which preserves the cross-sectional radii (rk)
of the vessel path (given by nodes ck) [18]. The output is given as a piece-
wise linear directed tree structure. The skeleton is then processed by parameter-
controlled pruning or smoothing according to, e.g., ratio of branch length to
radius, Strahler-level [19] (Fig.2), vessel radius or its derivative along the ves-
sel direction. In addition, an interactive branch cutter and editor was developed,
which makes use of intuitive travelling across the image by using a cross-sectional
plane perpendicular to a vessel, and two maximum intensity projections. When
these are combined with an interactive tool for controlling rotation, it is suffi-
cient to reveal the nearby vessels in their true 3-D nature (Fig. 1). Finally, the
processed skeletons are converted into a smooth 0-level set by an inverse distance
transform.

(a) (b) (c) (d)

Fig. 1. Tools for interactive refinement and landmark selection. (a) porcine portal vein

superimposed on its skeleton. Two maximum intensity projections (b) (in y-direction)

(c) (x) inside a local rotated image block, and a cross-section of the block (d)(x-y

plane).
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(a) (b)

(c) (d)

(e) (f)

Fig. 2. (a) Unfiltered data (halo errors emphasized) and (b) the result from this

method, where the vessel branches are colored according to Strahler scheme. (c) and

(d) full vascular models of porcine liver: arteries (blue), portal vein (green) and hepatic

veins (red). (e) Portal vein mesh (black) superimposed on CT image. (f) An instance of

finite element modelling of heat transfer (temperature in Kelvin). The polygon model

has been greatly simplified prior to simulation.
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3 Evaluation

The quantitative evaluation is based on a landmark study each landmark con-
sisting of a vessel centreline and a radius li = (ci, ri) estimated from the original
CT image by using one of the tools developed for exploration of vessel images
(Fig. 1). Starting at the vessel opening and proceeding towards increasing order
of ramification until the vanishing point, a total 1024 landmarks were manually
collected. These represent a prescriptive set of ramification pattern. Next, the
point correspondence between each landmark and the corresponding semiauto-
matic vessel tree (sk = (ck, rk)) was solved by minimizing the Euclidean distance
between each li and ck

{cj(i), rj(i)} = min
k
||ci, ck||2. (7)

To prevent a false correspondences (e.g. with another branch) from biasing the
analysis, we introduced a new measure (hit rate) given by

HITi =
{

1, if ||ck(i)− ci||2 < ri

0, otherwise, (8)

which effectively describes if the ck lies within the segmented vessel tree. In
evaluation, landmarks are compared to results. Missed landmarks are treated as
outliers, but considered a superset of other errors. Then the root mean square
errors for the radii and centreline position are given by

RMSE(x) =
√∑

k HITi(xk(i)− xi)2/
∑

k HITi, x = c, r. (9)

4 Results

The method was evaluated with four porcine livers using contrast enhanced CT
images. For each animal, three images were taken in the same respiration phase to
enhance the respective vessels one at a time and to neglect deformations. Helical
CT scans were performed at Medical University of Graz using computer-assisted
bolus-tracking (ROI surestart) and 320-line Toshiba Aquilion ONE (resolution
512x512x320 @ 0.407–0.463x0.5 mm).

In qualitative evaluation, several visualization techniques were used to present
the segmented vasculature. Polygon models of the segmentation depicted in
Fig. 2(a)–(b) represent the level of detail extractable by our method compared to
conventional thresholding and region growing approaches (from [6]). Figure 2(c)
and (d) show arteries (blue), portal vein (green) and hepatic vein (red) in the full
vascular model. Figure 2(e) shows polygon model superimposed on the original
CT image, and finally Fig 2(f) shows an instance of simulation using our data.

The results of the quantitative evaluation are depicted in Tab. 1. Run-time of
the method was less than 4 minutes on a modern quad-core workstation.
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Table 1. Hit rate of the landmark study with respect to the vessel radius. Units are

all voxels. Error in landmark is of the order of 1 voxel.

radius (R) hit rate (%) RMSE(ĉ) (of hits) RMSE(r̂) (of hits)

≤ 9.0 100 1.69 1.9

6.0 ≤ R < 9.0 100 1.08 0.95

5.0 ≤ R < 6.0 96 1.17 0.97

4.0 ≤ R < 5.0 92 1.04 0.87

3.0 ≤ R < 4.0 97 1.00 0.61

2.0 ≤ R < 3.0 97 0.91 0.72

1.0 ≤ R < 2.0 75 0.91 0.49

0.5 ≤ R < 1.0 25 0.61 0.09

all 87 1.00 0.77

5 Discussion

In literature, a vessel diameter of 3.0 mm has been described a critical threshold
for ablation heat propagation [3]. We have shown that our method is capable
of extracting 97% of vessels equal or above the threshold (3.0 mm diameter
corresponds to 3.0 voxel radius). Furthermore, the accuracy is well below the
reasonable resolution for finite element modelling, and does not drop until a
subvoxel resolution. The comparison to other vessel segmentation methods is
challenging as quantitative evaluation has usually been omitted, but visual eval-
uation showed improvements over previous methods. Also, comparing the hit
rate (sensitivity) results, there were improvements over the only quantitative
study published [20].

Our intuitive combination of region growing and ridge tracking is inherently
capable of growing over small gaps, and extracting structures down to unit voxel
thickness. It resembles live wire approaches and readily supports manual seed-
ing of individual branches, or top-down tracking of false-negative vessel branches
near image artifacts, e.g., tumours. Our pyramid approach is a reasonable and
robust approximation to vessel enhancement that can be computed on a modern
workstation in one minute. The accuracy and suppression of halos of microvascu-
lature are well demonstrated in the Fig. 2(a) and (b). Furthermore, initial trials
on human data have shown consistent results.

The skeleton domain post-processing and interactive refinement tools provide
an efficient platform not only for error correction but for modifying the vas-
culature more suitable for simulation. From the RFA point of view, the most
important are the nearby vessels, which can be easily isolated. Circular cross-
section encoded in both the skeleton and landmarks, and widely used in the
field, introduces error in largest oval-shaped vessels (Tab. 1). For other vessels,
however, this has proven a reasonable assumption, and desired property due to
its smoother vessel surface.
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6 Conclusion

We have demonstrated a new, efficient and robust hybrid vessel segmentation for
RFA ablation simulation. The suitability was carefully evaluated, and its results
are already applied to RFA simulation. Further, we believe the method is useful
for many other applications domains or imaging modalities.
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Abstract. Many current image-guided radiotherapy (IGRT) systems

incorporate an in-room cone-beam CT (CBCT) with a radiotherapy lin-

ear accelerator for treatment day imaging. Segmentation of key anatom-

ical structures (prostate and surrounding organs) in 3DCBCT images

as well as registration between planning and treatment images are es-

sential for determining many important treatment parameters. Due to

the image quality of CBCT, previous work typically uses manual seg-

mentation of the soft tissues and then registers the images based on the

manual segmentation. In this paper, an integrated automatic segmen-

tation/constrained nonrigid registration is presented, which can achieve

these two aims simultaneously. This method is tested using 24 sets of real

patient data. Quantitative results show that the automatic segmentation

produces results that have an accuracy comparable to manual segmenta-

tion, while the registration part significantly outperforms both rigid and

non-rigid registration. Clinical application also shows promising results.

1 Introduction

Prostate cancer is the most commonly diagnosed cancer among men in the
United States. For the majority, external beam radiotherapy (EBRT) is one
of the primary treatment modalities for prostate cancer [1].

Recent advances in EBRT have led to three-dimensional conformal radiother-
apy (3DCRT) and intensity modulated radiotherapy(IMRT). Prostate 3DCRT
requires a precise delineation of the target volume and the adjacent critical or-
gans in order to deliver an optimal dose to the prostate with minimal side effect
on nearby normal tissues. Many current image-guided radiotherapy (IGRT) sys-
tems integrate an in-room cone-beam CT (CBCT) with a radiotherapy linear
accelerator for treatment day imaging. With both imaging and radiotherapy
available on the same platform, daily CBCTs can now be acquired and used for
patient positioning.
� This work is supported by NIH/NIBIB Grant R01EB002164.

T. Jiang et al. (Eds.): MICCAI 2010, Part I, LNCS 6361, pp. 53–60, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



54 C. Lu et al.

However, when higher doses are to be delivered, precise and accurate target-
ing is essential because of unpredictable inter- and intra-fractional organ motions
over the process of the daily treatments that often last more than one month.
Therefore, a non-rigid registration problem must be solved in order to map the
planning setup information in the initial 3DCT data into each treatment day
3DCBCT image. Meanwhile, we must acurately segment the prostate, bladder
and rectum from the 3DCBCT images. Due to the quality of CBCT images, these
issues can be very tough. Greene et al. [2] carried out this by manual segmen-
tation and then involved nonrigid registration. Some initial work has been per-
formed in simultaneously integrating registration and segmentation. Chelikani et
al. [3] integrated rigid 2D portal to 3D CT registration and pixel classification in
an entropy-based formulation. Yezzi et al. [4] integrated segmentation using level
sets with rigid and affine registration. Chen et al. [5] implemented a nonrigid
transformation and a hidden Markov random field to improve the segmentation
performance.

In this paper, we present an integrated automatic segmentation and softly
constrained nonrigid registration algorithm. Our model is based on a maximum
a posteriori(MAP) framework while the automatic segmentation is performed
using level set deformable model with shape prior information, as proposed in
[6], and the constrained nonrigid registration part is based on a multi-resolution
cubic B-spline Free Form Deformation (FFD) transformation. These two issues
are intimately related: by combining segmentation and registration, we can re-
cover the treatment fraction image regions that correspond to the organs of
interest (prostate, bladder, rectum) by incorporating transformed planning day
organs to guide and constrain the segmentation process; and conversely, accurate
knowledge of important soft tissue structures will enable us achieve more precise
nonrigid registration which allows the clinician to set tighter planning margins
around the target volume in the treatment plan. Escalated dosages can then be
administered while maintaining or lowering normal tissue irradiation.

2 Method

The integrated segmentation/registration algorithm was developed using
Bayesian analysis to calculate the most likely segmentation in treatment day
fractions Sd and the mapping field between the planning day data and treat-
ment day data T0d. This algorithm requires: (1) a planning day 3DCT image
I0, (2) a treatment day 3DCBCT image Id, and (3) the segmented planning day
organs S0.

2.1 MAP Framework

A probabilistic model can be used to realize image segmentation combining
prior information and image information, simultaneously, it can also realize
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nonrigid registration by incorporating both intensity matching and segmented
organ matching constraint. Thus we estimate

Ŝd, T̂0d = arg max
Sd,T0d

[p(Sd, T0d|I0, Id, S0)] (1)

This multiparameter MAP estimation problem in general is difficult to solve,
however, we reformulate this problem such that it can be solved in two basic it-
erative computational stages using an iterative conditional mode (ICM) strategy.
With k indexing each iterative step, we have:

Ŝk
d = arg max

Sk
d

[p(Sk
d |T k

0d(S0), Id)] (2)

̂T k+1
0d = arg max

T k+1
0d

[p(T k+1
0d |Sk

d , S0, Id, I0)] (3)

These two equations represent the key problems we are addressing: i.) in equation
(2) the estimation of the segmentation of the important day d structures (Sk

d )
and ii.) in equation (3), the estimation at the next iterative step of the mapping
T k+1

0d between the day 0 and day d spaces.

2.2 Segmentation Module

We first apply Bayes rule to equation (2) to get:

Ŝk
d = arg max

Sk
d

[p(Sk
d |T k

0d(S0), Id)] = arg max
Sk

d

[p(Id|Sk
d )p(T k

0d(S0)|Sk
d )p(Sd)] (4)

Here we assume that the priors are stationary over the iterations, so we can drop
the k index for that term only, i.e. p(Sk

d ) = p(Sd). To build a model for the shape
prior, we choose level sets as the representation of the objects. Consider a training
set of n aligned images. Each object in the training set is embedded as the zero
level set of a higher dimensional level set Ψ . The mean and variance of the
boundary of each object can be computed using Principal Component Analysis
(PCA). The mean level set,Ψ̄ , is subtracted from each Ψ to create the deviation.
Each such deviation is placed as a column vector in a N3×n-dimensional matrix
Q where N3 is the number of samples of each level set function. Using Singular
Value Decomposition (SVD), Q = UΣV T . U is a matrix whose column vectors
represent the set of orthogonal modes of shape variation and Σ is a diagonal
matrix of corresponding singular values. An estimate of the object shape Ψi

can be represented by k principal components and a k-dimensional vector of
coefficients αi: Ψ̃i = Ukαi + Ψ̄ . Under the assumption of a Gaussian distribution
of object represented by αi, we can compute the probability of a certain shape:

p(Sd) = p(αi) =
1√

(2π)k |Σk|
exp

[
−1

2
αT

i Σ−1
k αi

]
(5)

Then we impose a key assumption: the segmentation likelihood is separable
into two independent data-related likelihoods, requiring that the estimate of the
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structure at day d be close to: i.) the same structure segmented at day 0, but
mapped to a new estimated position by the current iterative mapping estimate
T k

od and ii.) the intensity-based feature information derived from the day d image.
In equation (4), p(T k

0d(S0)|Sk
d ) constrains the segmentation in day d to be

adherent to the transformed day 0 organs by current mapping T k
od. Thus, the

probability density of day 0 segmentation likelihood term can be modeled as:

p(T k
0d(S0)|Sk

d ) =
1
Z

∏
(x,y,z)

exp
[
−(ΨT k

0d(S0) − ΨSk
d
)2
]

(6)

where Z is a normalizing constant. Assuming gray level homogeneity within each
object, we use the imaging model defined by Chan [7], where c1 and σ1 are the
average and standard deviation of Id inside Sk

d , c2 and σ2 outside.

p(Id|Sk
d ) =

∏
inside(Sk

d
)

exp[−(Id(x, y, z)−c1)
2/2σ2

1 ]·
∏

outside(Sk
d
)

exp[−(Id(x, y, z)−c2)
2/2σ2

2 ]

(7)

Notice that the MAP estimation of the objects in equation (4), Ŝk
d , is also the

minimizer of the energy function Eseg shown below. This minimization problem
can be formulated and solved using the level set surface evolving method.

Eseg = −lnp(Sk
d |T k

0d(S0), Id) = −ln[p(Id|Sk
d ) · p(T k

0d(S0)|Sk
d ) · p(Sk

d )]

∝ λ1

∫
inside(Sk

d
)

|Id(x, y, z) − c1|2 dxdydz + λ2

∫
outside(Sk

d
)

|Id(x, y, z) − c2|2 dxdydz

+ γ

∫
(x,y,z)

∣∣∣ΨTk
0d

(S0) − ΨSk
d

∣∣∣2 dxdydz + ωiα
T
i Σ−1

k αi

(8)

2.3 Registration Module

The goal here is to register the planning day data to the treatment day data and
carry the planning information forward, as well as to carry forward segmentation
constraints. To do this, the second stage of the ICM strategy described above in
equation (3) can be further developed using Bayes rule:

̂T k+1
0d = arg max

T k+1
0d

[p(T k+1
0d |Sk

d , S0, Id, I0)]

= arg max
T k+1
0d

[
ln p(Sk

d , S0|T k+1
0d ) + ln p(Id, I0|T k+1

0d ) + ln p(T0d)
] (9)

The first two terms on the right hand side represent conditional likelihoods
related to first registering the three segmented soft tissue structures at days
0 and d, and second registering the intensities of the images. The third term
represents prior assumptions on the overall nonrigid mapping, which is captured
with smoothness models and is assumed to be stationary over the iterations.

As discussed in the segmentation section, each object is represented by the
zero level set of a higher dimensional level set Ψ . Assuming the objects vary
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during the treatment process according to a Gaussian distribution, and given
that the different organs can be registered respectively, we further simplifies the
organ matching term as

ln p(Sk
d , S0|T k+1

0d ) =
3∑

obj=1

ln p(Sk
d−obj , S0−obj |T k+1

0d )

=
3∑

obj=1

∫
(x,y,z)

ln
1√

2πσobj

exp

⎡⎣−(Ψ
Tk+1
0d

(S0−obj)
− ΨSk

d−obj
)2

2σ2
obj

⎤⎦ dxdydz

=
3∑

obj=1

−ωobj

∫
(x,y,z)

[
Ψ

Tk+1
0d

(S0−obj )
− ΨSk

d−obj

]2
dxdydz

(10)

When minimized, the organ matching term ensures the transformed day 0 organs
and the segmented day d organs align over the regions.

The intensities of CT and CBCT differ by a linear transformation and Gaus-
sian noise due to X-ray scatter during CBCT acquisition. In this paper, nor-
malized cross correlation (NCC), which has successfully been tested in prostate
IGRT[2], is used to address such intensity matching objective.

CNCC = − ln p(Id, I0|T k+1
0d ) = − 1

N

∫
x,y,z

[
T k+1
0d (I0(x, y, z)) − Ī0

] [
Id(x, y, z)) − Īd

]
σ

Tk+1
0d

(I0)
σId

dxdydz

(11)

where Ī0 and Īd are the mean intensities, σ represents the standard deviation.
To ensure a transformation is smooth, a penalty term is also introduced.

Csmooth = − ln p(T0d) =
1
V

∫
x,y,z

[(
∂2T0d

∂x2
)2 + (

∂2T0d

∂y2
)2 + (

∂2T0d

∂z2
)2]dxdydz

(12)

where V denotes the volume of the image domain. The regularization term pe-
nalizes only nonaffine transformations. In addition, we constrain each control
point of the tensor B-Spline FFD to move within a local sphere of radius r < R
where R ≈ 0.4033 of the control point spacing. This condition guarantees T0d to
be locally injective[2].

Therefore, we introduce the registration energy function that can be mini-
mized using a conjugate gradient optimizer,

Ereg = − ln p(T (k+1)
0d |Sk

d , S0, Id, I0)

= − ln p(Sk
d , S0|T (k+1)

0d )− ln p(Id, I0|T (k+1)
0d )− ln p(T0d)

=
3∑

obj=1

ωobj

∫
x,y,z

[
ΨT k+1

0d (S0)
− ΨSk

d

]2
dxdydz + CNCC + βCsmooth

(13)

Equations (8) and (13) run alternatively until convergence. Thereafter, the soft
tissue segmentation as well as the nonrigid registration benefit from each other
and can be estimated simultaneously.
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3 Results

We tested our iterative conditional model (ICM) on 24 sets of real patient data
acquired from three different patients. Each of the patient had eight treatment
3D CBCT images, and had an associated planning day 3DCT image and 3DCRT
treatment plan. The planning day prostate, rectum, and bladder were hand
segmented by a qualified clinician. The experiment results are presented below.

3.1 Segmentation and Registration Results

In Fig.1(a), we show the sagittal view of the segmentation using only image gray
level information from treatment day CBCT data, by which the surfaces cannot
lock onto the shapes of the objects, since these structures have very poorly
defined boundaries. Fig.1(b) shows the results using gray level information with
the shape prior. The results are better, but the boundaries of the organs overlap
a lot where the structures are connected. In Fig.1(c), we show results of using our
ICM model. The three structures can be clearly segmented. The surfaces are able
to converge on the desired boundaries even though some parts of the boundaries
are too blurred to be detected by gray level information, and there is no overlap
of the boundaries due to the use of constraints from transformed planning day
organs. Fig.1(d) shows the clinician’s manual segmentation for comparison.

To validate the segmentation results, we tested our model on 24 treatment day
images and then compared with the manual results (used as ground truth) using
three metrics: mean absolute distance(MAD), Hausdorff distance (HD), and the
percentage of correctly segmented voxels (PTP). While MAD represents the
global disagreement between two contours, HD compares their local similarities.
Quantitative validation in Table 1 showed remarkable and consistent agreement
between the proposed method and manual segmentation by expert.

The registration performance of the proposed ICM algorithm was also eval-
uated. For comparison, a conventional non-rigid registration (NRR) using only
intensity matching and rigid registration (RR) were performed on the same 24
sets of real patient data. Organ overlaps between the ground truth in day d
and the transformed organs from day 0, as well as the mutual information be-
tween CBCT and transformed CT images were used as metrics to assess the
quality of the registration (Table 2). The overlap increase for each object and
the increase of mutual information after 10 iterations are presented in Fig.2.

(a) (b) (c) (d) (e)

Fig. 1. Segmentation performance. Red:prostate, Blue:bladder, Green:rectum.

(a)Using gray level information; (b)With Shape prior; (c)Proposed ICM algorithm;

(d)Manual segmentation; (e)Segmented 3D Surfaces using the proposed method.
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Table 1. Evaluation of the Segmentation

Module

Table 2. Evaluation of the Registration

Module

(a) (b)

Fig. 2. Registration performance. (a)Average object overlap results at each iteration

using the proposed algorithm; (b)Comparison of ICM results to NRR and RR using

mutual information at each iteration;

The RR performed the poorest out of all the registrations algorithms, generat-
ing an identity transform for all sets of patient data, while the proposed ICM
method significantly outperformed the NRR at aligning segmented organs. All
results presented here were averaged over the 24 sets of real patient data.

3.2 Treatment Plan Results: Cumulative Dose Distribution

Fig. 3. Cumulative dose dis-

tributions for plans with

12mm(left) and 4mm(right)

margin

Due to set-up errors and organ motions, treat-
ment plan results varied from day to day. For
this reason, it is essential to characterize the dose
delivered to each region of interest. The non-
rigid transformation achieved using our model
was used to warp a fixed dose plan at each treat-
ment day and compute the dose delivered to
each voxel of tissue by properly accumulating
the warped dose over all treatment fractions.
Fig.3 (left) shows a 2D slice through 3D cumu-
lative dose distribution when dose plans(12mm
margin) were mapped and summed across 8 weekly treatment fractions from a
single patient. Though it is apparent that the prostate is receiving nearly 90%
of the dose, the bladder and the rectum are also receiving substantial amounts.
Since our method could achieve a more accurate segmentation and registration,
it enables the clinician to set a tighter margin (4mm) prescribed around the
Clinical Target Volume (CTV), to ensure accurate delivery of the planned dose
to the prostate and to minimize the dose received by the rectum and bladder,
as shown in Fig.3 (right).
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4 Conclusion

In this paper, we have presented a novel integrated iterative conditional model
that could simultaneously achieve automatic segmentation and constrained
nonrigid registration. Experiments on 24 sets of real patient data showed that au-
tomatic segmentation using the ICM produced results that had an accuracy com-
parable to that obtained by manual segmentation. For each patient data tested,
the proposed method proved to be highly robust and significantly improved the
overlap for each soft tissue organ and outperformed the results achieved from
the RR and NRR. Updating treatment plans showed promising superiority of
the novel method in maintaining radiation dosage to the prostate and lowering
radiation dosage to the rectum and bladder. Therefore, the proposed algorithm
appears suitable for clinical application in image-guided radiotherapy analysis.
Future work would focus on pelvic anatomy incorporating shape prediction. We
can potentially adjust the plan to better conform to the dose already delivered
and match the predicted variability in the pelvic anatomy for future fractions.
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Abstract. We propose a computationally efficient and bio-mechanically

relevant soft-tissue simulation method for cranio-maxillofacial (CMF)

surgery. A template-based facial muscle reconstruction was introduced to

minimize the efforts on preparing a patient-specific model. A transversely

isotropic mass-tensor model (MTM) was adopted to realize the effect of

directional property of facial muscles in reasonable computation time.

Additionally, sliding contact around teeth and mucosa was considered

for more realistic simulation. Retrospective validation study with post-

operative scan of a real patient showed that there were considerable

improvements in simulation accuracy by incorporating template-based

facial muscle anatomy and sliding contact.

Keywords: soft-tissue simulation, mass-tensor model, cranio-

maxillofacial surgery.

1 Introduction

There has been a comprehensive amount of studies on facial soft-tissue modeling,
which can be classified into three categories depending on the computational
method: mass-spring model (MSM), finite-element model (FEM), and mass-
tensor model (MTM). MSM was widely accepted for real-time application due
to its computational efficiency and geometric simplicity [1][2][3], whereas FEM
has strong bio-mechanical relevance at the cost of long calculation time [4][5][6].
MTM was originally developed to find a golden mean between speed and accu-
racy [7], later it was extended to non-linear, anisotropic elasticity [8]. Recently,
linear MTM was successfully applied to cranio-maxillofacial (CMF) surgeries,
and validated with 10 clinical cases both in quantitative and qualitative ways [9].
However, most of the previous works have failed to be seamlessly integrated into
the clinical workflow in two aspects. First, the simulation accuracy was not
enough for surgeons to realize delicate soft-tissue variation around the error-
sensitive regions. Second, it requires laborious pre-processing work and long
computation time which cannot be acceptable in daily clinical practice.
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In this study, we propose a method for accurate and computationally effi-
cient soft-tissue simulation after CMF intervention, while respecting the current
clinical workflow. To overcome the limitation in accuracy, we hypothesize that
patient-specific muscle characterization is necessary. We propose an efficient way
to incorporate patient-specific facial muscles by morphing a template model to
patient data. Transversely isotropic MTM was adopted to consider the direc-
tional property of facial muscles, and achieve reasonable computation times.
Two different template muscle models were evaluated to measure the sensitivity
of muscle template on the simulation result. Additionally, modeling sliding con-
tact around teeth and mucosa was introduced to realize the delicate soft-tissue
variation on this area. The simulation accuracy was retrospectively validated
with a real clinical case.

2 Methods

The overview of our simulation pipeline is depicted in Fig.1. Detailed explana-
tions on featured steps will be given in the following sub-sections.

Fig. 1. The pipeline of the anatomically-driven facial soft-tissue simulation method

using muscle template model

2.1 Patient-Specific Muscle Modeling

Since it is almost impossible to identify individual muscles from clinical Com-
puted Tomographic (CT) scans, we propose to construct patient-specific facial
muscles by morphing muscles from facial template models, as shown in Fig.2.
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Fig. 2. Morphing of facial muscles from template model (left) to patient-specific

anatomy (right), based on skull anatomical landmarks (yellow dots)

Fig. 3. Extraction of muscle direction using OBB for different muscle templates: muscle

template I (left) and muscle template II (right)

For comparison, we evaluated two muscle template models, which consist of dif-
ferent representation of muscles, as shown in Fig.3. The first template model is
a synthetic three-dimensional craniofacial atlas built for educational purposes,
and freely available online [10]. The second one has more detailed description of
individual muscles, since it was obtained by manual segmentation from a high
resolution Magnetic Resonance Imaging (MRI) data [11]. The morphing proce-
dure was driven by landmark-based thin-plate-spline (TPS) algorithm [12]. We
adopted thirty-two anatomical landmarks, which are commonly used for mea-
suring skin depth in forensic science [13].
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In order to obtain the direction of muscles, oriented-bounding boxes (OBB)
were extracted for linear-type muscles, then the longitudinal direction of each
bounding box was regarded as the direction of muscle for each segment.

2.2 Material Property Assignment

To date, there is no consensus in the literature on mechanical properties of
facial soft-tissue, since different material parameters can be obtained depending
on chosen characterization method and material model. We adopted Young’s
modulus of muscle tissue along and across fiber from [14]. We also refer to the
studies of estimating optimal facial tissue properties by comparing the simulated
results with real post-operative data, which provides values in ranges [15][16].
The material properties that we adopted for our simulation are shown in Table 1.
Since there was no information available for directional Poisson ratio of muscle
in the literature review, we assumed isotropic Poisson ratio for both directions.

In order to assign appropriate material properties, the intersecting portion of
muscle in each tetrahedron needs to be determined. We adopted a random point
sampling method inside of each tetrahedron [17], and simple geometrical tests
on directional vectors to muscle surface.

2.3 Boundary Condition Assignment

We classified vertices on the volumetric mesh into four categories: fixed, joined,
sliding and free node, as shown in Fig.4. Fixed nodes are defined on the boundary
area, such as the most posterior plane of volumetric soft-tissue. Joined nodes
are defined on the interface between movable bony parts and surrounding soft-
tissues. Sliding nodes are specially defined on the area around teeth. Sliding
contact has already been tried to simulate the behavior of soft-tissues in breast
augmentation [18].

In MTM, the internal force on the j-th node of the volumetric mesh can be
given by

fj = Kjjuj +
∑

∀k∈Ψj

Kjkuk (1)

where Ψj is the set of vertices connected to the j-th node, uj is the displacement
vector on j-th node. Kjj and Kjk are the stiffness tensors for vertex and edge
respectively, which are only dependent on material properties and the initial
mesh configuration.

Table 1. Material properties used for simulation

Young’s modulus (MPa) Poisson Ratio

Fat 0.003 0.46

Muscle across fiber 0.79 0.43

Muscle along fiber 0.5 0.43
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Fig. 4. Classification of volumetric nodes: fixed(pink), joined(orange), sliding(blue) and

free(white) (left), force diagram on sliding contact surface (see Eq.2) (right).

Especially for sliding nodes, only the tangential component to closest contact-
ing triangle will affect the movement along the contacting surface. No frictional
forces are assumed. The tangential force f t

j can be calculated by

f t
j = fj − (fj · np)np (2)

where np is the normal vector of nearest contacting triangle.

3 Results

The validation study was retrospectively performed with one clinical case called
Pfeiffer-Syndrome. The patient was planned to be treated by Le-Fort III os-
teotomy with osteodistraction. The amount of maxillary advancement was about
12mm, while the rotational movement was around 3 degrees. Post-operative CT
scan of the patient (in-plane resolution: 0.43mm, slice distance: 0.6mm) was re-
garded as a ground-truth to compare simulation accuracy using different tissue
models: homogeneous and transversely isotropic elasticity. In addition, we evalu-
ated the simulation results employing two different muscle templates, and sliding
contact around teeth and mucosa area. The distance between each simulation
and post-operative result was measured based on corresponding points using
landmark-based TPS deformation and closest point matching. Fourteen facial
anatomical feature points were manually selected for the TPS deformation.

As shown in Fig.5, the median of error was decreased by incorporating trans-
versely isotropy of muscles: homogeneous (2.36mm), muscle template I (2.12mm).
A further improvement was observed using the more detailed muscle template
II (2.01mm). Higher simulation accuracy was obtained by incorporating slid-
ing contact as additional boundary condition: homogeneous with sliding con-
tact (1.95mm), muscle template I with sliding contact (1.07mm) and muscle
template II with sliding contact (1.06mm). The improvement in simulation ac-
curacy was around 1mm average, which corresponds to approximately 8% of
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Fig. 5. Comparison of distance errors between simulations and post-operative result:

histogram and color maps of (a) homogeneous, (b) muscle template I, (c) muscle tem-

plate II, (d) homogeneous + sliding contact, (e) muscle template I + sliding contact,

(f) muscle template II + sliding contact.

Fig. 6. Box plots of distance errors for the cases presented in Fig.5: box encloses 25th

and 75th quartiles, center bar indicates median, whiskers stand for max./min. values

excluding outliers
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overall translational movement. This amount of improvements make a difference
in the surgeon’s perspective, since the improvements occur around nose and lip
areas, which are the error-sensitive regions for CMF surgeons. The distribution
of the improvements in accuracy can be qualitative assessed by the color-coded
distance maps in Fig.5. Statistical relevance was evaluated by Wilcoxon test
(p < 0.05), which confirmed that there were statistically significant differences
in all the pairs of simulated results.

4 Conclusion

In this study, we developed an efficient patient-specific soft-tissue simulation
method for CMF surgery, with emphasis on its integration into the clinical work-
flow. A template-based facial muscle morphing technique was proposed to min-
imize the efforts of segmenting muscle structures without requiring additional
imaging modality. A transversely isotropic MTM was applied to realize the di-
rectional property of muscle in reasonable calculation time. The retrospective
validation study with a real post-operative CT scan confirmed the hypothe-
sis that improvements in accuracy are obtained by introducing template-based
facial muscles. Additionally, the results showed that sliding contact was quite ef-
fective in increasing simulation accuracy, and so it should be considered in CMF
soft-tissue simulations.

As future work, the accuracy of morphing template models to patient-specific
anatomy needs to be validated with manual segmentation of the morphology,
since it is known that considerable amount of individuality of facial muscle’s
configuration is present. Additionally, we plan to follow up on the experimental
studies on facial tissue characterization to compensate the assumptions of direc-
tional properties of muscles in this model. Finally, the extension to non-linear
MTM is anticipated to overcome the limited range of deformation provided by
linear models, and moreover, the need for non-linear model has yet to be justified
for CMF soft-tissue simulations.
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Abstract. Primary liver cancer and oligometastatic liver disease are one of the 
major causes of mortality worldwide and its treatment ranges from surgery to 
more minimally invasive ablative procedures. With the increasing availability 
of minimally invasive hepatic approaches, a real-time method of determining 
the 3D structure of the liver and its location during the respiratory cycle is 
clinically important. However, during treatment, it is difficult to acquire images 
spanning the entire 3D volume rapidly. In this paper, a dynamic 3D shape 
instantiation scheme is developed for providing subject-specific optimal scan 
planning. Using only limited planar information, it is possible to instantiate the 
entire 3D geometry of the organ of interest. The efficacy of the proposed 
method is demonstrated with both detailed numerical simulation and a liver 
phantom with known ground-truth data. Preliminary clinical application of the 
technique is evaluated on a patient group with metastatic liver tumours. 

Keywords: shape modeling, shape instantiation, intra-operative guidance, 
patient-specific deformation analysis, regression analysis. 

1   Introduction 

Dynamic shape instantiation can aid in the compensation of tissue deformation during 
surgery. With many intra-operative tasks involving complex anatomical pathways, 
only through the use of a detailed 3D deformation model, one can be certain to adjust 
and optimize the interventional approach. For liver tumour treatment where the tissue 
undergoes major translation and deformation due to respiratory motion, through the 
entire volume of the liver, localization of the tumours within becomes possible. Liver 
tumours or metastases are one of the major causes of death from cancer worldwide [1] 
and there is an increasing need for its early detection and minimally invasive 
treatment. For minimally invasive treatment and targeted therapy, such as those 
involving radio frequency (RF), focused ultrasound, cryogenic ablation and 
chemoembolisation, patient-specific tissue motion is an important factor to consider. 
The use of RF or focused ultrasound has the advantage of being performed within the 
magnetic resonance (MR) scanner, without patient re-positioning taking place, but 
methods such as laser ablation, which involve the insertion of needles, require the 
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imaging of patients under different imaging modalities. Using ultrasound rather than 
computed tomography (CT) prevents a radiation dose to the patient but is difficult to 
use for needle guidance. Although the benefit of using ultrasound imaging for intra-
operative guidance is fully appreciated, the acquisition of the entire 3D structure in 
real-time is not feasible for routine clinical use. The relatively low resolution for 3D 
ultrasound prevents the building of accurate models of the liver and therefore another 
rapid method of 3D shape instantiation is required.  

The use of a sparse set of 2D images for re-creating 3D models has been attempted 
previously by using radial basis functions [2] and statistical shape models [3].  
Statistical shape models have also been used to determine the femur surface from 
sparse ultrasound points [4]. These methods are promising but both require a number 
of ultrasound images and significant processing. The reduction of the number of X-
ray imaging planes used along with a template model [5] and a 2D-3D registration 
method based on a nearest-neighbor mapping operator and 2D thin-plate splines based 
deformations [6] have been investigated to instantiate a femur shape. This limitation 
on the number of planes acquired reduces the radiation dose to the patient. To release 
the restriction of the planes to be orthogonal to each other, a method for optimal scan 
planning was developed for MR scanning of soft tissue [7]. While the technique 
allows for any number of planes to be acquired, the planes found may not be suitable 
for ultrasound image acquisition due to their orientation. Instead of scan planes, the 
use of a surface trace to predict cardiac motion has also been investigated [8]. The 
current limitations are unable to generalize to any imaging modality, especially 
considering the limited viewing depth of ultrasound. A technique is required whereby 
only a very limited set of points is able to instantiate the geometry of the organ of 
interest rapidly for intra-operative guidance. 

In this paper, a dynamic shape instantiation method is proposed utilizing an a 
priori model of the organ of interest and image acquisition using only limited imaging 
planes. An image collected along the optimal scan plane is pre-segmented and is used 
as input to a previously trained partial least squares regression (PLSR) to determine 
the output of an entire liver surface at arbitrary respiratory positions. The method was 
validated on both a phantom liver simulating realistic respiratory deformation and in 
one healthy subject in vivo. Initial clinical application is demonstrated on four patients 
with metastatic liver tumours. The geometry of their livers differs from normal 
subjects and highlights the need for subject-specific modeling. 

2   Methods 

2.1   Dynamic Shape Instantiation 

For the proposed shape instantiation scheme, a statistical shape model was first built 
to examine the principal modes of variation of the training set. To find a single plane 
from the model, for example, the first mode of variation was examined and a subset of 
the points derived [7]. This subset included points that most affected the first mode of 
variation. In the liver coordinates, a plane was fitted to this point subset, with the 
constraint that the plane covers the motion of those points as defined by the first mode 
of variation. This constraint can be enforced by gathering the points of the subset at 
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each instance of the mode of variation and fitting the plane. For phantom and in vivo 
validation as described below, the plane is accessed by an ultrasound probe. A single 
optimal scan plane was determined for each of the datasets described below. The 
method can be extended to any number of optimal planes; we examine the use of 
multiple planes versus a single plane with the patient dataset to demonstrate the basic 
principle of the proposed shape instantiation scheme.  

By using the optimal scan plane(s), the few points that most affect the shape of the 
liver can be used to instantiate the shape. Partial least squares regression (PLSR) is a 
statistical method that relies on a training set of input data X and its corresponding 
output data Y; these variables are projected into a new space (finding new axes, 
similar to PCA) and the method finds the relationship between them:  

1 1
ˆ

ˆ

T

PLS

M N

y x

TDQ B

y x

= =

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 (1)

In Eq. 1 and Fig. 1, T and U are the extracted score vectors, Q is the loading matrix on 
Y, and D is a matrix with the regression weights stored on the diagonal. BPLS is the 
resultant matrix that can be calculated and when multiplied by X, estimates the 
predicted output Ŷ .  

In this application, the dependents are the variables defining the surface of the liver 
(a 3D mesh) while the predictors are a very small subset of points on the surface as 
defined by the real-time imaging method (here validated using ultrasound).  
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Fig. 1. An overview of the proposed dynamic shape instantiation scheme. The input X consists 
of contour points along the optimal scan plane from output Y, the liver meshes at various time 
points used in the training set. To determine the shape of the liver at a particular time point, 
input in the form of points obtained along the optimal scan plane using any imaging modality 
will result in instantiation of the liver geometry. 
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The method is described in Fig 1. With this method, a very limited amount of data 
acquired in vivo can be used to instantiate the entire organ surface for use during 
patient treatment. 

2.2   Phantom Validation 

For validating the accuracy of the proposed shape instantiation method, a silicone 
model of the internal organs was built by casting the plastic organs from a three-
quarter sized teaching model. For the main body, a hollow plastic mannequin was 
used. As the liver undergoes respiratory motion and deformation, the lungs were 
sliced horizontally to accommodate inserts that would imitate its expansion during 
respiration. Seven 5mm thick foam board inserts were put into each lung, providing 
for 8 respiratory positions, and thus the corresponding liver deformation induced.  

A CT scan of the phantom in all its respiratory positions was acquired using a 
Siemens 64 slice SOMATOM™ Sensation CT Scanner with the volume consisting of 
images with 0.77 mm × 0.77 mm in-plane resolution and 1mm slice separation. 
Segmentation and 3D model building were performed in Analyze (AnalyzeDirect, 
Inc, Overland Park, KS, USA).  

For validation, ultrasound images were acquired using the ALOKA prosound α10 
system (Aloka Co. Ltd, Tokyo, Japan). A passive infrared tracker was affixed to the 
handheld ultrasound transducer to enable recording of spatial position and orientation 
of the imaging plane via the NDI Polaris (Northern Digital, Inc, Waterloo, ON, 
Canada). The rigid transformation between the CT coordinate frame of the phantom 
and the Polaris tool tracking coordinates was established by locating three known 
landmarks on the phantom liver in both frames of reference. The ultrasound image 
was captured using a PC video capture card connected to the S-video output feed 
from the ALOKA. 

The silicone phantom was filled with water and the optimal plane was targeted for 
ultrasound imaging at all respiratory gates. The surface of the phantom liver in the 
ultrasound images was delineated using a semi-automated method using dynamic 
snakes [9] to find the path of maximal ultrasound response between two manually 
chosen points. The resulting points were converted to the CT coordinate frame to be 
used for prediction, shape instantiation, and validation. 

2.3   In Vivo Validation and Patient Studies 

For in vivo validation of the shape instantiation scheme with known ground-truth, one 
normal subject was first used. The method was then applied to a group of patients for 
further assessment of what may be used in vivo. One normal female subject was 
scanned in a GE 3T Discovery MR750 MR scanner. A LAVA (Liver Acquisition 
with Volume Acquisition) imaging sequence of the liver (TR = 4.26 ms, TE = 1.94 
ms, 0.664 mm × 0.664 mm in-plane resolution, 4mm slice thickness) was acquired at 
five breathhold positions. Markers (oil capsules) were fixed on the skin surface over 
the liver during the scan; the positions were used later for registration during the 
ultrasound image acquisition. 
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Four patients (3 male, 1 female, mean age 66 ± 8) were scanned twice, a fortnight 
apart, on a Philips Intera 1.5T MR scanner using a T1 weighted free-breathing 
sequence (TR = 7.83 ms, TE = 2.24 ms, 3.5mm × 3.5mm in-plane resolution, 4.5mm 
slice thickness). This sequence took approximately 1.2s per volume of 45 slices and 
60 sequences were collected. The livers from the initial scan were segmented and 
modeled at full inhalation and full exhalation.  

Image constrained finite element modeling [10] was used to model the motion of 
the liver throughout the full breathing cycle and construct a series of liver meshes at 
different time points as only end-inspiration and end-expiration surface meshes were 
available. An end-expiration surface mesh was used to construct a 3D tetrahedral 
mesh  of the liver in Gmsh [11]. A non-linear finite element model (FEM) was 
implemented in the Open Source SOFA framework [12], chosen for its emphasis on 
real-time medical simulations. The material was assumed to be isotropic and elastic, 
and was described by the generalized Hooke’s law  

( ), , , , , , , ,

1
x y z x y z y z x z x yE
ε σ ν σ σ⎡ ⎤= − +⎢ ⎥⎣ ⎦

 (2)

where 
i
ε  , and 

i
σ  denote the strain and stress in the x, y and z direction. Young’s 

modulus and Poisson’s ratio are given by E and ν . The values used in the paper were 
E = 640Pa and ν =0.3 [13]. Correspondent end-expiration and end-inspiration surface 
meshes extracted from the MRI data were used as constraints to build a non-linear 
elastic motion model of liver. The movement of the liver tissue was represented by a 
time series of 3D tetrahedral meshes given at different time points throughout the 
respiratory cycle. The resulting series of livers were used to build a statistical shape 
model and find the optimal plane. The livers from the second scans were used to 
obtain the optimal scan data for shape instantiation.  

The optimal plane that could be used for real-time shape instantiation was also 
established for the human subject. By attaching a passive infrared marker to one of 
the oil capsule locations, respiratory gating information was also recorded during 
image acquisition that could be synchronized with the MRI-derived motion model for 
subsequent validation. Surface features on the liver were located manually for select 
frames which were converted into the MRI reference frame using the NDI Polaris 
tracking information. 

For the patient data, the plane and model were found and built using the MR data 
resulting from the initial scan while the optimal surface contours were determined 
from the second scan. The patients all had metastatic liver tumours and two had 
undergone a liver resection, highlighting the need for patient-specific models and 
shape instantiation. Both one and two optimal scan planes were investigated for each 
patient data set. All the acquired data was used along with the trained regression 
models to instantiate the entire liver at the corresponding point in the respiratory 
cycle. Validation was performed on the phantom and single female in vivo livers with 
the patient livers showing the application of the proposed method. Errors were  
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calculated as a vertex to closest point on the surface measure and the ground truth was 
the meshes created from the scans during deformation. 

3   Results 

Fig. 2a shows a CT image of the silicone phantom along with the inserts in the lung 
used to simulate respiratory motion along with the model of the silicone liver. 
Ultrasound imaging of the silicone phantom effectively mimicked the properties of 
human tissue. The ultrasound images along the optimal scan plane and the surface 
meshes are also shown for the phantom (Figs. 2b and 2c) and the in vivo human liver 
(Figs. 2d and 2e). 

For the silicone liver phantom, Fig. 2f displays the mean and standard deviation of 
the errors between the instantiated shapes from the ultrasound points to the original 
meshes found using CT imaging. Results are shown for each of the respiratory 
positions simulated with the lung inserts. For the in vivo liver from the normal female 
subject, at end-inspiration, the mean error was found to be 3.11mm ± 2.12mm while 
at end-expiration, the mean error was 3.15mm ± 2.30mm.  

As the patient liver scans do not cover the same regions of the liver, the 
instantiation was mainly used to validate the method for localization of the liver. Fig. 
3 shows the results from all of the patients, where the error is shown between the 
instantiated shapes to the reference shapes. It is evident that the method is able to 
adapt to the location of the liver as well as the general shape of it as it changes 
through the respiratory cycle. The use of both one and two scan planes was 
investigated and with the exception of one liver set, the use of more input data results 
in better results. The outlier may be explained by the MR imaging not covering the 
same region of liver between scans. 
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Fig. 2. (a) 3D reconstruction of the silicone phantom from CT. (b) An ultrasound image along 
the optimal scan plane of the silicone liver phantom and (c) the corresponding mesh. (d) An 
ultrasound image along the optimal scan plane of the in vivo study and (e) the corresponding 
liver mesh. (f) The mean and standard deviation of the errors of the phantom liver instantiation. 
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Fig. 3. Results of the proposed instantiation on patient data with one scan plane versus two scan 
planes. The colours indicate the error from the instantiated shape points to the surface of the 
original reference shape. Underneath, the mean and standard deviation for end-expiration (blue) 
and end-inspiration (red) are shown. 

4   Conclusion 

In conclusion, a rapid method for liver surface instantiation and localization has been 
introduced in this paper. Using a prior model of the liver derived from CT or MR 
imaging, and partial least squares regression for shape instantiation, the input can be 
only a few points on the liver surface as found via an optimal scan plane. It was also 
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shown that using data from multiple planes improves the instantiation. With a 3D 
model of the liver available, tissue motion may be compensated for intra-operative 
guidance. It should be noted that the proposed method is not limited to real-time data 
acquisition via ultrasound. If the treatment were to take place in an MR scanner, for 
example, a single MR slice may be used as the input to the instantiation.   
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Abstract. The use of physically-based models combined with image

constraints for intraoperative guidance is important for surgical proce-

dures that involve large-scale tissue deformation. A biomechanical model

of tissue deformation is described in which surface positional constraints

and internally generated forces are derived from endoscopic images and

preoperative 4D CT data, respectively. Considering cardiac motion, a

novel technique is presented which minimises the average registration er-

ror over one or more complete cycles. Features tracked in the stereo video

stream provide surface constraints, and an inverse finite element simula-

tion is presented which allows internal forces to be recovered from known

preoperative displacements. The accuracy of surface texture, segmented

mesh and volumetrically rendered overlays is evaluated with detailed

phantom experiments. Results indicate that by combining preoperative

and intraoperative images in this manner, accurate intraoperative tissue

deformation modelling can be achieved.

1 Introduction

Image guidance plays an important role in the deployment of minimally invasive
surgery for complex procedures. It needs to be capable of seamlessly integrating
preoperative and intraoperative images of dynamic anatomical structure, thereby
enhancing the surgeon’s view with detailed navigational cues, attaining a high
level of spatiotemporal accuracy. To this end, physically-based modelling has
attracted significant interest since during surgery, the exposed tissue surface for
co-registration with preoperative data is typically small, and the approach allows
for the effective incorporation of biomechanical constraints. The primary target
application for this work is vessel identification and harvest prior to TECAB,
but it is also applicable to image-guided liver resection and partial nephrectomy
for the removal of metastases, in the presence of respiratory motion.

Dynamic guidance systems present significant technological challenges, but
several notable advances have already been made. Sun et al. [1] describe a method
for modelling tissue retraction during image-guided neurosurgery. A poroelastic
brain model is driven by the stereoscopically-measured motion of a retractor
to produce a full volume displacement field, which is used to update the pre-
operative MR images. Szpala et al. [2] derive a sequence of linear free-form
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deformations from preoperative CT images, which are applied subsequently to a
high-quality heart mesh model generated at end-diastole. Temporal synchroni-
sation is driven by an electrocardographic trigger signal, whereas spatial regis-
tration of optically-tracked phantom casing and endoscope coordinate systems is
achieved using linear least squares error minimisation. Figl et al. [3] build a 4D
B-spline motion model of the beating heart from multiple coronary CT phases.
Temporal alignment with endoscopic video is obtained using an ECG signal.
Two methods are proposed for spatial alignment: the first considers model reg-
istration to 3D feature positions tracked in the endoscopic feed, and the second
employs photo-consistency as a similarity metric.

Su et al. [4] propose a near real-time 3D-CT to stereo endoscopic video regis-
tration method for robot-assisted partial nephrectomy. Selected features on the
kidney surface are tracked from one video frame to the next, and are registered
to a preoperatively-generated model of the anatomy using a modified iterative
closest point technique. Lerotic et al. [5] introduce an image-constrained linear
finite element simulation of the lung parenchyma capable of real-time perfor-
mance. A model for the motion of points on the lung surface, incorporating
amplitude, period and phase parameters, is fitted to landmarks acquired from
preoperative MR scan data at full inhale and exhale. The motion model param-
eters are optimised using golden section search, which is then used to provide
surface constraints for the finite element simulation which, in turn, determines
the overlay deformation.

However, existing methods fail to combine preoperative and intraoperative im-
ages in a way that is simultaneously accurate for surface texture, segmented mesh
and volumetrically rendered overlay regimes. Furthermore, initial spatiotemporal
registrations typically do not exploit positional data acquired over an extended
period of time. This paper proposes a method which achieves these goals, and
promises to enhance the surgeon’s sensory experience, reduced initially as a
direct consequence of minimally invasive robotic access. The method is also
applicable to the wider context that includes preoperative rehearsal and intra-
operative simulation of tool-tissue interaction, where the surface constraints are
derived or enhanced, respectively, by known instrument positions. The method
has also been implemented to exploit GPU acceleration and is capable of real-
time operation, thus facilitating practical clinical use.

2 Material and Methods

2.1 Stereo Feature Tracking

In this study, the exposed tissue surface geometry is captured by the da Vinci
stereo endoscope, with camera calibration following Zhang [6]. The motion track-
ing technique described by Stoyanov et al. [7] is used to recover tissue surface
motion. Robust performance is ensured by using a combination of landmarks,
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including maximally stable extremal regions (MSER) and traditional gradient-
based image features.

2.2 Spatiotemporal Registration

The problem is formulated as a least-squares distance optimisation problem over
projected 3D fiducial positions segmented from scan data and corresponding
points recovered from the stereo video sequence. Rather than perform the opti-
misation at a single point in time, squares of the residual distances are summed
over one or more complete phases of cardiac motion. It then remains to find the
minimal overall sum by varying the initially unknown temporal phase difference
between the first 4D scan phase and the first video frame. Symbolically, if fidu-
cials are indexed by i and video frames by j, and λ is the temporal phase shift,
and θx, θy, θz, tx, ty, tz are the rotations and translations, respectively, that pa-
rameterise the transformation R from the scan coordinate system to the camera
coordinate system, then the quantity to be minimised is∑

i,j

[
‖pL(Rsi(τj + λ))− tL(τj)‖

2
+ ‖pR(Rsi(τj + λ))− tR(τj)‖

2
]

(1)

where pL and pR are the left and right 2D vector-valued projection functions,
including lens distortion, determined by the stereo camera calibration stage. The
si represent the 3D fiducials coordinates derived from scan data, and the tL and
tR are the 2D coordinates of the corresponding left and right points in the video
sequence. They are evaluated at the discrete points in time τj corresponding to
each video frame. Scan phases and video frames are assumed to extend through
time in a cyclic manner, and linear interpolation in time is used to evaluate
fiducials coordinates lying between scan phases.

2.3 Finite Element Simulation

In previous work, Miller et al. [8] describe the total Lagrangian explicit dynamics
(TLED) algorithm. An efficient GPU implementation is used here to model de-
formation of the heart resulting from surface positional constraints and internal
forces implied by the original 4D scan motion. In contrast to the updated La-
grangian formulation, this method expresses stress and strain measures in terms
of the reference configuration. As such, many quantities can be either completely
or partially precomputed, and together with an explicit integration scheme, the
algorithm enables nonlinear finite element simulation using relatively complex
meshes at interactive rates.

Using the notation of Bathe [9], the equations of motion for a mesh com-
prising N nodes, written in semi-discrete form and expressed in terms of the
displacements U =

[
u0u1 . . . u3N−1

]� from the initial configuration, are

M tÜ + C tU̇ +t
0F = tR (2)
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where tU̇ and tÜ are the velocity and acceleration vectors, respectively, and M is
the constant lumped mass matrix. The damping matrix C = αM is assumed to
be proportional to the mass matrix, where α is the Rayleigh damping coefficient.
The vectors t

0F and tR represent the nodal reaction forces equivalent to element
stresses, and externally applied forces, respectively.

Subsequent time discretisation, with step size Δt, and application of an ex-
plicit central difference integration scheme gives the following update rule

t+ΔtU =
2

2 + αΔt

[
Δt2

M
(tR−t

0F) + 2 tU + (
αΔt

2
− 1)t−ΔtU

]
(3)

The constitutive law employed is that of a compressible neo-Hookean material.
The following constants are used in the simulation: Young’s modulus E = 3.0E+
03 Pa; Poisson’s ratio ν = 0.45; material density ρ = 1.0E+ 03 kg/m3; and mass
damping coefficient α = 7.5E+01. In this instance, the equations of motion are
integrated using the conservatively small time step of Δt = 0.0002 seconds.

2.4 Mesh Generation and Temporal Smoothing

The heart phantom is segmented from the initial scan phase using edge-based
snakes, as made available in the ITK-SNAP tool (see Yushkevich et al. [10]).
Additional manual segmentation follows to make the simplification whereby the
phantom is assumed to have a solid spherical topology. Subsequently, the high-
resolution surface mesh, generated at the voxel level, is further simplified using
quadric edge collapse decimation to a resolution suitable for interactive finite
element simulation. Finally, tetrahedralisation is applied using Gmsh [11], and
the resulting mesh is optimised for element quality.

The Image Registration Toolkit (see Rueckert et al. [12] and Schnabel et al.
[13]) is used to determine the sequence of 3D tensor product B-spline deforma-
tions which maps the initial phase on to each subsequent phase in turn. These
deformations are applied to the initial tetrahedral mesh to create a sequence of
vertex displacements at discrete points in time. Finally, cyclic 1D B-splines over
the time dimension are fitted through each vertex, both to smooth the motion
implied from the scan sequence and to provide a means for obtaining phantom
geometry at arbitrary positions in the cardiac cycle.

2.5 Application of Surface Constraints

Once a spatial and temporal registration has been established, tracked features
in the initial video frame are associated with interpolated mesh node positions
at the corresponding point in time. For each feature, the nearest node is identi-
fied in the collection of mesh surface nodes. These associations are maintained
throughout the duration of the simulation. Each such node will have one or
more feature associations, and as the latter displace over time, the average of
their displacements is assigned to the node displacement, thereby enforcing a dy-
namic positional constraint. Typically, the simulation time step is smaller than
the period of each video frame, so linear interpolation is applied to all positional
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constraints over the duration of the frame. In addition, static regions in the orig-
inal scan, comprising the heart phantom mounting, are segmented and meshed,
and then used to locate surface mesh nodes that are to be held fixed with zero
displacement during the simulation.

2.6 Force Recovery and Resolution

The method of force recovery and resolution described by Pratt [14] is used to
incorporate cyclic organ motion derived from 4D scan data. Firstly, the forward
update rule given by equation 3 is inverted, such that the externally applied
forces can be expressed in terms of known displacements, as follows

tR =
M
Δt2

[
(1 +

αΔt

2
)t+ΔtU− 2tU− (

αΔt

2
− 1)t−ΔtU

]
+t

0F (4)

Subsequently, in the absence of positional constraints, if the recovered forces
were to be applied at the appropriate instants during forward simulation, then
the original motion would result by construction. In the presence of positional
constraints, however, the recovered forces must be resolved from the global co-
ordinate systems into systems local to each mesh element. At a given node, the
recovered force r at that node is shared equally amongst the M elements to
which it belongs. Symbolically, the contribution from each node in each element
is written barycentrically as the weighted sum of adjacent element edge vectors
b0, b1 and b2, as follows

1
M

r = w0b0 + w1b1 + w2b2 (5)

By expressing these forces in terms of local geometry in this manner, they are
made to act in the directions consistent with external constraint-induced defor-
mation. In practice, the inverse and forward simulations are performed simul-
taneously to avoid storage of intermediate results. Forces are always recovered
from the original displacements, and are expressed in terms of the original ge-
ometry. The forward simulation is then propagated using forces implied by the
current geometry.

2.7 Overlay Deformation

As the current geometry is updated in time, the resulting new node positions are
used to deform high-resolution overlay information in one of three ways. Firstly,
high-resolution meshes segmented and built from the original CT scan data are
embedded in the finite element mesh by associating each vertex in the former
with its containing element, and precomputing their barycentric coordinates.
Vertex update is then performed by transforming back to the global coordi-
nate system in the context of the current geometry. Secondly, volumetrically
rendered scan data is deformed by slicing each tetrahedral element individually,
from back to front in planes perpendicular to the z-axis, and alpha-compositing
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the results. The resulting overlays are presented using the Inverse Realism tech-
nique described by Lerotic et al. [15]. Finally, preoperatively determined surface
landmarks and annotations are rendered as textures covering the finite element
mesh, and are alpha-blended directly with the output video feed.

2.8 Validation

In order to assess 2D overlay accuracy when positional surface constraints are
combined with recovered and resolved internal forces, the results of manual
frame-by-frame video feature tracking are compared, considering the left stereo
channel, with the positions of equivalent textured features rendered using the
deforming geometry. In addition to the combined case, results are also evalu-
ated for simulations where surface constraints and internal forces are applied
individually. A similar approach is adopted for 3D validation, where simulation
results are compared over multiple cardiac cycles against the spatial locations of
volumetric features identified in the original scan data.

3 Results and Discussion

For quantitative assessment of the proposed method, detailed phantom experi-
ments were conducted using a Chamberlain Group CABG beating heart phan-
tom. In the first instance, the phantom was scanned at 90 bpm with a Philips
64-slice CT scanner, producing 20 uniformly spaced phases. Fiducial markers
embedded in the outer layer of the phantom were manually segmented in each
of the phases in order to recover the sequence of spatial locations. Using the
corresponding left and right 2D stereo locations of five such fiducials in the cap-
tured da Vinci endoscope video stream, the optimal spatiotemporal registration
produced by the procedure described in section 2.2 had average left and right
errors of 0.4712 mm and 0.4667 mm, respectively. The output frames in figure 1
shows an original image captured from the da Vinci endoscope, the same frame
blended with the spatiotemporally registered FEM mesh, and surface texture
and internal structure overlay regimes.

The results shown on the left of table 1 compare 2D surface overlay accuracies
against a typical feature manually tracked in the left video stream, considering
the surface-only, force-only (i.e. volume) and combined constraint modes. Aver-
age and maximum errors, and root-mean-square deviations are determined over

Fig. 1. Single da Vinci endoscope video frame, registered FEM mesh and overlays
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Table 1. Projected surface texture and internal structure overlay errors

surface overlay internal overlay

error (mm) surface volume combined surface volume combined

average 0.33 0.69 0.36 1.05 0.16 0.83

maximum 0.64 1.40 0.68 2.16 0.32 1.75

RMSD 0.36 0.80 0.40 1.21 0.18 0.92

Fig. 2. Overlay errors for surface texture (2D) and internal structure (3D) regimes

Table 2. Relative analysis of fiducial deformation and overlay errors

error (mm) fiducial #1 fiducial #2 fiducial #3 fiducial #4 fiducial #5 average

deformed 0.23 0.31 0.20 0.23 0.23 0.24

volume 0.25 0.30 0.20 0.23 0.33 0.26

a period covering three complete cardiac cycles. It can be seen that the applica-
tion of surface constraints alone gives rise to the most accurate overlay, but that
the inclusion of recovered and resolved forces degrades the performance only
marginally. The left graph in figure 2 illustrates the manner in which overlay
accuracy changes during this period.

Similarly, the results shown on the right of table 1 compare the location of
a typical deforming feature identified in the original CT scan against the lo-
cation of the same feature produced by barycentric interpolation of the point
embedded in the FEM tetrahedral mesh, undergoing deformation implied by
each of the constraint modes. As expect, simulation using only recovered and
resolved forces produces the most accurate overlay. However, the combined con-
straint mode performs better than the application of surface constraints alone.
The right graph in figure 2 illustrates changes in overlay accuracy during three
consecutive cardiac cycles. Thus it can be seen that the combined constraint
mode offers a good compromise over the surface-only and internal force-only
alternatives, and results in a level of accuracy acceptable for dynamic guidance
during interventions.
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In-depth analysis of the different factors affecting the total overlay error re-
veals that a significant proportion can be attributed to the recovery of 3D B-
spline deformations, as described in section 2.4. Table 2 compares the positions of
fiducials manually segmented from each scan phase against the positions result-
ing from 3D B-spline deformation of the first phase, and also the full simulation
results using the force-only constraint mode. Again, results are averaged over
three complete cardiac cycles. They differ marginally, indicating that temporal
smoothing and the simulation itself contribute relatively little to the total error.

4 Conclusion

This work proposes a new modelling framework for fusing preoperative tomo-
graphic and intraoperative endoscopic data in a dynamic environment, such that
accurate overlays can be rendered in both surface texture and internal structure
regimes. A physically-based, inverse finite element simulation transforms pre-
operative motion into a representation where it can be readily combined with
tissue surface constraints. Furthermore, the method is cast in a setting that ful-
fils the key requirement of real-time operation, necessary to guarantee minimal
latency in the surgeon’s visual-motor feedback loop. Finally, a novel spatiotem-
poral registration technique is described which minimises errors over one or more
complete cardiac cycles.
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Abstract. We introduce a novel algorithm for actin filament segmen-

tation in a 2D TIRFM image sequence. We treat the 2D time-lapse se-

quence as a 3D image volume and propose an over-grown active surface

model to segment the body of a filament on all slices simultaneously. In

order to locate the two ends of the filament on the over-grown surface, a

novel 2D spatiotemporal domain is created based on the resulting surface.

Two 2D active contour models deform in this domain to locate the two

filament ends accurately. Evaluation on TIRFM image sequences with

very low SNRs and comparison with a previous method demonstrate the

accuracy and robustness of this approach.

1 Introduction

Actin proteins spontaneously assemble into long polymers to build networks and
bundles of filaments that are used by cells to move and change shape. An exper-
imental method to study the kinetics of single actin filament growth in vitro is
total internal reflection microscopy (TIRFM) [1], [2]. The information on growth
kinetics is used to develop mathematical models that describe the dependence of
actin filament elongation rate and fluctuations on the concentration of actin and
cofactors [1], and the mechanisms that cells use to regulate the dynamics of the
actin cytoskeleton [2]. In order to study kinetics based on image information, an
essential step is to segment actin filaments in TIRFM image sequences.

There has been previous research on segmentation of actin filaments or micro-
tubules (MT). Li et al. [3] proposed a slice-by-slice Stretch Open Active Contour
model to segment and to track actin filaments in a time-lapse sequence. Had-
jidemetriou et al. [4] minimized an image-based energy function to segment MTs
using consecutive level sets methods. Saban et al. [5] automatically detected MT
tips in the first frame and tracked tips by searching for the closest match in subse-
quent frames. Sargin et al. [6] located tip locations using second order derivative
of Gaussian filtering and iteratively calculated geodesic paths to segment MT
bodies. However, the above methods process an image sequence slice by slice
and do not take advantage of the time-lapse sequence’s temporal information.

Other methods of tracking filament tips employ Particle Filters (PF) [7], [8].
However, the two methods ignore the supporting information from filament bod-
ies and may fail to locate a tip away from the filament body. To solve this prob-
lem, Li et al. [9] used an over-grown active contour model to segment the filament
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body slice by slice and proposed a 1D PF to track filament tips across time. This
method performs well in real time scenarios. Occasionally, this method generates
some errors, such as segmenting two filaments as one, because it does not fully
utilize all available temporal information: (i) it segments the filament body slice
by slice and thus does not take into consideration of the location of filament
bodies across time slices; and (ii) when tracking the tip in time t, only informa-
tion prior to t (1, · · · , t−2, t−1) is considered. This is due to the PF’s Bayesian
tracking framework.

Since TIRFM image sequences are taken prior to data analysis, accuracy is
more important than speed. In this paper, we treat a 2D time-lapse image se-
quence as a 3D spatiotemporal (2D spatial and 1D temporal) image volume.
In such 3D domain, we use an over-grown active surface model to segment fil-
ament bodies. Given a reference point on resulting curves of all time slices, we
can calculate the distances of all points along the resulting curves with respect
to that reference point. An additional 2D spatiotemporal (1D spatial and 1D
temporal) domain can be created by combining this distance-to-reference-point
dimension with the time dimension. An active contour model in this 2D domain
is then used to locate filament ends. In this proposed method, segmentation
of the filament at time t depends on the information of the whole sequence
(1, · · · , t− 1, t, t+ 1, · · · , n). In evaluation on experimental images, this method
shows more accurate segmentation performance over a previous method [3]. The
overall framework of this method is illustrated in Fig. 1.

(a) (b) (c) (d)

Fig. 1. An overview of the proposed method. (a) Initialization of the active surface.

(b) The resulting over-grown active surface of (a) (from a different viewpoint). (c) The

resulting over-grown curves (red) on all slices and two active contours (green) across

temporal domain for locating filament ends. (d) Final segmentation results on all slices.

2 Spatiotemporal Active-Surface for Filament Body
Segmentation

We treat the time-lapse 2D image sequence as a 3D spatiotemporal (2D spatial
and 1D temporal) image volume, where each point has coordinates (x, y, t),
where x and y are the spatial coordinates, and t is the discrete time coordinate.
One important observation of filament behavior is that filament bodies tend
to remain static across time. Thus, if we connect points on the same filament
across time, they form a smooth surface in the (x, y, t) domain. Based on this
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observation, we create an open active surface model [10] not in a pure 3D spatial
domain but a 3D spatiotemporal domain to segment the filament in all slices
simultaneously (Fig. 1.(b)).

2.1 Surface Initialization and Registration

Human interaction is necessary in this application since there is a limited number
of filaments of interest in a sequence. Users specify a short line (2-3 clicks) close
to the filament of interest on the first slice and use a 2D open active contour
model [3] to fit only to a part of the filament. Then this initial short curve is
used to fit a part of the same filament in all slices. The resulting curves on all
slices are registered using the ICP method [11] to compensate for image drift
[2] between contiguous frames. Since the drift between two contiguous frames is
usually small, the ICP method generates satisfactory registration performance.
We then create a grid mesh as the initial surface by connecting points on curves
in all slices (Fig. 1.(a)).

2.2 The Over-Grown Spatiotemporal Active-Surface Model

After being initialized, an active surface can be defined by a mapping from
parameters p and q to the 3D spatiotemporal domain, r : Ω = [0, 1]×[0, 1]→ R3,

(p, q) → r(p, q) = (x(p, q), y(p, q), t(p, q)). (1)

We seek to minimize its overall energy E3D:

E3D(r) =
∫

Ω

[
w10

∥∥∥∥∂r
∂p

∥∥∥∥2

+ w01

∥∥∥∥∂r
∂q

∥∥∥∥2

+2w11

∥∥∥∥ ∂2r
∂p∂q

∥∥∥∥2

+ w20

∥∥∥∥∂2r
∂p2

∥∥∥∥2

+ w02

∥∥∥∥∂2r
∂q2

∥∥∥∥2

+ E3D
ext(r(p, q))

]
dp dq, (2)

where the internal energy is represented by the first 5 derivative terms where the
elasticity is weighted by (w10, w01), rigidity by (w20, w02), and the resistance to
twist by w11. These terms help to keep the active surface smooth. E3D

ext(r(p, q))
is the external energy, which is derived from the image and other external con-
straints. In our case, the external energy generates forces to attract the active
surface to fit the central line of the filament.

A local minimum of E3D can be obtained by iteratively solving its associated
Euler-Lagrange equations [10],

r̄k = (I + τA3D)−1(r̄k−1 + τ∇E3D
ext), (3)

where r̄k is the vector consisting of values of r(p, q) for all p and q at iteration k,
I is the identity matrix, τ is the step size parameter, and A3D is a sparse matrix
encoding the structure of the surface mesh and weights of the internal energy
(details on A3D can be found in [10]). The initial vector r̄0 is given by the initial
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surface (Section 2.1). With this model and properly defined external energy, the
resulting surface would locate the central line of a filament in all slices.

However, the computation time for the 3D surface increases significantly com-
pared with 2D active contour models. The intersections between the active sur-
face and slices are also difficult to calculate. A solution is to use a simplified 3D
surface model similar to that proposed in [10]. The degrees of freedom of the
deformation are limited to two components instead of three by constraining the
time component t, which corresponds to the discrete time coordinate, to depend
linearly only on one parameter. The external force along the time dimension then
becomes zero. Therefore, the surface we seek is now represented by a sequence
of parametrized curves. We have r(p, q) = (x(p, q), y(p, q), q) so that for a given
slice index q, there corresponds an open curve parametrized by p lying on the
qth slice of the 3D spatiotemporal volume.

Compared to slice-by-slice approaches in [9], this new active surface model
better utilizes temporal information to constrain the segmentation results. For
instance, if a filament is missing or hardly observed in a slice, the surface bridges
the neighboring curves, creating a smooth surface. In contrast, the previous
methods may fail or generate large errors in this scenario.

2.3 The External Energy

The external energy consists of an image term and a stretching term, i.e., E3D
ext =

Eimg+Estr. As we mentioned above, the external force of the constrained surface
is always zero along time dimension. Therefore, we can calculate it slice by slice.
The image term represents the image constraints. Since we want to locate the
bright ridges in images, we directly use the Gaussian-filtered or Anisotropic
Diffusion filtered image of the qth slice as the image term of the qth slice, i.e.,
Eimg(r(p, q)) = Gσ ∗ I(r(p, q)), p ∈ [0, 1], for any q. The gradient vectors of such
an image term, ∇Eimg , point toward the center of filaments and attract the
active surface to fit the filament.

On the one hand, with the image term only, the active surface would only fit
a part of the filament because there is no force attracting the active surface to
the ends of filaments. On the other hand, filament ends usually have very low
SNR and might be difficult to distinguish during the segmentation process. One
important observation is that an over-grown surface almost always covers tips of
the filament [9]. Based on this observation, we let the active surface over-grow in
both directions and distinguish the ends on the resulting over-grown surface in
a subsequent step (Section 3). To make the surface over-grow, we add stretching
forces to the boundaries of the active surface:

∇Estr(r(p, q)) =

⎧⎪⎨⎪⎩
−kstr · rp(p,q)

|rp(p,q)| p = 0,

kstr · rp(p,q)
|rp(p,q)| p = 1,
0 otherwise,

∀q ∈ [0, 1] (4)

where rp is the derivative of r with respect to p, rp(p, q)/|rp(p, q)| is the direction
pointing outwards along the surface, and kstr is the stretching weight and only
needs to be large enough to let the surface over-grow. Fig. 2.(a) illustrates the
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Fig. 2. Illustration of the 3D surface mesh. Solid and dashed lines represent spatial and

temporal connections between sampled points, respectively. (a) Stretching forces (black

arrows) are added on the boundary points (red). (b) Illustration of the reference points

(blue) and ending-point active contours (green). The brown curve gives an example of

calculating the brown point’s length s with respect to the reference point.

stretching forces. After every 3-4 iterations, the stretching force is removed for
one iteration to let the active surface better fit to the filament. We deform
the surface until intensity values corresponding to all boundary points, r(0, q)
and r(1, q), ∀ q ∈ [0, 1], are lower than the foreground intensity value, which is
estimated in the surface initialization step (Section 2.1). An over-grown active
surface is shown in Fig. 1.(b).

3 Spatiotemporal Active-Contour Model for Locating
Filament Ends

3.1 The 2D Spatiotemporal Domain

After we obtained the over-grown active surface, we can constrain the search of
filament ends along the resulting curve on every slice (red curves in Fig. 1.(c)).
One simple way of locating ends might be to perform 1D Sobel filtering along
each curve and to locate ends as locations with highest filtering response. But
this operation ignores the relations between filament ends on different time slices:
filament ends usually elongate at a consistent speed. Based on this observation,
we create a 2D spatiotemporal active contour model to locate filament ends at
all slices simultaneously (green curves in Fig. 1.(c)).

Given a reference point on the first slice’s curve, we can obtain its nearest
corresponding reference points on all other slices, such that every point on ev-
ery curve is of length s away from the reference point along the curve (Fig.
2.(b)). The length s dimension, together with the time t dimension, create a 2D
spatiotemporal domain. Every point (s, t) in this 2D domain implicitly specifies
a possible 2D ending point (x(s), y(s)) of the filament on the tth slice. Therefore,
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if we connect the true ending points of a filament on different slices and map
them to the (s, t) domain, these mappings form a smooth curve in the (s, t)
domain.

3.2 The 2D Active Contour Model for Locating Filament Ends

The active contour is then defined by a mapping of parameter u to the 2D (s, t)
domain, v : Ω = [0, 1] → R2,

u→ v(u) = (s(u), t(u)).

Similarly to the above constrained 3D model, we constrain the time t dimension.
The point on the tth slice can only deform along the resulting over-grown curve
on the tth slice. Therefore, the internal force along t dimension should not be
included in the model, and the external force ∇E2D

ext along the t dimension is
zero. Based on the constrained model and the above consistent growing speed
assumption on filament ends, we define the 2D active contour’s energy E2D as

E2D(v) =
∫

Ω

w1

∥∥∥∥ ∂s∂u
∥∥∥∥2

+ w2

∥∥∥∥ ∂2s

∂u2

∥∥∥∥2

+ E2D
ext(v(u)) du, (5)

where w1 and w2 weight the first-order and second-order derivative terms of
the internal energy. For the external force ∇E2D

ext, because it is zero along the t
dimension, we use the 1D Sobel filtering response along each over-grown curve
as the external energy on that slice.

A local minimum of E2D can be solved iteratively:

v̄k = (I + τA2D)−1(v̄k−1 + τ∂E2D
ext/∂s), (6)

where notations are similarly defined. Iteratively solving Eqn. (6) would deform
the active contour to fit the desired filament end locations on all slices simulta-
neously (Fig. 1.(c)). We then cut the over-grown curves using those estimated
filament end locations to generate the final segmentation results (Fig. 1.(d)).

3.3 Ending Point Initialization

Eqn. (6) only converges to a local minimum of E2D. An ending point curve needs
to be initialized in the (s, t) domain. One straightforward strategy is to initialize
ending points on the tth slice at locations on the over-grown curves with highest
Sobel filtering response.

Prior knowledge, if available, can also be taken into consideration when ini-
tializing the ending point curve. Given an expected end growing speed m, we
can initialize a straight line, (s1, 1), (s2, 2), · · · , (sn, n) in the (s, t) domain, where
si+1 − si = m, ∀i ∈ 2, 3, · · · , n. We shift the straight line along the s dimension
to find the best initialization location with the highest Sobel filtering response.
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4 Application to Experimental Images

We used two TIRFM image sequences from [1]. In these experiments, poly-
merization of muscle Mg-ADP-actin was monitored in the presence of varying
concentrations of inorganic phosphate (Pi) and actin monomers. The pixel size
was 0.17 μm. There were 20 images in sequence I and 34 images in sequence II.
The time interval between frames was 30 sec in sequence I and 10 sec in II.

4.1 Evaluation and Comparison with the Previous Method [9]

For both sequences, we set w01 = w10 = 0.1, w11 = 0, w02 = w20 = 0.02,
w1 = 0.01, w2 = 0.05, and kstr = 1. The average growing speed of filaments is
used as the prior knowledge for ending point curve initialization (Section 3.3)
and was set according to the average elongation rate estimated by a manual
method [2].

The filament bodies were usually tracked accurately by our algorithm. Most of
the errors are among two types: (i) intersected filaments may be mis-segmented
as one filament (Fig. 3.(1)), and (ii) tip locations were wrongly estimated (Fig.
3.(3)). Therefore, we evaluated our algorithm by counting the number of mis-
segmentation of filament bodies and by measuring errors on tip location es-
timation. We selected 15 and 5 actin filaments from image sequence I and II
respectively to evaluate our algorithm. For all selected filaments, we manually
labeled their two tips in each frame as ground truth and calculated L2 distances
between the ground truth and our algorithm’s results.

We also compared with a previous method [9], which only utilizes partial tem-
poral information on filament tips. We show two examples of comparison with
the previous method in Fig. 3. The first example shows the advantages of our
spatiotemporal surface model. In Fig. 3.(1), the filament of interest intersects
with another one. The previous method segments this filament slice by slice and
mis-stretches to the other filament. Our proposed method utilizes information
about the filament body at all slices and thus can better handle filament inter-
section (Fig. 3.(2)). The second example illustrates the advantages of the 2D
spatiotemporal ending point curve. In Fig. 3.(3), the filament grows much faster
than other filaments in the sequence. The prior knowledge on the growing speed
is thus inaccurate. The previous method [9] generates large tip estimation errors
because of the wrong prior knowledge (red arrows in Fig. 3.(3)). As shown in

Table 1. Tip tracking error statistics of selected filaments in both image sequences I

and II. Smaller errors are shown in bold. (Unit: pixel)

Sequnce Mean Maximum
Number

of Mis-segmentation

Proposed Method
I 0.93 2.60 1 out of 225
II 1.47 6.01 3 out of 170

Previous Method [9]
I 1.29 3.91 4 out of 225

II 1.73 5.83 4 out of 170
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(1)

(2)

(3)

(4)

Fig. 3. Two examples of comparison on filament segmentation in a time-lapse sequence.

(Odd rows) segmentation results by the previous method [9]. (Even rows) segmentation

results by our proposed method.

Fig. 3.(4), our proposed ending point curve better utilizes data from observation
and is less sensitive to inaccurate prior knowledge, and thus it accurately seg-
ments the filament. Table 1 shows tracking error statistics of our algorithm in
comparison to the previous method; our new algorithm clearly outperforms the
previous method.

5 Conclusions

In this paper, we present novel active surface and contour models for the seg-
mentation of actin filaments in a time-lapse sequence. We solved the 2D tracking
problem as a segmentation problem with smoothness constraints in a higher spa-
tiotemporal 3D domain by introducing an active surface model. A novel (s, t)
domain is created in which a 2D active contour deforms to locate filament ends
accurately. Because it utilizes temporal constraints on filament body and tips
from the entire sequence, it compares favorable to previous methods that use
partial temporal information.

Acknowledgments. This work was supported by NIH grant R21GM083928.
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Abstract. Automatic segmentation of the esophagus from CT data is

a challenging problem. Its wall consists of muscle tissue, which has low

contrast in CT. Sometimes it is filled with air or remains of orally given

contrast agent. While air holes are a clear hint to a human when search-

ing for the esophagus, we found that they are rather distracting to dis-

criminative models of the appearance because of their similarity to the

trachea and to lung tissue. However, air inside the respiratory organs can

be segmented easily. In this paper, we propose to combine a model based

segmentation algorithm of the esophagus with a spatial probability map

generated from detected air. Threefold cross-validation on 144 datasets

showed that this probability map, combined with a technique that puts

more focus on hard cases, increases accuracy by 22%. In contrast to prior

work, our method is not only automatic on a manually selected region of

interest, but on a whole thoracic CT scan, while our mean segmentation

error of 1.80mm is even better.

1 Introduction

Atrial fibrillation is a major cause of stroke. It can be treated with a catheter
ablation therapy in the heart. However, this intervention imposes the risk of an
atrio-esophageal fistula. The air from the esophagus can enter the left atrium,
which normally causes the death of the patient [1]. Here, a segmentation of
the esophagus can be helpful during intervention planning. A segmentation can
also help to find lymph nodes in CT images of the chest area. The attenuation
coefficients are so similar that it is often impossible even for a human to separate
them given a single slice. Here, a segmentation can provide valuable overview to
a physician, and also automatic detectors benefit because the esophagus can be
excluded from search.

Automatic segmentation of the esophagus is challenging because it easily can
be confused with vessels, muscles or lymph nodes. Both shape and appearance
can vary a lot. It may appear solid, but it can also contain air or remains of
contrast agent given orally to the patient.

Prior work on the topic is limited. In [2], the esophagus is segmented with a
non-parametric shape prior of the centerline and an appearance model.

T. Jiang et al. (Eds.): MICCAI 2010, Part I, LNCS 6361, pp. 95–102, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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The method is semi-automated: The user has to specify two points on the cen-
terline. Moreover, segmentations of the left atrium and the aorta are required as
anchors for the shape prior. Another semiautomatic segmentation method which
also relies on a shape prior that is relative to surrounding structures is described
in [3]. In [4], contours that were manually drawn into axial slices are interpolated
without using the image itself.

In this work, we follow the approach of [5]. There, a four step method is pro-
posed. First, a box detector based on a discriminative model is run for each axial
slice and a set of candidates of the approximate esophagus contour is generated.
Then, the candidates are clustered and merged. Now a Markov chain model is
used to infer the path through the axial slices that has the highest probability.
Finally, a surface is generated and refined, again with a discriminative model.
However, the method is only automatic on a manually cropped region of interest
(ROI) and not on a whole CT volume.

In this work, the method of [5] is extended in three ways. First, it is made
fully automatic on uncropped CT volumes as acquired by the scanner. The region
of interest is determined by detecting a salient landmark in the chest. Second,
the accuracy was improved by incorporating a new intermediate detection step.
Finally, we explicitly handle air in the esophagus and in the respiratory organs
in order to further increase the robustness.

The remainder of the paper is structured as follows: In section 2.1, we shortly
summarize the approach of [5]. Section 2.2 describes our approach for automat-
ically detecting the region of interest. In section 2.3, the detector which finds
esophagus contour candidates is described along with the new intermediate de-
tection step. Section 2.4 explains how the distribution of air was incorporated.
Section 3 presents experiments and results, and section 4 concludes the paper.

2 Method

2.1 Model Based Segmentation

In [5], the esophagus contour in axial slices is first approximated with ellipses.
They are parameterized as

e = (t, θ, s), (1)

where t = (x, y) is the center within the slice, θ is the rotation angle and s =
(a, b) contains the semi-axes of the ellipse.

Ellipses are detected using a technique called marginal space learning [6].
Instead of directly searching the five dimensional search space, three classifiers
are trained. As classifiers, we use probabilistic boosting-trees (PBT). These are
binary decision trees with a strong AdaBoost classifier at each node. The first
PBT classifier learns the probability p(m = 1|H(t)) of whether there is a model
instance in the image at a certain location t. Here, H(t) denote Haar-like features
extracted at position t. These are simple cuboid filters similar to the rectangle
filters described in [7]. They can be computed very efficiently and thus even
allow to search the volume exhaustively. The second one is trained to learn
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the probability p(m = 1|S(t, θ)) of whether there is a model instance at a given
position with a given rotation angle θ. It uses steerable features S as proposed in
[6], which are simple point features sampled on a regular grid, and the sampling
pattern is rotated according to θ. The third classifier is trained on the whole
search space to learn p(m = 1|S(t, θ, s). It uses steerable features as well, but
now the sampling pattern is also scaled. By first using the detectors trained
on marginal spaces, large portions of the search space can be pruned at early
stages. The result is a set of ellipse candidates {e(1) . . . e(N)} per axial slice.
These candidates are spatially clustered and merged. Each cluster center c(k) is
associated with a weight σ(k) which is the sum of detection scores p(m = 1|e(i))
of candidates belonging to cluster k.

Now the most likely path through the axial slices is inferred using a Markov
chain model. Each slice i is associated with a random variable si. Possible states of
the random variable si are the cluster centers c(k) of slice i. The transition prob-
ability p(si+1|si) from one slice to the next is modelled by normal distributions
whose parameters are estimated from manual annotations, and the probability
p(si|v) of a variable given an observed image slice v is set to weight σ(i). The max-
imum a posteriori estimate of all state variables given all observed image slices
p(s1:T |v1:T ) can be computed efficiently using dynamic programming.

After the best path has been computed, it is converted into a triangulated
surface representation and refined to better fit the boundary of the organ. The
vertices of the surface are individually deformed according to the output of
another PBT classifier which was trained with steerable features. Then a mesh
smoothing algorithm is applied. Deformation and smoothing is repeated once.

2.2 Automatic ROI Detection

The method described in section 2.1 only works on a region of interest showing
the esophagus. In order to make it fully automatic also on uncropped CT scans
showing for instance the thoracic and abdominal region, we detect the ROI
automatically. A salient point close to the esophagus that can be detected very
robustly is the bifurcation of the trachea. The landmark detection method used
here is described in [8]. An axis-aligned cuboidal region is rigidly attached to
that landmark such that the esophagus is always inside in 144 datasets with
a minimum margin of 3cm in x and y direction. The resulting region is of size
13.3×15.6cm2 . In vertical (z) direction, the size is set to 26cm. This ROI is fairly
large, which makes the detection harder because it contains more structures that
may be confused with the esophagus.

2.3 Discriminative Model

Within the detected ROI, we run for each axial slice a classifier that was trained
to learn p(m = 1|H(t)) as described in section 2.1. A set of candidates CT1 =
{t1 . . . tNT1} is generated which contains the NT1 positions with highest detec-
tion score. We now propose to train another classifier of the same type and
the same features. But now, the negative training examples are generated by
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scanning images with the first classifier and collecting false alarms instead of
randomly drawing samples from the images. Thus, the second classifier gets spe-
cialized on the difficult cases. It only considers the candidates from CT1 and
generates a set CT2 which contains the NT2 candidates with highest scores of
the second detector. The remaining steps in the detection pipeline are similar to
[5]: A classifier trained to learn the probability p(m = 1|S(t, θ)) considers the
candidate set CT2 and generates a set CTR of position and orientation candi-
dates of size NTR. Finally, a classifier that was trained on the full search space of
translation, rotation and scale is run on CTR to generate the ellipse candidates
of a slice. Clustering, merging, path inference and surface generation are adopted
from [5].

In Fig. 1, example output is displayed for each step of the detection pipeline.

(a) (b) (c) (d) (e)

Fig. 1. The proposed detection pipeline. (a) shows the detection scores generated by

the first translation detector. The output of the second translation detector is visualized

in (b). The bounding boxes of the ellipse candidates are shown in (c). The confidence

is color coded in HSV color space: Violet means lowest score, red is highest. The

candidate set is clustered and merged (d). The best path through the axial slices is

inferred, converted into a surface and further refined (e). The blue contour is the final

segmentation.

2.4 Including the Distribution of Air

When a human tries to find the esophagus in a CT dataset, s/he also looks for
air holes as they are clearly visible and a strong indicator for the esophagus.
One might expect the classifiers to learn this correlation, but we found that air
holes rather distract them. The reason is that the classifiers only rely on local
features. Then, air holes can be confused easily with the trachea or lung tissue,
and both are a priori much more likely because they cover a larger volume. A
human, however, recognizes and excludes the respiratory organs effortlessly.

Separating esophageal from respiratory air. Therefore, we propose to sup-
port the detector by adding the knowledge that air belonging to the respiratory
organs cannot belong to the esophagus, and air elsewhere most likely is inside
the esophagus. This is modelled with a binary mask B(t) that is zero if t be-
longs to a respiratory organ and one otherwise, and a probability map S(t) of
the esophagus based on detected air holes.
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Segmenting the air of the respiratory organs in CT is straightforward because
it is one connected region. First, voxels with an attenuation coefficient below
-625HU are labeled as air. Vessels and airways in the lung are labeled as air as
well by identifying small connected components in axial, sagittal and coronal
slices. Now all regions marked as air which touch the left, right, front or back
border of the ROI are removed. The result is stored in B. Remaining regions
marked as air probably belong to the esophagus. They are labeled with 1 in a
mask E. Elsewhere, E is zero. A similar method to find esophageal air holes
is described in [9]. Now for each axial slice, it is checked whether E contains
exactly one connected region labeled as esophageal air. If so, we set the current
slice of the probability map S to g(|t − p|), where p is the point of gravity of
the region within the slice and g is a Gaussian with standard deviation s that is
deformed and trimmed to have a maximum of 1 and limited support in [−w,w].
We selected a value of 7mm as s and 10mm as w.

Integration into detector. We now define a combined probability map
C(t) as

C(t) =
B(t) + S(t)

2
(2)

and model the probability p(m = 1|C(t)) of observing the esophagus at position
t given the global distribution of air as being proportional to C(t):

p(m = 1|C(t)) ∝ C(t). (3)

During position detection, we are finally interested in the probability p(m =
1|H(t), C(t)) of observing the esophagus at a certain location t given the Haar-
like feature response H(t) and the information from the global distribution of
air C(t). In order to simplify the notation, we will omit the argument t in the
remainder of this section. Using Bayes’ rule, this can be rewritten as

p(m = 1|H, C) =
p(H , C|m = 1)p(m = 1)

p(H , C)
(4)

Now we assume that the feature vector H is statistically independent from the
distribution of air C. This is of course a simplifying assumption. H and C are
to some extent statistically dependent. The assumption is justified by the fact
that the map C does improve the performance as we will see, which means that
H does not contain much information about C. With this assumption, (4) can
be transformed into

p(m = 1|H, C) =
p(H|m = 1)p(C|m = 1)p(m = 1)

p(H)p(C)
(5)

=
p(m = 1|H)p(m = 1|C)

p(m = 1)
, (6)

which is proportional to the product p(m = 1|H)C(t) of the classifier output
and the probability map C. This means we can integrate C into the transla-
tion detector simply by multiplying it with the detection score. In Fig. 2, the
probability map C is visualized for two axial CT slices.
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Fig. 2. Two examples of CT slices along with their combined probability map C(t)
generated from the distribution of air inside the volume. Left: The air hole is a clear hint

for the esophagus. Right: No air hole is present, but respiratory air can be excluded.

Regions filled with respiratory air are not considered by the detector. There-
fore, we also do not generate negative training examples from these regions. This
makes the learning problem easier because now air is a priori more likely to be
part of the esophagus.

3 Results

The method has been evaluated on 144 CT scans of the thoracic or the thoracic
and abdominal region. No patient was included twice. The voxel spacing in x and
y direction was in the range of 0.7mm to 0.8mm. The spacing in (longitudinal)
z direction was 5mm. After ROI detection, the volumes were resampled to a
voxel spacing of 0.7× 0.7× 5mm3. Manual segmentations were available for all
datasets. The segmentations typically ranged from the thyroid gland down to a
level below the left atrium.

The accuracy was measured using threefold cross-validation. For each fold, all
five classifiers for translation (2×), orientation, scale and surface were trained on
the training data, and the parameters of the Markov model were estimated from
the same training data. The remaining data was used for testing. There was no
overlap between training and testing data. For evaluation, the detector was run
in z direction on the same interval covered by the manual annotation in order not
to introduce artificial errors because of different lengths of the segmentations.

ROI detection succeeded in all of the 144 datasets. Due to the large ROI, the
segmentation method can tolerate normal anatomical variations and detection
errors of the bifurcation of the trachea.

Table 1 shows the results of accuracy evaluation. As error measures, we used
the mean segmentation error and the Hausdorff distance, averaged over all test
datasets. The mean error measures the mean distance between the ground truth
and the detected surface, while the Hausdorff distance measures the maximum.
The number of candidates NT1 generated by the first translation detector was
set to 400, NT2 to 120, NTR to 50, and the number of final candidates per slice
to 200. The distance threshold in the clustering step was set to 8mm.

The proposed method segmented the esophagus with a mean error of 1.80mm.
If only the binary mask B is used instead of the combined probability map C, the
error is 1.88mm. If the air model as described in section 2.4 is omitted, the error
is 1.94mm, meaning that explicitly modelling the air significantly improved the
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Table 1. Results of performance evaluation. Shown is the mean error and the mean

Hausdorff distance along with the corresponding standard deviations.

Method mean error in mm Hausdorff dist. in mm

Proposed method 1.80 ± 1.17 12.62 ± 7.01

Only binary air model B(t) 1.88 ± 1.24 13.00 ± 7.88

No air model 1.94 ± 1.39 13.06 ± 7.21

Single translation class. 2.07 ± 1.47 14.50 ± 8.92

No air model, single translation class. 2.32 ± 1.87 15.02 ± 9.83

No Markov model 2.30 ± 1.49 17.29 ± 11.42

Proposed method, best 80% 1.34 ± 0.31 9.65 ± 3.07

Feulner et al. [5] 2.28 ± 1.58 14.5

Inter observer variability 0.78 ± 0.17 7.29 ± 2.22
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Fig. 3. Left: The mean segmentation error for different distance thresholds used for

clustering. Right: Examples of automatic segmentations on unseen data (blue) along

with ground truth (green).

accuracy. If the air probability map is used, but the second translation detector
as described in section 2.3 is omitted, we get an error of 2.07mm. Without both
the air model and the additional detector, performance is 2.32mm, meaning that
using both decreases the error by 22%. When the Markov model is turned off
and for each slice, the ellipse candidates are simply averaged, the error becomes
2.30mm. This is different from what is described in [5]: There, the use of the
Markov chain did hardly influence the numeric results. Here, it clearly improves
the accuracy. The reason is that the Markov model is especially useful to resolve
ambiguity that occurs much more frequently in a larger ROI. The data used for
evaluation does also contain extreme cases which in principle can be handled by
our method if enough training examples are available. This was not always the
case. If the most difficult cases are excluded from the test set, the mean error be-
comes 1.34mm. For comparison, the results of [5] are shown. We furthermore did
an experiment to measure the inter observer variability: Ten datasets were man-
ually segmented a second time by another observer. The second segmentations
were evaluated like automatic ones. The result is shown in the last row.
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Table 2. Computation time in seconds for different steps of the method

ROI detec. prob. map gen. ellipse detec. path inference refinement total

6.96 1.13 7.40 0.40 · 10−3 0.34 15.83

Table 2 shows the computational requirements of the different steps of the
method, measured on a 2.2GHz dual core PC. Though the ROI is larger, ellipse
detection is slightly faster compared to [5] due to the spatial probability map
and the second translation detector which rejects most candidates of the first
one. In total, the method takes less than 16s.

4 Discussion

In contrast to prior work, our method is able to segment the esophagus from
uncropped CT volume images without any user interaction. Segmentation on an
automatically detected ROI is harder because the ROI has to be made large. Still,
our results are better than what has been reported in [5]. A mean error of 1.8mm,
which is only 1.0mm above the inter observer variability, can be considered as a
good result for this problem.
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Abstract. We present a new method for the automatic segmentation

and components classification of brain Optic Pathway Gliomas (OPGs)

from multi-spectral MRI datasets. Our method accurately identifies the

sharp OPG boundaries and consistently delineates the missing contours

by effectively incorporating prior location, shape, and intensity informa-

tion. It then classifies the segmented OPG volume into its three main

components – solid, enhancing, and cyst – with a probabilistic tumor tis-

sue model generated from training datasets that accounts for the datasets

grey-level differences. Experimental results on 25 datasets yield a mean

OPG boundary surface distance error of 0.73mm and mean volume over-

lap difference of 30.6% as compared to manual segmentation by an expert

radiologist. A follow-up patient study shows high correlation between the

clinical tumor progression evaluation and the component classification

results. To the best of our knowledge, ours is the first method for auto-

matic OPG segmentation and component classification that may support

quantitative disease progression and treatment efficacy evaluation.

1 Introduction

Optic Pathway Gliomas (OPGs) are the most common brain tumors of the
central nervous system in patients with Neurofibromatosis (NF) [1]. OPGs are
low-grade pilocytic astrocytomas that arise in the optic nerve and chiasm and
may involve the hypothalamus and post-chiasmal regions. OPGs may be asymp-
tomatic, but may become very aggressive and cause severe complications depend-
ing on their location [2]. Patients with known OPGs are typically screened serially
for progressive visual loss and for changes on MR images. Precise follow-up of an
OPG requires the quantification of the tumor volume and the classification of its
components into solid, enhancing, and cyst regions. Evolution or changes in the
tumor volume and its components may serve as markers for disease progression
and may be used to determine the proper treatment and to evaluate its efficacy.
Therefore, the accurate quantification of the tumor volume and identification of
its components is crucial [3]. Currently, OPG volume is coarsely estimated man-
ually by the physician with a few measurements on axial, coronal, and sagittal
slices. This is inaccurate, time consuming, error prone, user dependent, and may
compromise the follow-up of the disease progression and its treatment.

T. Jiang et al. (Eds.): MICCAI 2010, Part I, LNCS 6361, pp. 103–110, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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Brain tumor detection, characterization, and follow-up based on CT and MR
images is currently the standard of care in radiology. The ample spectrum of
tumor types and locations has given rise to a plethora of methods for tissue
classification and quantification. Most studies focus on the automatic detection
of Glioblastoma Multiforme (GBM) tumors [3,4,5], as they account for 40% of
all primary malignant brain tumors in adults [6]. Additional studies address of
other brain lesions, e.g. astrocytoma [7] and low-grade glioma [8].

While effective, most methods do not take into account the anatomic loca-
tion of the tumor, which is key for the detection and segmentation of OPGs. A
common problem of OPGs and other tumors is the delineation of their bound-
aries due to the tumor inhomogeneity, the surrounding tissues with overlapping
image intensity values, the uneven tumor ingrowth into nearby structures, and
the imaging partial volume effect. In addition, most existing automatic tumor
components classification methods are based on learning the grey-level range
of every component from a training set [4]. Therefore, they might suffer from
sensitivity to grey-level differences between the learning and the testing sets.

In this paper we describe a new automatic method for the segmentation
and components classification of OPG from multi-spectral MRI datasets. Our
method effectively incorporates prior location, shape, and intensity information
to accurately identify the sharp OPG boundaries and to consistently delineate
the OPG contours that cannot be clearly identified on standard MR images. It
then classifies the segmented OPG volume into its solid, enhancing, and cyst
components based on a probabilistic tumor tissue model generated from train-
ing datasets that overcomes the grey-level differences between the learning and
the test datasets. Our experimental study on 25 datasets yields a mean surface
distance error of 0.73mm and a mean volume overlap difference of 30.6% as
compared to manual segmentation by an expert radiologist. A follow-up study
shows high correlation between the clinical tumor progression evaluation and
the component classification results. The advantages of our method are that it
is automatic, accurate, consistent, and that it may support quantitative disease
progression, treatment decision-making, and treatment efficacy evaluation.

2 OPG Segmentation and Classification

Our method inputs the patient multi-spectral MRI datasets, which include T1-
weighted, T2-weighted, and Fluid Attenuated Inversion Recovery (FLAIR) pulse
sequences, and a prior OPG spatial location. The OPG prior spatial location con-
sists of the OPG Region Of Interest (ROI) M , and the chiasm core O, both defined
by an expert radiologist on an anatomy atlas. The output is the OPG boundary
and OPG voxel classification into solid, enhancing, and cyst components.

The method proceeds in four steps. First, the multi-spectral MR images are
coregistered, normalized for intensity, and registered to the anatomy atlas to
detect prior OPG ROI and chiasm core. Next, the OPG sharp boundaries are
found. In the third step, the missing OPG boundary segments are computed from
a probabilistic tumor tissue model generated from training datasets. Finally, the
OPG voxels are classified into solid, enhancing, and cyst components.
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2.1 MR Images Coregistration and Normalization

Since the patient may move during image acquisition, we first coregister the
MR images with the SPM affine registration method [9]. We then standardize
the patient MRI intensity values and the probabilistic OPG intensity model
with the Dynamic Histogram Warping method [10]. The OPG ROI and the
chiasm core are identified in the resulting intensity normalized and aligned pa-
tient MR images by registering them to the labeled anatomy atlas with the
SPM normalization method [9]. The OPG ROI M = {m1, ...,mnM } and chiasm
core O = {o1, ..., onO} point sets are then mapped back from the prior atlas
space to the patient image space. The resulting sets M̃ = {m̃1, ..., m̃nM̃

} and
Õ = {õ1, ..., õnÕ

} represent the chiasm core and the OPG ROI in the patient
image space.

2.2 OPG Sharp Boundaries Detection

The OPG is mostly surrounded by the Cerebral Spine Fluid (CSF), whose in-
tensity value in the FLAIR pulse sequence is very low. Thus, the OPG sharp
boundaries are clearly distinguishable where the CSF surrounds the OPG. The
CSF voxels are identified in FLAIR by fixed-value thresholding. The sharp OPG
boundary voxels are identified as follows. For every voxel m̃i ∈ M̃ , we find the
shortest Euclidean distance path to Õ and label it as Pi = {p1, ..., pl}. If at
least one of the voxels in Pi is a CSF voxel, then m̃i is removed from M̃ . The
resulting M̃ does not contains the voxels in the OPG ROI that lie beyond the
CSF borders surrounding the OPG. This step enforces a convex shape, which is
mostly the case in OPG. Fig. 1 illustrates this step.

(a)

OPG

CSF

M

O

(b) (c) (d)

Fig. 1. (a) OPG location in the brain; (b) OPG ROI M̃ (red), chiasm core Õ (green),

OPG (yellow), CSF (blue) areas; (c) example of the OPG ROI (red) and chiasm core

(green) on a sample slice; (d) sharp boundary detection result (yellow)
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2.3 OPG Boundary Completion

To find the missing OPG boundary segments where a clear border with CSF
does not exist, we use the Generalized Likelihood Ratio Test (GLRT) [11]. We
define two complementary hypotheses – healthy tissue and OPG tissue – and
choose between them based a probabilistic measure computed from an estimate
of their unknown model parameters. We describe these two steps in detail next.

Probabilistic tissue model. We represent the multi-spectral MRI dataset
consisting of k pulse sequences, each with n voxels, as a set V = {v1(r), ..., vn(r)}
where vi(r) is a k-dimensional vector, and vi(r) = (v1

i , v
2
i , ..., v

j
i , ..., v

k
i ), where

vj
i represents the intensity value of the voxel vi in the j-th pulse sequence. The

parameter r denotes the spatial location of the voxel vi(r).

We postulate two hypotheses for voxel vj(r):

H0 : voxel vj(r) corresponds to healthy tissue.
H1 : voxel vj(r) corresponds to OPG tissue.

The probability of vj(r) to be OPG tissue depends on its spatial location and
on the voxel intensity values in the MR images.

Since the every voxel in the image can have any intensity level, the spatial
location of a voxel can be assumed to be independent of its intensity level. There-
fore, the Probability Density Function (PDF) of vj(r) for a given hypothesis is:

f(vj(r), r|Hi) = fI(vj(r)|Hi) · fS(r|Hi) , i = 0, 1

where fI(vj(r)|Hi) and fS(r|Hi) are the respective intensity and spatial location
contributions to f(vj(r), r|Hi).

Since the OPG spreads from the center of the core to the margins of the
chiasm, we model fS(r|H1) as a Gaussian, with mean rS and covariance matrix
CS . Since H0 is the complementary hypothesis of H1, we obtain:

fS(r|H0) = 1− fS(r|H1)

We model the intensity value of healthy/OPG voxels as a mixture of Gaussians:

fI(vj(r)|Hi) =
3∑

q=1

aiq ·
1

(2π)k/2|Ciq|1/2
exp{−1

2
(vj(r) − μiq)T C−1

iq (vj(r) − μiq)}

where the superscript T denotes the matrix transpose. The parameters {μ0q}3q=1

and {C0q}3q=1 denote the mean vector and covariance matrix of the healthy tis-
sue component: air, CSF, and non-enhancing healthy tissue, respectively. The
parameters {μ0q}3q=1 and {C1q}3q=1 denote the mean vector and covariance ma-
trix of solid, enhancing, and cyst OPG components, respectively. Since we do not
have the prior probabilities for these components for either the healthy or the
OPG hypothesis, we set them to have equal prior probability, i.e. ∀i, q aiq = 1

3 .
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Unknown parameters estimation. The Maximum Likelihood Estimators
(MLEs) of the unknown model parameters, given the training data, are as follows
[11]. The parameters {μ̂0q}3q=1 and {Ĉ0q}3q=1 are the sample mean and covari-
ance matrix of the CSF, air, and healthy non-enhancing tissue components of
healthy tissues, respectively. Similarly, {μ̂1q}3q=1 and {Ĉ1q}3q=1 are the sample
mean and covariance of solid, enhancing, and cystic components of OPG, respec-
tively. The parameters r̂S and Ĉs are the center of mass and the spatial sample
covariance matrix of Õ. The GLRT is thus:

Λ(vj(r)) =
f(vj(r), r|θ̂1, θ̂2;H1)

f(vj(r), r|θ̂0, θ̂2;H0)

H1

≷
H0

γ (1)

where γ is a predetermined threshold that reflects the trade-off between false

and missed detections. The notation
H1

≷
H0

means that if Λ(si(r)) is greater than

γ, H1 is chosen for voxel si(r), otherwise, H0. The final segmentation result is
the intersection between the GLRT result and M̃ . The set of voxels S = {si(r)}
that are detected as OPG is thus:

S = {si(r) : Λ(si(r)) > γ and si(r) ∈ M̃}

2.4 OPG Internal Classification

A common problem of the state-of-the-art supervised classification methods is
that the classification results are affected by different acquisition parameters of
the training and testing datasets. We propose to use a classification technique
that overcomes this phenomenon when the training and the testing datasets
intensities differ by a multiplicative factor, as is a common case in OPG datasets.

To determine if a given OPG voxel is solid, enhancing, or cyst, we use the Spec-
tral Angle Mapper (SAM) method [12]. SAM classification is based on the angle
measured between the given vector of pulse sequences grey-levels and a training
vector previously computed for every OPG component. To classify a given set
of OPG voxels, S = {si(r)}NS

i=1, we use the estimations of the solid, enhancing,
and cystic components, μ̂11, μ̂12, μ̂13, which were previously calculated. Follow-
ing the SAM approach, the angle between si(r) and μ̂1q is: ϕq = acos(si(r)·μ̂1q),
where · denotes the vector dot product. Consequently, si(r) is assigned to the
component represented by μ̂1q that yields the lowest ϕq for q = 1, 2, 3.

3 Experimental Results

We conducted a quantitative evaluation of our method with clinical multi-
spectral MRI datasets of 7 pediatric patients, 3-7 years old with OPGs. The
patients were serially screened every several months to produce a total of 28
datasets. The MR images were acquired by General Electric Signa 1.5T HD.
The study was approved by the local ethical research committee. Each scan con-
sists of T1-weighted, T2-weighted, and FLAIR. Each dataset has 512× 512× 30
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voxels with voxel size 0.5×0.5×5.0mm3. An expert radiologist defined the prior
spatial inputs, O and M , on the Johns Hopkins University International Con-
sortium of Brain Mapping T2 atlas [13], and manually produced ground-truth
classified segmentations for each scan. A second expert radiologist reviewed and
revised the segmentations. To separate the training and testing datasets and to
provide robust performance of our methods, three data sets were used to esti-
mate the unknown parameters of the model and to determine the CSF value in
the FLAIR sequence to distinguish the OPG from CSF in their tangency region.
The remaining 25 scans were used to evaluate the proposed method. All the
results were obtained with an experimentally determined threshold of γ = 1.2.

In the first study, we applied the OPG segmentation algorithm (Secs 2.1-
2.3) to each of the 25 cases. Fig. 2 shows the segmentation results in three
common validation measures [16]. The average symmetric surface distance is
0.73mm, and the volumetric overlap error is 30.6%. These values are comparable
to those of other automatic detection methods of brain tumors reported in the
literature [4,5], and to the inter/intra observer variability of manual brain tumor
segmentation [14,15].
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Fig. 2. Segmentation results summary for 25 cases

In the second study,
we evaluated the results
of our OPG segmenta-
tion and component clas-
sification method with a
follow-up study. MR im-
ages of three patients
with OPG were serially
acquired at subsequent
time intervals. The OPG
and its three components
were then manually seg-
mented by an expert ra-
diologist. For the auto-
matic processing, we de-
fined the first scan of ev-
ery patient as the refer-
ence scan and registered
all subsequent scans to it. We then applied our method to each dataset, and
computed the segmented OPG volume and that of its solid, enhancing, and
cystic components (Sec. 2.4).

We computed the difference vector for every OPG component over time for
both manual and automatic classification results. The difference vector consists
of the volume differences between consecutive scans, and therefore represents
the changes of the OPG component over the time for each patient.

Fig. 3 shows an illustrative example and the results the OPG automatic clas-
sification results as compared to the manual classification. We computed the
correlation coefficients between the manual and automatic difference vectors.
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Fig. 3. Illustration of patient 1 follow-up study: (a) manual vs. automatic component

classification chart; (b) and (c): ground truth (top) vs. our method (bottom) segmen-

tation results on two patient 1 sample slices for months 23 (left) and 31 (right).

We also computed the same values for the standard Euclidean Distance (ED)
classifier. Table 1 shows the results.

Table 1. SAM and ED correlation with ground truth

Patient 1 Patient 2 Patient 3
Component SAM ED SAM ED SAM ED
Solid 0.778 0.085 0.597 0.487 0.161 −0.468
Enhancing 0.503 0.319 0.905 0.875 0.869 0.426
Cystic 0.864 0.520 N/A N/A 0.854 0.845

We conclude from Fig.
3 that our method suc-
cessfully estimates the
OPG volume progres-
sion. For example, the in-
crease in the OPG vol-
ume of Patient 1, start-
ing after 23 months, and
the development of the
enhancing component after 28 months, can be observed in both the manual and
the automatic segmentation. These findings are an indicator for positive tumor
progression, which may require altering the current patient treatment. From Ta-
ble 1, we conclude that our method successfully estimates the OPG components
progression. In addition, we found that our classification method outperforms
the ED classifier, which relies on absolute grey-level intensity values.

4 Conclusions

We have presented a method for the automatic segmentation and component clas-
sification of OPGs from multi-spectral MRI. The paper makes three main contri-
butions. First, our segmentation method uses a spatial a priori anatomical atlas to
find the initial location of the OPG tumor. This is usually done manually via seed
selection or by other means in existing segmentation methods. Second, our method
classifies voxels according to the learned ratio between the pulse sequences, rather
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than by their absolute values. This yields a robust classification method that can
handle gray-level intensity imaging variations. Third, we evaluated our method
with a follow-up study on three patients, in addition to the standard measures of
volume overlapping and surface distance. The study compares the relative volume
progression of the OPG components at different times, and quantitatively sup-
ports the clinical findings. This constitutes a methodological improvement over
the manual method currently used.

For future work, we are planning an extensive follow-up study. We plan to
use the new ROI-based segmentation and SAM classification techniques for the
automatic segmentation and classification of other types of brain tumors.
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Abstract. A new algorithm is presented for the automatic segmenta-

tion of Multiple Sclerosis (MS) lesions in 3D MR images. It builds on the

discriminative random decision forest framework to provide a voxel-wise

probabilistic classification of the volume. Our method uses multi-channel

MR intensities (T1, T2, Flair), spatial prior and long-range comparisons

with 3D regions to discriminate lesions. A symmetry feature is intro-

duced accounting for the fact that some MS lesions tend to develop in

an asymmetric way. Quantitative evaluation of the data is carried out on

publicly available labeled cases from the MS Lesion Segmentation Chal-

lenge 2008 dataset and demonstrates improved results over the state of

the art.

1 Introduction

Multiple Sclerosis (MS) is a chronic, inflammatory and demyelinating disease
that primarily affects the white matter of the central nervous system. Auto-
matic detection and segmentation of MS lesions can help diagnosis and patient
follow-up. It offers an attractive alternative to manual segmentation which re-
mains a time-consuming task and suffers from intra- and inter-expert variability.
MS lesions, however, show high appearance variability which makes automatic
segmentation a challenging task. Indeed, MS lesions lack common intensity and
texture characteristics, their shapes are variable and their location within the
white matter varies across patients.

A variety of methods have been proposed for the automatic segmentation
of MS lesions. Generative methods were proposed consisting in a tissue clas-
sification by means of an expectation maximization (EM) algorithm. The EM
algorithm can be modified to be robust against lesion affected regions, its out-
come is then parsed in order to detect outliers which, in this case, coincide with
MS lesions [1]. Another approach consists in adding to the EM a partial vol-
ume effect model between tissue classes and combining it with a Mahalanobis
thresholding which highlights the lesions [2]. Morphological postprocessing on
resulting regions of interest was shown to improve the classification performance
[3]. In [4], a constrained Gaussian mixture model is proposed, with no spatial
prior, to capture the tissue spatial layout. MS lesions are detected as outliers
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and then grouped in an additional tissue class. Final delineation is performed
using probability-based curve evolution. Multi-scale segmentation can be com-
bined with discriminative classification to take into account regional properties
[5]. Beyond the information introduced via the spatial prior atlases, these meth-
ods are limited in their ability to take advantage of long-range spatial context
in the classification task.

To overcome this shortcoming, we propose the use of an ensemble of discrim-
inative classifiers. It builds on the random decision forest framework which has
multiple applications in bioinformatics [6], but more recently also in the im-
age processing community [7]. Adding spatial and multi-channel features to this
classifier proved effective in object recognition [8], brain tissue segmentation in
MR images [9], myocardium delineation in 3D echocardiography [10] and or-
gan localization in CT volumes [11]. Applying multi-channel and context-rich
random forest classification to the MS lesion segmentation problem is novel, to
our knowledge. The presented classifier also exploits a specific discriminative
symmetry feature assuming that the healthy brain is approximately symmetric
with respect to the mid-sagittal plane and that MS lesions tend to develop in
asymmetric ways.

2 Materials and Methods

This section describes our adaptation of the random decision forests to the seg-
mentation of MS lesions and illustrates the visual features employed.

2.1 Dataset

Our dataset contains 20 labeled cases which are publicly available from the
MS Lesion Segmentation Challenge 2008 website [12]. For each case, three MR
channels are made available T1- ,T2-weighted and Flair.

After being sub-sampled and cropped, all the images have the same size,
159× 207× 79 voxels, and the same resolution, 1 × 1 × 2 mm3. RF acquisition
field inhomogeneities are corrected [13] and inter-subject intensity variations
are normalized [14]. The images are then aligned on the mid-sagittal plane [15].
Spatial prior is added by registering the MNI atlas [16] to the anatomical images,
each voxel of the atlas providing the probability of belonging to the white matter
(WM), the grey matter (GM) and the cerebro-spinal fluid (CSF) (cf. Fig. 1).

We will adhere to the following notation: the data consists of a collection
of voxel samples v = (x,C), each characterized by a position x = (x, y, z)
and associated with a list of signal channels C. Signal channels C = (I,P) in-
clude multi-sequence MR images I = (IT1, IT2, IFlair) and spatial priors P =
(PWM , PGM , PCSF ). Anatomical images and spatial priors, although having dif-
ferent semantics, can be treated under the unified term “signal channel”. We
account for noise in MR images by averaging values over a 33 voxels box cen-
tered on x, such an average is noted Cc(x), e.g. Cc = IFlair or PGM .
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Fig. 1. Data. From left to right: preprocessed T1-weighted, T2-weighted and Flair

MR images, the associated ground truth and the registered white matter atlas.

2.2 Context-Rich Decision Forest

Our detection and segmentation problem can be formalized as a binary classi-
fication of voxel samples into either background or lesions. This classification
problem is addressed by a supervised method: discriminative random decision
forest, an ensemble learner using decision trees as base learners. Decision trees
are discriminative classifiers which are known to suffer from over-fitting. A ran-
dom decision forest [17] achieves better generalization by growing an ensemble
of many independent decision trees on a random subset of the training data and
by randomizing the features made available to each node during training [18].

Forest training. The forest has T components with t indexing each tree. The
training data consists in a set of labeled voxels T = {vk, Y (vk)} where the label
Y (vk) is given by an expert. When asked to classify a new image, the classifier
aims to assign every voxel v in the volume a label y(v). In our case, y(v) ∈ {0, 1},
1 for lesion and 0 for background.

During training, all observations vk are pushed through each of the trees.
Each internal node applies a binary test [8,9,10,11] as follows:

tτlow,τup,θ(vk) =
{

true, if τlow ≤ θ(vk) < τup

false, otherwise

where θ is a function identifying the visual feature extracted at position xk.
There are several ways of defining θ, either as a local intensity-based average,
local spatial prior or context-rich cue. These are investigated in more detail in the
next section. The value of the extracted visual feature is thresholded by τlow and
τup. The voxel vk is then sent to one of the two child nodes based on the outcome
of this test. Training the classifier means selecting the most discriminative binary
test for each node by optimizing over (τlow , τup, θ) in order to maximize the
information gain on the input data partition [19], noted Tp, defined as follows:
IGτlow,τup,θ(Tp) = H(Tp) −H(Tp|{tτlow,τup,θ(vk)}) where Tp ⊂ T , H stands for
the entropy.

Only a randomly sampled subset Θ of the feature space is available for in-
ternal node optimization, while the threshold space is uniformly discretized.
The optimal (τ∗low, τ∗up, θ

∗) is selected by exhaustive search jointly over the fea-
ture and threshold space. Random sampling of the features leads to increased
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inter-node and inter-tree variability which improves generalization. Nodes are
grown to a maximum depth D. Another stopping criterion is to stop growing
a node when too few training points reach it, i.e. when the information gain is
below a minimal value IGmin.

As a result of the training process, each leaf node l of every tree t receives a
partition Tlt of the training data. The following empirical posterior probability
is then stored at the leaf plt(Y (v) = b) = |{(v, Y (v)) ∈ Tlt |Y (v) = b}|/|Tlt |
where b ∈ {0, 1} denotes the background or lesion class, respectively.

Prediction. When applied to a new test data Ttest = {vk}, each voxel vk

is propagated through all the trees by successive application of the relevant
binary tests. When reaching the leaf node lt in all trees t ∈ [1..T ], posteriors
plt(Y (v) = b) are gathered in order to compute the final posterior probability
defined as follows: p(y(v) = b) = 1

T

∑T
t=1 plt(Y (v) = b). This probability may

be thresholded at a fixed value Tposterior if a binary segmentation is required.

2.3 Visual Features

In this section, two kinds of visual features are computed: 1) local features:
θloc

c (v) = Cc(x) where c indexes an intensity or a prior channel; 2) context-rich
features comparing the voxel of interest with distant regions . The first context-
rich feature looks for relevant 3D boxes R1 and R2 to compare within an extended
neighborhood: θcont

c1,c2,R1,R2
(v) = Cc1(x) − 1

vol(R1∪R2)

∑
x′∈R1∪R2

Cc2(x′) where
c1 and c2 are two signal channels. The regions R1 and R2 are sampled randomly
in a large neighborhood of the voxel v (cf. Fig. 2). The sum over these regions
is efficiently computed using integral volume processing [8]. The second context-
rich feature compares the voxel of interest at x with its symmetric counterpart
with respect to the mid-sagittal plane, noted S(x): θsym

c (v) = Cc(x)−Cc ◦S(x)
where c is an intensity channel. Instead of comparing with the exact symmetric
S(x) of the voxel, we consider, respectively, its 6, 26 and 32 neighbors in a sphere

Fig. 2. 2D view of context-
rich features. (a) A context-rich

feature depicting two regions R1

and R2 with constant offset rel-

atively to x. (b-d) Three exam-

ples of randomly sampled features

in an extended neighborhood. (e)

The symmetric feature with respect

to the mid-sagittal plane. (f) The

hard symmetric constraint. (g-i)

The soft symmetry feature consid-

ering neighboring voxels in a sphere

of increasing radius. See text for de-

tails.
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S (cf. Fig. 2), centered on S(x). We obtain a softer version of the symmetric
feature which reads: θsym

c,S (v) = minx′∈S{Cc(x)− Cc(x′)}.

3 Results

In our experiments, forest parameters are fixed to the following values; number
of random regions |Θ| � 950, number of trees T = 30, tree depth D = 20, lower
bound for the information gain IGmin = 10−5, posterior threshold Tposterior =
0.5. These values were chosen based on prior parameter optimization on synthetic
data and worked well for real data too.

For quantitative evaluation, the 20 available cases are classified and compared
to one of the state of the art methods [3]. A three-fold cross-validation is carried
out on this dataset: the forest is trained on 2

3 of the cases and tested on the
other 1

3 , this operation is repeated three times in order to collect test errors for
each case. Note that the random forest is trained on the preprocessed data.

The binary classification is evaluated using two measures, true positive rate
(TPR) and positive predictive value (PPV), both equal 1 for perfect segmenta-
tion. Formally, TPR = TP

TP+FN and PPV = TP
TP+FP where TP counts the num-

ber of true positive voxels in the classification compared to the ground truth,
FP the false positives, FN the false negatives.

Random forest based segmentations are compared with an aligned and sub-
sampled version of the ground truth (cf. Fig. 3), whereas segmentations from the
winner algorithm were compared with original and sub-sampled segmentations
for similar results. Our segmentation compares favorably to one of the state of
the art algorithms (cf. Table 1) for both TPR and PPV .

The Grand Challenge 2008 website carried out a complementary and inde-
pendent evaluation of the algorithm on their private dataset [12]. The results
confirm a significant improvement over the winner algorithm of the challenge
[3]. The presented spatial random forest achieves, in average, slightly larger true
positive (TPR), which is beneficial, and comparable false positive (FPR) rates
but significantly lower volume difference (VD), and surface distance (SD) values.

3.1 Discussion

Influence of preprocessing. Data normalization is critical. Indeed, features
selected during training should be applied exactly in the same way to new data.
For instance, context-rich features, θcont, are sensitive to rotation and thus
require aligned images. Moreover, intensity based features require inter-image
normalization to ensure consistency of threshold values in binary tests. This
limitation is merely due to our supervised approach. On the contrary, image
sub-sampling does not affect feature evaluation much as we are considering av-
erages over rectangular regions.

Analysis of feature relevance. Decision trees are interesting because of ease
of interpretability which is highly relevant in classification algorithms consider-
ing a large number of input features [6]. We exploit this to analyze the selected
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Fig. 3. Segmentation results on a multi-channel 3D MR image. Rows: Axial

slices. Columns (from left to right): T1, T2, Flair MR images, ground truth and the

output posterior after thresholding.

Table 1. Comparison of context-rich random forests with a state of the art
method. In bold we indicate were we do better than the winner algorithm of the MS

Segmentation Challenge 2008.

Ch. winner [3] Context-rich RF Ch. winner [3] Context-rich RF

Patient TPR PPV TPR PPV Patient TPR PPV TPR PPV

CHB01 0.22 0.41 0.49 0.64 UNC01 0.01 0.01 0.02 0.01
CHB02 0.18 0.29 0.44 0.63 UNC02 0.37 0.39 0.48 0.36

CHB03 0.17 0.21 0.22 0.57 UNC03 0.12 0.16 0.24 0.35
CHB04 0.12 0.55 0.31 0.78 UNC04 0.38 0.54 0.54 0.38

CHB05 0.22 0.42 0.40 0.52 UNC05 0.38 0.08 0.56 0.19
CHB06 0.13 0.46 0.32 0.52 UNC06 0.09 0.09 0.15 0.08

CHB07 0.13 0.39 0.40 0.54 UNC07 0.57 0.18 0.76 0.16

CHB08 0.13 0.55 0.46 0.65 UNC08 0.27 0.20 0.52 0.32
CHB09 0.03 0.18 0.23 0.28 UNC09 0.16 0.43 0.67 0.36

CHB10 0.05 0.18 0.23 0.39 UNC10 0.22 0.28 0.53 0.34
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features and understand what are the most discriminative channels for MS lesion
segmentation. For this analysis, we consider one of the random forest classifiers
which generated the results in Table 1. For every tree in the forest, the root
node always applies a test on the Flair sequence (θloc

F lair). It means that out of
all available features, containing local, context-rich and symmetry multi-channel
features, θloc

F lair was found to be the most discriminative. This automated guess
coincides with the first step in [3]. At the second level of the tree, a context-rich
feature on prior information (θcont

WM,GM ) appears to be the most discriminative
over all trees in the forest. The associated test discards all voxels which do not
belong to the white matter. Again, our algorithm automatically reproduced the
second step in [3]. In deeper levels of the tree, local, context-rich and symmetry
features adjust the segmentation by combining spatial and multi-channel infor-
mation. Contribution of each feature to the forest can be quantified by counting
the nodes in which they were selected. This indicates a feature discrimination
power for the task of MS lesion classification. Local features were selected in 24%
of the nodes, context-rich features were selected in 71% of the nodes whereas
symmetry features were selected in only 5%. Successive decisions based on lo-
cal features may learn a non-parametric multi-channel appearance model with
spatial prior. Context-rich features exhibit high variability (900 of them are ran-
domly sampled at every node). This variability combined with their ability to
highlight regions which differ from their neighborhood explains the high selec-
tion frequency. In addition, this kind of features may learn a spatial layout for
lesion patterns in peri-ventricular regions (cf. second row in Fig. 3). Symmetry
features are under-represented in the forest and thus prove to be the least dis-
criminative ones. Nevertheless, they appear in top levels of the tree (up to third
level) which indicates that, they provide an alternative to local and context-rich
features when these two fail.

4 Conclusion

We introduce a new algorithm for the segmentation of MS lesions in multi-
channel MR images. We present three kinds of 3D features based on multi-
channel intensity, prior and context-rich information. Those features are part of
a spatial random decision forest classifier which demonstrates improved results
on one of the state of the art algorithms on the public MS challenge dataset.
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Abstract. Extracting numerous cells in a large microscopic image is often re-
quired in medical research. The challenge is to reduce the segmentation com-
plexity on a large image without losing the fine segmentation granularity of small
structures. We propose a constrained spectral graph partitioning approach where
the segmentation of the entire image is obtained from a set of patch segmenta-
tions, independently derived but subject to stitching constraints between neigh-
boring patches. The constraints come from mutual agreement analysis on patch
segmentations from a previous round. Our experimental results demonstrate that
the constrained segmentation not only stitches solutions seamlessly along over-
lapping patch borders but also refines the segmentation in the patch interiors.

1 Introduction

There is often a need in medical research to count, measure, and compare numerous
tiny cells in a large image. Segmentation methods such as watershed and k−means
clustering [1,2] are efficient but unable to deal with large intensity variation, whereas
spectral graph partitioning methods [3,4] are robust but unable to efficiently find small
structures in a large image. Our goal is to make the latter approach scale effectively
with the image size yet without losing the fine granularity of small segments (Fig. 1).

a: image b: watershed c: k-means d: our result

Fig. 1. Segmenting numerous small regions in a large image. a) Epithelial cells, which stained
with Hoechst fluoresce blue normally and red when transformed by virus, are small structures of
varying intensity in this microscopic image. They must be segmented, counted, and measured.
b,c,d) Two-way segmentations by watershed, k-means, and our method. With large intensity
variation for the cells, watershed fails with oversegmentation and k-means fails with conjoined
cells of similar intensities, whereas our method correctly pops out all the individual cells.

T. Jiang et al. (Eds.): MICCAI 2010, Part I, LNCS 6361, pp. 119–126, 2010.
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Spectral graph partitioning methods [3,4] are prized for their ability to grasp the large
structural organization of an image from the global integration of local cues. While this
property is desired for understanding a real-scene image, it not only unnecessarily han-
dles a huge number of pixels in a large image (since segmenting cells in one region
really should not be influenced by cells far from them), but also prevents small struc-
tures from being segmented all at once (since a larger image size leads to larger regions
instead of numerous small ones given a fixed number of segments). Therefore, finding
many small regions in a large image faces two challenges: segmentation complexity
from dealing with the large and segmentation granularity from dealing with the small.

The two main approaches to reduce complexity, coarse-to-fine and multiresolution
segmentations [4,5,6,7,8,9,10], are not suitable for this task. A coarse-to-fine approach
speeds up the segmentation by initializing a finer segmentation with the results of acoarser
one, whereas a multiresolution approach integrates features at multiple scales to yield a
better segmentation. Since small structures are not present in either coarser-scale segmen-
tations or coarser-scale features, there is no help to be gained from either approach.

Fig. 2. Algorithm overview. Segmenting numerous small structures in a large image can be per-
formed as a series of independent patch segmentation subject to stitching constraints between
neighbouring patches. The constraints are derived from mutual agreement analysis on adjacent
patch segmentations from a previous round. Segmentations between neighbouring patches are
marked in blue, green, or maroon, if 1, 2, or more than 3 patches agree. Constrained segmenta-
tion (gold) improves the initial segmentation (cyan) in three different ways: clean-up of spurious
small regions, separation of conjoined cells, and refinement of cell boundaries.
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We propose performing segmentation on smaller patches while subject to stitch-
ing constraints in their overlapping areas (Fig. 2). We first break down the image into
patches and segment each patch independently, based on local pairwise cues that distin-
guish cells from their background [11]. Their individual segmentations are then used to
establish the agreement between the patches, which provide pairwise long-range stitch-
ing constraints to be respected by each patch. We run the independent segmentation
again on each patch, but now subject to these pairwise constraints on its pixels. The
segmentation can be solved efficiently as a constrained eigenvalue problem [12]. Since
these segmentations have mutual agreement in the overlapping areas, their individual
solutions can be collapsed into one segmentation on the entire large image.

Segmentation subject to stitching constraints does more than stitching solutions to-
gether at patch borders. The constraints in the overlapping regions are propagated
through local cues in the optimization process to improve the interior segmentation
of a patch. Constrained segmentation in individual patches achieves reduced complex-
ity without losing global consistency, refining segmentations both inside and between
patches. We detail our model and experiments in Sections 2 and 3 respectively.

2 Spectral Graph Partitioning Subject to Stitching Constraints

We formulate our cell segmentation task as a constrained graph partitioning problem
on a set of overlapping patches. Each patch is represented by a weighted graph, where
nodes denote pixels and weights attached to edges connecting two nodes encode group-
ing cues between the pixels. Segmenting small structures in the image becomes a two-
way node partitioning problem: pixels inside cells form a foreground node set, and those
outside form the other background node set.

We need to address: 1) What features and grouping cues to use to facilitate this
foreground-background segregation [11]; 2) How to set up constraints between neigh-
boring patches; 3) How to integrate these constraints into the segmentation [12,13].

2.1 Features F and Grouping Cues W

We characterize cells of small convex bright regions as the sinks of local gradient fields.
Each pixel is associated with a peak direction vector p that indicates where pixels of
higher intensity are located in its convex vicinity. Two pixels are attracted to the same
region if their pixel-centric local gradient fields F ’s are similar, and repelled into dif-
ferent regions if their F ’s are of opposite types (e.g. sources and sinks).

Consider pixel i and its neighbourhood N(i). If neighbour a ∈ N(i) can be reached
in a straight line from i with non-decreasing intensity, a is a higher intensity pixel in the
same convex region. Let p(i) be the average direction from its a neighbours, weighted
by the total non-decreasing intensity T (i, a) along the straight line from i to a:

p(i) ∝
∑

a∈N(i)

T (i, a)(L(a)− L(i)), |p(i)| = 1 (1)

T (i, a) =
∑

I(m1)≤I(mt)≤...≤I(mk)
m1m2...mk=line(i,a)

I(mt) (2)
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where L(i) denotes the 2D location of pixel i in the image, I(i) the intensity of pixel i,
and | · | the L2 norm of a vector. Peak direction vector p(i) thus points from i towards
the core of the cell that i belongs to, i.e., the highest intensity of its local convex region.
It measures the direction and distance from pixel i to the center of the cell.

We define F (i, a) as the inner product of p(i) and p(a), measuring how much a’s cell
center estimate agrees with i’s. The ensemble of {F (i, a): a ∈ N(i)} is a pixel-centric
vector field (i.e. with the absolute direction of p(i) factored out) that characterizes where
pixel i is in the shape of a convex region, and we can use the feature similarity S to
establish pairwise pixel grouping cues:

F (i, a) =< p(i), p(a) >, a ∈ N(i) (3)

S(i, j) =
< F (i, :), F (j, :) >

|F (i, :)| · |F (j, :)| , j ∈ N(i) (4)

S(i, j) is more likely to be positive for nearby pixels inside the same dot, and negative
for distant pixels between different dots, giving rise to two kinds of grouping cues [11]:
The short-range attraction A is proportional to similarity S and the long-range repulsion
R is proportional to dissimilarity 1− S. The total effective weight W is A−R.

Unlike real-scene image segmentation [3,4], we do not use single edge features (e.g.
large intensity gradients along region boundaries) to delineate regions. We use distribu-
tive local gradient fields to characterize geometrical distinction between region cores
in the foreground and region peripheries in the background. Similar ideas about such
features can be found in [14] on detecting critical points in images with topological
numbers. While the individual pairwise grouping cues have poor precisions for localiz-
ing region boundaries, they taken together in global integration result in segmentations
that are sensitive to geometrical variation yet robust to intensity variations.

2.2 Stitching Constraints U

A two-way node partitioning can be described by a n × 2 binary partition matrix X ,
where n is the total number of pixels, X(i, 1) and X(i, 2) indicating whether pixel i
belongs to the inside or outside of a cell.

Our stitching constraints are imposed on the partition indicator X that is to be solved
in the optimization. If pixels a and b are known to belong in the same region, we have
the constraint X(a, :) = X(b, :), or X(a, :) −X(b, :) = 0. All these equations can be
described in a linear constraint UTX = 0, where U(a, k) = 1, U(b, k) = −1 is the
k-th constraint that a and b belong to the same region.

The initial first-round patch segmentation does not require any constraints U , al-
though simple intensity thresholding or initial seeds can be introduced. In the second-
round patch segmentation, where each patch has been segmented, U comes from a
mutual agreement analysis of X in the overlapping regions between neighbouring
patches: those pixels that two patches agree on the segmentation become either fore-
ground or background pixels. Only a sparse set of pairwise constraints (usually between
distant pixels) are needed to ensure that two neighbouring patches will have consistent
segmentations in their overlapping areas.
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2.3 Segmentation with Stitching: Constrained Graph Partitioning X

For each image patch I , after having computed its pairwise grouping cues W and stitch-
ing constraints U , we obtain a two-way segmentation using the constrained normalized
cuts criterion [12]. Formally, this criterion can be written in the following matrix form:

maximize ε(X) =
2∑

g=1

XT
g WXg

XT
g DXg

(5)

subject to X ∈ {0, 1}n×2, X12 = 1n (6)

UTX = 0 (7)

where 1n denote an n× 1 vector of 1’s and D is the diagonal degree matrix for a n× n
weight matrix W . Note that W could have both positive and negative weights, and the
negative ones are essential for popping out disconnected regions [15,11].

The near-global optimal solution is given by the eigenvectors of QPQ, where

P = D−1W (8)

Q = I −D−1U(UTD−1U)−1UT (9)

While the eigensolution of QPQ takes a longer time than that of P (unconstrained
version) to compute at each iteration, it often requires fewer iterations and could be in
fact faster. We follow the eigensolution and its discretization procedures developed in
[12,13] and their code online to obtain a binary segmentation.

The space and time complexity is much reduced using patch segmentation with
stitching constraints, as the image is broken down to smaller patches and finding nu-
merous small regions becomes possible in a single two-way segmentation.

3 Experiments

We implement our algorithm in MATLAB and apply it to sets of 512×512 microscopic
images. The cells in these images are 15 pixels in diameter on average. We use the same
set of parameters as in [11] for deriving the weights W on each patch of size 256×256.
The pixel neighbourhood radius is 12 pixels, and the overlap radius between patches is
20 pixels. Since the computational complexity mainly depends on the patch size, the
entire image can be arbitrarily large.

Fig. 3 shows our results on 3 appearance types of medical images, each representative
of a large class of images in its own domain. The cells have a large range of intensity,
and fainter ones could be darker than some background pixels elsewhere in the image.
Worse still, cells are not always isolated, but rather packed closely next to each other,
making the separation even hard for the human eye. In the last rows of Fig. 3, fainter
cells are so overwhelmed by those brightest cells that they can only be seen with a close
inspection of what appears to be smudged backgrounds.

These images are very challenging to segment and most existing approaches fail. Our
method, however, is capable of finding these cells, including faint ones and conjoined
ones, all at once in a two-way segmentation, without any need for post-processing.



124 E. Bernardis and S.X. Yu

image power watersheds our method

Fig. 3. Results by Power watersheds and our method on human alveolar basal epithelial A549
cells (rows 1-4) and embryonic kidney HEK293T cells (rows 5-6). While the quality of segmen-
tation degrades for power watersheds when the cells have a larger intensity variation, our method
pops out all the cells in these images with the same parameters and no post-processing.
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Fig. 4. Precision-recall statistics for k-means, watershed, power watersheds, and our method. Our
method (red round dots, upper right corner) has better precision and recall overall.

We benchmark our method against human labeled dot centers, in comparison with
3 other approaches: k-means, standard watershed (MATLAB built-in implementation),
and power watersheds [2] provided by its authors.

Given m ground-truth dot centers and n segment centers for an image, let Dij be
the Euclidean distance between dot i and segment j. If it is less than a certain radius
threshold ρ, we consider (i, j) a matched detection.

precision =
#{j : minm

i=1 Dij ≤ ρ}
n

=
# nearest dots within radius ρ

# segments
(10)

recall =
#{i : minn

j=1 Dij ≤ ρ}
m

=
# nearest segments within radius ρ

# dots
(11)

The precision measures the proportion of true dots among all the segments, and the
recall measures the proportion of segments among all the true dots.

Fig. 4 shows that our method performs much better than these other methods in
terms of both precision and recall. k-means, clustering pixels based on their intensity
values, particularly has trouble separating conjoined like-intensity cells, while increas-
ing k only leads to clustering instability. While power watersheds has lower precision, it
does noticeably improve boundary shapes of segmented cells over standard watershed,
which is not properly measured in the precision-recall statistics. However, it tends to
miss faint cells and the segmentation degrades with larger intensity variation (Fig. 3).

The quality of our segmentations depends on our patch segmenter and stitching con-
straints. The precision-recall statistics in Fig. 4 shows that our spectral graph parti-
tioning approach works better than others at popping out small regions. Our stitching
constraints can be appreciated by comparing the quality of segmentation without and
with constraints: While there is no significant improvement in the recall (p = 0.46, t
test), there is an average improvement of 0.04 in the precision (p = 0.007, t test).

To summarize, we present an efficient method for segmenting many small regions
in a large image by constructing a set of patch segmentations which are indepen-
dently derived but subject to stitching constraints between them. The quality of entire
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segmentation depends on how to segment individual patches and how to stitch them
together. Although our method works with any patch segmenter, it naturally integrates
the stitching problem into each patch’s spectral graph partitioning formulation. Our
results demonstrate that stitching as partitioning constraints not only reduces segmen-
tation complexity, but also corrects segmentation incongruences and imperfections.

Segmenting small structures in a large image faces a scale dilemma between the
image size and the segment size, and our approach resolves the dilemma by decoupling
the two sizes in constrained patch segmentations. We can expand it to a broader variety
of shapes, e.g. thin structures such as blood vessels, by tailoring the weights to allow
directional extension in the evaluation of pairwise pixel similarity.
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Abstract. In freehand 3D ultrasound, out-of-plane transducer motion

can be estimated via speckle decorrelation instead of using a position

tracking device. This approach was recently adapted to arbitrary media

by predicting elevational decorrelation curves from local image statistics.

However, such adaptive models tend to yield biased measurements in the

presence of spatially persistent structures. To account for such failures,

this paper introduces a new iterative algorithm for probabilistic fusion

and selection of correlation measurements. In experiments with imagery

of animal tissue, the approach yields significant accuracy improvements

over alternatives which do not apply principled measurement selection.

1 Introduction

Freehand 3D ultrasound (US) involves the reconstruction of a volume from 2D US
images [15]. The relative positions of the 2D images are generally obtained from
an external position tracking device, at the expense of clinical convenience. Al-
ternatively, in-plane motion can be recovered using image registration techniques,
and out-of-plane motion can be estimated from elevational speckle decorrelation
[2,16,11,4]. By scanning a speckle phantom at regular elevational intervals and
pooling the correlation coefficients computedbetweenpairs of images, a transducer
specific decorrelation curve can be constructed so as to estimate out-of-plane mo-
tion between pairs of correlated images in new data sets [2,16].

The above approach only works under Rayleigh scattering conditions, which
seldom occur in real tissue. Recent solutions to this problem predict the shape of
the local decorrelation curve from signal statistics within the image plane [3,8].
While this dramatically reduces error, experiments suggest that accuracy deteri-
orates for larger displacements [6], as shown in Fig. 1. The problem is that these
adaptive models predict complete image decorrelation as displacement increases.
Yet, in the presence of spatially persistent structures like the bright layer of fat
in the pork flank sample of Fig. 1(b), correlation remains significant even for
large displacements. When computing transducer trajectory, distance estimates
arising from inaccurate parts of the adapted model should be discarded. More-
over, the displacement range over which the adaptive model is accurate and
the extent of the bias outside this range are subject dependent. Therefore, the
measurement selection strategy must dynamically adapt to the data.

T. Jiang et al. (Eds.): MICCAI 2010, Part I, LNCS 6361, pp. 127–134, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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Fig. 1. (a) Speckle phantom image; (b) Pork flank image; (c) Decorrelation curves

associated with the data in the white rectangles; (d) Relative motion estimation error

obtained for the pork flank data set with and without medium specific adaptation [8]

Measurement selection for image-based transducer tracking is discussed in [4],
which proposes to compute a robust average of reconstructions obtained from
interleaved subsets of the image frames. Optimal assignment of frames to in-
dependent reconstructions requires consecutive frames of a given subset to be
correlated, but not so much that they lie on the flat, error-prone part of the
decorrelation curve [13]. However, this does not explicitly account for the kind
of significant but uninformative image correlations shown in Fig. 1.

This paper proposes a new iterative measurement fusion and selection al-
gorithm based on statistical tests to account for persistent structures in the
medium. The method extends the probabilistic approach of [7] for use with im-
agery of real tissue using the technique in [8] and prevents errors arising from
situations like Fig. 1. The structure of this paper is as follows. Section 2 re-
views the probabilistic speckle decorrelation model and its extension to arbi-
trary tissue. Section 3 describes the new iterative measurement selection and
probabilistic fusion scheme based on this model. Section 4 discusses experiments
on animal tissue data, showing that the new approach offers improved accuracy
over approaches that do not use principled measurement selection.

2 Probabilistic Speckle Decorrelation Model

In this work, US images are divided into Q patches (e.g. Fig. 2, left) to ac-
count for the spatial variation of elevational beam width. Each patch has its
own nominal speckle decorrelation model. During a calibration step, a speckle
phantom is scanned at regular elevational intervals. Gaussians are fitted to the
patch-wise axial, lateral and elevational decorrelation curves derived from this
imagery; their standard deviations are termed the nominal axial, lateral and
elevational correlation lengths of the transducer, and labelled ŵa, ŵl and ŵe.
A refined nominal probabilistic elevational speckle decorrelation model is also
computed for each patch by maximum entropy analysis [1,7], yielding a log-
likelihood function L̂(ρ|δ, q) = log p̂(ρ|δ, q) that captures the stochasticity of
correlation measurements ρ in relation to displacement δ for image location q.

In real tissue, US correlates over larger distances than in a speckle phantom.
Here, this phenomenon is modelled as a scaling of the nominal elevational decor-
relation model along the δ axis by a factor re, determined from four statistical
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features measured locally within the image plane: the axial and lateral correla-
tion lengths, wa and wl, and the squared signal to noise ratio R2 = E{I}2

V AR{I} and

skewness S = E{(I−E{I})3}
V AR{I} 3

2
, where I is the squared US envelope.

As described in [8], the relationship between these image statistics and the
local elevational correlation length we is learned from a pool of synthetic US
data depicting varied media, using sparse Gaussian process regression [14]. To
enforce transducer independence, the regressive relationship is established using
normalised features {ra = wl

ŵa
, rl = wl

ŵl
, rR2 = R2

R̂2 , rS = S
Ŝ
} and re = we

ŵe
. In

spite of its simplicity, this model was shown [8] to have accuracy comparable to
that of [3]. Both models tend to fail for large elevational separations. This paper
shows how to detect such failures.

In new, real imagery, re is estimated locally from in-plane image features using
the learned regressor. The probabilistic nominal speckle decorrelation model
is then scaled, yielding a locally adapted probabilistic estimator of elevational
separation, L(ρij |δ, q) = L̂(ρij |reδ, q). In practice, δ is reasonably approximated
by a Gaussian random variable with mean δ̄ and variance σ2 given by

δ̄ = argmax
δ

L(ρ|δ, q) and σ2 = −
(

d2

dδ2
L(ρ|δ̄, q)

)−1

. (1)

3 Recovering Transducer Motion

In order to eliminate sources of error outside the control of the proposed tech-
niques from our experiments, it is assumed throughout the paper that the trans-
ducer does not move in-plane (or else the images have been correctly re-aligned
by an image registration technique) and that any out-of-plane rotations are
small. Note that the measurement selection technique introduced in this paper
would apply equally to more complete motion models.

Subdividing the image frames in the US data set into Q patches corresponding
to those used to define the speckle decorrelation model breaks the data set into
Q individual smaller US data sets consisting of “mini-frames” the size of an
individual image patch. The relative positions of the full US image frames are
then recovered as follows: (1) For every pair of corresponding mini-frames i
and j, a correlation measurement is obtained and reij is estimated using the
learning-based approach of [8]; (2) For each image location q ∈ Q, estimates of
elevational mini-frame positions are derived from redundant correlation-based
distance estimates deemed shorter than weij = reij ŵe. This is done using the
measurement selection and fusion algorithm of section 3.1.1 (3) The resulting
data are smoothed across each frame using a median filter (as suggested in [3]);
(4) Rigid transformations relating every frame to the first are computed using a
least-median-of-squares approach [12,7].
1 Although the data sets used in the experiments involved only monotonic probe mo-

tion, the combinatorial frame ordering algorithm of [7] was also applied at this stage

and may have influenced the outcome of the experiments.
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3.1 Iterative Measurement Selection and Fusion

Let zi, i = 0, . . . n be the position of the ith mini-frame corresponding to patch q
along the elevational direction relative to z0 = 0 and let z be the vector formed
by the zi, i = 1, . . . , n. The correlation coefficient ρij between mini-frames i and
j provides an estimate of their elevational separation δij = |zj − zi| via (1).
Assuming that the distance estimates obtained for different mini-frame pairs are
mutually independent given the configuration of the frames, an estimate of z
and its covariance matrix C are obtained by solving [9,7]:

Gz∗ = b and C = G−1, (2)

with Gij =

{∑n
k=0

1
σ2

ik
i = j

− 1
σ2

ij
otherwise

and bi =
n∑

j=0,j 
=i

δ̄ij

σ2
ij

. (3)

In principle, this approach could be used to combine all available correlation
measurements into a trajectory estimate for image location q. In practice, this is
highly error prone because, as illustrated in Fig. 1, the (adapted) speckle decor-
relation model exhibits bias in certain parts of its range. Biased measurements
can be excluded from the data fusion process through an iterative algorithm
based on statistical hypothesis testing. Assuming an unbiased initial trajectory
estimate z[0], iteration t proceeds as follows:

1. A new subset of the correlation measurements are tested against the current
estimate of the trajectory. For each candidate δij derived via (1), let H0

denote the hypothesis that it is consistent with z[t−1], and let Ha denote
the hypothesis that it is biased. H0 is rejected in favour of Ha at the 1%
significance level (and δij is discarded) if

|δ̄ij−|z∗[t−1]j
−z∗[t−1]i

|| ≥ Φ−1(0.995, σ2
ij +C[t−1]jj

+C[t−1]ii
−2C[t−1]ij

), (4)

where Φ−1(β, ν2) is the inverse cumulative distribution function of a Gaus-
sian random variable with variance ν2 evaluated at probability β.

2. The measurements accepted by the above hypothesis tests are fused with all
other previously accepted measurements to obtain z∗[t] and C[t] by solving (2).

The effectiveness of this approach depends on the initial trajectory estimate
(see section 3.2) and the order in which the available measurements are pro-
cessed (or testing schedule). This paper adopts a very simple testing schedule:
the first iteration considers only correlation measurements between consecutively
acquired mini-frames (unless they were already used to compute z[0]). The sec-
ond iteration considers correlation measurements between frames which are two
acquisition steps apart, and so on until no new measurements are accepted.

3.2 Initial Trajectory Estimate

The proposed scheme rests on the assumption of an unbiased z[0]. In the absence
of other data, z[0] is obtained from n correlation measurements. These must form
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a spanning tree of the graph G whose vertices and edges represent the mini-
frames and the correlation measurements between them. A minimal spanning
tree (MST) of G is hence an optimal initial measurement set with respect to a
cost function κ over pairs of mini-frames. One possible cost function is

κ1(i, j) = |i− j|. (5)

The associated MST consists of the n correlation measurements between con-
secutive mini-frames. Because the log-likelihood function is flat for large ρ, the
uncertainty of the associated z[0] is typically high so that initially, H0 is rarely
rejected by (4). The initial estimate is thus diluted by new, more certain mea-
surements early on in the data fusion process. As long as modelling inaccuracies
occur mostly for widely separated images (e.g. Fig. 1), this can lead to good
results. However, empirical evidence suggests that model failures can occur for
shorter displacements when the overall US signal is low, due to the increased
contribution of unmodelled noise in the image [6]. In such cases, inaccurate
estimates of re are obtained and short displacements are over-estimated. The
following two cost functions are designed to alleviate this problem:

κ2(i, j) = sgn(reij − 1)δ̄ij and κ3(i, j) = sgn(reij − 1)δ̄ij/σ
2
ij . (6)

Where the estimated re > 1, κ2 and κ3 are similar to κ1, preferring measure-
ments with large relative variance. This changes in areas where the estimated
re < 1, which is taken to be indicative of model failure.2 In these error-prone
areas, κ2 and κ3 select measurements with smaller relative variance, making the
hypothesis test of (4) more discriminative.

4 Experiments

Imagery was acquired using a video frame-grabber connected to an Acuson Cy-
press US scanner with a 7V3C transducer at a depth setting of 2.7 cm. Images
were divided into 26 patches of 50 × 30 pixels and back-converted to polar co-
ordinates. Motion was purely elevational and controlled to 0.01 mm precision
using a manually operated linear stage. Fifty-one 161 frame long scans of pork
tenderloin, turkey breast and beef brisket samples were acquired at a range of
different regular spacings. Fig. 2 shows sample images. A nominal probabilis-
tic speckle decorrelation model was estimated from speckle phantom imagery
acquired at regular 0.05 mm spacing. The algorithm of [10] was applied to phan-
tom images to reverse log-compression in all data sets. The mapping from US
image statistics to elevational correlation length was learned from synthetic im-
age sequences depicting varied media, as described in [8]. For each animal tissue
scan, the probe trajectory was estimated as described in Section 3.
2 Indeed, true re < 1 is a very rare occurrence in the noiseless training set be-

cause correlation length is theoretically minimal under Rayleigh scattering conditions

(re = 1). Thus, small values of re, which arise in the presence of noisy real data,

while often estimated as small (< 1), are unlikely to be estimated accurately by the

learning-based algorithm.
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Fig. 2. From left to right: sample speckle phantom, pork, beef and turkey images. The

phantom image shows the subdivision of imagery into 26 patches.

Three versions of the proposed approach, HYP-K1, HYP-K2 and HYP-K3,
were considered, respectively corresponding to the initialisation cost functions
of (5) and (6). Two baseline approaches were also tested: (a) a nearest-neighbour
(NN) approach, which uses only deterministic distance estimates from consecu-
tive pairs of mini-frames and (b) solving (2) once using all δij deemed shorter
than weij = r∗eij

ŵe, an approach labelled NMS (no measurement selection). The
latter is a direct adaptation of [7] (shown to work well under Rayleigh scattering
conditions) for use in imagery of real tissue via [8].

For statistical analysis, accuracy was summarised by the mean target reg-
istration error (mTRE) measured at the mini-frame centres, averaged over all
frames and normalised by the length of the trajectory. A mixed within/between-
subject factor ANOVA was carried out on the results of the 51 experiments to
evaluate the effect of algorithm choice and tissue type.3 The HYP-K2 and HYP-
K3 variants of the proposed approach significantly outperformed both baselines
(p < 0.001 in both cases). HYP-K1 significantly outperformed NMS (p < 0.001),
but was not significantly more accurate than NN (p = 0.251).

Fig. 3 illustrates these results with examples. In most cases, HYP-K2 and
HYP-K3 gave excellent results (e.g. Fig. 3(a)-(c)). Though NN and HYP-K1
may exhibit similar mTRE, they differ in qualitative behaviour. NN under-
estimates displacement because the deterministic decorrelation model is biased
for short displacements [13]. HYP-K1 drifts because it easily accepts displace-
ment over-estimates arising from unmodelled image noise (e.g. Fig. 3 (a), (c)),
as discussed in Section 3.2. This likely explains the significantly lower accuracy
obtained with turkey data (which has lower echogenicity) than with beef data
(p = 0.042). HYP-K2 and HYP-K3 were usually able to compensate for this
modelling limitation (see Fig. 3(c)).

Though they generally gave good results, HYP-K2 and HYP-K3 were not
always able to overcome failures of the adaptive speckle decorrelation model. For
example, in Fig. 3(d), distances were over-estimated by all approaches except,
uncharacteristically, NMS. Here, the κ2 and κ3 cost functions probably failed
to protect the trajectory estimate against distance over-estimates because there
were few areas where re < 1. While re < 1 is a good indicator of model failure,
re > 1 does not always indicate success.

3 The Bonferroni adjustment was used when carrying out multiple comparisons and

statistical significance was evaluated at the 5% level.
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Fig. 3. Sample results, markers placed every 10 data points for greyscale legibility.

From left to right: mTRE, estimated displacement, yaw and tilt evaluated at the cen-

troid of the grid of image patches. Dashed: ground truth; blue crosses: NN; green stars:

NMS; red circles: HYP-K1; cyan squares: HYP-K2; magenta triangles: HYP-K3.

5 Conclusions

This paper considered a new approach for image-based recovery of out-of-plane
US transducer trajectories which generalises the probabilistic data fusion of [7]
to arbitrary media using the learning-based approach of [8]. In order to discard
significant, but uninformative image correlation measurements arising from spa-
tially persistent structures in the medium, a novel iterative algorithm was pre-
sented which alternates measurement fusion steps with measurement selection
steps based on statistical hypothesis testing. Despite some imperfections, exper-
iments show that, if well initialised, the algorithm is statistically significantly
more accurate than a deterministic nearest-neighbour approach or probabilistic
fusion without measurement selection. It would be interesting to compare the
new approach to that of [4] and possibly combine them by applying the proba-
bilistic techniques in this paper to the frame subsets selected and averaged in [4].
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Future research could also exploit the measurement selection approach in a con-
text where image-based measurements complement an external tracking device
providing mostly unbiased but highly imprecise positional data [5]. The latter,
along with a valid noise model, could initialise the iterative algorithm, thereby
improving its robustness.
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Abstract. In this paper, we propose an efficient algorithm for MR image

reconstruction. The algorithm minimizes a linear combination of three

terms corresponding to a least square data fitting, total variation (TV)

and L1 norm regularization. This has been shown to be very powerful

for the MR image reconstruction. First, we decompose the original prob-

lem into L1 and TV norm regularization subproblems respectively. Then,

these two subproblems are efficiently solved by existing techniques. Fi-

nally, the reconstructed image is obtained from the weighted average of

solutions from two subproblems in an iterative framework. We compare

the proposed algorithm with previous methods in term of the recon-

struction accuracy and computation complexity. Numerous experiments

demonstrate the superior performance of the proposed algorithm for com-

pressed MR image reconstruction.

1 Introduction

Magnetic Resonance (MR) Imaging has been widely used in medical diagnosis
because of its non-invasive manner and excellent depiction of soft tissue changes.
Recent developments in compressive sensing theory [1][2] show that it is possible
to accurately reconstruct the Magnetic Resonance (MR) images from highly un-
dersampled K-space data and therefore significantly reduce the scanning duration.

Suppose x is a MR image and R is a partial Fourier transform, the sampling
measurement b of x in K-space is defined as b = Rx. The compressed MR image
reconstruction problem is to reconstruct x giving the measurement b and the
sampling maxtrix R. Motivated by the compressive sensing theory, Lustig et
al. [3] proposed their pioneering work for the MR image reconstruction. Their
method can effectively reconstruct MR images with only 20% sampling. The
improved results were obtained by having both a wavelet transform and a discrete
gradient in the objective, which is formulated as follows:

x̂ = arg min
x
{1
2
‖Rx− b‖2 + α‖x‖TV + β‖Φx‖1} (1)

where α and β are two positive parameters, b is the undersampled measurements
of K-space data, R is a partial Fourier transform and Φ is a wavelet transform. It is
based on the fact that the piecewise smooth MR images of organs can be sparsely
represented by the wavelet basis and should have small total variations. The TV

T. Jiang et al. (Eds.): MICCAI 2010, Part I, LNCS 6361, pp. 135–142, 2010.
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was defined discretely as ‖x‖TV =
∑

i

∑
j((∇1xij)2+(∇2xij)2) where∇1 and∇2

denote the forward finite difference operators on the first and second coordinates,
respectively. Since both L1 and TV norm regularization terms are nonsmooth,
this problem is very difficult to solve. The conjugate gradient (CG) [3] and PDE
[4] methods were used to attack it. However, they are very slow and impractical
for real MR images. Computation became the bottleneck that prevented this good
model (1) from being used in practical MR image reconstruction.

Other methods tried to reconstruct compressed MR images by performing
Lp-quasinorm (p < 1) regularization optimization [5][6][7]. These nonconvex
methods do not always give global minima and are also relatively slow. Trzasko et
al. [8] used the homotopic nonconvex L0-minimization to reconstruct MR images.
It was faster than those Lp-quasinorm regularization methods. However, it still
needed 1−3 minutes to obtain reconstructions of 256×256 images in MATLAB
on a 3 GHz desktop computer. Recently, two fast methods were proposed to
directly solve (1). In [9], Ma et al. proposed an operator-splitting algorithm
(TVCMRI) to solve the MR image reconstruction problem. In [10], a variable
splitting method (RecPF) was proposed to solve the MR image reconstruction
problem. Both of them can replace iterative linear solvers with Fourier domain
computations, which can gain substantial time savings. In MATLAB on a 3
GHz desktop computer, they can be used to obtain good reconstructions of
256× 256 images in ten seconds or less. They are two of the fastest MR image
reconstruction methods so far.

In this paper, we propose a new MR image reconstruction method based on
the combination of variable and operator splitting techniques. We decompose the
hard composite regularization problem (1) into two simpler regularization sub-
problems by: 1) splitting variable x into two variables {xi}i=1,2; 2) performing
operator splitting to minimize total variation regularization and L1 norm regu-
larization subproblems over {xi}i=1,2 respectively and 3) obtaining the solution
x by linear combination of {xi}i=1,2. This includes both variable splitting and op-
erator splitting. We call it the Composite Splitting Algorithm (CSA). Motivated
by the effective acceleration scheme in Fast Iterative Shrinkage-Thresholding
Algorithm (FISTA) [11], the proposed CSA is further accelerated with an addi-
tional acceleration step. Numerous experiments have been conducted on real MR
images to compare the proposed algorithm with previous methods. Experimen-
tal results show that it impressively outperforms previous methods for the MR
image reconstruction in terms of both reconstruction accuracy and computation
complexity.

2 Related Acceleration Algorithm

In this section, we briefly review the FISTA in [11], since our methods are mo-
tivated by it. FISTA consider to minimize the following problem:

min{F (x) ≡ f(x) + g(x), x ∈ Rn} (2)

where f is a smooth convex function with Lipschitz constant Lf , and g is a
convex function which may be nonsmooth.
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Algorithm 1. FISTA [11]

Input: ρ = 1/Lf , r1 = x0, t1 = 1

for k = 1 to K do
xg = rk − ρ∇f(rk)

xk = proxρ(g)(xg)

tk+1 =
1+

√
1+4(tk)2

2

rk+1 = xk + tk−1
tk+1 (xk − xk−1)

end for

Algorithm 2. CSD

Input: ρ = 1/L, α, β, z0
1 = z0

2 = xg

for j = 1 to J do
x1 = proxρ(2α‖x‖TV )(zj−1

1 )

x2 = proxρ(2β‖Φx‖1)(z
j−1
2 )

xj = (x1 + x2)/2
zj
1 = zj−1

1 + xj − x1

zj
2 = zj−1

2 + xj − x2

end for

ε-optimal Solution: Suppose x∗ is an optimal solution to (2). x ∈ Rp is
called an ε-optimal solution to (2) if F (x)− F (x∗) ≤ ε holds.

Gradient: ∇f(x) denotes the gradient of the function f at the point x.
The proximal map: given a continuous convex function g(x) and any scalar

ρ > 0, the proximal map associated to function g is defined as follows [11][12]:

proxρ(g)(x) := arg min
u
{g(u) +

1
2ρ
‖u− x‖2} (3)

Algorithm 1 outlines the FISTA. It can obtain an ε-optimal solution in O(1/
√
ε)

iterations.

Theorem 1. (Theorem 4.1 in [11]): Suppose {xk} and {rk} are iteratively ob-
tained by the FISTA, then, we have

F (xk)− F (x∗) ≤ 2Lf‖x0 − x∗‖2
(k + 1)2

, ∀x∗ ∈ X∗

The efficiency of the FISTA highly depends on being able to quickly solve
its second step xk = proxρ(g)(xg). For simpler regularization problems, it is
possible, i.e, the FISTA can rapidly solve the L1 regularization problem with
cost O(n log(n)) [11] (where n is the dimension of x), since the second step
xk = proxρ(β‖Φx‖1)(xg) has a close form solution; It can also quickly solve
the TV regularization problem, since the step xk = proxρ(α‖x‖TV )(xg) can be
compute with cost O(n) [12]. However, the FISTA can not efficiently solve the
composite L1 and TV regularization problem (1), since no efficient algorithm
exists to solve the step

xk = proxρ(α‖x‖TV + β‖Φx‖1)(xg). (4)

To solve the problem (1), the key problem is thus to develop an efficient algorithm
to solve problem (4). In the following section, we will show that a scheme based
on composite splitting techniques can be used to do this.

3 Algorithm

From the above introduction, we know that, if we can develop a fast algorithm to
solve problem (4), the MR image reconstruction problem can then be efficiently
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solved by the FISTA, which obtains an ε-optimal solution in O(1/
√
ε) iterations.

Actually, problem (4) can be considered as a denoising problem:

xk = argmin
x
{1
2
‖x− xg‖2 + ρα‖x‖TV + ρβ‖Φx‖1}. (5)

We use composite splitting techniques to solve this problem: 1) splitting variable
x into two variables {xi}i=1,2; 2) performing operator splitting over each of
{xi}i=1,2 independently and 3) obtaining the solution x by linear combination
of {xi}i=1,2. We call it Composite Splitting Denoising (CSD) method, which is
outlined in Algorithm 2. Its validity is guaranteed by the following theorem:

Theorem 2. Suppose {xj} the sequence generated by the CSD. Then, xj will
converge to proxρ(α‖x‖TV + β‖Φx‖1)(xg), which means that we have xj →
proxρ(α‖x‖TV + β‖Φx‖1)(xg).

Due to page limitations, the proof for this theorem is given in the supplemental
material.

Combining the CSD with FISTA, a new algorithm, FCSA, is proposed for MR
image reconstruction problem (1). In practice, we found that a small iteration
number J in the CSD is enough for the FCSA to obtain good reconstruction
results. Especially, it is set as 1 in our algorithm. Numerous experimental re-
sults in the next section will show that it is good enough for real MR image
reconstruction.

Algorithm 4 outlines the proposed FCSA. In this algorithm, if we remove
the acceleration step by setting tk+1 ≡ 1 in each iteration, we will obtain the
Composite Splitting Algorithm (CSA), which is outlined in Algorithm 3. A key
feature of the FCSA is its fast convergence performance borrowed from the
FISTA. From Theorem 1, we know that the FISTA can obtain an ε-optimal
solution in O(1/

√
ε) iterations.

Another key feature of the FCSA is that the cost of each iteration is O(n
log(n)), as confirmed by the following observations. The step 4, 6 and 7 only
involve adding vectors or scalars, thus cost onlyO(n) orO(1). In step 1,∇f(rk =
RT (Rrk − b) since f(rk) = 1

2‖Rrk − b‖2 in this case. Thus, this step only costs
O(n log(n)). As introduced above, the step xk = proxρ(2α‖x‖TV )(xg) can be
computed quickly with cost O(n) [12]; The step xk = proxρ(2β‖Φx‖1)(xg) has
a close form solution and can be computed with cost O(n log(n)). In the step
xk = project(xk, [l, u]), the function x = project(x, [l, u]) is defined as: 1) x = x
if l ≤ x ≤ u; 2)x = l if x < u; and 3) x = u if x > u, where [l, u] is the range
of x. For example, in the case of MR image reconstruction, we can let l = 0 and
u = 255 for 8-bit gray MR images. This step costs O(n). Thus, the total cost of
each iteration in the FCSA is O(n log(n)).

With these two key features, the FCSA efficiently solves the MR image re-
construction problem (1) and obtains better reconstruction results in terms of
both the reconstruction accuracy and computation complexity. The experimen-
tal results in the next section demonstrate its superior performance compared
with all previous methods for compressed MR image reconstruction.



Efficient MR Image Reconstruction for Compressed MR Imaging 139

Algorithm 3. CSA

Input: ρ = 1/L, α, β, t1 = 1 x0 = r1

for k = 1 to K do
xg = rk − ρ∇f(rk)
x1 = proxρ(2α‖x‖TV )(xg)
x2 = proxρ(2β‖Φx‖1)(xg)
xk = (x1 + x2)/2
xk=project(xk, [l, u])
rk+1 = xk

end for

Algorithm 4. FCSA
Input: ρ = 1/L, α, β, t1 = 1 x0 = r1

for k = 1 to K do
xg = rk − ρ∇f(rk)
x1 = proxρ(2α‖x‖TV )(xg)
x2 = proxρ(2β‖Φx‖1)(xg)
xk = (x1 + x2)/2; x

k=project(xk, [l, u])
tk+1 = (1 +

√
1 + 4(tk)2)/2

rk+1 = xk + ((tk − 1)/tk+1)(xk − xk−1)
end for

4 Experiments

(a) (b) (c) (d)

Fig. 1. MR images: a) Cardiac; (b) Brain; (C) Chest and (d) Artery

4.1 Experiment Setup

Suppose a MR image x has n pixels, the partial Fourier transform R in problem
(1) consists of m rows of a n × n matrix corresponding to the full 2D discrete
Fourier transform. The m selected rows correspond to the acquired b. The sam-
pling ratio is defined as m/n. The scanning duration is shorter if the sampling
ratio is smaller. In MR imaging, we have certain freedom to select the rows,
which correspond to certain frequencies. In the k-space, we randomly obtain
more samples in low frequencies and less samples in higher frequencies. This
sampling scheme is the same of those in [3][9][10] and has been widely used for
compressed MR image reconstruction. Following these guidelines, we randomly
created sampling matrices. Practically, the sampling scheme and speed in MR
imaging also depend on the physical and physiological limitations [3].

We implement our CSA and FCSA for problem (1) and apply them on 2D
real MR images. All experiments are conducted on a 2.4GHz PC in Matlab
environment. We compare the CSA and FCSA with the classic MR image re-
construction method based on the CG [3]. We also compare them with two of
the fastest MR image reconstruction methods, TVCMRI [9] and RecPF [10]. For
fair comparisons, we download the codes from their websites and carefully follow
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their experiment setup. For example, the observation measurement b is synthe-
sized as b = Rx + n, where n is Gaussian white noise with standard deviation
σ = 0.01. The regularization parameter α and β are set as 0.001 and 0.035. R and
b are given as inputs, and x is the unknown target. For quantitative evaluation,
we compute the Signal-to-Noise Ratio (SNR) for each reconstruction result.

4.2 Numerical Results

We apply all methods on four 2D MR images: cardiac, brain, chest and artery
respectively. Figure 1 shows these images. For convenience, they have the same
size of 256× 256. The sample ratio is set to be approximately 25%. To perform
fair comparisons, all methods run 50 iterations except that the CG runs only
8 iterations due to its higher complexity. The CPU time and SNR are traced
in each iteration for each of methods. To reduce the randomness, we run each
experiments 100 times for each parameter setting of each method.

Figure 2 shows the visual comparisons of the reconstructed results by different
methods. Figure 3 gives the performance comparisons between different methods
in terms of the CPU time over SNR.The FCSA always obtains the best recon-
struction results on all MR images by achieving the highest SNR in less CPU
time. The CSA is always inferior to the FCSA, which shows the effectiveness
of acceleration steps in the FCSA for the MR image reconstruction. While the
classical CG [3] is far worse than others because of its higher cost in each itera-
tion, the RecPF sound be slightly better than the TVCMRI, which is consistent
to the observations in [9] and [10].

(a) (b) (c) (d)

(e) (f)

Fig. 2. Cardiac MR image reconstruction (a) Original image; (b), (c), (d) (e) and (f)

are the reconstructed images by the CG [3], TVCMRI [9], RecPF [10], CSA and FCSA.

Their SNR are 9.86, 14.43, 15.20, 16.46 and 17.57 (db). Their CPU time are 2.87, 3.14,
3.07, 2.22 and 2.29 (s).
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Fig. 3. Performance comparisons (CPU-Time vs. SNR) on different MR images: a)

Cardiac image; (b) Brain image; (C) Chest image and (d) Artery image

The reconstructed results produced by the FCSA are far better than those
produced by the CG, TVCMRI and RecPF. The reconstruction performance
of the FCSA is always the best in terms of both the reconstruction accuracy
and the computational complexity, which clearly demonstrate the effective and
efficiency of the FCSA for the compressed MR image construction.

5 Conclusion

We have proposed an efficient algorithm for the compressed MR image recon-
struction. Our work has the following contributions. First, the proposed FCSA
can efficiently solve a composite regularization problem including both TV term
and L1 norm term, which can be easily extended to other medical image applica-
tions. Second, the computational complexity of the FCSA is only O(n log(n)) in
each iteration. It also has strong convergence properties. These properties make
the real compressed MR image reconstruction much more feasible than before.
Finally, we conduct numerous experiments to compare different reconstruction
methods. Our method is shown to impressively outperform the classic methods
and two of fastest methods so far in terms of both accuracy and complexity.



142 J. Huang, S. Zhang, and D. Metaxas

References

1. Candes, E.J., Romberg, J., Tao, T.: Robust uncertainty principles: Exact signal

reconstruction from highly incomplete frequency information. IEEE Transactions

on Information Theory 52, 489–509 (2006)

2. Donoho, D.: Compressed sensing. IEEE Transactions on Information Theory 52(4),

1289–1306 (2006)

3. Lustig, M., Donoho, D., Pauly, J.: Sparse mri: The application of compressed sens-

ing for rapid mr imaging. Magnetic Resonance in Medicine 58, 1182–1195 (2007)

4. He, L., Chang, T.C., Osher, S., Fang, T., Speier, P.: Mr image reconstruction by

using the iterative refinement method and nonlinear inverse scale space methods.

Technical report, UCLA CAM 06-35 (2006)

5. Ye, J., Tak, S., Han, Y., Park, H.: Projection reconstruction mr imaging using

focuss. Magnetic Resonance in Medicine 57, 764–775 (2007)

6. Chartrand, R.: Exact reconstruction of sparse signals via nonconvex minimization.

IEEE Signal Processing Letters 14, 707–710 (2007)

7. Chartrand, R.: Fast algorithms for nonconvex compressive sensing: Mri reconstruc-

tion from very few data. In: Proceedings of ISBI (2009)

8. Trzasko, J., Manduca, A., Borisch, E.: Highly undersampled magnetic resonance

image reconstruction via homotopic l0-minimization. IEEE Transactions on Med-

ical Imaging 28, 106–121 (2009)

9. Ma, S., Yin, W., Zhang, Y., Chakraborty, A.: An efficient algorithm for compressed

mr imaging using total variation and wavelets. In: Proceedings of CVPR (2008)

10. Yang, J., Zhang, Y., Yin, W.: A fast alternating direction method for tvl1-l2 signal

reconstruction from partial fourier data. IEEE Journal of Selected Topics in Signal

Processing, Special Issue on Compressive Sensing 4(2) (2010)

11. Beck, A., Teboulle, M.: A fast iterative shrinkage-thresholding algorithm for linear

inverse problems. SIAM Journal on Imaging Sciences 2(1), 183–202 (2009)

12. Beck, A., Teboulle, M.: Fast gradient-based algorithms for constrained total vari-

ation image denoising and deblurring problems. IEEE Transaction on Image

Processing 18(113), 2419–2434 (2009)



4D Computed Tomography Reconstruction from
Few-Projection Data via Temporal Non-local

Regularization

Xun Jia1, Yifei Lou2, Bin Dong3, Zhen Tian1,4, and Steve Jiang1

1 Department of Radiation Oncology University of California, San Diego,

La Jolla, CA 92037-0843, USA
2 Department of Mathematics, University of California, Los Angeles,

Los Angeles, CA 90095-1555, USA
3 Department of Mathematics, University of California, San Diego,

La Jolla, CA 92093-0112, USA
4 Department of Biomedical Engineering, Graduate School at

Tsinghua University, Shenzhen, Guangdong 518055, China

Abstract. 4D computed tomography (4D-CT) is an important modal-

ity in medical imaging due to its ability to resolve patient anatomy mo-

tion in each respiratory phase. Conventionally 4D-CT is accomplished by

performing the reconstruction for each phase independently as in a CT

reconstruction problem. We propose a new 4D-CT reconstruction algo-

rithm that explicitly takes into account the temporal regularization in a

non-local fashion. By imposing a regularization of a temporal non-local

means (TNLM) form, 4D-CT images at all phases can be reconstructed

simultaneously based on extremely under-sampled x-ray projections. Our

algorithm is validated in one digital NCAT thorax phantom and two

real patient cases. It is found that our TNLM algorithm is capable of

reconstructing the 4D-CT images with great accuracy. The experiments

also show that our approach outperforms standard 4D-CT reconstruction

methods with spatial regularization of total variation or tight frames.

1 Introduction

Four-dimensional Computed Tomography (4D-CT) is one of the most important
topics in medical imaging field that attract tremendous interests nowadays. In
addition to providing three dimensional volumetric anatomical information as
in conventional CT, 4D-CT is capable of resolving organ motions due to, for
example, patient respiration by reconstructing a set of CT images corresponding
to different respiratory phases in a breathing cycle. Such an imaging modality
is particularly of use in many clinical applications regarding thorax or upper
abdomen area, where a considerable amount of blurring artifacts would appear,
if conventional CT is used instead.

In 4D-CT acquisition, x-ray projection data are usually extensively over-
sampled. Those projections are then grouped according to their associated respi-
ratory phase information and 4D-CT are accomplished by reconstructing
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tomography images corresponding to different phases independently [1] as in a
conventional CT reconstruction problem. Since the current commercial standard
Filtered Back Projection (FBP) algorithm [2] used to reconstruct each individ-
ual phase usually requires hundreds of projections to achieve decent quality, the
4D-CT reconstruction scheme demands an extremely large number of x-ray pro-
jections. The consequent long acquisition process therefore leads to an excess
amount of radiation dose to the patient, potentially elevating cancer risks.

One obvious way of reducing the imaging dose in 4D-CT is to reconstruct the
CT images of each breathing phase from fewer x-ray projections. However, the
images reconstructed by conventional FBP-type algorithms would be severely
degraded due to insufficient sampling. Recently, a bloom of vast and exciting re-
search in compressed sensing [3,4] has demonstrated the feasibility of recovering
signals from incomplete measurements through optimization methods, providing
us new perspectives of solving the CT reconstruction problem. Though this ap-
proach allows us to retrieve CT images in each phase with only a few number of
projections, the total number of projections used for an entire 4D-CT reconstruc-
tion is still large due to many breathing phases to be considered. Therefore, it is
highly desirable to develop new techniques to reconstruct 4D-CT with a greatly
reduced number of projections, while image quality can still be well maintained.

One idea deeply buried in all approaches currently applied to the 4D-CT re-
construction is that images at different respiratory phases are reconstructed indi-
vidually. Nevertheless, 4D-CT images in a breathing cycle are never independent
of each other due to the smooth breathing pattern. Taking this temporal corre-
lation into account can in principle facilitate the 4D-CT reconstruction process
and potentially achieve the goal of even lowering projection number. In fact, it is
reasonable to believe that there are usually common anatomical feathers within
successive CT images, though the precise locations of those feathers may slightly
vary. Inspired by this fact, we propose in this work a new 4D-CT reconstruction
approach by imposing regularization among neighboring phases via a Temporal
Non-local Means (TNLM) method. Specifically, each feature in a CT image is
searched in nearby area in images of neighboring breathing phases and similar
features are grouped together to constructively enhance each other. Such an
approach is found to be capable of solving the few-view 4D-CT reconstruction
problem, as will be seen in the rest of this paper.

2 Our Method

2.1 Conventional CT Reconstruction

Before presenting our method, we first describe how a conventional CT image is
reconstructed from highly under-sampled projections. In fact, the conventional
CT reconstruction problem, challenging by itself, is a subproblem of the 4D-
CT reconstruction, if each phase is reconstructed independently. Let us denote
one horizontal slide of patient anatomical information by a vector f . An x-ray
projection matrix P maps f into another vector Y on x-ray detectors in a fan-
beam geometry, such that Pf = Y . A CT reconstruction problem is formulated
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as the retrieval of the vector f based on the observation Y given the projection
matrix P .

The so-called few-projection CT reconstruction problem is well known to be
highly under-determined in that there are infinitely many solution vectors f
satisfying the equation Pf = Y . In order to single out an ideal CT image f ,
additional information needs to be imposed properly. For this purpose, regular-
ization models are usually used to reconstruct a desirable CT image in this highly
under-sampling situation. As such, one considers the optimization problem

f = argminf‖Pf − Y ‖22 +
μ

2
J [f ], (2.1)

where the first term ensures the consistency between the reconstructed CT image
f and the observation Y . The second term J [f ], known as a regularization term,
is imposed a priori to guarantee that the reconstructed image from (2.1) satis-
fies some desirable properties, e.g. sharp in edges and smooth in homogeneous
regions. Examples of J [f ] include Total Variation (TV) [5] and Tight Frames
(TF) [6], to name a few. The parameter μ in (2.1) balances the fidelity of the
solution f to the data Y and the imposed regularization.

It is straightforward to utilize this reconstruction approach to solve the 4D-CT
reconstruction problem by applying it to each phase independently. The results
produced by the TV-based or TF-based methods will be used to benchmark our
4D-CT reconstruction algorithm in our experiments.

2.2 4D-CT Reconstruction

Let us divide a respiratory cycle into N phases labeled by α = 1, · · · , N . Denote
the CT image at phase α by a vector fα. A projection matrix Pα at phase α
maps the image into an observation vector Yα, i.e. Pαfα = Yα. As opposed to
reconstructing images at each phase independently, we propose the following
4D-CT reconstruction model

{fα} = argmin{fα}
N∑

α=1

‖Pαfα − Yα‖22 +
μ

2
[J(fα, fα−1) + J(fα, fα+1)], (2.2)

where J(·, ·) is a TNLM functional imposed as a temporal regularization term
between successive phases. Specifically, for two images fα and fβ, J(fα, fβ) is
defined as:

J(fα, fβ) =
∫∫

[fα(x) − fβ(y)]2 wf∗
α,f∗

β
(x, y)dxdy. (2.3)

The weighting factors wf∗
α,f∗

β
(x, y) are ideally independent of fα, fβ but defined

according to the ground truth images f∗
α and f∗

β as

wf∗
α,f∗

β
(x, y) =

1
Z

exp
−‖pf∗

α
(x)−pf∗

β
(y)‖2

2/h2

, (2.4)

where pf∗
α
(x) denotes a small patch in image f∗

α centering at the coordinate x
and Z is a normalization factor. The scale parameter h controls to what extent
similarity between patches is enforced.
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The above definition of TNLM functional J(·, ·) resembles, and yet is fun-
damentally different from, the original Non-local Means (NLM) idea that have
been widely used for restoring natural images [7,8]. A key assumption in their
approach is that a natural image, such as a photograph of buildings, usually
contains some repetitive features. Therefore, the similarity between feathers at
different locations can be utilized to constructively enhance each other for image
restoration. In contrast, similar structures are hardly found in a single medical
image. The efficacy of a direct application of the NLM to restore a single medical
image, for example in CT reconstruction context, is thus limited. Nonetheless,
the crucial similarity assumption naturally exists along a temporal direction,
namely among images of adjacent phases. Therefore, in (2.2), we consider a
TNLM regularization J(fα, fα±1) as opposed to J(fα, fα) as in the NLM ap-
proach. Another reason why the TNLM is superior to the NLM method in this
4D-CT reconstruction problem is the capability of removing streaking artifacts
(straight lines along CT projection directions), which usually present in highly
under-sampled CT reconstruction problem (see the conventional FBP recon-
struction results in Fig. 1). If NLM were used in the reconstruction, the streaking
artifacts would be in fact strengthened rather than removed, since NLM method
tends to locate those straight lines in a single image and enhance them. On the
other hand, since the projection directions in two breathing phases are differ-
ent, the streaking artifacts do not repeat in different phases. TNLM method is
therefore able to remove them in all phases simultaneously.

To solve (2.2) efficiently, we adopt a forward-backward splitting algorithm
[9,10], where the solution to (2.2) can be obtained by alternatively performing
the following two steps

vk
α = fk−1

α − 1
λ
PT

α (Pαf
k−1
α − Yα), ∀α, (2.5)

{fk
α} = argmin{fα}

∑
α

λ‖fα − vk
α‖22 +

μ

2
[J(fα, fα−1) + J(fα, fα+1)]. (2.6)

Here vα are auxiliary vectors and λ is a constant introduced by the splitting
algorithm. Note that (2.5) is simply one step of gradient descent algorithm to-
wards minimizing an energy functional E[fα] =

∑
α ‖Pαfα − Yα‖22 with a step

size 1/2λ. In order to speed up the convergence, we substitute this step by a
conjugate gradient minimization for the energy functional E[fα] with an initial
solution fk−1

α , denoted as vk
α = CGE[fα](fk−1

α ). As for (2.6), we perform one
step of gradient descent for each exterior iteration as

fk
α(x) = vk

α(x)(1 − 2μ)+μ

[∫
vk

α+1(y)wf∗
α,f∗

α+1
(x, y)dy+∫

vk
α−1(y)wf∗

α,f∗
α−1

(x, y)dy
]
.

(2.7)

Note that, in the above equation, the images at phases (α ± 1) are naturally
imposed to enhance the image quality of fα. Another issue worth mentioning
here is the weighting factors wf∗

α,f∗
β
(x, y). In (2.4) they are defined with respect
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to the ground truth images f∗
α, which are not available during the reconstruc-

tion. In practice, for each iteration k, the weights wf∗
α,f∗

β
(x, y) are replaced by

wfk−1
α ,fk−1

β
(x, y). In summary, the algorithm solving (2.2) is to perform the fol-

lowing two steps alternatively:

vk
α = CGE[fα](fk−1

α ), ∀α,

fk
α(x) = vk

α(x)(1 − 2μ) + μ

[∫
vk

α+1(y)wfk−1
α ,fk−1

α+1
(x, y)dy

+
∫

vα−1(y)wfk−1
α ,fk−1

α−1
(x, y)dy

]
.

(2.8)

3 Experiments

We first test our 4D-CT reconstruction algorithm on a digital NCAT thorax
phantom [11]. We consider a simple breathing model with only two phases in a
respiratory cycle. The image resolution is 256× 256. Due to its simple anatom-
ical structure in this digital phantom, only 20 x-ray projections per respiratory
phase are used. These projections are generated in a fan beam geometry and
are equally spaced in an entire 360◦ rotation. In Fig. 1, we show the ground
truth images and the reconstruction results from the conventional FBP algo-
rithms in the first and the second columns, respectively. Clearly, FBP algorithm
produces severe streaking artifacts in this context of extremely under-sampling,
making these images clinically unacceptable. The reconstruction results shown
in the columns 3 and 4 in Fig. 1 correspond to TV and TF methods. Despite
a great improvement over the FBP algorithm, the images obtained from these
two methods are smeared out with reduced contrast and still contain obvious

Fig. 1. A Digital NCAT phantom case. Images at two breathing phases are shown in

two rows. Columns from left to right: ground truth images, reconstruction results from

FBP, TV, TF, and our TNLM method, respectively.
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fluctuating artifacts. Finally, the images reconstructed from our TNLM regular-
ization method are shown in the last column, where the image quality is con-
siderably enhanced by imposing the temporal regularization between these two
phases. Notice that for these iterative methods (TV, TF and TNLM), the re-
sults are presented with parameters, such as μ in Eq. (2.1), carefully tuned for
the optimal results.

To further validate our 4D-CT reconstruction algorithm, we study two patient
cases obtained in the real clinic. There are 10 breathing phases in both cases.
Since the real clinical 4D-CT images are full of detailed structures, 30 fan beam
x-ray projections per breathing phase are used. Other parameters are same as
those in the NCAT phantom case. We exclude presenting the FBP results since
it is apparently not able to provide clinically acceptable 4D-CT images. Due to
the space limitation, only phase 1, 4, and 7 out of the 10 phases in an entire
breathing cycle are illustrated in Fig. 2 and 3 respectively for the two real clin-
ical cases. Again, our method is able to reconstruct the 4D-CT images with great
quality, while low contrast and streaking artifacts are found to some extent in
those images obtained from TV or TF methods.

Fig. 2. Patient case A. Rows from top to bottom: phase 1, 4, and 7 in a 10-phase res-

piratory cycle. Columns from left to right: ground truth images, reconstruction results

from TV, TF, and our TNLM method.
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Fig. 3. Patient case B. Rows from top to bottom: phase 1, 4, and 7 in a 10-phase res-

piratory cycle. Columns from left to right: ground truth images, reconstruction results

from TV, TF, and our TNLM method.

In order to quantitatively evaluate the reconstruction results, we take signal-
to-noise ratio (SNR) as a metric defined as

SNR(f∗, f) = 20 log10

{
||f − f̄ ||L2

||f − f∗||L2

}
, (3.1)

where f∗ is the ground truth image and f̄ denote the mean value of the image f .
The SNRs for images obtained from different methods are summarized in Tab. 1.
Our method yield the highest SNR values in all cases, undoubtedly outperforms
the other two methods.

Table 1. SNR for different methods

NCAT patient A patient B

Phase 1 Phase 2 Phase 1 Phase 4 Phase 7 Phase 1 Phase 4 Phase 7

TV 20.35 20.14 15.04 14.97 15.47 11.66 11.39 11.40

TF 21.06 20.72 18.71 18.66 19.46 15.85 15.44 15.14

our method 25.68 25.59 20.63 20.29 20.44 18.99 19.22 19.13
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4 Conclusion

In this paper, we have presented a new 4D-CT reconstruction algorithm that ex-
ploits the recurrence of the anatomical structures at different locations between
adjacent breathing phases. TNLM regularization is specifically designed to take
this fact into the reconstruction process. We have tested our reconstruction re-
sults on one digital NCAT phantom and two patient cases. The reconstruction
results indicate that our TNLM algorithm outperforms the conventional FBP-
type reconstruction algorithm and the TV-based or TF-based spatial regular-
ization methods. One concern about our TNLM method is the speed. Currently
it takes much longer time for the TNLM method to reconstruct a set of 4D-
CT images due to its inherent complicated mathematical structure. However,
our preliminary work on the speed-up via advanced GPU technology indicates
promising perspectives.
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Abstract. The 3-D reconstruction of cardiac vasculature using C-arm

CT is an active and challenging field of research. In interventional envi-

ronments patients often do have arrhythmic heart signals or cannot hold

breath during the complete data acquisition. This important group of pa-

tients cannot be reconstructed with current approaches that do strongly

depend on a high degree of cardiac motion periodicity for working prop-

erly. In a last year’s MICCAI contribution a first algorithm was presented

that is able to estimate non-periodic 4-D motion patterns. However, to

some degree that algorithm still depends on periodicity, as it requires a

prior image which is obtained using a simple ECG-gated reconstruction.

In this work we aim to provide a solution to this problem by developing a

motion compensated ECG-gating algorithm. It is built upon a 4-D time-

continuous affine motion model which is capable of compactly describing

highly non-periodic motion patterns. A stochastic optimization scheme

is derived which minimizes the error between the measured projection

data and the forward projection of the motion compensated reconstruc-

tion. For evaluation, the algorithm is applied to 5 datasets of the left

coronary arteries of patients that have ignored the breath hold com-

mand and/or had arrhythmic heart signals during the data acquisition.

By applying the developed algorithm the average visibility of the vessel

segments could be increased by 27%. The results show that the proposed

algorithm provides excellent reconstruction quality in cases where classi-

cal approaches fail. The algorithm is highly parallelizable and a clinically

feasible runtime of under 4 minutes is achieved using modern graphics

card hardware.

1 Introduction

1.1 Purpose of This Work

One key component of image guidance in the field of interventional cardiology
is three-dimensional image information before, during and after interventional
procedures. Three-dimensional image data can support complex interventional
procedures, such as transcutaneous valve replacement, interventional therapy of
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atrial fibrillation, implantation of biventricular pacemakers and the assessment
of myocardial perfusion.

With the technology of C-arm CT it is possible to reconstruct intraproce-
dural 3-D images from angiographic projection data [1]. Currently, the major
limitation of this technology is its insufficient temporal resolution which limits
the visualization of fast moving parts of the heart. Due to the long acquisition
time of several seconds, at which a couple of heart beats and breathing motion
can occur, motion related image artifacts, e.g. blurring or streaks are observed.
Therefore it is essential to develop algorithms that can cope with both cardiac
and respiratory motion.

1.2 State-of-the-Art

Based on the electrocardiogram (ECG) a relative cardiac phase is assigned to
each projection image assuming a periodic heart motion [2]. The phase informa-
tion is used for a phase-correlated reconstruction by gating or motion estimation
and compensation. A gated reconstruction takes only those images into account
that lie inside a defined phase window, that is centered at the targeting car-
diac phase to be reconstructed [2, 3]. This is, however, not ideal in terms of
missing data for single-run acquisitions. The incomplete data leads to streak
artifacts and a poor signal-to-noise ratio. To increase the data usage, the car-
diac motion is estimated and motion compensated reconstruction algorithms are
applied [4, 2, 5, 6, 7]. Reasonable results are provided in the presence of regular
heart rates without breathing or other patient motion. However, in the field
of intraprocedural cardiac reconstruction, the patients suffer from heart diseases
and cannot completely hold breath, stay still or have irregular heart beats. Those
aspects do conflict with the periodicity assumption of ECG-based methods.

In literature these problems were addressed by approximate 2-D corrections
in the projection image [4, 8]. In a last year’s MICCAI contribution [9], a first
algorithm was presented that is able to estimate true 4-D non-periodic motion
patterns using a time-continuous B-spline motion model (NOPMEC). However,
this algorithms requires an initial 3-D reference image as a priori information.
This reference is easy to obtain for almost periodic motion by ECG-gated recon-
struction. However, strong respiratory motion and severe arrhythmia can make
it impossible to obtain a sufficient initial image. This weak point is to be solved
in this paper.

2 Affine 4-D Motion Estimation and Reconstruction

2.1 General Idea

In previous investigations, e.g. by Shechter et al. [10] it has been shown that
heart phase variations and respiratory motion of cardiac vasculature can be
modelled using global transformations, i.e. rigid body transformations or affine
transformations. In the following sections an algorithm for the estimation of such
an affine motion between the different heart beats is presented.
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2.2 Affine 4-D Time-Continuous Motion Model

We assume a time-continuous motion model function that maps a voxel x =
(x0, x1, x2)T to a new voxel location x ′ for each time when a projection im-
age is acquired. It is conceptionalized by a function M : N× R3 × S �→ R3 with
M(i,x , s) = x ′ transforming the voxel coordinate x at the time of the i-th pro-
jection image. The mapping is based on the motion model paramters s ∈ S. In
this work a global affine motion model is used which is defined in the following.

A set of time points is created and each point in time is assigned 12 affine
parameters that describe the affine transformation at that moment. The set of
time points is determined from the ECG-signal. We are choosing two time points
per heart beat closest to the reference heart phase hr and to an additional phase
hr + Δh. For a heart phase h this set of projection images is denoted Nh. The
complete set L of temporal control points is then given by

L = {1, N} ∪ Nhr ∪ Nhr+Δh , (1)

where the number of projections ranges from 1 to N . The first and last projection
image is added such that no boundary problems will occurr in the following.

The affine parameters s l ∈ R12 for a single time point l ∈ L are collected in
a vector s l = (t0, t1, t2, α0, α1, α2, a0, a1, a2, b0, b1, b2)T , where ti represents the
translation along, αi the rotation around, ai the scaling along and bi the shearing
of the i-th coordinate axis. The complete parameter vector s ∈ S, S = R12|L| is
then given by

s = (sL1 , . . . , sL|L|)
T (2)

with Li being the i-th smallest element of L. For an arbitrary projection image i
the affine transform parameters s̃i are then obtained by temporal interpolation
of each component. In our work a cubic B-spline interpolation [11] has been used.
The final motion model is then formally given by

M(i,x , s) = x ′ with As̃i

(
x
1

)
∼=
(
x ′

1

)
(3)

where As̃i
is the affine transformation matrix in homogenous coordinates for

the affine parameters s̃ i. The formation of the affine transformation matrix is
straightforward and can be found e.g. in [12].

2.3 Motion Compensated ECG-Gated Reconstruction

Projection Image Preprocessing. For motion estimation we are only inter-
ested in the motion of the cardiac vasculature. Therefore we apply a background
reduction technique previously proposed by Hansis et al. [3] using a morpho-
logical top-hat filter. In the following this preprocessed projection data will be
referred to by the function p : N×R2 �→ R where p(i,u) returns the value of the
i-th preprocessed projection image at the pixel u .
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Reconstruction Algorithm. For motion estimation and correction a dynamic
reconstruction f(x , s) is defined. The function f returns the reconstructed object
value at a voxel x based on the motion model parameters s. In this paper, an
ECG-gated motion compensated FDK reconstruction method is utilized [2, 5].
The ECG-gating is performed by applying a weighting factor λ to each image
which is calculated from the distance to the reference heart phase. The dynamic
ECG-gated FDK reconstruction fhr : R3 × S �→ R is then given by

fhr(x , s) =
∑

i

λ(i, hr) · w(i,M(i,x , s)) · pF (i, A(i,M(i,x , s))) . (4)

The function w : N × R3 �→ R is the distance weight of the FDK-formula. The
pre-processed, filtered and redundancy weighted projection data is accessed by
the function pF : N×R2 �→ R where pF (i,u) returns the value of the i-th image
at the pixel u . The pixel location u is determined by the perspective projection
A : N×R3 �→ R2, where A(i,x ) = u maps a voxel x to a pixel location u in the
i-th projection image. The function λ is a weighting function adapted from [5]
that is used for obtaining an ECG-phase correlated reconstruction for the heart
phase hr ∈ [0, 1]. It is given by

λ(i, hr) =

{
cosβ

(
d(h(i),hr)

ω π
)

if d(h(i), hr) ≤ ω
2

0 otherwise
(5)

where h(i) is the heart phase of the i-th projection image and ω ∈ (0, 1] is the
width of the non-zero support region of the weighting function. The parame-
ter β ∈ [0,∞) controls the shape of the support region. The distance function
d(h1, h2) = minc∈{0,1,−1} |h1 − h2 + c| returns the distance between two relative
heart phases.

2.4 Objective Function for Motion Estimation

Motion estimation is formulated as a multi-dimensional optimization problem
where the motion model parameters ŝ ∈ S maximizing the objective function
L : S �→ R need to be estimated. The objective function introduced in this paper
is motivated by the basic relationship of the motion compensated reconstruc-
tion f with the measured projection data p. Maximum intensity projections of
the motion state observed in a projection image can be created from a motion
compensated reconstruction f(x , s) by dynamic forward projection:

r(i,u , s) = max
x∈Li,u

fhr

(
M -1(i,x , s), s

)
. (6)

The function r : N× R2 × S → R returns the dynamic maximum intensity for-
ward projection of the ECG-gated and motion compensated reconstruction fhr .
The voxels on the straight measurement ray Li,u of the i-th image hitting the
detector at pixel u are transformed by the inverse motion model to consider the
motion state observed at the projection image i. The matching of the measured
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and preprocessed data p and the forward projected data r is assessed by com-
puting the average normalized cross-correlation (NCC). Formally, the objective
function to be maximized is then given by:

L(s) = arg max
s∈S

1
ν

N∑
i

(
λ(i, hr)

∑
u

(p(i,u)− μpi)(r(i,u , s)− μri,s )
σpiσri,s

)
(7)

with the normalizing factor ν = (Ip − 1)
∑N

i λ(i, hr), Ip being the number of
image pixels u of a projection and μ, σ being the mean and standard deviation
of the subscripted image. The value of the objective function ranges L(s) ∈
[−1, 1] with the maximum value representing a perfect linear relationship of the
measured and forward projected data. The NCC of the i-th projection image
pair is weighted by the gating function λ as it characterizes the influence on the
dynamic ECG-gated reconstruction.

2.5 Optimization Strategy

For maximization of Eq. (7) a stochastic gradient ascent method is used. In each
iteration one of the temporal points is selected with a certain probability. For
initialization, all time points are assigned the same probability. The gradient
is computed using finite differences by varying the 12 affine parameters for the
selected time point. Next, one step is taken into the gradient direction with a
fixed step size. The probability of the time point of being selected in the next
iteration, is set proportional to the increase of cost function value. Optimization
stops after a certain number of iterations or if the convergence ratio drops below a
certain threshold. This kind of stochastic selection of parameters for the gradient-
based optimization procedure has the benefit that it picks out the most beneficial
parameters. In that way a fast convergence with as few as possible cost function
evaluations was found.

2.6 Implementation Details

One evaluation of the objective function Eq. (7) comprises an ECG-gated recon-
struction, an ECG-gated forward projection and the computation of the qual-
ity measure. Each step is very well parallelizable on the graphics card using
CUDA [13]. The backprojection of the FDK-reconstruction and forward projec-
tion are based on projection matrices. The affine matrix As̃i

in Eq. (3) only
depends on the projection geometry and is independent of the voxel location.
This allows us to replace the voxel-wise computation of the motion transform
M by a right-side multiplication of the projection matrix with the affine trans-
formation matrix. Consequently, no additional overhead is introduced during
forward or backward projection operations.

3 Experimental Setup

The presented algorithm is integrated into the non-periodic motion estima-
tion and compensation scheme of [9] (NOPMEC). It requires as input a prior
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image which is in the standard version a simple ECG-gated reconstruction.
For our experiments the standard version is compared with a version that uses
the proposed ECG-gating for non-periodic motion presented in this paper.

Datasets of left coronary arteries divided into two groups are reconstructed.
The first group G1 consists of five cases with good breath hold and a regular
heart rate. The second group G2 consists of five cases that have ignored the
breath hold command and/or had arrhythmic heart signals during the data
acquisition. For both groups the coronary segments S5 to S15, named according
to the guidelines of the American Heart Association [14] are identified and the
visibility is rated with a value from zero to three with the following meaning:
0 (not visible), 1 (partially visible, strong artifacts), 2 (completely visible, some
artifacts), 3 (close to perfect).

The datasets were acquired on an Artis Zeego C-arm system (Siemens AG,
Healthcare Sector, Forchheim, Germany). They consist each of N = 133 projec-
tion images acquired in 5 seconds with a size of 960× 1240 pixels at an isotropic
resolution of 0.32 mm/pixel. The number of iterations was set to 300. The re-
construction parameters were set to hr = 0.7, hr + Δh = 0.2, ω = 0.2, β = 0.
Image reconstruction is performed on an image volume of 203 cm3 distributed
on a 2563 voxel grid. The parameters of the NOPMEC algorithm [9] were set to
5 spatial and 35 temporal control points with 100 iterations.

4 Results and Discussion

The average rating for each of the segments S5 to S15 is listed separately for
each patient group and for both algorithms in Table 1. The performance of
the proposed method does not significantly increase the visibility for group G1

(1.3%). This is reasonable, as this group contains highly periodic data for which
the simple ECG-gating already works well. The 3-D reconstruction of an example
case from group G1 is depicted in Fig. 1d.

Table 1. Results from the evaluation of the clinical data. For each segment the visibility

for both patient groups is analyzed. Results are given for the standard algorithm and

the proposed method.

Group G1 Group G2

standard proposed increase standard proposed increase
S5 3.00 3.00 0.0% 3.00 3.00 0.0%
S6 2.80 2.80 0.0% 2.60 2.80 7.7%
S7 2.80 2.80 0.0% 2.00 2.20 10.0%
S8 2.80 2.80 0.0% 2.40 2.80 16.7%
S9 2.60 2.80 7.7% 2.00 2.60 30.0%
S10 2.40 2.40 0.0% 1.00 1.75 75.0%
S11 3.00 3.00 0.0% 2.20 2.60 18.2%
S12 2.80 2.80 0.0% 0.75 1.50 100.0%
S13 2.60 2.60 0.0% 1.80 2.60 44.4%
S14 2.20 2.20 0.0% 1.00 1.50 50.0%
S15 2.80 3.00 7.1% 1.75 2.75 57.1%

Avg. 2.71 2.75 1.3% 1.86 2.37 27.3%
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(a) Ex. case of G2 (b) Ex. case of G2 (c) Ex. case of G2 (d) Ex. case of G1

Fig. 1. Example reconstruction results for the clinical datasets using the standard

algorithm (top row) and the proposed approach (bottom row). The first three datasets

belong to the patient group G2 while the last one belongs to G1.

For patient group G2 the situation changes. The average visibility can be
increased significantly (27.3%) using the method proposed in this paper. Three
of the cases are depicted in Fig. 1a to Fig. 1c to provide a visual impression of the
quality increase. By applying the proposed method, the quality can be increased
drastically (bottom row) in terms of intensity, connectedness, artifact level and
smoothness of the vessels. In summary the proposed method never decreased
the visibility of any of the vessel segments and provided superior image quality
in cases of non-periodic motion (group G2). The runtime of our algorithm was
below 4 minutes in all cases.

5 Conclusions and Outlook

A major clinical challenge of C-arm based cardiac vasculature reconstruction
is non-periodic motion. In this paper a framework for the ECG-gated 3-D re-
construction with affine motion correction for non-periodic motions has been
introduced. It has been integrated into the NOPMEC algorithm for obtaining
a prior image. It is demonstrated that for non-periodic motion, using simple
ECG-gating as prior image fails, while the visiblity of the vasculature could be
increased in average by 27%, using the motion compensated ECG-gating pre-
sented in this paper. In summary, with the proposed method an important step
towards the clinical usability has been made by addressing patient groups which
cannot be reconstructed with previous methods.

Disclaimer: The concepts and information presented in this paper are based on
research and are not commercially available.
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Abstract. The advancement in meaningful constraining models has resulted in
increasingly useful quantitative information recovered from cardiac images. Nev-
ertheless, single-source data used by most of these algorithms have put certain
limits on the clinical completeness and relevance of the analysis results, espe-
cially for pathological cases where data fusion of multiple complementary
sources is essential. As traditional image fusion strategies are typically performed
at pixel level by fusing commensurate information of registered images through
various mathematical operators, such approaches are not necessarily based on
meaningful biological bases, particularly when the data are dissimilar in physi-
cal nature and spatiotemporal quantity. In this work, we present a physiological
fusion framework for integrating information from different yet complementary
sources. Using a cardiac physiome model as the central link, structural and func-
tional data are naturally fused together for a more complete subject-specific in-
formation recovery. Experiments were performed on synthetic and real data to
show the benefits and potential clinical applicability of our framework.

1 Introduction

Cardiac measurements can be categorized as structural and functional. Structural data,
such as magnetic resonance images (MRI), noninvasively provide cardiac structures and
motions in various spatiotemporal resolutions. Functional data, such as body surface
potential maps (BSPM), reveal physiological information of electrical propagation.

To provide physiologically plausible constraints to recover subject-specific infor-
mation from measurements, cardiac physiome models have been utilized to describe
the general macroscopic electromechanical physiology of the heart, which comprise an
electrical propagation model (E model) describing electricity propagation within the
myocardium, an electromechanical coupling model (EM model) converting the electri-
cal stimulations into contraction stresses, and a biomechanical model (BM model) relat-
ing the contraction stresses with the cardiac deformation. In [1], an E model was used to
recover volumetric myocardial electrical activities from BSPM. In [2,3], cardiac phys-
iome models were coupled with MRI to estimate ventricular deformation. These appli-
cations show that cardiac physiome models are valuable for revealing subject-specific

T. Jiang et al. (Eds.): MICCAI 2010, Part I, LNCS 6361, pp. 159–166, 2010.
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cardiac functions. Nevertheless, regardless of the general physiological meaningfulness,
these single-source algorithms could not benefit from the complementary information
of the other measuring modalities, especially in pathological cases.

To enhance subject-specificity and reliability of the recovery results, measurements
from different sources should be fused together to include complementary information.
As MRI and BSPM are different manifestations of cardiac functions, fusion of these
data aids improving the clinical relevance of the recovered information. In practice,
the fusion techniques widely used in medical image analysis are pixel-level fusions, by
which the spatial and spectral data of all layers of the registered commensurate images
are combined through mathematical operators such as the Boolean or fuzzy logic oper-
ators. Nevertheless, the acquisition spaces (myocardium vs. body surface) and physical
natures (structure vs. electricity) of MRI and BSPM are incommensurate, the direct
use of these operators is physiologically meaningless, if not impossible. In view of the
ability to couple subject-specific data from electrical and structural measurements, we
propose to adopt a cardiac physiological model as the physiological link for fusing
information from these data. Specifically, transmembrane potentials (TMP) recovered
from the subject’s BSPM through the E model are converted into active stresses through
the EM model, which are subsequently related to the myocardial deformation through
the cardiac electromechanical dynamics. By coupling this subject-specific a priori de-
formation with the motion information extracted from the MRI sequence of the same
subject under a state-space filtering framework, the cardiac deformation is recovered. In
this manner, electrical and structural data are fused together and tightly coupled through
the cardiac physiome model. Experiments were performed on synthetic and real data to
show the benefits and potential clinical applicability.

2 Cardiac Physiome Model

The cardiac physiome model acts as the physiological link between the electrical and
structural information. Only the E model and the cardiac electromechanical dynamics
are presented, as they directly associate with the data fusion.

2.1 Electric Wave Propagation Model

To model the TMP propagation of the myocardium, the E model described by a two-
variable diffusion-reaction system is used, which matrix representation is given as [1]:

∂UE

∂t
= −M−1

E KEUE + f1(UE,V);
∂V
∂t

= f2(UE,V) (1)

where UE and V are vectors of nodal TMP and repolarization variables respectively.
Matrices ME and KE account for the intercellular electrical propagation. f1 and f2 are
general descriptors of cellular TMP dynamics.

2.2 Cardiac Electromechanical Dynamics

The TMP can be converted into active forces through the EM model, which are fur-
ther related to the cardiac deformation through the cardiac electromechanical dynamics.
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(a) (b)

Fig. 1. Synthetic data. (a) Heart represented as nodes bounded by surfaces, with tissue structures
indicated by local coordinate systems (fiber, sheet, sheet normal: blue, yellow, cyan). (b) Infarcted
regions shown in red color.

The displacement-based total-Lagrangian system dynamics is utilized, which is given
as [3]:

MBMÜBM + CU̇BM + KBMΔUBM = Fc − Fi (2)

where MBM, C, and KBM are the mass, damping, and stiffness matrices respectively.
The hyperelastic and orthotropic material properties of the BM model are embedded in
KBM. Fc is the force vector containing the active forces from the E and EM models. Fi

is the force vector related to internal stresses. ÜBM, U̇BM and ΔUBM are the respective
acceleration, velocity and incremental displacement vectors respectively.

3 Physiological Data Fusion

To fuse structural and functional image information, subject-specific volumetric TMP
are first recovered from BSPM through the E model, which become the force inputs to
the cardiac electromechanical dynamics through the EM model. This BSPM-embedded
cardiac electromechanical dynamics is then used to recover cardiac deformation from
MRI with fused information from both functional and structural images.

3.1 Functional Data and Volumetric Electrophysiological Recovery

To relate BSPM to the cardiac physiome model, the framework in [1] is used to im-
age volumetric TMP from BSPM. Noninvasive observations of TMP are provided by
potential maps on the body surface, with their relation follows the quasi-static electro-
magnetism on the personalized heart-torso model obtained from subject’s MRI. The
resulted linear relation between volumetric TMP and BSPM is given as:

yE = HEUE (3)

where yE consists of the body surface potentials (BSP). This model combines the ad-
vantage of FEM-based and BEM-based approaches to TMP-to-BSP modeling.

As UE is of much higher dimension than yE, the E model (1) is necessary to provide
the physiological constraint for obtaining a unique UE from yE. To account for the
uncertainties of the model and the measurements, (1) and (3) are reformulated into
state-space representations to utilize optimal estimation [4]. By letting the state vector
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(a) Simulated ground truth.

(b) Structural-only recovery.

(c) Fusion-based recovery.

Fig. 2. Synthetic data. Strain maps at the end of systole (250 ms), with red, blue, and green colors
representing extension, contraction, and no deformation respectively. Left to right: radial strain,
circumferential strain, and first principal strain.

xT
E =

[
UT

E,V
T
]
, and the model uncertainties and measurement errors as ωE and νE

respectively, the state-space system is given as:

xE(k) = fE (xE(k − 1)) + ωE(k − 1) (4)

yE(k) = H̃E xE(k) + νE(k) (5)

with fE rearranged from (1) and discretized in time, and H̃E = [HE,0]. With (4,5),
given a subject’s BSPM sequence, volumetric TMP can be estimated through the state-
space filtering in Section 3.3, which can then be transformed into contraction forces
through the EM model, and embedded to the cardiac electromechanical dynamics.

3.2 Structural Data and Electrophysiology-Guided Deformation Recovery

To relate the structural images with the cardiac deformation, the relation between the
nodal displacements UBM and the image-extracted motions yBM is given as:

yBM = HBM UBM (6)

where HBM is the measurement matrix with interpolation functions relating UBM to
yBM. For a unique solution, UBM is related to the BSPM-embedded cardiac dynam-
ics through (2), and this establishes the relation between the structural images and the
BSPM. As (2) is already discretized in time, by letting the state vector xBM as UBM and
the model uncertainties as ωBM, the state-update equation is given as:

UBM(k) = UBM(k − 1) + ΔUBM + ωBM(k − 1)
⇒ xBM(k) = fBM (xBM(k − 1)) + ωBM(k − 1)

(7)
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Fig. 3. Synthetic data. Mutual information between strain patterns of the ground truth and the
recoveries, for the whole cardiac cycle.

with ΔUBM obtained by solving (2), thus fBM is nonlinear with respect to xBM. The
corresponding stochastic measurement equation is obtained from (6) as:

yBM(k) = HBM xBM(k) + νBM(k) (8)

where νBM accounts for the measurement errors. With this system, the state-space fil-
tering framework in Section 3.3 can be used to estimate subject-specific cardiac defor-
mation with physiologically fused information from both BSPM and structural images.

3.3 Nonlinear State-Space Filtering for Model-Measurement Coupling

System (4,5) and system (7,8) are in the same form:

x(k) = f (x(k − 1)) + ω(k − 1) (9)

y(k) = H x(k) + ν(k) (10)

In consequence, the same filtering framework can be applied. To preserve model non-
linearity and maintain computational feasibility, we utilize the unscented Kalman filter
(UKF) which comprises the advantages of Monte Carlo methods and Kalman filter up-
dates [4]. In UKF, the prediction step is done by the unscented transformation, which
calculates the statistics of a random variable undergoing a nonlinear transformation.
A set of minimal sample points called sigma points is carefully chosen from the state
statistical distribution, which completely captures the true mean and covariance. Each
sigma point is projected with intact nonlinearity through (9), and all projected points are
combined together for the projected mean and covariance. Afterwards, as (10) is linear,
the correction procedures of Kalman filtering can be applied to obtain the estimation.

4 Experiments

4.1 Synthetic Data

The heart architecture from the University of Auckland was used to provide the anatom-
ical cardiac geometry and tissue structure for the experiments [5] (Fig. 1(a)). To show
that our framework can aid verifying possible diseased areas, part of the heart was as-
sumed to be infarcted (Fig. 1(b)), where the mechanical stiffness was three times as that
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Fig. 4. Human data, case 2. MRI sequence during systole (frame #1, #3, #5, #7).

(a) (b) (c) (d)

Fig. 5. Human data, case 2. (a) Cardiac geometry segmented from MRI, with mapped tissue
structures. (b) Infarcted segments (3, 4, 9, 10) shown in red color. (c) Patient’s heart-torso repre-
sentation. (d) Exemplary input BSPM of ventricular activation.

of the normal tissue, and the cardiac electricity could not propagate through. A cardiac
cycle of 450 ms was simulated through the cardiac physiome model as the ground truth.
The nodal displacements on the heart boundaries were extracted, and added with noises
of 5dB SNR as the noisy structural measurement inputs of the experiments.

Two frameworks were tested. The first framework has no active force Fc, so only
structural measurements were used (structural-only recovery). The second framework
is our fusion-based recovery with both subject-specific (abnormal) TMP and structural
measurements. In the recovery process, the infarcted regions were unknown.

Fig. 2 shows the strain maps at the end of systole. For both frameworks, the recov-
ered strains show almost no deformation in the infarcted regions. Comparing between
the frameworks, the radial and first principal strains recovered by the fusion-based
framework are closer to the ground truth than those recovered by the structural-only
framework, while the circumferential strains of both frameworks are similar. To quan-
tify the similarities between strain patterns of the ground truth and the recoveries, mu-
tual information (MI) comparison is utilized. Fig. 3 shows that similar to the observa-
tions of the strain maps, the recovered strains using the fusion-based framework are
closer to the ground truth in general, especially during systole (120 ms to 250 ms).

4.2 Human Data

To show the potential clinical applicability of our framework, experiments were done
on human data sets comprising both BSPM and MRI, which are case 1 and case 2
available at [6], from two patients with acute myocardial infarction. Case 1 contains a
human short-axis MRI sequence of 19 frames (52.5 ms/frame), with 12 slices/frame.
Case 2 contains a human short-axis MRI sequence of 16 frames (50 ms/frame), with
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Fig. 6. Human data, case 2. Normalized volumetric myocardial TMP recovered from patient’s
BSPM, shown with isochrones. Left to right: 0 ms, 5 ms, and 12 ms.

(a) Structural-only recovery.

(b) Fusion-based recovery.

Fig. 7. Human data, case 2. Strain maps at the end of systole (300 ms). Left to right: radial strain,
circumferential strain, and first principal strain.

13 slices/frame. Both sequences have 8 mm inter-slice spacing, and in-plane resolution
1.32 mm/pixel (Fig. 4). Each case has the patient’s BSPM recorded from 123 electrodes
and interpolated to 370 nodes on the torso surface. Segmentations were performed to
obtain the initial heart geometries, with the fibrous-sheet structures mapped from the
Auckland heart architecture using nonrigid registration (Fig. 5(a)). The expert-identified
infarcted segments of case 1 are 1, 2, 3, 8, 9, 13, 14, 15, and of case 2 are 3, 4, 9,
10, with respect to the myocardial nomenclature in [7] (Fig. 5(b)). Fig. 5(c) illustrates
the combined heart-torso model of the patient, where the torso was obtained through
segmentation of the patient’s torso MRI. Fig. 5(d) exemplifies an input BSPM.

In the experiments, the volumetric TMP were first recovered from the BSPM using
the system described in Section 3.1. The recovered TMP show limited propagation in
the infarcted regions, which is different from the normal regions (Fig. 6).

Motions of the heart boundaries were extracted from MRI using free-form image
registration between consecutive image frames [8]. Experiments were performed using
the structural-only framework and the fusion-based framework, on both case 1 and case
2. Fig. 7 shows that although both frameworks show relatively small deformation in the
infarcted regions, the fusion-based framework has a better contrast between the normal
and the infarcted regions, and the shapes of the regions with negligible deformation are
more consistent with the shapes of the infarcted regions.

For clinical applications, the capabilities of frameworks to aid locating diseased re-
gions are of great interest, thus the frameworks are compared in this aspect. As there
is a strong inverse relationship between the first principal strain and the extent of my-
ocardial infarction [9], we sorted the segments at different levels according to the mean
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Table 1. Human data. Segment numbers at different levels sorted according to the mean of the
first principal strains of each segment at the end of systole, in ascending order. The numbers of
the infarcted segments are highlighted in red color.

Case 1 Basal Mid Apical
Structural-only 3 4 2 5 1 6 10 9 8 7 11 12 14 15 13 16
Fusion-based 3 2 4 1 5 6 10 9 8 7 11 12 14 13 15 16

Case 2 Basal Mid Apical
Structural-only 3 5 2 1 4 6 10 9 11 12 8 7 14 15 16 13
Fusion-based 3 4 1 2 5 6 10 9 11 7 8 12 14 15 16 13

Table 2. Human data. Optimal sensitivities (SEN) and specificities (SPEC) of the frameworks for
identifying infarcted segments.

Case 1
Basal Mid Apical

SEN / SPEC SEN / SPEC SEN / SPEC
Structural-only 67% / 67% 100% / 75% 100% / 100%
Fusion-based 100% / 67% 100% / 75% 100% / 100%

Case 2
Basal Mid

SEN / SPEC SEN / SPEC
Structural-only 50% / 100% 100% / 100%
Fusion-based 100% / 100% 100% / 100%

of the first principal strains of each segment at the end of systole, in ascending order
(Table 1). From Table 1, we can calculate the various sensitivities and specificities with
different cutoff segments, where sensitivities are the ratios between the correctly iden-
tified positives (infarcted segments) and the actual positives, and the specificities are
the ratios between the correctly identified negatives (normal segments) and the actual
negatives. Table 2 shows that for both cases, the fusion-based framework achieves the
same or higher optimal sensitivities compared with the structural-only framework.
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Abstract. Measuring the diffusion properties of crossing fibers is very

challenging due to the high number of model parameters involved and the

intrinsically low SNR of Diffusion Weighted MR Images. Noise filtering

aims at suppressing the noise while pertaining the data distribution.

We propose an adaptive version of the Linear Minimum Mean Square

Error (LMMSE) estimator to achieve this. Our filter applies an adaptive

filtering kernel that is based on a space-variant estimate of the noise

level and a weight consisting of the product of a Gaussian kernel and the

diffusion similarity with respect to the central voxel. The experiments

show that the data distribution after filtering is still Rician and that the

diffusivity values are estimated with a higher precision while pertaining

an equal accuracy. We demonstrate on brain data that our adaptive

approach performs better than the initial LMMSE estimator.

1 Introduction

Diffusion Weighted Magnetic Resonance Imaging (DW-MRI) is hampered by a
low signal to noise ratio (SNR) for high values for the diffusion weighting pa-
rameter b. As a consequence, diffusion model parameters may be estimated with
low precision. An incorrect representation of the noise properties, particularly
assuming a Gaussian instead of a Rician noise distribution in the DWIs, may
render a biased signal model [1]. Noise filtering aims to increase the accuracy and
precision of the estimated diffusivity. A sufficiently high spatial resolution per-
mits the identification of locally homogeneous tissue regions in which averaging
reduces the noise, but pertains the signal.

In previous work, the Linear Minimum Mean Square Error (LMMSE) estima-
tor [2] was proposed to reduce Rician distorted MR data, including DW-MRI.
In DW-MRI data, anisotropic smoothing was applied to reduce noise [3]. An es-
timate of the noise level was obtained by extending the single tensor description
with a Rician noise distribution and estimating the noise level by a Maximum
Likelihood (ML) framework [4,5]. Rician noise reduction by spatial regularization
[6,7] was used to limit the bias in estimates of a single tensor model. Alterna-
tively, sequential anisotropic multichannel Wiener filtering allows the correction
of the bias in the diffusivity estimates due to the Rician distribution of Diffusion
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Weighted Images (DWIs) [8]. By modeling a Markov Random tensor Field, a
joint optimization of the likelihood and a prior could be performed [9]. These
methods have in common that they are applied to a single tensor model.

To date, relatively little attention is paid to filtering noise in fiber crossings.
Crossing fiber orientations were more precisely reconstructed after filtering [8].
Estimating diffusion properties independently per crossing fiber bundle involves
more model parameters and hence is inherently more susceptible to noise [10].

We propose a method for noise suppression in fiber crossings, which is also
valid in voxels with a single fiber configuration. The technique is inspired by
the LMMSE estimator introduced by Aja-Fernandez [2], but it contains two
important improvements. First, the original Aja-Fernandez approach used an
isotropic, uniform kernel, which mixes neighbouring tissues around transitions.
We use an adaptive Gaussian kernel by only including voxels whose single tensors
are similarly shaped. Consequently, the bias induced by the mixing is reduced.
Second, the Aja-Fernandez filtering approach uses a global estimate of the noise
level σ, while the noise level is known to be smoothly varying due to parallel
imaging [5]. We perform an ML estimation of σ per voxel by fitting a constrained
dual tensor model.

The distribution of the data after LMMSE-filtering should be known in order
to allow accurate parameter estimation. In our experiments we will emperically
show that our model, assuming a Rician distribution, still adequately describes
the data. It is then demonstrated that the variance in the estimated diffusion
parameters is decreased while the bias remains low. Finally, we will compare our
adaptive noise suppression scheme with the original Aja-Fernandez approach on
brain data.

2 Method

Linear Minimum Mean Square Estimation (LMMSE)-filtering [2] has been pro-
posed to reduce noise in Rician distributed MRI data. This closed-form solution
considers the DWIs as realizations of stochastic processes. The local signal vari-
ance is reduced, steered by the estimated noise level. The estimate of the squared
signal Â2 equals

Â2 =
〈
M2

〉
− 2σ2 +

(
1−

4σ2
(〈

M2
〉
− σ2

)
〈M4〉 − 〈M2〉2

)(
M2 −

〈
M2

〉)
, (1)

in which M represents the measured signal and 〈·〉 the estimator of a sample’s ex-
pectation value.The LMMSE-filter is applied in 3-D to each DWI independently.
The variance of the noise, σ2, was originally assumed constant in the entire field
of view and estimated as the mode of the locally estimated signal variances.
The expectation value of the sample is approximated by a weighted sum in a
local neighbourhood η, 〈I〉 = 1∑

dp

∑
pεη dpIp. Initially, uniform weighting, i.e.

dp = 1∀p, was proposed.
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In the following Section 2.1 we will introduce an ML approach involving a
dual tensor model for improved estimation of the noise level σ. Section 2.2 will
discuss an adaptive filtering kernel which is valid at fiber crossings.

2.1 Maximum Likelihood Noise Level Estimation

DW-MRI records the magnitude of the complex MR signal. The real and imag-
inary channels of the complex MR image are assumed to be independently af-
fected by Gaussian noise, such that the DWIs are Rician distributed. Hence, the
probability density function of a measured signal Sm,j � 0 is given by

p(Sm,j|Sθ,j, σ) =
Sm,j

σ2
exp

(
−

S2
m,j + S2

θ,j

2σ2

)
I0

(
Sm,jSθ,j

σ2

)
. (2)

Here Sθ,j denotes the true underlying value given the parameter vector θ, σ the
standard deviation of the noise, and I0 the zeroth order modified Bessel function
of the first kind. Now the log likelihood function lnL(θ, σ|Sm) becomes

lnL (θ, σ|Sm) = −2 ln(σ)+
Ng∑
j=1

(ln(Sm,j)−
S2

m,j + S2
θ,j(θ)

2σ2
+ln I0(

Sm,jSθ,j(θ)
σ2

)).

(3)
where the DWIs are assumed independent, such that the joint probability density
function of the signal profile Sm in a voxel is given by the product of the marginal
distributions for the measured signal Sm,j in each of the Ng diffusion weighted
directions gj. ML estimation of the parameters θ is obtained by maximizing the
log likelihood function: θ̂ML = arg {maxθ (lnL)}.

We propose to estimate the noise level in a dual tensor model to avoid a bias
in the estimated diffusivity of crossing fibers. We assert a model for the diffusion
weighted signal Sθ,j consisting of two tensors and an isotropic compartment:

Sθ,j = S0{
∑

i=1,2

fi exp
(
−bjgT

j Digj

)
+ fiso exp (−bjDiso)}, (4)

where S0 is the signal measured without diffusion weighting and f... the volume
fractions, with f2 = 1 − f1 − fiso. We choose Diso = 3.0 · 10−3 mm2s−1 as an
isotropic diffusion constant (to approximate diffusion values reported in CSF),
because fiso and Diso are dependent. The signal is measured with a diffusion
weighting bj in gradient direction gj. The diffusion tensors are spectrally decom-
posed, Di = RiEiRi, with Ei = diag

(
λ‖ λi⊥ λi⊥

)
being the eigenvalue matrix

with axial and planar diffusion values (assuming axially symmetric tensors). The
two rotation matrices Ri are parametrized using Euler angles.

The estimation is done per voxel in two steps, by optimizing the log-likelihood
function (Eq. 3). First,σ is estimated in which we constrain the Ei to be equal
while pertaining constant f... and Diso, to reduce the number of parameters and
hence the variance in the estimated σ. Second, all parameters are estimated,
with the estimated σ substituted in Eq. 3.
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2.2 Adaptive Filtering

Instead of a uniform filter we propose a filter dp that adapts its shape automat-
ically to the local structure (p indexes the filter components). The filter coeffi-
cients are the product of an isotropic Gaussian kernel Gp|k defined at the central
pixel k having a width σG, and a normalized weighting based on the single ten-
sor similarity at position p (Ds,p) compared to the tensor in the central pixel
k(Ds,k). We represent the six unique single tensor components by a vector Ds.
The filter dp yields

dp =
DT

s,pDs,k

|Ds,p| · |Ds,k|
·Gp|k(σG), (5)

in which |·| is the vector norm. Note that in a region of crossing fibers, the DWIs
are filtered within the plane of the crossing, spanned by an oblate single tensor.
We chose a Gaussian kernel width σG = 4 mm, coarsely corresponding to the
uniform filtering neighbourhood of size1× 1 cm2 in [2].

The adaptive filter was implemented in Matlab (The MathWorks, Natick,
MA) and is illustrated in figure 1(a) in which the filter kernel is overlaid in red
over an image containing the corpus callosum (CC). The original approach in-
volved an isotropic kernel, due to which the filtering mixes white matter and
cerebrospinal fluid (left image). The adaptation to the local structure (such as
in [11]) of the corpus callosum reduces this effect (right). In crossings, the kernel
gets an oblate shape (bottom).

ba classic proposed

genu CC

crossing CC-CST

Fig. 1. (a) The original isotropic Aja-Fernandez kernel (left) and the proposed adaptive

kernel (right) are shown in red (and manually outlined in white), in the genu of the

CC (top) and crossing of CC and CST (bottom). (b) Original and filtered profile of a

simulated measurement.
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3 Experiments

3.1 Brain Data Acquisition

Diffusion Weighted Image acquisition of 20 axial slices (mid-brain) of a healthy
volunteer was performed on a Philips Intera 3.0 Tesla MRI scanner by means of
a spin echo EPI-sequence, on an eight-channel head coil with SENSE reconstruc-
tion. An imaging matrix of 112×110 was used, from which 128×128 sized slices
were reconstructed, with a voxel size of 1.7×1.7×2.2 mm3. The diffusion weight-
ing was along 92 three-fold tessellated icosahedric gradient directions, with two
b-values: b = [1.0 3.0 ] · 103 mm−2s. Per b-value, one non-diffusion weighted im-
age S0 was acquired. 20 axial slices were acquired, resulting in a total scanning
time of 30 minutes. The deformations induced by eddy currents were corrected
with an affine registration in the phase encoding direction [12]. In addition, a
rigid registration of the S0-images and coregistration of the DWIs corrected for
patient head motion (up to 2 voxels).

3.2 Filtered Data Distribution

The distribution of the data after filtering must be known to accurately esti-
mate the model parameters. Since it was stated that the distribution of the data
after filtering may no longer be Rician distributed [2], we emperically studied
two potential effects on the distribution. First, the mixing of Rician distributed
data might induce a multivariate Rician distribution. Second, the Rician distri-
bution might converge to a Gaussian due to the lower noise level and as result
of averaging noisy realizations, in accordance to the Central Limit Theorem.
Clearly, if the post-filtering distribution is multivariate Rician distributed, the
ML estimation with the given Rician noise model is no longer valid.

The filter’s effect on synthetic Rician distorted data was studied with the fol-
lowing procedure. Different FA-values for both tensors FA1 =0.66 and FA2 =0.75
were selected by constraining axial diffusivities λ1‖ = λ2‖ = 1.4 · 10−3 mm2s−1

and planar diffusivities λ1⊥ = 0.4 · 10−3 mm2s−1 and λ1⊥ = 0.3 · 10−3 mm2s−1.
Furthermore, we choose f1 = 0.4 and fiso = 0.15 with Diso = 3.0 · 10−3 mm2s−1

while the opening angle between the long axis of both tensors was 2π
5 rad = 72◦.

The magnitudes of the DWI simulated with these parameters were replicated
on a 2D-grid. The signals on each grid point were independently distorted by
Rician distributed noise (SNR= S0

σ = 1), such that a significant bias due to the
noise was introduced. The experiment was repeated 100 times. The aggregate
signal values before and after filtering using the proposed method are shown in
figure 1(b). It turns out that the filter removes the bias from the data.

In brain data, we focused on a set of highly attenuated DW-signal values, in
which a Rician distribution is expected. We included voxels with an anisotropic
diffusion profile, by thresholding on FA¿0.5 and MD > 1.0 · 10−3 mm2s−1. Per
voxel the DW-signal value Sj was selected from the signal profile Sm whose cor-
responding gradient direction gj was most closely aligned with the principal dif-
fusion direction of a single tensor fit v1, i.e. {Sj ∈ Sm|arg max

j gjv1}. Histograms
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c

Fig. 2. Histograms of a set of higly attenuated DW-signals values, selected from brain

data (see text). A Gaussian (black line), Rician (red line) and bivariate (weighting

of two) Rician distributions (blue line) were fit to these points. The left image shows

original data, the right image shows filtered data.

before and after applying the proposed noise reduction filter were determined
to which uni- and bivariate Rician and Gaussian distributions were fitted: c.f.
figure 2. The Kolmogorov-Smirnov test revealed that the Gaussian distribution
significantly differed from the measured data, while both Rician distributions
comply with the measured data. After filtering, no significant differences were
found. This result shows that a univariate Rician is an appropriate noise model
prior to filtering. Figure 2 shows that the filtering changes the original noise
distribution to a Gaussian. An approximate Gaussian distribution also follows
from the Central Limit Theorem. The Rician also fits well due to the higher
signal level after filtering: for high SNR the Rician distribution approaches the
Gaussian distribution. Practically, a Rician distribution was always fit, since it
better generalizes to low signal levels.

3.3 Accurate and Precise Parameter Estimation

A Monte Carlo simulation was performed to assess the accuracy of the estimated
parameters after noise filtering in the presence of a varying anisotropy in the
neighbourhood (see figure 3(a)). A 2D-grid of measurements at crossings was
simulated. By adjusting λi⊥ the FA-values of both tensors were varied along the
horizontal and retained constant along the vertical axis (with a length of 500
voxels). Rician noise was added to all measurements such that the SNR=12. The
grid was noise filtered after which we estimated SNR=25 (σ̂ = 4). Levenberg-
Marquardt optimization of the log likelihood function (Eq. 3) was used in the
parameter estimations.

Measurements were performed along the dashed line in figure 3(a). Figure 3(b)
shows distributions of the estimated parameters and the mean errors, both before
and after noise reduction. The distributions after filtering are narroweras a result
of the noise reduction. A significant bias is only observed in fiso, the estimated
value is 13% lower than the modeled value. Simultaneously, the bias in the other
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filtered FA1
FA2

b

FA1

FA2

no noise

a

Fig. 3. (a) A 2D-grid of measurements at crossings was simulated. Generated and

estimated FA-values are given. Measurements were performed along the dashed line. (b)

Distributions of estimated parameters, prior to and after filtering. The true parameter

values are indicated by a black bar.

parameters is negligible. We conclude that noise filtering can be safely applied to
allow for accurate and precise estimation of diffusivity in crossing fibers.

3.4 Noise Reduction in Brain Data

The effect of our noise filtering applied to brain data is illustrated in figure 4.
It demonstrates that the proposed method employing a space-variant adaptive
kernel performs better than the original isotropic kernel. This is supported by a
shift towards a higher SNR. It should also be noted from the smoothly varying
SNR-field that the estimation of σ is stable. The average computation time for
filtering and tensor estimation per voxel on a notebook computer equals 0.09s
without filtering, and only 0.17s with the proposed method.

Fig. 4. Estimated SNR
(

S0
σ

)
before filtering (left), after filtering with an isotropic

kernel (middle), and filtering with the proposed method (right)
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4 Discussion
An adaptive filter for suppressing noise in fiber crossings was proposed. The
impact on clinical applications of our method is in comparitive studies that aim
to assess white matter defects in crossings. Future work will be to estimate a non-
stationary noise-covariance for the different DWI directions [13]. The recently
proposed Diffusion Type Based similarity measure [14] may even further reduce
filtering to homogeneous tissue regions. A crossing fiber phantom whose diffusion
properties are accurately known will aid in validating our method.
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Abstract. Dissimilarity measures for DTI clustering are abundant. How-

ever, for HARDI, the L2 norm has up to now been one of only few practi-

cally feasible measures. In this paper we propose a new measure, that not

only compares the amplitude of diffusion profiles, but also rewards coinci-

dence of the extrema. We tested this on phantom and real brain data. In

both cases, our measure significantly outperformed the L2 norm.

1 Introduction

Segmentation of gray matter nuclei in the brain can provide solutions for a
multitude of clinical questions. A rich variety of clustering algorithms has been
employed for this purpose, together with a large number of dissimilarity mea-
sures, mainly focusing on DTI. Wiegell et al. [1] clustered DTI in the thalamus,
using k-means and the Frobenius norm. Ziyan et al. used graph cuts [2] on the
same data to investigate the angular difference and K-L divergence.

For HARDI, the L2 norm has been used most often to compare ODFs, possibly
represented by spherical harmonic (SH) coefficients. Grassi et al. [3] performed
k-medoids clustering in the thalamus using the L2 norm on the ODFs. Similarly,
Descoteaux [4] used the L2 norm on SH coefficients. Apart from clustering using
SH coefficients, there are other ways to represent the ODF. Some studies have
implemented mixture models like von Mises-Fisher distributions [5], while others
have used a model-free representation of the ODF [6].

In this paper, we propose a new dissimilarity measure for ODFs represented by
SH coefficients. Whereas the L2 norm only compares amplitudes of the diffusion
profiles, our Sobolev norm also takes into account whether the extrema coincide.

2 Dissimilarity Measure Based on Sobolev Norm

Consider HARDI-image U : R3 × S2 → R+ and assume it is square integrable,
i.e. U ∈ L2(R3 × S2). By restricting this HARDI-image to two fixed points, say
x1,x2 in R3 we obtain two functions on the 2-sphere

S2 � n �→ U(x1,n) ∈ R
+

and S2 � n �→ U(x2,n) ∈ R
+,

T. Jiang et al. (Eds.): MICCAI 2010, Part I, LNCS 6361, pp. 175–182, 2010.
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which we from now on denote by U(x1, ·) and U(x2, ·). These functions can be
represented by a so-called glyph Sμ(U)(x1) and Sμ(U)(x2) as defined below.

Definition 1. A glyph of a distribution U : R3 × S2 → R+ on positions and
orientations is a surface Sμ(U)(x) = {x + μU(x,n) n | n ∈ S2} ⊂ R3 for some
x ∈ R3, μ > 0. A glyph visualization of distribution U : R3 × S2 → R+ is a
visualization of a field x �→ Sμ(U)(x) of glyphs, with μ > 0 a suitable constant.

A common approach to compare two glyphs Sμ(U)(x1) and Sμ(U)(x2) is to
compute the L2 distance between U(x1, ·) : S2 → R+ and U(x2, ·) : S2 → R+:

d(U(x1, ·), U(x2, ·)) =

√∫
S2

|U(x1,n) − U(x2,n)|2 dσ(n),

where σ denotes the usual surface measure on S2. However, this distance only
compares glyph amplitudes. It does not take into account robust regularization
and more importantly, it does not consider whether the extrema of the glyphs
coincide. Therefore we include a blob-detector [7] in our distance. We do not
use higher-order derivatives because they hinder damping before the Nyquist
frequency and are more ill-posed due to a higher operator norm.

We have defined the (squared) Sobolev distance between two glyphs as

( dα,γ,t( U(x1, ·), U(x2, · )) )2

:=
∫

S2

∣∣∣(e−t|Δ
S2 |αU)(x1, n) − (e−t|Δ

S2 |αU)(x2, n)

∣∣∣2 dσ(n)

+γ2α
∫

S2

∣∣∣|ΔS2 |α(e−t|Δ
S2 |αU)(x1,n) − |ΔS2 |α(e−t|Δ

S2 |αU)(x2,n)

∣∣∣2 dσ(n)

=: ‖U(x1, ·) − U(x2, ·)‖2
H2α

t (S2)
.

(1)

This Sobolev distance basically is a sum of a standard (smoothed) L2 part (first
integral) and a (smoothed) blob-sensitive second part (second integral). Next we
provide a brief explanation on the involved parameters:

– The parameter α ∈ [12 , 1] denotes the α-scale space regularization on a
sphere [8], applied at time t ≥ 0 (or scale t

1
2α ). Note that e−t|ΔS2 |α denotes a

smoothing operator generated by a fractional power of the Laplace-Beltrami
operator ΔS2 , i.e. WU (x,n, t) = e−t|ΔS2 |αU(x,n) is the solution of{

∂WU
∂t

(x,n, t) = −|ΔS2 |αWU (x,n, t), x ∈ R3,n ∈ S2, t ≥ 0,
WU (x,n, 0) = U(x,n) .

(2)

– The parameter t ≥ 0 determines the stopping time of the spherical α-scale
space regularization.

– The parameter γ (physical dimension [Length]2) determines the influence of
the blob-sensitive and the intensity-sensitive L2 part of the Sobolev norm.

The blob-sensitive part is the same as the total difference of all scale space
dynamics of the glyphs. This follows from the fact that (1) can be rewritten as
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∫
S2

|W (x1,n, t) − W (x2,n, t)|2 + γ2α
∣∣ dW

dt
(x1,n, t) − dW

dt
(x2,n, t)

∣∣2 dσ(n)

=
∫

S2
|W (x1,n, t) − W (x2,n, t)|2+γ2α ||ΔS2 |αW (x1,n, t) − |ΔS2 |αW (x2,n, t)|2 dσ(n),

where we use W = WU . Roughly speaking, γ > 0 balances the similarity of the
extrema and the similarity of the amplitudes of Sμ(U)(x1) and Sμ(U)(x2).

Recall that the spherical harmonics {Ylm}m=−l,...,l
l=0,...,∞ form an orthonormal basis

of L2(S2), i.e.

(Ylm, Yl′m′)L2(S2) :=
∫

S2
Ylm(n)Yl′m′ (n) dσ(n) = δll′δmm′

and ∀l=0,...,∞∀m=−l....,l : (f, Ylm)L2(S2) = 0 ⇒ f = 0.

with Ylm eigenvalues of the negative semi-definite, fractional Laplacian operator

−|ΔS2 |αYlm = −lα(l + 1)
αYlm

and thereby the solution of (2) is given by

W (x,n(θ, φ), t) =
∞∑

l=0

l∑
m=−l

(Ylm, U(x, ·))L2(S2) e−t|Δ
S2 |αYlm(θ, φ)

=
∞∑

l=0

l∑
m=−l

(Ylm, U(x, ·))L2(S2) e−t(l(l+1))α

Ylm(θ, φ).

(3)

In particular for α = 1
2 (Poisson scale space [8,9]) the solution of (2) is nearly

equivalent to outward harmonic extension of the initial distribution n �→ U(n)
on the 2-sphere, where one must set the radius ρ = e−t, since

ρ n(θ, φ) = (ρ cos φ sin θ, ρ sin φ sin θ, ρ cos θ) �→ ρlYlm(θ, φ)

is a harmonic function on R3 and ρl = e−tl ≈ e−t
√

(l+1)l for l sufficiently large.
So intuitively one may consider a radial scale axis for scale spaces on glyphs. If we
expand U(x1, ·) and U(x2, ·) into the orthonormal basis of spherical harmonics:

U(xi, n(θ, φ)) =
∞∑

l=0

l∑
m=−l

clm
i Ylm(n(θ, φ)) , i = 1, 2,

with Y m
l (φ, θ) =

√
(2l+1)(l−|m|)!

4π(l+|m|)! P m
l (cos θ)eimφ,

with Pm
l the associated Legendre polynomial of degree l and order m, and with

clm
i = (Ylm, U(xi, ·))L2(S2), i = 1, 2, the squared Sobolev distance (1) reads

( dα,γ,t(U(x1, ·), U(x2, · )) )
2

=

∞∑
l=0

l∑
m=−l

|clm
1 − clm

2 |2 m̃α,γ,t
l .

This is a weighted �2 inner product on the coefficients, so we only have to study
the multiplier

m̃α,γ,t
l = (1 + (γ l(l + 1))

2α
) e−2t(l(l+1))α

to see how the different spherical harmonics are weighted in the Sobolev distance.
Note that if γ = t = 0, the Sobolev norm is equivalent to the L2 norm.
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Fig. 1. Behavior of the Sobolev (blue, solid line) and the L2 norm (red, dashed line)

for a combination of two single fiber profiles generated with angle φ in between

Analytical Example. To qualify the Sobolev and L2 norm, we investigated
several diffusion profiles. The basis for each profile is a single fiber distribution

U(n) = (nT Mn)
4,

with M the diagonal diffusion matrix with {1, ε, ε} as elements and n ∈ S2

describing the tesselation orientations. The fourth power is taken to sharpen the
result. To this static part, a second single fiber profile is added, that is rotated
over angle φ with respect to the first profile. The total profile then amounts to

U(n) = (nT Mn)
4

+ (nT RφMRT
φ n)

4,

with Rφ a transformation matrix resulting in a clockwise rotation over angle φ.
We compare default diffusion profile f (φ = 0, f = U(x1, ·)) with a set of profiles
g with φ varying between 0 and π/2 (g = U(x2, ·)). Figure 1 shows the results
for both the Sobolev and L2 norm, normalized by their maximum response:

dnormalized(f, g) =
‖f − g‖

max
g

‖f − g‖ .

It can be seen that for φ = π/4, the diffusion profile has maxima that do not
overlap with those at φ = 0, while two of the four maxima at φ = π/2 do
coincide. The Sobolev norm clearly punishes the deviations in extrema. For small
differences in angle φ, the Sobolev norm gives a larger response, but in the case
of partly overlapping extrema, towards φ = π/2, the Sobolev norm is again lower
than its L2 counterpart. The latter yields its maximum at φ = π/2, because the
amplitudes of the diffusion profiles differ most at that point.

Implementation. In practice, discretization of the continuous spherical har-
monics is done by the pseudo-inverse of the inverse spherical harmonic transform
(DISHT) [10]. Similar to Descoteaux [4], we use only even orders of spherical
harmonics to represent our HARDI data, i.e. order l = 0, 2, 4, . . . , Lmax. As m
still has range −l, . . . , 0, . . . , l, the total number of SH coefficients is defined as
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nSH = 1
2 (Lmax + 1)(Lmax + 2). We define a single index j in terms of l and

m such that j(l,m) = (l2 + l + 2)/2 + m and compute the spherical harmonic
coefficients s ∈ CnSH from the values f ∈ (R+)No by means of

s = (DISHT )
+
[f] = (MMT

)
−1Mf ,

with M = [M j
k ] = [ 1√

C
Y

l(j)
m(j)(nk)] and C =

∑nSH

j=1 |Y
l(j)
m(j)(0, 0)|2, such that M†M

has a diagonal of ones. If fi ∈ (R+)No denotes the discrete data on U(xi, ·),
i = 1, 2, i.e. (fi)k = U(xi,nk), k = 1, . . . , No then the discrete Sobolev norm is

ddiscrete
α,γ,t (f1, f2) =

√√√√nSH∑
j=1

|(DISHT )+[f2][j] − (DISHT )+[f1][j]|2 m̃α,γ,t
l[j] .

3 Phantom and Real Brain Data

We computer generated a HARDI phantom, employing a multitensor model [11],
with 121 different gradient directions and b-value 3000 s/mm2. The phantom
consists of 18 columns with different diffusion profiles, namely single fibers
at angles {0, 1, 3, 6, 10, 15, 21, 28, 36, 45} degrees, two fibers crossing in-plane at
angles {40, 45, 55, 70, 90} degrees, and three fibers crossing in-plane at angles
{30, 40, 60} degrees. Each column contains the original profile, followed by ten
times this profile with Rician noise added, by applying the transformation

( (y,n) �→ U(y,n) ) �→ ( (y,n) �→
√

(U(y,n) cos η1 + η2)2 + (U(y,n) sin η1 + η3)2 ) ,

where η2, η3 ∼ N (0, σ) normally distributed and η1 uniformly distributed over
[0, 2π). To obtain data with a realistic SNR of 30, σ was chosen to be 0.1. Using
the Funk-Radon transform [4], the simulated signal was converted to spheri-
cal harmonic coefficients, with Lmax = 12. Comparing the �2 norm of the SH
coefficients, the noise was shown to lead to a disturbance of approximately 10%.

We also tested our algorithm on real data, analogous to for example Grassi
et al. [3]. Human brain diffusion MRI data were acquired at 3T, measuring 52
slices of 128x128 2-mm isotropic voxels, using TE 85 ms, 128 unique gradient
directions and b-value 2000 s/mm2. The data were registered onto the MNI152
template and the accompanying Talairach atlas, using an affine transformation
within FSL [12]. Subsequently, an ROI of 30 pixels wide and 39 pixels high,
containing the subject’s right thalamus, was selected on an axial slice. The data
were again transformed to spherical harmonic coefficients (Lmax = 12).

4 Parameter Tuning

The Sobolev norm contains three parameters – α, γ, t – that needed tuning, in
order to yield the desired behavior. Equivalent to Lindeberg [7], α was set to
1, the value for Gaussian regularization. We chose t to be 0, as our data were
sufficiently smooth. In addition, the L2 norm lacks regularization, so setting
t = 0 enables a fair comparison. To assess the optimal value for γ, we performed
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Fig. 2. Left: Behavior of the Sobolev multiplier m̃α,γ,t
l for {α = 1, γ = 0.69, t = 0} and

l from 0 to 12. Middle: Normalized mean spectrum of spherical harmonic coefficients

of the phantom diffusion profiles. Right: Product of multiplier and spectrum.

a 1-nearest-neighbor classification, using the 18 original profiles of the phantom
(i.e. without noise) as training and the whole phantom as test set, while γ was
varied from 0 to 0.8 in steps of 0.01. The performance of the L2 norm for this
phantom is 71.2%. However, using the Sobolev norm with γ ≥ 0.69, the phantom
classification reached a performance of 100%.

The behavior of the multiplier m̃α,γ,t
l for {α = 1, γ = 0.69, t = 0} is plotted in

Fig. 2 (left). It can be seen that the function exponentially rises towards higher
values of l. However, the spherical harmonic coefficients of the used diffusion
profiles at higher orders are quite small, as can be seen in Fig. 2 (middle).
This means that the product of the multiplier and the spectrum is damped well
enough to be truncated at l = 12 and avoid Gibbs artifacts (see Fig. 2 (right)).

5 K-Means Clustering

Following the example set by Wiegell et al. [1], we performed k-means clustering.
For both the synthetic phantom and the real brain data, a set of seed points to
serve as initial centroids was determined manually. The seed point placement for
the phantom was straightforward, with a seed point in the middle of each column.
The real brain ROI was masked using the atlas’ thalamus segmentation, while

Fig. 3. Left: Result of L2 norm (20.7% correctly classified). Right: Result of Sobolev

norm with {α = 1, γ = 0.69, t = 0} (73.7 % correctly classified). The diffusion profiles

are visualized as min-max normalized Q-ball glyphs using SH coefficients up to l = 8.



A Sobolev Norm Based Distance Measure for HARDI Clustering 181

Fig. 4. Leftmost column: Thalamus ROI (top) and nuclei atlas labels (bottom).

Other columns: Results using L2 (top) and Sobolev norm (bottom, {α = 1, γ =

0.69, t = 0}). The ratio between diffusion and spatial information was varied, from left

to right: ratio 1:1; 1
5
·weight factor (as defined in [1]); 1·weight factor; 5·weight factor.

the seven seed points for this ROI were chosen to lie in the different nuclei of the
thalamus, as defined by the atlas (see Fig. 4 (bottom left)). To associate each
point of the data sets with a cluster, we used both the L2 norm and the Sobolev
norm with the parameters calculated in Section 4: {α = 1, γ = 0.69, t = 0}. The
new centroids of each cluster were calculated as the mean of the voxel positions
of all connected points. However, as our dissimilarity measures only concerned
diffusion information, we calculated the distance between each data point and
the mean diffusion profile of all points associated with each cluster.

The results of the k-means clustering for the phantom can be seen in Fig. 3.
The L2 norm yields only a 20.7% correct classification (left). Clearly, the Sobolev
norm has performed much better, obtaining 73.7% correctly classified diffusion
profiles, as shown on the right-hand side. With respect to the thalamus ROI, in
Fig. 4 we can see that the k-means clustering succeeds to classify the thalamus
nuclei reasonably well. The pulvinar and ventral posterior medial nucleus are
segmented but cannot be separated. The results of the Sobolev norm seem more
stable, i.e. less dependent on the weight factor between diffusion and spatial
information, as defined by Wiegell et al. [1], than the results of the L2 norm.

6 Discussion

In this paper, we introduced a new dissimilarity measure that can be employed
for clustering of HARDI data. Instead of comparing only the amplitudes of
the diffusion profiles, our Sobolev norm also takes into account whether the
extrema of the profiles coincide. We illustrated the behavior of our norm for some
simple synthetic glyphs and then built a more difficult phantom. The optimal
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parameters for our norm were found using 1-nearest-neighbor clustering of this
phantom, and these parameters were used for the subsequent k-means clustering.
The Sobolev norm consistently performed better than the L2 norm, for both the
phantom and the real brain data.

In order to improve upon this work, a clustering algorithm that is not biased by
the number and placement of seed points could be employed, for example spectral
clustering involving graph cuts [13]. It will remain a challenge to interpret the
results of the real data, due to the absence of a proper ground truth.
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Abstract. This paper presents MicroTrack, an algorithm that combines

global tractography and direct microstructure estimation using diffusion-

weighted imaging data. Previous work recovers connectivity via trac-

tography independently from estimating microstructure features, such

as axon diameter distribution and density. However, the two estimates

have great potential to inform one another given the common assump-

tion that microstructural features remain consistent along fibers. Here we

provide a preliminary examination of this hypothesis. We adapt a global

tractography algorithm to associate axon diameter with each putative

pathway and optimize both the set of pathways and their microstruc-

tural parameters to find the best fit of this holistic white-matter model

to the MRI data. We demonstrate in simulation that, with a multi-shell

HARDI acquisition, this approach not only improves estimates of mi-

crostructural parameters over voxel-by-voxel estimation, but provides a

solution to long standing problems in tractography. In particular, a sim-

ple experiment demonstrates the resolution of the well known ambiguity

between crossing and kissing fibers. The results strongly motivate further

development of this kind of algorithm for brain connectivity mapping.

1 Introduction

Diffusion-weighted imaging (DWI) has been used to provide useful markers of
brain tissue microstructure in a range of applications including stroke, normal
development, aging, and highlighting diseased tissue. Most work uses simple
indices, e.g., fractional anisotropy (FA), derived from the diffusion tensor model
[7]. A major limitation of these simple indices is that they conflate multiple
tissue properties. For example, FA correlates with axon density, axon radius
distribution, coherence of axon orientations, myelin volume and permeability.

Other previous work [16,5,4,2,3] demonstrates the feasibility of measuring
specific properties of the tissue directly. The techniques use more sophisticated
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models that relate tissue properties like axon density and diameter to the
diffusion-weighted MR signal. Early attempts of fitting the model in each voxel
[16,4] have prohibitive data requirements preventing estimation of these pa-
rameters on live subjects within a reasonable imaging time. Recently, however,
Barazany et al [6] successfully estimate the axon diameter distribution in the
brain of a live rat with about 2h of imaging time. Moreover, Alexander et al. [2]
demonstrate the potential for orientationally invariant estimation of axon den-
sity and diameter, even on human imaging systems with around 1h acquisition
time, through a combination of simplification of the model and careful exper-
iment design. The most recent work [3] shows promising results on data from
both fixed monkey brains and live human brains. Orientational invariance [2,3]
offers significant benefits over earlier work [16,4,6], which requires knowledge of
the fiber orientation and thus limits parameter maps to structures with that
specific orientation. Fiber orientation varies widely in the brain, so orientational
invariance is essential for whole brain mapping and enables combination with
tractography to study tractwise variation in microstructure. However, the maps
of axon diameter and density in [3] are noisy, particularly for live subjects where
hardware and acquisition time limitations weaken sensitivity.

Here, we introduce the MicroTrack algorithm that leverages the assumption
that microstructure features, e.g., axon radius, myelin volume, and longitudi-
nal diffusivity, remain constant along white matter fascicles. For example, one
may estimate an axon diameter distribution that is fixed along the length of a
tract such as the optic radiation. The assumption that the axon diameter dis-
tribution remains constant along the length of individual fascicles is common in
histological studies that characterize tract properties using single cross-section
measurements [1] and has been measured to be constant over a range of at least
1mm [14]. This model provides a powerful geometric constraint that allows us to
collapse measurements across multiple voxels to estimate microstructure param-
eters shared along a single fascicle and potentially improve parameter estimation
dramatically.

MicroTrack simultaneously solves for the projectome, i.e., the collection of
long-range white matter fascicles projecting between all gray matter locations in
the brain [11], and the microstructure tissue parameters of the fascicles within
the projectome by fitting a holistic model of the white matter to all the DWI
intensities. The white matter model is hierarchical in the sense that it describes
both macroscopic features, i.e., pathways joining remote locations, and micro-
scopic features, e.g., the density and diameter of axons in each pathway. This
concurrent multiscale modeling is a fundamental augmentation of previous global
tractography techniques [12,15,10] and we hypothesize that it offers major ben-
efits over independent estimation of either quantity. First, as mentioned above,
pooling data from voxels with similar microstructure improves estimates of axon
diameter and density. However, equally important is the potential reduction in
false positive connections in the projectome. Specifically, knowledge of the mi-
crostructure of individual fascicles resolves ambiguities that occur at, for exam-
ple, fiber crossing and kissing configurations. At a kissing or crossing, where two
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or more paths are equally likely from their local orientation, the algorithm can
pick the path with microstructure most consistent to the rest of the path and
reject paths along which significant changes in microstructure occur. This ap-
proach offers the first viable and biologically motivated solution to tractography
ambiguities like crossing versus kissing fibers.

Section 2 outlines the white matter macro and microstructure models and
introduces MicroTrack: the algorithm that simultaneously estimates the pro-
jectome and fascicle microstructure properties. Section 3 presents simulation
experiments that confirm our central hypotheses of improved microstructure pa-
rameter estimation and reduction of false positive projections. We conclude in
section 4 with a discussion of limitations and areas for further work.

2 Method

This section outlines the MicroTrack algorithm. We start with the forward model
of white matter as a set of fascicles linking remote locations each with microstruc-
ture that determines the diffusion MR signal from the fascicles in individual vox-
els. Next, we describe the algorithm that solves the inverse problem or fitting
the model to the DWI data. The section goes on to outline the cost function and
optimization procedure that enable this fitting.

White Matter Tissue Model. The white matter model captures geometrical
architecture of tissue across multiple length scales. Currently, our model considers
two length scales: axon bundles or fascicles, with cross-sectional radius on the or-
der of hundreds of microns, and axons, with cross-sectional radius on the order of a
micron. The fascicles are simple tubular structures that are defined by a sequence
of backbone points that extend between distant gray matter locations and a sin-
gle cross-sectional radius (R) for the entire fascicle. At the sub-fascicle scale, the
composition of the fascicle structure is characterized by several parameters: local
orientation n, average axon radius r, fraction of fascicle cross-section filled with
axons f , intra-axonal diffusivity d, and extra-axonal diffusivity, which we assume
is also d, but that tortuosity around the axons reduces the perpendicular apparent
diffusivity to dp. Orientation is the only parameter that varies along the fascicle
and all other microstructural parameters are fixed within each.

The tissue model predicts MR attenuation within a voxel composed of a mix-
ture of fascicles and non-fascicle volume by dividing each voxel into compart-
ments that contain only one tissue type in a similar way to Close et al. [8].
Specifically, we divide the voxel grid into a much higher resolution subvoxel
grid, typically 3x3x3 subvoxels per image voxel. Any subvoxels within fascicles
are considered fascicle compartments and the rest contribute cerebral spinal fluid
(CSF). Occasionally, fascicles overlap on a subvoxel; the closest fascicle deter-
mines the microstructure and orientation of these subvoxels’ tissue.

Signal Model. The simplified CHARMED model in [2,3] provides the signal
in subvoxels within fascicles. In this model, the normalized MR signal is
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A(G, Δ, δ;n, r, f, d, dp) = fAr(G, Δ, δ;n, r, f, d) + (1 − f)Ah(G, Δ, δ;n, d, dp), (1)

where f is the volume fraction of the restricted water inside axons, which has
normalized signal Ar, and Ah is the signal from the hindered water outside but
amongst the axons; G is the gradient vector, δ is the width of the gradient pulses
in the pulsed-gradient spin-echo sequence, and Δ is their separation. The intra-
cellular signal, Ar, is the product of attenuated signals from the components
of G parallel and perpendicular to the fiber direction [5]. We assume Gaus-
sian displacements with diffusivity d parallel to the fiber and use the Gaussian
Phase Distribution approximation [13] of the signal from spins with diffusivity d
restricted within a cylinder of radius r [18] for the perpendicular signal. The sig-
nal, Ah, from the hindered compartment comes from the diffusion tensor model
with principal eigenvector n and eigenvalue d and minor eigenvalues dp. The
signal model for CSF subvoxels assumes isotropic Gaussian displacements with
diffusivity diso. The final set of signals for each whole voxel is the average of
each corresponding measurement over all the subvoxels within.

Algorithm Overview. The MicroTrack algorithm follows the general opti-
mization procedure of a recent projectome identification algorithm [15]. Micro-
Track takes as input a collection of NC fascicle candidates (C) and outputs a
vector of fascicle radii (R̄ = [R1, R2, R3, ..., RNC ]), but it also outputs a vector of
microstructure parameters (r̄ = [r1, r2, r3, ..., rNC ]). The algorithm searches over
configurations of r̄ and ā to minimize the error function E(R̄, r̄) that balances
fitting the MRI data with volumetric constraints that penalize fascicle overlap.
Similar to the previous projectome identification algorithm, R̄ is binarized so
that each fascicle may either be included in the optimal projectome, Ri > 0, or
excluded, Ri = 0. Unlike the previous algorithm, MicroTrack also searches over
a discrete set of ri values that best characterize the fascicle candidate.

Cost Function. MicroTrack searches over configurations of R̄ and r̄ in order
to select the setting that minimizes the global error, E = λE1 − (1 − λ)E2. E1

measures the difference between the predicted and observed MRI signal attenu-
ation, and, E2 measures the amount of overlap between the fascicle structures.
The parameter λ balances the effects of E1 and E2.

The data fitting error, E1, is a straightforward square error metric summed
over the number of voxels (V ) and number of MR measurements per voxel (K),

E1 =
V∑

v=1

K∑
k=1

(Âk,v −Ak,v)2

σ2
, (2)

where Ak,v is the predicted DWI signal, Âk,v is actual MRI and σ is the standard
deviation of the measurements, which is fixed for the entire volume.

The fascicle volume overlap error, E2, simply reports the volume of fasci-
cles that overlap, i.e., violate physical integrity of fascicles by occupying the
same space. The units of E2 are in fractions of the voxel volume. For example, if
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a subvoxel is overlapped by two fascicles than a penalty of 1/Ns, where Ns is the
number of subvoxels, is added to E2 for that voxel and if three fascicles overlap
the subvoxel the penalty is 2/Ns and so on.

Fascicle Candidates. MicroTrack precomputes a large set, C, of candidate fas-
cicles using either individual or combinations of standard local deterministic and
probabilistic tracking algorithms (Camino, FSL, DTIStudio, MRTRIX, Track-
Vis). For this work, the candidate set was created using the Camino software
[9], which offers both deterministic and probabilistic tractography with HARDI
measurement schemes. Other than the endpoint criteria, all default parameter
values are used and seed points are randomly selected within the entire volume.

Optimization Strategy. The search space of all possible white matter config-
urations is very high-dimensional and the cost function has many local minima.
Here we use a stochastic optimization algorithm, differential evolution (DE)
[17], which we have found to outperform a variety of other off the shelf global
optimization algorithms. DE fits in the class of genetic evolution algorithms
that search over a parameter space by evolving individuals (parameter settings)
amongst a community (several parameter settings) based on the individual’s
fitness (error function). The stochastic/genetic search is advantageous for our
problem as multiple individuals may fit disparate parts of the white matter vol-
ume well and combine to provide the benefits of both. The complexity of the
problem prevents guaranteed convergence on the global minimum, in practice
we find that the following parameter settings: (generations = 1600, populations
= 40, CR = 0.9, F = [0.5,0.8], resets = 8, ri ∈ [1, 5, 10]μm, Ri ∈ [0, 0.2]mm )
produce good, if suboptimal, solutions in a reasonable time (2 hours on 8 2.3
GHz CPUs).

3 Results

The intention of the experiments is to test the core hypothesis that simultaneous
estimation of the projectome and microstructure is advantageous over estimation
of either independently. We thus construct several simple synthetic data sets
specifically to enable such a test. The synthetic data was produced using a
modification of the Numerical Fiber Generator (NFG) software [8]. The NFG
software offers an efficient way of producing crossing structures with complex
intersections. For the synthetic data used here, we replace the tensor model
in the original NFG software with the two compartment model in equation 1.
Each strand of the strand structure is assigned an individual axon radius, in our
examples 1, 5 or 10 μm. The other parameters have fixed values of d=1.7x10−9

m2/s, dp=1.2x10−9 m2/s, diso=3.0x10−9 m2/s, f = 0.7. The system adds Rician
noise so that the signal to noise ratio at b = 0 is 20.

The imaging protocol we simulate is a multi-shell HARDI acquisition obtained
from the experiment-design optimization in [2], which optimizes sensitivity to
axon diameter. The three shells have b = 2242(|G|=200 mT/m, Δ=14.5 ms,
δ=8 ms), 3791 (|G|=121 mT/m, Δ=23.4 ms, δ=13.8 ms), and 11329 s/mm2
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Fig. 1. MicroTrack improves microstructure estimation accuracy. Torus (A) and

oblique crossing (E) data are simulated and reconstructed with MicroTrack (B,F).

Error in mean axon radius estimation for a central slice (C,G) reduces error compared

with the estimation using a typical voxel-by-voxel algorithm (D,H). Fibers are labeled

based on mean axon radius as either 1 (blue), 5 (brown), or 10 μm (purple). Pink fibers

represent false positive connections. Error bar is in units of μm.

(|G|=200 mT/m, Δ=21.8 ms, δ=15.3 ms), and 100, 105 and 84 gradient direc-
tions, respectively. The protocol also includes 65 b = 0 measurements for a total
of 364 images.

Improving Microstructure Estimation. We compare MicroTrack estimates
of white matter fraction and average axon radius within each voxel to estimates
from the grid search and maximum likelihood fit steps of the fitting algorithm
in [3] a simple gradient-descent fit of the tissue parameters independently for
each voxel. The precise model we fit is as in equation 1, but with an extra
CSF compartment using the same CSF signal model as the simulation. The
comparison is carried out on two synthetic data sets: cut torus (Figure 1A) and
oblique crossing (Figure 1E). The MicroTrack estimates reduce the error over
most voxels in both synthetic experiments and, in particular, are more accurate
in the voxels where the fiber orientation distributions are multi-modal.

Reducing Tracking Ambiguities. In order to focus in on the hypothesis that
concurrent microstructure and projectome estimation can improve the connectiv-
ity results over standard tracking techniques, we created two synthetic volumes
that demonstrate the well-known kissing versus crossing ambiguity (Figure 2A
and D). The synthetic volume was carefully constructed so that the white matter
in the oblique crossing configuration overlaps the white matter volume in the
kissing configuration as much as possible. The result is that many voxels within
the two volumes contain nearly identical fiber orientation distributions, despite
a fundamental difference in connectivity structure. To further focus the exper-
iment, the fascicle candidate set was derived from the gold standard fascicles
used to create the synthetic data. This ensures that the candidate fascicle set,
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Fig. 2. MicroTrack addresses orientation ambiguity. Classic crossing (A-C) and kiss-

ing (D-F) data are simulated (A,D), reconstructed with MicroTrack (B,E) and recon-

structed MicroTrack, but with concurrent microstructure estimation disabled (C,F).

Fibers are labeled based on mean axon radius as either 1 (blue), 5 (brown), or 10 μm
(purple). Pink fibers represent false positive connections.

C, contains equal numbers of candidate fibers that follow the crossing and kiss-
ing configurations, which maximizes the ambiguity for the algorithm to resolve.
If we solve for the best fitting projectome without solving for microstructure
parameters the false positive rate is 40±2% (Figure 2C and F). When we simul-
taneously fit the microstructure parameters the false positive rate is reduced by
nearly 3 fold to 14± 1% false positives (Figure 2B and E).

4 Conclusion

This paper demonstrates the first algorithm to constrain the solution of mi-
crostructural tissue properties with fascicle geometry estimates within an iden-
tified projectome. The algorithm is also the first to use microstructural tissue
properties to determine the fascicle geometry. Despite the tremendous computa-
tional complexity of solving for parameters in this very high dimensional space,
we demonstrate the feasibility of the algorithm. The simple simulation experi-
ments demonstrate the advantages of employing such a detailed model of white
matter tissue that not only incorporates global fascicular projection geometry,
but also geometrical details of tissue microstructure. In particular, we demon-
strate the potential to resolve crossing and kissing configurations. Further work
will refine the model for use with real brain tissue and test the hypothesis on
well-known anatomical crossings and kissings.
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Abstract. We propose a novel probabilistic framework to merge infor-

mation from DWI tractography and resting-state fMRI correlations. In

particular, we model the interaction of latent anatomical and functional

connectivity templates between brain regions and present an intuitive

extension to population studies. We employ a mean-field approximation

to fit the new model to the data. The resulting algorithm identifies dif-

ferences in latent connectivity between the groups. We demonstrate our

method on a study of normal controls and schizophrenia patients.

1 Introduction

The interaction between functional and anatomical connectivity provides a rich
framework for understanding the brain. Functional connectivity is commonly
measured via temporal correlations in resting-state fMRI data. These correla-
tions are believed to reflect the intrinsic functional organization of the brain [1].
Anatomical connectivity is often measured using DWI tractography, which es-
timates the configuration of underlying white matter fibers [2]. In this work
we propose and demonstrate a novel probabilistic framework to infer the rela-
tionship between these modalities. The model is based on latent connectivities
between brain regions and makes intuitive assumptions about the data genera-
tion process. We present a natural extension of the model to population studies,
which we use to identify widespread connectivity changes in schizophrenia.

To date, relatively little progress has been made in fusing information between
the aforementioned anatomical and functional modalities. It has been shown that
while a high degree of structural connectivity predicts higher functional corre-
lations, the converse does not always hold [3,4]. For example, strong functional
correlations can be found between spatially distributed locations in the brain.
However, one is more likely to identify white matter tracts connecting nearby
regions. Graph-theoretic models have previously been used to examine the cor-
respondence between independently estimated structural hubs and functional
networks [5,6]. In contrast, we infer a population template of connectivity using
both resting-state fMRI correlations and DWI tractography.

We demonstrate the capability of our model to learn stable patterns on a
population study of schizophrenia. Schizophrenia is a poorly-understood disorder
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(a) Joint fMRI/DWI model (b) Model of population differences

Fig. 1. (a) Joint connectivity model for a single population. (b) Joint model for the

effects of schizophrenia. The pairwise connections are indexed by n = 1, . . . , N , the

control subjects are indexed by j = 1, . . . , J , and the schizophrenia patients are indexed

by m = 1, . . . , M . Squares indicate non-random parameters; circles indicate hidden

random variables; all shaded variables are observed.

marked by widespread cognitive difficulties affecting intelligence, memory, and
executive attention. These impairments are not localized to a particular cortical
region; rather, they reflect abnormalities in widely-distributed functional and
anatomical networks [7,8]. In accordance with these findings, our model identifies
connectivity differences in spatially extensive networks.

Only a few studies to date have combined resting-state fMRI and DWI trac-
tography to analyze schizophrenia [9,10]. Univariate statistical tests are com-
monly used to identify significant population differences in temporal correlations
and in mean Fractional Anisotrophy (FA) values. The relevant connections are
then compared across modalities to draw conclusions. This approach treats func-
tional and structural connections as a priori independent and ignores distributed
patterns of connectivity. In contrast, our model jointly infers the entire pattern
of functional and anatomical connectivity, as well as the group differences.

2 Generative Model and Inference

Unlike voxel- and ROI-based analysis, we model the behavior of pairwise con-
nections between regions of the brain. Our observed variables are correlations
in resting-state fMRI and average FA values along the white matter tracts.

Latent Connectivity. Fig. 1(a) shows our model for a single population. Let
N be the total number of relevant connections in the brain. An and Fn are
the latent anatomical and functional connectivity measures between the two
regions associated with the nth connection. An is a binary random variable
with parameter πA: P (An;πA) = πAn

A (1 − πA)1−An . It indicates the presence
or absence of a direct anatomical pathway between the regions. In contrast, Fn
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is a tri-state random variable drawn from a multinomial distribution πF . These
states represent little or no functional co-activation (Fn = 0), positive functional
synchrony (Fn = 1), and negative functional synchrony (Fn = −1) between the
regions. For notational convenience, we represent Fn as a length-three indicator
vector with exactly one of its elements {Fnk : k = −1, 0, 1} equal to one:

P (Fn;πF ) =
1∏

k=−1

(πFk)Fnk . (1)

Data Likelihood. Let J be the number of subjects. The DWI measurement
Dj

n for the jth subject is a noisy observation of the anatomical connectivity An:

P (Dj
n|An; {ρ, χ, ξ}) =

[
ρ0δ(D

j
n) + (1 − ρ0)N (Dj

n; χ0, ξ
2
0)

](1−An)

·
[
ρ1δ(D

j
n) + (1 − ρ1)N (Dj

n; χ1, ξ
2
1)

]An

, (2)

where δ(·) is the Dirac delta function, N(·;χ, ξ2) is a Gaussian distribution
with mean χ and variance ξ2, and ρ is the probability of failing to find a tract
between two regions. The value zero of Dj

n is arbitrarily chosen to represent “No
Connection”. Dj

n is strictly positive when a connection is present.
The BOLD fMRI correlation Bj

n for the jth subject depends on both Fn and
An since direct anatomical connections predict higher functional correlations:

P (Bj
n|An, Fn; {μ, σ}) =

1∏
k=−1

[
N (Bj

n; μ0k, σ2
0k)

(1−An) · N (Bj
n; μ1k, σ2

1k)
An

]Fnk

. (3)

Using histograms of the data, we verified that the Gaussian distributions in
Eqs. (2-3) provide reasonable approximations for the DWI and fMRI data. Prag-
matically, they greatly simplify the learning/inference steps.

Population Differences. Fig. 1(b) depicts an extension of the model to a
population study involving controls and schizophrenia patients. We model dif-
ferences between the groups within the latent connectivities alone and share the
data likelihood distributions between the two populations.

We treat the latent connectivity templates {AS
n, F

S
n } of the schizophrenia

population as “corrupted” versions of the healthy template. In particular, with
(small) probability ε, each connection can switch its state:

P (AS
n |AC

n ; εA) = ε
AC

n (1−AS
n)+(1−AC

n )AS
n

A · (1− εA)AC
n AS

n+(1−AC
n )(1−AS

n)
, (4)

P (FS
n |FC

n ; εF ) =
1∏

k=−1

εF

2
(1−F C

nkF S
nk) · (1− εF )F C

nkF S
nk . (5)

For robustness, we rely on a single scalar to govern the probability of change
within each modality. Additionally, in Eq. (5) we assume that functional con-
nectivity switches to its other two states with equal probability.
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Variational EM Solution. It is not difficult to show that the complete log-
likelihood of all the random variables has multiplicative interactions among the
hidden variables. For this reason, we employ the mean-field algorithm [11] to
approximate the posterior probability distribution of the latent variables using
a fully factorized distribution.

We let {p̂C
n , p̂S

n , q̂
C
nk, q̂

S
nk} represent the posterior probability estimates for

{AC
n , AS

n , F
C
n , FS

n }. The variational EM algorithm alternates between updating
the posterior estimates and the model parameters to minimize the variational
free energy. Due to space constraints, we directly present the update rules.

Learning. We fix the posterior distributions and learn the model parameters. Let
J0

n be the number of healthy subjects for which Dj
n = 0, and let M0

n be similarly
defined for schizophrenia patients. The update rules are identical to those of the
standard EM. The probability estimates are sums of the latent posteriors:

πA =
1

N

N∑
n=1

p̂C
n πF k =

1

N

N∑
n=1

q̂C
nk

εA =
1

N

N∑
n=1

p̂C
n (1 − p̂S

n) + (1 − p̂C
n )p̂S

n εF = 1 − 1

N

N∑
n=1

1∑
k=−1

q̂C
nkq̂S

nk

and the density parameters are equal to weighted statistics of the data:

μ1k =

∑N
n=1

[
p̂C

n q̂C
nk

∑J
j=1 Bj

nk + p̂S
n q̂S

nk

∑M
m=1 Bm

nk

]
∑N

n=1 [p̂C
n q̂C

nk J + p̂S
n q̂S

nk M ]

σ2
1k =

∑N
n=1

[
p̂C

n q̂C
nk

∑J
j=1 (Bj

nk − μ1k)2 + p̂S
n q̂S

nk

∑M
m=1 (Bm

nk − μ1k)2
]

∑N
n=1 [p̂C

n q̂C
nk J + p̂S

n q̂S
nk M ]

ρ1 =

∑N
n=1

[
p̂C

n J0
n + p̂S

nM0
n

]∑N
n=1 [p̂C

n J + p̂S
n M ]

χ1 =

∑N
n=1

[
p̂C

n

∑
j:D

j
n>0

Dj
n + p̂S

n

∑
m:Dm

n >0 Dm
n

]
∑N

n=1 [p̂C
n (J − J0

n) + p̂S
n(M − M0

n)]

ξ2
1 =

∑N
n=1

[
p̂C

n

∑
j:D

j
n>0

(Dj
n − χ1)

2 + p̂S
n

∑
m:Dm

n >0 (Dm
n − χ1)

2
]

∑N
n=1 [p̂C

n (J − J0
n) + p̂S

n(M − M0
n)]

The parameter updates for {μ0k, σ
2
0k, ρ0, χ0, ξ

2
0} are trivially obtained from these

expressions by replacing p̂C
n with (1− p̂C

n ) and p̂S
n with (1− p̂S

n).

Inference. We fix the model parameters and update the variational posteriors.
We use Pl(·) to denote the mixture distribution in Eq. (2) and Glk(·) to denote
a normal distribution with parameters {μlk, σlk} in order to obtain:

p̂C
n

1 − p̂C
n

=

(
πA

1 − πA

)(
1 − εA

εA

)(2p̂S
n−1) J∏

j=1

(P1(D
j
n)

P0(D
j
n)

) 1∏
k=−1

(G1k(Bj
n)

G0k(Bj
n)

)q̂C
nk

p̂S
n

1 − p̂S
n

=

(
1 − εA

εA

)(2p̂C
n −1) M∏

m=1

(P1(D
m
n )

P0(Dm
n )

) 1∏
k=−1

(G1k(Bm
n )

G0k(Bm
n )

)q̂S
nk
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q̂C
nk ∝ πF k ·

(
1 − εF

(εF /2)

)q̂S
nk

J∏
j=1

(
G1k(Bj

n)

)p̂C
n
(
G0k(Bj

n)

)(1−p̂C
n )

s.t.

1∑
k=−1

q̂C
nk = 1

q̂S
nk ∝

(
1 − εF

(εF /2)

)q̂C
nk

M∏
m=1

(G1k(Bm
n ))

p̂S
n (G0k(Bm

n ))
(1−p̂S

n) s.t.

1∑
k=−1

q̂S
nk = 1

As seen, the updates can be decomposed into a prior term (for normal subjects
only), a term arising from the connectivity changes between the populations,
and a data likelihood term involving the other modality.

ModelEvaluation. Basedon the latentposterior probabilities{p̂C
n , p̂S

n , q̂
C
nk, q̂

C
nk},

the empirical probability of change in the anatomical or functional connectivity of
the nth connection is

ε̂n
A = p̂C

n (1 − p̂S
n) + (1− p̂S

n)p̂S
n and ε̂n

F = 1−
1∑

k=−1

q̂C
nk q̂

S
nk (6)

respectively. We evaluate the significance and robustness of our model through
non-parametric permutation tests and cross-validataion. To construct the dis-
tributions for ε̂n

A and ε̂n
F under the null hypothesis, we randomly permute the

subject labels (NC vs. SZ) 10, 000 times. For each permutation, we fit the model
and compute the relevant statistics in Eq. (6). The significance (p-value) of each
connection is equal to the proportion of permutations for which the computed
statistic is greater than or equal to the value obtained under the true labeling.

We also quantify the model’s predictive power via ten-fold cross validation.
The model is fit using the training subjects, and a likelihood ratio test is used
to predict the diagnosis for the held-out group. The data is resampled 20 times
to ensure stability of the results. For comparison, we perform the same ten-fold
cross validation using support vector machine (SVM) classifiers trained on the
fMRI correlations, the DWI FA values, and the combined fMRI and DWI data.

3 Results

Data. We demonstrate our model on a study of 18 male patients with chronic
schizophrenia and 18 male healthy controls. The control participants were group
matched to the patients on age, handedness, parental socioeconomic status, and
an estimated premorbid IQ. For each subject, an anatomical scan (SPGR, TR =
7.4s, TE = 3ms, FOV = 26cm2, res = 1mm3), a diffusion-weighted scan (EPI,
TR = 17s, TE = 78ms, FOV = 24cm2, res = 1.66× 1.66× 1.7mm, 51 gradient
directions with b = 900s/mm2, 8 baseline scans with b = 0s/mm2) and a resting-
state functional scan (EPI-BOLD, TR = 3s, TE = 30ms, FOV = 24cm2,
res = 1.875× 1.875× 3mm) were acquired using a 3T GE Echospeed system.

Pre-Processing. We segmented the structural images into 77 anatomical re-
gions with Freesurfer [12]. The DWI data was corrected for eddy-current distor-
tions. Two-tensor tractography was used to estimate the white matter fibers [13].
We compute the DWI connectivity Dj

n by averaging FA along all fibers connect-
ing the corresponding regions. If no tracts are found, Dj

n is set to zero.
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Table 1. Parameters of the joint model in Fig. 1(a), estimated separately for control

(NC) and schizophrenic (SZ) populations, and for the entire dataset (NC+SZ)1]

πA πF,−1 πF0 πF1 ρ0 ρ1 χ0 χ1 ξ0 ξ1

NC 0.37 0.43 0.40 0.17 0.66 0.10 0.42 0.34 0.005 0.003

SZ 0.37 0.43 0.41 0.16 0.67 0.11 0.41 0.34 0.005 0.003

NC+SZ 0.36 0.43 0.40 0.17 0.66 0.11 0.41 0.34 0.005 0.003

μ0,−1 μ1,−1 μ00 μ10 μ01 μ11 σ2
0,−1 σ2

1,−1 σ2
00 σ2

10 σ2
01 σ2

11

NC -0.063 -0.022 0.006 0.093 0.12 0.27 0.014 0.010 0.008 0.012 0.019 0.033

SZ -0.083 -0.036 0.001 0.097 0.13 0.27 0.011 0.011 0.013 0.013 0.017 0.035

NC+SZ -0.073 -0.027 0.003 0.099 0.12 0.28 0.012 0.011 0.012 0.012 0.017 0.035

We discarded the first five fMRI time points and performed motion correction
by rigid body alignment and slice timing correction using FSL [14]. The data
was spatially smoothed using a Gaussian filter, temporally low-pass filtered with
0.08Hz cutoff, and motion corrected via linear regression. Finally, we regressed
out global contributions to the timecourses from the white matter, ventricles and
the whole brain. We extract the fMRI connectivity Bj

n by computing Pearson
correlation coefficients between every pair of voxels in the two regions of the nth

connection, applying the Fisher-r-to-z transform to each correlation (to enforce
normality), and averaging these values. Since our anatomical regions are large,
the correlation between the mean timecourses of two regions shows poor cor-
respondence with the distribution of voxel-wise correlations between them. We
believe our measure is more appropriate for assessing fMRI connectivity.

To inject prior clinical knowledge, we pre-selected 8 brain structures (cor-
responding to 16 regions) that are believed to play a role in schizophrenia:
the superior temporal gyrus, rostral middle frontal gyrus, hippocampus, amyg-
dala, posterior cingulate, rostral anterior cingulate, parahippocampal gyrus, and
transverse temporal gyrus. We model only the 1096

(
16× 76−

(
16
2

))
unique pair-

wise connections between these ROIs and all other regions in the brain.

Joint Connectivity Model. We first fit the joint model in Fig. 1(a) to each
population separately as well as to the entire dataset. Table 1 reports the param-
eters of the three models. We observe that {μ, σ, ρ, χ, ξ} are largely consistent
across the three models. This supports our hypothesis that group differences ap-
pear in the latent connectivities rather than in the data likelihood parameters.
Population Study. Fig. 2 depicts the significantly different (p < 0.05, ε̂ > 0.5)
anatomical and functional connections identified by the algorithm. Table 2 lists
the corresponding regions and p-values. Due to space limitations, we report just
the 3 connections with the smallest p-values in each modality.

As seen from Fig. 2(b), schizophrenia patients exhibit increased functional
connectivity between the parietal/posterior cingulate region and the frontal lobe
and reduced functional connectivity between the parietal/posterior cingulate
region and the temporal lobe. These results confirm the hypotheses of widespread
1 χ0 χ1 implies that spurious DWI fibers arise due to artificially high anisotropy.
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(a) Anatomical Differences (b) Functional Differences

Fig. 2. Significant anatomical and functional connectivity differences (p < 0.05 and

ε̂n
A, ε̂n

F > 0.5). Blue lines indicate higher connectivity in the control group; yellow lines

indicate higher connectivity in the schizophrenia population.

Table 2. Top 5 significant anatomical (top) and functional (bottom) connections

Region 1 Region 2 p-value ε̂n
A/ε̂n

F

R Superior Temporal Gyrus (R-STG) L Inferior Parietal (L-InfP) 0.0005 0.85

L Posterior Cingulate (L-PCC) L Hippocampus (L-Hipp) 0.0045 0.79

L Superior Temporal Gyrus (L-STG) L Cuneus (L-Cun) 0.011 0.93

R Pars Triangularis (R-pTri) L Posterior Cingulate (L-PCC) 0.0001 0.92

R Paracentral Gyrus (R-pC) L Transverse Temporal (L-TTG) 0.0001 0.89

L Transverse Temporal (L-TTG) L Paracentral Gyrus (L-pC) 0.0001 0.55

functional connectivity changes in schizophrenia and of functional abnormalities
involving the default network.

The differences in anatomical connectivity implicate the superior temporal
gyrus and hippocampus. These regions have been cited in prior DTI studies of
schizophrenia [15]. We note that relatively few anatomical connections exhibit
significant differences between the two populations. This may stem from our
choice of ROIs. In particular, we rely on Freesurfer parcellations, which provide
anatomically meaningful correspondences across subjects. These larger regions
also mitigate the effects of minor registration errors. However, they may be too
big to capture structural differences between the groups. We emphasize that our
model can be easily applied to finer scale parcelations in future studies.

Table 3 reports classification accuracies for the generative model and SVM
classifiers. Despite not being optimized for classification, our model exhibits
above-chance generalization accuracy. We note that even the SVM does not
achieve high discrimination accuracy. This underscores the well-documented
challenge of finding robust functional and anatomical changes induced by schizo-
phrenia [15]. We stress that our main goal is to explain differences in connectivity.
Classification is only presented for validation.
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Table 3. Training and testing accuracy of ten-fold cross validation for the control (NC)

and Schizophrenic (SZ) populations

Training NC Training SZ Testing NC Testing SZ

Joint fMRI/DWI Model 0.99 ± 0.005 0.88 ± 0.01 0.61 ± 0.06 0.55 ± 0.05
linear SVM fMRI 1.00 ± 0.00 1.00 ± 0.00 0.54 ± 0.05 0.61 ± 0.05
linear SVM DWI 1.00 ± 0.00 1.00 ± 0.00 0.59 ± 0.08 0.58 ± 0.06

linear SVM fMRI/DWI 1.00 ± 0.00 1.00 ± 0.00 0.67 ± 0.04 0.60 ± 0.05

4 Conclusion

We proposed a novel probabilistic framework that fuses information from resting-
state fMRI data and DWI tractography. We further extended the basic approach
to model connectivity differences between two populations. We show that our
method captures changes in functional and anatomical connectivity induced by
schizophrenia. In particular, we detect increased functional connectivity from the
parietal lobe to the frontal lobe and decreased functional connectivity from the
parietal lobe to the temporal lobe. We also find significant anatomical connec-
tivity differences involving the superior temporal gyrus, the posterior cingulate
and the hippocampus. Finally, we demonstrate the predictive power of our model
through cross validation. These results establish the promise of our approach for
combining multiple imaging modalities to better understand the brain.
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Abstract. Functional brain connectivity, as revealed through distant

correlations in the signals measured by functional Magnetic Resonance

Imaging (fMRI), is a promising source of biomarkers of brain

pathologies. However, establishing and using diagnostic markers requires

probabilistic inter-subject comparisons. Principled comparison of

functional-connectivity structures is still a challenging issue. We give

a new matrix-variate probabilistic model suitable for inter-subject com-

parison of functional connectivity matrices on the manifold of Symmetric

Positive Definite (SPD) matrices. We show that this model leads to a new

algorithm for principled comparison of connectivity coefficients between

pairs of regions. We apply this model to comparing separately post-stroke

patients to a group of healthy controls. We find neurologically-relevant

connection differences and show that our model is more sensitive that

the standard procedure. To the best of our knowledge, these results are

the first report of functional connectivity differences between a single-

patient and a group and thus establish an important step toward using

functional connectivity as a diagnostic tool.

1 Introduction

The correlation structure of brain activity, measured via fMRI, reveals stable
inter-subject networks of distant brain regions that can be the expression of
cognitive function. In particular, some connectivity networks are present in the
absence of stimuli. They can reveal intrinsic brain activity and are studied in the
resting-state paradigm. These structures are of particular interest to study and
diagnose brain diseases and disorders [1] as they can be used for deep probes of
brain function on diminished subjects. Not only can they extract medically or
cognitively relevant markers on subjects unconscious [2], or with limited coop-
eration [3], but they also give information on higher-level cognitive systems that
are challenging to probe via medical imaging or behavioral clinical tests [4].

To use functional connectivity as a quantitative inference tool, principled
probabilistic comparison of connectivity structures across subjects is needed.
Unlike with stimuli-response studies used routinely in functional neuroimaging,
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this comparison is challenging, as the underlying description of the signal is mul-
tivariate: each brain-activity time course is considered relative to others. Uni-
variate group models, such as random effects or mixed effects, are in general not
sound as they neglect the strong statistical dependence between parameters es-
timated from the data. Multivariate techniques have been successfully employed
to single out outlying subjects [5], but have met little success: their results are
difficult to interpret as they do not point to specific localized differences.

In this paper, we focus on the description of brain functional-connectivity
using inter-regions correlation matrices. We first review the current practice
in inter-subject functional covariance comparison and recall some results on the
manifold of covariance matrices. Then, we introduce a probabilistic model at the
group level for the different subjects’ correlation matrices, and a corresponding
algorithm to detect connectivity differences in a specific parametrization of the
covariance matrices, as correlations are a form of covariance. We quantify on
simulated data the performance of this detection. Finally, we apply the model
to the individual comparison of the connectivity structure of stroke patients to
a group of healthy controls, and show that it outperforms the current practice.

2 State of the Art

2.1 Problem Statement: Comparing Functional Brain Connectivity

We consider S subjects, represented by the correlation matrices between brain-
activity time series extracted from n ROIs: {Σs ∈ Rn×n, s = 1 . . . S}. The
challenge is to give a probabilistic description of the population of correlation
matrices so as to find the significant differences between subjects or groups. The
current practice in functional-connectivity studies is to compare the coefficients
of the correlation matrices across subjects (see for instance [3,6]). This procedure
can be expressed as a univariate additive linear model on the correlation matrix:

Σs = Σ� + dΣs (1)

where Σ� is a covariance matrix representative of the mean effect, or the group,
and dΣs encode subject-specific contributions.

However, with this description it is difficult to isolate significant contributions
to dΣs. Indeed, for interpretation, some coefficients are zeroed out, eg by thresh-
olding a test statistic, as in [3], which eventually leads to a non positive definite
matrix, for which it is impossible to write a multivariate normal likelihood. As
a result, the subject-variability description learned on a population cannot give
probabilistic tests on new subjects.

2.2 Recent Developments on the Covariance-Matrix Manifold

The mathematical difficulty stems from the fact that the space of SPD matri-
ces, Sym+

n , does not form a vector space: A,B ∈ Sym+
n � A − B ∈ Sym+

n .
The Fisher information matrix of the multivariate normal distribution can be
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used to construct a metric on a parametrization of covariance matrices [7] and
thus define Sym+

n as a Riemannian manifold that is well-suited for performing
statistics on covariances [8]. Local differences on this manifold can be approxi-
mated by vectors of the tangent space: if B is close enough to A, the application:
φA : B → log

(
A− 1

2 BA− 1
2
)

maps locally the bipoint A,B ∈ Sym+
n ×Sym+

n to
−−→
AB ∈ Symn, the space of symmetric matrices1. A convenient parametrization
of
−→
W ∈ Symn is Vec(W) = {

√
2wi,j , j < i , wi,i, i = 1 . . . n} that forms an or-

thonormal basis of the tangent space [8]. Finally,
∥∥−−→AB

∥∥2

A
=
∥∥log

(
A− 1

2 BA− 1
2
)∥∥2

2

gives the intrinsic norm of
−−→
AB on the Sym+

n manifold, according to the metric
around point A: the distance between A and B in the manifold.

3 Matrix-Variate Random Effects Model for Covariances

Multi-subject probability distribution for covariance matrices. Using the Rieman-
nian parametrization of Sym+

n , we describe the individual correlation matrix
population as a distribution of matrices scattered around a covariance matrix
representative of the group, Σ�. As this distribution must be estimated with a
small number of observations compared to the feature space, we model it using
the probability density function that minimizes the information with a given
mean on the manifold, the generalized Gaussian distribution [8]:

p(Σ) = k(σ) exp
(
− 1

2σ2

∥∥−−−→Σ�Σ
∥∥2

Σ�

)
, (2)

where σ encodes an isotropic variance on the manifold and k is a normalization
factor. Given multiple observations of Σ corresponding to individual correlation
matrices, Σs, the maximum likelihood estimate of Σ� is independent of σ and
given by the Fréchet mean of the observations [8], minimizing

∑
s

∥∥−−−→Σ�Σs
∥∥2

Σ� .

Parametrization in the tangent space. We express the individual covariance ma-
trices as a perturbation of the group covariance matrix Σ�:

∀s = 1 . . . S, Σs = φ−1
Σ�(dΣs) = Σ� 1

2 exp(dΣs)Σ� 1
2 , (3)

thus, using (2), p(dΣs) = k′(σ) exp
(
− 1

2σ2

∥∥dΣs
∥∥2

2

)
. (4)

The parameters of Vec(dΣs) follow a normal distribution, with diagonal co-
variance σ, and the maximum-likelihood estimate of σ is given by σ̂2

MLE =
1
S

∑
s ‖Vec(dΣs)‖22. The model can thus be interpreted as a random-effect model

on the parametrization of Vec(dΣs), in the space tangent to the manifold Sym+
n .

1 Note that we do not use the same definition of the mapping as in [8,7], as we are

interested in mapping to Symn, the tangent space around In, and not the tangent

space in A. It extracts a statistically independent parametrization (Eq. (3) and (4)).
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Algorithm 1. Estimation of the group model
1: Input: individual time series X1 . . .Xs.

2: Output: estimated group covariance matrix Σ̂�, group variance σ̂.

3: for s = 1 to S do
4: Compute Σ̂s ← LedoitWolf(Xs).

5: end for
6: Compute Σ̂� ← intrinsic mean(Σ̂1 . . . Σ̂s).

7: for s = 1 to S do

8: Compute d̂Σ
s ← Σ̂�

− 1
2 ΣsΣ̂�

− 1
2 − In.

9: end for

10: Compute σ̂ ←
√

1
S

∑
s

∥∥Vec(d̂Σs)
∥∥2

2
.

Assuming that the distribution is narrow on the manifold, ‖dΣs‖2 � 1, eq. (3)
can be seen as the application of the placement function to move a noise dΣs

isotropic around In to Σ� (see [8], section 3.5):

Σs � Σ� 1
2 (In + dΣs)Σ� 1

2 . (5)

Model estimation from the data. We start from individual time-series of brain ac-
tivity in selected regions of interest, X ∈ Rn×t. We use the Ledoit-Wolf shrinkage
covariance estimator [9] for a good bias-variance compromise when estimating
correlation matrices from t time points with n < t < n2. From this estimate
of individual correlation matrices, we compute the intrinsic mean on Sym+

n us-
ing algorithm 3 of [10]. Finally, we estimate σ from the residuals of individual
correlation matrices in the space tangent in Σ� (see algorithm 1).

4 Testing Pair-Wise Correlations Statistics

The multivariate probabilistic model for correlations between regions exposed
above enables us to define an average correlation matrix of a group, as well as
the dispersion of the group in the covariance matrix space. Thus it can be used
to test if a subject is different to a control group. However, to aid diagnosis, it
is paramount to pin-point why such a subject may be different. In the tangent
space, the parameters dΣs

i,j of Vec(dΣs) are mutually independent. We can
thus conduct univariate analysis on these parameters to test which significantly
differs from the control group. However, the independence of the parameters is
true only in the space tangent at the population average Σ�, of which we only
have an estimate Σ̂�. Thus, to account for projection error, we resort to non-
parametric sampling of the control population to define a null distribution for
the parameters dΣs

i,j .
Specifically, we are interested in testing if a difference observed for a subject in

one of the dΣs
i,j can be explained by variation of the control population. As the

control population is typically small, we generate the null distribution by leave
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Algorithm 2. Coefficient-level tests
1: Input: individual time series for controls X1 . . .Xs and a patient Xk, p-value p,

number of bootstraps, m.

2: Output: Pair-wise p-values pi,j controlling for the difference in dΣi,j between the

patient and the control group.

3: Initialize P o
i,j ← empty lists, for i, j ∈ {1 . . . n}, j < i.

4: for 1 to m do
5: Choose a surrogate patient s̃ ∈ 1 . . . S.

6: Choose a subset S̃ of {1 . . . S}\s̃ of S surrogate controls.

7: Compute Σ̃� and d̃Σs for s ∈ S̃ using algorithm 1 on the surrogate controls.

8: Compute d̃Σs for s = s̃, using Σ̃� and eqn 5.

9: For all i, j, append to P o
i,j the T test comparing d̃Σs

i,j for s ∈ S̃ and for s = s̃.
10: end for
11: Compute Σ̂� and d̂Σs for s ∈ S̃ using algorithm 1 on the complete control group.

12: Compute d̂Σk, using Σ̂� and eqn 5.

13: For all i, j, compute ti,j the T test comparing d̂Σs
i,j for s ∈ S̃ and for s = s̃.

14: pi,j = 1 − quantile( ti,j in P o
i,j)

one out: for each control subject, we generate surrogate control populations S̃
by bootstrap from the other control subjects and estimate the corresponding
average covariance Σ̃�. We use Σ̃� to project all the individual correlation ma-
trices, including the left out subject, to compute d̃Σs

i,j , and we do a one sample

T test of the difference between d̃Σs
i,j for the left out subject with regards to the

resampled control group S̃. We record the values of this T test as an estimate of
the null distribution P o

i,j of the T test on the corresponding coefficient between
the controls and a patient. Finally, we estimate the average covariance Σ̂� for
the complete group of controls and, for each k patient to investigate, we perform
a T test of the difference between d̂Σs

i,j for the patient and the control group.
We use P o

i,j to associate a p-value to each coefficient per subject. We correct for
multiple comparisons using Bonferroni correction: for each patient, 1

2n (n − 1)
tests are performed. The procedure is detailed in algorithm 2.

5 Algorithm Evaluation on Simulated Data

Algorithm 2 relies on approximations of the exact problem for coefficient-level
detection of differences. In order to quantify the performance of this detection,
we study Receiver Operator Characteristic (ROC) on simulated data: we draw a
population of control covariances using eq. (5) with the parameters of Vec(dΣ)
normally distributed with deviation σ. For simulated patients, we add differences
of amplitude dΣ to a few coefficients (∼ 20) of this variability noise. For Σ� and
σ, we use the parameters estimated on real data (section 6). We investigate the
performance of algorithm 2 to recover these differences for a variety of parame-
ters. We observe good recovery for dΣ > σ (Fig 1), and find that the comparison
in the tangent space (eq. 5) outperforms a comparison in Rn×n (eq. 1).
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(a) (b) (c)

Fig. 1. ROC curves on data simulated according to the variability model given by eqn

5. (a) for different values of patient differences dΣ. (b) for different values of control

variability σ. (c) for different number of controls.

6 Application to Post-stroke Connectivity Reorganization

Standard clinical scores, such as the NIHSS, as well as fMRI studies can be
used to assess the consequences of cerebral strokes, but they test specific cogni-
tive functions and have little sensitivity to higher-order cognitive malfunctions.
Resting-state functional-connectivity is thus a valuable tool to study post-stroke
reorganization. We apply our model to stroke patients.

Resting-state fMRI dataset. After giving informed consent, ischemic-stroke pa-
tients, as well as age-matched healthy controls, underwent MRI scanning. Sub-
jects with existing neurology, psychiatry, or vascular pathologies were excluded
from the study. 10 patients and 20 controls were scanned during a resting-state
task: subjects were given no other task than to stay awake but keep their eyes
closed. 2 sessions of 10 minutes of fMRI data were acquired on a Siemens 3T
Trio scanner (245 EPI volumes, TR=2.46 s, 41 slices interlaced, isotropic 3mm
voxels). After slice-timing, motion correction, and inter-subject normalization
using SPM5, 33 ROIs were defined in the main resting-state networks by in-
tersecting a segmentation of the gray matter with correlation maps from seeds
selected from the literature. For each subject, the BOLD time series correspond-
ing to the regions were extracted and orthogonalized with respect to confound
time series: time courses of the white matter and the cerebro-spinal fluid, and
movement regressors estimated by the motion-correction algorithm. Covariance
modeling was performed on the resulting 33 time series.

Separating patients from controls with the matrix-variate covariance model. To
measure the discriminative power of the matrix-variate model introduced in sec-
tion 3, we test the likelihood of patient data in a model learned on controls.
Specifically, we evaluate by leave one out the likelihood of each control in the
model learned on the other controls. We compare this value to the average like-
lihood of patients in the 20 models obtained by leave one out. We perform this
comparison both using the group model isotropic on the tangent space (eq. 5),
and the group model isotropic in Rn×n (eq. 1). We find that the model in the
tangent space separates better patients from controls (Fig 2).
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Fig. 2. (a) Likelihood of the controls and the patients in the model parametrized in the

tangent space. (b) Likelihood of the controls and the patients in the model parametrized

in Rn×n. (c) Number of coefficients detected as significantly different from the control

group per patient, for the model parametrized in the tangent space, as well as in Rn×n.

(a) (b)

Fig. 3. Significant differences on two patients (p < 0.05 uncorrected), represented as

connections between regions: increased connectivity appears in red, and decreased in

blue. The lesion, manually segmented from anatomical images, is represented in green.

ROIs fully covered by a lesion are marked with a black cross on the correlation matrix.

Detected connection differences. We apply algorithm 2 to detect the significant
coefficient-level differences for each subject. We compare to a similar univariate
procedure applied to the parametrization in Rn×n given by eq. (1), rather than
the tangent space. We find that coefficient-level analysis detects more differences
between ROI pairs when applied on the tangent-space parametrization (Fig 2c).

7 Discussion

Interpretation of the tangent space. Projecting on the space tangent to the group
mean corresponds to applying a whitening matrix Σ�− 1

2 learned on the group
(eq. 5) that converts the Gaussian process described by the group covariance
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to an independent and identically distributed (iid) process. In other words, the
coloring of the time series common to the group is canceled out to compare
subjects on iid coefficients on the correlation matrix.

Probing neurological processes. For certain subjects, both procedures fail to de-
tect a single connection that makes a significant difference. Indeed, the variability
of resting-state activity in the control group induces some variability in the pro-
jection to the tangent space. For patients with small lesions, this variability is
larger than the univariate differences. On the other hand, for patients with im-
portant lesions, the functional connectivity analysis reveals profound differences
in the correlation structure that reflect functional reorganization. Some express
a direct consequence of the lesion, for example when the gray matter in one
of two ROIs has been damaged by the lesion, as can be seen on Fig 3a. Oth-
ers reflect functional reorganization. For instance, patient 10 has a right visual
cortex damaged by a focal lesion, but the analysis shows increased connectivity
in his left visual cortex (Fig 3b). Functional connectivity analysis thus reveals
modifications that go beyond the direct anatomical consequences of the lesion.

8 Conclusion

We have presented a matrix-variate probabilistic model for covariances, and
have shown that it can be expressed as a random effect model on a particular
parametrization of the covariance matrix. The ability to draw conclusions on
the connectivity between pairs of regions is important because it is a natural
representation of the problem. We applied this model to the comparison of func-
tional brain connectivity between subjects. We were able to detect significant
differences in functional connectivity between a single stroke patient and 20 con-
trols. A controlled detection of network-wide functional-connectivity differences
between subjects opens the door to new markers of brain diseases as well as new
insights in neuroscience, as functional connectivity can probe phenomena that
are challenging to access via stimuli-driven studies.
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Abstract. Image segmentation is essential for many automated mi-

croscopy image analysis systems. Rather than treating microscopy im-

ages as general natural images and rushing into the image processing

warehouse for solutions, we propose to study a microscope’s optical prop-

erties to model its image formation process first using phase contrast

microscopy as an exemplar. It turns out that the phase contrast imag-

ing system can be relatively well explained by a linear imaging model.

Using this model, we formulate a quadratic optimization function with

sparseness and smoothness regularizations to restore the “authentic”

phase contrast images that directly correspond to specimen’s optical path

length without phase contrast artifacts such as halo and shade-off. With

artifacts removed, high quality segmentation can be achieved by simply

thresholding the restored images. The imaging model and restoration

method are quantitatively evaluated on two sequences with thousands of

cells captured over several days.

1 Introduction

Long-term monitoring of living specimen’s movement and behavior has a wide
range of applications in biological discovery. Since transparent specimens such
as living cells generally lack sufficient contrast to be observed by common light
microscopes, the phase contrast imaging technique was invented to convert the
minute light phase variation caused by specimen into changes in light amplitude
that can be observed by naked eyes or cameras [15]. Due to the optical principle
and some imperfections of the conversion process, phase contrast images contain
artifacts such as the halo surrounding the specimen and shade-off (Fig. 3(b),
the intensity profile of a large specimen gradually increases from the edges to
the center, and even approaches the intensity of the surrounding medium). Over
time, biologists have learned how to overcome or even exploit those artifacts for
interpreting images. When computer-based microscopy image analysis began to
relieve humans from tedious manual labelling [5,8,12,14], it is unsurprising that
those artifacts cause the major difficulty in automated image processing. In par-
ticular, they hinder the process of segmenting images into cells and background,
which is the most critical step in almost all cell analysis and tracking systems.
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1.1 Previous Work

In microscopy image segmentation, specimen pixels are segmented from back-
ground pixels and then grouped into objects. In the past decades, many image
segmentation methods have been invented. For example, thresholding on local
intensity value and variation has a long history on cell image segmentation ([13]
and references therein). Morphological operations on the gradient or intensity
images are widely applied to segment specimen pixels [5,8]. Using the artifact
of microscopy images, Laplacian of Gaussian filter is also used to extract ob-
ject blob and contour [12]. After obtaining binary masks indicating whether
each pixel is a specimen or background pixel, connected component labelling or
marker-controlled watershed algorithms are often performed to group specimen
pixels into specimen objects [5,14].

1.2 Our Proposal

The previous image segmentation methods do not consider the microscopy image
formation process and treat them in the same way as general natural images.
However, there are apparent differences between natural images and phase con-
trast microscopy images, such as halo and shade-off. Because of these artifacts,
the observed image intensity does not exactly correspond to specimen’s optical
path length (product of refractive index and thickness). Recently, Li and Kanade
[9] proposed an algebraic framework for preconditioning microscopy images cap-
tured by differential interference contrast (DIC) microscopes. This inspired us to
think about whether understanding the phase contrast optics at an early stage
will help segment phase contrast images. In fact, we found that those artifacts
are not caused by random processes, instead they can be relatively well modeled
by the optical properties of the image formation process in the phase contrast
microscope imaging system. In this paper, we derive a linear imaging model for
phase contrast microscopy and formulate a quadratic optimization function to
restore the “authentic” phase contrast images without halo or shade-off effects.
With artifacts removed, high quality segmentation can be achieved by simply
thresholding the restored images.

2 Imaging Model of Phase Contrast Microscopy

Phase contrast microscope uses a conjugate pair of condenser annulus and phase
plate as shown in Fig. 1(c), where the specialized annulus is placed at the front
focal plane of the condenser while the phase plate is at the rear focal plane of the
objective lens. Wavefronts illuminate the specimen and divide into two compo-
nents: one component passes through and around the specimen without deviation
(commonly referred to as the S wave); the other component is diffracted, atten-
uated and retarded because of specimen (D wave). A typical phase retardation
caused by living cells in tissue culture is a quarter wave length [10]. The two
waves enter the objective lens and combine through interference to produce the
particle wave (P wave).
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Fig. 1. Wave interaction and phase contrast microscope optics. (a) Without phase

contrast, the amplitude difference between P (dash) and S (solid) waves is small; (b)

With phase contrast technique, the difference is large enough to be observed. (c) The

phase plate separates the surround (solid) and diffracted (dot) lights, speeds up (i.e.

advances the phase by 1/4 wavelength) and attenuates the surround light. A small

portion of diffracted light (dash) leaking into the phase ring causes the halo and shade-

off artifacts.

Observing the specimen in the microscopy image depends on the intensity
difference between specimen and its surrounding background, i.e. the amplitude
difference between particle (P) and surround (S) waves. Without any phase con-
trast technique, the P and S waves have nearly the same wave amplitudes as
shown in Fig. 1(a), thus the specimen remains transparent and appears invisi-
ble. However, in phase contrast microscope (Fig. 1(c)), the phase plate has an
etched ring with reduced thickness to advance the surround wave by a quarter
wavelength. The phase ring also has a partially absorbing metallic film to at-
tenuate the surround wave such that the final contrast between P and S waves
are easy to be perceived. The diffracted wave spreads over the phase plate. Most
of it passes through the phase plate without changes, and it interferes with the
surround wave to form the particle wave as shown in Fig. 1(b) where the ampli-
tude difference between P and S waves is now observable and the specimen will
appear as dark on a bright background. Unfortunately, some of the diffracted
wave will “leak” into the phase ring, which cause the halo and shade-off artifacts.

After illuminating waves pass through the specimen plate, the unaltered sur-
round wave lS(x) and the diffracted wave lD(x) (attenuated and retarded) are

lS(x) = Aei0 (1)
lD(x) = ζcAe−if(x) (2)

where i2 = −1, x = {(xr
j ,x

c
j), j = 1, · · · , J} represent 2D locations of J image

pixels, A is the illuminating wave’s amplitude, ζc and f(x) represent the ampli-
tude attenuation and phase shift caused by the specimen. Our goal is to restore
f(x), the “authentic” phase contrast image without artifacts. A thin lens with a
large aperture essentially performs a spatial Fourier transform (F) on the waves
from its front focal plane to its rear focal plane [3], thus the waves in front of
the phase plate are LS(w) = F(lS(x)) and LD(w) = F(lD(x)).
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The phase plate functions as a band-pass filter. For the non-diffracted sur-
round wave, the positive phase ring attenuates the wave amplitude and advances
its phase by a quarter wave length (π/2), thus the corresponding transmittance
function is

TS(w) = ζpe
i π
2 = iζp (3)

where ζp represents the amplitude attenuation by a phase ring with outer radius
R and width W (R and W are provided by microscope manufactures). The
diffracted wave spreads over the phase plate with a small portion leaking into
the ring. The corresponding transmittance function is

TD(w) = 1 + (iζp − 1)[cyl(
wr

R
)− cyl(

wr

R−W
)] (4)

where wr =
√

w2
u + w2

v is the radial frequency and cyl(·) is a 2D cylinder (or
circular) function: cyl(t) = 1, if 0 ≤ t ≤ 1; 0, otherwise. After band-pass filtering,
we have the waves immediately after the phase plate as L̃S(w) = LS(w)TS(w)
and L̃D(w) = LD(w)TD(w).

The ocular lens perform another consecutive Fourier transform. Mathemati-
cally, the forward and inverse Fourier transforms are identical except for a minus
sign. Hence, we have the waves after the ocular lens as l̃S(x) = lS(x)∗ tS(x) and
l̃D(x) = lD(x)∗ tD(x), where ∗ denotes the convolution operator. tS(·) and tD(·)
are the inverse Fourier transform of TS(·) and TD(·), respectively

tS(x) = iζpδ(x) (5)
tD(x) = δ(x) + (iζp − 1)airy(r) (6)

where δ() is a Dirac delta function, r =
√
u2 + v2 is the radial distance and

airy(r) is an obscured Airy pattern [1]

airy(r) = R
J1(2πRr)

r
− (R−W )

J1(2π(R −W )r)
r

(7)

and J1(·) is the first order Bessel function of the first kind. Fig. 2 shows a sample
of obscured Airy pattern where a bright region in the center is surrounded by a
series of concentric bright/dark rings.

Substituting lS , tS , lD, tD into l̃S and l̃D(x), we get

l̃S(x) = iζpA (8)

l̃D(x) = ζcAe−if(x) + (iζp − 1)ζcAe−if(x) ∗ airy(r) (9)

Fig. 2. An obscured Airy pattern. (a) 3D surface view; (b) 2D view.
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The first term in Eq.9 is the primary component of the diffracted wave that
destructively interferes with the non-diffracted surround wave and generates
the contrast for human observation. The second term in Eq.9 comes from the
diffracted wave leaking into the phase ring which causes the halo and shade-off
artifacts. The intensity of the final observed image is computed as

g(x) = |l̃S(x) − l̃D(x)|2 (10)
∝ (δ(r) − airy(r)) ∗ f(x) + C (11)

where C is a constant. The convolution kernel in Eq.11 represents the point
spread function (PSF) of the phase contrast microscope

PSF(u, v) = δ(u, v)− airy(
√

u2 + v2) (12)

which is a linear operator.
Now we can define the linear imaging model between g (observed image) and

f (artifact-free phase contrast image to be restored) as
g ≈ Hf + C (13)

In practice, we discretize the PSF kernel as a (2M+1) × (2M+1) matrix (e.g.
M = 5) and the H matrix is defined by

(Hf)j =
2M+1∑
u=1

2M+1∑
v=1

PSF(u, v)f(xr
j + u−M,xc

j + v −M) (14)

3 Restoring Artifact-Free Phase Contrast Image

Now that the phase-contrast microscopy imaging model is established as in
Eq.13, we develop procedures in this section to restore f from g. The first step is
to remove the background C from g by flat-field correction [10], after which we
re-define g as the corrected image, i.e. g ← g − C. The second and major step
is to solve f from g ≈ Hf . An attempt to solve this by simply inversing H is
known to be highly noise-prone. Instead, we formulate the following constrained
quadratic function to restore f

O(f) = ‖Hf − g‖22 + ωsfT Lf + ωr‖Λf‖p
p (15)

where L and Λ are Laplacian matrix and diagonal matrix defining the local
smoothness and sparseness with corresponding weights ωs and ωr, and ‖ · ‖p

denotes the lp-norm. A similarity-based Laplacian matrix is defined as L =
D−W where W is a symmetric matrix whose off-diagonal elements are defined
as W(i, j) = e−(gi−gj)

2/σ2
. Typically, σ2 is chosen by hand [4] or computed

as the mean of all (gi − gj)2’s. D is a diagonal degree matrix where D(i, i) =∑
j W(i, j). The image matting Laplacian matrix proposed by Levin et al. [7]

can also be applied here.
When using l2 sparseness regularization, O(f) can be expressed as

O(f) = fT Qf − 2bT f + gT g (16)

where
Q = HT H + ωsL + ωrΛT Λ (17)
b = HT g (18)
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A closed-form solution of f can be achieved by solving a sparse linear system
of equations Qf = b. Available solvers include conjugate gradient method or
Matlab backslash operator (used in [4,7]). When using l1 regularization, there
is no closed-form solution and only numerical approximation is available. We
combine non-negative multiplicative update [11] and re-weighting techniques [2]
to solve the l1 regularized objective function [9].

4 Experiments

Fig. 3 shows several restored samples by solving the l1-regularized quadratic
problem based on the derived imaging model. We will discuss the effects of dif-
ferent regularization terms and corresponding solvers in Section 4.1. In Fig. 3,
it appears that the restored artifact-free images are easier to be segmented be-
cause the cells are represented by bright (positive-valued) pixels set on a uni-
formly black (zero-valued) background. To see if this is the case, we have done
quantitative evaluation of segmentation by using restored images in Section 4.2.

4.1 Smoothness and lp Sparseness Regularizations

When using l2 sparseness regularization in Eq.15, we can restore a closed-form
solution f (Fig. 4(a)) from g (Fig.3(d)). This closed-form solution has both posi-
tive and negative values corresponding to cell pixels (Fig. 4(b)) and halo/mitotic
cell pixels (Fig. 4(c)) respectively. Comparing Fig. 3(i) with Fig. 4(b), we find
that l2 regularization does not enhance sparseness as well as l1 regularization
does. This phenomenon is also discussed in [6]. When there is no sparse con-
straint, the restored image includes many background pixels (Fig. 4(d)). When
there is no smoothness constraint, gaps between object parts such as cell nuclei
and membrane may appear (Fig. 4(e)). Without smooth or sparse constraints,
the directly solved f by inversing H is quite noisy (Fig. 4(f)).

Fig. 3. Restore artifact-free phase contrast images. (a) synthesized phase contrast im-

age; (b) intensity profile of the central row of (a) (or one may think of it as a 1D

phase contrast image); (c)-(e) real phase contrast microscopy images with increasing

cell densities; (f)-(j) restored artifact-free images corresponding to (a)-(e).
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Fig. 4. Sparseness and smoothness. (a) restored image by applying conjugate gradient

method (CG) to solve O(f) with l2 sparseness regularization; (b) and(c) the positive and

negative part of (a); (d) restored image without sparseness; (e) restored image without

smoothness; (f) restored image without sparseness or smoothness; (g) computational

cost comparison.

In terms of computational cost (Fig. 4(g)), the nonnegative quadratic pro-
gramming solver (NQP) for l1-regularized O(f) is slower than conjugate gra-
dient method (CG) for l2-regularized O(f). On a workstation with Intel Xeon
X5550 CPU and 24G memory, it costs 23 seconds for NQP solver to restore an
image with 1000 × 1000 pixels using Matlab while CG costs 1.9 seconds. The
Matlab backslash operator costs much more time and memory. In the following
evaluation, we use NQP solver for l1-regularized O(f).

4.2 Effects of Restoration on Segmentation

Data. Two sequences were captured at the resolution of 1040 ∗ 1392 pixels per
image. Seq1: C2C12 muscle stem cells proliferated from 30+ to 600+ cells (im-
aged by ZEISS Axiovert 135TV phase contrast microscope at 5X magnification
over 80 hours, 1000 images, Fig. 5(a,c)). Seq2: hundreds of bovine vascular cells
migrated to the central image region (imaged by Leica DMI 6000B phase con-
trast microscope at 10X magnification over 16 hours, 200 images, Fig. 5(f,h)).

Metrics. We denote cell and background pixels as positive (P) and negative
(N) respectively. The true positive rate is defined as TPR = |TP|/|P | where
true positive (TP) stands for those cell pixels correctly labelled by both skilled
human and our method. The false positive rate is defined as FPR = |FP|/|N |
where false positive (FP) are those cell pixels labelled by our method mistakenly.
The accuracy is defined as ACC = (|TP|+ |N | − |FP|)/(|P |+ |N |).
Parameters. We normalized the restored images onto value range [0, 1]. Based
on a training pair of restored image and its ground truth mask (Seq1 uses the
500th image and Seq2 uses the 100th image), we applied a series of values be-
tween zero and one to threshold the restored image and compared with the
ground truth to compute TPR and FPR scores, which provided a ROC curve.
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Fig. 5. Quantitative evaluation. (a-b, c-d, f-g, h-i): the pair of observed and restored

images; (e) and (j): ROC curves for sequence 1 and 2 respectively.

Different parameter sets in the objective function generate different ROC curves.
We searched the optimal parameter set (ωs = 1 and ωr = .001 in the evaluation)
that has the largest area under the ROC curve (AUC). For the curve with the
largest AUC, we searched the threshold that has the highest ACC to segment the
restored image into a binary mask (both Seq1 and Seq2 got the best threshold
equal to 0.22). We applied the learned parameters to all other images.

Evaluation. We manually labelled every 100th image in Seq1 (2369 annotated
cells, 8.6 × 105 cell pixels) and every 50th image in Seq2 (2918 annotated cells,
1.1×106 cell pixels). It took human experts about 2 hours to label one thousand
cell boundaries in an image. Fig. 5 shows some input and restored images with
all ROC curves shown in Fig. 5(e) and (j), where ROC curves deviate gradually
from the perfect top-left corner (AUC=1) as cell density increases. The average
AUC is 94.2% (Seq1) and 89.2% (Seq2), and the average segmentation accuracy
is 97.1% (Seq1) and 90.7% (Seq2).

5 Conclusion

We derived a linear imaging model representing the optical properties of phase
contrast microscopes. Using our model, authentic artifact-free phase contrast
images are restored by solving a constrained quadratic optimization problem.
This work suggests that a better understanding of the optics of microscopes leads
to better microscopy image analysis and interpretation. In particular, we have
demonstrated that this approach can greatly faciliate the effort on microscopy
image segmentation.
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Abstract. The cardiac valvular apparatus, composed of the aortic, mi-

tral, pulmonary and tricuspid valve, is an essential part of the anatomical,

functional and hemodynamic mechanism of the heart and the cardiovas-

cular system as a whole. Valvular heart diseases often involve multiple

dysfunctions and require joint assessment and therapy of the valves. In

this paper, we propose a complete and modular patient-specific model

of the cardiac valvular apparatus estimated from 4D cardiac CT data.

A new constrained Multi-linear Shape Model (cMSM), conditioned by

anatomical measurements, is introduced to represent the complex spatio-

temporal variation of the heart valves. The cMSM is exploited within a

learning-based framework to efficiently estimate the patient-specific valve

parameters from cine images. Experiments on 64 4D cardiac CT stud-

ies demonstrate the performance and clinical potential of the proposed

method. To the best of our knowledge, it is the first time cardiologists

and cardiac surgeons can benefit from an automatic quantitative evalu-

ation of the complete valvular apparatus based on non-invasive imaging

techniques. In conjunction with existent patient-specific chamber models,

the presented valvular model enables personalized computation modeling

and realistic simulation of the entire cardiac system.

1 Introduction

The heart valves are an essential anatomical structure regulating the heart cham-
bers hemodynamics and the blood flow between the heart and the human body.
Valvular heart disease (VHD) is a frequent symptom, with a prevalence of 2.5%
among the global population often obliged to complex management and thera-
peutical procedures. Moreover, valve operations are the most expensive and most
precarious cardiac interventions, with an average cost of $141,120 and 4.9% in-
hospital death rate in the US [1].

Due to the strong anatomical, functional and hemodynamic inter-dependency
of the heart valves, VHDs do not affect only one valve, but rather several valves
are impaired. Recent studies demonstrate strong influence of pulmonary artery
systolic pressure on the tricuspid regurgitation severity [2]. In [3,4] the simultane-
ous evaluation of aortic and mitral valves is encouraged, given the fibrous aortic-
mitral continuity, which anchors the left side valves and facilitates the reciprocal

T. Jiang et al. (Eds.): MICCAI 2010, Part I, LNCS 6361, pp. 218–226, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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Fig. 1. Complete heart valves model consisting of aortic valve (AV), mitral valve (MV),

pulmonary valve (PV) and tricuspid valve (TV). Left: Similarity transform illustrated

as a bounding box and anatomical landmarks. Right Complete mesh surface model.

opening and closing motion during the cardiac cycle. Moreover, in patients with
mitral and tricuspid valve regurgitation, joint surgery is recommended to mini-
mize the risk for successive heart failure or reduced functional capacity. Complex
procedures mostly performed in patients with congenital heart diseases, such as
the Ross operation, in which the aortic valve is replaced with the pulmonary, re-
quire comprehensive quantitative and qualitative evaluation of the heart valves.
Morphological and functional assessment of the complete heart valve apparatus
is crucial for clinical decision making during diagnosis and severity assessment
as well as treatment selection and planning.

An increased holistic view of the heart, demanded by clinicians is in perfect
accordance with the tremendous scientific effort worldwide, such as the Virtual
Physiological Human project [5], geared towards multi-scale physiological mod-
eling and simulation, which will promote personalized, preventive and predictive
healthcare. However, the majority of cardiac models to date focus on represen-
tation of the left or right ventricle [6], while very few include the left and right
atrium [7], but none explicitly handles the valves. Recently introduced models
of the aortic-mitral coupling [8,9] do not incorporate the right side valves. A
critical component for a patient-specific computation model of the entire heart
and realistic cardiovascular simulations, which was not reported yet in the liter-
ature, is a personalized and complete representation of the valvular apparatus.
In this paper we propose a complete and modular model of the heart valves
comprising the anatomy of the aortic, mitral, tricuspid and pulmonary valves as
well as their morphological, functional and pathological variations. The patient-
specific valvular apparatus is estimated non-invasively from 4D Computed To-
mography images, using a discriminative learning-based approach. Global valve
location and motion, as well as the non-rigid movement of anatomical valvular
landmarks, are computed within the Marginal Space Learning (MSL) [10] and
Trajectory Spectrum Learning (TSL) [8] frameworks. A novel anatomical Con-
strained Multi-linear Shape Model (cMSM) is introduced to capture complex
spatio-temporal statistics, and in conjunction with robust boundary detectors,
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Fig. 2. Anatomical Landmark Model and Complete Valve Model of the aortic valve

(left), mitral valve (middle) and pulmonary valve (right)

it is applied to extract the complete valvular anatomy and motion. Our approach
enables for integrated quantification and treatment management of heart valves,
and together with a patient specific chamber model [10], it will enable compre-
hensive heart simulations [11].

2 Physiological Model of the Heart Valves

In this section we introduce the complete heart valves model, which includes
the aortic, mitral, tricuspid and pulmonary valves, and captures morphological,
functional and pathological variations. To reduce anatomical complexity and fa-
cilitate effective estimation, the heart valve model is represented on two abstrac-
tion layers: Anatomical Landmark Model - which represents the global location
and motion of each valve, as well as the motion of the corresponding anatomic
landmarks; Complete Valve Model - which parameterizes the full anatomy and
dynamics of the valves using dense surface meshes.

Anatomical Landmark Model. The global dynamic variation of each valve
is parametrized as a temporal dependent similarity transform (see Fig. 1).

Bt = {(x1, x2, x3) , (q1, q2, q3) , (s1, s2, s3)} t ∈ 1 . . . T (1)

(x1, x2, x3) is the translation, (q1, q2, q3) the quaternion representation of the
rotation, (s1, s2, s3) the similarity transform scaling factors and t the temporal
position in the cardiac cycle. A set of 33 anatomical landmarks, described in the
next paragraph, are used to parameterize the complex and synchronized motion
pattern of all valves, which explains the non-linearities of the hemodynamic
movements. Thereby, each landmark is described by a T time-step trajectory
in a three dimensional space, normalized by the temporal dependent similarity
transform B:

Ln (B) = {l1, l2, . . . lT } n ∈ 1 . . . 33 li ∈ R3 (2)
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Complete Valve Model. The final valves model is completed with a set of 13
dense surface meshes. Each mesh is sampled along anatomical grids of vertices
defined through the landmarks:

Vq (L,B) = {v1,v2, · · · ,vK} q ∈ 1 . . . 13 vi ∈ R3 (3)

where vi are the vertices, and K is the total number of vertices of mesh q.

Aortic valve: The aortic valve is constrained by 11 landmarks (3 commissures,
3 hinges, 3 leaflet tips and 2 ostias) and four anatomical structures (aortic root,
N-, L- and R-leaflet). The aortic root is constrained by the hinge and commissure
plane and each leaflet is spanned between two commissures and one hinge, as in
[8], (see Fig. 2 (left)).

Mitral valve: The mitral valve is composed of 7 landmarks (3 trigones, 2 com-
missures and 2 leafleat tips). The anterior leaflet is defined by two trigons, one
leaflet tip and two commisssures and the posterior leaflet by three trigons, one
leaflet tip and one commissure, as in [8], (see Fig. 2 (middle)).

Pulmonary valve: The pulmonary valve is consisting of 9 landmarks (3 com-
missures, 3 hinges and 3 leafleat tips) and four anatomical structures (pulmonary
root, N-, L- and R-leafet), as in [8], (see Fig. 2 (right)).

Tricuspid valve: The function of the tricuspid valve is to regulate the blood
flow from the right atrium to the right ventricle, staying closed during systole
and opened during diastole. The model is constrained by four surface geometries
(annulus, septal-, anterior- and posterior leaflet) (Fig. 3) and six anatomical
landmarks (three commissures and three leaflet tips) which are corresponding to
vertices on the meshes. The tricuspid annulus is represented as a surface mesh
constrained by the three commissures. The tricuspid leaflets, the A, S and P, are
modeled as hyperbolic paraboloids. The vertices on the leaflet border have fixed
correspondences to vertices on the tricuspid annulus. Each leaflet is defined by
two commissures and one leaflet tip.

3 Patient-Specific Model Estimation

A hierarchical approach is utilized to estimatate model parameters, introduced in
the previous section, from 4D cardiac CT images. First, robust machine learning
techniques are applied to estimate the global valves and anatomic landmarks
parameters introduced in Eq. 1 and 2. Second, we present the novel anatomical
constrained Multi-linear Shape Model (cMSM), which effectively captures the
complex spatio-temporal variation of all valves. Lastly, the cMSM is applied in
a learning-based framework to estimated the complete valve model described in
Eq. 3.

3.1 Landmark Location and Motion Estimation

The global motion and landmarks parameters are estimated within the Marginal
Space Learning framework [7], similar as in [8].
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(a) (b) (c) (d) (e)

Fig. 3. Tricuspid valve model. (a)-(d) shows anatomical landmars (commissures and

leaflet tips) and (e) is showing the complete surface mesh (annulus and leaflets).

3.2 Constrained Multi-linear Shape Model

Multilinear modeling enables the decomposition of a shape space in a temporal
and spatial component in contrast to active shape models (ASM) where both
are coupled. In this paper we present a MPCA (Multi-linear Principle Com-
ponent Analysis) and MICA (Multi-linear Independent Component Analysis)
shape model of all valves which is conditioned by anatomical measurements.

Shape Space. In order to construct the shape model all shapes V are aligned by
calculating the mean sequence model and aligning them using general procrustes
analysis (GPA). The normalized shapes are represented as third-order tensors
D ∈ R(S×T×P), where S is the number of patients, T is the frame number inside
a multi phase sequence and P represents the number of shape points.

D = Z ×1 Upatient ×2 Umotion ×3 Upoints

As mentioned by [12] the motion subspace due its non-Gaussian properties is
decomposed using ICA and the patient and points space using PCA. We use the
fixed point algorithm to perform the Independent Component Analysis [13].

D = Z ×1 Upatient ×2 UmotionW−1W×3 Upoints

= (Z ×2 W1)×1 Upatient ×2 UmotionW−1 ×3 Upoints

= S ×1 Upatient ×2 Cmotion ×3 Upoints

Constrained Model Estimation. A set of anatomical measurements M
(m1,m2, . . . ,mR) extracted from the non-linear valve model is used to con-
dition a surface parameterization Vq (v1,v2, . . . ,vK) [14]. Assuming the joint
multivariate distribution (Vq |M) follows a Gaussian distribution a conditioned
surface VM

q , containing the anatomical measurements M, can be estimated as
follows:

VM
q = μVq + ΣVqM Σ−1

MM (M− μM)
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where μVq
is the mean surface parameterization from all training sets of the valve

surface Vq, μM the mean of the measurements M in the training set, ΣVqM the
covariance matrix between Vq and M. The constrained surface VM

q is used to
reconstruct the dynamic motion surface model of the whole sequence. Therefore
we first estimate the patient modes upatient and then use them to reconstruct
Vq (L,B).

upatient = VM
q T−1

(1) T = S ×2 Cmotion ×3 Upoints

where T−1
(1) is the pseudo-inverse of the tensor T flattened along the first mode

and Cmotion the one dimensional motion mode. The complete surface model
for the complete sequence, introduced in Eq. 3, can be extracted by a tensor
multiplication:

Vq (L,B) = S ×1 upatient ×2 Cmotion ×3 Upoints

3.3 Complete Valve Model Estimation

The comprehensive surface model Vq (L,B) of each anatomical structure q, is
estimated by adopting the constrained Multi-linear shape method using anatom-
ical measurements M defined between the landmarks L1 · · ·L33. E.g. for the
aortic root we use three measurements M = {m1,m2,m3}(m1-inter-commissure
distance, m2-hinge-commissure plane distance, m3-hinge-commissure plane an-
gle). The shape prediction Vq (L,B) is locally refined using a boundary detector,
trained using PBT [15] and Steerable features [16].

Fig. 4. Examples of estimated personalized model from a multiphase CT sequence

4 Experimental Results

The accuracy of the proposed method was evaluated using 64 multi phase CT
data sets, containing 640 volumes. The data sets comprise a variety of cardiovas-
cular diseases and due to different acquisition protocols they have heterogeneous
image quality, resolution and sizes. The ground-truth for training and testing
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Table 1. System precision for valve model estimation averaged on all valves. Left:
Evaluation of the Anatomical Landmark Model. Right: Comprehensive Surface as-

sessment.

Mean STD Median

Similartity T. [mm] 5.67 2.36 5.29

Landmark Motion [mm] 2.61 1.17 2.41

Mean STD Median

Tracking by Detection [mm] 1.52 0.98 1.47

ML PCA-ICA [mm] 1.39 0.91 1.32

cML PCA-ICA [mm] 1.24 0.91 1.18

Fig. 5. Bland altman plots for a) right ventricle output tract diameter, b) pulmonary

valve bifurcation diameter, c) tricuspid valve area and d) distance between pulmonary

and tricuspid valve

was obtained through an incremental annotation process guided by experts,
which includes the manual placement of anatomical landmarks and delineation
of valves surface over the entire cardiac cycle of each study. Each evaluation is
done using three-fold cross validation.

The estimation of the Anatomical Landmark Model is performed in two stages.
First the global dynamic motion is evaluated by the Euclidian distance between
the corner points of the ground-truth and estimated box in each frame. Second,
the non-linear landmark model error is computed as the mean Euclidian distance
of all detected landmarks compared to the expert annotation. The complete
valve model, containing the dense surface meshes, is measured as the mesh-to-
mesh distance. Results shown in table 1 corroborate that our constrained ML
PCA-ICA shape estimation approach achieves best performance, compared to a
regular ML PCA-ICA method and a standard frame-wise estimation procedure
(tracking by detection). Within three minutes a complete personalized dynamic
model of all valves is estimated with an average accuracy of 1.24 mm. The full
valvular model together with the four chambers of the heart is illustrated in
Fig. 4. Important clinical parameters are extracted from the personalized model
in the right heart. They include right-ventricle outflow tract (RVOT) radius,
Bifurcation radius, tricuspid valve area and a joint measurement of the two
valves, the pulmonary and tricuspid valve distance. Quantitative comparison is
shown in Fig. 5 by comparing ground truth measurements and the estimated,
demonstrating a strong correlation.
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Fig. 6. Measurements of aortic (AV) and pulmonary valve (PV) area obtained from a

patient with aortic valve regurgitaion (left), a healthy patient (middle) and a post

Ross operation patient (right). The red graph is representing the aortic valve and the

blue the pulmonary.

Finally we show quantitative comparison between a patient suffering from
aortic valve regurgitation, a healthy patient and a post-operative patient who
underwent a Ross operation. An important clinical measurement, the valvular
area, extracted from the personalized aortic and pulmonary valve model, demon-
strated in Fig. 6, confirms a successful outcome since no regurgitation is observed
at the aortic valve.

5 Conclusion

In this paper, we propose a novel personalized model for quantitative and qual-
itative evaluation of the complete heart valve apparatus in 4D CT. It is capable
to delineate the full anatomy and dynamics needed to depict a large variation of
valve pathologies, especially diseases affecting several valves. Its hierarchical ap-
proach using state of the art machine learning algorithms in combination with
a constrained Multi-linear shape space enables an patient specific model esti-
mation within three minutes and an accuracy of 1.24 mm. Clinical validation
shows strong correspondence between expert- and model estimated anatomical
measurements. The proposed method could spark research in many areas such
as examining interconnections of multiple valves and hemodynamic simulation
of the complete cardiac apparatus.
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Abstract. Deformable surface models are often represented as trian-

gular meshes in image segmentation applications. For a fast and easily

regularized deformation onto the target object boundary, the vertices

of the mesh are commonly moved along line segments (typically surface

normals). However, in case of high mesh curvature, these lines may inter-

sect with the target boundary at “non-corresponding” positions, or even

not at all. Consequently, certain deformations cannot be achieved. We

propose an approach that allows each vertex to move not only along a

line segment, but within a surrounding sphere. We achieve globally regu-

larized deformations via Markov Random Field optimization. We demon-

strate the potential of our approach with experiments on synthetic data,

as well as an evaluation on 2x106 coronoid processes of the mandible in

Cone-Beam CTs, and 56 coccyxes (tailbones) in low-resolution CTs.

1 Introduction

Deformable surface models are widely used for image segmentation [1]. Among
the many different representations of surfaces, polygonal meshes are advanta-
geous in many respects, such as flexibility or topology preservation [2]. The
deformation of the model is often driven by minimizing an energy that consists
of an image term that measures how well the model is aligned with features in
the image, and a regularization term that controls the smoothness of the model.
During energy minimization, the vertices of the mesh are iteratively displaced.

A fundamental challenge of this approach is how to keep the mesh valid,
i.e. as regular as possible [3]. One way to confront this problem is to allow
vertex displacements only in surface normal direction. Additional measures are
adaptive step-size control, adaptive remeshing, special regularization or mesh
surgery. The drawbacks of these approaches are that they are often difficult
to implement, slow down the convergence of the method drastically, or even
lead to situations where the deformation gets stuck. This is especially the case
in regions of high curvature. Hierarchical approaches may be able to circumvent
this problem: First the model is adapted with strong regularization, e.g. by using
shape priors such as statistical shape models [4], which is then gradually relaxed.
Although this increases robustness, the last bit of accuracy may only be achieved
with a deformation model free of a-priori shape constraints (see e.g. [5]). This is
the type of deformation model we focus on.
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Fig. 1. Normals on a cube (a) and on a tip-like structure (c). Unregularized defor-

mations along normals: No target boundary points (b) or non-corresponding target

boundary points (d) found for most vertices.

Normal (or other one-directional) displacements of mesh vertices may either
lead to very few features being detected in the image (low visibility), or many
“wrong” features (in terms of correspondence), as depicted in Fig. 1. This induces
large distortions of the mesh. Remeshing may restore mesh regularity, while im-
plausible shape deformations are to be remedied by regularization. In summary,
certain deformations can hardly be achieved with one-directional displacements,
given that directions are not known a-priori. E.g., parallel movements of tip-like
structures cannot be achieved along surface normals.

This paper contributes a solution to this problem: We propose a method
that allows arbitrary displacement directions at each mesh vertex. This enlarges
visibility, while correspondence is likely to be improved, too. However, a larger
set of image features may be found per vertex, so global regularization is required
to cope with highly inconsistent neighboring displacements. Our method allows
displacements to a discrete set of points within a sphere around each vertex. This
discrete nature allows us to formulate the segmentation problem as a Markov
Random Field (MRF), as shown in Sec. 2. The MRF can be solved efficiently [6],
yielding a globally regularized deformation of the mesh. MRFs have been applied
to many problems, e.g. image-to-image registration [7], due to their capability of
finding good optima. Global regularization has been proposed for one-directional
displacements using graph cuts [8]. However, this approach is not applicable in
our case as it requires a total order on displacements in terms of “above/below”.

We illustrate on synthetic and real data that omni-directional displacements
combined with MRF optimization can handle parallel movements of meshes with
high curvature, where previous approaches based on normal displacements fail.

2 Method

We denote the set of vertices v ∈ R3 of the deformable surface mesh as V , and
the set of pairs of adjacent (i.e. edge-connected) vertices as N ⊂ V × V . Each
vertex can be moved by adding a vector l ∈ L, where L ⊂ R3 is a discrete set
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Fig. 2. Three vertices (black dots) on a 2D contour. (a) Omni-directional displacements

to yellow/gray dots. (b) Exemplary “same” displacements shown by black arrows with

corresponding numbers. (c) Same displacement for all vertices leads to parallel trans-

lation.

of possible displacements. We call a position v + l sample point, and a mapping
V → L, v �→ lv that assigns a displacement to each vertex displacement field.

2.1 Omni-Directional Displacements

We propose to extend the range of motion for a vertex from a line segment
to a sphere centered at its current position. Therefore, we define L as a set
of displacements that are uniformly distributed within a sphere (see Fig. 2a).
The sphere radius is a parameter of our method. The set of displacements is
interpreted in world coordinates for all vertices (see Fig. 2b and 2c). As discussed
in Sec. 2.2, this is important for regularization.

2.2 Objective Function

For each displacement l ∈ L and vertex v ∈ V , a scalar cost c(v, l) ≥ 0 encodes
whether sample point v+l is believed to lie on the object boundary. The stronger
the belief, the lower should be the cost. In other words, c(v, l) serves as a penalty
for the case that v is displaced by l. We calculate c(v, l) from the image I : R3 →
R. It depends on I(v + l), ∇nvI(v + l) (where nv denotes the surface normal
at v), and application-specific parameters (see Sec. 3). In general, our objective
function accepts any c : V × L → R+

0 , so c can be defined as appropriate.
E.g., if the surface mesh might locally lie perpendicular to the object boundary,
derivatives in directions other than nv may be considered as well.

For each two displacements l1, l2, a scalar distance value d(l1, l2) ≥ 0 serves
as a penalty for the case that l1 and l2 occur on adjacent vertices. The distance
function d : L × L → R+

0 is supposed to take care of regularization. It has to
satisfy d(l1, l2) = 0 ⇔ l1 = l2, but does not have to be a metric (see Sec. 2.3).
It can, e.g., be the Euclidean norm ||l2 − l1|| to some power.

We define the objective function of the mesh adaptation problem as follows:∑
v∈V

c(v, lv) +
∑

(v,w)∈N

d(lv, lw) (1)
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We are looking for the displacement field that minimizes Eq. 1. Note that inter-
preting displacements in world coordinates yields distance-penalties for scaling
the mesh, while parallel translations are not penalized (see Fig. 2c). We consider
this beneficial as we expect our initial meshes (as well as its local features) to
have approximately correct scale. Alternatively, if scaling should not be penal-
ized, one could interpret displacements in local coordinate systems per vertex.

2.3 Optimal Displacement Field

We encode the objective function in Eq. 1 as an MRF, with vertices being rep-
resented by MRF-nodes, mesh edges by MRF-edges, and displacements by the
possible states (also called labels) of the nodes. Cost c(v, l) defines the unary po-
tential of node v in state l, and distance d(l1, l2) defines the binary potential of
two adjacent nodes in states l1, l2. The MRF-state with minimal sum of poten-
tials yields the desired displacement field. We optimize the MRF by a method
named FastPD [6]. FastPD can deal with non-metric distance functions d as
specified in Sec. 2.2. It is guaranteed to find an approximately optimal solution.

3 Results

To evaluate our MRF-based method, we applied it to three types of 3D data:
(1) Synthetic binary images, (2) synthetic binary images with various amount
of noise, and (3) clinical image data. On synthetic binary images and clinical
image data, we also computed results with a globally regularized method [8]
(GraphCuts) and a locally regularized method [5] (FreeForm), both employing
vertex normals as displacement directions. GraphCuts computes the displace-
ment field with minimum sum of costs while respecting a hard constraint on the
difference between the lengths of adjacent displacements. FreeForm takes the
minimum cost displacement for each vertex and regularizes locally via a small
displacement toward the centroid of the respective adjacent vertices.

For the computation of the costs c(v, l), we used the strategy proposed in [9]:
If the intensity I(v + l) lies within a certain window [i0, i1], costs are inversely
proportional to ∇nvI(v + l). Otherwise costs are set to a constant, high value.
The thresholds i0 and i1 are parameters of the strategy. As distance function d,
we used d(l1, l2) = ||l2−l1||3 in all experiments. Whenever we employ GraphCuts
or FreeForm, we use the same cost function as for the respective MRF experi-
ment, and normal segments with the length of the respective sphere diameter.
In contrast to the GraphCuts- and MRF based adaptations, all FreeForm adap-
tations were performed iteratively, with 30 steps. All GraphCuts experiments
were performed with a difference constraint of 2 sample points (i.e. lengths of
adjacent displacements can be at most 2 sample points apart).

MRF optimization with FastPD took less than 10 seconds in all our experi-
ments. The computation of the MRF’s unary potentials c(v, l) was more time-
consuming, taking up to 10 minutes depending on the number of vertices and
labels. FastPD required memory up to 8GB for the experiments on clinical data.
All experiments were performed on a 3GHz core with 8GB main memory.
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Fig. 3. Deformable mesh (red/dark grey mesh) and target object (transparent gray

surface). (a) Initial situation. (b) Displacements along normals without regularization.

(c) FreeForm approach. (d) GraphCuts approach. (e) MRF approach.

Fig. 4. Performance of MRF approach in the presence of noise. Random noise with

range (a) [−0.5..0.5], (b) [−2.5..2.5] and (c) [−5..5]. Slices of the image data and re-

spective adaptation result (red/dark grey mesh). Grey surface: ideal target object.

Synthetic Images. We performed experiments on binary images (i.e. intensi-
ties ∈ {0, 1}) of a cube and a thin ellipsoid. As initial meshes, we used triangu-
lated cube and tip surfaces with ideal shape, but shifted pose (see Fig. 3(a)). The
cube mesh had 770, the ellipsoid 1797 vertices. One sphere diameter (or surface
normal segment, respectively) was covered by 53 sampling points for the cube,
and 63 for the ellipsoid. For all experiments on synthetic data, we chose sphere
radii such that the target object boundary was located completely within a band
around the initial mesh that has this radius. We set the cost function parame-
ters to i0 = 0.1 and i1 = 1.1. The results of MRF-, FreeForm- and GraphCuts
adaptation are shown in Fig. 3(c), 3(d) and 3(e), respectively. Fig. 3(b) shows
the results of adding normal displacements without any regularization.

We added various amounts of random noise to the binary cube image and
performed MRF based adaptation as before. The cube was detected correctly
for noise with ranges [−0.5..0.5] and [−2.5..2.5], and failed for [−5..5]. Fig. 4
shows slices of the noisy image data and the respective adaptation results.

Clinical Data. In a quantitative evaluation on 106 mandible Cone-Beam CTs
and 50 pelvis CTs we compared MRF, FreeForm and GraphCuts results to
gold standard surfaces obtained from manual segmentations. Initial meshes were
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automatically generated by Statistical Shape Model adaptation [9,10]. For the
mandible surfaces (gold standard as well as adaptation result), we extracted
the right coronoid processes as the region of the mesh that lies above 1/2 of
the extension of the mandible in transversal direction, between 1/3 and 2/3
of extension in dorsoventral direction, and above 2/3 in longitudinal direction.
Extraction of the left coronoid process worked analogously. We identified the
tip point as the upmost vertex in longitudinal direction. For the sacrum, we
extracted the coccyx as the region of the mesh that lies below 1/3 of the extension
of the sacrum in longitudinal direction. We identified the coccyx tip as the vertex
with minimum 3 · longitudinal−1 · dorsoventral coordinate. As error measures we
assessed the tip-to-tip distances (tip2tip), tip-to-surface distances from result tip
to gold standard surface (tip2surfRtG) and the other way round (tip2surfGtR),
and roots mean square surface distances (rmsRtG and rmsGtR).

All mandible meshes had 8561 vertices, all sacrum meshes 6161. The number
of samples along a sphere diameter (or normal segment) was 39 for the mandible
and 45 for the sacrum. The sphere diameters were 15mm (mandible) and 25mm
(sacrum). We set the cost function parameters to i0 =350 and i1 =800 (mandible)
and i0 = 120 and i1 = 520 (sacrum). For the mandible, we performed a second
MRF based adaptation (mrfZ) with a slightly different cost function: We added
a small extra cost to sample points with lower longitudinal coordinate, thus
slightly preferring the a motion in upward direction.

Fig. 5. Row 1: Coronoid process results on 106 individuals (i.e. 212 cases). Row 2:

Coccyx results on 50 individuals. X-axis: Error measure in mm (see Sec. 3). Y-axis:

Frequency. MRF (mrf, mrfZ), FreeForm (free) and GraphCuts (gc).
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Evaluation results are plotted as histograms in Fig. 5. As measurements are
not normally distributed, we performed the Wilcoxon signed-rank test to asses
significant differences (level 0.05). For the mandible, both MRF results are sig-
nificantly better than FreeForm and GraphCuts in terms of tip2tip, rmsGtR and
rmsRtG, while mrfZ performs significantly better in terms of tip2surfGtR, too.
For the sacrum, MRF results are significantly better than GraphCuts in terms
of all but the rmsGtR measure. However, compared to FreeForm, the error dif-
ference is significant only for the two rms measures.

4 Discussion

Experiments on synthetic binary images show that our MRF-based approach is
able to handle parallel translations, in contrast to a globally and a locally regu-
larized approach (GraphCuts and FreeForm) that employ normal displacements.
Experiments on noisy synthetic images show that the MRF approach is able to
produce well-regularized displacement fields in the presence of noise. However,
for a very low signal-to-noise ratio, it may fail to detect the target object. Real-
world experiments show that the MRF approach is able to produce very accurate
segmentations of tip-like structures. On the mandible tips, the MRF approach
clearly outperforms the GraphCuts and FreeForm approach. Here, normal di-
rections often exhibit the “wrong-visibility” problem, see Fig. 6(a-c), which our
new method resolves. However, on the sacrum tips, more experiments need to be
performed to draw decisive conclusions. At least, the “non-visibility” problem
for normals can be resolved in a few exemplary cases, see Fig. 6(d,e).

Fig. 6. Exemplary results on clinical data. (a-c) Coronoid processes of the mandible.

(d,e) Coccyx tips of the sacrum. Contours: Black: Gold standard. White: Initial mesh.

Green/gray: MRF result. Blue/light gray: FreeForm result.

5 Conclusion

We proposed a method that allows omni-directional displacements for all vertices
of a surface mesh during deformable model adaptation. We achieve global regu-
larization by encoding the adaptation problem as a Markov Random Field, which
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we then optimize with a fast approximate solver. In an evaluation on synthetic
as well as clinical data, we showed that this approach can outperform traditional
mesh adaptation along line segments (normals) in regions with high curvature
(tips) in terms of segmentation accuracy. In this paper, we focused on paral-
lel translations and tip-like structures. A closer investigation of our MRF based
method in situations where scaling and rotation is desired, as well as an extended
quantitative evaluation that considers all regions on mandible and pelvis shall
be performed in future work. Furthermore, computational performance (both
in terms of memory and speed) shall be enhanced, possibly involving a hybrid
deformation model that employs omni-directional displacements in regions with
high curvature and normal displacements elsewhere. Last but not least, a ques-
tion of interest is if the MRF based method can be extended to simultaneous
adaptation of multiple, adjacent meshes, i.e. multi-object segmentation.
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Abstract. Simulating soft tissues in real time is a significant challenge

since a compromise between biomechanical accuracy and computational

efficiency must be found. In this paper, we propose a new discretiza-

tion method, the Multiplicative Jacobian Energy Decomposition (MJED)

which is an alternative to the classical Galerkin FEM (Finite Element

Method) formulation. This method for discretizing non-linear hyperelas-

tic materials on linear tetrahedral meshes leads to faster stiffness matrix

assembly for a large variety of isotropic and anisotropic materials. We

show that our new approach, implemented within an implicit time inte-

gration scheme, can lead to fast and realistic liver deformations including

hyperelasticity, porosity and viscosity.

1 Introduction

The simulation of soft tissue deformation has attracted a growing interest in the
past 15 years both in the biomechanics and the medical image analysis com-
munities. Modeling in silico the deformation of soft tissues is of high interest in
particular for surgical gesture training[1] and therapy planning[2]. In this paper,
we focus on the simulation of liver deformation in the context of surgery training.
In such case, it is crucial that soft tissue deformation is simulated in real-time,
i.e. at a minimum of 25 frames per second for visual feedback. Furthermore, in
surgery simulation, there are additional constraints of numerical stability during
the occurrence of contact between soft tissue and (virtual) surgical instruments.

To simulate soft tissues efficiently and realistically, some authors have relied
on the Total Lagrangian Explicit Dynamic (TLED) algorithm[3,4] to simulate
deformations with explicit time integration schemes. However, the main limi-
tation of these explicit schemes is that they require very small time steps to
keep the computation stable, especially for stiff materials. Indeed, it is necessary
to iterate multiple times to propagate applied forces from a node to the whole
mesh. Therefore, with such approaches, it is difficult to produce realistic simu-
lations of contact with rigid objects, such as surgical tools. Implicit integration
schemes require the evaluation of a global stiffness matrix and the solution of
linear system of equations at each time step.
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In this paper, we first introduce the Multiplicative Jacobian Energy Decompo-
sition (MJED): a general algorithm to implement hyperelastic materials based
on total Lagrangian FEM with implicit time integration schemes. Then we pro-
pose a realistic biomechanical model of the liver which combines hyperelasticity,
viscoelasticity as well as poroelasticity. The viscoelasticity of our liver model is
based on Prony series, the parameters of which have been experimentally es-
timated through a dynamic strain sweep testing. Finally, we take into account
the porous medium of the liver parenchyma through a poro-elastic model which
computes the fluid pressure and the resulting applied pressure on the solid phase.

2 Multiplicative Jacobian Energy Decomposition

Under large deformation, linear elasticity is no longer valid and the liver behavior
is better represented as an hyperelastic material. Since we are using implicit time
integration schemes, it is necessary at each time step to compute hyperelastic
forces and stiffness matrices with a discretization method. The Finite Element
Method is a widely used approach to this end, however the constraint of real-time
simulation is not always satisfied. The objective of this section is to introduce a
fast discretization method suitable for all hyperelastic materials.

To discretize the liver geometry, we use tetrahedral linear finite elements.
TP is the rest tetrahedron (with vertices Pi) which is transformed under the
deformation function φ(X) into the tetrahedron TQ (with vertices Qi). Any
hyperelastic material is fully determined by its strain energy function Wh which
describes the amount of energy necessary to deform the material. This strain
energy function is defined in a way which is invariant to the application of
rigid transformations: it involves the invariants of the Cauchy-deformation tensor
defined as C = ∇φT∇φ. There are numerous invariants of C (see [5] for detailed
explanation) but the one commonly used are the following: I1 = trC, I2 =
1
2 ((trC)2 − trC2), I4 = aT Ca (where a is the main fiber direction), and the
Jacobian J = det∇φ.

2.1 Decomposition of Strain Energy

We decouple in the strain energy, the invariants of C from J so as to avoid com-
plex derivative expressions and matrix inversion of C. Instead of computing the
force and stiffness matrix using the classical Galerkin FEM[6], we compute them
directly using the Rayleigh-Ritz method by deriving the energy with respect to
the nodal position:

Fi = −
(
∂Wh

∂Qi

)T

and Kij =
(

∂2Wh

∂Qj∂Qi

)
(1)

It is important to note that the approach developed in this section is completely
equivalent to the classical FEM one but leads to more efficient computation. A
comparison with the open source software FEBio proved this equivalence. We
propose to write the strain energy functions as a sum of terms W k

h = fk(J)gk(Ĩ)
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or exponentials of W k
h , where Ĩ = (I1, I2, I4...). This decomposition applies to

every material models we studied so far (Costa , Veronda Westmann, Boyce
Arruda, StVenant Kirchhoff, NeoHookean, Ogden, Mooney Rivlin). This gives
the following expression of the tetrahedron strain energy:

Wh = V0

n∑
k=1

fk(J)gk(Ĩ) + V0 exp

⎛⎝ n′∑
k=n+1

fk(J)gk(Ĩ)

⎞⎠ (2)

Using this exact decomposition of strain energy enables complex material for-
mulation to be computed more efficiently with only a sum of reasonably simple
terms. With this decomposition, getting fk′(J) requires a 1D derivation, and
getting Sk

h = 2∂gk(Ĩ)
∂C requires to combine well-known derivatives of the invari-

ants (such as ∂I1
∂C = Id or ∂I2

∂C = IdI1−C where Id is the 3×3 identity matrix).
For instance, the nodal force expression becomes:

Fh,i = −V0

n∑
k=1

(
fk′(J)gk(Ĩ)

(
∂J

∂Qi

)T

+ fk(J)∇φ Sk
h Di

)
(3)

where Di are gradients of shape functions, called shape vectors.

2.2 Formulation of the Stiffness Matrix

Implicit time integration schemes require the computation of the tangent stiffness
matrix at each time step. This naturally involves elasticity tensors computed as
the derivative of Sk

h with respect to C for each tetrahedron and at each time step.
The MJED leads to far simpler expressions of those tensors because Sk

h is indepen-
dent of J . Furthermore, in many common material models, the term containing
those elasticity tensors can be precomputed. The full expression of the stiffness
matrix includes 6 terms. Due to space constraints, we only focus below on the

term involving the fourth order elasticity tensor: Rk
h = fk(J)

(
∂Sk

h
∂Qj

Di

)T

∇φT

which requires the computation of the tensor ∂Sk
h

∂C : H where H is a symmetric
matrix. In all cases, this tensor can be written as a sum of two kinds of terms,
βk

1A
k
1HAk

1 or βk
2 (H : Ak

2)Ak
2 where βk

u are scalars, Ak
u are symmetric matrices,

and A : B = tr(BT A) for any two matrices A,B. Therefore, the term Rk
h is a

combination of two terms:

fk(J)∇φLk
1(i, j)∇φT and fk(J)∇φLk

2(i, j)∇φT (4)

where Lk
1(i, j) and Lk

2(i, j) are linear matrices depending on the shape vectors
Di, Dj , the matrices Ak

u and the scalars βk
u. This formulation leads to an opti-

mization for the assembly of the stiffness matrix for two reasons. First, no fourth
order tensors are required, only scalars and symmetric matrices are involved in
the computation. Second, except for the Ogden model, the matrices Ak

u are con-
stant and therefore matrices Lk

1(i, j) and Lk
2(i, j) can be precomputed for each

tetrahedron before the simulation.
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2.3 Coping with Highly Compressed Elements

In case of high compression, the volumetric terms fk(J) in the strain energy
become dominant. This makes the stiffness matrix singular and thus leads to
numerically unstable computations. We propose to regularize a second term of
the stiffness matrix Gk

h = fk
′′
(J) gk(Ĩ) ∂J

∂Qj
⊗ ∂J

∂Qi
by replacing it with the

following expression : Gk
h = fk

′′
(J)gk(Ĩ)

(
(1− b) ∂J

∂Qj
⊗ ∂J

∂Qi
+ b ∂J

∂Qj
· ∂J

∂Qi
Id
)
.

The closer b is to 1, the more Gk
h resembles to a diagonal matrix. In practice,

we set b = (1 − J) if 0 ≤ J ≤ 1, b = 0 if J ≥ 1 and b = 1 if J ≤ 0. With this
technique, it is even possible to handle inverted elements when the strain energy
remains finite at J = 0.

3 Modeling Visco - Poro - Hyperelasticity

3.1 Visco-Hyperelasticity Based on Prony Series

To accurately model the viscoelasticity of the liver,we propose to rely on Prony
series [4]. In this method, time-dependent stresses are added to the hyperelastic
stress tensor Sv. Time-dependence is given by α(t) = α∞ +

∑
i αi exp(−t/τi)

with the condition (α∞ +
∑

i αi) = 1. The visco-hyperelastic SPK tensor Sv

can be written as:

Sv = Sh −
∑

i

γi where γi =
∫ t

0

αi

(
1− exp

(
t′ − t

τi

))
∂Sh

∂t′
dt′ (5)

After a discretization over time this results in the recursive formula: γn
i = aiSn

h +
biγ

n−1
i where ai = Δtαi/(Δt + τi) and bi = τi/(Δt + τi). Δt is the time step

used for discretization and has to be the same as the time step for the solvers of
the simulation.

3.2 Poro-Elasticity

Following Kerdok’s model [7], we propose to model the liver as a fluid-filled
sponge as it filters the blood through its parenchyma. The proportion of free-fluid
(blood, water. . .) in the liver parenchyma in the reference configuration is set to
a constant fw, 1− fw represents the initial ratio of the solid phase (e.g. hepatic
cells...). We introduce the effective volumetric Jacobian J∗ = (fw + J − 1)/fw,
and define the volumetric Cauchy stress following Hencky’s elasticity : σHeq =
K0 fw ln(J∗) where K0 is the bulk modulus of the material. With this model,
when J gets close to 1−fw, the solid phase of the liver is completely compressed
and the resulting stress is infinite. To avoid instabilities due to this infinite
stress, we substitute σHeq when J ≤ J0 by its tangent curve at J0 = 1 − fw +
K0/Klim where Klim is a bulk modulus and represents the slope of the tangent
(see Fig.1). The fluid phase of the liver also applies some volumetric stresses
due to the transient response of the fluid through the porous liver parenchyma.
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A straightforward way of modeling the porous behavior is through the linear
Darcy’s law. In this setting, variation of fluid pressure Pfluid is governed by the
variation of volume change and a diffusive process:

1
Klim

Ṗfluid = κ∇2Pfluid −
J̇

J
(6)

where κ is the permeability parameter, kept constant to decrease the compu-
tational cost. Finally, the total Cauchy stress response in the volumetric part
is defined by summing the solid and the fluid terms: σp = σheqId − PfluidId.
The simulated fluid pressure field during a deformation under gravity force is
shown in Fig.1. Highest pressure in the fluid occurs when the liver is compressed
either by the gravity pressure (diffusion starts at the top) or by elastic reaction
(diffusion starts at the bottom).

Fig. 1. (Left) Representation of the static Cauchy stress before and after substitution.

The dot curve represents the new stress. Here fw = 0.8. (Right) Pressure field of the

porous component on a liver under gravity. Using fw = 0.5, K0 = 400 Pa, Klim =

2200Pa and κ = 20 m4/Ns.

4 Results and Validation

4.1 Computation Time of the Hyperelastic Implementation

Decreasing computation time of the hyperelastic term is essential to reach real-
time simulation as this term represents around 60% of the total time needed
in one step (see Fig.2). In order to validate the MJED method, we compared
our implementation with the classical FEM method explained in [6], referred
to as ”Standard FEM”, implemented in SOFA1. We measured the time elapsed
for the computation of the nodal forces and the stiffness matrices averaged over
100 iterations. We simulated the deformation of a cube with 20 700 tetrahedra
and 4300 nodes. The results are given in Fig.2. For all implemented models the
proposed strategy is more efficient than the standard FEM, up to five times as
fast for St Venant Kirchhoff material.
1 SOFA is an Open Source medical simulation software available at www.sofa-

framework.org
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Fig. 2. (Left) Break-down of computational time between the components during one

time step. (Right) Comparison of the computation times of nodal forces and stiffness

matrices between two different discretization methods averaged over 100 iterations.

4.2 Visco-Elasticity Validation

To calibrate the visco-elastic parameters of our liver model, tests on at least 60
samples from 5 animals were performed on porcine livers. Dynamic viscoelastic
behavior of hepatic tissue was investigated using in vitro Dynamic Mechanical
Analysis (DMA) without perfusion in order to capture only the viscoelasticity.
Dynamic Frequency Sweep tests were performed on a dedicated stress-controlled
AR2000 rheometer (TA-Instruments, New Castle, DE, USA) in the linear vis-
coelastic strain range of the samples (see Fig.3). From the results, the Dynamic
Modulus G can be obtained as a function of the frequency or function of the time,
and the viscoelastic behavior can be modeled after fitting a generalized Maxwell
model with two modes of relaxation to those measurements: G(t) = G0(g∞ +
g1 exp(−t/τ1) + g2 exp(−t/τ2) ) where G0 g∞ = G∞ is called the equilibrium
modulus, g1, g2, τ1, τ2 are parameters such as g∞ + g1 + g2 = 1.

Fig. 3. (Left) Rheometer: Lower plate is fixed whereas upper is sinusoidally rotating.

(Right) Comparison of the simulated values with the data obtained by DMA testing.

The moduli are given on a X-log scale. The material is St Venant Kirchhoff with

G0 = 770Pa, (α1, α2) = (0.235, 0.333) and (τ1, τ2) = (0.27s, 0.03s) .
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From the rheological experiments we derive the shear modulus G0 required
in the hyperelastic term and the Prony series parameters for the viscous term.
To check the validity of those parameters, we compared in silico simulations
with the performed in vitro rheological tests. Dynamic frequency sweep tests are
simulated using similar geometries and boundary conditions as in the real DMA
tests. We estimated the values of the Dynamic Modulus and compared them
with experimental data. Figure 3 shows the results: the simulation manages to
capture the viscous behavior of the liver for small deformations with a mean
relative error of 5%. Given the fitting errors and the standard deviation of the
values obtained with the DMA tests, this mean error is reasonably good.

4.3 Complete Liver Model

To analyze the influence of each component in the complete model, several simu-
lations were performed using the same liver mesh (1240 vertices and 5000 tetrahe-
dra) with Boyce Arruda hyperelastic material[7]. The liver mesh was segmented
from a CT scan image and meshed with tetrahedra by the GHS3D software2. An
Euler implicit time integration scheme was used, the linear equation was solved
with a conjugated gradient algorithm. As boundary conditions, several nodes of
the liver were fixed along the vena cava and suspensive ligament. The liver then
deformed under the action of gravity.All computations were performed on a lap-
top PC with a Intel Core Duo processor at 2.80 GHz (simulations are available
in the video clip). Adding viscosity to hyperelasticity increases the amplitude of
the oscillations as the material becomes less stiff (see Fig.4). The frame rate is
around 7 FPS against 7.5 FPS for hyperelasticity alone. We did not reach the 25
FPS needed for real-time interaction. However, the implicit integration scheme
allows larger time step (0.3s for instance) which speeds up the simulation and
makes user interactions efficient. High amount of extension and compression are
possible which may be somewhat unrealistic, therefore the porous component
is necessary to control the amount of viscosity. The maximum amplitude with

Fig. 4. Comparison of the maximum amplitudes under gravity. (Left) Hyperelastic

Liver, (Middle) Visco-Hyperelastic liver, (Right) Visco-Poro-Hyperelastic.

2 GHS3D is a mesh generator for tetrahedral elements, developed at INRIA, France.
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porosity is in between the hyperelasticity alone and the visco-hyperelasticity. The
addition of this component decreases the computational efficiency (6 FPS) since
a semi-implicit integration scheme is used for the porous component. Because
of the fast variation of the explicit term J̇/J , the time step has to be decreased
to 0.15s. On our laptop PC, the simulation is still fluid enough to allow user
interactions.

5 Conclusion

In this paper, we have introduced an efficient method to assemble stiffness matri-
ces for complex biomechanical material models which compares favorably with
the standard FEM method. We have also proposed a poro-visco-hyperelastic
liver model suitable for real-time interaction which is, up to our knowledge,
among the most realistic ones. Several model parameters have been identified
from rheometric tests performed on porcine livers and a validation study has
been successfully performed to reproduce those tests. Despite those advances,
further research is needed to achieve realistic liver surgery simulations including
the realistic contact with neighboring structures, the influence of breathing and
cardiac motion, the simulation of hepatic resection, bleeding and suturing.

Acknowledgment. This work is partially funded by the European PASSPORT
project (Patient-Specific Simulation for Pre-Operative Realistic Training of Liver
Surgery) FP7- ICT-2007- 223894.
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Abstract. The simulation of ultrasound wave propagation is of high in-

terest in fields as ultrasound system development and therapeutic ultra-

sound. From a computational point of view the requirements for realistic

simulations are immense with processing time reaching even an entire

day. In this work we present a framework for fast ultrasound image sim-

ulation covering the imaging pipeline from the initial pulse transmission

to the final image formation. The propagation of ultrasound waves is

modeled with the Westervelt equation, which is solved explicitly with a

Finite Difference scheme. Solving this scheme in parallel on the Graph-

ics Processing Unit allows us to simulate realistic ultrasound images in

a short time.

Keywords: Ultrasound Simulation, Westervelt Equation, Finite Differ-

ence Method, GPU.

1 Introduction

The realistic simulation of medical ultrasound has applications in fields such
as ultrasound system development. Here the quality of ultrasound images de-
pends highly on numerous system parameters including for example transducer
shape, focusing strategies and active aperture size. To speed up prototyping
and lower development costs engineers simulate the effects of different system
parameterizations before moving on to the actual system assembly [6]. A more
recent application domain is the simulation of High Intensity Focused Ultrasound
(HIFU), also referred to as Therapeutic Ultrasound. The nonlinear propagation
of ultrasound in tissue produces high-frequency components that are absorbed
more rapidly by the tissue. Simulating these effects is crucial for the correct as-
sessment of the ultrasound dose required for therapy and is subject to ongoing
research [2]. In terms of education, the physics and instrumentation of ultra-
sound are complex and require in-depth knowledge to understand the impact
of different system parameterizations on the final image [15]. A fast simulation
can demonstrate the results of different system parameterizations and provide
more insights into the underlying mechanisms of the imaging modality. Last but
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c© Springer-Verlag Berlin Heidelberg 2010



244 A. Karamalis, W. Wein, and N. Navab

not least, ultrasound simulation has recently been utilized for multimodal image
registration between CT and ultrasound [13]. A similarity measure is evaluated
between the real ultrasound images and ones simulated from CT. Improving the
simulation could also improve the accuracy and robustness of the registration.

The overall processing time is a decisive factor for the simulation of ultra-
sound. Simulating a single ultrasound scan line using the Westervelt equation
and a Finite Difference scheme was reported to take about 1 hour on a desktop
PC [5], with the simulation of a complete image requiring probably more than
a day of processing time. Furthermore, alternative simulation approaches like
Field II [6], one of the most widely used linear ultrasound simulation packages,
can require up to two days of processing time on a modern desktop PC for
generating a single 128 scan line ultrasound image [10].

In Pinton et al. [9] a thorough comparison was presented between the Wester-
velt equation and alternatively proposed methods for modeling ultrasound wave
propagation. They presented simulated ultrasound images by solving the West-
ervelt equation with a Finite-Difference Time-Domain scheme, whereas, details
on the Radio-Frequency (RF) processing for the image formation were omitted.

In this work we focus on the realistic simulation of ultrasound wave propa-
gation and the subsequent generation of ultrasound images in acceptable time.
For this purpose the ultrasound imaging pipeline was implemented from the ini-
tial pulse transmission to the final image formation. The wave propagation is
modeled using the Westervelt equation, which is explicitly solved with a Finite
Difference scheme. In order to achieve fast simulation times the Finite Differ-
ence scheme was implemented on the Graphics Processing Unit (GPU), which
has already demonstrated its potential for accelerating parallel computations
and efficiently solving these schemes [3,8].

2 Wave Propagation

The propagation of ultrasound waves and their interaction with different media
was modeled using the Westervelt Partial Differential Equation (PDE), also
referred to as the nonlinear full-wave equation [2,5]. It describes the propagation
of waves and additionally models thermal attenuation and nonlinearity. The
reader interested in an accuracy analysis of the Westervelt equation is referred
to Huijssen et al. [5], which includes comparisons to an analytical solution, the
Khokhlov-Zabolotskaya-Kuznetsov equation and water tank measurements. The
Westervelt equation is given as follows:

∇2p− 1
c20

∂2p

∂t2
+

δ

c40

∂3p

∂t3
+

β

ρ0c40

∂2p2

∂t2
= 0, (1)

where p [Pa] is the acoustic pressure, c0 [ms−1] is the propagation speed, ρ0

[kgm−3] is the ambient density, δ [m2s−1] is the diffusivity of sound, and β
is the coefficient of nonlinearity. Thus, the first two terms are identical to the
D’Alembertian operator on p, the third term is the loss term due to thermal
conduction and the fourth term describes the nonlinearity.
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One thing to note is that various simulation approaches model sound waves
as rays, taking into account the physics from optics [10,13]. This simplification
results in faster processing times, but reduces significantly the realism of the
simulation. Ray based simulation approaches are not able to fully model the
complex effects modeled by wave based approaches. These effects include in-
terference, scattering, diffraction etc. which are common in medical ultrasound
propagation and contribute tremendously to the formation of the final ultra-
sound image. For more details on ultrasound image characteristics and artifacts
see Zagzebski [15].

The Westervelt equation is numerically solved with the Finite Difference
method [1,3,8]. The basic idea behind this method is to evaluate the PDE equa-
tion, more specifically calculate the wave amplitude, on sampling points of a
computational grid. The grid can have complex shapes, while we use a regular
2D grid with equidistant sampling points. For the calculation of the wave am-
plitude the partial derivatives of the equation are substituted with their finite
difference representations and the equation is solved for the future timestep. A
thorough analysis of higher order Finite Difference schemes for solving the acous-
tic wave equation is presented by Cohen and Joly [1]. Fourth-order accurate in
space and second-order accurate in time schemes have demonstrated good re-
sults [1,2], and are therefore used in our work. The finite differences for equation
(1) are given as follows:

∂p

∂t
≈

pn
i,j − pn−1

i,j

Δt
,

∂2p

∂t2
≈

pn+1
i,j − 2pn

i,j + pn−1
i,j

Δt2
, (2)

∂3p

∂t3
≈

6pn
i,j − 23pn−1

i,j + 34pn−2
i,j − 24pn−3

i,j + 8pn−4
i,j − pn−5

i,j

(2Δt)3
, (3)

∂2p

∂x2
≈
−pn

i+2,j + 16pn
i+1,j − 30pn

i,j + 16pn
i−1,j − pn

i−2,j

12Δx2
, (4)

∂2p

∂y2
≈
−pn

i,j+2 + 16pn
i,j+1 − 30pn

i,j + 16pn
i,j−1 − pn

i,j−2

12Δy2
, (5)

where i, j are the axial and the lateral indices of the discrete computational
grid, n is the timestep, Δx,Δy are the spatial discretization steps and Δt is
the temporal discretization step. Thus, an explicit solution is calculated for each
sampling point based on the wave amplitudes at sampling points of the previous
timesteps.

To model the interaction of the waves with heterogeneous media, different
coefficients are used for the speed of sound, the ambient density, the diffusivity
of sound and the nonlinearity. The most important effect in ultrasound imaging
is the reflection of the waves, which is caused by the difference in speed of sound
between media.

3 Ultrasound Image Simulation

In our framework we implemented the basic procedure to synthesize B-mode ul-
trasound images. Other than the wave propagation, the image simulation process
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involves transmission and reception of ultrasound pulses and processing of the re-
sulting echoes for forming the final image. For more details on ultrasound physics,
instrumentation and image formation see Hedrick et al. [4] and Szabo [11].

3.1 Ultrasound Transmission and Reception

For each simulation run sound waves are emitted at selected points on the com-
putational grid. Various transducer geometries can be simulated by selecting the
appropriate points on the grid, with a linear transducer modeled in this work.
Modifying the wave amplitude at these points introduces a wave disturbance
that propagates through the grid with the simulation of consecutive timesteps.
The shape of the emitted pulse is of crucial importance. Non-modulated sinu-
soidal or Gaussian shaped pulses for instance can cause grid disturbances even
after the pulse transmission has ceased. We use a 6 cycle sinusoidal pulse modu-
lated by a Gaussian shaped envelope, commonly used by ultrasound systems [4].
The pulse is formulated as follows:

s(t) =
(
A · sin

(
2π
l
t

))(
αe−

(x− μ)2

2σ2

)
, (6)

where s(t) is the pulse amplitude at timestep t ∈ [0..l], l is the pulse length, A
is the maximal pulse amplitude, α is the Gaussian amplitude, x is the random
variable, μ the mean, and σ is the standard deviation. The echoes are recorded
for each timestep at the positions were the grid was perturbed by the pulse
transmission. Ultrasound images are formed from multiple scan lines with the
total number of scan lines playing an important role for the overall spatial res-
olution of the final ultrasound image. Each scan line in the ultrasound image
corresponds to the echoes received along an ultrasound beam, which brings us
to topic of ultrasound beamforming.

Beamforming refers to the constructive/destructive interference of waves emit-
ted by multiple transducer elements. Triggering a group of transducer elements
at a time results in high acoustic intensities along the center axis of the group.
Figure 1(a) schematically shows the process of focusing using a group of ele-
ments and figure 1(b) shows the simulation run, with our framework, for beam
focusing at a low depth. Generating a narrow beam is desirable in ultrasound
system development as it improves the spatial resolution of the ultrasound scan.
Additionally, triggering the transducer with the appropriate time delays allows
to position and steer the beam [4].

Multiple scan lines are acquired for the image formation by transmitting a
beam, receiving the echoes and moving the active element group until the entire
transducer element surface is covered.

3.2 Radio Frequency Processing

The result of the previously described simulation is Radio Frequency (RF) data
acquired for each element of an active element group for each scan line. Be-
fore forming an image, the raw data needs to be processed. The RF processing
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(a)Beam Focusing (b)Simulated Focusing

Fig. 1. Image (a) schematically demonstrates ultrasound beam focusing by triggering

a group of elements with different time delays. Image (b) shows the maximum wave

amplitudes of a simulation run using a focus scheme for low depths in a medium with

uniform speed of sound.

pipeline varies slightly between different ultrasound system vendors, but the
basic principles are common and are implemented in this framework.

An ultrasound scan line is formed by combining the RF data acquired at
each element of an active element group. For this we apply the Delay and Sum
beamforming algorithm [12], which can among others be defined as:

d(t) =
N∑

i=0

Wi · ei(t + τ), (7)

where d(t) is the final signal response of an ultrasound beam at timestep t, N
is the number of active transducer elements, Wi is a weighting function (in our
case a Hanning window), ei(t) is the signal response of each active transducer
element i, and τ is the transmission delay expressed in timesteps.

The received signal contains noise that is mainly manifested in the low and
high frequency parts of its spectrum [11]. Therefore, the low and high frequency
components are removed with a bandpass filter, in our case a Butterworth filter.

Afterwards the signal goes through the process of demodulation, which results
in a signal that retains its overall pulse response but contains much less high
frequency modulations. Demodulation is performed by finding the envelope of
the rectified signal and is implemented by taking the absolute of the Hilbert
Transform of the signal.

As a pulse traverses through the medium it is attenuated and reflectors at
greater depth appear weaker than reflectors at smaller depth. This is compen-
sated by applying a so-called Time-Gain Compensation (TGC), which amplifies
echoes based on their reception time (depth). In our implementation the signal
is convolved with a simple linear function f ∈ [1..n], where n is the amplification
factor for the maximal depth.

Last but not least, the resulting signal h(t) is compressed by decreasing its
dynamic range (ratio of strongest to weakest signal). This is usually done with
a logarithmic scaling (also referred to as log-compression):
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hc(t) = log(h(t) + c), (8)

where c is the compression coefficient. At this point the ultrasound image is
formed by combining the processed RF lines into a single image.

4 Results

The proposed simulation framework was utilized for generating 2D ultrasound
images out of two synthetic datasets, one showing a fetus, figure 2(a), and the
other one showing multiple anechoic regions embedded in a highly scattering
medium, figure 2(c). The fetus dataset is a modified version of the one presented
in Jensen and Munk [7] and the phantom dataset is generated using Rayleigh
noise, with similar phantoms being used for testing real ultrasound imaging
systems [4]. The mediums had following characteristics: δ = 4.5 · 10−6[m2s−1],
β = 6 and ρ0 = 1100[kgm−3], which are common for human tissue [14].

The corresponding simulated ultrasound images are shown in figure 2(b) and
2(d). They clearly demonstrate a realistic speckle pattern, interference effects and
beam focusing artifacts. The spatial resolution is high at the center of the focal
zone and decreases with increasing distance from the focal zone, an effect also ob-
served in real ultrasound imaging. Furthermore, interference of echoes is strongly
evident in the anechoic regions of the phantom dataset. Following parameters
were used for simulating the presented ultrasound images: 11 transducer ele-
ments formed the active group, λ/2 elements spacing was used, 192 scan lines
were processed, and the discretization steps were set to Δx = Δy = 5 · 10−3[m]
and Δt = 5.5 · 10−7[s]. For the fetus dataset 6000 timesteps were evaluated and
for the phantom dataset 8600, because of the increased depth.

The simulation of the ultrasound wave propagation for generating the raw
RF data is performed on the GPU using C++, OpenGL, and the GL shading
language (GLSL). Implementing the Finite Difference scheme on the GPU is
relatively straight forward with explicit and implicit solvers presented in Har-
ris [3] and Krüger et al. [8] respectively. Switching from GLSL to C-like GPU
programming languages like CUDA or OpenCL might improve the performance
since they offer more elaborate shared memory features.

After simulating the scan lines, the resulting RF data is processed on the CPU,
as there are no computationally expensive tasks involved. For a 20482 grid and
192 scan lines the RF simulation on the GPU required 55 minutes for the fetus
dataset and 78 minutes for the phantom dataset, with the image formation on
the CPU requiring 19 seconds and 24 seconds respectively. The performance was
evaluated on a desktop PC with an Intel Core 2 2.66 GHz with 4 GB RAM and
a NVIDIA GeForce GTX 280 with 1GB VRAM. In comparison, the framework
presented in Pinton et al. [9] required 32 hours processing time on a 56 PC
cluster with 118 GB RAM for a 3D simulation. Details on the processing time
of the 2D simulation were omitted, but should be in the same range given the
provided parameterizations. Furthermore, one simple 2D image was simulated
from a synthetic dataset containing only a single anechoic region.
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Fig. 2. Image (a) shows the synthetic fetus dataset and image (c) the synthetic phan-

tom dataset. The intensity values correspond to speed of sound values in the range of

1500-1550 [m/s]. The center of the focal zones are marked with a small triangle on the

left side. Image (b) and (d) show the simulated ultrasound images.

5 Conclusion

In this work we presented a framework for fast ultrasound image simulation,
covering the imaging pipeline from the initial pulse transmission to the final im-
age formation. Our implementation on the GPU simulates realistic ultrasound
images in under 80 minutes, avoiding the cumbersome use of PC clusters. The
considerably lower simulation time, compared to other implementations, has
practical implications for most simulation related application domains like ul-
trasound system development. Particularly, our approach has strong implications
for future intra-operative simulation of HIFU treatment, as the simulation of a
single focal zone is computed in less than 30 seconds. Furthermore, simulating
on the GPU allows for an interactive visualization of the wave propagation dur-
ing the simulation at almost no computational cost, which is of interest to both
education and system development applications.

In our current implementation the simulation grid is extended to prevent
reflections at the grid boundary from interfering with the region of interest in the
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simulation grid. Implementing Absorbing Boundary Conditions, similar to [9],
could notably improve the overall performance of the simulation as less grid cells
would need to be evaluated. This would pave the way for utilizing our framework
for 3D ultrasound simulation in acceptable time.
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and Siemens Corporate Research, Princeton, NJ, USA.

References

1. Cohen, G., Joly, P.: Construction and Analysis of Fourth-Order Finite Difference

Schemes for the Acoustic Wave Equation in Nonhomogeneous Media. SIAM Jour-

nal on Numerical Analysis 33(4), 1266–1302 (1996)

2. Hallaj, I.M., Cleveland, R.O.: FDTD Simulation of Finite-Amplitude Pressure and

Temperature Fields for Biomedical Ultrasound. The Journal of the Acoustical So-

ciety of America 105, 7–12 (1999)

3. Harris, M.: Fast Fluid Dynamics Simulation on the GPU. GPU Gems 1, 637–665

(2004)

4. Hedrick, W.R., Hykes, D.L., Starchman, D.E.: Ultrasound Physics and Instrumen-

tation. Mosby (2005)

5. Huijssen, J., Bouakaz, A., Verweij, M.D., de Jong, N.: Simulations of the Nonlinear

Acoustic Pressure Field without using the Parabolic Approximation. In: IEEE

Symposium on Ultrasonics, vol. 2, pp. 1851–1854 (2003)

6. Jensen, J.A.: Field: A Program for Simulating Ultrasound Systems. Medical and

Biological Engineering and Computing 34, 351–352 (1996)

7. Jensen, J.A., Munk, P.: Computer Phantoms for Simulating Ultrasound B-mode

and CFM Images. Acoustical Imaging 23(75-80) (1997)
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Abstract. Time-of-Flight (ToF) sensors have become a considerable al-

ternative to conventional surface acquisition techniques such as laser

range scanning and stereo vision. Application of ToF cameras for the

purpose of intra-operative registration requires matching of the noisy

surfaces generated from ToF range data onto pre-interventionally ac-

quired high-resolution surfaces. The contribution of this paper is two-

fold: Firstly, we present a novel method for fine rigid registration of

noisy ToF data with high-resolution surface meshes taking into account

both, the noise characteristics of ToF cameras and the resolution of the

target mesh. Secondly, we introduce an evaluation framework for assess-

ing the performance of ToF registration methods based on physically

realistic ToF range data generated from a virtual scence. According to

experiments within the presented evaluation framework, the proposed

method outperforms the standard ICP algorithm with respect to corre-

spondence search and transformation computation, leading to a decrease

in the target registration error (TRE) of more than 70%.

1 Introduction

A growing number of applications in the field of computer-assisted medical inter-
ventions depend on accurate and fast 3D surface acquisition. To date, however,
the estimation of a range map by image analysis or other techniques is still a
challenging and time-consuming task. A novel fast and robust alternative for
distance measurements are Time-of-Flight (ToF) cameras, which provide range
images in addition to gray-scale intensity images with high update rates [2]. Pro-
cessing ToF data typically involves registration of the acquired distance images
with pre-operative volume data.

The Iterative Closest Point (ICP) algorithm [3] is a widely used method for
geometric alignment of 3D models. Given two roughly aligned shapes represented
by two point sets, it iteratively (1) establishes point correspondences given the

� Thanks to R. Balachandran for the source code of the algorithm described in [1].

T. Jiang et al. (Eds.): MICCAI 2010, Part I, LNCS 6361, pp. 251–258, 2010.
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(a) (b)

Fig. 1. (a) Schematic illustration of the establishment of point correspondences with

the original ICP (left) and the anisotropic ICP (right). Reference mesh (represented by

dotted black line), sparse noisy mesh (represented by gray crosses) and correspondences

(boxes) are shown for Coriginal (standard closest point operator) and Cnew (new closest

point operator with less weight given to the direction z. (b) Noisy submesh registered

to a reference liver mesh via the proposed registration method.

current alignment of the data and (2) computes a rigid transformation accord-
ingly. Although widely used, the algorithm implicitly assumes that the input
points are observed with zero-mean, identical and isotropic Gaussian noise. The
statistical errors related to the process of generating 3D points from ToF range
data, however, lead to highly anisotropic error distributions in the point data.
This, in turn, may result in wrong assignments during a correspondence search,
as illustrated in Fig. 1(a).

In a related paper, we proposed a new anisotropic variant of the ICP [4] which
allows for definition of a covariance matrix for each point in the noisy input set.
In this paper, we extend the algorithm, such that a covariance matrix can be
defined for each point in both point sets to be aligned and show how to apply
the derived variant of the ICP for fine registration of noisy ToF images with
high-resolution surface data (sec. 2.1). The performance of the proposed method
is assessed with a novel evaluation framework that provides physically realistic
ToF range data generated from a virtual scence (sec. 2.2).

2 Materials and Methods

2.1 Method for Fine Registration of ToF Range Data

Let X = {x1, . . . ,xNX} be a sparse point set acquired with a ToF camera to
be registered with a dense reference set Y = {y1, . . . ,yNY } (e.g., the set of
vertices from a surface mesh). Given two points x and y, whose localization
errors are assumed to be independent and can be represented by two zero-mean
Gaussian distributions with covariance matrices Σx and Σy (rank 3), we define
the anisotropically weighted distance between them as:

dnew (x,y) = ||Wxy (x− y)||2 (1)
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where a weighting matrix Wxy = (Σx + Σy)−
1
2 accounts for the variance in the

input data similar as in [1,4,5]. The closest point in a set Y to a given point x
is then defined as:

Cnew (x, Y ) = arg minyi∈Y ||Wxyi (x− yi)||2 (2)

Based on the provided covariance matrices Σp for each point p ∈ X∪Y , the aim
of the anisotropic ICP algorithm is to find a rotation matrix R and a translation
vector t such that the following error metric is minimized:

e (R, t) =
1

NX

NX∑
i=1

∣∣∣∣Wi

(
Ryidx(i) + t− xi

)∣∣∣∣2
2

(3)

where idx(i) = arg minj dnew(xi, ỹj) with ỹj = Ryj + t, j = 1, . . . , NY and
Wi = (RΣyidx(i)R

′ + Σxi
)−

1
2 .

Similar as in [4], this is achieved by iteratively (1) establishing point correspon-
dences with the new closest point operator Cnew given the current alignment of
the data and (2) computing a rigid transformation for mapping the current cor-
responding points using an extension of the recently published algorithm by Bal-
achandran and Fitzpatrick [1]. The latter minimizes an anisotropically weighted
FRE, where the weighting matrix for two corresponding points is a function of
their covariance matrices as depicted above. It can be shown, that the cost func-
tion given in eq. 3 decreases in each iteration of the proposed anisotropic ICP
(proof by contradiction).

To apply the anisotropic ICP for registration of two surfaces represented by
the point sets X and Y , it is necessary to define a covariance matrix Σp for each
p ∈ X ∪ Y representing the localization uncertainty in that point. We propose
the following three variants for defining Σx for a point x ∈ X on the ToF surface:

ANISOTROPIC: We assume that the localization error for each point occurs
primarily along the ray connecting the imaged object point x with the center of
the associated chip pixel and set the remaining two principal axes orthogonal to
that ray. Let Vx be the matrix whose columns represent the normalized principal
axes. We then set Σx = VxS

2
xV

′
x with Sx = diag(sx1, sx2, sx3). The standard

deviation sx1 along the ray is set to a constant value depending on the distance
of the examined object to the camera (default: 3mm), whereas sx2 and sx3 rep-
resent the lateral statistical error and are set to the empirically determined value
sx2 = sx3 = 0.1 mm. Note that in this variant, the covariance matrices can be
computed prior to image acquisition.

ANISOTROPIC SIM: A variant of ANISOTROPIC where the variance along
the first principal axis is determined with a ToF simulator: For a given illumi-
nation power, reflectivity of the imaged object, as well as optics characteristics,
the standard deviation can be determined as a function of the measured distance
d(x) of x to the camera: sx1 = f(d(x)). This function can be determined by
computing f(di) for a set of distances di using the simulator presented in sec. 2.2
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and fitting a spline to the output data. The performed simulations can be seen
as a training for the method.

ANISOTROPIC EST: A variant of ANISOTROPIC where the variance along
the first principal axis is estimated from the depth values corresponding to x
from the last n samples (default: n = 10). Note that the standard deviation needs
to be computed from a relatively small amount of data to avoid motion artefacts.

When registering the mean image of a set of n ToF images, the standard
deviations computed for a single image are divided by

√
n.

To account for the resolution of the mesh represented by Y , we set the first
two principal axes vy1, vy2 for a point y ∈ Y in that mesh orthogonal to the
normal vector n of the corresponding vertex. The standard deviation along these
axes is set to the radius of a circle with area AV (y), where AV (y) is the area of
the Voronoi region corresponding to y. The rationale behind this procedure is
that the variance along the surface should increase with an increasing size of the
triangles associated with this vertex to ensure that corresponding vertices in two
meshes to be registered do not need to correspond to exactly the same anatomical
location. Note, however, that different spreads along different directions are not
accounted for. The standard deviation sy3 along the vertex normal can either be
set to a value close to 0, thus representing a noise-free target mesh, or to a value
inversely proportional to the intensity gradient in that point, thus reflecting the
segmentation error (provided that the mesh was generated from volume data).
We then set Σy = VyS

2
yV

′
y with Sy = diag(sy1, sy2, sy3) and Vy = [vy1 vy2 n].

2.2 Evaluation Framework

The evaluation framework consists of the following components (cf. Fig. 2):

ToF Surface Generator: This component generates a noisy ToF mesh from
a given high-resolution surface mesh based on a chosen camera type (default:
CamCube 2.0; PMDTechnologies GmbH, Siegen, Germany), a pose of the cam-
era relative to the object and (optionally) the object’s reflectivity (per vertex).
It consists of three modules. The ideal depth map generator provides means for
placing the input mesh relative to the chosen ToF camera in a virtual scene and
generates a corresponding ideal depth map based on the intrinsic camera pa-
rameters. In the second step, the ToF camera simulator generates a noisy depth
map from the ideal depth map, taking into account realistic sensor properties
like the quantum efficiency, dark currents, system amplification factors as well
as the digitization process. It applies a previously proposed concept for ToF
sensor simulation [6] and additionally simulates the attenuation of illumination
intensity with depth as well as the lateral statistical error caused by non-ideal op-
tics. The latter is achieved by convoluting the input of the virtual camera with a
Gaussian blur kernel prior to surface generation. Systematic errors, such as pixel
offsets and the periodical depth deviation (wiggling error) are not simulated be-
cause unlike statistical errors, they can be compensated for by a calibration
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Fig. 2. Evaluation framework developed for this study (cf. sec. 2.2)

procedure based on reference data [2]. Finally, the surface converter generates
a surface from the noisy depth map based on the intrinsic camera parameters.
All points with a corresponding distance value above a certain threshold are
excluded, hence, an object segmentation is automatically generated.

CT Surface Generator: This component generates a surface representing the
reference input mesh for the algorithm to be evaluated. Segmentation errors can
be simulated by adding noise to the vertices based on the intensity gradient in
that point, and a decimator can be applied for modifying the resolution of the
mesh. Finally, an initial pose relative to the ToF surface in the world coordinate
system can be chosen.

Evaluation Component: Based on a set of provided target points, the output
of the other components and the transformation computed by the algorithm to
be evaluated, this module computes the target registration error (TRE), which
we define as the root-mean-square (RMS) distance between the ground truth
target positions and the corresponding target positions according to the trans-
formation computed by the algorithm. Furthermore, the translation error and the
rotational error are determined. If the algorithm under evaluation yields vertex
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correspondences (such as the ICP), the percentage of correct vertex correspon-
dences is additionally determined. Ground truth correspondences are calculated
by transforming the ideal depth map into a 3D point cloud and determining the
closest vertex in the simulated CT mesh for each ToF mesh point.

2.3 Experiments

Artificial Setting: The goal of the first experiment was to demonstrate with
a simple example that the proposed algorithm is better suited for coping with
anisotropic noise than the original ICP algorithm. For this purpose, an object
consisting of two sides arranged perpendicular to each other (imagine a book
opened with an angle of 90◦) was placed in the world coordinate system such
that the direction of view of the virtual ToF camera was almost perpendicular to
one of the two sides of the object and almost parallel to the other side (a small
portion of which was still visible). The idea behind this was, that - similar as
in the example shown in Fig. 1(a) - wrong assignments with the standard ICP
should primarily occur in one direction (towards the other side) and could not
be compensated for by wrong assignments in the opposite direction. Based on
an ideal depth map generated by the ideal depth map generator, a noisy depth
map was generated by the ToF camera simulator with a simulated exposure
time of 25 ms and a modulation contrast of the light source of 0.5. All sensor
parameters (quantum efficiency, dark currents, etc.) were set to values measured
for the CamCube 2.0 ToF system using methods proposed by Erz et al. [7].
The illumination power and aperture of the optics were set to values which led
to 90% pixel saturation on average. The optics influence was simulated as a
Gaussian point spread function with a full width at half maximum (FWHM) of
20 μm. Next, a noisy partial surface was generated with the surface converter,
and both, the original ICP and the proposed variant were used to register the
noisy surface to the high-resolution surface mesh, starting from the ideal position
and assuming a noise-free reference mesh (sy3 = 10−20). For both algorithms,
the percentage of correct correspondences as well as the TRE for a set of points
distributed in the target object were determined.

Medical Setting: To evaluate the performance of the proposed ICP in the
medical context, three high-resolution surface meshes were generated from med-
ical imaging data: a liver with little depth variation (LIVER1), a liver with more
depth variation (LIVER2) and a face mesh (FACE). For the livers, the targets
were distributed within the organ itself. In the case of the face, the targets were
distributed in the corresponding brain segmentation. For each mesh, an ideal
ToF image was created with an approximately ventral view of the camera on
the patient. These images were averaged to obtain a mean depth map which
was then converted into a noisy partial surface using the same parameters as
in the Artificial setting. Both, the standard ICP and the proposed variant of
the ICP were then used to register the noisy ToF mesh (between 1800 and 3000
points) with the original mesh (approximately 10 000 points), starting with a
small known initial misalignment. For each image and each method, the TRE
and the percentage of correct point correspondences was computed.
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Fig. 3. Summary of the results for the medical setting showing (a) the TRE and (b) the

percentage of correct matches after convergence for the different registration methods

and algorithms

3 Results

Registration of the artificial object with the standard ICP yielded a TRE of
2.9 mm compared to 0.5 mm (ANISOTROPIC), 0.4 mm (ANISOTROPIC SIM),
and 0.4 mm (ANISOTROPIC EST) with the proposed algorithm. In the for-
mer case (standard ICP), the percentage of correct correspondences was 23.1%
in the ground truth position and 0.8% after ICP convergence, which could be
increased to (30 ± 1)% and (27 ± 1)% respectively when applying the new reg-
istration method (averaged over the three variants). The registration results for
the medical imaging data are shown in Fig. 3. Again, the different variants of the
proposed algorithm performed similarly, yielding a mean decrease of the TRE
of (73 ± 2)%, and a mean increase of the percentage of correct correspondences
of (24 ± 2)% on average. A typical registration result is shown in Fig. 1(b).

4 Discussion

We introduced a new method for fine registration of partial ToF surfaces with
high-resolution surface meshes based on an anisotropic variant of the ICP al-
gorithm and assessed its performance with a novel evaluation framework. To
our knowledge, we are the first to present a framework for ToF registration al-
gorithms based on physically realistic ToF sensor simulations. The simulated
sources of errors include various errors related to the process of generating a
ToF depth image from a given scene such as the influence of interfering non-
modulated background light and dark currents, as well as errors caused in the
process of mesh segmentation and mesh decimation. As the framework generates
ideal ToF surfaces in addition to the noisy ones, it is also suitable for evaluation
of ToF preprocessing algorithms (such as denoising methods).

According to our experiments, the proposed method is better suited for fine
registration of ToF range data than the standard ICP, reducing the TRE by
over 70% and increasing the percentage of correct matches by more than 20%
on medical imaging data. Although the percentage of correct matches was always
below 70% for the standard ICP, the absolute value of the TRE was quite low
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(< 1 mm), suggesting that wrong assignments may “average out” because they
occur equally in all directions. In an artificial setting, however, we showed that
depending on the geometry of the imaged object, this compensation is not always
possible, thus causing a large TRE.

In this study, the proposed variants for defining the covariance matrices as
input for the anisotropic ICP yielded similar results. This can be attributed to
the fact that we used the same reflectivity for all vertices and hence, similar
standard deviations in each pixel. Furthermore, it should be noted that the
training and testing conditions for ANISOTROPIC SIM were similar. Future
studies should account for these aspects.

In conclusion, the proposed registration method is well suited for dealing
with anisotropic noise in the context of ToF range data registration, yielding a
low TRE and a high percentage of correct vertex correspondences. Future work
includes (1) assessment of convergence speed and accuracy with respect to the
initial pose, (2) comparison with other variants of the ICP as well as with other
methods for point registration in the presence of anisotropic noise, (3) evaluation
on in-vitro and in-vivo data, and (4) validation of the extented ToF simulator.
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Abstract. The tracking and compensation of patient motion during a

magnetic resonance imaging (MRI) acqusition is an unsolved problem.

For brain MRI, a promising approach recently suggested is to track the

patient using an in-bore camera and a checkerboard marker attached to

the patient’s forehead. However, the possible tracking range of the head

pose is limited by the locally attached marker that must be entirely vis-

ible inside the camera’s narrow field of view (FOV). To overcome this

shortcoming, we developed a novel self-encoded marker where each fea-

ture on the pattern is augmented with a 2-D barcode. Hence, the marker

can be tracked even if it is not completely visible in the camera im-

age. Furthermore, it offers considerable advantages over the checkerboard

marker in terms of processing speed, since it makes the correspondence

search of feature points and marker-model coordinates, which are re-

quired for the pose estimation, redundant. The motion correction with

the novel self-encoded marker recovered a rotation of 18◦ around the

principal axis of the cylindrical phantom in-between two scans. After

rigid registration of the resulting volumes, we measured a maximal error

of 0.39 mm and 0.15◦ in translation and rotation, respectively. In in-vivo

experiments, the motion compensated images in scans with large motion

during data acquisition indicate a correlation of 0.982 compared to a

corresponding motion-free reference.

1 Introduction

Patient motion during data acquisition remains a challenging problem in MRI.
The consequences are often significant image artifacts which lower the diagnos-
tical confidence of the image data. Recent publications have proposed methods
to reduce or compensate the impact of motion on the images. Techniques us-
ing PROPELLER or spiral sequences correct patient motion with alternative
data acquisition strategies [1,2]. Navigator echos are added to MR sequences
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to compensate retrospectively and prospectively patient’s motion during the
scan [3,4,5]. Another MR based motion correction method was introduced by Ooi
et al. [6], using the response of active markers in form of small coils attached to
the forehead of the patient. For a data acquisition independent approach, exter-
nal tracking systems were proposed. In order to transfer the detected motion of
these systems to motion, which actually occurred in the scanner image plane, a
cross-calibration of both frame of references is required. External optical systems
outside the scanner bore were used to track a marker attached to the patient’s
head [7]. Drawback of this system is, that it requires a line of sight on the marker
inside the scanner. Aksoy et al. [8] introduced a motion correction system with
an in-bore camera. In this approach, an MR-compatible camera is mounted on
the head coil, tracking the position and orientation of a checkerboard marker at-
tached to the patients forehead. One essential constraint of this method is that
once the marker is occluded by another object or is partly outside the camera’s
field of view (FOV), no motion correction is possible anymore. The restricted
space inside the scanner bore entails camera-marker distances between 5 and
7 cm. Additionally, the shape of different coils may occlude parts of the camera
FOV. Thus, the restriction of the marker detection delimits the possible tracking
range of the patient’s head position. To overcome this limitation, we developed
the self-encoded marker with additional codes for each feature point.

2 Materials and Methods

The motion correction system was implemented on a GE Signa 1.5T whole body
system (GE Healthcare, Milwaukee, WI). Fig. 1 shows the setup of the system.
The MR-compatible camera is mounted on the 8 channel head coil. Infrared
diodes attached to the camera body illuminate the scene inside the scanner bore.
An independent tracking computer processes the captured camera images as
described in [8,9]. The patient’s pose at the beginning of each scan serves as initial
point of reference to describe the motion throughout the scan. For each camera
image, the detected motion of the optical system is transformed into motion,
which actually occurred in the scanner image plane. This requires an initial
cross-calibration of the tracking system with the MR scanner. The pose updates
in form of translation and rotation are relative to the patient’s initial position
at the first data acquisition. They are sent in real-time via network connection
to the MR sequencer. Assuming rigid head motion, these updates are directly
used by the sequencer to adjusts the gradients and radio frequencies before each
data acquisition. That way, the slice position and orientation is determined by
scanned anatomy and not by the scanner geometry. Once a large difference in
rotation or translation between two subsequent pose updates was detected, the
current acquisition data was disregarded and repeated to compensate the latency
of the entire scan.

Basis of the self-encoded marker is a checkerboard pattern. Adjacent corners
of neighboring quads on this pattern describe the feature points of this marker.
For the checkerboard marker all features are required to establish the point cor-
respondences of detected feature points in the camera image and their model
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Fig. 1. Setup of the optical motion correction system: The MR compatible camera is

mounted on the 8 channel head coil. The signal is processed by an external tracking

computer, which sends the pose updates to the MR scanner via network connection.

coordinates in the marker-model geometry. Within the black quads of the self-
encoded marker, 2-D barcodes similar to the ARTag marker [10] are embedded.
These unique codes identify each feature of the pattern, specify its position on
the marker geometry and consequently define the aforementioned point corre-
spondences. In contrast to the ARTag marker we are using a 10 bit encoding
instead of 36 bit for the embedded code. The redundancy in the ARTag marker
permits a verification of the code. Instead of verifying each quad independently,
we compare the recognized code of each quad and its neighboring quads with a
map containing all positions of the codes on the marker. That way, every bit of
the embedded code can be used for the encoding, which leads to a more robust
detection of the marker in the in-bore camera image. Based on the defined point
correspondences and the known intrinsic camera parameters, the marker pose is
estimated by homography (planar marker) or direct linear transformation (3-D
marker). Even if only parts of the self-encoded marker are visible to the camera,
its pose can still be determined. Furthermore, different feature points of the self-
encoded marker can be used for a robust tracking of the marker position and
orientation. That way, we overcome the limitation of the checkerboard marker
to the camera’s FOV.

For the pose estimation of the marker, first, the captured camera image is
converted into a binary image by thresholding. The outline of the black quads
is detected by quadringular contours in this image. Using the boundary of each
quad we sample the interior into a 5×5 grid. Then, the embedded code in the
inner 3×3 cells is classified by thresholding into a binary code. By means of
a-priori knowledge of the marker layout, the recognized codes are verified as
mentioned above. That way, erroneous detected quads can be eliminated. Fi-
nally, the relative pose of the marker to the camera is estimated using the point
correspondences of detected features and marker-model points.
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3 Experiments and Results

Phantom and in-vivo experiments were performed using an axial 3D spoiled gra-
dient recalled (SPGR) sequence with TR = 9.5ms, TE = 4.1ms, flip angle = 20◦,
slice thickness = 1.5mm, FOV = 24 cm, and a resolution of 192× 192× 96.

3.1 Phantom Experiment

We evaluated the accuracy of the optical motion correction system with a cylin-
drical phantom and two subsequent MRI scans. In-between both scans, the static
phantom was manually rotated about its principal axis by 18◦. The first scan
used as a reference, was compared to the motion corrected second scan. Assum-
ing an ideal motion correction system, we expected an identical image of the
phantom in both scans. For qualitative evaluation, Fig. 2 shows both scans and
the difference image. We performed this experiment with both markers. The dif-
ference images indicate a discrepancy of the structure at the top of the phantom,
which is caused by the phantom being not completely filled with water. While
the structure of the phantom was rotated, the water remained at the same po-
sition. For quantitative evaluation of the residual mismatch, retrospective rigid
registration was performed. This registration resulted in a remaining offset of:

tself−encoded = ( −0.36, 0.10, −0.39 ) [mm]
rself−encoded = ( 0.11, 0.00, 0.15 ) [◦]

tcheckerboard = ( 0.89, 0.09, −0.79 ) [mm]
rcheckerboard = ( −0.35, −0.03, −0.29 ) [◦]

Fig. 2. The reference scan is compared to a scan with correction after 18◦ rotation.

Both difference images are with a contrast enhancement by a scaling factor of 2.
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Fig. 3. Images of the scan comparing self-encoded and checkerboard marker: (a) Ref-

erence Scan; Scan with motion and (b) no correction, motion correction using the pose

updates of the (c) checkerboard and the (d) self-encoded marker; (e-h) Magnification

of window in (a-d); Detected translation (i-l) and rotation (m-p)

3.2 In-vivo Experiments

In-vivo experiments were performed on a healthy volunteer to evaluate the po-
sition estimates of the self-encoded marker for motion correction. For each scan,
the obtained pose estimates relative to the initial head position were recorded
in a log file.

In the first experiment, the pose estimates of the reference checkerboard
marker and the novel self-encoded marker were compared. Four scans were ob-
tained for this experiment. In order to track the head motion during data acqui-
sition, first the checkerboard marker was attached to the forehead. In the first
scan, the volunteer was instructed to maintain a stationary head position to cre-
ate a motion-free reference image. For the following scans, the subject was asked
to perform a similar head rotation every 30 seconds in order to assure a com-
parable motion pattern. In the second scan, the motion-correction system was
turned off and the position estimates of the checkerboard marker were recorded.
The obtained pose updates of this marker were used in the third scan to adapt
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Fig. 4. Images of the scan simulating an uncooperative patient: (a) Reference Scan;

Scan with random motion and (b) no correction and (c) prospective motion correc-

tion using the self-encoded marker; (d-f) Magnification of window in (a-c); Detected

translation (g-i) and rotation (j-p)

the scanner for motion, while in the last scan the self-encoded marker was at-
tached to the forehead to track the volunteers head motion. Fig. 3 shows the
resulting images of the performed scans. Without correction, the MRI images
exhibited motion artifacts. Using the pose updates of the checkerboard marker,
these artifacts were reduced. However, inaccuracies of the marker became appar-
ent in a mismatch of the scanned anatomical structure. In this camera setup the
tracking range of the checkerboard marker was restricted to 6◦. The self-encoded
marker was able to extend it to a head rotation of 13◦, which is maximal with-
out touching the coil. The improvement in accuracy of the self-encoded marker
compared to the checkerboard marker was measured by Pearson’s correlation
coefficient [11]. Whereas the correlation of reference and motion-corrupted im-
age resulted in a coefficient of 0.908, the optical tracking system using the pose
updates of the checkerboard marker improved this value to 0.936. Using the
self-encoded marker for the tracking of the volunteer showed a correlation of
0.971.
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In the second experiment, the volunteer was asked to simulate an uncoop-
erative behavior. First, a reference image was acquired. Then, in the following
scans, the volunteer performed a random trembling motion for the entire scan.
The pose estimates of the self-encoded marker were used to describe the head
position over time during the data acquisitions. For the second scan, the detected
translation and rotation were recorded whereas the scanner was also adapting
for motion in the third scan. Due to the performed random motion, it was not
possible to repeat the experiment with the identical motion pattern. Continu-
ous motion has a strong impact on the resulting images, see Fig. 4. The motion
induced artifacts corrupted the entire anatomical structure of the brain. While
adapting the scanner geometry based on the detected head pose of the volun-
teer, the system was able to recover the structure of the brain. The effects of
motion resulted in a correlation coefficient of 0.858, while the pose updates of
self-encoded marker were able to improve this factor to 0.982.

3.3 Performance

We compared the performance of the self-encoded marker with 76 features to a
checkerboard marker with 20 features. The captured image of the in-bore camera
had a resolution of 640× 480 pixel. For the analysis of the computational time
the software run on a Intel Core2Duo CPU (2.26GHz). The entire process of
feature detection and point correspondence search took 17.2ms for the self-
encoded marker and 28.6ms for the checkerboard marker (acceleration factor
1.7x). Compared to a common checkerboard detection algorithm, this factor
was achieved with a optimized detection of the self-encoded marker, since its
outcome is not crucial for the generation of the point correspondences.

4 Discussion

A crucial limitation of existing in-bore tracking systems for prospective motion
correction in MRI is the narrow FOV of the camera. In this study, we introduced
a novel marker design with embedded 2-D barcodes that identify each feature on
the pattern. Recognizing these codes in the captured camera image the tracking
algorithm is able to estimate the pose of the self-encoded marker in situations
where the marker is only partly visible.

We compared the accuracy of the self-encoded and checkerboard marker in
a phantom experiment. The rotation of the phantom in-between two scans was
compensated by the motion correction system in the second scan. Both resulting
MR images were rigidly registered, which showed an improved accuracy for the
self-encoded marker with a maximal offset of 0.39mm and 0.15◦ for translation
and rotation, respectively. In the first in-vivo experiment, we compared the pose
estimates of both markers for motion correction. This comparison study indi-
cated the restricted range of motion that can be tracked with the checkerboard
marker. The tracking range was extended from 6◦ with the checkerboard marker
to 13◦ using the self-encoded marker. Furthermore, replacing the checkerboard
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marker with the self-encoded marker increased the correlation of the resulting
motion compensated MR images from 0.936 to 0.971 compared to a motion-free
reference. In case of an uncooperative patient the motion compensation based
on the pose updates of the self-encoded marker was able to recover the scanned
anatomical structure. The correlation of the motion compensated scan resulted
in a coefficient of 0.982 compared to a reference scan without motion.

In order to provide an estimate of the patient’s head position for every data
acquisition step, the total latency of the prospective motion correction system
must not exceed the repetition time. Although we were able to accelerate the
processing time of the self-encoded marker by a factor of 1.7, there is still room
for further improvements.
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Abstract. In the context of minimally invasive cardiac surgery, active

vision-based motion compensation schemes have been proposed for mit-

igating problems related to physiological motion. However, robust and

accurate visual tracking is a difficult task. The purpose of this paper

is to present a hybrid tracker that estimates the heart surface defor-

mation using the outputs of multiple visual tracking techniques. In the

proposed method, the failure of an individual technique can be circum-

vented by the success of others, enabling the robust estimation of the

heart surface deformation with increased spatial resolution. In addition,

for coping with the absence of visual information due to motion blur or

occlusions, a temporal heart motion model is incorporated as an addi-

tional support for the visual tracking task. The superior performance of

the proposed technique compared to existing techniques individually is

demonstrated through experiments conducted on recorded images of an

in vivo minimally invasive CABG using the DaVinci robotic platform.

Keywords: robotic assisted cardiac surgery, robust visual tracking,

stereo.

1 Introduction

Recently, great developments have been made in the field of Minimally Invasive
Surgery (MIS). While the benefits of this modality of surgery for the patient are
numerous, mobility and visibility difficulties hinder the precise execution of the
surgical gestures. For tackling some of these difficulties, surgical robots have been
developed for assisting surgeons by improving the ergonomics, visualization and
dexterity issues related to the minimally invasive procedure. However, current
surgical platforms do not offer solutions for restoring the tactile feedback and
physiological motion still needs to be manually compensated by the surgeons.

In this context, active vision-based motion compensation schemes [1] have
been proposed for mitigating problems related to physiological motion during
surgery. Such systems are particularly useful in beating heart interventions such
as the off-pump minimally invasive coronary bypass artery grafting (CABG).
Furthermore, the estimation of the beating heart motion using the visual feed-
back from the endoscope is a practical solution since no additional sensors are
required in the MIS workspace.

T. Jiang et al. (Eds.): MICCAI 2010, Part I, LNCS 6361, pp. 267–274, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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In the literature, several techniques for tracking the heart motion using vision
have been proposed. Mainly, visual cues such as salient features [2,3], texture
[4] or shading [5] have been explored. However, most techniques display poor
performance in the presence of the large heart surface deformations, illumination
variations and specular reflections. Furthermore, occlusions by surgical tools are
not handled in most cases.

The purpose of this paper is to present a hybrid tracker that estimates the
3D temporal and spatial deformation of a selected region of interest on the heart
surface using stereo endoscopic images. The method comprises the estimation
of a parametric deformable model for representing the heart surface based on
the most reliable outputs from multiple visual tracking techniques. In addition,
for coping with the absence of visual information due to motion blur or oc-
clusions (e.g. by specular reflections, surgical instruments), a temporal heart
motion model based on a time-varying dual Fourier series is incorporated as an
additional support for the visual tracking task. Hence, the proposed technique
is able to robustly track large regions of interest on the heart with high spatial
resolution while naturally handling eventual occlusions. The superior perfor-
mance of the proposed technique compared to existing techniques individually
is demonstrated through in vivo experiments conducted on recorded images of
a minimally invasive CABG using the DaVinci robotic platform.

2 Methods

2.1 The Hybrid Visual Tracking Method

In the context of MIS, the assumptions on which most tracking algorithms are
based are often violated due the presence of large soft-tissue deformations, il-
lumination variations and specular reflections, making continuous and accurate
visual tracking with a single technique a difficult task. In this study, the use of
multiple visual cues is proposed for increasing tracking robustness and spatial
resolution. Using multiple methods, the failure of an individual technique can be
circumvented by others, enabling the estimation of the heart surface deforma-
tion with superior robustness and spatial resolution. Furthermore, all tracking
techniques used in the scheme run in parallel and can be implemented in a
computationally efficient manner.

Our objective is the estimation of the deformation of a region of interest on the
heart surface, manually chosen by the surgeon from any of the stereo images.
For this purpose, rectified images of a calibrated stereo endoscope were used.
Three different tracking methods are employed: two feature-based approaches –
the modified Lucas-Kanade tracker proposed in Stoyanov et al. [2] and the SIFT
[6] – and the region-based iterative registration technique proposed in Richa et
al. [4]. Since the proposed framework is modular, additional methods can be
easily incorporated for increased tracking quality.

Initially, for choosing the most reliable estimate of the heart surface deforma-
tion given the outputs of multiple methods, a quality evaluation step is executed.
For this purpose, the alignment error is chosen as a measure of tracking quality
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and the normalized cross correlation (NCC) in a subregion around each feature
or control point is computed between both left and right stereoscopic images
and the reference image. If the image alignment error drops below a defined
threshold (τ < 0.90), the 3D coordinates relative to a given estimate is treated
as unreliable. The threshold τ was chosen empirically and is set very high for
avoiding the need of fine tuning and false matches.

Next, using the set of reliable estimates of the 3D motion of the region of
interest, a dense model of the heart surface deformation is computed. Here, the
Thin-Plate Spline (TPS) model proposed in [4] is employed since it offers a good
approximation of the heart surface shape in comparison with similar parametric
deformable models. However, it can also be replaced by models that handle
surface topological changes [7] or consider the biomechanical tissue properties [8].
The TPS is an interpolating function m :  2 →  of a 2D point x, defined by the
basis function B(r) = r2log(r2), a (n+3) parameter vector (w1, ..., wn, a1, b2, c3)
and a set of control points c = (x̌, y̌):

m(x) = c1 + a2x + b3y +
n∑

i=1

wi B(||ci − x||) (1)

The TPS model is computed using the reliable tracking estimates as control
points c. By stacking three TPS functions [mx(x) my(x) mz(x)], the 3D position
of any point on the reference image of the region of interest selected by the
surgeon can be computed in 3D by back-projection using the parameters of the
calibrated stereo cameras.

The 3D deformable model has two functions: it provides a reliable dense model
of the heart surface deformation and interpolates the unreliable tracking mea-
surements. The latter consists in one of strong points of the proposed method,
enabling tracking to recover from failures (due to large deformations, local min-
ima problems). In our works, we found that no regularization or constraints on
the TPS surface deformation were necessary (consequence of the alignment er-
ror threshold). This represents an advantage since ad hoc assumptions about the
heart surface deformations are avoided. Figure 1 summarizes the different steps
of the hybrid tracking method.

2.2 Temporal Modeling of the Beating Heart Motion

Due to motion blur, large specular reflections or the motion of the surgical
instruments, visual information from the tracked region of interest may not be
available for certain periods of time. For circumventing such problems, the quasi-
periodic beating heart motion can be modeled and occlusions can be bridged
using the motion predicted by the model.

As proposed in [9], the heart motion can be considered as the sum of the res-
piratory and cardiac motions, which can be represented as a dual non-stationary
Fourier series. Given the 3D coordinates p = [xp yp zp] of a given point on the
heart surface, the motion dynamics p of a Cartesian coordinate at a given instant
t can be parameterized as the sum of two Fourier series, such that:
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Richa et al. [4] Stoyanov et al. [2] SIFT [6]

Hybrid Method – Estimated Deformation Tracked surface in 3D

Fig. 1. (Top row) The output of the tracking techniques used in the study from the

left camera of the stereo endoscope. Lost features from [2] are marked in blue. Notice

that only two reliable SIFT matches were available when large deformations occurred.

(Bottom left) The reliable correspondences are marked in green, while interpolated

unreliable estimates are marked in blue. (Bottom center) Interpolating TPS surface

(Bottom right) Estimated 3D surface.
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where Hr and Hc are the number of harmonics for modeling the respiratory
and cardiac components respectively, ωr and ωc are the respiratory and cardiac
frequencies,

∑t
t0

ω is the sum of all estimated ω starting from t0 and f is the
corresponding vector containing the Fourier series parameters:

f = [a1, ..., aHr , b1, ..., bHr , cr, d1, ..., dHc , e1, ..., eHc ]
T (3)

Consequently, a point of interest (POI) p can be modeled with γ = 3 · [2 ·
(xHr +x Hc) + 1 + 2 · (yHr +y Hc) + 1 + 2 · (zHr +z Hc) + 1] parameters plus
the respiratory and cardiac frequencies, which are shared among all coordinates
and points. The number of harmonics Hr and Hc among the xyz directions may
vary due to differences in their motion complexity. For recursively estimating
the Fourier series parameters, the Extended Kalman Filter (EKF) is employed.
The EKF state vector y for estimating the trajectory of ϕ POIs p = [xp yp zp]
is composed of (ϕ · γ + 2) parameters, such that:
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Fig. 2. A schematic overview of the hybrid visual tracking algorithm

y = [1fx,1 fy,1 fz ,2 fx,2 fy,2 fz , ...,γ fx,γ fy,γ fz , ωr, ωc]T; (4)

where [ifx,i fy,i fz ] are the parameter vectors of the i-th estimated POI pi. In
the correction step of the filter, the most reliable tracking outputs are used for
updating the temporal heart motion model. For more details on the predictive
EKF design, see [9].

In this framework, the predicted heart motion from a moment preceding a
tracking loss can be used for bridging the disturbance. As described in section 2,
tracking failures are detected by the tracking quality evaluation step which indi-
cates if the number of tracked features is insufficient for estimating the current
shape of the heart. The computation of future position estimates at a given in-
stant t can be done in a straightforward manner using equation (2), considering
a stationary system within the prediction horizon. Furthermore, spatially close
points can be clustered for reducing the computational effort when estimating a
large number of POI.

3 Experiments and Results

The diagram in Figure 2 summarizes all steps involved in the estimation of the
heart surface motion. For evaluating the performance of the proposed hybrid
tracking concept, two sets of experiments on recorded images of a minimally
invasive CABG using the DaVinci robotic platform have been conducted. The
first set aims to compare the performance of the hybrid tracker with the indi-
vidual techniques ([4,2,6]) while the second focuses on the prediction quality of
the predictive EKF described in section 2.2.

3.1 Comparative Study

For the method proposed in Richa et al. [4], 14 control points distributed on
textured parts of the region of interest are used. The maximal number of itera-
tions for the minimization loop are fixed to 20. Although the method is robust
to illumination changes and specular reflections, the image blur caused by large
inter-frame motion can induce large errors in the estimation of the heart surface
deformation (see figure 3).
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(a) (b) (c) (d)

Fig. 3. (a) Tracking errors induced by motion blur and specular reflections in [4]. (b-c)

Using the motion of stable features obtained with techniques [2] and [6] marked in

green, respectively, a more reliable estimate of the heart surface deformation shown in

(d) can be computed.

In Stoyanov et al. [2], tracking loss caused by large specular reflections and
tissue deformation is the main performance issue. Figure 4 (top) indicates the
significant drop in the number of tracked features while tracking (from the 30
Shi-Tomasi features initially detected within the reference region of interest, only
5 are tracked after 6 seconds of tracking).

Although a very high number of SIFT features are detected during the ini-
tialization (384 features within the region of interest), very few matches are
available when to large tissue deformations occur (see Figure 4). Furthermore,
‘tracking-by-detection’ methods such as the SIFT are unsuitable for performing
motion compensation since continuous tracking is not possible.

The proposed hybrid tracking concept offers the possibility of overcoming the
failure of an individual technique using the output of others. In the example in
figure 1, the hybrid tracker uses 14 control points [4], 15 Lucas-Kanade features
[2] and 384 SIFT features [6]. Using the interpolating TPS surface, problems
due to lost features or convergence errors can be circumvented. In addition,
‘tracking-by-detection’ methods such as the SIFT can be incorporated for in-
creased tracking quality. Figure 4 shows the number of active features during
tracking, demonstrating the superior performance of the proposed technique
compared to existing techniques individually.

3.2 Improvements Using the Temporal Heart Motion Model

For evaluating the performance of the temporal heart motion model, the predic-
tion errors for 0.2, 1 and 3 second prediction horizons are evaluated using the
recorded tracked coordinates of the POI on the heart highlighted in Figure 5. The
error is calculated as the Euclidean distance ||d − p|| between the predicted d
and true p positions of the POI for all xyz coordinates. The obtained root mean
square and peak prediction errors at every motion sample were (0.73mm/1mm),
(0.86mm/1.55mm) and (1.00mm/2.03mm) for the 0.2, 1 and 3 second predic-
tion horizons, respectively. The low prediction errors attest the capability of the
prediction scheme to overcome both short occlusions by specular reflections or
motion blur and long occlusions by surgical instruments (it is important to re-
mark that although the predicted motion is accurate enough to restart tracking,
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Fig. 4. (Top) The number of active tracked features using the method proposed in [2].

(Bottom) Active motion estimates during tracking using the hybrid method.

Fig. 5. The estimated dual Fourier series model of the x coordinate of the tracked

feature on the heart surface highlighted on the left at t0 = 6.4s. The 0.2s, 1s and

3s prediction horizons (t1, t2, t3 respectively) used for evaluating the quality of the

predicted heart motion are defined in the plots.

it cannot be used for motion compensation since the prediction errors can exceed
the minimal precision requirements of cardiac surgery [9]).

3.3 Computational Requirements

The computational burden introduced by the tracking quality evaluation and
the EKF update is negligible compared to the computational time required by
a single tracking technique. In addition, all techniques used in this study [2,4,6]
have successfully been implemented in Graphics Processor Units (GPU) and
tracking speeds over 100 Hz have been reported. Therefore, it is expected that
the even though the proposed method incorporates an additional computational
burden, tracking at high speeds is possible. This is a great advantage since the
future deployment on a prototype surgical platform is envisaged.
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4 Conclusion

In this paper, we presented a hybrid tracker for estimating the 3D motion of the
heart surface using stereo endoscopic images. The method uses multiple visual
trackers working in parallel for tracking with increased robustness and spatial
resolution. For coping with tracking failures and occlusions, the temporal heart
motion dynamics have also been incorporated as an additional support for the
visual tracking task. Experiments on recorded in vivo images of a minimally inva-
sive CABG using the DaVinci robotic platform attest the superior performance
of the proposed tracker in comparison with existing techniques individually. The
future implementation of the tracking method in a control scheme is envisaged.
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Abstract. The recovery of 3D tissue structure and morphology during robotic 
assisted surgery is an important step towards accurate deployment of surgical 
guidance and control techniques in minimally invasive therapies. In this article, 
we present a novel stereo reconstruction algorithm that propagates disparity in-
formation around a set of candidate feature matches. This has the advantage of 
avoiding problems with specular highlights, occlusions from instruments and 
view dependent illumination bias. Furthermore, the algorithm can be used with 
any feature matching strategy allowing the propagation of depth in very dispa-
rate views. Validation is provided for a phantom model with known geometry 
and this data is available online in order to establish a structured validation 
scheme in the field. The practical value of the proposed method is further dem-
onstrated by reconstructions on various in vivo images of robotic assisted pro-
cedures, which are also available to the community. 

1   Introduction 

In robotically assisted Minimally Invasive Surgery (MIS), recovering the underlying 
3D structure of the operating field in vivo is important for registering pre-operative 
data to the surgical field-of-view for providing dynamic active constraints and motion 
compensation [1]. Tomographic intra-operative imaging modalities can potentially 
provide anatomically co-registered information about the 3D shape and morphology 
of the soft tissues but their deployment in operating theatres is a significant challenge 
[2]. Currently, the most practical method of recovering the 3D structure of the operat-
ing site in situ is through optical techniques using a stereo laparoscope. This informa-
tion can subsequently be used to align multimodal information within a global  
reference 3D coordinate system and enhance robotic instrument control. However, the 
recovery of 3D geometry from stereo in real-time during robotic procedures is diffi-
cult due to tissue deformation, partial occlusion due to instrument movement, and 
specular inter-reflections. 

The recovery of 3D information from stereo images is one of the classic problems in 
computer vision. Given a calibrated stereo rig, the task is to identify the unique corre-
spondence of image primitives across the stereo image pair. Recent review articles 
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provide a good summary of progress in the field [3, 4] and establish a benchmarking 
framework with ground truth data [3]. However, these methods, as well as the data 
used, are not always well suited to MIS settings where the scene is complicated by the 
large disparity discontinuities and occlusions arising from surgical instruments. The 
presence of view-dependent reflectance characteristics and a lack of fronto-parallel 
surfaces with unique colors and texture further complicate the issue. Thus far, for ro-
botically assisted MIS, a number of stereoscopic techniques for recovering 3D shape 
and morphology have been proposed [5-9]. Many methods assume a geometric surface 
model of the tissue and use this constraint to track tissue 3D structure and morphology 
with a particular focus on cardiac procedures [7, 8, 10]. Such techniques have demon-
strated the feasibility and potential of stereo vision in MIS but they are constrained by 
smooth surface parameterizations without adequate handling of instrument occlusions. 
Furthermore, there has been no extensive validation and comparative assessment of the 
existing methods. 

In this study, we propose a technique for building a semi-dense reconstruction of 
the operating field in MIS that can operate in real-time. The method initially starts 
with a sparse 3D reconstruction based on feature matching across the stereo pair and 
subsequently propagates structure into neighboring image regions. The method is 
validated by experiments on phantom data with known ground truth. Qualitative vali-
dation is also provided for in vivo robotic MIS images. All the data used in this study 
is available for access online (http://ubimon.doc.ic.ac.uk/dvs/m857.html) to facilitate 
the community to establish a structured validation framework for stereo vision in 
robotic surgery. 

2   Method 

2.1   Feature Matching  

The first step of the proposed method is to recover a sparse set of matches across the 
stereo-laparoscopic image pair using a feature based technique. The most commonly 
used image features are based on points where the image intensity gradient is high in 
both the vertical and horizontal directions [11]. Such salient points can be reliably 
matched across the stereo pair to recover a sparse set of 3D points in the surgical site 
[12]. The method works effectively with stereo-laparoscopic images because the ver-
gence of the cameras creates a zero disparity region that assists convergence. Fur-
thermore, the technique can be adapted to compensate for linear illumination changes 
and to incorporate the expected disparity as a starting solution and prior information 
about the 3D surface. Efficient implementations of this method have been reported to 
operate at very high frame-rates on GPU accelerated hardware [13]. 

It is important to note that for the proposed stereo propagation method, any feature 
matching strategy can be deployed. As the technique can be used to match images 
temporally and recover structure with a moving imaging device more complex and 
robust feature detectors and descriptors can be used to accommodate wider variations 
in perspective distortion and tissue deformation [14]. 
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2.2   Structure Propagation  

With a sparse set of 3D points established in the surgical field-of-view, it is possible 
to propagate 3D information to cover a semi-dense portion of operating field domain. 
This is necessary since the sparse 3D structure is usually not sufficient to describe the 
tissue geometry in detail. During the first stage of the proposed propagation algo-
rithm, all features correspondences are used as seed matches. They are sorted subject 
to the correlation score between their respective templates and stored using a priority 
queue structure where popping and element retrieves and removes the queue element 
with highest priority. The algorithm then proceeds to propagate structure around the 
matches with highest correlation scores on a best-first basis by popping the priority 
queue as proposed by Lhuillier et al  [15]. New matches are simply added to the 
queue as the algorithm iterates until no more matches can be retrieved. 

              

Fig. 1. Example image from a stereo-laparopscope and the corresponding stereo reconstructions 
using the proposed method with a sum of squared difference metric and with the ZNCC, which 
clearly performs more effectively 

The spatial neighborhood of a seed match ( , ')x x , where x and 'x  denote image 

positions in the left and right images respectively, is defined as ( , ')Ν x x  and it is 

used to enforce a 2D disparity gradient limit as a smoothness constraint. Rather than 
the 1D regions typically enforced by epipolar geometry rectification. For each image, 
the spatial neighborhoods around a respective seed match are defined 

by 2( ) { , [ , ] }N NΝ = − ∈ −x u u x and 2( ') { ', ' ' [ , ] }N NΝ = − ∈ −x u u x  where 

( , ')u u denotes a candidate pair of pixels. The scheme means that the points consid-

ered for propagation are within a spatial window of (2 1) (2 1)N N+ × + pixels cen-

tered at the respective seed locations. The full match propagation neighborhood is 
then denoted as: 

{ }( , ') ( , '), ( ), ' ( '), ( ') ( ')N NΝ γ= ∈ ∈ ≤− − −x x u u u x u x u u x x  (1) 

This defines all the possible candidate matches around the seed correspondence 
( , ')x x  and the strategy can be easily adapted to the 1D search space of rectified im-

ages [15]. The term γ is used to control the smoothness of the disparity map and we 

determine this adaptively depending on the color similarity and proximity between the 
seed and candidate pixels. Such a scheme was shown to be effective by Yoon et al 
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[16] for locally adapting the weight of support windows in stereo aggregation. To 
avoid the heavy computational load of the CIELab color space the method was 
adapted to use the RBG space [17].   In this study, we only propagate information into 
regions of similar color weighed by the proximity of the spatial neighborhood. By 

defining 1 1| ( ) ( ) | || ||
i i
I Iγ β λ− −= Σ − + −x u x u  and stopping the propagation if 

the value of γ we enforce a consistency and crude segmentation to the propagation 

process. The values of β and λ control the weight given to color similarity and prox-
imity respectively and were kept constant this study. The dissimilarity measure used 
during propagation is the zero mean normalized cross correlation (ZNCC), which is 
less prone to illumination bias in homogeneous regions while it is also more indica-
tive in regions with discriminative texture. This observation is illustrated in Fig 1 
where the proposed algorithm was applied using the traditional sum of squared differ-
ences metric and the ZNCC. 

2.3   Parallelization of Propagation 

To improve the computational performance of the method, it is possible to exploit 
modern GPGPU technology to calculate multiple correlation windows and propagate 
structure over multiple pixels. The simplest parallelization strategy is to execute the 
correlation searches during propagation in parallel. This can be implemented to ex-
ploit the large number of concurrent threads that run on modern graphics hardware. In 
order to maximize the throughput on the graphics hardware, we implemented in this 
study the propagation of each pixel as a kernel in the NVIDIA language CUDA, in-
cluding left-right consistency checking. Integral images were  used to keep the run-
ning time invariant to the correlation window size as for example shown in the stereo 
algorithm by Veskler [18]. 

3   Experiments and Results 

The proposed method was implemented using C++ and the NVIDIA® CUDA lan-
guage for GPGPU performance enhancement. The CPU implementation of our 
propagation technique was able to operate at ~10fps for images of resolution 360 x 
288 on a Hewlett-Packard P® xw4600 desktop workstation with an Intel® Pentium® 
2.5 GHz Dual-Core Processor and 4Gb of RAM. On the same workstation our CUDA 
implementation using an NVIDIA Quadro® FX 5800 card was able to operate at 
15fps. We believe this can be significantly improved given optimization of our 
CUDA code to maximize the use of the GPU cores. 

For validation a phantom model of the heart (Chamberlain Group, MA, USA) was 
embedded with high contrast CT markers and scanned using a Siemens SOMATOM 
CT scanner. Registration between the camera and CT coordinate systems was per-
formed using the contrast fiducials in the CT coordinate frame and their observed 3D 
reconstructions from stereo images captured using the daVinci® surgical system. The 
absolute orientation algorithm by Horn [19] followed by non-linear refinement was 
used to compute the aligning transformation. 
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3.1   Phantom Experiment 

To validate the stereo reconstruction accuracy of the proposed method we recorded 
two datasets using the previously described experimental setup. Ground truth infor-
mation was obtained using the CT data to generate disparity maps for each laparo-
scopic image as shown in Fig 2. While this method for generating the ground truth 
has embedded registration error associated with it, it is representative of real clinical 
scenario. 

 

Fig. 2. (a-b) Images of the phantom heart model used in this study taken with the daVinci 
surgical system; (c-d) fiducial points located in the image space; (e-f) 3D reconstruction of the 
heart model from CT data registered in the calibrated stereo-laparoscope coordinate system; (g-
h) ground truth disparity maps for the images generated by projecting the CT model into the 
stereo laparoscope images 

 

Fig. 3. (a) Ground truth disparity images, the same as shown in Fig 2 but discretized to integer 
disparity levels; (b) disparity map generated with the proposed technique; (c) disparity map 
generated with a global belief propagation (BP) algorithm [20]; (d) disparity map generated 
with a real-time technique [22] 
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Table 1.  Summary of the disparity reconstruction error for the phantom model datasets used in 
this study. Different stereo techniques are compared with the approach proposed in this work 
and the mean disparity error and standard deviations are reported. 

Method Heart 1 Disparity Error Heart 2 Disparity Error 

Proposed 0.89 [ ± 1.13] 1.22 [± 1.71] 
BP [20] 9.95 [ ± 5.22] 9.59 [ ± 2.77] 
RT [22] 12.58 [ ± 4.57] 9.32 [ ± 2.80] 

CUDA [21] 10.12 [ ± 4.21] 9.92 [ ± 3.43] 

 

Fig. 4. (top row) Examples of in vivo robotic assisted MIS images taken with the daVinci® 
surgical system; (middle row) the corresponding disparity maps for each image computed with 
the method proposed in this study, where light colors indicate further away from the camera; 
(bottom row) 3D renditions of the corresponding reconstruction of the surgical field of view in 
the camera coordinate space. 

The proposed technique was used to derive the 3D structure and disparity map of 
the scene and this was measured against the known ground truth information. The 
results for this experiment are shown in Fig 3 where the performance of our technique 
is compared to several dense computational stereo algorithms. The selection of com-
parison algorithms was based on the availability of the source code for the techniques 
and their suitability for efficient real-time implementation. It is clear that the disparity 
map generated by our approach yields a more consistent result than the other meth-
ods. A quantitative summary of the results is provided in Table 1 where it is evident 
that the proposed method outperforms the other approaches measured. It is important 
to note that the proposed technique does not recover as dense a result as the other 
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approaches. Thereby perhaps by discarding matches of low reliability their results 
could be improved to closer match the performance of our technique. 

3.2   Qualitative In Vivo Data Experiments 

To qualitatively evaluate the performance of the proposed method on in vivo images, 
we have used several datasets taken from different surgical procedures using the daV-
inci® surgical system. The results for the disparity map and the corresponding 3D 
renditions of reconstructions are shown in Fig 4. It is evident that the proposed tech-
nique effectively captures the 3D geometry of the surgical site. It copes well with the 
presence of large disparity discontinuities due to the surgical instruments and with 
large specular reflections. However, there are errors, particularly at occlusion bounda-
ries, which need to be addresses further. It is important to note that we do not explic-
itly cater for specular reflections or model occlusion, for example by using detection, 
and we do not employ any surgical instrument tracking. By incorporating such strate-
gies in our method we believe that results can be improved significantly. 

4   Discussion 

In this article, we have presented a real-time stereo reconstruction framework for 
robotic assisted MIS. The proposed technique relies on propagating a sparse set stereo 
correspondences into a semi-dense 3D structure by using a best-first principle grow-
ing scheme. By incorporating constraints into the propagation framework to consider 
uniqueness, consistency and disparity smoothness the algorithm produces robust, 
semi-dense 3D reconstructions of the operating field. We have validated the effec-
tiveness of the approach using phantom data with known ground truth. This data is 
available online (http://ubimon.doc.ic.ac.uk/dvs/m857.html) to-
gether with an executable of the approach to help the development and benchmarking 
of future work in the field. In our future work, we hope to extend the validation data-
base to more complex phantom models with known ground truth and to include in 
vivo images with manually labeled disparity information. 
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Abstract. During prostate brachytherapy, C-arm flouroscopy images

are used for a qualitative assessment of the procedure. Three dimen-

sional reconstruction of the implanted seeds can be used for intraop-

erative dosimetry and quantitative assessment. Accurate C-arm pose

estimation is necessary for 3D localization of the seeds. We propose to

measure the C-arm rotation angles and computationally compensate the

inevitable C-arm translational motion to estimate the pose. We com-

pensate the oscillation, sagging and wheel motion of the C-arm using

a three-level optimization algorithm, without which the reconstruction

can fail. We validated our approach on simulated and 10 data sets from

5 patients and gained on average 99.1% success rate, 0.33 mm projection

error and computation time of less than one minute per patient, which

are clinically excellent results.

1 Introduction

Low dose rate prostate brachytherapy is an effective treatment for localized
prostate cancer which entails permanent placement of radio-active capsules or
“seeds” inside the prostate. The seeds are delivered to preoperatively deter-
mined positions using needles under real-time visual guidance from ultrasound.
The quality of the treatment depends on the accurate placement of the seeds to
deliver sufficient radiation to the cancer while sparing the healthy tissue. How-
ever, seed misplacements and consequent complications are common. C-arm flu-
oroscopy images are taken during the procedure to visually assess the implant
(see Fig. 1(a)). Three dimensional reconstruction of the seeds has several benefits
such as intraoperative dosimetry modifications and quantitative assessment, and
has been proposed previously [1,2,3].

Seed reconstruction entails solving a seed matching problem – assigning the
shadows of a seed in different images to each other- which has been solved using
simulated annealing [1], Hungarian algorithm [2] and linear programing [3].
� This work was supported by an Ontario Ministry of Research and Innovation post-

doctoral fellowship and NIH R21CA120232-01. The authors are grateful to Dr.
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(a) (b) (c)

Fig. 1. (a) Brachytherapy procedure, (b) rotation of the C-arm around the primary axis

(PA) and the world coordinate system, and (c) the scaling problem. In (c), the left C-

arms have the same intrinsic parameters, rotation angles, X-ray images, reconstruction

cost and matching as the right ones; however, the seed cloud is scaled.

Seed matching and reconstruction are performed using known C-arm pose,
estimated using radio-opaque beads or fiducials [4,5,6], or obtained from optical
and electromagnetic trackers [7]. The fiducials and beads may interfere with the
anatomy in the images, require segmentation and can limit the clinical working
volume. Auxiliary trackers are expensive and further complicate the surgery as
they need calibration steps, line of sight and space in the operating room. It
has been suggested that implanted seeds can be used for pose estimation [1,8].
However, to be computationally feasible, they need an initial estimation of the
pose, conveniently by using external trackers and fiducials.

If C-arm images are taken by rotation of the C-arm around a fixed axis (see
Fig. 1(b)), known rotation angles will yield the relative pose. C-arm devices are
available with or can be easily equipped with a joint encoder. A simple digital
protractor can also be used to measure the C-arm angles. However, oscillation
and sagging of the C-arm, especially in the elevational direction are significant
due to the C-arm weight. The movements in the two other perpendicular di-
rections caused by wheel motion are much smaller but are often significant. If
unattended, C-arm translational movements cause inaccuracies in the pose esti-
mation which may lead to reconstruction failure.

We demonstrate that in the case of a C-arm with small angle span around a
single axis, sole measurement of rotation angles combined with a computational
algorithm to compensate for C-arm oscillation, sagging and wheel motion suffices
for a successful and accurate reconstruction. However, the reconstruction is prone
to failure without such a motion compensation. By measuring the angles using
joint encoders or protractors, we obviate the need for full pose tracking using
fiducials or external trackers. Considering the simplicity of the implementation,
high speed and accuracy of reconstruction, this approach is especially suitable
for clinical translation.
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2 Methods

In order to solve the matching problem, we rely on a linear programing approach
introduced by Lee et al. [3] which, for sake of completeness, we outline in Section
2.1. The motion compensation method is discussed in detail in Section 2.2.

2.1 Seed Localization Using Linear Programing

Assume that three projection images of N implanted seeds are available and
Ni, i ∈ {1, 2, 3} seed shadows are segmented in each image. The matching prob-
lem can then be written as:

minxijk

∑N1
i=1

∑N2
j=1

∑N3
k=1 cijkxijk,

s.t.

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∑N2
j=1

∑N3
k=1 xijk ≥ 1, ∀i∑N1

i=1

∑N3
k=1 xijk ≥ 1, ∀j∑N1

i=1

∑N2
j=1 xijk ≥ 1, ∀k∑N1

i=1

∑N2
j=1

∑N3
k=1 xijk = N,

xijk ∈ {0, 1} ,

(1)

where cijk is the cost of matching seed shadows p1
i , p

2
j and p3

k from the first,
second and third images, respectively, and xijk is a binary variable showing
the correctness of such an assignment. The cost cijk is the symbolic distance
between lines L1

i , L
2
j and L3

k which connect the seed shadows p1
i , p

2
j and p3

k to
their corresponding X-ray source locations in 3D space. Equation (1) can be
written as a constrained linear programing problem by concatenating the xijk

and cijk into vectors. The unknowns that correspond to a cost higher than a
specified threshold are removed and the linear programing problem with reduced
dimensions is solved to find the correct seed matching solution [3].

2.2 Motion Compensation Algorithm

It has been shown that higher accuracy in C-arm pose estimation will result
in more accurate matching and vice versa [1,8]. Therefore, the matching and
the motion compensation problems can be solved iteratively in a loop in which
reconstructed seed positions can be used to improve on C-arm pose estimation.

Assume a world coordinate system Oxwywzw centered at the center of rota-
tion of the C-arm, with unit vectors xw and zw as shown in Fig. 1(b) and yw

perpendicular to the plane of rotation and aligned with the craniocaudal axis of
the patient. The coordinates of the X-ray source corresponding to image i are
qi in Oxwywzw. Measured rotation angles and known intrinsic parameters, such
as focal length and source to center distance, yield good initial estimates for qi

and the corresponding pose.
The goal of our motion compensation algorithm is to find the optimal position

adjustments (offsets) δn for the source positions to solve the following problem:

min
xijk,δn

N1∑
i=1

N2∑
j=1

N3∑
k=1

cijk(δn)xijk , n ∈ {1, 2, 3}, (2)

subject to the constraints from Eq. (1).
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In order to compensate the motion of the C-arm, one may try to find the
positions of the source corresponding to the second and third images (henceforth
called second and third source positions) relative to the position of the source
corresponding to the first image (henceforth, the first source position). It is
known that this problem can be solved in 3D up to a scale [1,8], which means
that the reconstructed volume can arbitrary shrink or expand (see Fig 1(c)). In
[8], the distance between two points on a radio-opaque fiducial was used to find
the scaling factor. However, we do not use an external fiducial here.

Through observation, it can be seen that C-arm motion along xw is less signif-
icant compared to the motion along yw and especially zw, along which we expect
the largest motion. In order to avoid the scaling problem, we will constrain the
C-arm motion to the Oywzw plane.

First-Level Optimization: In the first level of optimization, we find matching
seeds in the images to provide an initial offset estimate. Since the fluoroscopy
images are generally taken by rotation of the C-arm around the yw axis only,
the seeds located at the top or at the bottom of one image appear at the top
or at the bottom of other images. We use this observation and select n = 5
seed shadows from the top and n seeds from the bottom of the images and solve
the matching problem for them. Since these n seed shadows do not necessarily
correspond to n seeds in 3D, the matching problem is solved as in Eq. (1), while
the fourth constraint is relaxed. We fix the first source in 3D space and optimize
the 2D offsets (to avoid scaling) for the other two sources to minimize the overall
reconstruction cost for p = 4 seeds (2 from the top and 2 from the bottom of
the image) which have the least reconstruction cost. The matching and the 2D
offset calculation are iteratively solved until there is no change in the matching.

Second-Level Optimization: At first, seed matching is solved with the given
2D offset parameters from the first level and the 3D positions of the seeds are
calculated. Then, the positions of the three sources are adjusted in 3D space
to minimize the reconstruction error for the given 3D seeds. The matching and
source position adjustments are iteratively performed until either the reconstruc-
tion cost or the change in the reconstruction cost between two iterations is less
than an empirically assigned threshold (<0.1mm for the former and <0.1% for
the latter). The 3D position of source i at iteration (k + 1) is calculated as:

qk+1
i =

⎛⎝ N∑
j=1

(I − vijv
′
ij)

⎞⎠−1
N∑

j=1

(I − vijv
′
ij)s

k
j , (3)

where, sk
j is the position of the jth seed at iteration k, vij is the unit vector from

the source qk
i to the shadow of seed j on image i, and I is a 3×3 identity matrix.

Since in each iteration, the position of the seeds in 3D space is fixed, the
shrinkage or expansion is very small. However, as the algorithm iterates the
scaling factor can become significant. It should be noted that the matching
problem has a solution independent of the scaling factor (see Fig 1(c)). Therefore,
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Fig. 2. Simulation results, showing the matching ratio and localization error for vari-

able pose errors

we exploit the advantages of a 3D motion compensation in this level to increase
the likelihood of finding the correct matching.

Third-Level Optimization: At this point in the workflow, the correct match-
ing is available, but seed positions may be scaled as a result of 3D motion com-
pensation. In the third level, once more, we assume that pose error along xw is
negligible. The source positions are initialized at their ideal positions, using the
rotation angle readings and C-arm’s intrinsic parameters. Then, the 2D offset
parameters are calculated, assuming that the first source is fixed. Note that we
are only interested in the relative positions of the seeds, since the seed cloud will
be registered to the prostate anatomy.

3 Results and Discussion

First, the motion compensation algorithm was tested on simulated data. We syn-
thesized 3D positions of seeds, based on realistic dosimetry plans of four patients
with 100, 108, 110 and 130 seeds. The seed shadows were simulated by rotating
the C-arm around the primary axis (PA) at 0◦, ±5◦ and ±10◦ while keeping
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the secondary axis (SA) fixed at 180◦. The seed locations were reconstructed
for every combination of three images out of the available five for each patient,
while translational and rotational errors were added to the third C-arm pose in
each set. The added pose error was 0-5mm along xw and yw, 0-20mm along
zw and 0-3 degrees around SA. There were on average 1.6 hidden seeds per im-
age with a maximum of 14. The reconstructed seeds were compared against the
ground truth in term of localization errors, defined as the distance between the
true and reconstructed seed positions after a rigid rotation and translation of
the reconstructed seed cloud. The average matching ratio and localization error
are shown in Fig. 2. As it can be seen the reconstruction algorithm shows consis-
tently successful performance over a wide range of C-arm translational position
errors, while the performance without motion compensation decreases with mea-
surement errors [3]. It can be seen in Figs. 2(b) and 2(c) that the localization
error and the matching ratio are almost constant for the errors added along
zw and yw, since we compensated the motion along these two directions. The
matching ratio for pose error along xw is almost constant as shown in Fig. 2(a),
since the second-level optimization finds the correct matching using a 3D offset
optimization. However, since a 2D optimization is used in the third level, the
localization error increases with the pose error along xw . As expected, the lo-
calization and matching errors increase with the measurement error around SA.
However, the matching ratio remains well above clinically acceptable threshold,
which is customarily around 98%.

The motion compensation algorithm was also tested on patient data. Five
patients were chosen with implanted 125I seeds. Five images were taken for each
patient at angles approximately 0◦, ±5◦ and ±10◦ around yw. Accurate rotation
angles were measured using a digital protractor attached to the C-arm, which does
not interfere with the image or the working space. The images were taken using
a GE OEC R© 9800 with motorized joints. This particular C-arm is a solid machine
withafixedaxis of rotation.However, it has aheavy intensifierwhichmakes sagging
problem more severe. The rotation around the SA was set to be constant; however,
a variation of 1◦ was observed according to the C-arm joint angle readings and was
taken into account during seed reconstruction. We reconstructed the seeds using
manually segmented images taken at (0◦,±5◦) and (0◦,±10◦) for each patient (10
data sets in total). There were an average of 1.45 and maximum of 6 hidden seeds
in the images. We assumed that the C-arm intrinsic parameters do not change due
to small span of rotation. After reconstruction the seeds were projected on the im-
ages. Projection error, measured as the distance of the centroid of the seed and the
projected location of the seed is reported in Table 1. Figure 3 is a sample of pro-
jected seeds on an image, showing very small errors. The images were meticulously
inspected to detect any mismatching of seeds. The matching success rate and the
reconstruction time are reported in Table 1. In the second data set of the third pa-
tient, 8 seeds showed ambiguous assignments and were conservatively considered
as mismatches. Therefore, the reported matching ratio is smaller or equal to the
real matching ratio.
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Table 1. Clinical results.“F” stands for reconstruction failure

Patient Number App. Angles Match Ave. Proj. Std. Proj. Comp. Match rate

Number of seeds (degree) rate Err. (mm) Err. (mm) time(s) w/o MC

1 105
(0,±5) 100% 0.32 0.20 45 <95%

(0,±10) 100% 0.37 0.25 53 F

2 102
(0,±5) 100% 0.22 0.12 32 <97%

(0,±10) 100% 0.31 0.18 39 F

3 100
(0,±5) 100% 0.31 0.19 43 F

(0,±10) 92% 0.32 0.19 57 F

4 115
(0,±5) 99.1% 0.51 0.28 60 <90%

(0,±10) 100% 0.33 0.22 28 F

5 113
(0,±5) 100% 0.23 0.18 48 97.3%

(0,±10) 100% 0.36 0.23 56 F

Fig. 3. Projected seeds overlaid on a C-arm

fluoroscopy image

The reconstruction ratio without
motion compensation is also reported
in Table 1. Reconstructions with a
success rate smaller than 80% are con-
sidered as failure. As it can be seen,
in 6 out of 10 data sets the recon-
struction without motion compensa-
tion failed, and in the remaining 4
cases the matching ratio was consider-
ably lower than with motion compen-
sation (the projection error was sig-
nificantly larger and is not reported
here). Comparison of the reconstruc-
tion results with and without motion
compensation proves the necessity of
motion compensation when only the
C-arm joint angles are measured.

The algorithm was implemented using MATLAB on a PC with an Intel 2.33
GHz Core2 Quad CPU and 3.25GB of RAM. The first-level optimization is
fast as we select in total 10 seeds from each image. The second level is the
most time consuming part of the algorithm since the seed matching problem
should be solved for several iterations. The seed matching problem can be solved
in approximately 10 s or less per iteration, depending on the number of seeds.
The second-level optimization never took more than 10 iterations both in the
simulations and patient study. The initial 2D offsets from the first level decrease
the number of necessary iterations in the second level, that in turn decreases the
overall computational time. The third level has a closed form solution and can
be solved very fast. The motion compensation and seed reconstruction took less
than one minute for each clinical case. Detailed clinical study with additional
patient data is in progress.
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4 Conclusion and Future Work

In conclusion, we introduced a motion compensation algorithm that combined
with C-arm joint angle measurement can be used to estimate the C-arm pose
for brachytherapy seed reconstruction. For joint angle measurement an off-the-
shelf digital protractor was used. This removed the need for full pose tracking
with fiducials or external trackers. The clinical study showed the feasibility of
the method to be used in the operating room. With an average matching ratio
above 99.1%, average projection error of less than 0.33mm and a computation
time less than one minute, the algorithm is suitable for clinical application.

The optimization on the third degree of freedom was ignored to avoid the
scaling effect. Investigation on using the length of a 125I seed to find the scaling
factor and compensate the motion in 3D is part of the future work. The seeds
were segmented manually. The effects of segmentation errors and application of
automatic segmentation methods (e.g. [9]) will be inspected in the future.
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Reconstructing Geometrically Consistent Tree
Structures from Noisy Images
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Abstract. We present a novel approach to fully automated reconstruc-

tion of tree structures in noisy 2D images. Unlike in earlier approaches,

we explicitly handle crossovers and bifurcation points, and impose geo-

metric constraints while optimizing a global cost function. We use man-

ually annotated retinal scans to evaluate our method and demonstrate

that it brings about a very substantial improvement.

1 Introduction

Tree-like structures, such as vascular networks, dendritic trees, or bronchial net-
works, are pervasive in biological imagery. With the advent of modern acqui-
sition techniques that produce endless streams of 2D and 3D imagery, there
has been renewed interest in automated delineation as a means of exploiting
this data. Of particular interest are topologically accurate delineations, which
are critical for diagnosis and analysis purposes. However, despite many years
of sustained effort, automated delineation techniques remain fragile and
error-prone.

In earlier work [1], we showed that robustness could be improved by exploiting
the global tree topology early in the algorithm. However, this method suffers from
the fact that the tree-growing algorithm it uses makes all its decisions based on
local image evidence without regard to tree shape. As a result, it still makes
topological mistakes, such as those highlighted by circles in Fig. 1.

In this paper, we address this issue by incorporating into the tree reconstruc-
tion algorithm shape priors that enforce geometric consistency between pairs of
graph nodes and edges. This involves solving a k-cardinality arborescence prob-
lem, which is known to be NP-hard [2]. Nevertheless, we will show that good
approximate solutions can be obtained by extending the metaheuristic approach
of [3]. We also explicitly model crossovers and bifurcations, which are particu-
larly troublesome in 2D projections of 3D volumes and can result in spurious
branches, gaps, and other topological errors if not handled properly.
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292 E. Türetken et al.

(a) (b) (c) (d)

Fig. 1. The first and third rows depict vascular tree reconstructions from two different

retinal scans. In the second and fourth rows, we show enlarged versions of the same

images. (a) Original images with manually outlined blood vessels overlaid in white.

(b) Trees reconstructed using a minimum spanning tree (MST) approach. (c) Trees

reconstructed using our earlier method [1]. (d) Trees reconstructed using the proposed

technique. Note the false positives and the false negatives, highlighted respectively by

the green rectangles and the yellow circles in columns (b) and (c), have disappeared

from column (d).

Introducing geometry constraints and handling crossovers results in a robust
fully automated delineation technique that we demonstrate on vascular trees of
retinal fundus images. As shown in Fig. 1, it yields a significant improvement,
which is also supported by quantitative evaluation.
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2 Related Work

Most automated delineation techniques start by computing a tubularity image in
which pixels likely to belong to filaments have high scores. This image can then
be thresholded and its skeleton computed [4]. This tends to produce disconnected
components and artifacts on noisy data, which often require considerable post-
processing and analysis for a correct tree to be produced.

Alternatively, the tubularity scores can be used to find seed points and re-
cursively trace high-tubularity paths [5,6]. Although computationally efficient,
this technique lacks robustness since cumulative tracing errors can result in large
topological ones. More global methods avoid this problem by using more of the
image evidence and optimizing a global objective function [7,8]. However, while
such methods produce smooth tree components, they do not guarantee their
spatial connectedness. Furthermore, they are computationally intensive, which
limits their applicability to large datasets.

By contrast, methods that sample local maxima of the tubularity image and
then connect these samples into a spanning tree [1,9], guarantee connectivity. How-
ever, they do not take into account global tree geometry, such as smoothness along
the edges or branching factors, which can play an important role in improving
topological accuracy, avoiding over-fitting, and speeding up convergence. They
also fail to explicitly account for bifurcations and crossovers, which can easily lead
to mistakes. While post-processing pruning [9] can sometimes eliminate some spu-
rious branches, it does not allow for recovery from other topological mistakes. This
is the problem we address in this paper by introducing more global geometry con-
straints early in the algorithm to prevent such mistakes.

3 Method

Our method consists of the following steps:

1. We compute a tubularity value at each pixel [10], which encodes how likely
it is to be on the centerline of an elongated linear structure.

2. To avoid having to compute a tree that spans individual image pixels, which
would be prohibitively expensive, we select high-probability pixels such as
those of Fig. 2(b) that are as evenly spaced as possible and treat them as
the graph nodes to be linked.

3. We compute the most probable paths between pairs of nearby nodes, such
as those of Fig. 2(c), and treat them as the edges of our directed graph. We
assign them probabilistic costs that are lowest when all pixels along them
are likely to lie in the middle of a filament.

4. We compute the lowest-cost arborescence among those that span K edges
for a wide range of K < N , where N is the number of nodes. This is known
as the K-Cardinality Arborescence Problem. Even though it is NP-Hard,
approximate solutions can nevertheless be computed efficiently and fast.

5. Among these arborescences, we select the one that optimizes a global objec-
tive function.
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(a) (b) (c)

Fig. 2. Graph construction. (a) Original image. (b) Sampled points. The green point

and the red circle represent the root node and optic disk region respectively. The red

points are potential crossovers and the yellow ones are ridge points. (c) Graph built

from the most probable paths.

The above workflow is the same as the one we introduced in our earlier work [1]
with two key differences: First, in [1], we did not take into account the geometric
properties of the trees when constructing them. Here, we incorporate into our
objective function geometric terms that favor trees whose branches are smooth
and along which the width remains consistent. Second, we explicitly model bi-
furcations and crossovers.

To solve the associated minimum arborescence problem, we had to substan-
tially modify the tree building procedure [3] we used in our previous work. This
produced very significant performance improvements, as shown in Fig. 1 and
further discussed in Section 4.

3.1 Sampling

We first compute the response of the Rotational Features introduced in [10]
at different scales and orientations at each image location xi, and retain the
maximum value as our tubularity score f(xi). We then map this score to a
posterior probability that xi belongs to a filament centerline, P (xi|f(xi)), by
fitting a sigmoid function. We keep the orientation φi and the width estimates
wi of each point.

We then use a two-step approach to sampling local maxima of this probability
image. First, we threshold and skeletonize it, and use the combined cross-point
number method [11] to detect potential crossovers and bifurcations, which we
will refer to as landmarks such as those depicted by the red dots in Fig. 2(b).
For each landmark, we create two colocated nodes to prevent problems at tree
reconstruction time, such as those depicted by Fig. 3(a). The sampling of bifur-
cations such as the one in Fig. 3(b) is useful to avoid overcounting pixels when
scoring the trees that we reconstruct. In the second step, we sort the remaining
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Fig. 3. Two cases that can lead to reconstruction errors. (a) A crossover with a single

sample point that can be used to build either the horizontal AXB branch or the

vertical Y XZ one, but not both. (b) If there is no sample point at the bifurcation D,

incorporating both the AB and AC paths into the graph will result in counting twice

the pixels in AD. This is avoided by introducing a sample point at D.

pixels according to their probability of belonging to a filament, select the most
probable one, eliminate all those within a certain radius, and iterate. This pro-
duces the regularly spaced samples shown as yellow dots in Fig. 2(b).

In the specific case of retinal scans, we know a priori that the root of the
tree we want to build is located in the optic disk, which is depicted by the red
outline in Fig. 2(b). We use a variant of [12] to detect the optic disk and remove
all samples that reside within it except the one nearest to its center, which will
be assigned as the tree root.

3.2 Building the Graph

The procedure described above returns a set V of nodes. We construct a directed
graph G = (V,E) such as the one of Fig. 2(c) by linking all pairs of samples vm

and vn ∈ V that are within a certain distance of each other—except colocated
ones—by a Dijkstra path emn ∈ E that minimizes the integral of the negative
log of the posterior probabilities P (xi|f(xi)) introduced in Section 3.1.

In [1], we showed that such paths are maximal probability paths between the
vertices and that their total costs cnll

mn can be treated as sum of negative log
likelihoods along them. We also showed that if we assume that all geometric
arrangements of edges are equally probable, a near-optimal tree can be obtained
by minimizing

F nll(T (k)) =
∑

emn∈T (k)

cnll
mn , (1)

where T (k) denotes a tree of cardinality k. However, in reality, not all trees are
equally plausible. Those whose branches are smooth, conform to the underlying
image orientation, and whose widths vary slowly and consistently, are much more
likely to be correct than others.

To account for this, we exploit four geometric terms to capture the underlying
relations between parts of the tree structure:
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1. Edge Direction Similarity (Φe). We model the angular difference between
pairs of adjacent directed edges by a von Mises distribution (circular normal
distribution).

2. Width Consistency (Φw). We model the width differences of pair of ver-
tices connected through directed edges by an asymmetric Gaussian distribu-
tion, since for most datasets a decrease in width is more probable than an
increase along a directed path from the root vertex.

3. Orientation Consistency (Φo). For pairs of connected vertices, we mea-
sure the angular deviations of their orientations from the direction of the line
between them. The deviations are modeled using a von Mises distribution.

4. Tortuosity (Φt). We compute tortuosity values of the paths corresponding
to edges and represent them by a Gaussian distribution. For the vascular
reconstructions obtained in this paper, the tortuosity measure that we used
is the ratio of the path length to the linear distance between the endpoints.

We estimate the parameters of these distributions using maximum likelihood
estimation (MLE). Given the individual terms, the combined pairwise potential
can be written as

Φ(emn|erm,wrmn,φrmn) = Φe(emn | erm) + Φw(emn | wm, wn) + (2)
Φo(emn | φm, φn) + Φt(emn | l(vm, vn)) .

where wrmn = (wr, wm, wn) and φrmn = (φr , φm, φn) denote triplets of width
and orientation estimates, and l(vm, vn) the estimated path between vertices vm

and vn. The criterion we optimize then becomes

F nll(T (k)) =
∑

emn∈T (k)

cnll
mn +

∑
erm∈T (k)
emn∈T (k)

Φ(emn | erm,wrmn,φrmn) . (3)

When k is given, finding the tree that minimizesF nll(k) yields very good results. In
practice, however, k is unknown and the criterion of Eq. 3 suffers from one severe
drawback: since the cost of additional edges is always positive, it systematically
favors low values of k. To overcome this difficulty, when scoring the final tree, we
count not only the cost of including some edges in the tree but also of discarding
those that do not belong to it. This turns out to be equivalent to replacing the cnll

mn,
which are the sums of negative log likelihoods along the paths, by cllrmn computed
by summing log likelihood ratios − log(P (xi|f(xi))/(1 − P (xi|f(xi)))) along the
paths. We then take the global score to be

F llr(T (k)) =
∑

emn∈T (k)

cllrmn +
∑

erm∈T (k)
emn∈T (k)

Φ(emn | erm,wrmn,φrmn) . (4)

In effect, replacing the log likelihoods by the log likelihood ratios amounts to
penalizing graph edges with high probabilities that are left out of the final tree
and overcomes the bias for low values of k [1].
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In summary, for each cardinality k=2 . . .N , we build the tree that minimizes
Eq. 3, and assign to it the score of Eq. 4. The final result is the tree that
minimizes such score among all cardinalities,

T̂∗ = argmin
T (k)∈{T (2),...,T (N)}

F (T (k)). (5)

3.3 Estimating the Optimal Tree

Both to force trees to grow from the estimated root and to take advantage of the
pairwise terms to guide the reconstruction process, we extended the ant colony
optimization based algorithm presented in [3]. Due to space limitations, here we
only sketch the modifications we made.

First, to operate on directed graphs, we modify the neighborhood structure
to only contain those edges that point away from the leaves of the current ar-
borescence. Second, we fix the root node and initiate the search from it. At each
growing step, we compute the effective cost of an edge in this neighborhood by
taking into account the pairwise potentials introduced in Section 3.2. An edge
is then stochastically selected based on this cost and the number of times it has
been previously selected in the search. Finally, we set a limit on the bifurcation
factor of a node in order avoid false connections on crossovers.

The above procedure is run several times until the obtained minimum costs
for all cardinalities stabilize. Finally, we pick among all these arborescences of
different cardinalities the one that minimizes the criterion of Eq. 4. The algorithm
is very efficient since it requires only a few minutes to converge to topologically
sound reconstructions, such as the ones shown in Fig. 1.

4 Results

The retinal scans of Fig. 1 belong to the DRIVE database [13]. We manually
outlined the vascular trees and treat them as ground truth. These ground truths
are used to compare the quality of the reconstructions of the presented method
as shown in Fig. 1(d), against a spanning tree as given in Fig. 1(b), and the work
of [1], Fig. 1(c).

To compare the methods quantitatively, we use the metric introduced by the
DIADEM challenge [14], which is specifically designed to compare topology of a
reconstructed tree against ground truth. The metric returns a number between
0 and 1 that measures the topological distance between trees by matching their
branching and end points, and then analyzing the connecting paths. Mistakes
close to the tree root are penalized more heavily than the ones closer to the
leaves since they produce more severe topological changes.

Fig. 4(a) shows that the method proposed here yields a very substantial im-
provement over the other methods with respect to the DIADEM metric, which is
consistent with the qualitative results presented Fig. 1(d). The optimal tree car-
dinalities, illustrated by the diamonds in Fig. 4(b), are automatically obtained
by minimizing the score of Eq. 4.
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Fig. 4. Quantitative evaluation of the reconstructions in the two retinal scans of Fig. 1.

(a) DIADEM scores as a function of the tree cardinality for our earlier approach [1] in

blue dotted line, and for the one presented here in red solid line, which is substantially

better. The yellow squares represent the scores of the standard MST. (b) Corresponding

scores computed using the criterion of Eq. 4. In both cases, the diamonds denote the

selected cardinality, taken to be the one that minimizes this criterion.

5 Conclusion

We have presented an algorithm for automatic tree reconstruction that en-
forces geometric constraints such as smoothness and width consistency along
the branches, while explicitly handling crossovers and bifurcations. This yields
a substantial qualitative and quantitative improvement in the reconstructions of
retinal vascular trees at an acceptable computational cost.

In future work, we will extend our approach to other domains such as 3D
dendrite delineation and generalize the type of constraints we can impose.
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Abstract. Corneal Confocal Microscopy (CCM) imaging is a

non-invasive surrogate of detecting, quantifying and monitoring diabetic

peripheral neuropathy. This paper presents an automated method for

detecting nerve-fibres from CCM images using a dual-model detection

algorithm and compares the performance to well-established texture and

feature detection methods. The algorithm comprises two separate mod-

els, one for the background and another for the foreground (nerve-fibres),

which work interactively. Our evaluation shows significant improvement

(p ≈ 0) in both error rate and signal-to-noise ratio of this model over the

competitor methods. The automatic method is also evaluated in compar-

ison with manual ground truth analysis in assessing diabetic neuropa-

thy on the basis of nerve-fibre length, and shows a strong correlation

(r = 0.92). Both analyses significantly separate diabetic patients from

control subjects (p ≈ 0).

1 Introduction

Diabetic Peripheral Neuropathy (DPN) is one of the most common long-term
complications of diabetes. The accurate detection and quantification of DPN
are important for defining at-risk patients, anticipating deterioration, and as-
sessing new therapies. Current methods of detecting and quantifying DPN, such
as neurophysiology, lack sensitivity, require expert assessment and focus only
on large nerve-fibres whereas the earliest signs of neuropathy are likely to be
found among small nerve-fibres. On the other hand, small nerve-fibre damage is
currently assessed using skin/nerve biopsy, which is highly invasive and is not
suitable for repeated investigations.

However, recent research [15,10,8] using Corneal Confocal Microscopy (CCM)
suggests that this non-invasive, and hence reiterative, test might be an ideal sur-
rogate endpoint for human diabetic neuropathy. These studies demonstrate that
measurements made by CCM accurately quantify corneal nerve fibre morphol-
ogy. The measurements reflect the severity of DPN and relate to the extent of
� This work is supported by a JDRF scholar grant 17-2008-1031.

T. Jiang et al. (Eds.): MICCAI 2010, Part I, LNCS 6361, pp. 300–307, 2010.
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Fig. 1. An illustration of the methods’ responses. (a) the CCM image, (b) Dual-model,

(c) Linop, (d) Hessian, (e) 2D Gabor, (f) Monogenic and (g) DTCWT.

intra-epidermal nerve-fibre loss seen in skin biopsy. However, the major limita-
tion preventing extension of this technique to wider clinical practice is that anal-
ysis of the images using interactive image analysis is highly labour-intensive and
requires considerable expertise to quantify nerve-fibre pathology. To be clinically
useful as a diagnostic tool, it is essential that the measurements be extracted
automatically.

The first critical stage in analysis of CCM images (an example is shown in
Figure 1(a)) is the detection of nerve-fibres. This is challenging as the nerve-
fibres often show poor contrast in the relatively noisy images. The literature on
this topic is not extensive, although the problem has a superficial similarity to
other, more widely investigated, applications, such as detection of blood-vessels
in retinal images. Ruggeri et al. [17] describe a heuristic method that was adapted
from retinal analysis. In [2] we conducted a preliminary comparison of methods
for contrast enhancement of nerve-fibres, comparing a Gabor wavelet with a
well-established line detector.

This paper presents a dual-model algorithm for automatic detection and mea-
surement of nerve-fibres in CCM images. Using a 2D Gabor wavelet and a Gaus-
sian envelope, the dual-model of foreground (nerve-fibres) and background is
constructed and applied to the original CCM image. The detection relies on es-
timating the correct local and dominant orientation of the nerve-fibres. Identify-
ing low-contrast fibrous structures is a commonly encountered problem in several
areas of investigation. Examples include mammography, retinopathy, angiogra-
phy and detection of asbestos fibres. A number of methods have been developed
and successfully applied in these applications. We evaluate our dual-model in
comparison with some of these methods and with appropriate well-established
feature detectors. While our analysis focuses on CCM images, our results sug-
gest that the this may be an appropriate contrast enhancement method in other
application domains. In addition to the evaluation of the nerve-fibre detection
responses, we have also evaluated the clinical utility of the method by a com-
parison with manual analysis.

2 Linear-Structure and Feature Detection

A method of linear structure detection (Line Operator - Linop), originally de-
veloped for detection of asbestos fibres [4] has also been shown to be effective
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in detecting ducts in mammograms [18]. Linop exploits the linear nature of the
structures to enhance their contrast by computing the average intensity of pix-
els lying on a line passing through the reference pixel for multiple orientations
and scales. The largest values are chosen to be corresponding to the line, the
strength of which is determined by the difference with the average intensity of
the similarly oriented square neighbourhood.

In a preliminary study [2], we use the 2D Gabor filter [9] to detect nerve-fibres
in CCM images. The filter is a band-pass filter that consists of a sinusoidal plane
wave with a certain orientation and frequency, modulated by a Gaussian envelope.
This spatial domain enhancement is based on the convolution of the image with
the even-symmetric Gabor filter that is tuned to the local nerve-fibre orientation.

Frangi et al. [6] used a multiscale decomposition of the Hessian matrix to
detect and measure blood vessels in Digital Subtraction Angiography images.
They derived a discriminant function based on the eigenvalues and eigenvectors
that has maximum response for tube-like structures. The external energy is used
to attract the curve towards points which have a high likelihood of lying on a
central vessel axis.

The Dual-Tree Complex Wavelet Transform (DTCWT) [11] is an extension of
the Discrete Wavelet Transform (DWT), which provides a sparse representation
and characterisation of structures and texture of the image at multiresolutions.
The DTCWT utilises two DWT decompositions (trees) with specifically selected
filters that gives it the properties of approximate shift-invariance and good di-
rectionality. The key feature of the DTCWT operation lies in the differences
between the filters in the two trees.

The Monogenic signal [5] (a variant of a 2D analytic signal) is an extension
of the analytic signal using quaternionic algebra in an attempt to generalise the
method so it is capable of analysing intrinsically 2D signals e.g. structures within
images. The Monogenic signal is based on the Riesz transform, which is a 2D
generalization of the Hilbert transform used in the conventional analytic signal.
The Monogenic signal is defined as the combination of the original signal and
the Riesz-transformed one in the algebra of quaternions.

3 Dual-Model Nerve-Fibre Detection

In order to quantify the CCM images the nerve-fibres have to be detected. These
captured images of nerve-fibre structures could suffer from several types of cor-
ruption due to some acquisition conditions, and nerve-fibres may appear faint
due to small size or being only partly in the focus plane. Therefore, a nerve-fibre
contrast enhancement algorithm is needed to exploit the linear structure of the
nerve-fibres and distinguish them from the background noise. All of the methods
described in the previous section are capable of providing this enhancement. In
the next section we describe our approach.

3.1 Nerve-Fibre Contrast Enhancement

For this purpose the foreground model MF is an an even-symmetric and real-
valued Gabor [9,3] wavelet and the background model MB is a two-dimensional
Gaussian envelope.
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xθ = x cos θ + y sin θ (3)
yθ = −x sin θ + y cos θ (4)

The x and y axes of the dual-model coordinate frame xθ and yθ are defined
by a rotation of θ, which is the dominant orientation of the nerve-fibres in a
particular region within the image (see Section 3.2). This dual-model is used to
generate the positive response RP = MF + MB and the negative response
RN = MF − MB that are applied to the original CCM image and can be
represented as in Equations (5) and (6) respectively.
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The equations of RP and RN assume that the Gaussian envelope of both re-
sponses are identical i.e. they have the same variances σ2

(x,y) and the same as-
pect ratio γ. The magnitude of the Gaussian envelope α defines the threshold in
which a nerve-fibre can be distinguished from the background image. The value
of α can be set empirically to control sensitivity and accuracy of detection. The
wavelength λ defines the frequency band of the information to be detected in
the CCM image. Its value might be computed for a subregion within the image
that has significant variability of nerve-fibre width. However for simplicity, λ is
chosen to be a global estimate of the entire image based on empirical results.

This in turn enhances the nerve-fibres that are oriented in the dominant di-
rection, and decreases anything that is oriented differently by increasing the
contrast between the foreground and the noisy background, whilst effectively
reducing noise around the nerve-fibre structure as shown in Figure 1(b). This
pixel-wise operation adjusts the models to suit the local neighbourhood char-
acteristics of the reference pixel at f (i,j) by modifying the parameters of the
foreground and background models. The dot products of the models and the ref-
erence pixel’s neighbourhood (Equations 7 and 8) are then combined to generate
the final enhanced value of this particular reference pixel g(i,j) (Equation 9).
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The neighbourhood area of the reference pixel is defined by the width ω. The
sharpness of the transition of the enhanced image value at a particular pixel g(i,j)

is controlled by k. A larger k amounts to a sharper transition when Γn = 0.

3.2 Nerve-Fibre Orientation Estimation

In CCM images, the nerve-fibres flow in locally consistent orientations every-
where. In addition, there is a global orientation that dominates the general flow.
This orientation field describes the coarse structure of nerve-fibres. Using the
least mean square (LMS) algorithm [7], the local orientation of the block cen-
tred at certain pixel is computed as in [16].

Since the orientations vary at a slow rate, a low-pass Gaussian filter is applied
globally in order to further reduce errors at near-nerve-fibre and non-nerve-fibre
regions. The LMS produces a stable smooth orientation field in the region of
the nerve-fibres; however when applied on the background of the image, i.e.
between fibres, the estimate is dominated by noise due to the lack of structure
and uniform direction.

4 Experimental Results and Analysis

The evaluation has been conducted on a database of 525 CCM images captured
using the HRT-III1 microscope from 69 subjects (20 controls and 49 diabetic
patients). The resolution is 1.0417μm and the field of view is 400 × 400μm2

of the cornea. For each individual, several fields of view are selected manually
from near the centre of the cornea that show recognisable nerve-fibres. Using the
Neuropathy Disability Score (NDS) [1], 48 patients were categorised into four
groups according to severity of neuropathy (asymptomatic: 0 ≥NDS≤ 2 (n =
26), mild: 3 ≥NDS≤ 5 (n = 9), moderate: 6 ≥NDS≤ 8 (n = 10) and severe:
9 ≥NDS≤ 10 (n = 3)).

The performance of all methods is obtained by validating the extracted nerve-
fibres in comparison with an expert manual delineation using CCMetrics2. Only
the raw response of each method is taken into account without any further
post-processing operations or shade correction methods as shown in Figure (1).
Binary images are obtained by a simple uniform thresholding operation that is
followed by a thinning operation to achieve a one-pixel-wide skeleton image.

4.1 Comparison of Nerve-Fibre Detection Methods

Three measures have been used in order to quantify the evaluation: the false-
positive (FPR), the true-positive (TPR) and the equal-error rate (EER), which
is the average of optimal FPR and false-negative rate at minimal difference be-
tween both. The measurements are taken by comparing the generated skeleton
at different threshold intervals of the methods’ responses with the manually
delineated “ground-truth”. A tolerance of ±3.141μm (3 pixels) was allowed in

1 Heidelberg Engineering Inc., modified to acquire corneal confocal images.
2 CCMetrics is a purpose built interactive graphical interface which helps experts to

manually delineate nerve-fibres in CCM images.
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determining coincidence between the ground-truth and the detected nerve-fibres.
The Peak Signal to Noise Ratio (PSNR) is also used to evaluate the performance
of all methods. The PSNR is computed with respect to the mean squared error
of the detected nerve-fibres from the manual delineation. The practical imple-
mentations of the Hessian, the DTCWT and the Monogenic signal were obtained
from public domain sources [12,14,13], while the rest are implemented by our
research group.

The EER and PSNR values for all the methods are presented in the box-plots
in Figure 2 and Table 1. Each data point in Figure 2 corresponds to the evaluation
on one of the 525 CCM images in the database. The dual-model shows lower EER
and higher PSNR than all other methods (Table 1). These improvements are sta-
tistically significant (p ≈ 0 using three different non-parametric tests). The table
also shows that the standard deviations of both EER and PSNR are low for the
dual-model, which indicates a more stable and robust behaviour. The closest com-
petitor is Linop. The methods designed for linear structures perform rather better
on this test than the more generic DTCWT and Monogenic signal methods.

The superior performance of the dual-model is borne out by the ROC curves
of Figure 2, in which the dual model shows improved detection at all operation
points.

Fig. 2. From left to right, the box-plots of the EER and the PSNR are shown for

all methods. The ROC curves are presented at the far right. The box-plots indicate

the upper and the lower quartiles as well as the median (the bar) of the EER and

PSNR values respectively; whiskers show the extent of the rest of the data while crosses

indicate outliers for (a) dual-model, (b) Linop, (c) 2D Gabor, (d) Hessian, (e) DTCWT

and (f) Monogenic.

Table 1. A comparison of mean EER and PSNR and their standard deviations

Dual-Model Linop [4] 2D Gabor [2,9] Hessian [6] DTCWT [11] Monog. [5]

EER[%] 17.79± 10.58 22.65± 10.76 24.15± 10.74 23.14± 11.53 34.17± 10.43 26.50± 12.58

PSNR[dB] 19.08± 2.16 18.51± 2.09 18.80± 2.11 17.93± 2.27 17.00± 2.23 18.11± 2.20

4.2 Assessment of Clinical Utility Results

In previous studies, using manual measurement of nerve-fibres, several features
have been used to quantify the CCM images, including nerve-fibre length (NFL):
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the total length of nerve-fibres measured in an image, nerve-fibre density: the
total number of nerve-fibres per unit area and branch density: the number of
fibre branches per unit area. Of these nerve-fibre length proved to be the most
discriminating, and we use this measure here to compare automated with manual
measurement of the nerve-fibre images.

The box-plots in Figure 3 show a strong similarity between the manual and the
automated analysis.However the scale of theNFLhas slightly changed from(3.68−
33.91) for themanual analysis to (5.67−26.53) for the automated analysis.ANOVA
analysis results in a p-value for discrimination among these groupswhich is slightly
higher for the automated than the manual analysis, though both are significant
(p ≈ 0). The automated NFL measurements show a very strong correlation (r =
0.92) with the manual NFL values, which indicates that the automated system is
successfully identifying the correct nerve-fibres. The coefficient of variation cv = σ

μ

of the manual analysis is 0.34, reducing for the automated analysis to 0.29, which
indicates more reliability and robustness of the results.

Fig. 3. Box-plots showing the NFL scores for each of the NDS groups calculated man-

ually (left) and automatically (right)

5 Conclusion

The analysis of CCM images requires the identification of fibre-like structures
with low contrast in noisy images. This is a requirement shared by a number of
imaging applications in biology, medicine and other fields. A number of methods
have been applied in these applications, and we have compared some of these,
and more generic methods with a dual-model detection algorithm devised for this
study. The comparison used a large set of images with manual ground truth. In
terms of both error-rates (pixel misclassification) and signal-to-noise ratio, the
dual model achieved highest performance. It seems reasonable to propose that
this filter is likely to prove equally useful in applications of a similar nature. The
question of the clinical utility of the method was also addressed in this paper. The
evaluation has shown that the automatic analysis is consistent with the manual
ground truth with a correlation of (r = 0.92). Similarity in grouping control and
patient subjects between manual and automated analysis was also achieved with
(p ≈ 0). Therefore, it is sound to conclude that the automated analysis, which
can be much quicker, is a potentially more reliable and practical alternative to
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manual analysis due to its consistency and immunity to the inter/intra-observer
variabilities.
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Abstract. rTg4510 transgenic mouse model demonstrates features  resembling 
Alzheimer’s disease including neurofibrillary degeneration and progressive 
neuronal loss.  We investigated the volumetric differences of brain structures 
between transgenic and wild-type mice using MR images of fourteen 5.5 month 
old female mice. Tensor-based morphometry and atlas-based segmentation 
were applied to MRI images. Severe atrophy of hippocampus and neocortex as 
well as ventricular dilatation were observed in the transgenic mice. These  
findings were confirmed by histopathologic evaluation of the same mice. The 
results suggest that MRI should be useful for evaluating disease-modifying 
therapies for Alzheimer’s disease in the rTg4510 model and comparing treat-
ment responses in mice and humans. 

Keywords: Alzheimer, rTg4510, MRI, Brain, Atlas-based segmentation,  
Tensor-based morphometry. 

1   Introduction 

Alzheimer's disease is characterized by deposition of neurofibrillary tangles that con-
sist of abnormally hyperphosphorylated tau [1]. Neuronal loss in neocortex and hip-
pocampus are closely associated with the process of neurofibrillary degeneration [2].  
Different transgenic mouse models of Alzheimer’s neuropathology have been created 
to advance the understanding of the disease and development of treatments [3]. The 
rTg4510 mouse model is characterized by conditional overexpression of hyperphos-
phorylated human P301L mutant tau and profound neurofibrillary pathology, neu-
rodegeneration and behavioral impairment [4]. Spatial memory deficits, progressive 
increase in neurofibrillary tangles and rapidly progressing neuronal loss have been 
reported to occur by 5.5 months of age [4].    

MRI has been widely investigated as a biomarker to diagnose and estimate the dis-
ease progression in Alzheimer’s disease [5][6][7]. In this study, we evaluated the 
sensitivity of in-vivo MRI in characterizing the morphological change of rTg4510 
mice at 5.5 months. MR brain images of seven double transgenic rTg4510 female 
mice and 7 age-matched wild-type female mice were acquired. Tensor-based  
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morphometry (TBM) was performed on brain images to inspect regional morphologi-
cal changes. To quantify the changes in different structures, we segmented the hippo-
campus, neocortex, ventricle, and cerebellum from MR images of each mouse and 
compared the size of these structures between the two groups. The results indicated 
that severe atrophy in the neocortex and hippocampus and dilation of lateral ventricles 
occurred in transgenic rTg4510 mice while the size of cerebellum remained un-
changed. These results were confirmed by histopathologic examination performed in 
the same mice. 

2   Material and Methods 

2.1   Animals and MR Imaging 

All animal handling procedures were carried out in compliance with the NIH Guide 
for the Care and Use of Laboratory Animals under a protocol approved by the Pfizer 
Global Research and Development Animal Care and Use Committee. 

Seven double transgenic rTg4510 female mice and seven age-matched wild-type 
(WT) female mice (5 months 5 days to 5 months 12 days of age, 22-31 g) were evalu-
ated.  The mice were housed in a ventilated, temperature-controlled room with a 12-
hour light/dark cycle.  

Brain MRI was performed on a horizontal bore 4.7T magnet (Bruker Biospec 
47/40, Bruker-Biospin, Inc). After an initial 5-10 min 2.5% isoflurane anesthesia 
induction period, all mice were anesthetized and maintained with 1.6-2.0% isoflurane 
in oxygen delivered via a nose cone. The mice were positioned in prone position with 
heads fixed to the plastic nose cone with the aid of a tooth bar and ear pins. Body 
temperature was recorded and maintained at 35.5-37.5C using a water heated animal 
bed and a water heated blanket (on the top). Respiratory rate was monitored continu-
ously using a small animal monitoring and gating system (SA Instrument, Inc. Stony 
Brook, NY 11790, USA). RF excitation for imaging was delivered through a 72mm 
volume coil, and an actively decoupled mouse brain quadrature surface coil placed on 
the head was used as the receiver. T2-weighted 3D RARE images were acquired with 
the following parameters: field of view = 16 × 16 × 19.2 mm3, matrix dimensions = 
128 × 128 × 64, spatial resolution = 125 μm × 125 μm × 300 μm, TR = 2600 ms TE = 
23 ms, RARE factor = 16. The total imaging time was 44m 22s 400ms.  

After MR imaging, mice were euthanized using carbon dioxide gas. The brains 
were collected, fixed by immersion in 10% neutral buffered formalin, and embedded 
in the coronal plane using a mouse brain mold. Each brain produced about 6 slabs 
2mm thick. Tissues were processed routinely, embedded in paraffin blocks, sectioned 
at a thickness of 5 μm, and stained with hematoxylin and eosin (H&E). All H&E 
sections of brain were examined qualitatively by light microscopy. 

2.2   Image Analysis 

The method proposed by Cohen et. al. [8] was used to correct RF inhomogeneity of 
MR images. Whole brain was segmented from the MR image using an open source 
software ITK-Snap [9] followed by a manual correction. More specifically, a 3D 
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geodesic active contour method [10] implemented in ITK-Snap was used for the 
semi-automatic brain segmentation. 

With the intensity-corrected brain images, we performed tensor-based morphome-
try [11] to characterize the structural difference between two groups. Besides the 
TBM study, we also segmented four structures (hippocampus, neocortex, lateral ven-
tricle, and cerebellum) from the MR images and measured the structural size to quan-
tify the difference.     

2.2.1 Tensor-Based Morphometry 
Tensor-based morphometry (TBM) has been widely used to characterize the brain 
atrophy in Alzheimer’s disease in clinical studies [12]. We employed the same 
method to evaluate the brain morphological differences between transgenic and wild-
type mice. We first created a template brain image by registering the brain image of 
each subject to a pre-selected image, and computing the average of all aligned images. 
Then we registered all individual brain images to the template, generating a deforma-
tion field for each subject. The registration was initialized with a rigid body registra-
tion and followed by a nonlinear registration. Rigid body registration was computed 
by optimizing the mutual information using one-plus-one method [13] implemented 
in ITK (www.itk.org). Our nonlinear registration method [14], [15] was a spline-
based extension to Thirion’s Demons technique [16]. It used optical flow to determine 
the correspondence of voxels which exhibit sufficiently large intensity gradients. 
Based on the estimated sparse correspondences, a B-spline function of the correspon-
dences over the whole brain volume was determined using weighted scattered data 
approximation. This two-step algorithm was applied over multiple resolution levels in 
conventional coarse to fine fashion: both the resolution of the images and the number 
of spline control parameters were simultaneously adjusted. Specifically, starting with 
B-spline functions that have a small number of parameters, the algorithm was iterated 
to match the coarse features of the images. The result was used to initialize the regis-
tration at the next resolution level, where the number of spline parameters was in-
creased to allow alignment of the finer features that were apparent in the higher reso-
lution images. This strategy provided a way to incrementally refine the registration 
and improve the robustness of the method. To correct for variability in intensity, the 
histograms of the images were matched. The registration method was validated based 
on the labeled T2 weighted MR images created by RCIBI [16] 
(http://www.bnl.gov/medical/RCIBI/mouse/), and was capable of yielding overlap 
ratios of greater than 90% for big structures (Neocortex, Cerebellum, Thalamus, etc) 
and 70% for small structures such as ventricle.  

With the deformation field that aligned the brain image of each subject to the tem-
plate, a 3D Jacobian map can be generated by computing the determinant of local 
Jacobian matrix at each voxel of template image.  The Jacobian determinant was a 
local measurement of volume difference of each subject relative to the template im-
age.  A greater than one value of Jacobian determinant represented voxel expansion 
during the registration, while a value less than one represented voxel contraction. 
Since all images were registered to the same template, the Jacobian map can be used 
to voxel-wise compare the volumetric difference between two groups. To better char-
acterize the local morphological difference, the Jacobian map only included the 
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nonlinear deformation. Global transformation such as scaling of the whole brain was 
not taken into account.   

To increase the normality of the data distribution, the Jacobian map for each sub-
ject was log-transformed and smoothed with a 0.2mm Gaussian kernel. Two tailed t-
tests were performed at each voxel of smoothed images to find the regions with sig-
nificant volumetric difference between the two groups.  

2.2.2 Quantification of Size Differences of Different Structures 
To verify the results discovered from the TBM analysis and quantify the volumetric 
differences between two groups, we measured the volume of anatomical structures in 
the brain images acquired from each mouse. In both clinical and preclinical studies, 
hippocampus, neocortex, and lateral ventricle have been used as biomarkers to predict 
Alzheimer’s disease progression [17], [18], [19], [20], [21], [22]. Our TBM study also 
showed the morphological differences in these regions. Cerebellum was formerly 
thought to be relatively unaffected in the AD brain. Recent studies revealed that the 
cerebellum also underwent degenerative changes in Alzheimer's disease [23], [24]. In 
this study, we segmented hippocampus, neocortex, lateral ventricle, and cerebellum 
from MRI images of each mouse and compared the size of these structures between 
groups. The segmentation was done by applying an atlas-based segmentation fol-
lowed by a manual correction. Based on the T2-weighted MR template and 20 labeled 
structures from RCIBI [25], we first registered the template to the brain image of each 
animal, and mapped the label of the template to each subject with computed transfor-
mation. Computer-generated segmentation was then reviewed by a trained expert and 
correction was made if necessary. Fig 1 shows an example of such segmentation. 

 

  

Fig. 1. An example of image segmentation. Left picture shows one slice of a coronal brain 
image with overlap of colored labels of different structures (yellow = cortex; light blue = cor-
pus callosum & external capsule; red = hippocampus; dark blue = ventricles; green = cerebel-
lum). 3D visualization of four structures is shown on the right picture.  

3   Results 

The result of TBM analysis showed significant atrophy of neocortex and hippocam-
pus and dilatation of lateral ventricles in the rTg4510 transgenic mice. Figure 2  
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demonstrates one slice of a t-score map generated from the voxel-wise two-tailed t-
tests of Jacobian maps between two groups. The blue color represents regions of vol-
ume contraction in transgenic mice and red color indicates the regions of volume 
expansion. Color bars give the scale of the t-scores. t=3.05 corresponds to p=0.01 for 
an uncorrected two-tailed t-test.  
 

Fig. 2. t-score map of voxel-wise volumetric
comparisons between rTg4510 and wild-type 
mice in a coronal plane at the level of the
dorsal hippocampus. The blue color represents
regions of structural contraction in transgenic
mice and red color indicates the regions of
structural expansion. 

Fig. 3. A representative histopathology image 
of the brain of an rTg4510 mouse. Thinner 
neocortex, smaller hippocampus and smaller 
amygdala were observed. Ventricular dilation 
indicated additional loss of brain parenchyma. 

 

Based on the segmentation of hippocampus, neocortex, lateral ventricle, and cere-
bellum, we computed the volume of different structures for each animal. Figure 4 
illustrates the mean volume difference between two groups for hippocampus, neocor-
tex, and lateral ventricle. The hippocampus and neocortex of transgenic mice were 
significantly smaller than those of wild-type mice (p value for two-tailed t-tests were 
less than 0.0001). Lateral ventricle size of transgenic mice was significantly larger 
than wild-type mice (p value for two-tailed t-test was 0.023). No significant differ-
ence was observed in the volume of the cerebellum between the two groups. 

When we inspected the individual data, we found that all transgenic mice had a 
smaller hippocampus and neocortex than wild-type mice. Animal to animal variability 
in rTg4510 mice was observed in the ventricular volume measurement. 4 out of 7 
rTg4510 mice had enlarged lateral ventricles (hydrocephalus) while the other three 
were similar in size to the wild-type mice. Figure 5 shows one example of a trans-
genic mouse with enlarged ventricles. The left picture is a slice of a T2-weighted 
image of the transgenic mouse. The ventricular dilatation (hydrocephalus, shown as 
bright structures in this picture) is evident in the rTg4510 brain which was not ob-
served in the corresponding slice of a wild-type mouse (right picture, Figure 4). Hy-
drocephalus likely reflects expansion of the fluid-filled ventricles in response to loss 
of brain mass. 
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Fig. 4. Volume comparison of three structures between transgenic and wild-type mice.  Blue 
bar represented the average volume of rTg4510 mice and the red bar indicated the average 
volume of wild-type mice (unit: mm3). Statistical values between the groups are illustrated on 
the top of each picture. 

 

 

Fig. 5. MR images of a transgenic mouse (left) and a wild-type mouse (right). Ventricular 
dilatation (high intensity areas in the left panel) can be clearly observed in the image of trans-
genic mouse.  

From the histopathology study, reduced cellularity in the pyramidal cell layers of 
the CA1 and CA2 regions and granular cell layer of the dentate gyrus was the most 
consistent difference between rTg4510 mice and control mice (illustrated in figure 3). 
Decreased cellularity of pyramidal cell layers and decreased thickness of the hippo-
campus were observed in 6 of 7 rTg4510 mice, with one mouse appearing to have 
hippocampal thickness comparable to controls while still exhibiting neuronal loss. 
The thicknesses of neocortex and amygdala in the sections with hippocampus were 
qualitatively reduced in 3 of the rTg4510 mice. Four Tg4510 mice had minimal to 
mild dilatation of the ventricles. No significant cellular changes in the cerebellum 
were observed. These histopathology results correlated with the MRI findings in the 
same animals and with published reports demonstrating neuropathologic changes in 
the same mice [22].  
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4   Discussion 

The present study shows that in-vivo MRI is capable of detecting cortical and hippo-
campal atrophy and ventricular dilatation of rTg4510 at 5.5 months of age. This time 
point corresponds with the age which reportedly exhibits neurodegeneration in both 
published reports [4] as well as in our own histopathology examination. These results 
suggest that noninvasive imaging can be used as a potentially translatable biomarker 
for progressive neuronal degeneration in this model.  

In MRI analysis, TBM provides a qualitative way to characterize the location of at-
rophy and dilatation as a group, while the segmentation of different structures gives a 
quantitative way to measure the atrophy and dilatation of anatomical structures for an 
individual mouse. The 2 methods provide complementary information to monitor the 
disease progression in transgenic mice.  

Future studies will include longitudinal MRI measurements in parallel with behav-
ioral evaluation to investigate the power of MRI in detecting the disease progression 
at different stages.  Since the rTg4510 mutant model was designed with a promoter 
that can be repressed with tetracycline treatment, it is possible to turn off transgene 
expression of tau and ask whether MRI can detect reversibility of the phenotype.  
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Abstract. This paper introduces a new method to detect group differ-

ences in brain images based on spatially regularized support vector ma-

chines (SVM). First, we propose to spatially regularize the SVM using

a graph encoding the voxels’ proximity. Two examples of regularization

graphs are provided. Significant differences between two populations are

detected using statistical tests on the margins of the SVM. We first tested

our method on synthetic examples. We then applied it to 72 stroke pa-

tients to detect brain areas associated with motor outcome at 90 days,

based on diffusion-weighted images acquired at the acute stage (one day

delay). The proposed method showed that poor motor outcome is as-

sociated to changes in the corticospinal bundle and white matter tracts

originating from the premotor cortex. Standard mass univariate analyses

failed to detect any difference.

1 Introduction

Diffusion-weighted imaging (DWI) is of considerable interest to the clinical eval-
uation of acute stroke patients [1]. The location of the lesions has been suggested
to represent a better predictor than their global volume [2]. At the subacute or
chronic phases, previous studies have shown that damages to the corticospinal
tract (CST) [3] and lesions to the primary sensorimotor cortex [2,4] correlated
with poor motor outcome. At the acute stage, regional changes in the apparent
diffusion coefficients (ADC) were suggested as early quantitative indices of re-
gional irreversible ischemic damage [5]. However, at the acute stage, the spatial
pattern of ADC changes associated with motor outcome remains unclear.

Group analyses of differences between populations in brain imaging have
widely relied on univariate voxel-wise analyses, such as voxel-based morphome-
try (VBM) for structural MRI [6] or their equivalent for diffusion imaging (VB-
DWI). In such analyses, brain images are first spatially registered to a common
stereotaxic space, and then mass univariate statistical tests are performed in each
voxel to detect significant group differences. However, the sensitivity of theses
approaches is limited when the differences are spatially complex and involve a
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combination of different voxels or brain structures [7]. Recently, there has been
a growing interest in support vector machines (SVM) methods [8,9] to overcome
the limits of these univariate analyses. Theses approaches allow capturing com-
plex multivariate relationships in the data and have been successfully applied to
the individual classification of a variety of neurological conditions [10,11,12,13].
Moreover, the output of the SVM can also be analyzed to localize spatial pat-
terns of discrimination, for example by drawing the coefficients of the optimal
margin hyperplane (OMH) – which, in the case of a linear SVM, live in the same
space as the MRI data [12,13,14]. However, one of the problems with analyzing
directly the OMH coefficients is that the corresponding maps are noisy and lack
spatial coherence. Moreover only a few of these approaches perform a statistical
analysis of the OMH coefficients [14].

In this paper, we propose a new method to detect group differences in brain
images based on spatially regularized SVM. In particular, we show how spatial
consistency can be directly enforced into the SVM by using Laplacian regular-
ization. We then propose a statistical analysis based on the spatially regularized
SVM to detect brain regions which are significantly different between two groups
of subjects. The proposed framework is tested on 2D synthetic test images and
then applied to the detection of differences between stroke patients with good
and poor outcome based on DWI acquired at the acute stage.

2 Spatially Regularized SVM Using the Graph Laplacian

In this section, after some background on SVM, we propose to spatially regu-
larize the SVM using a graph encoding the voxels’ proximity. We then give two
examples of regularization graphs.

2.1 Background

In this contribution, we consider the case of brain images which are spatially
normalized to a common stereotaxic space. These images can be any charac-
teristics extracted from the MRI, such as gray matter concentration maps (in
VBM) or ADC maps (in diffusion MRI). Let (xs)s∈[1,N ] ∈ (Rd)N be the images
of N subjects and (ys)s∈[1,N ] ∈ {±1}N their group labels (e.g. diagnosis). SVMs
search for the hyperplane for which the margin between groups is maximal, the
OMH. The standard linear SVM solves the following optimization problem [8]:

min
w∈Rd,b∈R

N∑
s=1

φ (ys [〈w,xs〉+ b])︸ ︷︷ ︸
Empirical Loss

+ λ ‖ w ‖2︸ ︷︷ ︸
Classical Tikhonov Regularization

(1)

where φ is the hinge loss function (φ : u �→ (1− u)+), b the bias and λ ∈ R+.
With a linear SVM, the feature space is the same as the input space. Thus,

when the input features are the voxels of the image, each component of w also
corresponds to a voxel. One can therefore represent the values of w in the image
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space, and use this map to localize differences. However, the map w can be
noisy and scattered (as for example in [12]). This is due to the fact that the
regularization term of the standard linear SVM is not a spatial regularization.
Voxel-based comparisons are subject to registration errors and interindividual
variability. Gaussian smoothing is therefore often used as a preprocessing step.
However, some image information is lost with the smoothing which, for example,
mixes white matter with gray matter voxels. Tissue probability maps could be
used to overcome this limitation. More generally, if voxels are connected, meaning
for example spatially, anatomically or functionally close, we would like the SVM
to consider them as similar. In the next section, we propose to encode this
proximity in a graph and to use its Laplacian to spatially regularize the SVM.

2.2 Regularization Based on Diffusion on Graph

Graphs are a natural framework to take spatial information into consideration.
Voxels of a brain image can be considered as nodes of a graph which models the
voxels’ proximity. This graph can be the voxel connectivity (6, 18 or 26) or a
more sophisticated graph.

By changing the regularization term of the standard linear SVM equation (1),
one can force w to be smooth with respect to the graph, hence spatially smooth.
That is to say, if two voxels are close, the classifier will consider them as similar.
The minimization problem becomes:

min
w∈Rd,b∈R

N∑
s=1

φ (ys [〈w,xs〉+ b])︸ ︷︷ ︸
Empirical Loss

+λ ‖ exp
{

1
2
βL

}
w ‖2︸ ︷︷ ︸

Spatial Regularization

(2)

where L is the graph Laplacian [15] and β ∈ R+ and exp{·} is the matrix expo-
nential1 [16]. This new minimization problem (2) is equivalent to an SVM opti-
mization problem [9,17]. The new kernel K is given by: K(x1,x2) = xt

1e
−βLx2.

Note that K(x1,x2) = 〈e− β
2 Lx1, e

− β
2 Lx2〉.

Our approach differs from the diffusion kernels introduced by Kondor et
al. [18]. In our case, the nodes of the graph are the features, here the voxels,
whereas in [18], the nodes were the objects to classify. Laplacian regularization
was also used in satellite imaging [19] but, again, the nodes were the objects to
classify. Our approach can also be considered as a spectral regularization on the
graph [20]. To our knowledge, such spectral regularization has not been applied
to brain images but only to the classification of microarray data [21].

2.3 Examples of Regularization Graphs

One has now to define the graph depending on type of spatial proximity one
wants to enforce. The simplest option is to use the image connectivity (6, 18

1 For any square matrix M , exp {M} =

∞∑
k=0

1

k!
Mk
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or 26). In this case, the regularized SVM would be equivalent to smoothing
the data with a Gaussian kernel with standard deviation σ =

√
β [20]. But

this would mix gray matter (GM), white matter (WM) and cerebrospinal fluid
(CSF). Instead, we propose a graph which takes into consideration both the
spatial localization and the tissue types. Based on tissue probability maps, in
each voxel v, we have the set of probabilities pv that this voxel belongs to GM,
WM or CSF. We considered the following graph. Two voxels are connected if
and only if they are neighbors in the image (6-connectivity). The weight au,v

of the edge between two connected voxels u and v is au,v = e−dχ2(pu,pv)2/(2σ2),
where dχ2 is the χ2-distance between two distributions. We chose beforehand σ
equal to the standard deviation of dχ2(pu, pv).

3 Statistical Analysis of the Margins

In this section, we propose a statistical analysis to detect brain regions which
are significantly different between two groups of subjects, based on the results
of the spatially regularized SVM.

The classification function obtained with a linear SVM is the sign of the inner
product of the features with w, a vector orthogonal to the OMH [8,9]. Therefore,
if the absolute value of the ith component of the vector w, |wi|, is small compared
to the other components (|wj |)j �=i, the ith feature will have a small influence on
the classification. Conversely, if |wi| is relatively large, the ith feature will play
an important role in the classifier. However, one cannot compare directly the
weights from two different comparisons. More precisely, let A, A′, B, B′ be four
groups of subjects and let w(A) and w(B) be the optimal weights (SVM outputs)
for the comparison A versus A′ and the comparison B versus B′ respectively. If
the separation between A and A′ is larger than the separation between B and B′

then ‖ w(A) ‖ will be smaller than ‖ w(B) ‖. Hence, one cannot directly compare
the components |w(A)

i| and |w(B)
i| for significance tests.

SVMs search for the hyperplane for which the margin 2 between groups is
maximal (Fig. 1). The margin m is large when there is a large separation be-
tween two groups. By combining m and |wi|

‖w‖ , one can simultaneously quantify
the separation between groups and the relative influence of the different features.
Therefore, we propose to analyze the statistic of m|wi|

‖w‖ . We performed permuta-

tion tests on m|wi|
‖w‖ under the null hypothesis H0 of no relationship between the

class labels and the global structure of the MR scan. By randomly permuting
the subjects labels 20,000 times and training the SVM with this permutation of
labels, we estimated for each voxel i the probability distribution of m|wi|

‖w‖ under
H0. Based on these distributions, it is possible to test H0 at the voxel level. The
false discovery rate (FDR) was used to correct for multiple comparisons [22]. To
the best of our knowledge, other statistical analyses of the OMH did not take
the margin into account (e.g. [14]).
2 For the standard linear SVM (1), the margin m is given by: m = 2 ‖ w ‖−1. As for

the spatially regularized version (2), m = 2 ‖ exp
(

1
2
βL
)
w ‖−1 [9].
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w

margin: m

〈w,x〉 + b > 0

〈w,x〉 + b < 0

: 〈w,x〉 + b = 0

: 〈w,x〉 + b = ±1

Fig. 1. Illustration of an optimal margin hyperplane with a linear SVM. The support

vectors are circled.

4 Experiments and Results

We first tested our method on 2D synthetic test images. We then applied it on
real data to the detection of brain areas associated with stroke outcome based
on diffusion-weighted MRI acquired at the acute stage.

4.1 Synthetic Images

We first evaluated the ability of the method to detect artificial differences be-
tween two groups of 20 2D synthetic images (116 × 92 with 1.5 mm isotropic
voxels) which were constructed as follows. We considered a slice of a WM tem-
plate. For each of the 40 images, the voxels of the WM were assigned a random
number between zero and one, the intensity of the other voxels being null. In
each image of the first group, we constructed a hyperintensity hgreen in the green
region of Fig. 2 and hred in the red region such as (hgreen + hred) ∼ N (2, 0.2).
Gaussian white noise (N (0, 1)) was added to all images.

We tested six methods: three univariate methods and three SVM methods.
We performed three univariate analyses on the voxel intensities: on the raw
images, on the images smoothed with a Gaussian kernel and on the images
preprocessed by e−

β
2 L (where L was the Laplacian of the graph used in the

spatially regularized SVM). We tested three SVM methods: the standard linear
SVM on the raw images, the standard linear SVM on the smoothed images and
the spatially regularized SVM on the raw images.

All tests were corrected for multiple comparisons with a 5% FDR. The C
parameter of the SVM was fixed to one (λ = 1

2NC [9]). The full width at half
maximum (FWHM) of the Gaussian smoothing kernel was three voxels (the red
and green regions’ widths). β controls the size of the spatial regularization and
was chosen to be equivalent to the FWHM of the Gaussian smoothing.

The results are shown on Fig. 2. The univariate analyses did not detect any
difference for any images (raw, smoothed and preprocessed with e−

β
2 L).The SVM

detected only a fraction of the green and red regions on raw images. On smoothed
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(a) (b) (c) (d)

Fig. 2. Synthetic example: (a) WM template and regions to detect; detection with a

linear SVM (b) on raw images; (c) on smoothed images; (d) detection with a spatially

regularized SVM on raw images. All other analyses detected no difference.

images both regions were detected. The spatially regularized SVM also detected
both regions and decreased the number of scattered clusters.

4.2 Brain Areas Associated with Stroke Outcome

Subjects and MRI Acquisition. We included 72 consecutive acute stroke
patients (mean age: 60±14 years[24-81]). Exclusion criteria were symptomatic
hemorrhagic transformation on follow-up MRI and death during the follow-up
period (90 days). The modified Rankin Scale (mRS) was used to assess outcome
at 90 days. Good outcome was defined as independency (mRS 0 to 2; 39 subjects)
and poor outcome as severe disability (mRS 3 to 5; 33 subjects).

The median delay between stroke onset and MRI aquisition was 1.2 day3.
MR imaging was performed on a 1.5 Tesla MR General Electric Signa. Axial
isotropic DWI spin echo EPI included 24 slices of 5 mm thickness, with an
interslice gap of 0.5 mm, a 280x210 mm FOV, a 96x64 matrix, TE = 98.9
ms, and TR = 2825 ms. A baseline T2 acquisition and a diffusion-weighted
acquisition using a diffusion gradient of 1000 s.mm−2 were both acquired within
40 seconds. ADC maps were generated using dedicated commercially-available
software (Functool 2, General Electric). ADC maps were then normalized to the
Montreal Neurological Institute (MNI) space using SPM5 software4. To avoid
any effect from lateralization, the template was symmetrized. To put all the
lesions on the same side, ADC maps with the infarct lesion in the left hemisphere
were flipped to the right for the analysis.

Statistical Analysis and Results. Univariate analyses were done with both
a permutation test and a parametric Student’s T-test on smoothed images (8-
mm FWHM Gaussian filter). We also performed analyses with the spatially
regularized SVM on the raw images. As in the previous section, the β parameter
was chosen to correspond to the FWHM of the univariate analyses. All tests
were corrected with a 5% FDR.

3 All imaging and clinical data were generated during routine clinical workup of the

patients in our stroke center. The study was approved by the La Pitié-Salpêtrière

Hospital Ethics Committee.
4 Statistical Parametric Mapping, Institute of Neurology, London, UK
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Fig. 3. Group differences of the ADC maps between poor and good motor outcome

with a spatially regularized SVM (z=20 mm, x=28mm and y=-8mm in the MNI-space)

No regions were detected by the univariate analyses. The spatially regularized
SVM detected significant changes predominantly localized in the WM (Fig. 3).
The larger part of the detected cluster included the corticospinal tract at the
level of the internal capsule. The smaller part was more superficial and was
originating from the lower part of the motor and premotor cortex.

5 Conclusion

We proposed a new method based on spatially regularized SVM to detect group
differences in brain images. Spatial consistency was directly enforced into the
SVM by using the graph Laplacian. This provides a flexible approach to model
different types of proximity between voxels. We then proposed to detect differ-
ences between groups using a statistical analysis which takes the margin of the
SVM into account.

The proposed approach was applied to the detection of brain areas associated
with stroke outcome based on DWI acquired at the acute stages. It allowed detect-
ing changes localized in a large WM tract including the corticospinal tract and the
lower part of the motor and premotor bundles. Univariate analyses failed to detect
any differences. These results, obtained at the acute stage, are in line with previ-
ous studies carriedout at the subacute or chronic phases [3,2,4]. Our results suggest
that spatially regularized SVM might be useful to analyze MR images acquired in
clinical routine as soon as 24 hours post stroke onset.

The proposed approach is not specific to diffusion MRI or stroke patients,
and can be applied to other pathologies and other types of data (e.g. anatomical
MRI). It has the potential to overcome the limits of traditional mass univariate
voxel-wise analyses by detecting complex spatial patterns of alterations.
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Abstract. We present a new algorithm for reliable, unbiased, multivariate
longitudinal analysis of cortical and white matter atrophy rates with penalized
statistical methods. The pipeline uses a step-wise approach to transform and per-
sonalize template information first to a single-subject template (SST) and then
to the individual’s time series data. The first stream of information flows from
group template to the SST; the second flows from the SST to the individual
time-points and provides unbiased, prior-based segmentation and measurement
of cortical thickness. MRI-bias correction, consistent longitudinal segmentation,
cortical parcellation and cortical thickness estimation are all based on strong use
of the subject-specific priors built from initial diffeomorphic mapping between
the SST and optimal group template. We evaluate our approach with both test-
retest data and with application to a driving biological problem. We use test-
retest data to show that this approach produces (a) zero change when the retest
data contains the same image content as the test data and (b) produces nor-
mally distributed, low variance estimates of thickness change centered at zero
when test-retest data is collected near in time to test data. We also show that our
approach—when combined with sparse canonical correlation analysis—reveals
plausible, significant, annualized decline in cortical thickness and white matter
volume when contrasting frontotemporal dementia and normal aging.

1 Introduction

Longitudinal MRI studies are often underpowered due to the challenges of data collec-
tion, data consistency and data analysis. One of the most difficult detection problems in
longitudinal neuroimaging is tracking cortical thickness reduction in dementia via clin-
ical resolution T1 MRI. These images typically have resolution near 1 mm3 whereas
the cortex itself is only one to five millimeters thick in this age range and thinner in
diseased regions. Power is also reduced by the fact that these studies are testing for
“differences of differences,” which increases noise in the measurement and reduces
power. Additionally, there are few standard pipelines that exist for processing longitu-
dinal thickness data. Finally, the combined challenges of segmentation, registration and
change estimation make longitudinal pipelines difficult to validate. For these reasons,
the majority of studies have focused on whole brain or regional, lobe-based methods for

T. Jiang et al. (Eds.): MICCAI 2010, Part I, LNCS 6361, pp. 324–331, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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estimating longitudinal atrophy rates such as the Brain Boundary Shift Integral (BBSI)
[9,13,12,8,6]. These methods gain stability by integrating over large regions, but lose
specificity. Other studies have increased power by using very large cohorts. Shaw, et al.
used 1133 images to study differences in cortical thickness change between ADHD and
controls [10]. However, studies of rare dementia do not have the luxury of large cohorts
and thus few groups have attempted voxel or surface-wise estimates of longitudinal
cortical thickness group differences.

Power and accuracy can be increased in longitudinal studies by combining unbiased
estimation with feature selection. Yushkevich et al. showed that distributing interpola-
tion equally across all of a subject’s images is critical for eliminating the bias associated
with longitudinal hippocampal atrophy [14]. This leads to a basic principal in longitu-
dinal studies: all images should undergo an equivalent number of interpolations. While
this principal increases accuracy, precision remains relatively low due to the noise as-
sociated with these studies. To alleviate this concern, multivariate feature selection may
be used to not only reduce the multiple comparisons problem in a principled way [1]
but also select a subset of data that contains strong signal that agrees across two inde-
pendent views of the data. Sparse canonical correlation analysis allows one to select a
controllably sparse, mutually informative subset of voxels from paired, complementary
sets of measurements taken on the same subject. This subset of voxels may be selected
without reference to diagnosis. Thus, after selected, they may be passed to a test for
group differences without additional statistical penalty or circularity [7].

Here, we develop a new multivariate, morphometric framework—entitled Sparse Un-
biased Analysis of Anatomical Variance (SUAAV)—for detecting voxel-wise group dif-
ferences in cortical thickness and white matter atrophy rates. SUAAV builds on existing,
open-source image registration, MRI-bias correction, segmentation, cortical thickness
and sparse estimation tools. We apply and evaluate SUAAV in the challenging problem
of using serial T1-weighted MRI to contrast rates of atrophy in cortical thickness and
white matter volume between frontotemporal dementia (FTD) and a small set of con-
trol data. Tremendous interest exists in sensitive, unbiased approaches for quantifying
longitudinal thickness change as such methods are essential tools in treatment trials.
SUAAV is designed specifically for these types of tracking studies and achieves power
via variable selection and accuracy via application of the latest knowledge in unbiased
implementation of image measurement tools.

The most important novel components of SUAAV include: (1) unbiased segmen-
tation based on propagation of tissue priors from a group template, to a single-subject
template and, finally, to each time point image; (2) unbiased estimation of cortical thick-
ness change from in vivo resolution T1 MRI; (3) use of multivariate feature selection
to increase sensitivity in longitudinal studies of correlated white matter and cortical
thickness change. The framework, though advanced, has relatively few requirements
in that it only requires a prior-labeled template and serial data where two complemen-
tary views/images of each subject’s time change are available. In this study, we derive
these measures from a single modality, clinical T1-weighted imaging, by pairing an
estimate of annualized cortical thickness change with annualized white matter volume
change. We evaluate SUAAV with test-retest data and show that results are biologically
plausible and sensitive in real clinical data.
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2 Methods

2.1 Subjects and Imaging

The input data to our analysis consists of serial T1-weighted MRI collected longitu-
dinally on a Siemens 3T scanner. Each study began with a rapid sagittal T1-weighted
scan to determine patient position. A T1-weighted structural acquisition was then ac-
quired with TR (repetition time) = 1620ms, TE (echo time) = 3ms, slice thickness: 1
mm, in-plane resolution: .9766mm x .9766mm and field of view (FOV) 256× 256×
192. All data were checked for adequate quality across time points before proceed-
ing to the analysis. An experienced neurologist, who specializes in discrimination of
these diseases, grouped the subjects into likely syndromes (—) based on clinical phe-
notype and cognitive testing. Our analysis included 7 elderly control subjects and 26
FTD subjects matched for sex, age and education. All subjects’ follow-up images were
acquired approximately one year after the initial visit and there was no siginficant dif-
ference in the set of delay times between the control and FTD longitudinal image sets.

2.2 Sparse Unbiased Analysis of Anatomical Variance

We now describe the components of the SUAAV framework for gaining unbiased es-
timation of longitudinal neurodegeneration in white matter and cortical thickness and
shown in figure 1 and figure 2.

Followup Probability

Baseline Probability

Followup Thickness

Baseline Thickness

SST GM Probability
Group Template 
GM Probability

Thickness Beta Map 
overlaid on GM Seg: 
Brighter areas indicate 
stronger longitudinal 
change

Followup Parcellation

Baseline Parcellation

Fig. 1. The SUAAV algorithm’s pipeline requires a template that contains cortical priors and cor-
tical labels that are used in a parcellation scheme. These priors are mapped first to a single-subject
template (SST) and used to initialize segmentation of the SST. The resulting probability maps are
then deformed from SST space to individual space to initialize a prior-constrained segmentation
of (in this case) a baseline and follow-up image collected at a one year interval. Thickness maps
and cortical parcellation are then computed for each time point image. While parcellation is not
explicitly required by SUAAV, we use parcellation, here, to evaluate the stability of the pipeline
in test-retest data and to verify the findings provided by the voxel-wise analysis. Red arrows point
to a region associated—in the group analysis—with significant atrophy and black arrows point to
the corresponding region in the parcellation.
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1. SST Initialization and Optimization: We construct an optimal, unbiased within-
subject template from each subject’s serial data by rigidly aligning the first time
point image to the group template. Subsequent time points are aligned to the first
time point. The result is then averaged to produce an unbiased initialization. Given
the initialization, we use the method described in [1], and available in the ANTS
toolkit [4], to compute the optimal shape and appearance SST with respect to all
time points. This approach guarantees that the mapping for each subject to the
group template or to the SST involves the same number of interpolations (one) or
compositions (affine + diffeomorphism to go to the SST and affine + diffeomor-
phism + affine + diffeomorphism to go to the group template).

2. Mapping to Group Template and Tissue Priors: Given the SST from the first
step, we use standard correlation-based ANTS diffeomorphic registration to find
the invertible mapping between the SST and template. This mapping then allows
us to deform tissue-priors for cerebrospinal fluid, gray matter and white matter to
the SST-space. The white matter tissue probability map is then passed to the N4
algorithm [11] which uses this map to perform a weighted B-Spline based bias
correction. The bias corrected image, along with tissue priors, are then passed to
a prior-based, parametric Expectation-Maximization, Markov-Random-Field seg-
mentation algorithm that fits the models to the SST. Here, the prior is used only for
initialization of the EM-MRF algorithm.

3. Time Point Segmentation: The segmentation results in the SST space are de-
formed from the SST to each individual time point, based on the maps that were
computed during the SST optimization. The same segmentation procedure from
step 2 is then performed for each time point, but, here, the prior terms are main-
tained during optimization of the EM-MRF to prevent a large change from the ini-
tialization. Given the cortical segmentation, we also parcellate the cortex using the
method described in [5], which deforms a template parcellation to the subject and
fits the initial parcellation to the cortical data by using the fast marching method.

Thickness Beta Maps

Jacobian Beta Maps

SCCA Thick

SCCA Jac

GM WM Masks 
for SCCAN

Template Slice Subject N Subject N+1 Subject N+4Subject N+3Subject N+2

Fig. 2. The SCCAN component of SUAAV is illustrated. The template and the masks for each
“view” (Jacobian and thickness change) are at left. The top row shows a selection of individual
Jacobian change images in the template space, after smoothing. The same subject’s thickness
change images, after smoothing, are in the bottom row. A slice from the SCCAN weight maps
for each view is shown at right.
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The original template parcellation is based on the NIREP data (www.nirep.org).
This approach was shown to perform as well as Freesurfer cortical parcellation
within the volumetric domain [5].

4. Thickness Estimation: Given the segmentation results for each time point from
step 3, we measure the cortical thickness at each time point with Diffeomorphic
Registration Based Cortical Thickness (DiReCT) [2].

5. Annualized Atrophy: We map the resulting cortical thickness images back to the
single-subject template and estimate longitudinal change in cortical mm/year—
within the SST gray matter mask—by using the beta parameter in a linear regres-
sion fit, that is, change in thickness ≈ x0 + βT ∗ t where x0 is the intercept and t
is the time parameter. Solving this regression problem at every voxel provides an
image βT (x). When only two time points are present, this image can be computed
by subtracting the baseline image from the followup image directly and dividing
by the time separation. In the same way, but within the SST white matter mask,
we estimate white matter volume change from the Jacobian of the serial deforma-
tion in SST space, providing image βJ (x). We median filter both βJ,T (x) images
to remove few-voxel registration/interpolation inaccuracies. We then map both of
the time-change beta maps (thickness and Jacobian) for each subject to the group
template space at two millimeters.

6. Feature Selection/Dimensionality Reduction: Once the above steps are completed
for all subjects, we locate reliable regions within the derived maps of longitudinal
change by applying sparse canonical correlation analysis for neuroanatomy (SC-
CAN), as in [1]. SCCAN solves a constrained optimization problem that finds pro-
jection vectors, here represented as functions of x in the template image domain, that
maximize the relationship between paired modalities/measurements as in figure 2. In
this study, we seek strictly positive projection vectors ωT (x) ≥ 0, ωJ(x) ≥ 0 with
‖ωT‖1 ≤ CT , ‖ωJ‖1 ≤ CF where C is a constant related to the desired sparseness
imposed by the L1 penalty, ‖ · ‖1. The positivity constraint guarantees that both pro-
jection vectors,ωT,J , will have positive entries and may thus be viewed as a weighted
average of the data. The L1 penalty guarantees that only a subset of voxels will enter
the model. Under this formulation, SCCAN will maximize:

argmax(ωT , ωJ) : Corr ( TωT︸ ︷︷ ︸
Thickness Projections

, JωJ︸︷︷︸
Jacobian Projections

)−λT ‖ωT ‖1−λJ‖ωJ‖1,

(1)
where T is a matrix with columns containing voxels from the βT images and n-
subjects number of rows, where J is a matrix with columns containing voxels from
the βJ images and n-subjects number of rows, Corr computes Pearson correlation
and the λ are inversely related to the sparseness costs, C. We apply SCCAN to
determine regions that have significant covariation between the white matter Ja-
cobian change and thickness change, with a sparseness value that selects a small,
informative subset of both white matter and cortex (approximately 20% of each).
While both measures may be noisy, we expect the noisy components to be less well
correlated than those that show robust, related change.

Note that steps 1—6 do not use diagnosis in any way. The last variable selection step (6)
only keeps those voxels that provide maximal information between the two
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measurements (here, thickness change and Jacobian change). Thus, if the covariation
identified by SCCAN relates to unique disease patterns, detection power will be in-
creased in the supervised, groupwise analysis, by removing uninformative background
noise. The retained voxels in both modalities are then assessed by ANCOVA where age
and sex effects are factored out to determine the significance of the disease alone.

3 Results

Evaluation 1: Sanity Check. We pass pseudo-longitudinal data to the SUAAV algo-
rithm where three identical images are passed in and treated as if they were collected
over three years. If there is any inconsistency in the implementation of the SUAAV
pre-processing steps, illustrated in figure 1, SUAAV will yield a non-zero change in
thickness and/or Jacobian. As expected, we gained zero differences in segmentation
and thickness.
Evaluation 2: Test-Retest. We pass short interval longitudinal data to the SUAAV algo-
rithm where four subjects underwent repeat imaging within one month of the first image.
In this case, we use the cortical parcellations gained in our pipeline to provide 32 sample
points for each image. We average the cortical thickness within each region over each
time point. This approach mirrors that taken in [3] where Fischl and Dale computed
a standard deviation of 0.25mm in thickness measurements collected in short-interval
repeat sessions. SUAAV produced a 0.1mm standard deviation across these images, in-
dicating a high level of repeatability, given that the image resolution is approximately
1mm3. We also used Monte Carlo simulation to determine if our test-retest distribution of
thickness change differs from a randomly sampled Gaussian distribution centered at zero
with the same standard deviation ( 0.104 mm) and same number of samples (4*32=128).
We performed over 10,000 simulations where, for each simulation, we performed a t-test
of the difference between our distribution and the random Gaussian sampling. 95.2 %
of the results showed no difference, thus there is less than a five percent chance that the
distribution is not Gaussian and centered at zero. In addition, we performed a Pearson
chi-square normality test (p = 0.2734) which also showed our test-retest distribution is
close to normal.
Evaluation 3: Application to FTD-Elderly Longitudinal Change. Given the results
of Evaluation 1 and 2, we test whether SUAAV is able to detect neurobiological effects
of dementia expected to occur within the frontal and/or temporal lobes, as in FTD. Thus,
the full SUAAV pipeline (with SCCAN) is used to process 26 FTD subjects and 7 elderly
subjects. The SCCAN variable selection is used to restrict the ANCOVA test that uses a
model of the form: Thickness Change≈ x0+ age + gender + diagnosis. The same model
is used for the Jacobian. The p-values associated with the diagnosis predictor are corrected
by the false discovery rate and shown, rendered on the template cortex, in figure 3. Middle
frontal gyrus (MFG) and inferior frontal gyrus (IFG) on the left survives correction, along
with anterior frontal lobe white matter. To eliminate the possibility that misregistration
led to these results, we also interrogated the average thickness change across the MFG
and IFG regions gained from the parcellation. These regional measures—which do not
suffer from interpolation or registration error—also showed significant reduction over
time in FTD relative to controls, thus affirming our voxel-wise findings.
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q-value 0.05            0.001

Thickness Loss

WM Volume Loss

Statistical Results FDR-q

Left

Template Thickness Rendering

Fig. 3. The SUAAV method provides a restricted set of regions over which to perform statistical
testing. Results are FDR corrected where we accept q-value (corrected p-value) < 0.05 as signif-
icant with cluster size > 100 mm3. Left frontal cortex atrophies at a greater rate (approximately
6-10 % per year) in FTD than controls. The template labeling identifies the cortical regions as
middle frontal and inferior frontal gyrus. The white matter loss occurs bilaterally in the anterior
frontal lobe. These findings are consistent with what is known about frontotemporal dementia.

4 Discussion

We presented an unbiased method for analyzing group differences in annualized cortical
thickess and white matter volume change in dementia. Both unbiased image registration
and segmentation algorithms were used. We showed that SUAAV produces zero change
when we passed false serial data that contains identical images across time and produces
zero-centered Gaussian distributed estimates of change across the brain when SUAAV
is passed test-retest data from scanning sessions from the same subject imaged within
a month. Finally, we showed that SUAAV produced significant, biologically plausible
estimates of cortical and white matter atrophy within left, frontal cortex in FTD that
differed from controls.

A critical choice when applying SUAAV is the sparseness penalty term. This term
controls the number of voxels that enters into the downstream ANCOVA. The benefit is
a vast reduction in the problem of multiple comparisons but this comes at the cost of a
loss of detection power in regions that are rejected in this step. Specifically, in our study,
regions of cortex that do not relate to white matter change (in the within-subject sense)
will not enter into the testing procedure and vice versa. Additionally, the sparseness
term should be selected based on a power analysis and a priori anatomical knowledge.

SUAAV provides a powerful new way to convert standard, serially collected MRI
datasets into a pair of independent but covarying measurements that may be used to
identify repeatable and reliable spatial changes in cortical thickness. We also sought to
show that SUAAV provides a neuronatomically valid and meaningful way to increase
power for longitudinal atrophy studies. While we have taken a high-level approach to
evaluation of the full SUAAV pipeline, additional effort will be required to understand,
in detail, the criticality of each step in SUAAV. Additionally, a deep understanding
of parameter selection and testing on other datasets will be required to verify broad
applicability of the algorithm.
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Abstract. CT colonography (CTC) is a minimally invasive screening

technique for colorectal polyps and colon cancer. Since electronic colon

cleansing (ECC) cannot completely remove the presence of

pseudo-polyps, most CTC protocols acquire both prone and supine im-

ages to improve the visualization of the lumen wall and to reduce false

positives. Comparisons between the prone and supine images can be facil-

itated by computerized registration between the scans. In this paper, we

develop a fully automatic method for registering colon surfaces extracted

from prone and supine images. The algorithm uses shape spectrum to

extract the shape characteristics which are employed as the surface sig-

nature to find the correspondent regions between the prone and supine

lumen surfaces. Our experimental results demonstrate an accuracy of

12.6 ± 4.20 mm over 20 datasets. It also shows excellent potential in re-

ducing the false positive when it is used to determine polyps through

correspondences between prone and supine images.

Keywords: Colon Registration, Shape Spectrum, CT Colonography,

Virtual Colonoscopy.

1 Introduction
Computed tomography colonography (CTC) has received increasing attention
as a minimally invasive method for the examination of the colon [1]. CTC has
shown promising results in the detection of clinically significant polyps. Using
the advanced image technique, doctors can look for polyps throughout the en-
tire colon via fly-through in a virtual colon model which is constructed from
patient’s abdominal images. In the last decade, many computer aided detection
and diagnosis systems have been proposed and actively studied to improve the
performance and reliability. In order to better differentiate polyps from pseudo-
polyps, and to better view the lumen surface in the presence of fluid, it is common
practice to obtain two CT scans of the patient, one with the patient in the prone
position and one in the supine. Based on this setup, the registration between the
supine and prone colons is required.

Although many methods have been developed for shape registration [2,3],
relatively fewer methods have been presented for registration of the supine-
prone colons. Li et al. [4] have developed methods to map candidate polyps
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between the supine and prone colons using their colon wall positions relative
to the colon centerlines. This kind of method only takes into account the local
extrema located on the inferior/superior axis which is not reliable due to colon
shifts obliquely when the patient changes position. In such a case, some local
extrema may not be considered. Nain et al. [5] presented a similar approach for
aligning data along the centerlines used dynamic programming. Suh and Wyatt
[6] used a piece-wise centerline matching algorithm and an interpolation and
extrapolation method of deformation field for deformable registration. However,
the deformable model requires the good initial alignment of the two colons and
strict constraints. Otherwise, it might create artifacts which, in the worst case,
result in pseudo-polyps. Besides the methods based on the centerlines, Näppi et
al. [7] developed a directional region growing method for reducing false positive
(FP) based on correspondence between the supine and prone datasets.

In this work, we developed a novel method for registration between the supine
and prone datasets and reduced the FP based on their correspondence. Without
matching the centerlines, we employed shape spectrum to extract the shape
characteristics as the signature to find the correspondent regions between the
prone and supine lumen surface. The method is simple yet efficient and accurate.
Our contributions in this paper can be summarized as follows:

– A novel surface registration method based on shape spectrum is invented
and applied to colon surface registration.

– We have applied the algorithm to the real CTC datasets and the experiments
demonstrate the excellent accuracy of our registration results.

– We integrate the registration component into the virtual colonoscopy (VC)
software for FP reduction, which shows that it is an excellent tool aiding
polyp diagnosis in CTC.

2 Methods

Firstly, we discuss how to calculate the shape spectrum on the colon lumen
surface to extract the shape characteristics which can be used as the signature
for registration purpose. Next we detail how to apply the shape spectrum to the
colon registration problem.

2.1 Laplacian Shape Spectrum

For a manifold M, let Δ denote its Laplace-Beltrami differential operator [8].
Consider the Laplacian eigenvalue equation

Δφ = −λφ, (1)

where λ is a real scalar which is called an eigenvalue of Δ and the φ is called an
eigenvector corresponding to λ. The spectrum is defined to be the eigenvalues
arranged increasingly as

λ0 = 0 < λ1 < λ2 < . . . < λi < . . . < +∞. (2)
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The Laplace-Beltrami operator is Hermitian, so the eigenvectors corresponding
to its different eigenvalues are orthogonal: < φi, φj >=

∫
M φiφj = 0, where

i != j.
Eq. 1 can be solved by the finite element method [9]. For colon surfaces,

which are discrete triangle meshes, a discrete Laplace-Beltrami operator K can
be applied on it:

K(pi) =
1

2Ai

∑
pj∈N1(pi)

(cotαij + cotβij)(pi − pj), (3)

where N1(pi) includes all the vertices, pj, belonging to one ring neighborhood
of a vertex, pi. αij and βij are the two angles opposite to the edge in the two
triangles sharing the edge i, j, and Ai is the Voronoi region area of pi.

For the whole vertices of a triangle mesh, a Laplace-Beltrami matrix can be
constructed as:

Lij =

⎧⎪⎨⎪⎩
− cotαij+cotβij

2Ai
if i, j are adjacent,∑

k∈N1(pi)
cotαik+cotβik

2Ai
if i=j,

0 otherwise.
(4)

where αij , βij , and Ai are the same as in Eq. 3 for certain i and j. Then, Eq. 1
turns into the following eigenvalue problem:

L−→v = λ−→v , (5)

where −→v is an n-dimensional vector. Each entry of −→v represents the function
value at one of n vertices on the mesh. The equation above can be represented
as a generalized eigenvalue problem which is much easier to solve numerically
by constructing a sparse matrix M and a diagonal matrix S such that

Mij =

⎧⎪⎨⎪⎩
− cotαij+cotβij

2 if i, j are adjacent,∑
k∈N1(pi)

cotαik+cotβik

2 if i=j,
0 otherwise,

(6)

and Sii = Ai. Thus, the matrix L is decomposed as L = S−1M and the gener-
alized eigenvalue problem is presented as:

M−→v = λS−→v . (7)

As defined above, M is symmetric and S is symmetric positive-definite.
The second eigenvector of the Laplacian is called the Fiedler vector and has

interesting properties, making it a good permutation vector for numerical com-
putations [10]. Fig. 1 (a) and (b) show that it naturally follows the shape of the
colon mesh. In other words, the Fiedler vector defines a (1-dimensional) embed-
ding of the surface mesh. We are trying to use the embedding for the registration
of the colon surfaces. In next section we will detail how to do the registration.
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Fig. 1. Illustration of Fiedler vector embedding and landmarks detection. The Fiedler

vector gives a natural ordering of the vertex of the colon meshes in (a) and (b). The

vector value has been normalized and color map. (c) and (d) show the reliable automatic

detected landmarks which are rendering in yellow balls.

2.2 Registration Using Shape Spectrum

First of all, after we obtained the colon surface mesh, we calculated the shape
spectrum of the colon mesh. By constructing matrix M and S in Section 2.1, we
solved the Eq. 7 to get the eigenvalues and eigenvectors.

To perform the registration efficiently, we first detect reliable anatomical land-
marks. Based on the knowledge of colon anatomy, we expect that the mobility
of the colon is at its smallest in these landmark regions. Four landmarks are
established here: cecum, hepatic flexure, splenic flexure and anus. By using the
normalized Fiedler vector value (Fv), the cecum and anus are detected by deter-
mination of the smallest and largest Fv. This is done for both supine and prone
datasets. For hepatic flexure and splenic flexure, we first process the supine
dataset, and then deal with the prone one. For supine dataset, the hepatic flex-
ure is found by detecting the local maximum z-coordinate whose Fv is near 0
and the splenic flexure is found by detecting the local maximum z-coordinate
whose Fv is near 1. For prone dataset, we set the neighborhood using the Fv of
hepatic flexure in supine as [Fv − ε, Fv + ε]. At this interval in prone dataset,
we detect the local maximum z-coordinate as the hepatic flexure in prone. The
splenic flexure in prone is detected with the same strategy. Fig. 1 (c) and (d)
show the landmarks both in supine and prone datasets. After this procedure,
we have landmarks in sequences: LS

1 , LS
2 , LS

3 , LS
4 represent the cecum, hepatic

flexure, splenic flexure and anus, respectively, in supine dataset and LP
1 , LP

2 , LP
3 ,

LP
4 in prone dataset.
With the landmarks, we register the colon surface using piecewise registration.

For each segment in supine between LS
i and LS

i+1, we will map it to the segment
in prone between LP

i and LP
i+1, i = 1, 2, 3. Let

FS
v (LS

i ), FS
v (LS

i+1) and FP
v (LP

i ), FP
v (LP

i+1) (8)
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represent the Fiedler vector value at the supine and prone location of LS
i , LS

i+1

and LP
i , LP

i+1, respectively. Then, for an examined location LS
e in supine between

LS
i and LS

i+1, the corresponding location LP
e in prone should have this relation

of the Fv:
FS

v (LS
e )− FS

v (LS
i )

FS
v (LS

i+1)− FS
v (LS

i )
=

FP
v (LP

e )− FP
v (LP

i )
FP

v (LP
i+1)− FP

v (LP
i )

. (9)

It is easy to deduce that

FP
v (LP

e ) = FP
v (LP

i ) +
(FS

v (LS
e )− FS

v (LS
i )) ∗ (FP

v (LP
i+1)− FP

v (LP
i ))

FS
v (LS

i+1)− FS
v (LS

i )
. (10)

Then, the corresponding location in prone is

LP
e = (FP

v )−1(FP
v (LP

e )), (11)

where (FP
v )−1 is a mapping to find the locations according to the FP

v .

3 Experiments and Results

3.1 Data Acquisition and Pre-processing

Each patient was limited to the low-fibre diet beginning 1 day before the sched-
uled morning CTC. Colonic catharsis was achieved with mannitol on the evening
before the examination. Note that, this preparation procedure is close to the
prepless VC procedure and is pleasantly accepted by recruited patients. Before
the examination, the colon was distended with 1500mL of water-soluble iodi-
nated contrast medium using a manual insufflators with a small rectal catheter.
Examinations were performed in supine positions on a 128-MDCT scanner (SO-
MATOM Definition AS, SIEMENS, Germany). CT technique consisted of 5.00-
mm collimation, 1.375 : 1 pitch, 1-mm reconstruction interval, 120 kVp, and
50-100 mAs. Twenty cases are used for the experiment and all cases were of di-
agnostic quality, contain mainly fluid, but could contain feces as well. 10 patients
(50%) had 20 confirmed polyps: 5 polyps were 5-10 mm, 12 polyps were 3-4 mm
and 3 polyp was under 3 mm. 10 patients (50%) were normal.

In the pre-processing step, the colonic lumens are extracted from the CTC
datasets by use of a level-set segmentation method [11]. Actually, any other
colon segmentation technique could potentially be used for the pre-processing
step. Colon lumen surface is extracted after the segmentation.

3.2 Experimental Results

Algorithms described in Sec. 3.1 and Sec. 2.2 are performed to process all the
datasets. In order to evaluate the performance of the registration we proposed,
a doctor experienced in the interpretation of CTC cases evaluated the 2D and
3D visualizations of the colon by use of our software tool plugged into the VC
software plateform by Yulonn Medical Imaging Company (Fig. 2). Our software
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Fig. 2. Illustration of false positive reduction. In (a), in supine position it has a false

positive which the green arrow pointing at. In (b), in prone position it confirms that

it is a pseudo-polyp but not a true polyp. (c) and (d) is the virtual colonoscopy of (a)

and (b). (e) and (f) show another example which has false positives in prone position

and can be confirmed as pseudo-polyps in supine position.
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Table 1. Results of comparison between shape spectrum method and deformable model

Method Accuracy(mm)

Shape Spectrum Method 12.6 ± 4.20
Deformable Model 15.4 ± 6.30

tool and algorithm are implemented with C++. The tool displays the 3D VC
of two intra-patient colon scans: supine position on the left and prone position
on the right. By clicking on either 3D colon lumen, it finds the correspondence
region in the other colon lumen, as well as the views of 2D CTC updated si-
multaneously to show the corresponding location in both colon scans. A doctor
can check any location he feels interested in and our system automatically up-
dates the corresponding regions in an opposite position. The application of the
method resulted in a registration accuracy of 12.6± 4.20 mm over 20 datasets.
We compared our method with the deformable model method [6] based on our
datasets. The comparison result is shown in Table. 1. Our method outperforms
the deformable model approach, and more importantly, our method does not
create any artifacts resulting in pseudo-polyps but the deformable model would.

We integrate our method to the VC software for FP reduction. First of all, the
polyp candidates are selected by asking doctors to go through all the datasets to
find any polyp-like protrusions. 78 polyp candidates from all the CTC datasets
are presented, among which 20 polyps are true positives and 58 polyps are false
positives. Since it is impossible for any registration algorithm to find exact point-
to-point correspondence, in practices, it is common to set a interval, Fv, where
the correspondent locations fall in. Specifically, the correspondent interval loca-
tions IntervalP (LS

e ) in prone which are the correspondent locations to LS
e in

supine would be

IntervalP (LS
e ) = [(FP

v )−1(FP
v (LP

e )− ε), (FP
v )−1(FP

v (LP
e ) + ε)]. (12)

Then we check the polyps candidates in supine position and the correspondent
interval locations in prone; and check the polyps candidates in prone position
and the correspondent interval location in supine as well. Fig. 2 shows examples
of FP reduction. By checking the correspondence, 48 FPs are spotted out, which
is 83% reduction compared with independent processing of the datasets, with
no true-positive is eliminated.

4 Conclusion

We have developed a novel automatic method for registration of the supine and
prone CTC datasets. The application of the method resulted in an accuracy of
12.6±4.20 mm over 20 datasets with the number of false positive reduced by 83%
compared with independent processing of the datasets. The experimental results
indicate that the method is useful in improving the specificity of the polyps in
CTC. In the feature work, we will combine with advanced classification methods
for further false positive reduction.
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Abstract. This study investigates a new parameterization of deformation fields 
for image registration. Instead of standard displacements, this parameterization 
describes a deformation field with its transformation Jacobian and curl of end 
velocity field. It has two important features which make it appealing to image 
registration: 1) it relaxes the need of an explicit regularization term and the  
corresponding ad hoc weight in the cost functional; 2) explicit constraints on 
transformation Jacobian such as topology preserving and incompressibility con-
straints are straightforward to impose in a unified framework. In addition, this 
parameterization naturally describes a deformation field in terms of radial and 
rotational components, making it especially suited for processing cardiac data. 
We formulate diffeomorphic image registration as a constrained optimization 
problem which we solve with a step-then-correct strategy. The effectiveness of 
the algorithm is demonstrated with several examples and a comprehensive 
evaluation of myocardial delineation over 120 short-axis cardiac cine MRIs ac-
quired from 20 subjects. It shows competitive performance in comparison to 
two recent segmentation based approaches.  

Keywords: diffeomorphic image registration, topology preserving, incom-
pressibility constraint, cardiac MRI, myocardial delineation. 

1   Introduction 

Image registration, which consists of establishing point correspondence between two 
images, is commonly understood as an ill-posed problem when stated as the optimiza-
tion of a similarity metric alone [1]. Without regularization, this may generate multi-
ple physically non-plausible solutions (i.e., rendering tissue folding/tearing in human 
anatomy studies). Fig. 1 depicts a typical example, where standard gradient descent 
optimization over displacements was used to minimize the sum of squared difference 
between the images S (study) and T (template). Fig. 1(c) shows the transformation 
that generates S from T. Figs. 1(d) and (e) illustrate the mesh folding phenomenon 
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from the result. In this study, we investigate a new parameterization of deformation 
fields which can avoid such undesirable phenomenon (cf. the results in Figs. 1(f) and 
1(g)), while affording other important features that make it appealing to image regis-
tration. Instead of standard displacements, this parameterization describes a deforma-
tion field with its transformation Jacobian determinant and curl of end velocity field. 
This relaxes the need of an explicit regularization to produce a physically plausible 
result because smoothness is implicitly embedded in the solution. Thus, empirical 
tradeoff between the similarity term and the regularization term, which may cause 
bias [18], is not necessary. Furthermore, ensuring the deformation to be diffeomor-
phic, which has spawned a significant amount of recent work [13-16], can be accom-
plished by directly requiring the transformation Jacobian to be positive. Also, other 
desirable constraints can be enforced within the same framework using explicit re-
striction on the transformation Jacobian; for instance, the incompressibility constraint 
requires the Jacobian to be equal to one. In addition, our parameterization naturally 
describes a deformation field in terms of radial and rotational components, making it 
especially suited for processing cardiac data [12]. Fig. 2 illustrates this; it depicts four 
transformations generated from different pairs of transformation Jacobian m and curl 
g around the grid center. Obviously, the transformation Jacobian m and curl g are 
directly related to the radial and rotational components of the deformation field. 

(a) (b) (c) (d) (e) (f) (g)  

Fig. 1. An illustration of the ill-posed registration problem using conventional deformation 
parameterization. (a) Study, (b) template, (c) ground truth, (d) deformed template obtained from 
standard gradient descent optimization over displacements, (e) the deformation field corre-
sponding to (d), (f) deformed template obtained from the proposed parameterization, (g) the 
deformation field corresponding to (f). 

Our parameterization is based on a moving mesh method, originally designed to 
generate a grid suitable for solving partial differential equations numerically [2-3]. It 
naturally leads to a formulation of diffeomorphic image registration as a constrained 
optimization problem which we solve with a step-then-correct strategy. Such strategy 
has been adopted in the Demons algorithm, where unconstrained optimization is fol-
lowed by Gaussian filtering to impose a smoothness constraint. 

The effectiveness of the method is demonstrated with examples of diffeomorphic 
image registration, registration with an incompressibility constraint, and a compre-
hensive evaluation of myocardial delineation over 120 short-axis cardiac cine MRIs 
acquired from 20 subjects. Myocardial delineation is acknowledged as a challenging 
problem due to large deformations, and has been commonly tackled by segmentation 
based techniques [6-9]. Our results show favorable performance in comparison to two 
recent segmentation based approaches. In addition to myocardial delineation, our 
algorithm yields dense cardiac motion field which is very useful in the diagnosis of 
cardiovascular diseases [11].   
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(a) (m,g)= (10,0) (b) (m,g)= (0.1,0) (c) (m,g)= (0.1,1) (d) (m,g)= (10,-2)  

Fig. 2. Geometrical interpretation of the parameterization with (m, g). It is clear that the trans-
formation Jacobian m and curl g are directly related to the radial and rotational components of 
the deformation field. 

2   Moving Mesh Grid Generation  

Our parameterization method is based on the next grid generation theorem [2,3]. 

Problem 1 For a given continuous monitor function ( ) :m ξ Ω →  constrained by  

m
Ω

= Ω∫ ,                                                         (1) 

find a transformation  :  ,  ϕ Ω → Ω ∂Ω → ∂Ω , such that the  transformation Jacobian 

is equal to the given monitor function m. That is,  

( )( )J mϕ ξ ξ= .                                                    (2) 

The following theorem provides a solution to Problem 1 [2,3].  

Theorem 1 A transformation ϕ  constructed by the following steps satisfies eq. (2). 

Step 1: Find a vector field ( )η ξ which satisfies:  

( ) ( ) 1div mη ξ ξ= −                                                (3) 

with the Neumann boundary condition. 

Step 2:  Construct an artificial-time dependent velocity vector field via ( )η ξ  by 

( )
( ) , [0,1]

(1 ) ( )tv t
t t m

η ξξ
ξ

= ∈
+ −

                                  (4) 

Step 3: The transformation ϕ  in Problem 1 is the solution of the following ODE 

evaluated at t = 1, 

( , )
( ( , )),  [0,1]t

d t
v t t

dt

ψ ξψξ = ∈ ,                                   (5) 

with ( ), 0tψ ξ ξ= = . That is, ( ) ( , 1)tϕ ξ ψ ξ= = .  

Proposed parameterization. The solution to Problem 1 is not unique. Generating a 
unique solution entails constraining the curl of the vector field ( )η ξ , which is the end 

velocity field 1( )v ξ  according to (4), and solving the div-curl system under the 

Dirichlet boundary condition [4]. We replace eq. (3) by the following div-curl system,  
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( ) ( ) 1

( ) ( )    

div m

curl g

η ξ ξ
η ξ ξ

= −⎧
⎨ =⎩

                                               (3’) 

with null boundary condition ( ) 0 η ξ ξ= ∀ ∈ ∂Ω  (i.e., stationary boundary), where 

( )g ξ  is a continuous function over Ω . Hence, a transformation generated by the 

steps in Theorem 1 can be parameterized with its transformation Jacobian, denoted by 
( ) ( ( ))m Jϕξ ξ= , and the curl of the corresponding end velocity field, denoted by 

( ) ( ( ))g ξ η ξ= ∇ × . We note that the solution in (3′) is always one degree smoother 

than m and g.    

3   Constrained Diffeomorphic Image Registration 

With the above parameterization, we formulate diffeomorphic image registration as 
the following constrained optimization problem.  

Problem 2. Given two images S and T, defined over 2Ω ⊂ , find the function pair 
( ( )m ξ , ( )g ξ ), ξ ∈ Ω , that optimizes a similarity measure ,( , , )Sim m gE S T ϕ  between S 

and T, subject  to the constraints: 

                                                                    (6a)

( ) ,   '                                   (6b)high low

m

th m thξ ξ
Ω

⎧ = Ω⎪
⎨

> > ∈ Ω ⊂ Ω⎪⎩

∫       

where 0lowth > ensuring that ,m gϕ is a diffeomorphism. 

Note that when thlow≈ thhigh (e.g., thlow= 0.99 and thhigh= 1.01), inequality (6b) effec-
tively imposes the incompressibility constraint in a sub-region 'Ω  of the image  
domain Ω , which is not always possible with existing methods [17]. The parameteri-
zation of ϕ  with m and g is indicated by its subscripts. In the following, we formulate 

our algorithm for any ESim, but in the experiments, we use SSD. Next, we present a 
step-then-correct optimization strategy to solve Problem 2.  

Algorithm 1. Given an image pair S (study) and T (template) and lowth and highth , 

consider the following steps. 
Step 1. Compute unconstrained gradients

,
( , , )i im Sim m g

E S T ϕ∇ and
,

( , , )i ig Sim m g
E S T ϕ∇ . 

Step 2. a. Terminate if step size thδ δ< or the maximum iteration is reached. 

            b. Update (m, g) by  

                    1

max | |
i i m sim

m sim

E
m m

E
δ+ ∇

= + ⋅
∇

 and 1

max | |
g simi i

g sim

E
g g

E
δ+ ∇

= + ⋅
∇

.  

Step 3. a. For each pixel location 'ξ ∈ Ω ⊂ Ω , impose constraint (6b) by  
1 1( ) max( ( ), )i i

lowm m thξ ξ+ +←  and 1 1( ) min( ( ), )i i
highm m thξ ξ+ +← . 
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            b. For each pixel location ξ ∈ Ω , impose constraint (6a) by  

1 1
1

| |
( ) ( )

( )
i i

i
m m

m
ξ

ξ ξ
ξ

+ +
+

∈Ω

Ω← ⋅
∑

. 

Step 4. Use Theorem 1 with (3’) to compute 1 1,i im g
ϕ + + and update SimE . If it im-

proves, 1i i← + , go to Step 1; otherwise, decrease δ and go to Step 2.  

4   Numerical Methods  

2D Div-curl solver. We converted div-curl system (3′) into two Poisson equations [5] 

1

2

                                                     (7a)

                                                    (7b)

x
x y

y
y x

m g F

m g F

η
η

⎧Δ = − ≡⎪
⎨Δ = + ≡⎪⎩

 

and used a FFT based Poisson solver to find η  efficiently under the null boundary 

condition. The superscripts denote different components and the subscripts partial 
derivatives. Euler method with 20 time steps was used in (5) to compute the transfor-
mation ϕ  from η  via eqs. (4) and (5). 

Conversion of unconstrained gradients. Discretizing the image domain and apply-
ing the chain rule repeatedly result in 

( ) ( )

( ) ( )

1

1

2

2

( )

( ) ( )( )

( )
,

( )(

( ) ( )

( ) ( )

( ) ( )

( ) ( ) )

x
Sim Sim

x x
l N k k N jj j

Sim k

l N k k

x
l l k

l l k

y y
l l

y y
l N j jl k

E E F I

m I m IF I

E F I

m IF I

I I

I I

I I

I I

ϕ η
ϕ η

ϕ η
ϕ η

∈ ∈

∈ ∈

∂ ∂ ∂ ∂ ∂
=

∂ ∂∂ ∂ ∂

∂ ∂ ∂ ∂
+

∂∂ ∂ ∂

∑ ∑

∑ ∑
                       (8) 

and a similar expression for m

( )
Si

j

E

g I

∂
∂ . In (8), Ij is the jth grid point and the notation 

( )k N j∈ indicates that kI belongs to some neighborhood of jI . Each partial derivative 

term and the size of each neighborhood depend on the actual numerical implementa-
tion as explained below.  

The terms sim
x

E

ϕ
∂

∂
 and sim

y

E

ϕ
∂

∂
 constitute the conventional gradient of a cost function pa-

rameterized by displacements, which has been studied extensively. Next, 
x

x

ϕ
η

∂
∂

 and 
y

y

ϕ
η

∂
∂

 

are approximated by the following Euler 1-step integration 

1( ,1) ( ,0) ( ( ,0)) ( )vϕ ξ ϕ ξ ϕ ξ ξ η ξ= + = + ,                       (9) 

which leads to 1.
x y

x y

ϕ ϕ
η η

∂ ∂
∂ ∂

= =  The terms 1

x

F

η∂
∂

, 2

y

F

η∂
∂

and ( )N k  are determined by eqs.(7). 

Since xη  and yη are the solutions of the Poisson equations 1x FηΔ =  and 2y FηΔ = , 

the neighborhood of kI  (influence zone of varying 1( )kF I  and 2 ( )kF I  on xη and yη  

respectively) is the whole image domain and the values 1

( )

( )

x
l

k

I

F I

η∂

∂
 and 2

( )

( )

y
l

k

I

F I

η∂

∂
 are the 
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values of the response of 1−Δ  operator at lI  due to an impulse at kI . Next,
1F

m
∂
∂ , 

2F
m

∂
∂ and ( )N j  are again determined by eqs.(7). Using central finite difference to de-

fine the derivatives of m, ( )N j  can be determined as the 3×3 neighborhood of jI and 

the values of 
1 ( )

( )
k

j

F I

m Iδ
∂  and 

2 ( )

( )
k

j

F I

m Iδ
∂ are determined by difference operators xD  and 

yD given by 

[ ]1
1 0 1

2xD = ⋅ −  and T
y xD D=                                (10) 

From the above discussion, we conclude that 
1 1

1 1

( ) ( )                      (11a)

( ) ( )                    (11b)
m Sim x Sim x y Sim y

g Sim x Sim y y Sim x

E E D E D

E E D E D

− −

− −

⎧∇ = Δ ∇ ⊗ + Δ ∇ ⊗⎪
⎨∇ = Δ ∇ ⊗ − + Δ ∇ ⊗⎪⎩

 

with  ⊗  denoting the discrete convolution operator and 1−Δ the inverse Laplacian 
operator (Poisson solver).  

5   Experimental Results 

Diffeomorphic Registration. We first summarize in Table 1 the complete results of 
the experiment given in Fig. 1. When no noise was added, no mesh folding was ob-
served when the diffeomorphic constraint (DC) was not imposed (e.g., set (thlow, 
thhigh) = (-20, 20)). Results shown in Fig. 1 correspond to this case. However, with 
Gaussian noise (std = 0.05) added, mesh folding occurred as indicated by the negative 
Jacobian and the large maximum error in Table I. Setting (thlow, thhigh) = (0.51, 1.34), 
which were the ground truth values from the deformation shown in Fig. 1(c), not only 
effectively prevented the mesh from folding, but also reduced registration errors. This 
suggests that when a proper prior knowledge of Jacobian is available, more reliable 
and accurate registration result can be attained. Notice that the min and max trans-
formation Jacobians obtained in this case (i.e., 0.49 and 1.37 respectively) were close 
to the pre-set values 0.51 and 1.34. No significant differences were observed by set-
ting different (thlow, thhigh) values (e.g., 0.2 and 2).  

Table 1. Numerical result of the diffeomorphic registration experiment 

 ssd  max error  
(in pixel) 

mean error 
(in pixel) 

max  
Jacobian 

min  
Jacobian 

before registration 3789 7.80 4.75 1.34 
(ground truth) 

0.51 
(ground truth) 

noiseless, w/o DC 29 3.17 0.52 1.98 0.06 
noisy, w/o DC 250 11.47 0.75 2.01 -1.16 
noisy, with DC   246 3.45 0.70 1.37 0.49 

Simulated CE-MRI Experiment. The second experiment demonstrates the effec-
tiveness of the proposed method in imposing incompressibility constraint using two 
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digital phantoms shown in Figs. 3(a) and (b). They simulated pre- and post contrast 
enhanced (CE) breast MR images. Two sets of thresholds (thlow, thhigh) = (0.1, 10) and 
(0.99, 1.01) were used in Algorithm 1 to produce the results in Figs. 3(d),3(e),and 
Figs. 3(f) and 3(g) respectively. Figs. 3(d) and 3(f) are the absolute difference images 
after registration, and Figs. 3(e) and (g) show the magnified mesh near the simulated 
cancerous tissues. As a reference, the absolute difference image before registration is 
provided in Fig. 3(c). The uniformity of the cell sizes in 3(g) indicates that the incom-
pressibility constraint was properly enforced with (thlow, thhigh) = (0.99, 1.01).  

(a) (b) (c) (d) (e) (f) (g)  

Fig. 3. A simulated contrast enhanced breast MRI experiment to demonstrate the effectiveness 
of the proposed algorithm in imposing incompressibility constraint 

Table 2. Numerical results in terms of Dice Metric (DM) and efficiency  

Performance measure DM 
(Endo) 

DM 
(Epi) 

Average time/frame 
(sec) 

Proposed method 0.93±0.04 0.96±0.01 0.55 
Method in [level set] 0.88±0.09 0.94±0.04 6.5 

Method in [graph cut] 0.91±0.04 N/A 0.08 

  

           

Fig. 4. A complete cardiac cine MRI (left to right, top to bottom) illustrating the tracking of 
epicardial border (green), endocardial border, and the profile of a papillary muscle (yellow)  

Automated Myocardial Borders Delineation. Accurate myocardial borders delinea-
tion in cardiac cine MRIs is important in the diagnosis of cardiovascular diseases [6-
12]. It yields many significant measures like ejection fraction and radial displacement. 
In this comprehensive experiment, we used 120 short-axis cardiac cine MRIs clinically 
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obtained from 20 subjects, including apical, mid-cavity, and basal segments, acquired 
by 1.5T MRI scanners with fast imaging employing steady state acquisition (FIESTA) 
mode. For each cine MRI consisting of 20 frames, the first frame was used as the study 
image S and each of rest frames the template T successively. Each registration result 
propagates to initialize the next registration. As a fair comparison to the segmentation 
based techniques described in [6-7], our registration based approach did not incorpo-
rate a temporal constraint, which can be added by using temporal Bspline basis func-
tions [10], or by recursive Bayesian filtering [11]. The deformation fields obtained 
were then applied to propagate the manually obtained endo- and epicardium borders 
from the first frame of each cine MRI. Values of thlow and thhigh were set to be 0.25 and 
4 respectively. The maximum number of iteration was fixed at 25 and thδ was set to be 

0.01 in all cases. Propagated borders were compared to the ones manually delineated 
independently by an expert. We also ran the codes described in [6-7] to contrast the 

accuracies in Table 2, in term of Dice Metric (DM), defined as 2 am

a m+
V

V V , where Va, Vm 

and Vam  are the automatically, manually delineated volumes, and the overlap of them 
respectively. Table 2 shows that our registration based approach yielded the highest 
DM values (higher means closer to manual ones) among the three methods. In addi-
tion, our method is very efficient (less than 0.6 sec/frame or 10.5 sec/sequence) which 
is acceptable for clinical practice. Our platform was HP xw6600 Workstation with 2.83 
GHz Intel Xeon CPU with 3.25 GB RAM under Windows XP. All registration codes 
were written in MATLAB. Although the computational time is higher then the graph 
cuts based method described in [7], our method produces dense deformation fields that 
can be used to track any features present in the image sequences and provides a means 
for strain analysis [10], which is not possible using segmentation based approaches. 
We illustrate this advantage in Fig. 4 by showing a representative cine MRI with not 
only the automatic delineated epi- and endocardial borders superimposed, but also with 
the profiles of a papillary muscle (a papillary muscle profile was manually delineated 
in the first frame). Extension to volume data registration is straightforward, since the 
underlying moving mesh based grid generation method was originally demonstrated in 
3D [2-3].    
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Abstract. Accurately corresponding a population of human cortical

surfaces provides important shape information for the diagnosis of many

brain diseases. This problem is very challenging due to the highly convo-

luted nature of cortical surfaces. Pairwise methods using a fixed template

may not handle well the case when a target cortical surface is substan-

tially different from the template. In this paper, we develop a new method

to organize the population of cortical surfaces into pairs with high shape

similarity and only correspond such similar pairs to achieve a higher

accuracy. In particular, we use the geometric information to identify co-

located gyri and sulci for defining a new measure of shape similarity. We

conduct experiments on 40 instances of the cortical surface, resulting

in an improved performance over several existing shape-correspondence

methods.

1 Introduction

The cerebral cortex plays a key role in human brain functions such as memory,
attention, perceptual awareness, thought, language, and consciousness. Differ-
ent cortical folding or cortical thickness have been correlated with various brain
diseases, including schizophrenia, Alzheimer’s disease, depression, and multiple
sclerosis. For identifying the disease-effected cortical regions using neuroimages,
it is important to bring all individual cortical surfaces into the common space
for comparison (between normal and abnormal groups). To achieve this, one way
is to identify the correspondences between different cortical surfaces. Then, the
corresponding cortical thickness (or folding features) can be compared at differ-
ent parts of the brain cortex, thus facilitating the detection of the statistically
significant regions that are related to the specific diseases.

Multiple 3D shape correspondence has been studied by many re-
searchers [1,2,4,9]. Some of them correspond each shape instance in the pop-
ulation to a fixed template [1,2] in a pairwise way, which may produce large
errors when a target shape instance is substantially different from the template.
Other methods consider the entire population simultaneously [4,9,11,12]. Such

T. Jiang et al. (Eds.): MICCAI 2010, Part I, LNCS 6361, pp. 349–356, 2010.
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groupwise methods usually require complex optimization schemes with high com-
puting complexity and may not be guaranteed to produce the desirable optimal
solutions. Specific brain mapping models and algorithms have also been devel-
oped [5,6,14] to identify corresponded landmarks on cortical surfaces. Most of
them are based on geometric and anatomic features and their performances are
highly dependent on certain pre-processing steps, such as the accurate extraction
of the gyri and sulci.

Recently, Munsell et al. [10] suggested a shape organization approach for im-
proving shape correspondence. The basic idea is to organize the shape popu-
lation into a rooted tree, where each node represents a shape instance and a
parent-child pair represents two similar shape instances. Shape correspondence
starts from the root and propagates to its children, ending at the leaf nodes.
Particularly, in [10], a minimum spanning tree (MST) is constructed, where the
tree-edge weight describes the pairwise shape dissimilarity. However, the cor-
respondence error accumulates during the propagation in this approach. While
such an accumulation error is not obvious when corresponding simple 2D shape
instances [10], it becomes serious in corresponding complex 3D shape instances,
such as cortical surfaces, as revealed by the experiments in Section 4. Similar
approach of shape organization was also used for the interactive navigation of
an image database [8].

In this paper, we develop a new method of shape organization for multiple
cortical surface correspondence. As in [10], it organizes the whole shape popula-
tion into a tree. However, we not only require each parent-child pair to describe
similar shape instances, but also control the height of the tree to reduce the
accumulation error in the propagation. In this paper, we use the Freesurfer soft-
ware (http://surfer.nmr.mgh.harvard.edu) to co-register a pair of cortical
surfaces [7], with which we define the pairwise shape similarity and build the
correspondence between a parent-child pair for the propagation. In the exper-
iments, we compare the performance of the proposed method to the pairwise
method using a fixed template, the groupwise method developed in [11,12], and
the MST-based shape-organization method developed in [10].

2 Problem Description

Each cortical surface consists of two hemispheres, which are usually corresponded
independently. We represent each hemisphere, or subject, S by (i) point cloud
extracted from MR images representing the pial surface, (ii) triangle mesh con-
structed from the point cloud, as shown in Fig. 1(a), and (iii) spherical represen-
tation S̃, as shown in Fig. 1(c), which is the spherical mapping of the triangle
mesh. These can be obtained from a given MR image using the method of [3]
available in the Freesurfer software. The goal of correspondence is to identify N
corresponded landmarks across a population of subjects S1, S2, . . . , SM .

As mentioned above, we use shape organization to facilitate shape correspon-
dence in this paper. In general, it consists of the following steps. First, the given
M subjects are organized into a tree, e.g., the ones shown in Fig. 2, where each

http://surfer.nmr.mgh.harvard.edu
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(a) (b) (c) (d) (e)

Fig. 1. An illustration of the left hemisphere of cortical surfaces and their co-

registration. (a) The pial surface of a subject. (b) The inflated version of the pial

surface (a). (c) The spherical mapping, S̃, of (a). (d) Spherical mapping of a second

subject. (e) Deformed version of (d) after co-registration with (c).

node represent a subject. Second, we take the subject represented by the root as
the template and sample a set of N landmarks on the template. Third, for each
child of the root, we treat the subject represented by this node as the target and
match the target to the template by identifying N corresponded landmarks on
the target. Fourth, each target (with corresponded landmarks) in the previous
step is then treated as the new template to match its own child subjects in the
tree by identifying the N corresponded landmarks. This pairwise matching pro-
cess is repeated until propagated to the subjects represented by the leaf nodes,
which leads to the final corresponded landmarks across all the subjects.

Clearly, the structure of the constructed tree is important to the performance
of the resulting shape correspondence. If we select one subject as the root and
set all the other subjects as the children of the root, as shown in Fig. 2(b),
the above method is reduced to the widely used pairwise shape correspondence
method with a fixed template. The method may lead to large errors when there
exist subjects that are substantially different from the template and cannot be
accurately corresponded to the template using a pairwise matching method.
In [10], an MST is constructed such that each parent-child pair represents very
similar subjects. This way, we only need to match very similar subjects, which is
relatively simple and can be achieved in high accuracy. However, the constructed
MST may have a larger height, as shown in Fig. 2(a), and the correspondence
error may accumulate in the propagation and finally affect the consistency of
landmarks as revealed in the later experiments.

3 Proposed Method

In this section, we describe a new strategy for constructing the shape-
organization tree and apply it for cortical surface correspondence. We focus
on addressing the following two problems: (i) measuring the shape dissimilarity
between a pair of subjects and (ii) constructing the tree to organize a set of
subjects.
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3.1 Shape Dissimilarity Using Registration

We use the Freesurfer software to obtain the continuous co-registration between
a pair of subjects. Specifically, this software implements the method described
in [7]. In registering the subjects Si and Sj , this method takes as input their
spherical representations S̃i and S̃j and delivers an output spherical represen-
tation S̃′

j , which is a deformed version of S̃j on the sphere and is co-registered
with S̃i. For example, the spherical representation shown in Fig. 1(e) is the de-
formed version of the subject shown in Fig. 1(d) after co-registration with the
subject shown in Fig. 1(c). With this co-registration, we can uniformly sample
K co-registered points on both spherical representations S̃i and S̃′

j and define
the dissimilarity between these two subjects by

δij =
K∑

k=1

‖ci(k)− cj(k)‖ (1)

where ci(k) = 0 if the curvature value at the k-th sampled point on pial surface i
is negative and ci(k) = 1 otherwise. This dissimilarity measure reflects whether
the co-registered points from these two subjects show consistent presence of gyri
and sulci. Considering the numerical sensitivity involved in computing curvature
values, we do not use the exact curvature values in defining this dissimilarity
measure.

3.2 Shape Organization Using a Low-Height Tree

In contrast to the MST used in [10], we combine two preferences in constructing
the shape-organization tree: (i) the parent-child pair represents similar subjects
and (ii) the constructed tree has a low height, which reduces the propagation
length and therefore, reduces the accumulation error. We first construct a fully
connected graph G, with each node representing a subject and the edge weight
between two nodes being the dissimilarity of the subjects represented by these
two nodes. We then prune the edges in G sequentially in the descending order of
their weights, until one more pruning will make the graph disconnected. From
the pruned graph G′, we construct the tree T using the following steps:

1. Find the node with the largest number of incident edges in G′ and add it to
the initially empty T as the root.

2. Let VT and V̄T be the sets of nodes that are in T and not in T respectively.
3. If V̄T != ∅, for each node in V̄T with edge links to nodes in VT in G′, we

add this node to T as a child to its linked node in VT with the smallest
edge weight. Note that, in this step, we check every node in V̄T for possible
additions to T without updating VT and V̄T . This way, the height of T will
only increase by one after all possible node additions in this step.

4. Update VT and V̄T and go back to Step 3 until V̄T = ∅.

An example of a tree constructed using this method is shown in Fig. 2(c), which
will be discussed in more detail in the later experiments.
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Fig. 2. The shape-organization trees constructed from LONI LPBA40 dataset using

(a) the MST-based method in [10], (b) the pairwise method with a fixed template, and

(c) the proposed method. In (b) and (c), the ellipsis represents all the unlisted subjects,

which are directly linked to the root as its children.

As for the pairwise subject correspondence in the propagation, we use the
Freesurfer software to continuously co-register the template and the target sub-
jects. This registration maps the N landmarks on the template to N points on
the target and we simply take them as the corresponded landmarks.

4 Experiments

For experiments, we use the LONI Probabilistic Brain Atlas (LPBA40) dataset,
which consists of 40 3D MR images of the brain [13]. On each image, 56 anatomic
structures have been identified by labeling all the relevant voxels. We extract the
cortical surface from these MR images using Freesurfer for all 40 cases and then
take the left hemisphere of the extracted cortical surface as the test subjects. For
the pairwise shape dissimilarity (1), we uniformly sample the angular-spherical
coordinates, together with two poles, to construct K = 4, 952 co-registered points
on each subject.

To evaluate the performance, we use anatomic-structure labels provided with
this dataset: we check whether the corresponded landmarks across the population
show consistent labels. First, for each identified landmark on each subject, we
find its label by searching for the closest labeled voxel in the original image.
Second, for each set of corresponded landmarks across the population, e.g., the
first landmarks on all 40 subjects, we perform a majority voting to find the
label shared by the largest number of subjects. We use this majority label as
the true label for these 40 landmarks. This way, for the j-th landmark Lj

i on
the subject i, we have its label r(Lj

i ) and true label r̂(Lj
i ). If r(Lj

i ) != r̂(Lj
i ), we

find on image i the closest voxel to Lj
i such that this voxel has a label r̂(Lj

i ). We
calculate the Euclidean distance between Lj

i and this closest voxel as the error
ej

i for landmark Lj
i . If r(Lj

i ) = r̂(Lj
i ), we simply set ej

i = 0. We then define the
average error on the subject i as Δi = 1

N

∑N
j=1 ej

i , the average error for the set
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of j-th landmarks on all subjects as Δj = 1
M

∑M
i=1 ej

i , and use these errors to
evaluate the correspondence performance.

Figure 2(c) is the low-height tree constructed in our experiment using the
proposed method, where subject 14 is chosen as the root and we uniformly
sample the angular-spherical coordinates, together with two poles, to construct
N = 4, 952 landmarks on this subject to start the propagation. We also define
the total average error as Δ = 1

M

∑M
i=1 Δi = 1

N

∑N
j=1 Δj . Figure 3 shows the

average errors Δi for all 40 subjects and Δj for all 4, 952 landmarks, with the
horizontal lines being the total average error Δ = 0.479.
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Fig. 3. Average of the error ej
i in terms of (a) each subject and (b) each set of corre-

sponded landmarks, for the correspondence obtained by the proposed method

To further evaluate the proposed method, we conduct a quantitative com-
parison with three other methods: (M1) a pairwise method with a fixed tem-
plate, (M2) the groupwise method developed in [11,12], and (M3) the MST-based
shape-organization method developed in [10]. For M1, we choose a subject as the
fixed template and then correspond all the other 39 subjects to this template,
as illustrated in Fig. 2(b). By selecting different templates, the resulting total
average error Δ ranges from 0.509 to 0.684. For the proposed method, the total
average Δ = 0.479 (the horizontal lines in Fig. 3) is better than the result from
M1 using the best template (subject 29). Note that, in practice, we do not have
ground-truth labels and we may not be able to find this best template.

For M2, we downloaded the source code from http://www.ia.unc.edu/dev/
tutorials/InstallLib/index.htm and also identify N = 4, 952 landmarks on
each subject, by including the sulcal depth as an attribute in the similarity
metric defined in this code. As shown in Table 1, its resulting total average error
Δ = 0.791 is also higher than the proposed method. M2 is a groupwise method
and by reading all subjects at once, it takes 11GB of memory in our experiments,
while the proposed method takes no more than 2GB of memory.

For M3, we use the same dissimilarity measure in Section 3.1 to construct an
MST as shown in Fig. 2(a) and also use uniformly sampled N = 4, 952 landmarks
on the root subject (subject 37) to start the propagation. From Table 1, its
resulting total average error Δ = 0.532 is also higher than the proposed method.
This is mainly caused by the accumulation error during the propagation. Figure 4

http://www.ia.unc.edu/dev/tutorials/InstallLib/index.htm
http://www.ia.unc.edu/dev/tutorials/InstallLib/index.htm
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Table 1. Average errors produced by the proposed method and three comparison

methods. The variances and standard deviations are calculated over Δi, i = 1, 2, . . . , M
and Δj , j = 1, 2, . . . , N respectively. The numbers for M1 come from the best template

(subject 29) that leads to smallest total average error Δ.

In terms of Subject In terms of Landmark

M1(best) M2 M3 Proposed M1(best) M2 M3 Proposed

Total Average (Δ) 0.509 0.791 0.532 0.479 0.509 0.791 0.532 0.479

Variance 0.006 0.073 0.010 0.004 0.333 0.717 0.352 0.266

Standard Deviation 0.082 0.270 0.100 0.067 0.577 0.846 0.594 0.515

75.4% 75.5% 75.7% 77.2%

(a) (b) (c) (d)

V
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w
 1

V
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 2

Fig. 4. A visualization of the error ej
i on the spherical mapping of one subject (subject

18): red area indicates ej
i > 0 and green area indicates ej

i = 0. The top and bot-

tom rows show the views that are the same as and diametrically opposite to the one

used in Fig. 1(c), respectively. (a-d) the results from M1, M2, M3, and the proposed

method, with green area accounting for 75.4%, 75.5%, 75.7% and 77.2% of the sphere,

respectively.

visualizes the error ej
i for all 4, 952 landmarks on subject 18, by using each of the

three comparison methods and the proposed method: red area indicates ej
i > 0

and green area indicates ej
i = 0. This is shown on the spherical representation of

the subject for clarity. These experiments show that the corresponded landmarks
identified by the proposed method show better consistency in terms of the true
labels than the other three comparison methods.

5 Conclusion

We have developed a new method for corresponding highly convoluted 3D corti-
cal surfaces. A new shape similarity measure between a pair of cortical surfaces
was developed by using Freesurfer co-registration results. The cortical surfaces
are then organized into a low-height tree where parent-child pairs represent sim-
ilar subjects. Multiple shape correspondence was obtained by propagating the
pairwise correspondence from the root to the leaves in the constructed tree.
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Experiments on 40 LONI LPBA40 images showed that the proposed method
produces a better performance than three other existing shape-correspondence
methods. The shape dissimilarity measure based on the Freesurfer registration
is computationally expensive. In the future, we plan to develop more efficient
algorithms to measure such pairwise dissimilarity for shape organization.
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Abstract. We present a geometric approach for constructing shape atlases of sul-
cal curves on the human cortex. Sulci and gyri are represented as continuous open
curves in R3, and their shapes are studied as elements of an infinite-dimensional
sphere. This shape manifold has some nice properties – it is equipped with a Rie-
mannian L2 metric on the tangent space and facilitates computational analyses
and correspondences between sulcal shapes. Sulcal mapping is achieved by com-
puting geodesics in the quotient space of shapes modulo rigid rotations and repa-
rameterizations. The resulting sulcal shape atlas is shown to preserve important
local geometry inherently present in the sample population. This is demonstrated
in our experimental results for deep brain sulci, where we integrate the elastic
shape model into surface registration framework for a population of 69 healthy
young adult subjects.

1 Introduction

A surface-based morphometric analysis of the cortex has been shown to have wide reach-
ing applicability for the purpose of mental disease detection, progression, as well as pre-
diction and understanding of normal and abnormal developmental behaviors. Cortical
morphometry has three major ingredients: i) surface representation, ii) registration and
alignment for construction of atlases, and iii) statistical analysis of deformations or warps
explaining the variability of surface features in a given population. Surface registration
aims at determining point-to-point correspondences between a pair of surfaces by align-
ing several homologous features on the two cortical surfaces. Theses correspondences
can be achieved either automatically by using both local and global features as in the
case of Dale et al. [2], or in a semi-automated manner, using expertly delineated sulcal
and gyral landmarks as in the case of Thompson et al. [10,4]. The underlying idea in
both approaches is modeling (either explicitly or indirectly) the sulcal and gyral patterns
exclusively based on local geometric features. These features are usually 3D continuous
space curves corresponding to the deepest regions of the valleys for sulci, and topmost
regions of the ridges for the gyri. The main advantage of using explicit landmarks is the
incorporation of expert anatomical knowledge that improves the consistency in matching

T. Jiang et al. (Eds.): MICCAI 2010, Part I, LNCS 6361, pp. 357–366, 2010.
© Springer-Verlag Berlin Heidelberg 2010
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of homologous features. This in turn potentially improves statistical power in the neigh-
borhood of the landmarks. Additionally, increasing the number of consistent landmarks
also improves the alignment accuracy, thereby allowing more control in the registration
process. Previously, landmark curves have mostly been used as boundary conditions for
various cortical alignment approaches. Various researchers have modeled the sulci and
gyri using different representations. Tao et al. [9] represent sulci using landmark points
on curves, and build a statistical model using a Procrustes alignment of sulcal shapes.
Vaillant et al. [11] represent cortical sulci by medial surfaces of cortical folds. Although,
the advantage of this model is that it represents entire cortical folds, a limitation of this
method is the use of unit speed parameterizations of active contours for constructing
Procrustes shape averages for sulci. Furthermore, for the two approaches, the shapes are
represented by finite features or landmarks, and thus are limited in the characterization
of rich geometric detail that manifests in the cortical folds giving the sulci their shapes.
Recently, there have been several interesting approaches using continuous representa-
tions for sulci [8,1,3]. For e.g. Auzias et al. [1] model whole sulci using distributions of
point sets and use a LDDMM framework for registering not only the surfaces but full
MRI volumes. Durrleman et al. [3] use currents for modeling curves and surfaces.

In our work, we represent sulci and gyri by parameterized three-dimensional curves.
However, unlike previous approaches, we construct a shape space of such sulcal and
gyral curves and build a statistical model of sulci and gyri intrinsically on the shape
space. Our approach models the whole curve without the use of landmarks or discrete
parametric representations and deals with functional mappings of curve instances on
the shape manifold. The main contributions of this paper are as follows: i) an inverse-
consistent diffeomorphic framework for matching sulcal shapes, ii) An intrinsic sulcal
shape atlas based on the Riemannian metric on the shape manifold, and iii) integration
of sulcal curve diffeomorphisms in driving cortical surface registrations. To our knowl-
edge, the proposed framework of direct diffeomorphic three-dimensional sulcal curve
mappings have not been used in cortical registration before. This paper is organized
as follows. Section 2 outlines the shape modeling scheme for sulci and gyri. It also
outlines the procedure for computing statistical shape averages for sulci and gyri for
a given population. Section 3 incorporates the sulcal shape model in cortical surface
registration, followed by results and conclusion.

2 Diffeomorphic Shape Analysis of Sulci and Gyri

In this section, we describe the modeling scheme used to represent sulcal and gyral
shape features. We represent the cortical valleys (sulci), and the ridges (gyri) by open
curves. However unlike previous approaches which have used landmarks for represent-
ing the sulcal and gyral features, we will use continuous functions of curves for repre-
senting shapes.

2.1 Shape Representation

Let β be a 3D, arbitrarily parameterized [5], open curve, such that β : [0, 2π] → R3.
We represent the shape of the curve β by the function q : [0, 2π] → R3 as follows,



Cortical Sulcal Atlas Construction 359

q(s) =
β̇(s)√
||β̇(s)||

∈ R3 . (1)

Here, s ∈ [0, 2π], || · || ≡
√

(·, ·)R3 , and (·, ·)R3 is the standard Euclidean inner prod-
uct in R3. The quantity ||q(s)|| is the square-root of the instantaneous speed, and the
ratio q(s)

||q(s)|| is the instantaneous direction along the curve. The original curve β can be

recovered upto a translation, using β(s) =
∫ s

0
||q(t)|| q(t) dt. In order to make the rep-

resentation scale invariant, we will normalize the function q as q = q√
(q,q)

R3
. We now

denote Sq ≡ {q|q(s) : [0, 2π] → R3|
∫ 2π

0
(q(s), q(s))R3ds = 1} as the space of all unit-

length, elastic curves. On account of scale invariance, the space Sq becomes an infinite-
dimensional unit-sphere and represents all open elastic curves invariant to translation
and uniform scaling. The tangent space of Sq is easy to define and is given as Tq(Sq) =
{w = (w1, w2, . . . , wn)|w(s) : I → R3 ∀s ∈ [0, 2π) |

∫ 2π

0
(w(s), q(s))R3 ds = 0}.

Here each wi represents a tangent vector in the tangent space of Sq . Due to the spherical
nature of the shape space, any vector on the shape space can be transformed to a tangent
vector by simply subtracting its normal component. We define a metric on the tangent
space as follows. Given a curve q ∈ Sq , and the first order perturbations of q given by
u, v ∈ Tq(Sq), respectively, the inner product between the tangent vectors u, v to Sq

at q is defined as, 〈u, v〉 =
∫ 2π

0
(u(s), v(s))R3ds. Now given two shapes q1 and q2, the

translation and scale invariant shape distance between them is simply found by measur-
ing the length of the geodesic connecting them on the sphere. We know that geodesics
on a sphere are great circles and can be specified analytically. Thus given a tangent
vector f ∈ Tq1(Sq), the geodesic on Sq between the two points q1, q2 ∈ Sq along f ,
for a time t is given by χt(q1; f) = cos

(
t cos−1〈q1, q2〉

)
q1 + sin

(
t cos−1〈q1, q2〉

)
f

where t is a subscript for time. Then the geodesic distance between the two shapes q1

and q2 is given by d(q1, q2) =
∫ 1

0

√
〈χ̇t, χ̇t〉dt. The quantify χ̇t is also referred to as

the velocity vector field on the geodesic path χt So far, we have constructed geodesics
between a pair of curves directly on the sphere (Sq). In doing so, we implicitly assumed
that the curves were rotationally aligned, as well as the parameterization of the curves
was fixed. However the shape of a curve remains unchanged under rotations as well as
different parameterizations of the curve. Thus in order to register shapes accurately, the
matching should be invariant to rotations as well as reparameterizations. This matching
is achieved by constructing the space of elastic shapes, and measuring the “elastic” dis-
tance between curves under certain well-defined shape-preserving transformations as
explained in the next section.

2.2 Geodesics between Elastic Shapes

In order to match curves elastically, in addition to translation and scaling, we con-
sider the following reparameterizations and group actions on the curve that preserve
its shape. A rigid rotation of a curve is considered as a group action by a 3 × 3 rota-
tion matrix O3 ∈ SO(3) on q, and is defined as O3 · q(s) = O3q(s), ∀s ∈ [0, 2π].
A curve traveled at arbitrary speeds is said to be reparameterized by a non-linear dif-
ferentiable map γ (with a differentiable inverse) also referred to as a diffeomorphism.
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We define D = {γ : S1 → S1} as the space of all orientation-preserving diffeo-
morphisms. Then the resulting variable speed parameterizations of the curve can be
thought of as diffeomorphic group actions of γ ∈ D on the curve q. This group ac-
tion is derived as follows. Let q be the representation of a curve β. Let α = β(γ) be
a reparameterization of β by γ. Then the respective velocity vectors can be written as
α̇ = γ̇β̇(γ) = γ̇q(γ)||q(γ)|| = ||

√
γ̇q(γ)||

√
γ̇q(γ). The reparameterization of q by γ is

defined as a right action of the group D on the set C and written as q · γ =
√
γ̇ (q ◦ γ).

Thus we are interested in constructing the shape space as a quotient space of Sq , modulo
shape preserving transformations such as rigid rotations and reparameterizations.

Altogether, the set of curves affected by the group actions above, partition the space
Sq into equivalence classes. We now define the elastic shape space as the quotient space
S = Sq/(SO(3) × D). The problem of finding a geodesic between two shapes in S
is same as finding the shortest path between the equivalent classes of the given pair of
shapes. Since the actions of the re-parametrization groups on C constitute actions by
isometries, this problem also amounts to minimizing the length of the geodesic path,
such that

de(q1, q2) = min
O3∈SO(3),γ∈D

d(q1, (O3q2) · γ), (2)

where d is given by the geodesic distance. In order to optimize Eq. 2, we recognize that
for a fixed rotation O3, the distance de can be obtained by finding the optimal reparam-
eterization γ̂ between q1 and q2, whereas for a fixed γ, the distance de is calculated by
finding the optimal rotation Ô3. Thus in order to minimize the distance in Eq. 2, we
alternate between optimizing over O3 and γ repeatedly until the process converges. At
each step, the optimal rotation Ô3 is given by Ô3 = USV T , where, all U, S, V ∈ R3×3,
and given by the singular decomposition of Ô3. Furthermore this decomposition is ap-
proximated using the L2 function given by USV T =

∫ 2π

0
q1(s)q2(s)Tds. Also, at each

iteration, we compute a geodesic path between the starting shape q1 and the target shape
O3q2 ·γ. Upon convergence of this procedure, we also obtain the tangent vector χ̇ along
the geodesic path connecting the two shapes.

2.3 Construction of a Statistical Sulcal Atlas

In order to construct a sulcal atlas of a large population of curves in the shape space,
we need the notion of a shape average based on the sulcal and gyral curves. Owing to
the nonlinearity of the shape space, the computation of an average shape is not straight-
forward. There are two well known approaches of computing statistical averages in
such spaces. The extrinsic shape average is computed by projecting the elements of the
shape space in the ambient linear space, where an Euclidean average is computed, and
subsequently projected back to the shape space. On the other hand, the intrinsic aver-
age, also known as the Karcher mean ([6]) is computed directly on the shape space,
and makes use of distances and lengths that are defined strictly on the manifold. It
uses the geodesics defined via the exponential map, and iteratively minimizes the av-
erage geodesic variance of the collection of shapes. We will adopt the intrinsic ap-
proach by computing the Karcher mean for a given set of shapes. The Karcher mean
is computed by minimizing the geodesic variance for a given collection of shapes. In
other words, given a set of shapes {qi}, i = 1, . . . , N , the Karcher mean is given by
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μ = argminqμ

∑N
i=1 de(qμ, qi)2, i = 1, . . . , N . This mean is computed by an opti-

mization procedure that involves repeated computations of geodesics from each of the
shapes of the population to the current estimate of the mean. Next, we describe the pro-
cedure of combining the nonlinear sulcal atlas along with cortical surface registration
for mapping brains across populations.

3 Integrating Sulcal Shapes with Cortical Surface Registration

In this section, we introduce our scheme for registering cortical surfaces. There have
been several prominent approaches [10,4,1] for cortical registration in the neuroimag-
ing community. Our method, although based on the same conceptual framework of
elastic registration, provides a slightly different model for computing the deformation,
with certain improvements in the implementation that increase flexibility and efficiency.
A general outline of the process is as follows. The first stage is to establish homology of
the curve data, which is accomplished by matching the shapes in a Riemannian shape
space framework. Next, the surfaces and curves are conformally mapped to the sphere,
establishing a common space where deformation will be defined. Following this, there is
a rotational alignment of the surfaces and curves to account for the differences in spher-
ical mapping orientations. Next, the spherical mean of the curves is found to define the
atlas curves for the domain of the deformation. Finally, the elastic deformation of the
atlas on the sphere is found, which constrained to map the atlas curves to each case’s set
of curves. The surfaces are reparameterized by this elastic deformation. The resulting
surfaces then have homologous coordinate systems, allowing local comparisons across
the group. We define a set of N surfaces, {M1, ...,MN} where Mi ⊂ R3. We repre-
sent their mesh geometry using a set of simplicial complexes, {(K1, f1), ..., (KN , fN )}
where Ki is a simplicial complex and fi : K �→ Mi. For each surface i, we have
a set of M landmarks represented by continuous open curves {βi1, ..., βiM} where
βij : [0, 2π] �→ Mi, and the set of curves {βij : i ∈ [1, N ]} represent homologous
regions on the set of surfaces. Additionally, the curves are discretized, where the j-th
curve has kj vertices. The first step of the process is to establish correspondence be-
tween the homologous landmark curves by computing mappings γ̂ij : [0, 2π] �→ [0, 2π]
such that for curve j and parameter t, the set {βij(γij(t)) : i ∈ [1, N ]} is a set of
homologous points on the surfaces. This is accomplished by mapping the curves to a
Riemannian manifold shape space, where reparameterizations are defined by geodesics
to the Karcher mean of the curves in the shape space.

3.1 Spherical Mapping and Alignment

Next, the meshes are simplified using a QEM-based method, and a set of conformal
mappings is found from each surface to the unit sphere, {φ1, ..., φN} where φi : Mi �→
S2. The spherical mapping of the matched curves is then β̃ij = φi ◦ βij ◦ γij , which is
found using the barycentric coordinates of each curve vertex. A bounded interval hier-
archy is used to efficiently search for the coincident face of each curve vertex. Once the
data are mapped to the sphere, they are rotationally aligned to enforce a consistent ori-
entation of the spherical mappings. Given an arbitrarily chosen target, each set of curves
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is aligned to the target by computing the rotation and reflection that minimizes the least-
squared difference between the discretized curve coordinates. This is accomplished by
solving the unconstrained orthogonal Procrustes problem using singular value decom-
position, allowing reflections to account for the inversion between the hemispheres. For
an arbitrary T ∈ {β̃ij : i ∈ [1, N ]}, we find an optimal alignment Ri ∈ R3×3 and then

optimally rotate the data as, φ̂i = Ri ◦ φi, and β̂ij = Ri ◦ β̃ij .

3.2 Spherical Curve Atlas

Once the data have been aligned on the sphere, the mean curves are computed to serve
as the atlas curves in the surface warping. The Karcher mean on the sphere is found for
each vertex of each curve. In this method, an initial guess is found by the normalized
average of the points. For this point, the tangent space is defined by the gnomonic
projection. A new mean is computed in the tangent space and then is mapped back to
the sphere, repeating this process until convergence. We can express the curve atlas as
the set {βj : j ∈ [1,M ]}, where βj is the karcher mean of {β̂ij : i ∈ [1, N ]}.

3.3 Elastic Surface Warping

For surface i, the deformation of the atlas is φi : S2 �→ S2, where φi(βj(t)) = β̂ij(t)
for t ∈ [0, 2π], j ∈ [1,M ]. Six flattenings of the sphere are defined {ϕn : S2 �→ [0, 1]2 :
n ∈ 1, 2, 3, 4, 5, 6}. For a point on the sphere, p ∈ S2, the optimal flattening is chosen
as ϕp = arg minϕn ‖ϕn(p) −

(
1
2 ,

1
2

)
‖. The displacement field up : S2 �→ R2 is then

up(x) = ϕp(φi(x)) − ϕp(x). At non-landmark points, i.e. x ∈ S2, x /∈ ∪j{β̂ij(t) :
t ∈ [0, 2π]}, the mapping is constrained to satisfy a small deformation elastic model as
proposed by Thompson et al. [10], and is given by

μ�2up(x) + (λ + μ)�(� · up(x)) = 0 (3)

The atlas mesh is defined on the sphere by tessellating the sphere with a subdivided oc-
tahedron [7]. This representation is advantageous for its multiscale processing and flat-
tening. The flattening can be imagined as follows. First, choose one of the vertices of the
octahedron to map the center of the grid. Then, cut the four far edges that do not contain
the center vertex. These edges are duplicated and define the boundary of the grid, and
the opposite vertex maps to the four corners of the grid. The deformation is computed
iteratively using multigrid finite differences, where the octahedral subdivisions and flat-
tenings are used for prolongation and restriction operations. The solver accounts for the
spherical topology of the domain by solving the above nonlinear model and resampling
the deformed atlas by establishing vertex homology between the meshes.

4 Experimental Results

Our experimental data consisted of 3T MRI acquisitions (GE) for a population of 69
healthy, Chinese, right-handed volunteers (30 men, 39 women; 18-33 yr) using a trans-
verse 3D T1-weighted fast spoiled gradient-echo (FSPGR) sequence (TR/TE = 6.8
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ms/2.9 ms; voxel size = 0.47 mm × 0.47 mm × 0.70 mm; FOV = 24.0 × 24.0 cm;
matrix size = 512× 512; flip angle = 10°, slice thickness = 1.4 mm, and slice gap = 0.7
mm). After preprocessing the raw data, and registering it stereotaxically to a standard
atlas space, the cortical surfaces for these subjects were extracted using an automated
algorithm [2]. For each of these subjects, a total of 27 landmark curves were manu-
ally traced. Figure 1 shows the original 27 landmark curves for each of the 69 subjects
for both hemispheres overlaid together. Additionally, Figure 1 also shows the intrinsic
sulcal shape averages of the 27 landmark curves, as well as the respective extrinsic Eu-
clidean averages for the same. While computing the extrinsic average, each curve for
the same landmark type was mapped to its q representation, thus making it scale and
translation invariant. The Euclidean average of all the q functions was then computed
after a pairwise rotational alignment. Both the Karcher mean shapes as well as the Eu-
clidean averages were then mapped back to the native space in order to visualize them.
It is observed that the intrinsic averages although smooth, have preserved important
features along the landmarks, thus representing the average local shape geometry along
the sulci and gyri. This also implies that the shape average has not only captured the
salient geometric features, but has also reduced the shape variability in the population.
In order to demonstrate this property, we plot the variance of the shape deformation for
each landmark type as captured by the velocity vector along the geodesic path, both
for Euclidean extrinsic, and Riemannian intrinsic averages. This quantity measures the
invariant deformation between a pair of shapes, and only depends upon the intrinsic
geometry of the shapes. For both of these averages, the tangent vectors were computed
using the procedure outline in Section 2.2 and the computations were done using the
elastic geodesic method for consistent comparisons. Figure 2 shows a comparison of
the plots of 1

69

∑69
1 (〈χ̇(i), χ̇(i)〉)2 for each of the landmarks, taken along the length of

Fig. 1. Lateral, frontal, and medial views of, top row: 27 landmark sulci and gyri for 69 sub-
jects, middle row: Euclidean sulcal shape averages, bottom row: Karcher shape average for each
landmark type
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Fig. 2. Comparison of the geodesic variance for the entire sulcal population for each of the 27

landmarks, both for Euclidean shape averages, as well as elastic shape averages, along the length
of the curves

Fig. 3. Lateral, axial, ventral, and medial views of the reconstructed cortical surface with Eu-
clidean sulcal matching (top), and diffeomorphic sulcal matching (bottom). The surfaces are col-
ored according to shape curvedness.

the curve, for both Euclidean shape averages, as well as intrinsic shape averages. Here
the χ̇(i) is the tangent vector from the mean shape to ith shape. From the color-coded
map, it is observed that the intrinsic average has reduced the variance in terms of shape
geometry deformation, and thus is a better representative of the population.

Next, we demonstrate results of cortical surface registration with and without the
incorporation of the above diffeomorphic sulcal atlas in Figure 1. As an initial step,
we compute geodesics between the average shape of the landmark, and the set of all
sulci belonging to that landmark type, and reparameterize the set of sulci according to
inverses of the resulting diffeomorphisms. We then follow the steps outlined in Sec. 3
in order to warp all the surfaces meshes to the atlas. Figure 3 shows three the lateral,
axial, ventral, and medial views of the reconstructed cortical surface averages from the
flattened representations. The surface is colored by its curvedness in order to highlight
the fundi of the sulci as well as the ridges of the gyri. It is observed that the surface
with diffeomorphic sulcal mapping shows richer geometric detail than the traditional
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Fig. 4. R.M.S error of the distance from each sample surface to the average reconstructed cortical
surface with and without diffeomorphic sulcal matching shown for left hemisphere. There is
considerable improvement in registration even where there is an absence of landmarks (labeled
as A).

Euclidean reconstruction. As another measure of distortion, we also computed the root
mean square (r.m.s.) error of the distance from each sample surface to the average recon-
structed cortical surface with and without diffeomorphic sulcal matching. It is observed
that the diffeomorphic method yields lower errors throughout the surface as compared
to the Euclidean matching. Interesting, the diffeomorphic mapping approach has also
shown considerable improvement in the frontal lob (Labeled as A in Figure 4) even in
the absence of sulcal landmarks. The results from spherical alignment are also shown
for comparison.

5 Conclusion

We have presented a direct diffeomorphic approach for shape analysis of sulcal and
gyral features and demonstrated its application in cortical surface registration. We em-
phasize that the use of the sulcal atlas is not limited to registration alone, and can be also
used to study cortical patterns for developmental, diseased or even normative patterns.
The success of our method on deep brain sulci also demonstrates the effectiveness in
capturing the intrinsic shape variability of the sulci and gyri. In the future, we intend
to perform extensive validation studies for large populations as well as apply the sulcal
models for neuroimaging population studies.
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Abstract. Registration of preoperative and postresection images is of-
ten needed to evaluate the effectiveness of treatment. While several non-
rigid registration methods exist, most would be unable to accurately
align these types of datasets due to the absence of tissue in one image.
Here we present a joint registration and segmentation algorithm which
handles the missing correspondence problem. An intensity-based prior
is used to aid in the segmentation of the resection region from voxels
with valid correspondences in the two images. The problem is posed
in a maximum a posteriori (MAP) framework and optimized using the
expectation-maximization (EM) algorithm. Results on both synthetic
and real data show our method improved image alignment compared to
a traditional non-rigid registration algorithm as well as a method using
a robust error kernel in the registration similarity metric.

1 Introduction

In localization-related epilepsy, brain resection is often considered the next line
of treatment if anticonvulsive medication is unable to control seizures [1]. To
better understand epilepsy and the changes that occur in the brain after re-
section, preoperative and postresection images first need to be aligned. This
registration problem is challenging due to the missing correspondences caused
by resected tissue coupled with the possibility for highly nonlinear deformations
in the postresection brain.

While many traditional non-rigid registration algorithms are available, few
handle the problem of missing correspondences. A method for general registra-
tion problems was presented in [2] which dealt with partial data by using an
EM-style method to simultaneously estimate the registration parameters and
the missing data. Each voxel is assumed to have an equal chance of being la-
beled as missing or valid data. For our application, it is known that resection
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voxels will appear dark in T1-weighted MRI due to cerebrospinal fluid (CSF)
taking place of the missing tissue [3], and we will thus incorporate this prior
information.

Some application-specific methods have also been proposed to better register
images with substantial changes. The correspondence problem in the alignment
of dynamic contrast-enhanced breast MRI was handled by “de-enhancing” the
contrast images before registration in [4]. Biomechanical models of brain tu-
mor growth and estimation of tissue loss and replacement have been used to
improve the registration accuracy around the tumor region [5]. An algorithm
to accommodate resection and retraction was presented in [6] for alignment of
preoperative to intraoperative brain images. Their method alternated between
registering the images using a demons algorithm with an anisotropic diffusion
smoother and segmenting the resection by evolving a level set in the region with
high intensity errors. We are proposing a probabilistically-grounded approach to
the simultaneous registration and resection estimation problem.

In this paper, we present a joint registration and segmentation method in
which an indicator function separating the valid and missing correspondence re-
gions is estimated along with the transformation parameters. The addition of the
indicator map into the registration estimation allows the incorporation of differ-
ent models for observing the data under different correspondence assumptions.
The general joint registration and segmentation framework follows the method
described in [7]. Previously in [8] we used a spatial prior on the valid tissue and
resection locations to help estimate these regions. Due to the difficulty in gath-
ering a training set for the spatial prior, we now explore a prior on postresection
image intensities. Posing the problem in a MAP framework allows for the natural
inclusion of an intensity-based prior.

2 Methods

2.1 Registration and Segmentation Framework

The goal of the registration problem is to determine the optimal transforma-
tion T which aligns voxel x in the preoperative image P with voxel T (x) in
the postresection image R. We incorporate a “hidden” indicator map I which
gives the segmentation of valid tissue in the postresection image R from the
resection region. The registration problem is then posed in a marginalized MAP
framework, where we solve for

T̂ = argmax
T

log
∑

I

p (T, I | P,R) (1)

by using the EM algorithm. In the (k + 1)th iteration, the E-step gives an es-
timate for the indicator map given the estimate of the transformation T k from
the previous iteration. The M-step then determines the new registration param-
eters T k+1 using the information from the E-step. The algorithm keeps iterating
between the E-step and M-step until the registration parameters converge.
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In our instance of the EM algorithm, the M-step can be written as

T k+1 = argmax
T

EI|P,R,T k [ log p (P | R, I, T ) + log p (R | I, T )

+ log p (I | T ) + log p (T )] . (2)

We next make a few simplifications. First we make the common assumption of
independence of voxels in the image. We also assume that given the indicator, the
postresection image does not depend on T . To simplify (2) further, we assume
no prior spatial information for the indicator map. We can then rewrite (2) as

T k+1 = arg max
T

∑
x∈R

∑
l∈L

p
(
I(x) = l | P,R, T k

)
[ log p (P (T (x)) | R, I(x) = l, T )

+ log p (R (x) | I (x) = l)] + log p (T ) , (3)

where L is the set of possible labels in the indicator map. In the following we
use L = {0, 1, 2}: I(x) = 0 for the resection, I(x) = 1 for a voxel with a valid
correspondence, and I(x) = 2 for a background voxel.

The E-step calculates the probability that a voxel is assigned a certain label.
Using Bayes’ rule, this probability can be computed from

p
(
I(x)= l |P,R, T k

)
=

p
(
P
(
T k(x)

)
|R, I(x)= l, T k

)
p(R (x) |I(x)= l)∑

l′
p(P (T k(x)) |R, I(x)= l′, T k) p(R (x) |I(x)= l′)

. (4)

After the EM algorithm converges, the final indicator map Î is estimated from
these probabilities by assigning Î(x) = arg max

l
p
(
I(x) = l | P,R, T̂

)
.

2.2 Probability Models

To calculate (3) and (4), we need to define probability models for the similarity
measure p (P (T (x)) | R, I(x) = l, T ), the prior on intensities given the indicator
function value p (R (x) | I(x) = l), and the transformation prior p (T ).

Similarity Term. The probability p (P (T (x)) | R, I(x) = l, T ) acts like the
similarity metric of a standard registration algorithm. For different values of the
indicator map, we can use a different probability model to describe how we ex-
pect the images to match. We assume a voxel labeled as part of the resection
in R can match any intensity in P with equal probability and use a uniform
distribution. When a voxel is labeled as having a valid correspondence, the in-
tensities should match, so we model P (T (x)) |R, I(x) = l, T ∼ N (R (x) , σ1).
Finally, for a background voxel, we again employ a normal distribution but as-
sign a larger standard deviation since we are not actually interested in matching
the background. To summarize, the models under each indicator label are
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p (P (T (x)) |R, I(x) = l, T ) =

⎧⎪⎪⎨⎪⎪⎩
1/c , l = 0

1√
2πσ1

exp
(
− [P (T (x))−R(x)]2

2σ2
1

)
, l = 1

1√
2πσ2

exp
(
− [P (T (x))−R(x)]2

2σ2
2

)
, l = 2

, (5)

where c is the number of intensity levels in each image and σ1 < σ2. For the
experiments in this paper, we set σ2 = 2σ1.

Intensity Prior. The term p (R (x) | I (x) = l) is the intensity-based prior in
which given the indicator map label, we assume some knowledge of the intensities
in the postresection image. For a voxel labeled as resection, we model its intensity
using a normal distribution with a maximum likelihood estimate of the mean and
standard deviation from manually segmented resection regions from a training
set of postoperative images. If a voxel is labeled as having a valid correspondence,
we assume any intensity in R is equally likely to have a matching correspondence
in P and use a uniform distribution. Finally, background voxels are assumed to
follow a normal distribution with 0 mean and a small standard deviation.

Transformation Prior. We use free form deformations (FFD) based on uni-
form cubic B-splines to model the non-rigid transformation as in [9]. The trans-
formation parameters are then the B-spline control points ti, spaced δ apart.
We assume the control points and its components ti,j are independent so that
p (T ) =

∏
i

∏
j

p (ti,j), where p (ti,j) follows a normal distribution with mean equal

to the starting location of the control point component on the uniform grid and
standard deviation equal to 0.4δ

3 to encourage a smooth transformation. In ad-
dition, we enforce a hard constraint to ensure the transformation is injective by
restricting the control points to lie within a sphere of radius 0.4δ [10].

2.3 Registration Methods for Comparison

We compare our joint registration and indicator map estimation (RIME) method
to a standard non-rigid registration (SNRR) method found in BioImage Suite
(BIS) software [11]. In addition, we compare an algorithm using a robust squared
error in the similarity measure, i.e. ρ (R (x)− P (T (x))) ∼ N (0, σ), where

ρ (x) =

⎧⎨⎩ s2

6

(
1−

(
1− x

s

)2)3

, |x| ≤ s

s2

6 , |x| > s
, (6)

is the Tukey function with scaling parameter s [12]. The influence of outliers is
reduced by mapping errors greater than s to a maximum value. In this way, the
intensity disparity in the resection region is given less influence in determining
the optimal transformation. We automatically estimate s = 3σ, where σ is the
standard deviation of the intensity differences for the current overlap of images.

Both SNRR and robust Tukey registration (RTR) use a FFD transformation
model with the same control point spacing as in RIME. In addition, note that
all methods utilize a similarity measure based on direct intensity differences.
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3 Results

3.1 Synthetic Images

We used 11 pairs of 2D synthetic MR images. For each pair, a slice from a normal
real 3D MRI was taken as the preoperative image. The postoperative image was
created by first assigning resection voxels normally distributed random intensi-
ties with mean and standard deviation from a CSF sample from the preoperative
image. The image was then warped by a physical model. The deformation sim-
ulations, while not necessarily mimicking true non-rigid motion after resection,
provide a ground truth of displacement vectors at each voxel. The intensity prior
for the image to be registered was trained on the remaining postresection images.

Figure 1 shows example results. Difference images were masked by the true
valid correspondence region. In Fig. 1(a), traditional registration resulted in
large errors, especially near the resection. While RTR in Fig. 1(b) showed great
improvement, the RIME difference image in Fig. 1(c) appeared even flatter.

Table 1 lists the minimum, maximum, mean, and standard deviation of dis-
placement errors for voxels in R which had a valid correspondence in P , aver-
aged over the image pairs. We performed one-tailed paired t-tests to evaluate
the results and considered p < 0.05 significant. Only the mean error for RTR
significantly decreased compared to SNRR. On the other hand, all RIME er-
ror statistics were significantly reduced compared to SNRR. Furthermore, the
minimum, mean, and standard deviation of errors for RIME were significantly
smaller than those for RTR. The quantitative analysis confirmed the qualitative
observations that RIME produced more accurate results than SNRR and RTR.

The estimated indicator function for valid correspondence pixels is shown in
Fig. 2, with the true map outlined in green. Typically, errors occurred in the
CSF or near the boundary of the brain and background or resection. The dice
coefficient was computed for each pair to measure the overlap between the true
and estimated maps for valid correspondences, giving an average of 0.98.

(a) (b) (c)

Fig. 1. Sample difference images between a simulated postre-
section image and the corresponding warped preoperative image
using (a) SNRR, (b) RTR, and (c) RIME

Fig. 2. Outline of
true indicator map
(green) overlaid on
estimated map
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Table 1. Average displacement field errors (in voxels) after synthetic data registration

Registration Method Min Error Max Error Mean Error Std Dev Error
SNRR 0.0028 3.1952 0.3479 0.3709
RTR 0.0017 3.1808 0.2757 0.3083
RIME 0.0009 2.9013 0.2272 0.2723

3.2 3D Clinical Data

We applied the registration methods to 6 pairs of preoperative and postresection
T1-weighted MR images. First, images were skull stripped using BIS, resampled
to 128x128x60, and affinely aligned. Intensities were renormalized so they could
be directly compared. Leave-one-out validation was used, resulting in a training
set of about 12500 voxels from 5 images for the resection intensity prior.

(a) (b) (c) (d)

Fig. 3. Registration of real data. Red ring highlights different results. (a) Postresection
image. (b) Warped preoperative image using SNRR. (c) RTR result. (d) RIME result.

Figure 3 displays slices from the registration of real 3D images. The patient
had a right frontal lobe resection as seen in Fig. 3(a). Warped preoperative
images after SNRR, RTR, and RIME are shown in Figs. 3(b), (c), and (d) re-
spectively. SNRR erroneously deformed the right frontal lobe to match the back-
ground to the large resection. This caused misalignment of other features, like
the right lateral ventricle and sulci left of the longitudinal fissure. RTR resulted
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in much better alignment of corresponding structures. RIME results showed fur-
ther improved alignment, such as in the gray matter left of the longitudinal
fissure in the axial slice (red ring) and the lateral ventricle in the sagittal image.

We evaluated the registration error by computing the distance between 8 cor-
responding landmarks spread throughout the brain in each pair of postresection
and registered preoperative images. The average errors were 3.99 mm for affine
registration, 2.69 mm for SNRR, 2.16 mm for RTR, and 1.27 mm for RIME.
All non-rigid registration methods significantly decreased the error compared to
affine (again p < 0.05). The reduced error for RTR compared to SNRR missed
significance, while the improvement in RIME error over SNRR was significant.

A sample estimated indicator map is overlaid on a brain with a left tempo-
ral lobe resection in Fig. 4. The average dice coefficient measuring the overlap
between true and estimated indicator maps for valid correspondences was 0.92.

Fig. 4. Estimated indicator map segmenting tissue with correspondences (pink), resec-
tion (no color mask), and background (black), overlaid on postresection image

4 Discussion

Our proposed RIME method follows a marginalized MAP framework solved
using the EM algorithm to estimate both the registration parameters and a
“hidden” map indicating the different correspondence regions. The formulation
of the problem allows the inclusion of a prior based on voxel intensities in the
postresection images given the correspondence label. Our method resulted in
significantly improved accuracy compared to a standard non-rigid registration
technique (SNRR) and a method using a robust similarity metric (RTR).

Future work will incorporate probability models based on image histograms
for the similarity measure to extend the method to intermodality registration.
A greater number of labels in the indicator map, for example to represent gray
and white matter, may further increase registration accuracy. We will also work
to improve the final estimate of the indicator map, which sometimes mislabeled
voxels with valid correspondences as resection. This may be due to dark inten-
sities matching the intensity prior better than the similarity term (such as in
the CSF) or due to high dissimilarity in intensities near the brain and back-
ground border. To simplify the calculations in this paper, we had assumed no
prior spatial information for the indicator map. We plan to reincorporate this
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spatial prior to improve the indicator map estimate, which should in turn result
in more accurate registration.
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Abstract. Transcatheter aortic valve implantation is an emerging technique to be 
applied in patients with aortic valve defects. Angiographic and fluoroscopic X-ray 
imaging with a C-arm system is crucial in these minimally invasive procedures. 
We describe a prototypical system based on the ability to acquire a 3D C-arm CT 
image during transcatheter aortic valve implantations. It supports the physician in 
measuring critical anatomical parameters, finding an optimum C-arm angulation, 
and guiding the positioning and deployment of the prosthesis by 3D overlay with 
fluoroscopic images. To yield high acceptance by the physicians in the operating 
room, our approach is fast, fully integrated into an angiographic C-arm system, 
and designed to minimize the necessary user interaction. We evaluate the accu-
racy of our system on 20 clinical cases. 

1   Introduction 

Aortic valve disease is the most common acquired heart valve disease. Minimally 
invasive transcatheter aortic valve implantation (TAVI) is clinically being performed 
in elderly and high risk patients with a severe aortic stenosis. It has the potential to be 
applied in the future to regular risk patients instead of an open heart surgery including 
sternotomy, extracorporeal circulation and cardioplegic cardiac arrest. A stent based 
valve consisting of xenograft leaflet tissue is positioned and deployed in the aortic 
root of the patient using transcatheter techniques. During transapical TAVI an ante-
grade access is applied where the valve is inserted via small incisions in the chest and 
the apex of the left ventricle. During transfemoral TAVI the valve is inserted retro-
grade via the femoral artery and the aortic arch. Both approaches require X-ray an-
giographic and fluoroscopic imaging to guide the procedure (see Figure 1). Therefore 
these procedures are usually performed in operating rooms equipped with a fixed 
angiographic C-arm system (“Hybrid OR”). In order to visualize the aortic root under 
X-ray, contrast agent must be injected. Due to frequent renal insufficiency in these 
patients the amount of contrast agent applied should be minimized.  
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Fig. 1. Transapical aortic valve implantation under X-ray guidance. Left: Angiographic C-arm 
system able to acquire interventional 3D images in an operating room. Middle: Contrast injec-
tion via pigtail catheter immediately prior to valve deployment. Right: Implanted valve. 

Prior to implantation it is important to angulate the C-arm with respect to the aortic 
root anatomy. Rotationally symmetric prostheses require an angulation perpendicular 
to the aortic root to be placed correctly. Prostheses that model the leaflet anatomy 
additionally require an angulation that allows for outline of the commissures (attach-
ments of the valvular leaflets). Conventionally, an appropriate angulation is achieved 
with iterated C-arm angulations, each followed by an angiogram of approximately 
15 ml contrast to double-check the aortic root position. Further angiograms are 
needed later on for correct prosthesis positioning and for functional control after im-
plantation.  

Our goal is to provide image guidance based on interventional C-arm CT images to 
add detailed 3D information to the procedure. The system needs to be set up in the 
complex environment of an operating room and should be easy to use by a physician 
during TAVI. Therefore, it is crucial for the acceptance of such a system to be fast, to 
minimize the user interaction and to allow table-side control. 

Previous work about the support of transcatheter aortic valve implantations con-
tains modeling for procedure planning [1,2], guidance by tracking the prosthesis in 
fluoroscopic images [3], and a robotic system using MRI imaging [4]. 

2   Method 

In this section we describe the design of our system, the steps the system performs 
and discuss the user interactions. All described components were prototypically inte-
grated into an angiographic system (Artis zee/zeego with syngo X Workplace and 
syngo DynaCT, Siemens AG, Healthcare Sector, Forchheim, Germany).  

Before the implantation, the physician obtains an interventional 3D image of the 
aortic root by acquiring a rotational 2D image sequence of 200° over 5 seconds on the 
C-arm system. Via a pigtail catheter 25 ml contrast agent (diluted to 75 ml) is injected 
over 5 seconds (with a 1-second X-ray delay) into the aortic root. To minimize motion 
artifacts, patient breathing is suspended and rapid ventricular pacing is applied. This 
temporarily stops the heart pumping and minimizes blood flow. It allows for a rela-
tively small amount of contrast agent to used - compared to approximately 80 ml for a 
conventional CT and approximately 15 ml for a single 2D angiogram [5]. 
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Fig. 2. Left: Image from a rotational acquisition scene acquired under rapid ventricular pacing 
and contrast injection into aortic root. Middle: C-arm CT image reconstructed from this scene. 
Right: Segmented aortic root with landmarks. 

After the rotational run is finished on the C-arm system, all of the following 
steps 1–7 are initiated and performed fully automatically. 

1. Reconstructing 3D data from acquired rotational image sequence.  
The rotational run is reconstructed in about 12 seconds and is based on a software 

available with the angiographic system (syngo DynaCT [6], see Figure 2).  

2. Detecting aortic root shape and landmarks from 3D volume.  
Following [5] we detect the aortic root shape and eight landmarks (see Figure 2, 

right): the lowest point (nadir) of each aortic root cusp (to support finding a C-arm 
angulation perpendicular to the aortic root), the coronary artery ostia (which need to 
stay open after prostheses implantation), the commissure points where the cusps meet 
(to help orient anatomically designed prostheses) and finally the centerline of the 
aorta. 

We use a fast dedicated machine learning based algorithm [7]: first, position, orien-
tation, and scale of the aortic root are estimated by the efficient Marginal Space 
Learning (MSL) algorithm. Then the mean aortic root shape (calculated from a train-
ing set) is aligned with the estimated pose, followed by boundary refinement using a 
learning-based 3D boundary detector. In addition, the eight landmarks are detected 
using a discriminative learning based landmark detector. The authors report the fol-
lowing mean detection errors based on a four-fold cross validation on a dataset with 
192 volumes: 1.1 mm for aortic root mesh, 2.4 mm for lowest cusp points, 3.5 mm for 
the aortic commissure points, and 2.7 mm for the coronary ostia. 

3. Deriving additional structures from detected landmarks.  
We derive a circle parallel to the plane spanned by the three lowest points of the 

cusps (see red circle in Figure 3). Visually, this perpendicularity circle degenerates to 
a straight line if and only if the three lowest cusp points are aligned (see Figure 4), 
which corresponds to an optimal perpendicular angulation for valve implantation. 

To estimate how critical the position of the coronary ostia is, the physician will 
measure their distance to the plane through the three lowest points of the cusps. We 
create a ruler orthogonal to that plane (see the red ruler in Figure 3). We show a ruler 
instead of numbers, because this makes the measurement process transparent to the 
physician and allows for user compensation of the measurement in the case where 
detected landmarks need to be corrected. 
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Fig. 3. System appearance after automatically performing steps 1-7. Detected landmarks (coro-
nary ostia in blue and green, commissures in purple, lowest points of cusps in red, centerline in 
yellow) and derived structures (perpendicularity circle and ruler in red) are shown in 3D vol-
ume rendering and three orthogonal intersection planes with 15 mm slice thickness. The panel 
in the lower right shows the user interface we added to the existing system. 

4. Extract interior of detected aortic shape out of 3D volume for volume rendering.  
The interior of the detected aortic root is extracted from the volume and visualized 

with volume rendering. We believe that with volume rendering it is easier for the user 
to verify the accuracy of the detection step compared to a mesh visualization as vol-
ume rendering is still based on the original intensities of the image voxels.  

A perfect aortic root detection cannot be guaranteed for all patients. Therefore, we 
dilate the extracted volumetric shape by 2 mm (determined heuristically) so that the 
user can visually detect accidentally removed structures. Also visualization of coro-
nary arteries is important, but automatic segmentation is difficult. To make them 
visible without segmenting them explicitly we add a ball shape of 15 mm (determined 
heuristically) around each detected coronary ostium. This ensures that coronary artery 
segments are volume rendered even in cases of slight misdetections.  

5. Computing optimized volume rendering transfer function parameters.  
We want to avoid having the user manually find the appropriate volume rendering 

parameters copt for transfer function center and wopt for transfer function width. There-
fore, they are calculated automatically based on the voxel intensities:  
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copt   = fc,in min + fc,out mout + fc,offset 
wopt = fw,in min + fw,out mout + fw,offset 

(1) 

Here, mout (min) is a volume specific value and is determined by the mean intensi-
ties of all voxels outside (inside) the boundary of the segmented aortic root with a 
fixed distance to it. The underlying set of voxels is computed using the morphologic 
dilation and erosion operators with a certain number of iterations. The six parameters 
fc,in, fc,out, fw,offset, fw,in, fw,out, fw,offset in Equation (1) are fixed values that are obtained 
by a trained sample set of segmented volumes: For each of these training volumes we 
manually adjusted optimal window width and window center values. Together with 
the calculation of the corresponding values min and mout we get an over-determined 
system of linear equations with six unknown parameters, which is then solved by a 
least-squares fitting method. 

6. Computing good volume position and orientations of intersection planes. 
To give the user a good initial view, the volume is centered and zoomed based on 

the position of the two detected coronary ostia.  
To allow the user an easy verification of the detected coronary ostia, we show two 

orthogonal volume intersection planes, both visualizing the two ostia (see Figure 3). 
One of the planes is chosen to be orthogonal to the plane spanned by the three lowest 
points of the cusps. This plane contains the ruler discussed in step 3 and therefore 
allows the user to directly measure distances without any user interactions. 

7. Visualizing 3D volume and intersection planes in a 2×2 screen. 
According to the computations in the previous steps, the segmented aortic root vol-

ume is shown in a 3D volume rendering screen. Three orthogonal intersection planes 
show the unsegmented volume. All four screens contain the detected landmarks (see 
Figure 3). The perpendicularity circle is displayed in the 3D volume window and the 
ruler in one of the intersection planes. To allow for verification of the landmark detec-
tion (also in cases the detection went slightly wrong), we show the intersection planes 
as 15 mm thick maximum intensity projections (MIP).  

After the results are presented, the physician is able to adjust landmarks and visu-
alization if necessary. All described interactions can be done immediately at the oper-
ating table using a joystick which is part of the angiographic C-arm system. 

8. Editing landmarks with automatic adaption of derived structures.  
By drag-and-drop functionality the user can edit the detected landmarks in the or-

thogonal intersection planes and in the volume rendering screen. Undo and redo func-
tionality ensure that editing mistakes can be handled easily. Structures derived from 
the landmarks (e.g. ruler and perpendicularity circle) are adapted in real-time.  

9. Toggling on/off landmarks and structures.  
Because displaying too many structures simultaneously can confuse the user, some 

of them can be toggled on and off (see user interface in Figure 3). The system can be 
configured in a way that the preferred set of structures is initially displayed. 

If landmark positions and visualization are satisfactory, the physician can perform 
the following steps: 
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Fig. 4. Left: Overlay with perfect matching (measured misalignment is 0 mm). Right: Meas-
urement of potential tilting of the prosthesis for evaluation (for better illustration we show an 
image from an angulation that had not been used for valve deployment). 

10. Rotating 3D volume to an appropriate C-arm angulation.  
Every rotation of the volume rendered view corresponds to a C-arm angulation (up 

to in-plane rotation). Therefore, by using the displayed perpendicularity circle or the 
commissures, the physician can virtually choose a view that corresponds to an appro-
priate C-arm angulation. The C-arm can then be automatically rotated to that angula-
tion. Alternatively, the volume rendering rotation can be synchronized with any  
C-arm movement. 

11. Overlay of visualized 3D structures onto fluoroscopic images.  
The live overlay of the rendered 3D visualization onto fluoroscopic images is 

based on software available with the angiographic C-arm system (syngo iPilot). The 
3D volume is inherently registered to the fluoroscopic images because both images 
are acquired on the same system. The overlay dynamically adapts to C-arm rotations 
and table movements. It does not compensate for patient and heart motions, but can 
be corrected manually in these cases. This mode can be used to adjust or fine-tune the 
C-arm angulation needed for implantation (see Figure 4, left). 

12. Switching to contour view.  
When overlaying the 3D volume onto a live fluoroscopic scene, we offer a contour 

view of the aortic root which shows only the essential information needed for prosthe-
sis positioning and deployment. Therefore, there is less of the live fluoroscopic image 
space being hidden compared to volume rendering which yields better fluoroscopic 
image quality in the overlay for a safer implantation (see Figure 4, left). 

The contours are computed by efficient edge detection. First, a volume rendered 
aortic root image is segmented by simple image intensity thresholding. Second, gradi-
ents of the segmented pixels are calculated. The maximum gradient value is also as-
signed to border pixels (pixels with at least one neighboring background pixel). Third, 
edge pixels are detected by a hysteresis thresholding (similar to the Canny edge detec-
tor) on the gradient values. Finally, connected components with a small number of 
detected edge pixels are removed. 
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3   Evaluation 

We evaluated the accuracy of our system in patients who received an Edwards Sapien 
valve prosthesis (Edwards Lifesiences, Irvine, USA). These valves are deployed un-
der rapid ventricular pacing. Retrospectively we analyzed the first 20 cases that were 
supported by our system and where the overlay image scene was documented.  

First, we were interested in how well the system can help to position the valve in 
the aortic root with a correctly tilted angle. Assuming that a C-arm angulation ad-
justed with our system influences the final valve tilt angle, it would be interesting to 
evaluate the valve position in relation to the individual patient anatomy. Unfortu-
nately this would require the effort of a post-op 3D image scan including additional 
contrast agent and X-ray dose. Instead we determined for each patient the tilting angle 
of the implanted prosthesis in the 2D fluoroscopic image under the chosen angulation. 
We therefore assume that ideally an optimal angulation would result in a valve image 
not showing any tilting. With this assumption we ignore other factors like the com-
plex interaction of operators, devices, and patient anatomy. We measured the ellipsoid 
diameters of the upper prosthesis ring in the image in pixels (see Figure 4, right) and 
derived the tilting by arcsin(diammin /diammax). This value demonstrates how perpen-
dicular the valve prosthesis was imaged immediately after implantation. For the 20 
evaluated patients, we measured a tilt angle of 5.7° ± 5.2° (mean ± standard devia-
tion). Clinically, a tilt angle of < 5° can be stated as very good (obtained in 60% of the 
patients in our study), 5°-10° as good (30%), 10°-15° as acceptable (5%) and > 15° as 
inappropriate (5%). The values show that a procedure with 3D image support by our 
system yields overall positive results. Reasons for suboptimal angulation estimation in 
some cases might be misdetections due to C-arm CT image artifacts, resulting from 
asymmetric position of the injection pigtail catheter in the aortic root and severe aortic 
regurgitation. 

Second, we evaluated the accuracy of the overlay of the 3D image and the X-ray 
images. We assume that a misalignment corresponds to a shift parallel to the projec-
tion plane, which simplifies the evaluation but ignores rotation and zoom. For each 
patient we took an image from the recorded overlay scene that showed a contrast 
injection with rapid pacing right before deployment of the prosthesis (see Figure 4, 
left). We then measured the shift error as the distance (in pixels) of a landmark point 
that could be identified in X-ray image and 3D overlay, e.g. lowest cusp point or 
coronary ostium. Furthermore we measured the shift along the aortic root centerline, 
which is the most important direction for guiding the implantation. Because of the 
projective geometry of the images, a measurement in pixels must be scaled using the 
known length of an object in approximately the same distance to the X-ray detector. 
For this we used the known length of the implanted prosthesis (in mm) divided by its 
measured height (in pixels). For the 20 evaluated patients we measured a shift error of 
3.1 mm ± 1.9 mm (mean ± standard deviation) and in centerline direction a shift error 
of 1.9 mm ± 1.5 mm. The reasons for pronounced deviation in a few patients could be 
the dislocation of the aortic root by sheath-manipulation and accidentally movements 
of the patients caused by the physicians. The measured accuracy is only valid under 
repeat rapid ventricular pacing, which duplicates the heart position that we had during 
the 3D imaging and which minimizes heart motion. 
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4   Conclusion 

Our system design enables efficient integration of interventional 3D imaging in tran-
scatheter aortic valve implantations and provides valuable guidance tools. It is proto-
typically used in parallel to conventional fluoroscopy and angiography. The main 
benefits are the adjustment of an optimal C-arm angulation based on 3D information 
requiring a low amount of contrast agent only, the measurement of critical coronary 
ostia distances and the additional anatomical orientation by the fluoroscopic overlay 
when implanting the valve. 

The system is very fast: post-processing of 3D data (steps 2-7 in section 2) takes 
about 4 seconds. In the cases evaluated up to this point, all described algorithm steps 
are stabile. In practice, landmark adjustments were only rarely done by the user. Un-
der such rare circumstances the table sided joystick was an appropriate tool which 
eliminates the need to operate a mouse in the non-sterile environment of the control 
room. 

Valuable extensions of our system would be an automated motion compensation of 
the 3D overlay on fluoroscopic images and the integration of pre-operative CT im-
ages. For evaluation purposes it would be interesting to compare our proposed system 
with the conventional approach to implant aortic valves. 
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Abstract. Cardiac magnetic resonance imaging (MRI) has advanced to

become a powerful diagnostic tool in clinical practice. Robust and fast

cardiac modeling is important for structural and functional analysis of

the heart. Cardiac anchors provide strong cues to extract morphological

and functional features for diagnosis and disease monitoring. We present

a fully automatic method and system that is able to detect these cues.

The proposed approach explores expert knowledge embedded in a large

annotated database. Exemplar cues in our experiments include left ven-

tricle (LV) base plane and LV apex from long-axis images, and right

ventricle (RV) insertion points from short-axis images. We evaluate the

proposed approach on 8304 long-axis images from 188 patients and 891

short-axis images from 338 patients that are acquired from different ven-

dors. In addition, another evaluation is conducted on an independent

7140 images from 87 patient studies. Experimental results show promise

of the proposed approach.

1 Introduction

In cardiology, precise information on both the dimensions and functions of the
heart chambers is essential in clinical applications for diagnosis, prognostic, and
therapeutic decisions. The precision on the measures extracted from MR images
has been demonstrated and makes MR imagery a standard for left ventricle (LV)
analysis [1].AlthoughcardiacMRimaging technologies have rapidly advanced [2,3],
due to considerable amount of available data, analysis of cardiac images for quan-
tification is time consuming and error-prone for human operators.

Typical cardiac MR studies contain both long-axis and short-axis slices. Long
axis slices are not only used as scout images for acquisition planning, but also are
complementary to the short axis stack [4]. Long axis slices capture heart cham-
ber shape information and can also be used to correct mis-registration of the
short axis stack. Anchoring is helpful for accurate and efficient cardiac model-
ing, such as initialization of deformable model based approaches [5], accelerating
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acquisition time by facilitating fully automatic planning of cardiac MR exami-
nations, and accurate assessment of mass and volume [6], where demarcation of
the base is important [7]. For example, anchoring the base plane and the apex
in long-axis images facilitates and accelerates the LV segmentation of the short
stack. Anchoring RV insertion (intersection between RV outer boundary and the
LV epicardium) helps analyze LV functions according to AHA myocardial seg-
mentation models [8]. Each anchoring component can be of different geometric
representations, e.g., a line segment for the base plane and a point for the apex.

We propose a unified approach to detecting anchoring components. Anchor-
ing components are converted into parameterized bounding box representations,
which fit into an object detection framework. Such representation embeds not
only individual anchoring components but also their context, which contains
rich information to distinguish the anchoring components from its background
and other anatomical structures. We apply a learning-based method to train
detectors on expert annotations in order to handle complex appearance and
heterogeneous characteristics of anatomical features in medical images, as the
complex prior knowledge is implicitly encoded. Learning based object detection
approaches have been demonstrated successful in many applications [9,10].

The proposed approach provides a large flexibility to be applied to a wide
range of anatomical structures. We apply our framework to detect LV base mitral
valve plane and LV apex in long-axis images, and RV insertions and RV lateral
(a point where the RV outer boundary changes directions significantly within the
image) in short-axis images, as shown in Fig. 1. Our approach is fully automated.

Fig. 1. Examples of cardiac images and associated anchoring components of interest

2 Methodology

We propose a unified framework to anchor the anatomy of interest. We convert
detection of different types of anchoring components, such as base plane (a line)
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Fig. 2. Context construction and conversion from anchoring components to objects

represented by a parameterized bounding box. Base plane (pink) and apex (yellow)

are shown in a long-axis image (a). RV insertion (cyan) and RV lateral (yellow) are

illustrated in a short-axis image (b). Notice that each bounding box is parameterized

by its positions, orientation (green axis as local x-axis in (a), and red edge indicat-

ing orientation in (b)), and scales. By adjusting these parameters, a different context

around the anchor component is selected.

and apex (a point) for LV in each long-axis image, into the same object de-
tection framework by designing a contextual representation for each anchoring
component. Each anchoring component is represented by a bounding box as an
object with 5 parameters (2 translations, 1 orientation, and 2 scales), as shown
in Fig. 2. A probabilistic learning approach [11] is applied to solve a two-class
classification task, i.e., object vs. background. In order to reduce computational
cost of searching through a large 5-dimensional parameter space, we adopt the
marginal space search strategy proposed in [12].

2.1 Context Learning

A 2D object (bounding box) parameter set consists of five degrees of freedom.
Exhaustively searching in this 5-dimensional space is prohibitive for online appli-
cations. Therefore, we adopt the marginal space search strategy, where we design
a series of detectors that estimate plane parameters at a number of sequential
stages in the order of complexity, i.e., translation, orientation, and scale, as
the parameter degrees of freedom increase [12]. Different stages utilize different
image features. Multiple hypotheses are maintained between algorithm stages,
which quickly removes false hypotheses at the earlier stages while propagating
the right hypotheses to the final stage. Only one hypothesis is consolidated as
the final detection result.

We use a probabilistic boosting tree [11] for each detector to achieve a discrimi-
native task between the object and background.The classifier is a tree-based struc-
ture with which the posterior probabilities of the presence of the object of interest
are calculated from given image data. Therefore, each detector not only provides a
binary decision for a given sample, but also a confidence value associated with the



386 X. Lu et al.

decision. The nodes in the tree are constructed by a combination of simple classi-
fiers using boosting techniques [11].

Each detector selects a set of discriminative features that are used to distin-
guish the object from background from a large pool of features. For the classifiers
at the translation stage, we choose Haar wavelet-like features [9], which are ef-
ficiently calculated using integral image-based techniques. For the classifiers at
the orientation and scale stages, steerable features [12] are applied, because their
computation does not require image rotation and re-scaling, which are compu-
tationally expensive, especially when the hypothesis search space is large.

2.2 Context Modeling in Long-Axis Slices

For each long-axis image, two anchoring components are targets of interest, the
base plane and the apex. We associate a two-dimensional bounding box with each
contextual object around the anchoring component. Each bounding box is speci-
fied by a five-parameter set θ, containing two positions < x, y >, one orientation
< φ >, and two scales < sx, sy >. Although only positions are mostly in use, ori-
entation and scales are useful in encoding proper and consistent context learned
during offline training process, where a set of contextual models/classifiers are
obtained.

We collect a set of cardiac long-axis images and annotate the anchoring com-
ponents to learn contextual models. Based on this annotated training set, we
build a contextual model for each target object. For long-axis images, a joint
contextual model [13] for the pair of <apex, base plane> is also constructed as
shown by the cyan box in Fig. 2, which is used for inter-anchoring validation.
Let < xa, ya >, < xb1, yb1 >, and < xb2, yb2 > denote the positions of the apex,
and two basal annulus points, respectively. The contextual parameter set for the
base plane is: positions {(xb1 +xb2)/2, (yb1 + yb2)/2}; orientation {orthogonal to
the line segment connecting the two basal annulus points, and pointing toward
the apex side}; and scales {sb, sb}, where sb =

√
(yb2 − yb1)2 + (xb2 − xb1)2 ∗ α,

where α is a factor that can be used to adjust the contextual range set to 2.4 in
our experiments. Selection of α is a tradeoff between rich context and noise. For
the apex, the context parameters are constructed as: positions {xa, ya}; orien-
tation {arctan((ya − (yb1 + yb2)/2)/(xa − (xb1 + xb2)/2))}; and scales {sa, sa},
where sa =

√
((yb2 − yb1)2 + (xb2 − xb1)2) ∗ α.

2.3 Context Modeling in Short-Axis Slices

For each short-axis image, two anchoring components are targets of interest, the
RV insertion and the RV lateral. For RV insertion, the anterior and posterior
anchors are identified through the following context modeling. Let < xan, yan >,
< xpo, ypo >, and < xLa, yLa > denote the positions of the RV insertion an-
terior, RV insertion posterior, and RV lateral, respectively. The contextual pa-
rameter set for RV insertion is: positions {(xan + xpo)/2, (yan + ypo)/2}; ori-
entation {orthogonal to the line segment connecting RV insertion anterior and
RV insertion posterior, and pointing toward the LV}; and scales {sins, sins},
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where sins =
√

(xan − xpo)2 + (yan − ypo)2 ∗ β. β is set to 1.5 in our experi-
ments. For RV lateral, in order to utilize its RV context, we constructed the
context parameters as: positions {(xLa + xpo)/2, (yLa + ypo)/2}; orientation
{orthogonal to the line segment connecting RV Lateral and RV insertion pos-
terior, and pointing toward RV insertion anterior side}; and scales {sLa, sLa},
where sLa =

√
((xLa − xpo)2 + (yLa − ypo)2) ∗ γ. γ is set to 2.4 in our experi-

ments.

3 Experiments

We collected 490 long-axis sequences from 188 patients, whose ages ranged from
11 to 72 years old. In total, 8304 images were used to construct our long-axis
image database. Long-axis image can contain different chamber views, namely, 4-
chamber, 3-chamber, and 2-chamber views. For each image, the base plane (two
annulus anchors) and the apex of the LV were manually annotated by experts
and used as ground truth for evaluation. Our short-axis database contains 891
images from 756 sequences of 338 patients, which were provided by two different
vendors, each providing 296 and 42 patient studies, respectively. For short-axis
images, the ground truth positions of the two RV insertion anchors and the RV
lateral anchor were annotated for evaluation purposes.

We applied our context learning algorithm to detect the objects of ‘base plane’,
‘apex’, ‘RV insertion’, and ‘RV lateral’ on respective long-axis and short-axis
images for anchoring purposes. The long-axis and short-axis images can be
distinguished using orientation information captured during acquisition. With
each object detected, corresponding anchors are inferred based on reverse ob-
ject/context modeling process, i.e., calculating anchor positions from the de-
tected parameterized bounding box. We computed Euclidean distance between
the detected anchor position and its corresponding ground truth as the detection
error for each anchor. The average distance of all anchors in each image was used
as the metric to evaluate the overall system performance.

A 4-fold cross-validation scheme was applied for evaluation. The entire database
was randomly partitioned into four quarters. For each fold evaluation, three
quarters were combined for training and the remaining one quarter was used as
unseen data for testing. This procedure was repeated four times so that each
image was used once for testing. Performance is summarized based on all 4 folds
and provided in Table 1 and Figs. 4(a) and 4(b). Fig. 3 shows examples of the
detection results along with the calculated distance metrics to provide a visual
correlation between the distance and quality of detection. In addition to the
large parameter search space, cardiac MR images in a large population present
a large variation of appearance intensities along with the anatomy shape changes
across the heart beat cycle, leading to difficulties for accurate identification. The
significant performance difference between RV insertion and RV lateral is due
to lack of consistent definition of RV lateral. On the average, it took about 1.5
seconds to detect the base plane and the apex on a 400×400 long-axis image on
a duo core 2.8GHz CPU, and 0.5 seconds to detect RV insertion and RV lateral
anchors on a 256×256 short-axis image.
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Table 1. Average distance of all detected anchors from ground truth positions by a

4-fold cross validation. Distances are in unit of mm.

(a) Long-axis

Mean Std Median

Overall 4.9 7.0 3.8

Baseplane 5.1 6.8 3.7

Apex 4.5 6.7 3.3

(b) Short-axis

Mean Std Median

Overall 6.7 15.9 4.8

RV insertion 5.9 16.0 3.9

RV lateral 8.4 16.5 5.9

Fig. 3. Examples of anchoring results along with annotated ground truth (yellow).

The average detection distance is provided below each image. Our mean and median

distances are 5.5mm and 3.8mm, respectively.

In addition, we were able to conduct an independent evaluation on another
large expert validated database, which is collected as a mixture of multiple ven-
dors and called ONTARGET database. Patients with vascular disease at high
risk of cardiac events were imaged as part of the ONTARGET MRI substudy, de-
scribed in [14]. Standardized cardiac MRI exams were performed in six countries
around the world using Siemens, Philips and GE scanners. Either prospectively
or retrospectively gated steady state free precession (SSFP) CMR cines were ac-
quired in six equally spaced short axis (SA) locations from apex to base. Typical
imaging parameters were TR/TE/flip/FOV = 30ms/1.6ms/60◦/360mm, slice
thickness 6mm, image matrix 256×208. There were typically 25 temporal cine
frames per slice, depending on the heart rate. All cines were acquired during
breath-holding of 815 seconds duration. Most patients had coronary heart dis-
ease (87%), myocardial infarction (58%), and/or hypertension (61%). 23% were
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Table 2. Average distance of the detected two base plane anchors from ground truth

positions from the independent evaluation. Distances are in unit of mm.

Mean Std Median

Long-axis 5.2 7.8 3.9

Fig. 4. Percentile evaluation results of 4-fold cross-validation. Each curve shows the

percentage of cases whose distance of the automatic detection results from ground

truth is less than an error distance threshold. (a) Long-axis anchoring evaluation.

(b) Short-axis anchoring evaluation. (c) ONTARGET baseplane evaluation along with

performance breakdown based on the chamber views.

female and 36% were Asian. The entire database contains 7140 long-axis images
from 87 patient studies. Only base plane anchoring is evaluated. The experi-
mental results are presented in Table 2 and Fig. 4(c). A performance breakdown
based on the chamber views is reported in Fig. 4(c). For this evaluation, all
original 8304 images were used for training. Then the system was evaluated on
the independent 7104 images. Overall, the independent evaluation results are
consistent with the internal cross-validation results, both showing promise and
robustness of the proposed approach.

4 Conclusions

We have proposed a unified approach to explore contextual information and inte-
grated it with a learning-based object detection framework. We have developed a
fully automatic system for cardiac anchoring in both MR long-axis and short-axis
images. The principle of the proposed approach is generic. With concrete design,
which is application-specific, the proposed approach is able to be applied to a wide
range of applications in addition to acquisitionplanning and cardiac segmentation.
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Abstract. X-ray fluoroscopically guided cardiac electrophysiological procedures 
are routinely carried out for diagnosis and treatment of cardiac arrhythmias. X-ray 
images have poor soft tissue contrast and, for this reason, overlay of static 3D 
roadmaps derived from pre-procedural volumetric data can be used to add  
anatomical information. However, the registration between the 3D roadmap and 
the 2D X-ray data can be compromised by patient respiratory motion. We propose 
a novel method to correct for respiratory motion using real-time image-based 
coronary sinus (CS) catheter tracking. The first step of the proposed technique is 
to use a blob detection method to detect all possible catheter electrodes in the X-
ray data. We then compute a cost function to select one CS catheter from all 
catheter-like objects. For correcting respiratory motion, we apply a low pass filter 
to the 2D motion of the CS catheter and update the 3D roadmap using this filtered 
motion. We tested our CS catheter tracking method on 1048 fluoroscopy frames 
from 15 patients and achieved a success rate of 99.3% and an average 2D tracking 
error of 0.4 mm ± 0.2 mm. We also validated our respiratory motion correction 
strategy by computing the 2D target registration error (TRE) at the pulmonary 
veins and achieved a TRE of 1.6 mm ± 0.9 mm. 

1   Introduction 

Cardiac electrophysiological (EP) procedures are traditionally carried out under X-ray 
fluoroscopic guidance to diagnose and treat cardiac arrhythmias. However, X-ray 
images have poor soft tissue contrast and it is difficult to interpret the anatomical 
context directly from these images. To overcome the lack of soft tissue contrast, a 
three-dimensional (3D) roadmap can be generated from 3D high-resolution computed 
tomography (CT)/ magnetic resonance images (MRI), registered and overlaid in real-
time with X-ray fluoroscopy images [1]. Currently, the 3D roadmap remains static 
and does not move with the patient’s respiratory motion. In some cases, respiratory 
motion can cause a two-dimensional (2D) registration error of over 14 mm [2], which 
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is a significant compromise in the accuracy of guidance. A number of groups have 
previously addressed the issue of respiratory motion correction for cardiac interven-
tions. Motion-compensated navigation for coronary interventions based on magnetic 
tracking was suggested in [3], but it required additional special hardware. Several 
image-based approaches have been developed that use only information from the X-
ray fluoroscopic images themselves. Shechter et al. [4] constructed a model of cardiac 
and respiratory motion of the coronary arteries from biplane contrast-enhanced X-ray 
image sequences. The model was applied by tracking the motion of the diaphragm in 
subsequent (non-enhanced) X-ray images. However, forming the model from X-ray 
images under contrast injection means that it will be constructed from a limited 
amount of data. Furthermore, the diaphragm is not always in the X-ray field of view, 
particularly for obese patients. Brost et al. [5] developed an image-based respiratory 
motion correction method for EP procedures by tracking the 3D position of a lasso 
catheter from biplane X-ray images. Unlike tracking the diaphragm, this method di-
rectly tracks an instrument very close to the target region of the EP procedure. How-
ever, it also has some limitations. Firstly, the lasso catheter is particular for only a 
subset of EP procedures and it does not always remain stationary inside the heart. 
Secondly, the majority of X-ray systems are monoplane systems. Finally, the maxi-
mum frame rate of the lasso catheter tracking was only 3 frames per second and the 
tracking method required manual initialization. 

In this paper, we present a novel method to track the coronary sinus (CS) catheter 
from X-ray images in real-time. The reason we choose the CS catheter is that it is 
almost ubiquitously present during EP procedures. The CS catheter has several elec-
trodes which are highly visible in normal dose and low dose X-ray images. Further-
more, the CS catheter remains in place throughout the procedure, its position is not 
routinely altered and it is normally not close to other catheters. Our technique works 
by first using a fast multi-scale blob detection method to detect all possible electrode-
like objects in the X-ray image. The main novelty of our approach is that we then use 
prior knowledge of the CS catheter geometry to identify a single CS catheter from all 
of these candidate objects. This allows us to quickly and reliably distinguish the CS 
catheter from other catheters and instruments in the X-ray image. Our tracking 
method uses the whole image as a region of interest so that we are able to track the 
CS catheter even in the presence of large sudden motion. Furthermore, the proposed 
method does not require any user interaction. We apply the technique to correct respi-
ratory motion during cardiac EP procedures by applying filtered 2D in-plane transla-
tional motion to the 3D roadmap. 

2   Method 

CS catheters are often used as diagnostic catheters and one of most commonly used 
CS catheters is the 10-electrode catheter. The arrangement of electrodes has two 
variations. One is evenly distributed and the other is paired (figure 1a). The presence 
of 10 electrodes is the unique feature which we use to separate the CS catheter from 
other catheters, instruments and ECG leads. The first step of our proposed method is 
to run a blob detection method to detect all possible electrode-like objects. 
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2.1   Blob Detection 

We use a multi-scale blob detector based on the determinant of the Hessian matrix 
[6]. We consider a continuous function of two variables such that the value of the 
function at ),( yx  is given by ),( yxf . Then the determinant of the Hessian matrix is 
defined as 

  
2

xyyyxx fffyxfH )),((det                           (1) 

where xxf , yyf and xyf are the second-order partial derivates of the function ),( yxf . 

Blobs can be defined as local extrema of the determinant of the Hessian matrix. To 
translate this theory to work with 2D images, we first replace the function ),( yxf  
with discrete image pixel intensities ),( yxI . Then we calculate the derivatives by 
convolving the image with second order Gaussian derivative masks (figure 1b).  

PairedEvenly
teddistribu

(a) (b) (c)  

Fig. 1. a) Two variations of 10 electrode CS catheter. b)  Gaussian derivative masks. c) The 
result from the blob detection method. Red crosses are the positions of electrode-like blobs. 

To introduce a scale factor t, we first introduce the scale-space representation 
);,( tyxL  of the image ),( yxI  by );,(),();,( tyxgyxItyxL ∗= , where * is the convolu-

tion operator and the Gaussian filter );,( tyxg  is defined as tyxe
t
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Here scale factor 2σ=t where σ  is the standard deviation of the Gaussian function. 
Now we can derive the scale-normalized determinant of the Hessian from eq. (1) and 
we get  
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Similar definitions apply for yyL and xyL . These Gaussian derivatives ( xxg , 

yyg and xyg ) are often known as Laplacian of Gaussians (LoG). In practice, we just 

pre-compute the masks of these Gaussian derivatives (figure 1b), convolve with the 
input image and calculate the determinant of the Hessian matrix using eq. (2). Blobs 
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are detected as regional maxima of the determinant of the Hessian matrix and we also 
define the strength of the blob as the normalized value of the determinant of the Hes-
sian matrix.  

Finally, we need to decide the scale factors for detecting all electrodes on the CS 
catheter. As shown in figure 1a, there are only two sizes of electrodes. One is a big 
catheter tip electrode and the others are small electrodes. Therefore, two fixed scale 
factors are sufficient which could lead to a more efficient and robust implementation 
than other automatic scale selection methods. To calculate the scale factor t, we use 

2)3)1(( −= st where s is the size of blob. This equation is motivated by the “ σ3 ” 

( 2σ=t ) rule that 99% of energy of the Gaussian is within three standard deviations 
and was empirically tested for our application. Figure 1c demonstrates the result of 
blob detection in a low-dose X-ray image. The strength of the blob is dependent on 
the blob size. The value of the blob size, s, was set to 6 and 3 pixels for the catheter 
tip electrode and the smaller electrodes, respectively. 

1i
i

(a) (b)

1iVi
iV

 

Fig. 2.  a) Definition and calculation of the deviation angle. b)  The result from the CS catheter 
detection method. Green crosses are the positions of CS catheter electrodes. Red crosses are the 
positions of other catheter electrodes. The size of the red circles represents the strength of the 
blobs. 

2.2   Catheter Detection 

The next step involves deciding which combination of blobs represents the CS cathe-
ter. We select the 50 highest strength blobs from the blob detection method. Each 
blob is connected to its nearest neighbour. Based on the shape model of the 10-
electrode CS catheter we design a cost function to estimate the likelihood of candidate 
catheter-like objects. Catheter-like objects should have a large blob as the catheter tip 
and several smaller blobs after it. As we know there are two variations of the ar-
rangement of electrodes (figure 1a). We designed a unified cost function. The cost 
function consists of two parts. One is the smooth variation of deviation angle between 
two consecutive edges (figure 2a). The other is the smooth variation of the strength 
difference between two consecutive blobs except the catheter tip electrode. We ex-
clude the catheter tip electrode from the calculation of the cost function because the 
strength of the response of the blob detector is dependent on the blob size. Therefore, 
the catheter tip electrode would have a higher weight in the cost function. The cost 
function is defined as follows 
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where θcos  is the mean of cosines of all deviation angles and Blob is the mean of 
blob strengths of the 9 electrodes (excluding the catheter tip electrode). iBlob is nor-

malized to a range of zero to one which is the same value range as iθcos . N is the 

total number of electrodes ( 10=N  in our case). iθcos  can be computed efficiently 

using ⎟
⎠
⎞⎜

⎝
⎛ ⋅•= ++ 11cos iiiii VVVVθ , where • is the dot product and is the vector 

length. iV and 1+iV are defined in figure 2a. 

To reduce the number of catheter candidates, we introduce two constraints to 
quickly remove unwanted candidates. The first constraint is the maximum electrode 
gap. Currently, we define it as twice the length of the maximum distance distMax  

between two neighbouring CS catheter electrodes (we obtained Maxdist by physical 
measurement of a CS catheter). 10-electrode CS catheters have two variations of 
electrode distributions and we choose whichever maximum distance between two 
neighbour electrodes is larger. The second constraint is the minimum deviation angle 
which must be larger than 90 degrees as catheters in human vessels could not have 

sharp turns. So, this condition can be translated into 01 <• +ii VV . The overall algo-

rithm for detecting one 10-electrode CS catheter is presented in Algorithm 1. Figure 
2b gives an example CS catheter detection result in one clinical X-ray image. 

 
Algorithm 1. 10-electrode CS catheter detection Algorithm 
1) Run blob detection method to find 50 highest strength blobs, put them into a 
Global Blob List and select 10 highest strength blobs from the Global Blob List. 
2) For each blob B in 10 highest strength blobs 
3) Remove blob B from Global Blob List. 
4) Create an empty Catheter Blob List and store blob B into the list.  
5) Find the nearest neighbour blob NB from the remaining blobs in the Global Blob 
List. 
6) If distNBB MaxDist *2>>−  Goto Step 2   EndIf 

7) If the number of blobs in Catheter Blob List larger than 2.       

8)      If 01 >• +ii VV ,  Goto Step 2.  EndIf 

9) EndIf    
10) Store NB into Catheter Blob List, Remove NB from Global Blob List and 
B=NB  
11) If the number of blobs in Catheter Blob List less than 10    Goto Step 5. 
12) End of for loop 
13) Compute the cost function using eq. (4) for all candidate catheters and select 
the highest one as the CS Catheter. 
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2.3   Motion Correction 

We apply our CS detection method to correct for respiratory motion in 2D fluoro-
scopic image sequences during cardiac EP procedures. CS catheters have been  
previously used in computing the initial registration for image-guided cardiac EP 
procedures [7] because they are known to be relatively stable in position with respect 
to the anatomy. Similarly, our approach tracks the position of the proximal electrode 
of the 10-electrode CS catheter to use for respiratory motion correction. The reason 
for choosing this electrode (the distal electrode is the catheter tip) is that the proximal 
electrode has less cardiac cycle motion and has lower tracking errors than the distal 
electrode (see section 3.1). For a monoplane X-ray system, we first apply a low pass 
filter to the 2D translational motion of the proximal electrode to reduce cardiac mo-
tion further and then apply the filtered 2D translational motion directly to the 3D 
roadmap.  

3    Results  

We tested the proposed CS catheter tracking method on 1048 clinical X-ray images. 
There were a total of 18 different clinical fluoroscopy sequences which came from 15 
clinical cardiac catheterization cases. 28% of the clinical X-ray images that we tested 
were low dose and contained high frequency noise. 2 clinical cases (136 images) used 
evenly distributed 10-electrode CS catheters and the other 13 cases (912 images) used 
paired 10-electrode CS catheters. Typically, the clinical X-ray images contained one 
CS catheter, one ablation catheter and sometimes one lasso catheter. Some X-ray 
fluoroscopy images, which were acquired during pace-maker implant cases, contained 
ECG electrodes and wires, and also sternal wire loops.  

3.1   Accuracy, Robustness and Efficiency Test 

Table 1. 2D electrodes detection errors in mm (excluding partial failure images and electrode 1 
is the distal electrode) 

Electrode 1 2 3 4 5 6 7 8 9 10 
Low dose images 0.4 0.6 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 
Normal dose images 0.4 0.8 0.3 0.4 0.3 0.3 0.4 0.4 0.3 0.3 

 
To test the accuracy of our method, we asked two clinical experts to manually pick 

the centre of all electrodes of the CS catheter on all 1048 images. Then we calculated 
the 2D distance between the manually defined centres and the centres detected by our 
method for all 10 electrodes. Measurements were made in pixel space and then con-
verted to mm space using the magnification factor available from the DICOM header 
of the X-ray data. Overall, we achieved a 2D detection error of 0.39 mm ± 0.22 mm 
for all electrodes in all images and we obtained a very similar error of 0.36 mm ± 0.21 
mm for low dose X-ray images only. The errors of individual electrodes are given in 
table 1. It is noticeable that electrode No 2 has larger errors than others. This is  
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because the second electrode is very close to the catheter tip (the distal electrode) and 
it could be detected together with the catheter tip as a single large blob.  

Our method is robust in low dose images as the errors in low dose images were 
very similar to the errors in normal dose images. We only observed the partial failure 
of detection in 8 frames of normal dose images because one of electrodes was oc-
cluded by ECG electrodes. We classify a partial failure when the detection method 
correctly detected the CS catheter but any of electrodes had an error of more than 5 
mm. The choice of 5mm is motivated by the size of the smallest target structures for 
EP procedures (the pulmonary veins, approximately 5mm in radius). There were no 
complete failure cases which did not detect the correct CS catheter. The overall suc-
cess rate of detection was 99.3%. 

The major computational load of our method is the blob detection algorithm. We im-
plemented it on the Intel Integrated Performance Primitives Library for fast image con-
volution calculation. Our method currently achieves a frame rate of 21 frames-per-
second using a single-threaded CPU implementation. The performance was evaluated 
on an Intel Core 2 Duo 2.0GHz laptop with an nVidia Quadro FX 350M graphics card. 

3.2   Motion Correction Results 

The intended application of our CS catheter tracking technique is to update the posi-
tion of a 3D roadmap. Therefore, as further validation we computed the target regis-
tration error (TRE) at the pulmonary veins (PVs), which are the main structures of 
interest in many EP procedures. For the cases in which the lasso catheter was used for 
validation of accuracy, it remained stable in one of the pulmonary veins for all the X-
ray frames evaluated. We applied the computed 2D translation determined from the 
CS catheter tracking to the position of the lasso catheter which acts as a surrogate for 
the position of the PVs since it is rigidly placed within these structures during the 
procedure. The TRE was then computed as the distance error between this predicted 
position and the actual position of the lasso catheter in the X-ray data. We calculated 
the TRE at the PVs on 565 fluoro images (7 patients) and achieved a 2D accuracy of 
1.6 mm ± 0.9 mm. The TRE before motion correction was 6.1 ± 1.8 mm. Figure 3b  
 

(a) (b) (c)

LAR

LUP

CS

V

 

Fig. 3. Illustrates an MRI overlay on to x-ray fluoroscopy. The initial registration was done 
using multiple view X-ray acquisitions followed by manual alignment. a) b). Frame of a non-
motion compensated sequence with fluoroscopy overlay. c) Motion compensated fluoroscopy 
overlay.  
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presents an example of a fluoroscopy overlay with respiratory motion correction. In 
the 3D roadmap, LAR is the left atrium roof and LUPV is the left upper pulmonary 
vein. From figure 3a and 3b, there is a noticeable mis-alignment between the 3D 
roadmap and the X-ray angiography, particularly in the area of LAR and LUPV. The 
roadmap and X-ray angiography are well matched and the CS is aligned with the CS 
catheter in figure 3c. 

4   Conclusion and Discussions 

We have developed an accurate and robust method for real-time CS catheter tracking 
in X-ray fluoroscopy images and applied it to correct respiratory motion in X-ray 
fluoroscopy image-guided EP procedures. Our tracking method remains robust and 
accurate even in low dose fluoroscopy images as CS catheter electrodes remain highly 
visible. Because the majority of normal dose images we tested had fast-changing 
background contrast (contrast agent injection), our results showed less tracking errors 
in low dose images than normal dose ones as the accuracy of blob detection is influ-
enced by contrast agent injection. We achieved a sub-millimeter accuracy of our 
method as the average tracking error for all CS catheter electrodes is 0.4 mm and 
maximum error is 0.8 mm. Updating the 3D roadmap by the filtered 2D motion of the 
CS catheter can significantly improve the accuracy of fluoroscopy overlays for car-
diac EP procedures. Our CS catheter tracking method has several advantages. First, it 
is real-time so that as well as being used to detect respiratory motion it could poten-
tially also be applied to the detection of the much faster cardiac cycle motion. Sec-
ondly, it does not require any user interaction and can detect the CS catheter position 
without defining a region of interest in the X-ray image. Finally, it has potential ap-
plication in more types of cardiac catheterization procedure, rather than only for EP 
procedures. Other potential applications of our CS catheter detection method that we 
plan to investigate include gating cardiac and respiratory motion in 3D C-Arm CT 
sequences to improve the quality of the reconstructed 3D volumes. Also, we plan to 
investigate its use for 3D real-time registration between the CS catheter and the main 
branch of the CS geometry in the 3D roadmap. This could lead to a real-time solution 
to the problem of bulk patient motion. Because our CS catheter tracking method is 
based on blob detection, it can be extended to simultaneously track a CS catheter and 
an ablation catheter in real-time. This opens the possibility to design a system to 
automatically tag ablation positions with motion correction in real-time. 

References 

1. Rhode, K.S., Hill, D.L.G., Edwards, P.J., Hipwell, J., Rueckert, D., Sanchez-Ortiz, G., 
Hegde, S., Rahunathan, V., Razavi, R.: Registration and tracking to integrate X-ray and MR 
images in an XMR facility. IEEE Transactions on Medical Imaging 24(11), 810–815 (2003) 

2. King, A.P., Boubertakh, R., Rhode, K.S., Ma, Y.L., Chinchapatnam, P., Gao, G., Tang-
charoen, T., Ginks, M., Cooklin, M., Gill, J.S., Hawkes, D.J., Razavi, R.S., Schaeffter, T.: A 
subject-specific technique for respiratory motion correction in image-guided cardiac cathe-
terisation procedures. Med. Image Anal. 13(3), 419–431 (2009) 



 Real-Time Respiratory Motion Correction for Cardiac Electrophysiology Procedures 399 

 

3. Timinger, H., Krueger, S., Dietmayer, K., Borgert, J.: Motion Compensated Coronary Inter-
ventional Navigation by Means of Diaphragm Tracking and Elastic Motion Models. Phys. 
Med. Biol. 50(3), 491–503 (2005) 

4. Shechter, G., Shechter, B., Resar, J.R., Beyar, R.: Prospective motion correction of X-ray 
images for coronary interventions. IEEE Transactions on Medical Imaging 24(4), 441–450 
(2005) 

5. Brost, A., Liao, R., Hornegger, J., Strobel, N.: 3-D respiratory motion compensation during 
EP procedures by image-based 3-D lasso catheter model generation and tracking. In: Yang, 
G.-Z., Hawkes, D., Rueckert, D., Noble, A., Taylor, C. (eds.) MICCAI 2009. LNCS, 
vol. 5761, pp. 394–401. Springer, Heidelberg (2009) 

6. Tony, L.: Detecting salient blob-like image structures and their scales with a scale-space 
primal sketch: a Method for focus-of-attention. International Journal of Computer Vi-
sion 11(3), 283–318 (1993) 

7. Sra, J., Krum, D., Belanger, B., Vaillant, R.: Registration of three dimensional left atrial 
computed tomographic images with fluoroscopy. Heart Rhythm 2(9), 1020 (2005) 



Accurate Segmentation of the Left Ventricle in
Computed Tomography Images for Local Wall

Thickness Assessment

J. Peters1,�, J. Lessick2, R. Kneser1, I. Wächter2, M. Vembar3,
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Abstract. In recent years, the fully automatic segmentation of the whole

heart from three-dimensional (3D) CT or MR images has become feasible

with mean surface accuracies in the order of 1mm. The assessment of

local myocardial motion and wall thickness for different heart phases

requires highly consistent delineation of the involved surfaces. Papillary

muscles and misleading pericardial structures lead to challenges that are

not easily resolved. This paper presents a framework to train boundary

detection functions to explicitly avoid unwanted structures. A two-pass

deformable adaptation process allows to reduce false boundary detections

in the first pass while detecting most wanted boundaries in a second pass

refinement. Cross-validation tests were performed for 67 cardiac datasets

from 33 patients. Mean surface accuracies for the left ventricular endo-

and epicardium are 0.76mm and 0.68mm, respectively. The percentage

of local outliers with segmentation errors > 2mm is reduced by a factor

of 3 as compared to a previously published approach. Wall thickness

measurements in full 3D demonstrate that artifacts due to irregular endo-

and epicardial contours are drastically reduced.

Keywords: cardiac wall thickness, papillary muscles, boundary detec-

tion, image segmentation, multi-slice computed tomography.

1 Introduction

Fully automatic segmentation of three-dimensional (3D) cardiac images enables
efficient assessment of global and local functional cardiac parameters such as
ejection fraction or wall thickness. Model-based segmentation approaches [1,2,3]
enable full-heart segmentation with surface-to-surface accuracies in the order
of 1mm in both computed tomography (CT) and magnetic resonance (MR)
image volumes (see [4]). Shape-constrained deformable models for whole heart
segmentation have been described in detail in [1]. There, a triangulated mesh
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models the endocardial surfaces of the four cardiac chambers as well as the
left ventricular (LV) epicardium and short trunks of the major vasculature. The
mesh is adapted towards corresponding image boundaries. External image forces
are balanced by internal forces that roughly maintain the model shape. This
approach reaches an average accuracy of 0.82mm on 28 CT datasets. Clinically,
global parameters such as cardiac chamber volumes and myocardial mass are
sufficiently accurate and automation results in appreciable time savings and
excellent reproducibility [5,6,7,8].

To characterize irregularities of the heart motion, a local assessment of wall
motion and wall thickness for different cardiac phases is desirable. For this task,
a highly consistent segmentation of the involved surfaces is needed. For the endo-
cardium, papillary muscles and trabeculations lead to an ambiguity that must be
resolved. To measure blood volume, the segmentation should consistently follow
the bloodpool border. Wall thickness measurements should be based on a convex
hull around the bloodpool that excludes the papillaries from the myocardium.
For the epicardium, it is important to avoid local confusions with the nearby
pericardium or lung transition.

In [9], manual contours from one cardiac phase are propagated to other phases.
Thereby, user-defined deviations between the wanted contours and the visible
bloodpool-papillary transitions are propagated. In [10], a convex hull is estab-
lished around classified LV bloodpool voxels. Similarly, in [11], papillaries and
trabeculations at the endocardium are addressed by post-processing of a model-
based segmentation: If contrast suffices to classify the LV bloodpool voxels near
the initial segmentation, a convex mesh is established around the classified vox-
els. [12] presents a model-based segmentation with locally disabled image forces
near the papillary muscles without contour post-processing.

This paper presents a method to change the boundary detection for model-
based segmentation such that (1) papillaries and trabeculations are excluded
from the myocardium and (2) the epicardial segmentation is no longer misled by
false boundaries. Apart from quantitative improvements, we demonstrate that
obvious errors for local wall thickness estimation are eliminated.

2 Improved Boundary Detection Training

A crucial point for robust and accurate segmentation is the detection of cor-
responding image boundaries for each model surface element. Discriminative
boundary detectors can be trained using the “Simulated Search” described in
detail in [4]. This method evaluates the performance of a set of boundary de-
tection functions on a set of representative images with corresponding reference
segmentations. The set of tested boundary detectors is generated from some
templates with parameters estimated from the training examples. The evalua-
tion metric to rank the proposed detectors simulates the geometric segmentation
errors without shape constraints: For each triangle, boundary detection is per-
formed from systematically modified triangle poses to simulate the mesh adap-
tation. Each detected boundary point is compared to the reference segmentation
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and the geometric distance to the reference surface is averaged over all simulated
mesh states and all training images. Finally, the boundary detector with minimal
simulated root-mean-square (RMS) error is assigned to the triangle.

For the task of accurate LV endo- and epicardium segmentation, two problems
motivate algorithmic extensions of the above optimization metric. First, image
boundaries are missing for some surface regions. Bloodpool boundaries at the
papillaries shall not attract the mesh if a convex hull around the bloodpool
is required. Furthermore, the epicardium often touches the diaphragm and no
epicardial edges are visible there. Second, the epicardium is often parallel to
nearby boundaries such as the pericardium or the lung transition (see Fig. 1).
In all these cases, the image contains boundaries close to the wanted contours.
These, however, shall not be detected.

We can summarize our training requirements: (1) At papillary muscles and
trabeculations, bloodpool contours inside the reference endocardium shall not be
detected. (2) For the epicardium, nearby competing boundaries shall be rejected.
The simulated geometric error alone does not fully address these goals. E.g., a
detector that often locates the weak epicardial transition but sometimes detects
false points or rejects all edges may have a larger error than another detector that
reliably locates the pronounced lung transition if both boundaries are adjacent.
At the papillaries, learning to detect bloodpool contours is evidently good if
geometric proximity is optimized and if no better edges can be found. Rejecting
all edges produces simulated errors equal to the simulated mesh modifications,
which are typically larger than the papillaries.

To include the above explicit goals (1) and (2) into the training, the opti-
mization criterion of the Simulated Search was extended. First, regions contain-
ing unwanted boundaries were explicitly annotated in the image volume (see
Fig. 2). All detected boundaries in these “forbidden” regions that would pull
the mesh towards unwanted boundaries are counted. The resulting percentage p
of “forbidden” detections is linearly combined with the geometric RMS error d
from the standard training procedure to arrive at a new optimization criterion:

Cost(F, i) = (1− α) · d(F, i) + α ·D · p(F, i) (1)

Here, F is the tested boundary detector for the given triangle i. d and p include
all simulated detections in all images. D converts the percentage p into a distance

Fig. 1. Closeup of endo-, epi-, and pericardium. Black outlined arrows indicate the

wanted epicardial boundary. White arrows indicate competing edges (pericardium,

lung, diaphragm). Endo- and epicardial reference segmentations are shown on the right.
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Fig. 2. Masks describing “forbidden” regions for the endocardium (blue, including the

papillaries) and for the epicardium (yellow, covering various false edges; the green mask

covers trabeculations in the right ventricle). Note that the masks do not include the

immediate neighborhood of the reference segmentations.

comparable to typical simulated values of d. α = 0 restores the standard training,
whileα = 1 would focus only on avoiding forbidden edges and ignore the geometric
accuracy of all detected boundaries.

3 Model for Accurate LV Segmentation

3.1 Reference Segmentations and Shape Model

Segmentations of 67 image volumes from 33 patients at different cardiac phases
were carefully inspected and corrected in short and long axis views as well as
in axial, coronal, and sagittal views. For the endocardial contour, a convex hull
tightly enclosing the visible bloodpool was created. In some images, however,
faint contrast and image artifacts made the proper definition of this contour dif-
ficult. Epicardial contours needed corrections where the pericardium or a nearby
transition to the lung or beyond the diaphragm had been segmented. A smoothly
interpolating mesh was used in regions of missing visible edges at the diaphragm.
From the resulting 67 meshes, a new shape model was trained that better rep-
resents the convex shape of the endocardium.

3.2 Segmentation Chain with Two-Pass Deformable Adaptation

We follow the segmentation framework from [1]: The heart is first roughly lo-
calized by a Generalized Hough Transform [13]. The mesh is then adapted to-
wards corresponding image boundaries. First, a global similarity transformation
followed by a piecewise affine transformation initializes the mesh close to the de-
sired boundaries. Finally, the mesh is deformed elastically but image forces are
balanced by shape-preserving forces. For this deformable adaptation, we adopt
a two-pass scheme from [12] that allows to reduce false positive boundary detec-
tions in the first pass while improving true positive detections in the second pass.
In the first pass, the whole heart model is adapted with a search range of 10mm.
Here, boundary detectors trained with large α in (1) can be used to minimize
detection in forbidden regions. The shape model will smoothly interpolate the
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surface across missing boundaries. In the second pass, only LV endo- and epi-
cardial mesh parts are further adapted using a short search range of 2mm. The
mesh can thus adapt to nearby boundaries missed in the first pass. Many forbid-
den edges are beyond the short search range and boundary detectors optimized
for this range with small α can focus on local accuracy.

3.3 Boundary Detection Functions

Our boundary detectors combine edge detection with additional rejection criteria
[1,4]: We either project the image gradient onto the triangle normal (to suppress
edges with false orientation) as in [1,4] or we calculate the difference between
inside and outside gray values (averaged over several points). To reject false
boundaries, one or several local image features are evaluated and compared to
trained acceptance intervals. If any feature value violates its interval, the edge
is rejected. Image features offered to the training covered the gray values on
both sides of the triangle (possibly averaged over several points) and Taylor
coefficients of gray values along the triangle normal direction as in [1,4]. Here,
variances of gray values parallel and normal to the mesh have been added to the
feature set.

3.4 Detector Training and Selection

Using the extended training framework of Sec. 2, we first studied the trade-off
between simulated geometric errors and forbidden boundary detections. Opti-
mizing all {Fi} for increasing α in (1), d increases and p decreases as expected.
Plotting the mesh average of both quantities versus α, p shrinks most rapidly
for small α, while d increases most for large α. Increasing d and shrinking p
may indicate that no edge was detected for some triangles. (This contributes to
d with the simulated displacements.) Under the influence of shape constraints,
local errors may remain small if some neighboring edges are still found. After
model adaptation, we typically find minima at medium values of α for both the
geometric errors and the percentages of triangles ending up in forbidden regions.

To select the best combination of first and second pass boundary detectors,
we decided to train and test endo- and epicardial detectors separately. This has
two advantages: First, it allows to efficiently explore a multitude of training
setups with different image features for boundary rejection since the “problems”
at endo- and epicardium are of different nature. Second, it allows the use of
different values of α for both mesh regions. To select the final boundary detectors
from the different tested training setups, separate shape-constrained endo- and
epicardial models were adapted to all training images in the two-pass scheme.
Amoung several detector combinations with close-to-minimal surface-to-surface
errors the percentage of triangles ending up in forbidden regions was minimized.
This resulted in one detector combination for both the endocardium and the
epicardium. These detectors were finally intergrated into the full heart model.
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4 Results

4.1 Surface-to-Surface Errors

To evaluate the accuracy of the segmentation, we measure constrained surface-
to-surface distances: For each triangle, the distance to the closest surface point
in a corresponding patch of the compared mesh is determined. Corresponding
patches around a triangle are constrained by anatomical labels and limited to
a geodesic radius of 10mm over the mesh surface. The distances are measured
from the automatic mesh to the reference mesh and vice versa since they are not
symmetric. From each distance pair, the maximum is retained. These distances
over all test images and all mesh triangles per anatomical region are finally
evaluated statistically.

Experiments were conducted on 67 retrospectively ECG-gated cardiac multi-
slice CT image volumes from 33 patients (1–3 cardiac phases per patient). These
had been obtained using 16-, 40-, and 64-channel CT scanners (Brilliance CT,
Philips Healthcare, Cleveland, Ohio, USA). Bloodpool contrast and image qual-
ity varied considerably. The mean in-plane voxel resolution was 0.45mm (range
0.30–0.49mm) using a 512×512 matrix. The mean slice thickness was 0.72mm
(range 0.33–2.0mm). Our baseline model had been generated and trained as de-
scribed in [1] on 28 datasets from 13 patients using old reference segmentations
that had not been corrected at the LV endo- and epicardium. For the improved
LV segmentation, we performed a 3-fold cross-validation on all 67 datasets. Here,
a new shape model as well as the LV endo- and epicardial boundary detectors
were trained on 22 patients and the datasets of the left-out 11 patients were
segmented with the resulting cross-validation model. The boundary detectors of
all other structures were taken from the baseline model.

Table 1 summarizes the resulting error statistics for the LV surfaces. Mean
errors for epi- and endocardium are reduced by 30% and 40%, resp. In view of
our carefully corrected reference segmentations we consider this reduction as a
clear improvement. More important, however, is the distribution of errors over
the mesh and across images. Local outliers with large errors exceeding 2mm that
are beyond typical inter-observer uncertainties are reduced by a factor of 3.

Table 1. Mean surface-to-surface errors [in mm] with standard deviations covering

variations both across mesh triangles and across images. The error distribution de-

scribes the percentages [in %] of triangles within the listed error bins [in mm] in all

images (NumTriangles × NumImages data points). The LV epicardium includes the

septal boundary towards the right ventricle.

Baseline model New model

Mean± SDev [0, 1) [1, 2) [2, 3) ≥ 3 Mean± SDev [0, 1) [1, 2) [2, 3) ≥ 3

LV endo 1.26± 1.35 58.5 22.3 8.9 10.2 0.76± 0.88 77.0 16.6 3.6 2.9

LV epi 0.96± 1.02 67.1 21.6 6.8 4.4 0.68± 0.62 79.1 16.9 3.1 1.0
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4.2 Qualitative Results and Wall Thickness Measurements

Fig. 3 shows some segmentation examples illustrating the achieved improvements.
The consistent segmentation of the endocardium and the improvements for the epi-
cardium enable us to measure the LV wall thickness. To account for the bending 3D
geometry of the myocardium towards the apex, we do not measure wall thickness
in short-axial slices. Rather, the normal of the endocardial wall is estimated for
endocardial triangles from a regression plane fitted through the triangle vertices
and their neighbors. We use 1st and 2nd order vertex neighbors for robust direction
estimation. A ray is then cast from the triangle center outwards, and the distance
to the epicardial wall is taken as wall thickness. We restrict our measurements
to the myocardial region assigned to the 17 AHA segments proposed in [14].

1 2 3 4

1 2 3 4

5 6 7 8

5 6 7 8

Fig. 3. Segmentations obtained with the baseline model (rows 1 and 3) and with the

cross-validation models of Sec. 4.1 (rows 2 and 4). The first two examples stem from the

same patient. The first column is at mid-diastole, all other examples are end-systolic.
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Ex. 2 Ex. 4 Ex. 6

Fig. 4. Wall thickness measurements for examples 2, 4, and 6 from Fig. 3. Example 2:

inferior view (color bar 0–28mm). Examples 4 and 6: lateral view (color bar 0–25mm,

all measurements projected onto the mean mesh). Local maxima due to irregular endo-

cardial and epicardial surfaces with the baseline model (top row) are eliminated with

the cross-validation models (bottom).

This region excludes the LV outflow tract towards the aorta and the transition
towards left atrium. Results are shown in Fig. 4.

5 Discussion and Conclusion

The quantitative and qualitative results demonstrate clear improvements of
the LV segmentation. Using the extended optimization criterion of the Simu-
lated Search and carefully corrected reference segmentations, boundary detectors
could be trained that effectively avoid unwanted edges. Locally visible structures
are well segmented in the two-pass adaptation and outliers with large errors are
drastically reduced. The consistent exclusion of papillary muscles from the myo-
cardium and the accurate segmentation of the epicardial surface are the basis
for local wall thickness measurements.
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Abstract. This study investigates regional heart motion abnormality

detection using various classifier features with Shannon’s Differential

Entropy (SDE). Rather than relying on elementary measurements or

a fixed set of moments, the SDE measures global distribution informa-

tion and, as such, has more discriminative power in classifying distri-

butions. Based on functional images, which are subject to noise and

segmentation inaccuracies, heart wall motion analysis is acknowledged

as a difficult problem and, therefore, incorporation of prior knowledge

is desirable to enhance the accuracy. Given noisy data and nonlinear

dynamic model to describe the myocardial motion, unscented Kalman

filter, a recursive nonlinear Bayesian filter, is devised in this study so

as to estimate LV cavity points. Subsequently, a naive Bayes classifier

algorithm is constructed from the SDEs of different features in order

to automatically detect abnormal functional regions of the myocardium.

Using 90×20 segmented LV cavities of short-axis magnetic resonance im-

ages obtained from 30 subjects, the experimental analysis carried over

480 myocardial segments demonstrates that the proposed method per-

form significantly better than other recent methods, and can lead to a

promising diagnostic support tool to assist clinicians.

1 Introduction

Assessment of left ventricular function is of utmost importance in the diagnosis
of coronary heart disease, the leading cause of death worldwide. It primarily re-
lies on the visual analysis and interpretation of wall motion and, thus, subject to
high interobserver variability. Alternatively, computer-aided detection systems
have been attempted in recent years in order to automatically analyze the wall
motion quantitatively [1,2,3], and to classify hearts into normal or abnormal
[4,5,6]. However, in clinical practice, the wall motion is commonly scored by
following a standard issued by American Heart Association (AHA) [7], where
the myocardium is divided into 17 segments. Therefore, regional abnormality
analysis is more desirable for clinical purposes. Existing heart motion regional
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analysis methods are based on, among others, shape models with localized vari-
ations [8], a tensor-based classification to conserve the spatiotemporal structure
of the myocardium deformation [9], a hidden Markov model for local wall mo-
tion classification based on stress echocardiography [10], a pattern recognition
method based on intra-segment correlation [11], and an independent component
analysis classifier to detect and localize abnormally contracting regions [12]. Most
of existing methods either suffer from poor accuracy, use data that are not avail-
able in regular clinical routine, or require extensive user interaction to define
myocardial boundaries.

Nevertheless, automating abnormality analysis would reduce inter- and intra-
observer variability and, therefore, subjectivity in the analysis.However, it requires
precise estimation of the myocardial points. As such, accurate characterization of
dynamic behavior of Left Ventricle (LV) is essential in order to enhance the perfor-
mance of motion estimation. In this connection, linear dynamic models may not be
sufficient to describe the LV dynamics and, therefore, a nonlinear cyclic model is
proposed in this study. The proposed model consists of a time-varying parameter,
angular frequency, to be estimated from the data along with other state elements.
This is achieved by augmenting the angular frequency with other state elements,
and by estimating the augmented state using Unscented Kalman Filter (UKF), a
recursive nonlinear Bayesian filter, given initial LV cavity points and a nonlinear
cyclic model.

Cine Magnetic Resonance (MR) sequences are widely used for cardiac func-
tional analysis, and provide a large number of images1. Therefore, tracking based
on manual delineation of the LV boundary in all these images is prohibitively
time consuming. Alternatively, automating the process can be of great interest
[13,14]. However, it is subject to the difficulties due to the low contrast and pho-
tometric similarities between the connected cardiac regions - for instance, the
papillary muscles within the cavity and myocardial wall have approximately the
same intensity. To tackle the problem of obtaining initial LV segmentations, this
study adopts a non-rigid image registration method that minimizes the sum of
squared intensity differences [15], given an initial segmentation of the first frame.
Rather than using a segmentation algorithm to obtain initial LV cavity points,
using registration is advantageous in our study as it provides the sequence of
corresponding points over time, an essential attribute to analyze wall motion
regionally.

Classification of regional abnormality is a difficult problem due to the similar-
ity between the statistical information associated with normal and abnormal heart
motions. In this study, we investigate the problem with a global measure based on
the Shannon’s Differential Entropy (SDE) of the distributions of normalized radial
distance, radial velocity, segment area and circumferential length of a segment.
Rather than relying on elementary measurements or a fixed set of moments, the
SDE measures global distribution information and, as such, has more discrimina-
tive power in classifying distributions. The individual classification ability of ele-
ments were measured using Receiver Operating Characteristic (ROC) curves with

1 Typically, the number of images per subject is equal to 200.
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the corresponding Area Under the Curves (AUCs), and the Bhattacharyya dis-
tance metric [16]. Subsequently, a naive Bayes classifier algorithm is constructed
from the SDEs of classifier elements with the best performance in order to auto-
matically detect abnormal functional regions of the myocardium.

Using 90 image datasets, each consisting of 20 segmented LV cavities of short-
axis MR functional images obtained from 30 subjects, the proposed method is
quantitatively evaluated by comparison with ground truth classifications by radi-
ologists over 480 myocardial segments. The proposed method performed signifi-
cantly better than other recent methods with an overall classification accuracy of
91.0%, and can lead to a promising diagnostic support tool to assists clinicians.

2 Temporal Smoothing of the Dataset

Dynamic Model for Temporal Periodicity: Let (x, y) be a point on the
boundary of the LV cavity and s = [x̄ x ẋ ȳ y ẏ ω]T be the state vector that
describes the corresponding dynamics. The elements ẋ, x̄, ẏ and ȳ denote, respec-
tively, velocity and the mean position over a cardiac cycle in x and y coordinate
directions, and ω the angular frequency. We assume that the heart motion is
periodic. The discrete-time dynamic model that describes the cyclic motion of
the point is given by

sk+1 = Fksk + vk (1)

where

Fk =

⎡⎣Fcy(k) 0 0
0 Fcy(k) 0
0 0 1

⎤⎦, Fcy(k) =

⎡⎣ 1 0 0
1− cos(ωkT ) cos(ωkT ) 1

ωk
sin(ωkT )

ωk sin(ωkT ) −ωk sin(ωkT ) cos(ωkT )

⎤⎦,
and T is the time interval between two subsequent image frames. The process
noise sequence {vk} is Gaussian with zero-mean and covariance Qk that accom-
modates the unpredictable errors due to modeling uncertainties. The measure-
ment equation is given by

zk = Hksk + ηk (2)

where Hk =
[

0 1 0 0 0 0 0
0 0 0 0 1 0 0

]
, and {ηk} is a zero-mean Gaussian noise sequence

with covariance Rk =
[
r 0
0 r

]
.

Unscented Kalman Filter: The dynamic model in (1) is nonlinear and, there-
fore, we adopt a recursive nonlinear Bayesian filter, the UKF [17], to estimate the
state sk at each time step. The UKF uses unscented transformation, a more di-
rect and explicit mechanism for transforming mean and covariance information,
that addresses the deficiencies of linearization inherent to other adaptive filters
such as Extended Kalman Filter (EKF). UKF propagates the second order prop-
erties of the distribution with only a small amount of statistical information by
choosing sample points deterministically. Therefore, it provides sufficient accu-
racy for nonlinear filtering applications with computational cost of order similar
to the EKF.
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3 Information Theoretic Measures and Classifier

The state estimates from UKF are subsequently processed towards the classi-
fication of normal or abnormal motions. In order to measure the information
associated with regional LV function, the SDEs of a set of classifier elements
were evaluated.

Classifier elements: Let ŝk,i = [ˆ̄xk,i x̂k,i
ˆ̇xk,i ˆ̄yk,i ŷk,i

ˆ̇yk,i ω̂k,i]T be the es-
timated state of ith point by UKF at time step k. Let IN = {1, 2, . . . , N} and
IS = {is, is + 1, . . . , is +Ns− 1} ⊂ IN be the set of points on the LV cavity and
segment S, respectively. The center (cx,k, cy,k) of the LV cavity at time step k
is given by cx,k = 1

N

∑
i∈IN

x̂k,i and cy,k = 1
N

∑
i∈IN

ŷk,i. We propose to use the
following classifier elements.

1. Normalized radial distance

rk,i =

√
(x̂k,i − cx,k)2 + (ŷk,i − cy,k)2

max
i∈IN

√
(x̂k,i − cx,k)2 + (ŷk,i − cy,k)2

∀i ∈ IS (3)

2. Radial velocity

vk,i =
〈

vk,i ·
rk,i

‖rk,i‖

〉
∀i ∈ IS (4)

where vk,i = [ˆ̇xk,i, ˆ̇yk,i]T and rk,i = [x̂k,i − cx,k, ŷk,i − cy,k]T

3. Circumferential length

lk =
is+Ns−2∑

i=is

√
(x̂k,i+1 − x̂k,i)2 + (ŷk,i+1 − ŷk,i)2 (5)

4. Segment area

ak =
1
2

[
(cx,kŷk,is − cy,kx̂k,is) + (x̂k,is+Nscy,k − ŷk,is+Nscx,k)

+
is+Ns−2∑

i=is

(x̂k,iŷk,i+1 − x̂k,i+1ŷk,i)
] (6)

Shannon’s differential entropy and Bayesian classifier: The kernel density
estimate of a classifier element χn ∈ {rk,i, vk,i, lk, ak} is given by

f(ξ) =
∑nχ

n=1K(χn − ξ)
nχ

(7)

where nχ = KNs for χn ∈ {rk,i, vk,i} and nχ = K for χn ∈ {lk, ak} . Typical
choices of K(·) are the Dirac function and the Gaussian kernel. In this study, the
SDE is derived as follows

Sf = −
∫

ξ∈R

∑
K(χn − ξ)

nχ

(
ln
∑

K(χn − ξ)− lnnχ

)
dξ (8)
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It is advantageous to use multiple SDE measures towards the classification as
they measure different information associated with the myocardial function. A
naive Bayesian classifier that provides a quadratic decision boundary is con-
structed from SDEs of classifier elements.

4 Experiments

The data contains 90 short-axis image datasets, each consisting of 20 functional
2D images acquired from 20 normal and 10 abnormal hearts. The data were
acquired on 1.5T MRI scanners with fast imaging employing steady state ac-
quisition (FIESTA) mode. The results of 480 myocardial segments from apical,
mid-cavity and basal frames were compared with ground truth classification of
the cine MRI datasets by radiologists2. The dynamic model and UKF parame-
ters are chosen as q1 = 0.01, q2 = 0.1 q3 = 1 and r = 0.01 to accommodate noise
that account for modeling uncertainties. We used Dirac function for K(·) in the
kernel density estimation.

In Fig. 1, we give a representative sample of the segmentation results for
apical, mid-cavity and basal frames. The frames were automatically segmented
following the standard issued by the AHA [7], given anatomical landmarks3 on
the first frame.

(a) Apical (b) Mid-cavity (c) Basal

Fig. 1. Representative examples of segmented myocardium using the proposed ap-

proach. Apical, mid-cavity and basal frames were segmented, respectively, into 4, 6

and 6 segments following the standard in [7].

We used two criteria to measure the performance of each classifier elements,
namely, the ROC curves with corresponding AUCs, and Bhattacharyya measure
[16] to assess the discriminative power of each classifier elements. Furthermore,
we assessed the performance of the proposed approach via leave-one-subject-out
method.

2 Among the 480 myocardial segments, 389 segments were marked as normal and 91

as abnormal.
3 As suggested by [7], the attachment of the right ventricular wall to the LV is used

to identify and separate the septum from the LV anterior and inferior free walls.
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ROC, AUC and Bhattacharyya measure: The ROC curves for classifier
elements is shown in Fig. 2. The figure shows that SDEs of segment area and
normalized radial distance have better classifying ability than other classifier
elements. The AUCs corresponding to the ROC curves in Fig. 2 are reported in
Table 1. We used the Bhattacharyya distance metric to evaluate the overlap be-
tween the distributions of classifier elements over normal and abnormal motions.
The SDEs of segment area and normalized radial distance yielded the higher B
as reported in Table 1 and, therefore, have the best discriminative ability. This
is consistent with the previous findings based on ROC/AUC evaluations.
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Fig. 2. Receiver operating characteristics of classifier elements. The closer the curve to

the left hand top corner, the better the classification performance.

Table 1. The area under the curve corresponding to Fig. 2 and the Bhattacharyya

distance metric (B) of normal/abnormal distributions. The higher the values the better

the discriminative ability of the classifier.

Bhattacharyya distance
Classifier element AUC (%) metric (B)

SDE of segment area 94.3 0.66
SDE of normalized radial distance 92.1 0.61
SDE of circumferential shrink 89.0 0.53
SDE of radial velocity 85.8 0.48
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Table 2. The percentage of classification accuracy using leaving-one-subject-out

method. The proposed method achieved an overall classification accuracy of 90.8%.

Accuracy (%) Sensitivity (%) Specificity (%)

Apex 92.5 90.0 93.3
Mid-cavity 93.3 93.1 94.1
Base 87.2 100.0 84.9
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Fig. 3. Decision boundary for normal and abnormal regional myocardial functions

using a Bayesian classifier

Classification performance: Table 2 reports the classification performance
of correctly classified hearts using a leaving-one-subject-out method. A naive
Bayes classifier algorithm is constructed from the SDEs of the segment area
and normalized radial distance, the elements with better classifier ability. Fig.
3 shows the quadratic decision boundary for normal/abnormal classification,
where blue circles represent the normal function and red triangles the abnormal.
The overall classification accuracy is equal to 90.8%, with a sensitivity of 94.5%
and specificity of 90.0%. The highest performance was achieved for mid-cavity
frames with average of 93.3% for accuracy, 93.1% for sensitivity and 94.1% for
specificity.

5 Conclusions

We presented a regional heart motion abnormality detection method using the
SDE and UKF. A non-rigid image registration method was adopted to initialize
the LV cavity points, and the results were subsequently processed using UKF,
given a nonlinear dynamic model. The myocardial segments were identified fol-
lowing the standard issued by AHA. The SDE of normalized radial distance,
radial velocity, segment area and circumferential segment length were evaluated
for each myocardial segments and a naive Bayesian classifier is constructed from
the SDEs. The experimental analysis carried over 90×20 segmented LV cavities
of short-axis MR images obtained from 30 subjects demonstrates that the pro-
posed method perform significantly better than other recent methods, and can
lead to a promising diagnostic support tool to assists clinicians.
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Abstract. In vivo imaging of the cardiac 3D fibre architecture is still a

challenge, but it would have many clinical applications, for instance to

better understand pathologies and to follow up remodelling after therapy.

Recently, cardiac MRI enabled the acquisition of Diffusion Tensor images

(DTI) of 2D slices. We propose a method for the complete 3D reconstruc-

tion of cardiac fibre architecture in the left ventricular myocardium from

sparse in vivo DTI slices. This is achieved in two steps. First we map

non-linearly the left ventricular geometry to a truncated ellipsoid. Sec-

ond, we express coordinates and tensor components in Prolate Spheroidal

System, where an anisotropic Gaussian kernel regression interpolation is

performed. The framework is initially applied to a statistical cardiac DTI

atlas in order to estimate the optimal anisotropic bandwidths. Then, it is

applied to in vivo beating heart DTI data sparsely acquired on a healthy

subject. Resulting in vivo tensor field shows good correlation with liter-

ature, especially the elevation (helix) angle transmural variation. To our

knowledge, this is the first reconstruction of in vivo human 3D cardiac

fibre structure. Such approach opens up possibilities in terms of analysis

of the fibre architecture in patients.

1 Introduction

Cardiac fibre architecture has a crucial role in the cardiac function, as it in-
fluences heavily the muscle electrophysiological and mechanical behaviours. For
instance electrical propagation is three times faster in the fibre direction than
in the orthogonal plan [8]. For such reasons its study can have an important
impact on clinical decisions, as several cardiac pathologies – such as myocardial
infarction, cardiomyopathy, hypertension, or valvular heart diseases – involve a
rearrangement of myocardial fibres [16].

Diffusion Tensor MRI (DTI) can depict non-invasively the fibre orientation
distribution of the myocardium [6,14,17]. Moreover, taking into account the full
information given by the tensors gives an insight on the intrinsic laminar sheet

T. Jiang et al. (Eds.): MICCAI 2010, Part I, LNCS 6361, pp. 418–425, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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structure [12]. However, using this technique in-vivo is challenging: complex mo-
tion patterns due to heartbeat creates important distortions of the signal. Fur-
thermore, the muscle tissue has relatively low anisotropy. Recent studies however
raised a new hope [2,5], but the difficulty and sensitivity of these techniques limit
the data that could be acquired in clinical time, resulting in sparsely distributed
acquisitions.

We set up a method to interpolate the in vivo Left Ventricule (LV) sparse ten-
sor data in a shape-adapted curvilinear coordinate system (i.e. Prolate Spheroidal
System, PSS). We explain how we non-linearly register the LV to an ellipsoid to ex-
press a Kernel regression scheme in PSS. Spatial coherence of a statistical cardiac
DTI atlas is used as a prior for our curved interpolation. By mapping back the
resulting tensor information to the LV, we are able to reconstruct the complete
tensor structure of the LV, and compare it with those obtained with Cartesian
interpolation.

2 Curvilinear Interpolation of Tensors

2.1 Truncated Prolate Spheroid 3D Diffeomorphic Mapping

The shape of the LV has been assimilated to a truncated ellipsoid [1,9], on
which we can use the shape adapted curvilinear coordinate system called Prolate
Spheroidal System [15] (PSS). Note that this coordinate system is already used
to describe mechanical behaviour of the heart [11,9].

A 3D binary mask of the left ventricle is manually delineated on a 3D MRI of
the heart, and registered to a 3D synthetic binary mask of a perfect truncated
prolate spheroid (see Fig. 1.c). In order to have an invertible and symmetric
mapping of positions, we chose a symmetric version of the Diffeomorphic Demons
registration algorithm [3]. In addition, an elasticity contraint, as introduced in
[10] has been incorporated to ensure a smooth displacement of the middle of the
ventricle wall. The advantage of this method is that it provides us with smooth
and elastic displacement fields, from the LV to the spheroid and vice versa.

In this setting, any acquired tensor Dx lying within the LV wall is warped us-
ing the forward transformation Φ. We reorient it using the Finite Strain strategy
as it seems well suited to preserve geometric features of cardiac diffusion tensor
fields [12], with the Jacobian of the backward transformation Φ−1.

PSS is well adapted to the LV shape [9] as local coordinates have physiological
meaning (see Fig. 1 (b)): ξ1 is the positive transmural abcissa, ξ2 is the apex-base
abcissa from 0 to π/2, and ξ3 is the circumferential abcissa from 0 to 2π. Thus,
once the tensor data is mapped on the prolate spheroid, we can compute PSS co-
ordinate position vectors (ξ1, ξ2, ξ3) of each measure point, and describe tensors
components in local contravariant basis Bξ = (g1, g2, g3). The transformation
between basis are then written: Dξ = BT

ξ .Φ(Dx).Bξ and Dx = Φ−1(Bξ.Dξ.BT
ξ ).

2.2 Anisotropic Kernel Estimator in Curvilinear Coordinates

Let us consider the situation where we have a set of N known tensors (Dξi)N
1

over the domain of interest Ω′, which is the image of the LV: Ω′ = Φ(Ω).



420 N. Toussaint et al.

Fig. 1. 3D Mapping of a binary mask of the LV (a) to a synthetic prolate spheroid

(b) using adapted symmetric diffeomorphic demons. Transformations Φ and Φ−1 are

smooth and inverse of each other. (b) shows level-sets of PSS coordinates, as well as

the local contravariant basis vectors (g1, g2, g3). (c) demonstrates the quality of the 3D

registration. The LV (blue) is registered towards the synthetic spheroid (green). The

registered LV outline (red) fits with its target with a smooth displacement (grey).

We want to estimate the missing tensor Dξ at position ξ. Assuming that the
tensor field is continuous and relatively homogeneous in the myocardium, we
can claim that Dξ is directly influenced by its neighbours. In this context we use
a Gaussian kernel estimator Kσ of bandwidth σ. The kernel estimate m̂σ(Dξ) is
taken as the Log-Euclidean [4] weighted mean of surrounding tensors, and thus
written:

m̂σ(Dξ) = exp

(∑N
i=1 Kσ(ξ − ξi) log(Dξi)∑N

i=1 Kσ(ξ − ξi)

)
PSS coordinates are highly non-homogeneous, therefore an anisotropic interpo-
lation with respect to each of the coordinates is needed. We thus replace the
scalar σ by a positive definite matrix H . Let X be the position in a given coor-
dinate system as a column vector (X1, X2, X3)T and let dX = (X − Xi). The
kernel becomes [7]:

KH : dX → KH(dX) = det(H)−1K
(√

dXTH−2dX
)

where K is the univariate kernel function (we use Normal Gaussian function).
H is invertible as positive definite. The difficulty remains in the choice over the
matrix H . We follow ideas from Härdle in [7] and define a rule to find optimal
bandwidth Hopt to be used. It consists in a Leave-One-Out approach where we
minimize residual norm (or Least Square LS). In the next section we estimate
appropriate bandwidth matrices, in both PSS and Cartesian coordinate systems,
using a cardiac DTI atlas.

3 Parameter Estimation Using a Cardiac DTI Atlas

In order to estimate the interpolation parameters, we took advantage of a pub-
licly available cardiac DTI atlas of canine hearts [12]. Our study is limited to the
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left ventricle in order to match with the in vivo data studied in the next section.
If we only know partial data (Dξi)N

1 on the atlas, let α be the data coverage ratio
between the known data N and the total number of voxels of the atlas LV M :
α = N/M . To reproduce in-vivo acquisition environment, The atlas is divided
slice by slice in the long axis direction (i.e. imitating sparsely distributed short
axis slices). Normal distribution noise (of variance V = 0.01) was added over
the tensor’s corresponding DWIs. We propose to find the optimal bandwidth
Hopt that minimizes the LS criterion over the entire ventricle domain Ω. We are
looking for a trade-off between fit quality and smoothness, so we minimize the
criterion:

CV (H) =
∑

xj∈Ω

dist
(
Dxj , m̂H(Dxj )

)2
︸ ︷︷ ︸

data fit LS(H)

+λ ·
∑

xj∈Ω

‖ ∇m̂H(Dxj) ‖2︸ ︷︷ ︸
smoothness Reg(H)

where the distance dist is taken in Log-Euclidean metrics, i.e. the Frobenius norm
of the log difference dist(A,B) =‖ log(A) − log(B) ‖. The criterion CV (H) to
be minimized thus includes a scalar λ to control the regularization. We chose to
use a gradient-free multivariate optimization scheme derived from Powell & al.
[13] to minimize CV (H). Furthermore, H was constrained to be diagonal. Note
that optimal bandwidth matrices are different in PSS interpolation (Hp

opt) and
in Cartesian interpolation (Hc

opt).
We ran the minimization process for several values of λ to find a suitable

regularization ratio. Fig. 2.a shows a log-log scatter graph of the regularization
term vs. the data fit term as result of the L-curve in PSS coordinates. We see an
inflexion point of maximal curvature at λopt = 1.5 for a coverage of α = 60%.
We used this value of λ for the remaining of this paper.

The long axis data coverage ratio α has a physical meaning: in practice, a full
coverage of the ventricle is of great difficulty and in vivo data is often limited
to short axis views around the equatorial region. We thus reproduced the opti-
mization experiment varying α. The evolution of CV (Hopt) against α is shown
in Fig. 2.b. At low data coverage the quality of data fit using PSS interpolation
is more than 100% better compared to Cartesian interpolation. Moreover we
achieve a very good fit after 50% of coverage, while it is only above 80% that we
have similar fit with both coordinate systems.

The eigenvalues of Hopt (bandwidths in each axis direction) are of great im-
portance as they will be used as spatial coherence prior for the in vivo study.
They depend on the noise level as well as the data coverage ratio of the ventri-
cle. Fig. 3 summarizes the variation of these optimal bandwidths against the α
ratio, using respectively Cartesian and PSS coordinate systems for interpolation.
As the ventricle is aligned to the z-axis, a decrease of its corresponding Hopt eigen-
value in Cartesian coordinates can be seen (Fig. 3.a). Cartesian bandwidths at
full coverage converge to a value of 0.9 mm. In the PSS coordinate case (3b), op-
timal bandwidths in both g2 and g3 directions are decreasing while the one corre-
sponding to g1 is stable. They converge respectively to 4 % of wall thickness, 3.4
deg. in apex-base direction, and 6.3 deg. in circumferential direction. Now that we
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Fig. 2. (a): L-curve of the regularization parameter λ in the PSS case for a data cover-

age ratio α = 60%. The curve shows an inflexion point at λopt = 1.5. (b): Evolution of

the criterion CV (Hopt), using λ = λopt, against the data coverage ratio α. We compare

the PSS interpolation performance (solid) versus Cartesian interpolation one (dashed).

We see better fit to data in PSS interpolation, especially for low values of α.

Fig. 3. Hopt eigenvalues obtained function of the data coverage α, using Cartesian

interpolation (a), or PSS interpolation (b). While σc
1 and σc

2 (corresponding to x and

y directions) stay stable, σc
3 (z direction) decreases as the long-axis data resolution

raises. Note also the stability of σp
1 which corresponds to the transmural direction.

estimated optimal bandwidth parameters for our curvilinear interpolation, we can
apply this framework to in-vivo data.

4 Application to in-vivo Human Data

Multi-slice cardiac DTI data were acquired on a healthy volunteer using a single-
shot spin echo sequence on a 3T Philips Achieva System (Philips Healthcare, Best,
The Netherlands) with reduced field-of-view excitation and flow compensated dif-
fusion encoding gradients [5]. A total of thirty-one LV short-axis DTI views were
obtained around the equatorial level of the left ventricle. The data was acquired in
seven separate sessions on the same subject, totalling one hour and thirty minutes
of effective scanning. Image acquisition was triggered to peak systole to account
for strain effects and utilise maximum myocardial thickness [5]. To account for
inconsistencies in volunteer and breath-hold positions among the separate scans,
3D misalignment was corrected using the Insight ToolKit (http://www.itk.org).
An additional anatomical 3D dataset was acquired at the same trigger delay (TD
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= 300ms) as the DTI scans. This anatomical dataset was used to define the left
ventricle binary mask to be mapped on the prolate spheroid.

Fig. 4.a shows the input data distribution over the ventricle. Most of the
acquisitions have been done in the equatorial part of the LV, because cardiac
motion (especially rotation) is of less intensity in this region. We applied the
full method detailed above to interpolate tensor data over the entire LV area
both using Cartesian coordinates and PSS coordinates. We used the optimal
bandwidths obtained at the same coverage level in the atlas study. In that sense
we are using the spatial coherence of the atlas as a prior information rather than
the atlas tensor data itself. Fig. 4.b shows the evolution of fit to data over the
number of slices taken into account. The graph demonstrates better performance
of PSS interpolation.

Fig. 4. The in vivo DTI 2D slices were acquired at different occasions (they are not

all parrallel to each other), and registered to the anatomical left ventricle. We show

tensors color-coded by their first eigenvector direction superimposed with the ventricle

outline in (a): The lack of data around the apex is visible. (b) compares performances of

interpolation in Cartesian (dashed) and PSS (solid) case against the number of slices.

The helix angle is the angle that the tensor first eigenvector makes with the
(g1, g3) plane (see Fig. 1). The variation of this angle from endocardium to epi-
cardium is an important characteristic of the cardiac function, clearly seen in the
DTI atlas and crucial in heart modelling. We show in Fig. 5 joint histograms of
the angle against the normalized transmural distance from endocardium to epi-
cardium. The pattern of this variation is reproduced when PSS Coordinates are
used, whereas it is less visible in the Cartesian case. Fig. 5 shows a selected slice
resulting from in vivo DTI data using Cartesian (Fig. 5.a) and PSS (Fig. 5.b).
Tensors are color-coded with the main eigenvector direction. The regularization
follows the ventricle shape in the PSS case and thus shows more plausible fi-
bre directions. Finally we were able to track fibres (Fig. 5.c) from these tensors
using streamline algorithm. The in vivo fibres have a general circumferential
pattern and we can recognize the main helical layers of the endocardium and
the epicardium.
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Fig. 5. Top: Joint histograms of the elevation (or helix) angle and the normalized

transmural distance from endo to epi. (1a) in-vivo interpolated results using Cartesian

coordinates, (1b) in-vivo interpolated results using PSS coordinates, and (1c) as a

reference, the fully sampled LV statistical atlas. The correlation is visible using PSS

coordinates. Bottom: Interpolated DTI slice color coded by eigenvector direction,

using Cartesian Coordinates (2a) and PSS (2b). (2c) is a streamline fibre tractography

result from the PSS interpolated tensor field.

5 Conclusions

In this paper, we demonstrated that shape adapted curvilinear coordinates -
– Prolate Spheroidal – are appropriate for the tensor reconstruction over the
left ventricle wall volume. We set up a mathematical framework for the kernel
regression of tensor data in those coordinates, using anisotropic kernel regres-
sion with an optimised bandwidth matrix. We have shown that the resulting
interpolated tensors better fit the physionomy of the heart. As the left ventricle
has a very characteristic ellipsoidal shape, its fibre architecture (and thus the
underlying tensor field) has an important spatial coherence in PSS coordinates,
whereas it is less sensible in Cartesian coordinates. We have shown that using
the PSS anisotropic spatial coherence of a statistical cardiac DTI atlas as a
prior information for in vivo tensor interpolation and regularization helps us to
reconstruct full tensor information. We applied our method to reconstruct the
fibre architecture of the left ventricle of a healthy volunteer, and, to the best of
our knowledge, it is the first time that the in vivo human 3D structure of the
heart has been reconstructed. The in vivo results show a good correlation with
literature values of ex vivo human studies. We were able to reproduce the typical
pattern of transmural variation of the helix angle. The presented approach opens
up possibilities in terms of analysis of the fibre architecture in patients.



In vivo Human 3D Cardiac DTI Reconstruction 425

References

1. Dieudonne, J.M.: The left ventricle as confocal prolate spheroids. Bulletin of Math-

ematical Biology 31(3), 433–439 (1967)

2. Dou, J., Tseng, W.Y.I., Reese, T.G., Wedeen, V.J.: Combined diffusion and strain

MRI reveals structure and function of human myocardial laminar sheets in vivo.

Magnetic Resonance in Medicine 50, 107–113 (2003)

3. Dru, F., Vercauteren, T.: An ITK implementation of the symmetric log-domain

diffeomorphic demons algorithm. Insight Journal –2009 January - June 2009 (May

2009)

4. Fillard, P., Arsigny, V., Pennec, X., Ayache, N.: Clinical DT-MRI estimation,

smoothing and fiber tracking with log-Euclidean metrics. IEEE Transactions on

Medical Imaging 26(11), 1472–1482 (2007); pMID: 18041263

5. Gamper, U., Boesiger, P., Kozerke, S.: Diffusion imaging of the in vivo heart using

spin echoes - considerations on bulk motion sensitivity. Magnetic Resonance in

Medicine 57, 331–337 (2007)

6. Garrido, L., Wedeen, V.J., Kwong, K.K., Spencer, U.M., Kantor, H.L.: Anisotropy

of water diffusion in the myocardium of the rat. Circulation Research 74, 789–793

(1994)
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Ayache, N.: A computational framework for the statistical analysis of cardiac diffu-

sion tensors: Application to a small database of canine hearts. IEEE Transactions

in Medical Imaging 25(5), 612–625 (2006)

13. Powell, M.J.D.: Developments of newuoa for minimization without derivatives.

Journal of Numerical Analysis, 1–16 (February 2008)

14. Reese, T.G., Weisskoff, R.M., Smith, R.N., Rosen, B.R., Dinsmore, R.E., Wedeen,

V.J.: Imaging myocardial fiber architecture in vivo with magnetic resonance. Mag-

netic Resonance in Medicine 34, 786–791 (1995)

15. Rohmer, D., Gullberg, G.T.: A bloch-torrey equation for diffusion in a deforming

media. Tech. rep., University of California (2006)

16. Sutton, M.G.S.J., Sharpe, N.: Left ventricular remodeling after myocardial infarc-

tion. Circulation: Cardiovascular Imaging 101, 2981–2988 (2000)

17. Tseng, W.Y.I., Wedeen, V.J., Reese, T.G., Smith, R.N., Halpern, E.F.: Diffusion

tensor MRI of myocardial fibers and sheets: Correspondence with visible cut-face

texture. Magnetic Resonance in Medicine 42, 17–31 (2003)



 

T. Jiang et al. (Eds.): MICCAI 2010, Part I, LNCS 6361, pp. 426–434, 2010. 
© Springer-Verlag Berlin Heidelberg 2010 

Physics-Based Modeling of Aortic Wall Motion from 
ECG-Gated 4D Computed Tomography 

Guanglei Xiong1 and Charles A. Taylor2 

1 Biomedical Informatics Program, Stanford University, CA, USA 
2 Departments of Bioengineering and Surgery, Stanford University, CA, USA 

{glxiong,taylorca}@stanford.edu 

Abstract. Recent advances in electrocardiogram (ECG)-gated Computed To-
mography (CT) technology provide 4D (3D+T) information of aortic wall mo-
tion in high spatial and temporal resolution. However, imaging artifacts, e.g. 
noise, partial volume effect, misregistration and/or motion blurring may pre-
clude its usability in many applications where accuracy and reliability are con-
cerns. Although it is possible to find correspondence through tagged MRI or 
echo or image registration, it may be either inconsistent to the physics or diffi-
cult to utilize data from all frames. In this paper, we propose a physics-based 
filtering approach to construct a dynamic model from these 4D images. It in-
cludes a state filter that corrects simulated displacements from an elastic finite 
element model to match observed motion from images. In the meantime, the 
model parameters are refined to improve the model quality by applying a pa-
rameter filter based on ensemble Kalman filtering. We evaluated the perform-
ance of our method on synthetic data where ground-truths are available. Finally, 
we successfully applied the method to a real data set.  

Keywords: physics-based modeling, dynamic model, aorta, wall motion,  
Kalman filtering, 4DCT. 

1   Introduction 

CT angiography (CTA) is now considered as a preferred technique to conventional X-
ray angiogram for assessing of diseases of heart, coronary artery, and thoracic aorta 
[1]. The development of CTA with ECG gating has been driven by imaging of coro-
nary artery but it is also quite beneficial to the imaging of the thoracic aorta [2]. Al-
though the frame rate has not yet reached typical video rates, it is already adequate to 
characterize the aortic wall motion. Visualization using real-time rendering has been 
routinely used to qualitatively examine functional abnormalities of the aorta that are 
not obvious on static images. In contrast, only a limited number of preliminary quanti-
tative studies were carried out in healthy [3] or disease-related cases [4]. 

Although these studies have provided useful insights of aortic wall motion, there are 
several drawbacks that need to be improved, which is the purpose of this paper. First, 
imaging artifacts, such as noise, partial volume effect, misregistration, and/or motion 
blurring, should be explicitly considered since the goal is to quantify the motion. A phys-
ics-based approach may be helpful to overcome the effects of these artifacts, because the 
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motion of the aorta should obey general principles of elasticity. Another advantage of this 
approach is the ability to obtain not only kinematic quantities, e.g. strain, but also the 
dynamic quantities, e.g. stress. Second, all data, both spatial and temporal, should be 
utilized in the analysis. It is beneficial to make use of full volumes of images instead of 
2D slices and all frames in a cycle rather than merely two single systolic and diastolic 
phases. Third, it is helpful to establish correspondences or trajectories of material points 
across all frames. Although tagged MRI or echo or image registration is traditionally 
used for this task, the problems are inconsistency to the physics and difficulty to utilize 
data from all frames. A compromise between the image data and the physical model may 
be necessary in this respect. Lastly, the model could be improved by refining its parame-
ters, i.e. the physical properties of the wall. This step is necessary and important because 
the dynamic model only becomes valid and useful once the parameters are correct. In 
other words, the model with reasonable parameters explains better what are observed in 
images. 

A relevant area is to extract heart (or mostly left ventricle) motion in cardiac-gated 
SPECT or CT. Most recently, temporal relationship is explicitly employed in some 
studies. To ensure robustness of the segmentation, temporally smoothing regulariza-
tion in deformable models is naturally taken into account [5, 6]. However, these mod-
els are empirical, not necessarily physical. Until recently, Moireau et al. proposed 
filtering techniques to estimate heart motion from 4D position measurements [7], 
although results were only demonstrated on synthetic data. In contrast of heart mo-
tion, studies of quantification of thoracic aorta motion are lacking. While pulsation in 
the thoracic aorta is not as large as that in the heart, the cyclic strain is still quite  
significant, up to 10% [8], which may have critical implications on surgical interven-
tions, e.g. endovascular aneurysm repair [4]. Therefore, it is demanding of a  
systematic method to model dynamics of thoracic aorta with the goal of facilitating 
quantification of thoracic aorta motion. Instead of using image registration ap-
proaches, we seek a physics-based filtering approach for this task. 

2   Segmentation and Surface Mesh 

Figure 1 shows a volume-rendered data set of healthy thoracic aorta from ECG-gated 
4D CT, which has 10 frames per cardiac cycle. The size for each frame is 
512×512×482. The spatial resolution is 0.62×0.62×1.0mm. The anatomy of interest 
includes ascending thoracic aorta, aortic arch, descending thoracic aorta, as well as 
three main branches: brachiocephalic trunk, left common carotid artery, and left sub-
clavian artery. Prominent motion artifacts are observed in systolic phase (frames 0-3), 
especially at ascending aorta. 

To consider thoracic aorta itself, we need to separate it from other objects, e.g. 
heart, veins, and bones, etc. We chose to segment thoracic aorta for each frame 
(shown in Fig. 2) by geodesic active contour method [9]. Only the first frame needs to 
be segmented from scratch. Segmentations of the following frames are simpler if 
initialized by that of the last frame noting the difference between neighboring frames 
is relatively small. 
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Fig. 1. A volume-rendered data set of thoracic aorta from ECG-gated 4D CT 

 

Fig. 2. Segmentations of thoracic aorta in Fig. 1 

Since the end-diastole frame (frame 9) often has least noise, the segmentation of 
this frame is used to extract the triangular mesh (nodes: 1622, triangles: 3144) of the 
aorta as in Fig. 3(a), upon which will be solved by the finite element method. The 
mesh is trimmed perpendicular to the vessel wall at all the outlets to get planar 
boundaries. Note we also include three main branches coming off the aorta arch in the 
geometric model in Fig. 3(b). 

 

 
 

Fig. 3. Surface mesh (a) and geometric 
model (b) 

Fig. 4. Overview of our approach (details in 
text) 

3   Methods 

Figure 4 provides a graphical overview of the proposed physics-based filtering ap-
proach to construct a dynamic model of thoracic aorta. The dynamics of the aorta is 
modeled by an operator  (defined in Section 3.1), which relates the displacements  
(named as states in the sequel) at current time step k from k-1, with the mechanical 
properties , i.e. Young’s modulus (named as parameters), and some additive model 
error : 

                                               (1) 

The observed displacements  (named as measurements) are led by an operator , 
from the actual displacements , subject to some measurement error : 
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                                                    (2) 

Our goals are 
(a) To develop a state filter , which corrects simulated displacements with measure-
ments (Section 3.2): 

                                                   (3) 

(b) To develop a parameter filter , which improves the model by refining the pa-
rameters (Section 3.3): 

                                                   (4) 

Note we separate entities hidden from visible in Fig. 4. 

3.1   Physical Model 

The dynamics of aorta is modeled as a linear elastic membrane. The linearity is justi-
fied by the aortic deformation is generally less than 10% and we do not account for 
the visco-elastic effects for our scope. Let  be the 
entire aorta as in Fig. 3(b), where  is the aortic wall and  is the -th boundary 
contour. The displacement  satisfies: 

                                                     (5) 

where the stress  is [10]: 

                        (6) 

where  is Young’s modulus and  is the Poisson’s ratio. The body force  is 
related to driving internal pressure (see Fig. 3(b)) and is periodic.  
Using finite element method [10], equation (5) reduces to the matrix form: 

                                (7) 

where , , and  are mass, damping, and stiffness matrices, respectively. To 
eliminate acceleration  and velocity , we use a two-step Newmark’s time stepping 
method [11] to solve for displacements , which leads to the operator  in  
Eq. (1): 

  
(8) 

where  is the time step size.  and  retain second-order accuracy and 
unconditional stability. For the nodes on the boundary contours , we allow them to 
deform freely in the radial direction, while keeping them fixed longitudinally by 
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specifying Dirichlet boundary condition  for nodes on  in Eq. (5), where 
 is the normal of the corresponding trimming plane. The operator  in Eq. (2) 

reduces to an observation matrix  where its element is 1 if the corresponding dis-
placement component has measurement, otherwise 0. 

3.2   State Filter 

To correct simulated displacements from the physical model, we propose to use a 
state filter to weigh the trajectories between the model and the measurement as shown 
in Fig. 5. Our approach is justified from the fact that either the model or the meas-
urement is not perfect, i.e. subject to errors as discussed before. 

We define a joint strain energy  from both contributions: 

                 (9) 

where  controls the relative weighting between model and measurement. Clearly, 
small  pulls the trajectory closer to the model, while large  favors measurement. The 
matrix  is the covariance of the measurement errors, which is  if they are 
the same. The filtered trajectory is then  that minimizes , i.e. .  
A simple differentiation leads to: 

                      (10) 
 

 

 

Fig. 5. The state filter weighs between model 
and measurement 

Fig. 6. The parameter filter based on ensem-
ble Kalman filtering 

3.3   Parameter Filter 

To improve the physical model, we employ ensemble Kalman filtering [12] (EnKF) to 
refine the parameters. EnKF was originated from well-known Kalman filter but spe-
cialized for solving large problems as in our problem. It approximates probability 
densities of system variables as ensembles, i.e. collections of particles (Fig. 6). 

In our case, an ensemble for displacements or states  and an 
ensemble for parameters  are defined, where  is the number of 
particles. In general,  should be large enough to represent the underlying distribu-
tion. We choose   considering the computational cost. Also by subtracting the 
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Fig. 7. Division of the geometric 
model. Each region has a different 
Young’s modulus 

means, we have the state and parameter perturbations:  and 

, where  is a matrix with all elements equal to . The 
measurement ensemble is , where each particle  is 
generated by perturbing random variables  sampled from the distribution of meas-
urement error . Using the Kalman gain 

 
                     

(11) 

The refined parameter ensemble can be written as 

                                          (12) 

Finally, the filtered parameter  is the ensemble mean of . The uncertainty of  can 

be estimated by calculating the ensemble variance of . The uncertainty generally 
decreases after applying the parameter filter as in Fig. 6. 

4   Results 

4.1   Synthetic Data 

The geometric model was divided into 8 re-
gions, 5 of which are on the aortic wall. Each 
region was assigned different Young’s 
modulus as shown in Fig.7. The synthetic data 
were generated with this set of parameters by 
simulating the dynamics using Eq. (8). The 
time step size is 1/200 of the cardiac cycle, 
which is 1.0 s. The model and measurement 
errors are Gaussian with standard deviations 
0.4 mm and 0.5 mm, respectively.  

The state filter was applied to correct the 
displacements using measurement. Note the measured displacements were subject to 
measurement error and the true displacements were blinded to the filter. Figure 8 
presents the mean distances from the filtered model to the true model and the effects 
of different weighting . The distance for the non-filtered model is served as the base-
line. As  increases, the filtered model gets closer to the true model. But it cannot 
coincide with the true model considering the measurement error. The distance be-
comes flat after a short period. 

Next, we consider refine the parameters for 5 regions on the aortic wall. The pa-
rameter ensembles were assigned by randomly sampling from a uniform distribution 
with minimum 0.5×106 and maximum 2.0×106. The parameter filter was applied while 
using state filter with . This weighting was selected due to the fact that we need 
to leave enough differences between simulated displacements and measurements in Eq. 
(12) to update parameters while correcting the displacement. This is justified because 
the parameter refinement will make the model trajectory closer to the measurement.  
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Fig. 8. Mean distance of the filtered model 
to the true model 

Fig. 9. Parameter refinement on synthetic 
data 

Figure 9 shows the parameter refinement process. We can see that the parameter filter 
was very efficient to push the parameters to correct values, in less than 1/5 of the car-
diac cycle. 

4.2   Real Data 

We consider the real data in Fig. 1. Results with and without the state filter are shown 
in Fig. 10. The non-filtered result is just from the segmentation where we notice the 
irregular trajectory of mesh nodes. For the filtered case, the model and measurement  
 

 

 

Fig. 10. Results on real data without state filter (top) and with state filter (bottom) 

 

Fig. 11. Parameter refinement on real data 
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errors are set to be 0.1 mm and 0.5 mm. The weighting  is . After the state filter, 
the trajectories are much smoother. More results with other weightings are provided 
in supplementary materials. Next, parameter was refined (as shown in Fig. 11) using 
the proposed parameter filter with the same divisions of the geometric model in  
Fig. 7. We arrive at a set of meaningful parameters: “distal is stiffer than proximal”. 

5   Discussion and Future Work 

We have proposed physics-based filtering techniques that can be used to model the 
dynamics of thoracic aorta from ECG-gated 4D CT data. The proposed approach 
features physical model of thoracic aorta, a state filter to correct simulated displace-
ments, and a parameter filter to refine the model parameters. We have tested our 
method on the synthetic data where the ground truth is available and successfully 
applied it to a real data set with no known parameters. Our results demonstrate that 
the approach may be useful to obtain subject-specific kinematic information from 4D 
CT and to quantify the dynamics of the thoracic aorta. We believe it is generalizable 
to other situation involved in 4D data. 

In the future, we will apply the method to more real data sets, especially to some 
diseased cases, e.g. aneurysms where the wall stiffens. In addition, since we are using 
a temporally varying but spatially uniform pressure internal to the aortic wall, minor 
pressure loss and shear force are not currently taken into account. A possibility is to 
substitute a more sophisticated model of fluid structure interaction. However, this 
approach needs to be justified since the computational cost dramatically increases and 
may make parameter filtering intractable in practice. Finally, the parameters obtained 
on the real data need to be validated before becoming more physically meaningful. 
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Abstract. Automatic segmentation of cardiac MRI is an important but

challenging task in clinical study of cardiac morphology. Recently, fusing

segmentations from multiple classifiers has been shown to achieve more

accurate results than a single classifier. In this work, we propose a new

strategy, MUltiple Path Propagation and Segmentation (MUPPS), in

contrast with the currently widely used multi-atlas propagation and seg-

mentation (MAPS) scheme. We showed that MUPPS outperformed the

standard MAPS in the experiment using twenty-one in vivo cardiac MR

images. Furthermore, we studied and compared different path selection

strategies for the MUPPS, to pursue an efficient implementation of the

segmentation framework. We showed that the path ranking scheme using

the image similarity after an affine registration converged faster and only

needed eleven classifiers from the atlas repository. The fusion of eleven

propagation results using the proposed path ranking scheme achieved a

mean Dice score of 0.911 in the whole heart segmentation and the highest

gain of accuracy was obtained from myocardium segmentation.

1 Introduction

Magnetic resonance imaging (MRI) has become a routine modality for the de-
termination of patient cardiac morphology. The extraction of this morphological
information can be important for the development of new clinical applications as
well as the planning and guidance of cardiac interventional procedures. Manual
delineation is labor intensive and subject to inter- and intra-observer variability.
Therefore, it is highly desirable to develop an automatic technique for whole
heart segmentation of cardiac magnetic resonance (MR) images. However, au-
tomating this process is complicated by the limited quality of acquired images
and large shape variation of the heart between subjects.

Many works have shown the applicability of registration-based atlas propa-
gation for the automatic segmentation, particularly in brain MR segmentation,

� This work has been founded by EPSRC grant EP/H02025X/1.
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where the multi-atlas propagation and segmentation (MAPS) has gained its wide
popularity in recent years [1,2,3,4,5]. In MAPS, each atlas is a combination of
an intensity image and a label image. The intensity image is used for the reg-
istration process to map the space of the atlas to the unseen image, while the
label image contains the segmentation information for propagation to the unseen
image. The label image can also have prior knowledge such as the shape of the
heart to assist the registration process [6].

In MAPS, good quality images, such as MR data with high signal-to-noise
ratios and minimal artifacts, are selected as atlases for propagation to maximize
the registration accuracy [2,3,4,5]. However, clinical cardiac MR images often
contain strong artifacts, in particular the high resolution volumetric data, due
to the effects from complex heart motions and long acquisition. Therefore, the
registration of these images may have large errors or even fail. Furthermore, con-
structing an atlas with good image quality may need a large amount of training
data and may be practically expensive in terms of manual image processing and
data acquisition. Therefore, in this work we propose to build a good quality
atlas from limited quality images and use the MUltiple Path Propagation and
Segmentation (MUPPS) strategy to achieve a result of multiple classifiers.

In MUPPS, the propagation of an atlas to unseen image can be done through
a number of different paths to resemble the multiple classifier strategy. A set
of propagation results are then available for fusion using the available meth-
ods. However, the number of available paths from the training subjects can be
large, leading to the problem of scale. Three path selection strategies are hence
investigated and an efficient method is proposed.

The main contribution of this work includes: (1) propose MUPPS and demon-
strate its superiority over standard MAPS; (2) investigate propagation path se-
lection and the effect on accuracy and efficiency.

2 Data and Method

2.1 Data

The cardiac MRI sequence used in the experiment was the balanced steady state
free precession (b-SSFP) for whole heart imaging, at the end diastolic phase.
The sequence was implemented on a 1.5T clinical scanner (Philips Healthcare,
Best, The Netherlands) equipped with 32 independent receive channels. A fat
saturation and T2 preparation pulses were used to null fat and to increase the
contrast between blood and cardiac muscle. A free breathing scan was realized
by enabling one navigator beam before data acquisition for each cardiac phase.

A test dataset of twenty-one cardiac MR volumes, all with voxel size 2×2×2
(mm), was used in our experiments. The blood cavities of the four chambers
and the myocardium of the left ventricle of all the images in the test set were
separately segmented as gold standard for accuracy assessment. In addition, the
pulmonary artery, ascending aorta and aortic arch, and descending aorta were
also separately delineated for the atlas construction registration. They were done
by fitting a deformable mesh model [7] with manual corrections. The manual
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Fig. 1. Left: an MR image. Middle: the corresponding label image of the MR image.

Right: an average intensity image.
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Fig. 2. The two propagation and segmentation schemes: {MRi} are the MR images

of each subject and {Li} are the corresponding label images, U indicates the unseen

image, and {Si} are the resultant propagation segmentations; A and L are the atlas

intensity image and corresponding label image, {Pi} and {Ti} are the propagation

paths and corresponding transformations.

segmentation was completed with the agreement by at least one cardiologist.
Fig. 1 (left and middle) shows an MR image and its segmentation label image.

2.2 MUltiple Path Propagation and Segmentation (MUPPS)

In MAPS, different segmentations are obtained by registering the MR images,
{MRi}, in the atlas repository to the unseen image and propagating the cor-
responding labels, {Li}, as Fig. 2 (left) shows. The clinical cardiac MR images
often contain strong artifacts which may lead to large errors or even failures in
the propagation registration. Therefore, we propose to construct a common atlas,
consisting of an average intensity image A and the corresponding label image
L, and register it to the unseen image though multiple paths to obtain multiple
segmentations for label fusion, as Fig. 2 (right) illustrates.

The average intensity image A is computed from the set of training data,
{MRi}, by transforming all of them into a user-defined common space and aver-
aging the intensity values [6]. These transformations, {Ti}, are computed from
the registration of their corresponding binary label images {Li} and L, using the
following three registration steps [6]: global affine registration, locally affine reg-
istration method (LARM) [8], and the fluid registration. The resultant average
intensity image has better image quality, such as high signal and contrast-to-
noise ratio and minimal artifacts, than the original atlas images in MAPS, and
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the propagation registration using A is expected to achieve better results for
segmentation. Fig. 1 (right) shows an example of A.

The paths in MUPPS are defined by {Ti}. For each path, we replace the
original atlas images in MAPS, MRi and Li, by the images Ti(A) and Ti(L),
transformed from A and L using Ti, for the propagation registration. This is
equivalent to register A to the unseen image via the different paths in the shape
manifold [9] defined by the spaces of {MRi}, and hence the multiple path prop-
agation and segmentation.

2.3 Registration and Path Ranking

Two registration procedures are used in MUPPS: propagation registration and
selection registration.

Propagation registration is used to register Ti(A) in MUPPS or MRi in
MAPS to the unseen image to achieve the segmentation. This process includes
three steps [6]: the global affine registration, LARM using the local regions de-
fined by the labels in the segmentation, and the FFD registration.

Selection registration is used to register the unseen image to the atlas in-
tensity image and then compute the similarity between them to rank the path
or atlas for propagation selection. In the multiple classifier strategy, the number
of available atlases is normally greater than that of atlases needed to achieve the
best result [3]. Therefore, the selection registration is also required to be compu-
tationally efficient compared to the propagation registration. Three registration
schemes will be investigated in this work:
– the affine registration, referred to as After affine;
– the affine plus LARM registration, referred to as After LARM ;
– the registration using global affine, LARM, and FFD registration, referred

to as After nonrigid.
Path or atlas ranks are then calculated using the similarity values of the regis-
tered atlas intensity image and unseen image. We assess the similarity using the
normalized mutual information (NMI) [10] with a mask on the interested region,
similar to the work for brain MR MAPS [3]. The mask region is the endo- and
epi-cardial surfaces of the transformed atlas label image and with an operation
of morphological dilation of 5 mm.

2.4 Fusion and Accuracy Assessment

We evaluate three fusion strategies in MUPPS: the ‘vote rule’ [2], referred to as
VOTE, shape-based average (SBA) [11], and the simultaneous truth and per-
formance level estimation (STAPLE) [12]. The accuracy of segmentation results
are assessed using Dice coefficient ( 2|Vs∩Vg|

|Vs|+|Vg|) [13] between the segmentation and
gold standard. The Dice score is calculated on the blood pool of the left ventricle
(LV), left atrium (LA), right ventricle (RV), right atrium (RA), and myocardium
(MYO). The mean of the volume size adjusted Dice of the five local regions is
computed as the error of whole heart (Whole):

MeanDice =
2
∑5

i=1 |Vsi ∩ Vgi |∑5
i=1(|Vsi |+ |Vgi |)

. (1)
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We compare the mean Dice scores of MUPPS and MAPS using the two tailed,
paired t-test.

3 Results and Discussions

MAPS vs MUPPS. Fig. 3 and Table 1 present the results of the standard
MAPS, using the MR image of each subject as the atlas intensity image, and the
proposed MUPPS, using the transformed mean atlas intensity image through
different paths. In both schemes, we employed the leave-one-out to test the
segmentation propagation, resulting in 420 cases in total for each scheme. Fig. 3
(left) presents the mean Dice scores of the two segmentation schemes. The mean
Dice score of MUPPS was 0.059 (P< 0.001 and 95% confidence interval [0.0564,
0.0630]) greater than that of MAPS. Fig. 3 (right) gives the mean Dice scores of
the VOTE fusion results. Both MAPS and MUPPS improved the accuracy after
using the fusion. However, the best accuracy of MAPS was lower than that of
MUPPS. The results of each local regions are provided in Table 1.

Path selection. Fig. 4 plots the mean Dice scores of the VOTE, STAPLE, SBA
fusion results of MUPPS using the three different registration schemes for path
ranking: the After affine, After LARM, and After nonrigid. All the three fusion
methods agreed that the path selection strategy using the After affine was better
than the other two. The best results of the After affine scheme were achieved
when using the best 11-13 ranked paths for propagation and segmentation, while
the other two both needed more, about 20, cases. Hence, we needed Nsr, which
was 20 in our experiment, affine registration for path selection and ranking and
11-13 propagation registration to achieve the best result using the After affine.
Also, affine registration was the fast one among the three selection registration
schemes. It could be achieved within one minute while the nonrigid registration,
LARM plus FFDs, might need over one hour in our experiment.

It may seem counterintuitive that the After affine performed better than
the After nonrigid, as the image similarity after nonrigid registration should be
more accurate in evaluating the segmentation accuracy and thus in ranking the
paths. This could be an inconclusive result from the specific test dataset, as
the difference between the After nonrigid and the other two on 11-13 of Fig. 3
(right) was small. This could also be the indication that the “good” segmen-
tations ranked by After nonrigid might tend to have similar bias, resulting in
the gain of accuracy by fusing them not being significant, compared to the fu-
sion results of “bad” segmentations which nevertheless have unrelated random
errors.

Accuracy of MUPPS. Fig. 5 and Table 1 provide the mean Dice scores
of local regions and the whole heart. The VOTEU , STAPLEU , and SBAU in
Table 1 are the fusion results of MUPPS using the After affine registration to
select eleven highest ranked paths for propagation. The accuracy improvement
using fusion was evident, as all the three fusion techniques gained at least 0.016,
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Fig. 3. Left: Box-and-Whisker diagram of the Dice scores using MAPS and MUPPS.

Right: the Dice scores from the VOTE fusion results of them. Note that the difference

of MAPS and MUPPS in local regions and the fusion results using STAPLE and SBA

are almost identical to the results presented here.

Table 1. The mean Dice score of segmentation using standard MAPS and its best

fusion results VOTEA, and using MUPPS and the best fusion results, VOTEU ,

STAPLEU , and SBAU . Note that the fusion results of MAPS using STAPLE and

SBA are almost identical to VOTEA.

Dice Whole MYO LV LA RV RA

MAPS .836±.103 .722±.116 .879±.114 .788±.084 .852±.075 .783±.105
MUPPS .895±.019 .836±.027 .940±.016 .869±.028 .915±.024 .871±.050

VOTEA .905±.018 .858±.025 .946±.016 .881±.034 .921±.021 .879±.041
VOTEU .911±.017 .866±.026 .949±.014 .883±.025 .930±.023 .892±.041
STAPLEU .911±.017 .866±.025 .949±.014 .880±.026 .930±.021 .888±.044
SBAU .912±.016 .887±.025 .949±.014 .883±.026 .930±.021 .891±.038

about one standard deviation, in Whole category. The gains in local regions were
different. The myocardium, which resembles a thin cup-shaped sheet and nor-
mally reports a worst segmentation result in the five regions, achieved the most
significant improvement, about 0.03 after using the fusion. By contrast, the left
ventricle had the least improvement, less 0.01, and other categories had less than
0.02. We therefore conclude that it can be more beneficial to use MUPPS and
fusion techniques in the segmentation of thin, sheet-shaped objects where one
propagation path tends to have certain random errors in the result. Note that
the conclusion from the surface distance as error measure was similar, as the
mean root mean squared surface distance of MUPPS without fusion, and the
fusion results using VOTE, STAPLE, and SBA were 1.29±0.319, 1.13±0.275,
1.25±0.346, and 1.13 ± 0.248 (mm), respectively. Only that STAPLE fusion
seemed to be disfavored in this error measure.
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Fig. 5. The mean Dice scores of MUPPS for whole heart and each local region seg-

mentation using the After affine path selection

4 Conclusion

In this paper, we propose a new multi-classifier method, the MUltiple Path
Propagation and Segmentation (MUPPS), for the whole heart segmentation of
cardiac MRI. We showed that MUPPS achieved better mean Dice scores than
the standard MAPS, 0.895 VS 0.836 before the fusion and 0.911 VS 0.905 after
the fusion. To minimize the number of propagation paths in MUPPS for a seg-
mentation case, we studied three path ranking schemes. The best scheme was
to rank the path using the image similarity of the transformed atlas and un-
seen image after an affine registration. The segmentation framework of MUPPS
achieved 0.911± 0.016 mean Dice score, a 0.015 gain of accuracy, using eleven
highest ranked paths and the fusion techniques. In particular for the segmenta-
tion of myocardium, a gain of 0.03 was reported. The whole heart segmentation
error of RMS surface distance was 1.13±0.248 (mm).

Note that the shape manifold in MUPPS is different from the linear space
formed from the principal components in the statistical shape model [14]. Also,
it only needs about 10 images to construct A with good quality [6]. Hence, for a
new image MRn+1, only one off-line registration is needed to compute the new
path Tn+1 and no reconstruction of A is required.
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A potential advantage of MUPPS is to further discretize the shape manifold to
increase the number of searching paths such as these between two existing paths
Ti and Tj . Furthermore, we used a mask on the whole heart for the path ranking.
It may be more accurate to rank the path based on the similarity within certain
local region such as for the myocardium. The segmentation of the whole heart
can then be considered as several segmentations of a number of local regions
and different rankings can be used for different regions [5]. Finally, the results
of MUPPS contain a set of deformation fields which are the transformations
between the atlas and unseen image plus certain random errors. By averaging
these fields, we should obtain a better estimation of the registration ground truth
for the applications where the spatial mapping is of the interest. We will address
these in future work.
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Abstract. Accurate quantification of the morphology of vessels is

important for diagnosis and treatment of cardiovascular diseases. We

introduce a new approach for the quantification of the aortic arch mor-

phology that combines 3D model-based segmentation with elastic image

registration. The performance of the approach has been evaluated using

3D synthetic images and clinically relevant 3D CTA images including

pathologies. We also performed a comparison with a previous approach.

1 Introduction

Diseases of the aortic arch are a major cause of death in the western world and
can be diagnosed using, for example, computed tomography angiography (CTA),
and treated by minimally-invasive placement using an endovascular graft. For
this task, individual morphological parameters such as the centerline position
and the vessel diameters have to be quantified. The geometry of the aortic
arch can be automatically determined from radiological images by segmenta-
tion approaches. A wide spectrum of different approaches exists, for example,
approaches based on differential measures, deformable models, or parametric in-
tensity models. Alternatively, segmentation may also be achieved by registration,
where an atlas or a model is registered with an image of a patient (e.g., [2,3]).

In recent years, increased attention has been paid to combined approaches for
vessel analysis that integrate both segmentation and registration (e.g., [1,4,5,8]).
Existing approaches can be classified according to the transformation model
(e.g., rigid, affine, elastic), the type of information used for registration (e.g.,
point sets, surfaces, intensities), and whether prior information is employed
(e.g., an atlas or a template image). Most approaches use rigid transformation
models (e.g., [1]), or splines on a regular grid such as B-Splines (e.g., [4]) and
Cardinal-Splines (e.g., [5]). In addition, registration is performed based on, for in-
stance, surfaces (e.g., [5]), point sets (e.g., [8]), centerlines (e.g., [1]), or binarized
image volumes (e.g., [4]). Thus, the image intensities are not directly exploited.
Moreover, none of the combined approaches uses an incremental tracking scheme
or employs a parametric intensity model for vessel segmentation.
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In this contribution, we introduce a novel approach for the quantification of
the aortic arch morphology from 3D tomographic images. Our approach com-
bines 3D fitting of a parametric intensity model with intensity-based elastic
image registration. The image intensities are exploited directly, thus the full
intensity information is incorporated. In comparison to a pure model fitting ap-
proach (e.g., [6]), the combined approach can cope with a larger spectrum of ves-
sel shapes and even with shapes that deviate significantly from the model used
for segmentation. At the same time, our approach is constrained to meaning-
ful shapes by employing a physically-based deformation model for registration.
Moreover, our approach can cope with very different shapes of vessel centerlines
since an incremental tracking scheme is used. In contrast to atlas- or model-based
segmentation (e.g., [2,3]), our approach does not require a prior segmentation.
Instead, the intensity template is automatically generated by model-based seg-
mentation. We have successfully applied our approach to 3D synthetic images
and clinically relevant 3D CTA images, and the performance has been evaluated.

2 Model-Based Segmentation and Elastic Registration

Our approach for the segmentation of vessels in 3D tomographic images combines
model-based segmentation with elastic image registration. The approach is based
on an energy-minimizing functional Jk corresponding to a vessel segment k:

Jk(pk,uk) = JM (gM , groi
I,k,pk) + JR(groi

I,k, g
roi
M,k,uk) (1)

The first term JM denotes an intensity similarity measure between a 3D cylin-
drical intensity model gM with parameters pk and the intensities groi

I,k within
a region-of-interest (ROI) of a 3D tomographic image gI . The second term JR

denotes an energy-minimizing functional for elastic registration of groi
I,k with an

image groi
M,k generated from the 3D intensity model gM . The result of elastic

registration is described by the deformation field uk. By minimizing the overall
functional Jk, the segmentation result from 3D model fitting is refined using
elastic image registration, while at the same time the registration result is used
to improve 3D model fitting. For segmentation of an entire vessel such as the
aortic arch, we incrementally minimize Jk along the vessel using a tracking ap-
proach based on a Kalman filter assuming a linear motion model. Typically, a
segmentation result of the aorta consists of several hundreds overlapping vessel
segments. Branches can be detected based on a connected components analysis.

The 3D parametric intensity model used in JM represents an ideal sharp
3D cylinder convolved with a 3D Gaussian. The model includes parameters for
the width R of the tubular structure and the image blur σ, and is well-suited to
describe the plateau-like intensity structure of thick vessels such as the aorta:

gCyl(x, R, σ) = Φ

(
c2 − 1
c1

+ c1

)
, c1 =

2
3
σ

√
σ2 + r2

2σ2 + r2
, c2 = 3

√
R2

2σ2 + r2
(2)

where Φ(x) =
∫ x

−∞(2π)−1/2e−ξ2/2dξ denotes the Gaussian error function, x =
(x, y, z)T , and r =

√
x2 + y2. The complete model also incorporates intensity
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(a) (b) (c) (d)

Fig. 1. (a) Cross-section of a 3D CTA image of an aorta and overlaid result of model-

based segmentation (black) and combined model-based segmentation and elastic regis-

tration (white). (b) Segmentation result of the 2D combined approach for a 3D synthetic

image of a twisted torus. (c) Segmentation result of the 2D combined approach for a

3D CTA image. (d) Computed vessel contours using the model-based approach (black)

and the 2D combined approach (white) for a section of a 3D CTA image.

levels a0 (surrounding tissue) and a1 (vessel) as well as a 3D rigid transform R
with rotation α = (α, β, γ)T and translation x0 = (x0, y0, z0)T , which yields

gM (x,p) = a0 + (a1 − a0) gCyl(R(x,α,x0), R, σ) (3)

with 10 parameters p = (R, a0, a1, σ, α, β, γ, x0, y0, z0)T [6].
The cylindrical model gM can accurately represent a vessel segment if the

vessel has circular cross-sections. However, the model may be inaccurate in the
case of non-circular cross-sections (e.g., Fig. 1a, black contour). To improve the
accuracy between the model and the true vessel shape in this case, we suggest
using elastic registration of an image groi

M,k generated from the 3D intensity model
gM with a ROI of the original image groi

I,k. The result of elastic registration is a
deformation field uk which can be used to compute a refined vessel contour and
centerline position (e.g., Fig. 1a, white contour). To limit the final segmentation
result in (1) to physically meaningful shapes, the deformations uk are computed
based on Gaussian elastic body splines (e.g., [7]).

2.1 Optimization of the Energy-Minimizing Functional Jk

The functional in (1) is optimized by an iterative scheme which alternatingly
minimizes JM and JR for each vessel segment k to obtain estimates for the
model parameters pk and the deformation field uk (see Fig. 2). For a vessel
segment k, we estimate pk by least-squares model fitting of gM to the image
intensities groi

I,k by minimizing

JM (pk) =
∑

x∈groi
I,k

(
gM (x,pk)− groi

I,k(x)
)2

(4)

using the method of Levenberg-Marquardt. To compute the deformation field
uk, we generate an image groi

M,k from the fitted intensity model gM and perform
intensity-based registration with groi

I,k by minimizing
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Fig. 2. Incremental combined vessel segmentation approach

JR(uk) = JData,I(groi
I,k, g

roi
M,k,u

I
k) + λIJI(uk,uI

k) + λEJElastic(uk) (5)

where λI and λE are scalar weights. We use λE = 0.1 while λI is estimated au-
tomatically. The first term JData,I describes the intensity-based similarity mea-
sure between groi

I,k and groi
M,k. Since gM incorporates intensity levels a0 and a1,

minimization of JData,I can be considered a monomodal registration problem.
Therefore, we use the sum-of-squared intensity differences for JData,I (cf. (4)).
With the second term JI , the intensity-based deformation field uI

k is coupled
with the final deformation field uk using a weighted Euclidean distance. The
third term JElastic represents the regularization of the deformation field accord-
ing to the Navier equation of linear elasticity. Optimization of JR is performed
alternatingly w.r.t. uI

k and uk. Note that the functional (5) has been formulated
such that for the minimization of λIJI + λEJElastic w.r.t. uk an analytic solu-
tion can be derived [7]. For the minimization w.r.t. uI

k, JData,I + JI has to be
minimized for which we use the method of Levenberg-Marquardt.

The result of elastic registration is used to improve the result of model fitting
by re-estimating the model parameters pk including the radius R, the orientation
α, as well as the translation x0. To update the radius R, we compute the mean
radius along the vessel contour based on uk. For the translation x0 we obtain
new estimates based on the deformation uk(x0). The orientation α can be re-
estimated using finite differences of the positions of two points close to x0.

Based on the updated parameter vector pk and the deformation field uk, we
again perform model-based segmentation with subsequent elastic registration
for minimizing J . Note that now, model fitting is performed on a deformed
image which is obtained by applying uk to groi

I,k. Performing model fitting on the
deformed image has the advantage that the model parameters can be estimated
more accurately since the deformed image is more similar to the underlying
model than the original image. This alternating optimization is repeated until the
results of model fitting and elastic registration converge for a vessel segment k.
After convergence and having estimated the parameters for the current vessel
segment, a new parameter vector pk+1 is predicted based on a Kalman filter and
used as initialization for the next vessel segment along a vessel. For initialization
of uk+1 in the next iteration, the current deformation field uk is used.
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2.2 Exploiting 2D and 3D Image Information

With our combined approach for vessel segmentation there are different possi-
bilities to exploit the intensity information. We have developed two approaches,
a 3D and a 2D approach, which differ w.r.t. computational efficiency and seg-
mentation accuracy. The first approach performs model fitting within a 3D ROI
and uses 3D image registration of the 3D ROI. Since with this approach all
image information within a 3D ROI is exploited, the accuracy as well as the
computational complexity is expected to be relatively high. The second variant
uses 3D model fitting only for estimating the initial 3D orientation α, while Jk

in (1) is minimized based on model fitting and image registration of 2D image
cross-sections orthogonal to the vessel centerline. Compared to the 3D approach,
the computational complexity of the 2D approach is significantly lower.

3 Experimental Evaluation

We have applied our approach to 240 3D synthetic images and 17 clinically
relevant 3D CTA images of the human thorax. To quantify the segmentation ac-
curacy, we have computed the mean errors for clinically relevant measures com-
prising the minimum, mean, and maximum vessel diameters, eD,min, eD,mean,
and eD,max, respectively, as well as the mean error for the centerline position ex0 .
Note that, in general, vessel cross-sections are noncircular. To compute eD,min,
eD,mean, and eD,max, we have defined a diameter by the length of a straight line
that connects two points on the vessel boundary and that passes through the
center x0. The error measures for the diameters were determined by evaluating
a sample of 1000 different diameters of a cross-section where the directions of
the diameters are equiangularly distributed. ex0 is defined as Euclidean distance
between the true center of the vessel and the estimated position x0. For all
measures, we have computed mean errors by averaging over all vessel segments.

3.1 3D Synthetic Images

In a first experiment, we have generated two different sets of 3D synthetic im-
ages. The first set contains 120 different images of straight twisted cylinders with
elliptical cross-sections that differ in radii and the level of Gaussian image noise
(σn = 0, 1, 3, 5, 20), and have a size of 200 × 200 × 200 voxels. The second im-
age set contains 120 different images of twisted tori with elliptical cross-sections
that also differ in radii and the level of Gaussian image noise, and have a size of
400 × 400 × 200 voxels (see Fig. 1b for an example). Table 1 shows the results
of the segmentation accuracy of the two new combined approaches (2D and 3D)
in comparison to a previous model-based approach [6].

Segmentation results: 120 twisted cylinders. For ex0 we obtain similar
very good results for the new approaches and the previous approach with sub-
voxel accuracy of ex0 ≤ 0.02 voxels. For eD,mean, the results of the approaches
are comparable, while the 2D combined approach yields the best result. For
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eD,min and eD,max, the accuracy of the new approaches is significantly better
than that of the previous approach. In comparison to the previous approach, the
2D and 3D combined approaches yield improvements of 61% - 66% for eD,min

and eD,max.

Segmentation results: 120 twisted tori. For eD,min, eD,mean, and eD,max,
the previous approach yields similar results as for the first image set with
eD,min = 3.14 voxels, eD,mean = 0.09 voxels, and eD,max = 3.83 voxels. How-
ever, for the 2D combined approach we obtain a significant improvement for
all diameter measures with eD,min = 0.61 voxels, eD,mean = 0.05 voxels, and
eD,max = 0.88 voxels, which is an improvement of 77% – 80% for eD,min and
eD,max as well as 44% for eD,mean compared to the previous approach. The 3D
combined approach, however, yields the best result for all diameter measures
with eD,min = 0.37voxels, eD,mean = 0.04voxels, and eD,max = 0.52voxels,
which, in comparison to the previous approach, are improvements of 88%, 56%,
and 86%, respectively. For ex0 , all approaches yield very good results with sub-
voxel accuracy, however the 3D combined approach yields the best result with
ex0 = 0.08 voxels, which is an improvement of 50% compared to the previous
approach and 38% compared to the 2D combined approach.

3.2 3D CTA Images

In a second experiment, we applied our approach to two different sets of 3D
CTA images of the thorax. The first set of images contains ten 3D CTA images
of patients with only slight pathologies. The second set of images contains seven
3D CTA images of patients with severe pathologies such as aneurysms or highly
curved vessel centerlines. The CTA images comprise 619 to 829 slices with a size
of 512 × 512 voxels. For evaluation, manual segmentation by a radiologist was
performed for 15 of the 3D CTA images, while two of the images were segmented
by a trained observer. Table 2 shows the results for the two new combined ap-
proaches and a previous model-based approach [6] for both sets of images.

Segmentation results: Ten 3D CTA images. For the first set of 3D CTA
images and for eD,min as well as eD,max the accuracy of our new approaches is
significantly better than that of the previous approach, while the best result is
obtained for the 3D combined approach. For eD,mean and ex0 we obtain sim-
ilar good results for the new approaches and the previous approach while for
eD,mean the best result is obtained for the 3D combined approach and for ex0

Table 1. Mean errors for the diameters eD,min, eD,mean, and eD,max, and the centerline

position ex0 for different approaches

�����������Approach
Accuracy 120 twisted cylinders 120 twisted tori

eD,min eD,mean eD,max ex0 eD,min eD,mean eD,max ex0

Model-based approach 3.01 0.09 3.67 0.01 3.14 0.09 3.83 0.16

2D combined approach 1.04 0.07 1.42 0.02 0.61 0.05 0.88 0.13

3D combined approach 1.02 0.09 1.42 0.01 0.37 0.04 0.52 0.08
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(a) (b) (c) (d)

Fig. 3. (a), (c) Segmentation results of the 3D combined approach for two 3D CTA

images showing a pathology. (b), (d) Vessel contours using the model-based approach

(black) and the 3D combined approach (white) for a section of the 3D CTA images.

the best result is obtained for the 2D combined approach. In Fig. 1c,d we show
the segmentation result of the 2D combined approach for a 3D CTA image as
well as a section of the same image and the result of the 2D combined approach
in comparison to a previous approach. It can be seen that the new approach
yields a significant improvement in highly curved regions.

Segmentation results: Seven 3D CTA images with pathologies. For the
second set of 3D CTA images, we consistently obtain more accurate results for
the new combined approaches. For eD,min, eD,mean, and eD,max the accuracy of
the new approaches is significantly better than that of the previous approach,
while the best result is obtained for the 3D combined approach with improve-
ments of 21% to 57% compared to the previous approach as well as improvements
of 9% to 15% compared to the 2D combined approach. For ex0 , the 2D com-
bined approach the 2D combined approach consistently yields the most accurate
result. In Fig. 3 we show segmentation results of the 3D combined approach for
two 3D CTA images as well as sections of the same images and the result of
the new approach in comparison to the previous approach. It can be seen that
the new approach yields a significant improvement. Note that for the image in
Fig. 3b, only the new approach succeeds to fully segment the pathology, while
the previous approach fails to segment the last part of the pathology.

Overall, it turns out that for eD,min and eD,max the new 2D and 3D combined
approaches yield more accurate results than the previous approach. For ex0 , the
2D combined approach yields the best result, while for eD,mean, the 3D combined
approach yields the best result. The computation time for a vessel segment on a

Table 2. Mean errors for the diameters eD,min, eD,mean, and eD,max, and the centerline

position ex0 for different approaches

�����������Approach
Accuracy Ten 3D CTA images Seven pathologies

eD,min eD,mean eD,max ex0 eD,min eD,mean eD,max ex0

Model-based approach 5.40 2.27 1.67 0.65 7.42 2.32 6.15 1.00

2D combined approach 4.67 2.38 1.58 0.47 5.19 1.89 3.14 0.63

3D combined approach 4.24 2.19 1.46 0.83 4.70 1.83 2.66 0.96
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2.40GHz Intel Core 2 Quad CPU is about 1-2 seconds for the 2D approach and
about 50-60 seconds for the 3D approach.

4 Discussion

We have introduced a new approach for the quantification of the aortic arch
from 3D CTA images that combines fitting of a parametric intensity model with
intensity-based elastic image registration. We have demonstrated the applicabil-
ity of our approach using 3D synthetic images and clinically relevant 3D CTA
images. From the experiments it turned out that the new combined approach
consistently yields more accurate segmentation results than a previous segmen-
tation approach for the minimum and maximum diameters, which are the most
relevant clinical measures. For real 3D CTA images, the 2D combined approach
is most accurate for estimating the centerline position, while the 3D combined
approach is most accurate for estimating the diameters. It also turned out that
for the new approach significant improvements are obtained for difficult segmen-
tation tasks, in particular, for pathologies and highly curved vessel centerlines.

Acknowledgment. Support of the Deutsche Forschungsgemeinschaft (DFG)
within the project QuantVessel (RO 2471/6) is gratefully acknowledged.
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Abstract. We propose a conditional statistical shape model to predict

patient specific cardiac motion from the 3D end-diastolic CTA scan. The

model is built from 4D CTA sequences by combining atlas based seg-

mentation and 4D registration. Cardiac motion estimation is, for exam-

ple, relevant in the dynamic alignment of pre-operative CTA data with

intra-operative X-ray imaging. Due to a trend towards prospective elec-

trocardiogram gating techniques, 4D imaging data, from which motion

information could be extracted, is not commonly available. The predic-

tion of motion from shape information is thus relevant for this purpose.

Evaluation of the accuracy of the predicted motion was performed using

CTA scans of 50 patients, showing an average accuracy of 1.1 mm.

1 Introduction

Coronary angioplasty is an often applied procedure to reopen narrowed or oc-
cluded coronary arteries. Real time X-ray visualization guides these interven-
tions, providing information about the morphology of the patent vessels. For
difficult interventions, such as reopening chronic total occlusions, integration of
a pre-operative CTA acquisition is expected to improve the intervention result.
Hereto, a correct alignment of the CTA image with the 2D X-ray projection
images is required, which consists of both a rigid alignment to determine the
pose and orientation of the data and a non-rigid alignment to compensate for
cardiac motion. A patient specific cardiac motion prior can be derived from 4D
retrospectively gated CTA data [1]. However, the trend in cardiac CT acquisition
is towards prospective electrocardiogram (ECG) gating techniques to decrease
the effective patient dose. In these situations, the derivation of dynamic infor-
mation from CTA data is often not possible, as only one phase of the cardiac
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cycle is imaged. Moreover, it is often not known before the CTA acquisition if
a patient will undergo coronary angioplasty, making selective dynamic imaging
for a subset of patients difficult.

The purpose of this work is to develop and evaluate a method to predict pa-
tient specific cardiac motion from a single 3D CTA image. To this end a 4D
statistical shape model is built from 50 ECG-gated dynamic CTA images by
combining 3D multi-atlas registration and 4D registration. Motion is estimated
for an unseen patient by first segmenting the cardiac structures in the acquired
3D CTA scan. Subsequently we derive the most probable motion given the seg-
mentation and the statistical model using a conditional Gaussian distribution.

Statistical shape models have been frequently applied for 3D image segmen-
tation [2]. The use of active shape models for dynamic image segmentation has
been investigated, for instance in the work of Ordas et al., who built a single 3D
model with training data from multiple ECG phases [3]. However, this method
cannot be used for the cardiac motion prediction problem, as a single 3D shape
model of the heart is built, without distinguishing between inter-patient and
intra-patient variability. Models built from 4D landmark positions can overcome
this problem. Such a 4D statistical model was, for instance, built by Perperidis
et al. for segmenting the left ventricle, right ventricle, and myocardium, but was
not used for motion prediction [4]. Hoogendoorn et al. built a bilinear model
for the extrapolation of cardiac motion, assuming that the motion of the heart
is independent of its shape [5]. We, in contrast, build statistical shape models
of the shape and motion of the heart without assuming their independence and
evaluate its applicability for the prediction of cardiac motion by conditioning
the motion model on single time point shape information.

2 Methods

The statistical model is built using multi-atlas based segmentation and 4D regis-
tration. The structures of interest are the aorta (Ao), endocardium left ventricle
(endoLV), epicardium left ventricle (epiLV), right ventricle, left atrium (LA) and
right atrium (RA). An atlas landmarking procedure ensures anatomical land-
mark correspondence. Cardiac motion is predicted by conditioning the motion
model on the landmark points of the shape in the 3D end-diastolic image. These
steps are explained in more detail in the following sections.

2.1 Statistical Shape Model

The K 4D CTA sequences that are used to build the statistical models [6] consist
of T time points, each of which contains 3D shapes represented by n landmark
points. Landmark correspondence is ensured both along the sequence and across
the training set (see Sect. 2.2). First, a base time point b is determined, which is
defined as the time point in the cardiac cycle for which the 3D reconstructions
are available. In this work, we use the end-diastolic time point for this purpose.
Subsequently, we represent the 4D sequence as a 3D shape in time point b, and
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a motion sequence given by the vectors describing the displacements from this
time point to all time points in the sequence. Accordingly, two separate mod-
els are built: a 3D statistical shape model (at time point b) and a 4D statistical
motion model. Because the models are created for prediction purposes, the align-
ment (translation, rotation and isotropic scaling) of the shapes in the training
sequences is performed using the landmarks of the shape in the base time point.
This is in agreement with the alignment of the segmented end-diastolic target
shape to the model. Assuming a Gaussian shape and motion distribution, PCA
analysis is performed to extract the main modes of variation resulting in the
following shape and motion model

sb ≈ s̄b + Φp, and m ≈

⎡⎢⎣ s1 − sb

...
sT − sb

⎤⎥⎦ = m̄ + Ψq (1)

where si is the shape of the i-th time point of a sequence, b denotes the base
time point, and m is the motion vector. The mean shape and motion is denoted
with s̄b and m̄, while p and q are the shape and motion parameter vectors
respectively. The models were reduced to explain 95% of the total variance.

2.2 Model Construction

Atlases and Atlas Point Correspondence. 3D segmentation of the cardiac
structures at one time point in the cardiac cycle is achieved by multi-atlas regis-
tration using J = 8 atlases [7]. We used elastix for all registration procedures
in this work [8]. The following procedure was applied to the atlases to obtain
automatic anatomical landmark correspondence:

1. Non-rigid B-spline registration of all atlas pairs to each other, resulting in J ∗
J transformations denoted as Tij where i and j indicate the atlas numbers.

2. Determination of the mean transformation for every atlas: Ti = 1
J

∑
j Tij

and subsequent transformation of the manual annotations to the mean space.
3. Creation of a signed distance map SDMis for every atlas i and structure s in

the atlas (a) and mean (m) space and averaging of the signed distance maps
for all structures in the mean space: SDM

m

s = 1
J

∑
i SDMm

is .
4. Creation of a mean surface with approximately equally distributed landmark

locations for every structure by extracting the surface at the zero level set of
SDM

m

s . The number of landmarks used was 15835 (Ao: 1316, endoLV: 2723,
epiLV: 4106, LA: 2034, RA: 2079, RV: 3577).

5. Transformation of the obtained mean surface landmarks back to the atlas
spaces using T

−1

i and projection of the landmark points of the mean surfaces
onto the annotated surfaces by non-rigidly registering their SDMs.

Landmark Determination in 4D CTA Sequences. 3D segmentation of the
heart structures in the end-diastolic time point of the K 4D CTA sequences is
performed by:
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Fig. 1. Left ventricular volume during the cardiac cycle before and after alignment of

the volume curves. Each colored line represents a patient and the dashed black line

represents the reference curve.

1. Non-rigid B-spline registration of all atlases to the end-diastolic CTA image.
2. Transformation of the surface landmarks from the J atlases to the target

image using the resulting transformations.
3. Combination of the J atlas landmark sets into one landmark set by appli-

cation of the mean shift algorithm to the landmark coordinates [9]. This
ensures a robust average of the corresponding landmark points and reduces
the influence of possible registration errors.

This procedure results in a set of landmarks describing the cardiac structures at
end-diastole. Subsequently, the segmentation of the cardiac structures in all time
phases is achieved by determining the cardiac motion for each patient using 4D
B-spline registration on the 4D CTA image. During registration, the variance of
intensityvalues at corresponding spatial locations isminimized.Onlydeformations
in the spatial domain are allowed and the deformation is forced to be periodic.

By combining the segmented shapes and the deformations resulting from the
4D registration procedure we determine 4D landmark sets for every patient. To
ensure temporal correspondence between the 4D landmark sets, an additional
alignment step is performed to align the moment of contraction and relaxation
during the cardiac cycle between patients. To this end, time curves of left ventric-
ular volume are obtained from the K 4D segmentations. These curves are sub-
sequently aligned by a 1D non-rigid group-wise registration approach in which
the cross-correlation between the curves is optimized. After this alignment, new
landmark positions at twenty regular intervals of the cardiac cycle are deter-
mined by applying spline interpolation between corresponding landmark points
in time. Volume graphs before and after alignment are shown in Fig. 1.

2.3 Conditional Model

We derive the motion given the shape of the cardiac structures at one time point
in the cardiac cycle by assuming a Gaussian distribution of the shape vectors
sb ∈ S and motion vectors m ∈ M respectively. Their combined distribution
P (M,S) is a normal distribution with mean

µ =
[
m̄
s̄b

]
and variance Σ =

[
ΣMM ΣMS

ΣSM ΣSS

]
, (2)
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with ΣSS and ΣMM the covariance matrix of shape and motion respectively,
and ΣSM the covariance matrix between shape and motion. The most likely
motion m̂ given a single shape s∗b is estimated as the mean of the conditional
probability function P (M |s∗b) [10]:

m̂ = m̄ + ΣMSΣ−1
SS(s∗b − s̄b) (3)

However, as the dimensionality of the 3D shape vectors is larger than the number
of training shapes, the covariance matrix ΣSS becomes singular, and cannot be
inverted. Therefore, conditioning is performed on the shape and motion model
parameters after applying PCA rather than on the shape and motion vectors
themselves. As the mean parameter vectors are zero, Equation 3 simplifies to:

q̂ = ΣqpΣ−1
pp p∗ , where p∗ = ΦT (s∗b − s̄b) , (4)

with q̂ being the parameter representation of the estimated motion m̂. The gen-
eration of plausible motion is ensured by scaling q̂ such that it always lies within
±3 standard deviations of the motion model. The final conditional sequence is
computed from the known 3D shape s∗b and the derived motion m̂ = m̄ + Ψq̂.

3 Experiments and Results

3.1 Imaging Data

Eight 3D diastolic CTA reconstructions were used as the atlas images and 50
retrospectively gated 4D CTA images were used for building and evaluating the
4D model. All scans were acquired with Siemens CT scanners and 20 time points
were reconstructed for the 4D CTA scans. Note that the variety of the data is
large as healthy subjects are not imaged because of radiation regulations.

3.2 Cardiac Motion Prediction

The accuracy of the motion prediction was evaluated in leave-one-out experi-
ments by applying the conditional model described in Sect. 2.3 on end-diastolic
segmentations, which are most often available in clinical practice. The accuracy
of the resulting 4D shapes was determined by computation of the average root
mean squared point-to-surface distance per structure and time point. The re-
sults are compared to a projection of the complete sequence onto the model
space. This projection represents the best possible reconstruction of an entirely
known 4D input sequence given the training data. Note, that this represents a
practical limit for accuracy and that the 4D information is not available for the
motion estimation. Also, a replication of the end-diastolic segmentations for all
time points was used as a worst-case estimate for benchmarking the errors of
the conditional shape estimates. Graphs of the accuracy over time are shown in
Fig. 2. Table 1 lists the root mean squared point-to-surface distance for both
the replication and the conditioning averaged over all time points and over the
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Table 1. Mean and standard deviation of root mean squared point-to-surface distance

in mm. for replication (assuming no motion) and the proposed method. Values are

listed for all time points and for the minimal left ventricular volume time point (30%).

Structure Ao endoLV epiLV RV LA RA

Replication (all) 1.6 (1.1) 2.2 (1.8) 1.7 (1.4) 1.7 (1.3) 1.6 (1.0) 1.2 (0.9)

Conditioning (all) 0.9 (0.6) 1.1 (0.8) 0.9 (0.6) 0.9 (0.7) 1.0 (0.6) 0.8 (0.5)

Replication (at 30%) 3.2 (1.0) 5.1 (2.0) 4.0 (0.9) 3.7 (0.8) 2.8 (0.8) 2.5 (0.6)

Conditioning (at 30%) 1.4 (0.6) 2.0 (0.7) 1.7 (0.5) 1.5 (0.5) 1.4 (0.5) 1.2 (0.5)
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Fig. 2. Average root mean squared (RMS) point-to-surface (p2s) distance over the

cardiac cycle. RMS values are averaged over all patients. The red line indicates the

replication error. The grey dotted line shows the error for projecting the entire sequence

onto the model space and the blue line shows the error when conditioning is used.

time point at which the left ventricular volume was minimal (30%). We expect
the shapes at this time point to differ the most from the end-diastolic shapes
used for the motion estimation. Fig. 3 shows a color coding of the distances for
the left and right ventricle, and atrium at end-systole and end-diastole for two
randomly selected patients.

3.3 Model Generalization Ability and Training Set Size

An experiment was conducted to assess the dependency between the accuracy
of the model and the training set size. The available training sequences were
grouped randomly in subgroups, each containing 5 sequences. Subsequently, for
every tested training set size all possible combinations of groups were taken
as training set, and a random left out group was used for testing. Fitting was
performed by projecting the motion of the 4D segmentation of a CTA sequence
on the subspace of the motion model, and back to the original space to derive
the motion vectors for these parameters. The resulting motion was applied to
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Fig. 3. Two views of end-systolic predicted surfaces for two randomly selected pa-

tients. Color coded are the point-to-surface distances from the predicted shape to the

segmented shape. The Ao and epiLV are for visualization purposes not color coded.
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Fig. 4. Root mean squared point-to-surface (p2s) distance in mm. for every structure

with respect to training set size

the atlas segmented shape, and compared with the actual 4D segmentations.
Fig. 4 shows the results.

4 Discussion and Conclusion

The experiments show that the conditional shape model is able to predict the
motion of the heart with an average accuracy of around 1.0 mm (see Table 1).
This represents a large improvement compared to shape replication, which is the
only option when only a 3D CTA scan is available (see Fig. 2). Accuracy is mea-
sured by the point-to-surface error, but depending on the application of interest,
the point-to-point error can be used as well. For the here presented experiments,
point-to-point errors were on average larger, but showed very similar trends.

Furthermore, the remaining errors when projecting the entire sequence onto
the model subspace and the results of the generalization ability experiment show
that the size of the training set is most probably not sufficient. Therefore, the
effect of adding more training shapes on the accuracy will be investigated in
the future. The errors at the left of the graph are related to the magnitude
of the motion found by the registration approach. Errors induced by landmark
propagation are currently not taken into account and subject to future work.

In the current work no assumptions were made about the relation between
cardiac shape and motion, in contrast to the method proposed by Hoogendoorn
et al., in which shape and motion variations are explicitly decoupled [5]. Although
the motion of the heart depends for a large amount on its electrophysiology,
which is not apparent from its shape, we think that shape can still predict cardiac
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motion when both the shape and motion of the heart are affected by disease (e.g.
due to cardiac remodelling after myocardial infarction). Motion changes related
to the shape at other time points in the cardiac cycle are not taken into account.

The conditioning framework described in this paper exploits any available
correlation between shape and motion given in the training sequences, and nat-
urally reduces to the mean motion in case no correlation is present. Due to the
small training set size we were not able to draw any conclusions with respect to
this correlation. We plan to investigate this topic in detail as part of future work.
For the conditioning 95% of the statistical shape model variance was retained,
however the effect of the value of this parameter on the prediction results should
still be investigated.

In conclusion, we presented and evaluated a method that uses conditional
shape models to predict cardiac motion from 3D cardiac shape. The results
suggest that it can reliably predict the motion of the heart. Our goal is to use
this model for the dynamic alignment of pre-operatively acquired CTA images
with intra-operative X-ray imaging, which should be applied and evaluated in
future work.
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Abstract. Congenital heart defect is the primary cause of death in new-

borns, due to typically complex malformation of the cardiac system. The

pulmonary valve and trunk are often affected and require complex clini-

cal management and in most cases surgical or interventional treatment.

While minimal invasive methods are emerging, non-invasive imaging-

based assessment tools become crucial components in the clinical set-

ting. For advanced evaluation and therapy planning purposes, cardiac

Computed Tomography (CT) and cardiac Magnetic Resonance Imaging

(cMRI) are important non-invasive investigation techniques with com-

plementary properties. Although, characterized by high temporal resolu-

tion, cMRI does not cover the full motion of the pulmonary trunk. The

sparse cMRI data acquired in this context include only one 3D scan of the

heart in the end-diastolic phase and two 2D planes (long and short axes)

over the whole cardiac cycle. In this paper we present a cross-modality

framework for the evaluation of the pulmonary trunk, which combines

the advantages of both, cardiac CT and cMRI. A patient-specific model

is estimated from both modalities using hierarchical learning-based tech-

niques. The pulmonary trunk model is exploited within a novel dynamic

regression-based reconstruction to infer the incomplete cMRI temporal

information. Extensive experiments performed on 72 cardiac CT and

74 cMRI sequences demonstrated the average speed of 110 seconds and

accuracy of 1.4mm for the proposed approach. To the best of our knowl-

edge this is the first dynamic model of the pulmonary trunk and right

ventricle outflow track estimated from sparse 4D cMRI data.

1 Introduction

Congenital Heart Defect (CHD) is the primary cause of death in newborns char-
acterized by complex malformations of the heart and great vessels. Often, the
right side of the heart is affected and especially the pulmonary trunk, as in Terta-
logy of Fallot (TOF) and pulmonary artesia or stenosis. The clinical management
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of such conditions is confronted with complex treatment decisions, which include
pulmonary valve procedures in the majority of the cases.

Percutaneous interventions for pulmonary valve replacement are emerging as
feasible treatment alternatives to the classical cardiac surgery with important
benefits: less invasive, reduced risks associated with cardiopulmonary bypass,
bleeding, infections and reduced expenses for postoperative intensive care [1].
Nevertheless, comprehensive investigation, based on non-invasive imagine tech-
niques, is still mandatory for clinical decision making and treatment success.

For therapy planning purposes, the pulmonary trunk is increasingly imaged
using either cardiac Computer Tomography (CT) or cardiac Magnetic Resonance
Imaging(cMRI) [2]. While CT has a high spatial resolution, fast acquisition times
without anesthesia, it has the disadvantages of poor temporal resolution and
ionizing radiation. Contrary, cMRI has high temporal resolution without X-
ray radiation, but long acquisition times and usually does not cover the full
4D information. The regular protocol, so called sparse 4D cMRI, involves an
end-diastolic (ED) 3D heart image and two orthogonal cine projections 2D+t,
short axis (SA) and long axis (LA). LA passes through the main pulmonary
artery and the descending aorta, while SA is aligned with pulmonary valve,
perpendicular to the LA (see Fig. 1). Ideally, clinicians would be provided with
a accurate morphological and functional quantification of the pulmonary trunk,
independent of the employed imaging technique.

In this paper we present a cross-modality framework for the evaluation of
the pulmonary trunk, which combines the advantages of both, cardiac CT and
cMRI, non-invasive imaging techniques. A physiological model, which captures
complex morphological, dynamic and pathologic variations of the pulmonary
trunk is presented in Sec. 2. In Sec. 4, the patient-specific model parameters
are estimated from both modalities within a hierarchical learning-based frame-
work, which involves three-stages: landmark detection, center line detection and
dynamics estimation. A novel dynamic regression-based reconstruction is pro-
posed in Sec. 3 to infer the incomplete temporal information characteristic to
the sparse cMRI protocols is presented.

Fig. 1. 3D cMRI scan of the whole heart in the ED phase (a). 2D long axis (LA) plane

(b) and short axis (SA) plane (c) of the pulmonary artery over the cardiac cycle.
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2 Physiological Pulmonary Trunk Modelling

In this section we introduce our physiological model of the RVOT and pulmonary
trunk, which represents both morphological and dynamic variations. Similar to
[3], the anatomical complexity is reduced by employing a coarse to fine param-
eterization which includes: anatomical landmarks, pulmonary artery center line
and the full surface model of the pulmonary trunk. As illustrated in Fig. 1(a),
the considered anatomical landmarks include, Trigone (Lt), RVOT (Lrvot) and
Main-Bifucation (Lmb), each represented in the Euclidean 3D space, Lx ∈ R3.
The centre line CL passes through the pulmonary artery center and is parame-
terized by 12 points, CL = CL0 . . . CL11. The surface model S is represented by
a structured grid, spanned along two anatomical directions, u−circumferential
and v− longitudinal, using 50×40 vertices (see Fig. 1(c)). Point correspondence
in time and across patients is enforced by intrinsic resampling of S, using a set of
anatomical-driven cutting-planes, described by center line points CLx and cor-
responding tangential directions. Given the different modalities supported and
characteristic imaging protocols, we differentiate among two dynamic extensions
of the proposed physiological model. The definition of a full 4D model, which
can be directly estimated from 4D cardiac CT data, is rather straightforward
and realized by plain concatenating a time variable t:

Modelfull4D = {Lt, Lrvot, Lmb, CL, S}t (1)

However, given the sparse 4D acquisition, common to cMRI, the extension to a
temporal model includes two additional representations: LA and SA. LA which
describes the contour of S intersected with the plane with the origin in Lrvot and
the normal obtained from the cross-product between Ltrigone and Lrvot, and the
center line tangent at CL0 represents a specific 2D+time long axis acquisition
(Fig. 1(a)). SA describes the contour of S intersected with the plane center in
CLmiddle and the corresponding tangent as normal (Fig. 1(b)). Hence, the sparse
dynamic model is parameterized as follows:

Modelsparse4D = {Lt, Lrvot, Lmb, CL, S}ED + {LA, SA}t (2)

3 Dynamic Regression Based 4D Model Reconstruction

As describe above, the dynamic information in case of 4D cMRI is incomplete
but rather available only in two orthogonal projections, as opposed to 4D cardiac
CT, which provides full dynamics over the cardiac cycle.

In regression a solution to the following optimization problem is normally
sought [4]:

ˆR̂(x) = argminR∈�
N∑

n=1

L (y(xn),R(xn)) /N (3)

where $ is the set of possible regression functions, L(◦, ◦) is a loss function that
penalizes the deviation of the regressor output R(xn) from the true output, and
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N is the number of available training examples. In our case the reconstruction
task is defined as a regression problem between the full dynamic model of the
pulmonary trunk extracted from 4D CT data and the sparse one extracted from
the sparse cMRI data:

Y (Modelfull4D) = R̂ (X(Modelsparse4D)) + ε (4)

In our regression problem we focus on shape information and completely neglect
volume data. As descriptors both for the input X(Modelsparse4D) and output
elements Y (Modelfull4D) of the models we choose coordinates of mesh vertices
normalized with the generalized procrustes analysis. This representation has a
uniform representation of the input and the output data. The training set T
used to generate the regression model thus includes feature vectors Ti as follows:

Ti =< (SED
i , LAt

i, SAt
i)MRI , (St

i )CT >, (5)

where t is a time step within the cardiac cycle, SED
i is a set of 3D coordinates rep-

resenting each point of the end-diastolic model (2000 3D points), LAt
i and SAt

i

are point sets (80 and 50 3D points respectively) representing the model curves
extracted from the cMRI’s long axis stack and short axis stack respectively, for
the current time step t, and (Si

t)CT are the corresponding point coordinates for
the point set to be reconstructed (238 3D points). Due to the dense representa-
tion of our model (2000 3D points) we reconstruct only the most significant 238
3D points from the associated CT model. The rest of the points are interpolated
and projected onto the PCA shape space from which the complete model is then
obtained.

The formulated regression problem is solved by learning the regression func-
tion R with two different methods: boosting-based additive regression [5] and
random forest [6]. Two main reasons motivate our choice. First, these techniques
were shown to be robust to high-dimensional data with many irrelevant, redun-
dant and noisy features, without the need for additional data pre-processing and
feature selection. This was shown both for classification [7],[8] and regression [4]
tasks. Second, both boosting-based and random forest-based models are rela-
tively fast to train and to evaluate comparing for example with Support Vector
Regression. In the spirit of [7],[4], we use simple 1D linear regression as the
base learner for boosting-based regression. Each weak learner is a simple linear
regressor of the form:

y = β0x + β1 (6)

where x is the selected scalar input coordinate and y is a scalar output coordi-
nate. Using more sophisticated weak learners such as CART decision trees and
multiple linear regression with greedy forward feature inclusion, has proven to
always result in a worse or no better performance while the resulting model gets
significantly more complicated. Using simple 1D binary decision stumps as in [4]
has also proven to lead to suboptimal accuracy; the reason for this is perhaps
the nature of the data, as it is rather impossible to generate as many candi-
date decision stumps with the coordinate - based features as it is possible with
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the Haar-like features. For each boosting-based model, we generate 200 weak
learners. The accuracy plateaus with this number of component models, and the
further accuracy increase is always insignificant with this data.

For random forests, we always generate 25 component trees. The accuracy
usually remains same or even decreases with the addition of more trees to the
model. The minimum leaf size is set to 1; the trees are thus generated to the
full with no pruning. The number of features considered at each node is set to
the value recommended by Breiman [6], which is one third of the total number
of features for regression. Using other parameter settings was shown to lead to
worse or no better accuracy in our preliminary experiments.

In boosting-based regression the output function is assumed to take a linear
form as follows [4]:

ˆR̂(x) =
T∑

t=1

αtht(x) ∈ H (7)

where ht(x) is a base (weak) learner and T is the number of boosting iterations.
Having a linear base learner (simple linear regression), a linear final solution is
thus also found. In contrast to this, random forests seek for a non-linear function
approximation, recursively splitting the feature space in the nodes of component
decision trees.

In contrast to [4], we use naive decoupling of the regression problem into a
number of single output problems. While multi-output regression solutions do
exist both for boosting [4], for our task multi-output optimization was not shown
to lead to error decrease and time savings were rather insignificant.

4 Estimating Patient-Specific Model Parameters

The patient-specific model parameters described in Section 2 are estimated from
cardiac acquisition using a learning-based approach. Detectors are learned sepa-
rately for both modalities, CT and cMRI, and applied to estimate model param-
eters in a hierarchical three-stage approach: Anatomical Landmarks Estimation,
Center Line Estimation and Full Surface Model Estimation.

Anatomical Landmarks Estimation. By defining the localization as a classifica-
tion problem, the anatomical landmarks, Lt, Lrvot, Lmb, are estimated within the
MarginalSpaceLearning (MSL) framework [9]. SeparatedetectorsDL

t , DL
rvot, D

L
mb,

are learned using the Probabilistic Boosting Tree (PBT) [8] in combination with
Haar-like feature from a training dataset annotated by experts.

p(Lx|x, y, z) = DL
x (x, y, z), (x, y, z) ∈ σx (8)

The trained detectors DL
x models the target posteriori distribution p(Lx|x, y, z)

for a specific search space σx formed by the training set. MSL is applied to
conduct guided search in the parameter space using the learned detectors and
obtained the location of the anatomical landmarks. Note that in case of 4D car-
diac CT anatomical landmark are detected in each volume to obtain the dynamic
parameters {Lt, Lrvot, Lmb}t, while in sparse cMRI only a static detection in the
end-diastolic volume is performed: {Lt, Lrvot, Lmb}ED,
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Center Line Estimation. CL passes through the centre of the pulmonary trunk
and is initialized by the previously detected landmarks Lt and Lrvot. A ro-
bust detector DCL is learned using the same MSL framework to detect circular
structures, parameterized by center line points CLx, corresponding tangent and
having fixed radius r = 20mm obtained from the average value in the training
set. An incremental approach is used to search circles on a series of successively
updating planes. Please note, that for the Anatomical Landmarks Estimation, a
temporal center-line model CLt is detected in CT and a static CL in cMRI.

Full Surface Model Estimation. The full model of the pulmonary trunk S is
initialized in the end-diastolic frame using the estimated landmarks and center-
lines, using a piecewise affine transformation along the center line [3]. Robust
boundary detectors Ds, trained using the PBT and steerable feature [9] are ap-
plied to locally refine the surface by moving it along normal directions towards
the position with the highest boundary probability. To obtain spatially smooth
delineation, the final results are obtained by projecting S to a previously learned
shape space model.

In case of CT, the above described algorithm is applied in each time step
to obtain the full temporal model {Lt, Lrvot, Lmb, CL, S}t. In case of MR, the
estimated surface in the end-diastolic frame SED is used to initialize the contours
LA and SA. These are refined using a trained Dc contour detector as described
above. A full dynamic 4D model is then estimated by using a learned regression
model (see Eq. 4) to predict the missing temporal information.

5 Results

5.1 Patient-Specific Model Parameters Estimation

The proposed framework for detecting a personalized pulmonary trunk model
in 4D CT and sparse cMRI data was evaluated on 50 4D CT(500 volumes) and
74 sparse cMRI (74 ED Volumes associated with 4736 LA/SA planes) studies
from patients with different CHD. Each volume in the data set is associated
with annotation, manually generated by experts, which is considered as ground
truth. Three-fold cross validation was used to divide the data set into training
and test data.

Table 1 summarizes the detection performance on both modalities (CT and
sparse cMRI), from the test data. Point-to-mesh measurement error was used
to evaluate the detection accuracy between the ground truth and the detected
model for both modalities. Average speed of 10sec per frame was achieved for
both modalities on a standard 2.0GHz Dual Core PC.

Table 1. Detection accuracy

CT/MRI Mean Error(mm) Median(mm) Std.Dev(mm)

Landmarks 3.5/4.3 5.1/6.4 2.7/3.0

Center Line 3.0/3.3 2.3/2.3 1.7/2.0

Full Surface 1.6/1.9 1.2/1.3 0.2/0.2
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5.2 Intra-modality Comparison between CT and MRI

The inter-modality consistency of the model was demonstrated on a subset of 10
patients which underwent both imaging investigations, 4D CT and sparse cMRI
(see Fig. 2). Ground truth and detected pulmonary trunk models from both
modalities were compared using the point-to-mesh measurement and clinically
relevant diameter measurements: RVOT, hinges and commissures. Results are
summarized in Table 2. A strong inter-modality correlation, r = 0.992, p <
0.0001 and confidence of 98%, was obtained for CT and cMRI for the pulmonary
trunk models.

Fig. 2. Pulmonary trunk model in CT (left) and cMRI (middle) data for the ED

phase. Inter-modality consistency by projecting the cMRI model(yellow points) into

the CT data (right).

Table 2. Model based intra-modality comparison between CT and MRI

(mm) Ground truth Estimation

RVOT 0.7 ± 0.5 3.8 ± 1.5

Hinges 1.2 ± 1.4 2.6 ± 4.7

Commissures 1.5 ± 1.2 3.2 ± 1.7

Point-to-mesh 1.4 ± 0.1 2.5 ± 0.7

5.3 Regression Based Dynamic Model Reconstruction

As described in Sec. 1 the sparse cMRI protocol is able to capture the full
anatomy of the pulmonary trunk only in the ED phase (3D volume) of the heart
and parts of the pulmonary trunk in 2D planes (LA and SA) over the cardiac
cycle. However, a full 4D model of the pulmonary trunk can be still computed
from the available sparse data by learning the full motion from 4D CT data. For
this purpose we learned a regression model as presented in Sec. 3 on a training
data set of 72 4D CT (720 Volumes) studies. Two different machine-learning
techniques (boosting and random forest) are used to train the regression model
and to evaluate the reconstruction error. Table 3 presents reconstruction results
obtained by applying the learned regression model on the sparse cMRI images
and evaluating the reconstructed model on 4D CT, for a set of 10 patients, which
underwent both imaging modalities. Figure 3 illustrates the reconstruction error
distributed over the cardiac cycle.
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Table 3. Reconstruction error for Random Forest and Boosting

Boosting Random Forest

Mean Err. 1.44(mm) 3.2(mm)

Std. Dev 0.21(mm) 0.23(mm)

Speed 3.07 (ms) 6.21 ms

6 Conclusion

In this paper we propose a cross-modality detection framework for estimating
a dynamic personalized model of the pulmonary trunk from the available data,
4D CT and sparse cMRI. A novel regression based reconstruction method is
presented and used to infer the incomplete temporal information characteristic
to the sparse cMRI protocols. The estimated model from both modalities can be
utilized to extract morphological and functional information of the pulmonary
trunk and dynamics over the cardiac cycle. Extensive experiments performed
on a large heterogeneous data set demonstrated a precision of 1.44mm data at
a speed of 11 seconds per volume. The proposed method has the potential to
significantly advance the pulmonary trunk treatment.
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Abstract. We present a novel approach for automatic segmentation of
the myocardium in short-axis MRI using deformable medial models with
an explicit representation of thickness. Segmentation is constrained by a
Markov prior on myocardial thickness. Best practices from Active Shape
Modeling (global PCA shape prior, statistical appearance model, local
search) are adapted to the medial model. Segmentation performance is
evaluated by comparing to manual segmentation in a heterogeneous adult
MRI dataset. Average boundary displacement error is under 1.4 mm for
left and right ventricles, comparing favorably with published work.

1 Introduction

Segmentation of the human myocardium in in vivo MRI in a necessary first step
for various computational analyses of heart structure and function. Automatic
segmentation is a challenge because intensity characteristics of cardiac MRI are
complex, and because the myocardium is thin relative to typical MRI voxel size,
particularly in the right ventricle (RV). Most existing techniques only segment
the left ventricle (LV) (e.g. [11,12,1,6]), or segment either the inner surface (endo-
cardium) or outer surface (epicardium) of the RV [9,17,13]. When characterizing
pathology such as myocardial hypertrophy, myocardial infarction, and ventric-
ular arrhythmias, a segmentation of both surfaces in LV and RV is desirable.
Examples of dual-surface RV and LV segmentation exist in the literature [10],
but there remains substantial room for improvement in accuracy.

When segmenting structures known to be thin a priori, it is natural to build
thickness constraints into the segmentation algorithm. Standard active shape
model (ASM), level set, and registration-based approaches, used widely for car-
diac segmentation, do not provide an explicit way of doing so. However, coupled-
surface approaches incorporated into the level set framework [16,12] can be used
to constrain the distance between endocardial and epicardial surfaces. In this pa-
per, we explore an alternative approach, where a Markovian prior on model thick-
ness is introduced by representing the myocardium using a deformable medial
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model. The medial model explicitly represents the skeleton of the myocardium as
well as myocardial thickness. The boundary of the model (epicardial and endo-
cardial) is derived from the skeleton and thickness data using a simple analytical
expression. A parameterization of the volumetric region enclosed by the model
is also easily derived. Thus, the model can explicitly represent constraints and
prior knowledge regarding myocardial thickness, and there is no possibility of
endocardial and epicardial surfaces crossing during model deformation.

Our approach builds on earlier work [14] that demonstrated the feasibility of
capturing and analyzing myocardium shape using the continuous medial repre-
sentation (cm-rep) with branching skeletons (Fig. 1). This paper makes the step
from shape modeling to segmentation by developing, from a large training set,
a shape and thickness prior, which combines standard PCA for shape with a
Markov model for thickness; and by incorporating into the cm-rep framework
a statistical learning-based appearance model derived from the Active Shape
Model (ASM) framework [4,3]. This leads to excellent segmentation accuracy on
short-axis cardiac MRI from a heterogeneous patient population.

2 Materials and Methods

2.1 Subjects, Imaging and Manual Segmentation

The primary dataset in this study, used for appearance learning and evaluation,
consists of data from 40 subjects in four clinical cohorts: normal controls (n=10),
myocardial infarction (MI) (n=10), hypertrophy (n=10) and dilation (n=10).
Short-axis cardiac MRI (TR/TE=2.9/1.2 ms, FA=45◦, in-slice resolution =
1.56 mm× 1.56 mm, slice thickness= 8 mm, no gap, FOV = 400 mm× 340 mm)
were acquired at CETIR Sant Jordi Centre (Barcelona, Spain) using a GE Signa
CVi-HDx 1.5T scanner (GE Healthcare, Milwaukee, USA). Author XX manu-
ally outlined the endocardial and epicardial surfaces of the LV and RV at end
diastole, forming a volumetric two-chamber heart representation that typically
spans 8-12 slices from the base to the apex. A secondary dataset of manual seg-
mentations derived from similar short axis MRI of 81 subjects with a variety of
common cardiovascular pathologies was used in the construction of the shape
and thickness priors.

2.2 Medial Models

The medial model is defined as a pair (m, R), where m is the skeleton, i.e., a
collection of adjoining co-dimension 1 manifolds in R3, and R is a positive scalar
field defined on m, called the radial field. In practice, a triangular mesh (m, R; E)
is defined by applying Loop [8] subdivision rules (modified to handle junctions
between manifolds) to a triangular mesh of control points (mctl, Rctl; Ectl), where
E , Ectl denote the edges in these meshes. Edges in the medial mesh (either control
or subdivided) may belong to one, two or three triangles. The set of edges with
three adjacent triangles is called the medial seam, and the set of edges adjacent



470 H. Sun et al.

Fig. 1. The medial model of the myocardium that is used as a deformable template in
our method. The skeleton of the model is partitioned into red, blue, and green surfaces
corresponding to the RV wall, LV wall, and interventricular septum. The translucent
gray surface is the boundary of the model, i.e. epicardium and endocardium.

to just one triangle is called the medial edge. Below, we treat (m, R) as smooth
manifolds, although in practice they are approximated by discrete meshes.

The boundary corresponding to the pair (m, R) is defined as a set of points B,
such that the Blum medial axis transform (MAT) [2] of B is (m, R). Generally,
B cannot be described analytically as a function of (m, R), as MAT may map
whole patches of B to a single point on m. However, if (m, R) satisfy a set of
conditions given in [15], such an analytical description is possible. It is given by
B = b+ ∪ b−, where b+, b− are surfaces that lie on the opposite sides of m:

b± = m + R
[
−∇mR±

√
1− ‖∇mR‖2 ·Nm

]
, (1)

where ∇mR is the Riemannian gradient of R on m, and Nm is the unit normal
vector to m. The sufficient conditions for B = b+ ∪ b− given in [15] include
equality conditions that must hold along medial edges and seams, as well as
inequality conditions that hold everywhere on the skeleton. For brevity, we do
not discuss them here in detail. It suffices to say that the constraints ensure that
surfaces b+, b− do not self-intersect and that b+, b− join together along medial
seams and edges to form a single closed surface B.

The medial model of the myocardium is shown in Fig. 1. Surfaces b+ and
b− describe the the epicardium and endocardium. The skeleton m has three
branches, corresponding to the LV wall, the RV wall, and the ventricular septum.

2.3 Statistical Shape Model

Training data are used to construct statistical models for myocardial shape and
thickness, as follows. The myocardial model (Fig. 1) is deformed to binary seg-
mentations of the myocardium in training data. The likelihood and prior terms
used in this deformation are specified in [14]. In brief, the likelihood measures
volume overlap between the binary segmentation and the model’s interior, and
the prior ensures model validity by penalizing violation of constraints in [15].
Rudimentary correspondence between training data is achieved by penalizing
the distortion in area element of m during deformation (this is roughly equiv-
alent to equal arc length parameterization for 2D models). The Generalized
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Procrustes algorithm is applied to points in the skeleton mesh to remove pose
variability from fitted medial models.

Variability in myocardial shape is modeled using a multivariate Gaussian dis-
tribution: principal component analysis (PCA) is applied to the x, y, z coordi-
nates of vertices on the skeleton m. Thickness variability is modeled by a more
localized Gibbs distribution (i.e., thickness is treated as a Markov random field):

− log p(R1, . . . , RN ;μ•, σ•) ∼

∼ λ1

N∑
i=1

(Ri − μi)2

σ2
i

+ λ2

∑
(j,k)∈E

(|Rj −Rk| − μjk)2

σ2
jk

, (2)

where i = 1 . . .N indexes vertices in the skeleton, and {μi, σi, μjk, σjk} are
parameters estimated from the training data. The reason we use different priors
for m and R stems from the fact that thickness varies much more smoothly than
the x, y, z coordinates of the skeleton. Thus, the MRF is an appropriate model
for thickness, but it is too restrictive for shape. We performed experiments that
show that using PCA for both m and R leads to worse segmentation performance
than using PCA for m and MRF for R.

2.4 Appearance Model

At each vertex in the medial model, we build a model of local appearance, which
is subsequently used to drive image segmentation. Recall that (1) associates
each vertex mi on the skeleton with two boundary vertices (BV), b+

i and b−
i .

At each BV, we train a classifier to discriminate between a “well-placed” BV
and a “misplaced” BV. A well-placed BV lies on the corresponding anatomical
boundary in the training image, and a misplaced BV lies some distance away
from the anatomical boundary. Well-placed BVs are obtained by fitting models
to manual segmentations of the myocardium in the training data. Misplaced
BVs are obtained by applying displacements to the well-placed BVs along the
direction from b+

i to b−
i (called the chord direction because b+

i b−
i is a chord of

the sphere (mi, Ri)). So training exemplars for each classifier include well-placed
and misplaced versions of a given BV across all subjects included in the training
subset. To further increase the number of training exemplars and make classifiers
less sensitive to location, we include, as training exemplars for each classifier,
misplaced and well-placed versions of the BVs in the two-ring neighborhood of
the BV associated with the classifier.

A rich set of features is used to build these classifiers. First, for each MRI slice,
we compute a set of rotation-invariant texture descriptors at different scales [7].
Using Einstein notation, with Lα denoting image derivative in direction α ∈
{x, y}, these descriptors are given by L, LαLα, Lαα, LαLαβLβ, LαβLβα. These
texture descriptors are sampled around each BV using a cylindrical sampling grid
oriented along the chord direction. Linear interpolation is used to sample texture
descriptors between slices. Thousands of features are obtained for each BV. For
each feature, a simple threshold-based weak classifier is constructed. AdaBoost
[5] is used to combine these weak classifiers into a single strong classifier.
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2.5 Automatic Segmentation

The automatic segmentation is initialized manually by identifying five landmarks
in the most basal slice of the MRI image and one landmark at the apex. The
template medial model is affinely aligned to the six landmarks. Subsequently, the
model is deformed by iteratively applying two steps: local search and Bayesian
deformation. Both of these steps are adaptations of the segmentation algorithm
used in active shape models [4,3], and we only summarize them here. During local
search, we displace each BV along the chord direction, so as to maximize the
probability of it being a “well-placed” BV; this probability is estimated using the
AdaBoost classifier trained for that BV. Given two displaced BVs b̂+

i and b̂−
i , we

compute a new position m̂i such that the triangles b̂+
i m̂i b̂−

i and b+
i mi b−

i lie
in the same plane and have the same shape; the new radius value R̂i is equal to
the radius of the circumscribed circle of b̂+

i m̂i b̂−
i . The mesh (m̂,R̂, E) resulting

from the local search step is not guaranteed to satisfy any of the constraints for a
“valid” medial model; nor does it respect statistical shape models computed from
training data. During the Bayesian deformation step, we deform the template
myocardial model to optimize a log posterior energy that is decomposed into
log likelihood and log prior terms. The log likelihood simply measures similarity
between (m, R) in the model and ˆ(m,R̂) computed by the local search:

log p(m̂,R̂ |m, R) =
N∑

i=1

[‖mi − m̂i‖2 + (Ri − R̂i)2] .

This likelihood treats m and R as having the same units, which has not been
a problem in practice. A likelihood term based on Mahalanobis distance could
also be used as an alternative. Prior terms include (a) validity priors that ensure
constraints on the medial model are satisfied; (b) PCA-based statistical shape
prior on m; (c) Markovian prior on R in (2); (d) a penalty on distortion in area
element, used to maintain rudimentary correspondence between subjects.

3 Results

Segmentation performance is evaluated using a cross-validation strategy. We
perform ten experiments in which the primary dataset (n=40) is divided into
a training subset (n=24, 6 images from each cohort) and test subset (n=16, 4
images from each cohort). In each experiment, we build shape and thickness
priors and train AdaBoost classifiers for appearance modeling using the training
subset. We then apply the segmentation method to the test subset. We measure
the difference between automatic segmentation results and manual segmenta-
tions and report average errors over the ten cross-validation experiments. Errors
are reported in terms of the widely used point-to-mesh distance metric (e.g.,[1]).
For each point on the mesh, the closest point (not necessarily a vertex) on the
other mesh is located and the Euclidean distance between these two points is
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Fig. 2. Example of automatic segmentation in a single subject. The top row shows
the manual segmentation in green and the model initialized by landmarks in blue. The
bottom row shows the segmentation result in red, with manual segmentation in green.
From left to right, slices progress from most basal slice to the apex.
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Fig. 3. Accuracy of the proposed method, expressed in terms of average mesh-to-point
boundary displacement error. A. Average error in four cohorts. Error is computed
separately for endocardial LV and RV surfaces, epicardium, and whole myocardium.
B. Sensitivity to initialization. Random displacement with standard deviation of 1, 5
or 10mm is applied to the landmarks used during initialization. Boundary displacement
error before (Init) and after segmentation (Final) is plotted for endocardial LV and RV
surfaces and the epicardium. Error bars indicate standard deviation in both plots.

calculated. This distance is computed for each point on the mesh and the weighted
average (according to the area) defines the point-to-mesh distance to the other
mesh. The distance is calculated from model-based segmentation mesh to the
ground-truth and vice versa to make the measurement symmetric.

Fig 2 shows an example of automatic segmentation, compared with initial
landmark-based placement of the model and manual segmentation. The model
correctly finds boundaries of the myocardium, separating it even from other
structures with the same intensity, such as papillary muscles. Fig. 3A plots the
average segmentation error in different regions of the myocardium for each clini-
cal cohort. Overall, the error is close to 1 mm, slightly less in the LV and slightly
higher in the RV. Errors are slightly higher in presence of pathology than in
controls. Sensitivity to initialization is illustrated in Fig. 3B, showing that the
method tolerates small errors in initial model placement.
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Table 1. Errors (± s.d. if known) reported in prior cardiac MR segmentation work

Method Resolution (mm3) LV (mm) RV (mm) EPI (mm)
Mitchell ’02 [11]p,c 1.56 × 1.56 × 9 2.75 ± 0.86∗ - 2.63 ± 0.76†

Lotjonen ’04 [10]c 1.0 × 1.0 × variable∗∗ 2.01 ± 0.31 2.37 ± 0.50 2.77 ± 0.49‡

van Assen ’08 [1] c 1.5 × 1.5 × 10 1.72 - 1.55†

Zhuang ’08 [17]c 2 × 2 × 2 2.4 ± 1.1 2.6 ± 1.5 1.3 ± 0.21†

Jolly ’09 [6] 1.25 × 1.25 × 8 2.26 - 1.97†

Peters ’10 [13]p 0.6 × 0.6 × 0.8 0.69∗∗∗ 0.74 0.83†

Our approach p,c 1.56 × 1.56 × 8 0.87 ± 0.23 1.19 ± 0.28 0.98 ± 0.23‡
p Evaluation in patient data. c Evaluation in control data. ∗Distance measured in
2D. ∗∗Short and long axis slices. ∗∗∗Error measured as surface to surface
distance. †LV epicardium only. ‡LV+RV epicardium.

4 Discussion and Conclusions

Our results show that the automatic segmentation method is rather accurate rel-
ative to manual segmentation, with errors on the order of 1 mm. Table 1 shows
that the accuracy of our method compares favorably with recently published
boundary-based segmentation cardiac techniques on similar data, although one
should use caution when comparing techniques that use different MRI sequences,
different segmentation protocols and different error criteria. Even when the land-
marks used for initialization are randomly displaced, our method achieves very
good accuracy. Additional experiments not detailed here show that the MRF
thickness prior is largely responsible for the strong performance of our method,
as without this prior, the accuracy degrades substantially. Such a prior is made
possible by the adoption of medial modeling.

As any complex Bayesian segmentation approach, our method requires many
parameters to be set, including the relative weights of different prior terms,
numbers and types of features used to train the appearance model, range of the
local search, etc. In future work, it will be essential to measure sensitivity of the
method to these parameters. Furthermore, it is critical to estimate how well the
method generalizes to cardiac MRI from different MRI scanners and cohorts.

In conclusion, we have presented and evaluated a novel technique for biventric-
ular myocardial segmentation. To our knowledge, it is the first such technique to
use medial models and to leverage thickness priors that such models enable. The
thickness prior, combined with established techniques from the boundary-based
cardiac segmentation literature result in excellent accuracy relative to manual
segmentation.
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Abstract. C-arm CT is an emerging imaging technique in transcatheter

aortic valve implantation (TAVI) surgery. Automatic aorta segmentation

and valve landmark detection in a C-arm CT volume has important ap-

plications in TAVI by providing valuable 3D measurements for surgery

planning. Overlaying 3D segmentation onto 2D real time fluoroscopic

images also provides critical visual guidance during the surgery. In this

paper, we present a part-based aorta segmentation approach, which can

handle aorta structure variation in case that the aortic arch and de-

scending aorta are missing in the volume. The whole aorta model is split

into four parts: aortic root, ascending aorta, aortic arch, and descending

aorta. Discriminative learning is applied to train a detector for each part

separately to exploit the rich domain knowledge embedded in an expert-

annotated dataset. Eight important aortic valve landmarks (three aortic

hinge points, three commissure points, and two coronary ostia) are also

detected automatically in our system. Under the guidance of the detected

landmarks, the physicians can deploy the prosthetic valve properly. Our

approach is robust under variations of contrast agent. Taking about 1.4

seconds to process one volume, it is also computationally efficient.

1 Introduction

Affecting 1.8% of the global population and 10.7% of persons older than 65,
aortic valve disease is the most common valvular disease in developed coun-
tries [1]. Implantation of a prosthetic aortic valve is often necessary to replace
the severely damaged native valve. Though open-chest valve surgery is a well
established procedure, minimally invasive transcatheter aortic valve implanta-
tion is an emerging technique, especially for high-risk patients, to minimize the
surgical trauma. Before the surgery, several important parameters of the aortic
valve (as shown in Fig. 1) need to be extracted for surgery planning. For ex-
ample, the diameter of aortic valve annulus needs to be measured to select a

T. Jiang et al. (Eds.): MICCAI 2010, Part I, LNCS 6361, pp. 476–483, 2010.
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Fig. 1. Applications of C-arm CT to transcatheter aortic valve implantation. Left: A

C-arm CT volume. Left Middle: Automatically segmented aorta together with the

detected valve landmarks. Right Middle: 3D geometric measurements of the valve.

Right: Overlay of the segmented aorta onto a 2D fluoroscopic image for visual guidance

during surgery.

prosthetic valve with an appropriate size. During the surgery, 2D fluoroscopic
images are captured in real time in a C-arm system to provide guidance to physi-
cians [2]. The aortic root structure is distinguishable from the background only
during a short period when the contrast agent is applied. However, the contrast
agent is toxic and its usage should be minimized. Computed tomography (CT)
is often used to provide the necessary 3D geometric measurements in surgery
planning. However, CT is rarely used during valve implantation surgery because
2D/3D overlay (or registration) of data captured from different imaging devices
is quite difficult. Recently, C-arm CT emerges as a new imaging technique with
the following advantages, compared to conventional CT. Since both the 3D vol-
ume and 2D fluoroscopic images are captured on the same device within a short
time interval, overlay of the 3D patient-specific aorta model onto a 2D image is
straightforward and accurate (except patient motion). Besides providing visual
guidance, the extracted aortic root can predict the best C-arm angulation (the
optimal orientation of the imaging plane) to mitigate the foreshortening effect.
For more details on the clinical applications of C-arm CT, please refer to [2,3].

A fully automatic system of aorta segmentation and valve landmark detec-
tion pays a key role in seamlessly integrating C-arm CT into the TAVI work-
flow. There are only a few methods proposed in literature to segment the aorta
in a 3D volume. Zhao et al. [4] proposed a semi-automatic method to segment
aorta in MR images. A user needs to manually select a seed point to initial-
ize the fast marching method, which generates a rough segmentation result.
Graph cut is exploited for final boundary refinement. Rueckert et al. [5] pre-
sented a tracking based segmentation method for the ascending and descending
aortas. The intersection of the ascending/descending aorta with the image slice
is roughly a circle, which is easy to track along slices. However, the curved aortic
arch cannot be handled elegantly. Since the aorta is a tubular structure, many
generic tubular structure detection approaches [6,7,8] can be extended to detect
and segment it. Automatic aortic valve landmark detection is a new topic with
very few publications in literature. Ionasec et al. [9] presented a comprehensive
aortic valve model, which included the important valve landmarks, e.g., hinge
points, commissure points, and coronary ostia. All the previous work focuses on a
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relatively consistent imaging protocol with much fewer variations than ours. For
example, a roughly same portion of the aorta is captured in the volume and the
usage of contrast agent is consistent, resulting in stable image characteristics.
Furthermore, most of the previous approaches are semi-automatic (a user needs
to click at least one point [4]) and very slow (taking up to 450 seconds to process
one volume [7]).

All of the previous methods work on the well established imaging modalities,
such as MR and CT. However, automatic segmentation of the aorta in a C-arm
CT volume is far more challenging. First, the image quality from different clin-
ical sites varies quite a lot since C-arm CT is too new to have a well accepted
scanning protocol. We also observed significant variations inside the same clinical
site since physicians were testing different scanning parameters (e.g., the amount
of contrast agent and timing of the image acquisition). Conventional image pro-
cessing techniques, e.g., intensity-based thresholding, region growing, and the
watershed method, are not robust under such large variations. We propose to
use machine learning techniques to exploit the rich information embedded in
an expert-annotated dataset. Second, the field of view varies quite a lot for a
C-arm CT volume. For example, the aortic arch and descending aorta may be
captured in some volumes (see the first two examples in Fig. 2), but missing
in others (see the last two examples in Fig. 2). To address this challenge, we
propose a part-based aorta model. As shown in Fig. 3, the whole aorta is split
into four parts: aortic root, ascending aorta, aortic arch, and descending aorta.
Using the part-based model, the whole aorta does not need to be fully present.

Fig. 2. Automatic aorta segmentation on a few example volumes. Left: Good contrast,

however, with severe valve regurgitation. Left Middle: Fair image quality. Right
Middle: Contrast agent is almost washed out due to bad timing. Right: Streak arti-

facts generated by the catheters.
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Depending on the structure that can be detected, different workflows can be
exploited, therefore, a large structure variation can be handled elegantly.

2 Part-Based Aorta Modeling and Segmentation

Due to the variation in the field of view, the aorta captured in a C-arm CT
volume changes a lot in its structure. In this paper, we present a part-based
aorta model (as shown in Fig. 3) by splitting the whole aorta into four parts:
aortic root, ascending aorta, aortic arch, and descending aorta. The aortic root is
required to be present in this application, therefore, it is detected and segmented
as the first step. To be specific, we use the recently proposed marginal space
learning (MSL) method [10] to segment the aortic root. MSL is an efficient
method to detect and segment a 3D anatomical structure in medical images
based on a discriminative machine learning technique. It is robust and works
for different imaging modalities. Due to the space limit, we would like to refer
readers to [10] for more details of MSL. As shown in the system diagram in
Fig. 3 , the aortic root is detected first. If no aortic root is detected, the input
volume is rejected. We then detect the aortic arch. Similarly, MSL is exploited
to train a separate detector for the aortic arch. For about half of the volumes
in our dataset, the aortic arch may be out of the field of view. If no aortic arch
is present, normally the descending aorta is also missing in the volume (see the
last two cases in Fig. 2).

The length of the ascending and descending aortas captured in a volume varies
significantly. It is difficult to detect them as whole objects. We propose to use
a tracking technique to deal with this variation. Since the intersection of the
ascending and descending aortas with an image slice is close to a circle, we train
a 2D circle detector using Haar wavelet features and the boosting learning algo-
rithm [10] to detect aortic circles as primitive structures for tracking. Starting
from the aortic root, we detect an aortic circle on the next slice (toward the
patient’s head). The detector outputs multiple circle candidates around the true
position. We pick the one closest to the circle on the current slice. If the aortic
arch is detected in the volume, the tracking procedure stops on the slice touching
the aortic arch. Otherwise, it stops when no aortic circle is detected or it reaches
the top volume border. Tracking of the descending aorta is similar except that
it starts from the aortic arch and moves toward the patient’s toe. It stops on the
slice with no aortic circle detected.

Assembling all the aortic parts together (the tracked aortic circles, aortic root,
and aortic arch if it is present), we get an initial surface mesh of the aorta. The
initialization is close to the true aorta boundary, however, a circle does not fit
the boundary exactly. A learning based boundary detector is applied for final
boundary delineation. Specifically, a two-step iterative approach is used. 1) Use
the learning-based boundary detector to adjust each mesh point along the surface
normal to the optimal position where the response of the boundary detector is
the largest. 2) Apply generic mesh smoothing [11] to get a smooth surface. The
above two steps repeat a few iterations to improve the boundary delineation
accuracy.
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MSL [10] can efficiently detect an object as a whole. However, it cannot deal
with structural variations. Therefore, almost all previous work uses bottom-
up approaches [4,5,6,7,8] to track the aorta centerline to handle the variations.
They are neither automatic nor robust on noisy images. In comparison, we use
MSL to detect the aortic root and arch, and use bottom-up tracking to detect
ascending/descending aortas that have large variations in length. Our system is
a nice combination of both approaches.

3 Aortic Valve Landmark Detection

Besides segmenting the aorta, we also detect eight aortic valve landmarks: three
aortic hinge points, three aortic commissure points, and left and right coronary
ostia since they are important in both surgery planning and providing visual
guidance during surgery [3]. Though it is possible to detect each landmark inde-
pendently, the detection results may be inconsistent in geometry. It also wastes
computation power by ignoring the strong geometric constraint among the land-
marks. We propose to use a hierarchical approach by first detecting a global
object comprised with all eight valve landmarks. From the position, orientation,
and scale of this global object, we can infer the rough position of individual land-
marks. Each landmark is then refined in a small region (e.g., a cube of 20 mm
centered on the initial position) under the guidance of its own specific landmark
detector.

Similar to the aortic root detection, we use marginal space learning (MSL) [10]
to efficiently detect the position, orientation, and scales of the global landmark
object. For a learning based method, we need to specify the ground truth of
object pose for each training volume, therefore, a learning algorithm can learn the
implicit relationship to infer the correct pose from an unseen volume. However,
there is no standard way to define the pose of the global object containing eight
landmarks. After detecting the global landmark object, we align the mean shape
(which is the average shape of the training set after global transformation has
been compensated) to the global pose to get an initial estimate of each individual
landmark’s position (see Eq. (2)). In this paper, we propose a method to search
for an optimal shape which can represent the whole shape population accurately,
therefore improving the initialization accuracy of the landmarks. Given a group
of shapes, M1,M2, . . . ,MN , we want to find an optimal shape m̄ to represent the
whole population such that it can minimize the residual errors after alignment,

m̄ = arg min
m

N∑
i=1

‖Ti(m)−Mi‖2 . (1)

The optimal shape m̄ is called the mean shape in this paper. Ti is the cor-
responding transformation from the mean shape m̄ to each individual shape
Mi. This procedure is called generalized Procrustes analysis in statistical shape
analysis [12].
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Previously, the generalized Procrustes analysis is only performed under the
similarity transformation (i.e., T is a similarity transformation). MSL can esti-
mate anisotropic scales quite efficiently. With more deformation compensated,
the mean shape is more accurate to represent the whole shape population. There-
fore, in our approach T represents translation (T = [X,Y, Z]′), rotation (rep-
resented as a rotation matrix R), and anisotropic scaling (Sx, Sy, Sz). The
transformation of a 3D point P is

T (P ) = R

⎡⎣Sx 0 0
0 Sy 0
0 0 Sz

⎤⎦P + T. (2)

To the best of our knowledge, there are no closed-form solutions for estimating
the anisotropic similarity transformation. We propose an iterative algorithm. We
first estimate the similarity transformation (translation, rotation, and isotropic
scaling), which has closed-form solutions [12]. After compensating the similarity
transformation, we estimate the three anisotropic scaling parameters (Sx, Sy,
Sz), for which we derive a closed-form solution. With a module solving the
anisotropic similarity transformation between two shapes, we can plug it into
the generalized Procrustes analysis method to search for the optimal mean shape
m̄. Besides the optimal mean shape, the transformation Ti of the mean shape to
each example shape Mi is also calculated as a by-product, which provides the
pose ground truth that MSL can learn to estimate.

4 Experiments

A dataset of 192 C-arm CT volumes from 152 patients were collected from
two clinical sites to evaluate our method. The size of each slice in a volume is
256 × 256 or 512 × 512 pixels. A volume contains around 200-300 slices. The
image resolution is isotropic and varies from volume to volume in the range of
[0.70, 0.84] mm.

A four-fold cross-validation is performed to evaluate our algorithm. The aorta
segmentation accuracy is measured using the symmetric point-to-mesh distance
Ep2m [10]. The mean segmentation error of the aorta is 1.1 mm, with a standard
deviation of 0.41 mm. We cannot compare our error with those reported in the
literature directly because they used different datasets captured from different
imaging modalities. Roughly, our accuracy is comparable to (or better than) the
state-of-the-art, e.g., 1.55 mm mean error reported in [4] on 21 MR datasets
and 1.4 mm mean error reported in [7] on 23 CT datasets. Fig. 2 shows aorta
segmentation results on a few volumes. The first example shows a volume with
good image quality. However, due to severe valve regurgitation the contrast
leaks into the left ventricle. The third example shows a case with bad image
acquisition timing where the contrast agent has almost been washed out. Severe
streak artifacts generated by catheters are clearly visible in the last volume.

In the following experiment, we evaluate the valve landmark detection accu-
racy. There are a total of 28 volumes with extremely poor image quality that
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the landmarks cannot be identified even by an expert (though the aorta can be
successfully segmented from these volumes). So these images are excluded. A
four-fold cross-validation is performed on the remaining 164 volumes for aortic
valve landmark detection. The landmark detection accuracy is measured using
the Euclidean distance from the detected landmark to the ground truth. Ta-
ble 1 shows the detection errors. After global landmark object pose estimation,
we can get a good initial estimate of the landmark position. The mean errors
range from 5.40 to 5.81 mm for different landmarks. After local refinement for
each landmark, the error is further reduced. For example, the mean error for
the aortic hinges reduces from 5.40 mm to 2.41 mm. Fig. 4 shows the detected
valve landmarks in two typical volumes. Our approach is computationally effi-
cient, taking about 1.4 seconds to process a volume on a computer with 3.2 GHz
duo-core processors and 3 GB memory. It is at least 10 times faster than the
previous methods [5,7].

Table 1. Aortic valve landmark detection errors based on a four-fold cross-validation on

164 volumes. The mean, standard deviation (STD), and median of the errors (measured

in millimeters) are reported.

Aortic Hinges Coronary Ostia Aortic Commissures
Mean STD Median Mean STD Median Mean STD Median

After Global Pose Estimation 5.40 2.51 4.83 5.81 2.45 5.18 5.43 2.26 5.20
After Local Refinement 2.41 1.50 1.90 2.74 2.43 1.77 3.46 1.78 3.11

Fig. 4. The aortic valve landmark detection results on two example datasets with red

dots for the hinge points, yellow for the commissure points, blue for the left coronary

ostium, and green for the right coronary ostium. Each row shows three orthogonal cuts

of a volume.
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5 Conclusion

In this paper, we presented a fully automatic aorta segmentation and valve land-
mark detection system in C-arm CT with applications to transcatheter aortic
valve implantation (TAVI). The initial clinical trial demonstrated the usefulness
of our system in the TAVI workflow, e.g., providing a proper angulation to avoid
large tilting of a prosthetic valve after deployment [3]. Our approach is generic,
therefore can be extended easily to other imaging modalities by simple retrain-
ing, without any manual parameter tuning. A similar system has been built on
cardiac CT datasets to use conventional CT for surgery planning.
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Abstract. Conventional whole-heart CAC quantification has been

demonstrated to be insufficient in predicting coronary events, especially

in accurately predicting near-term coronary events in high-risk adults[1].

In this paper, we propose a lesion-specific CAC quantification frame-

work to improve CAC’s near term predictive value in intermediate to

high-risk populations with a novel multiple instance support vector ma-

chines (MISVM) approach. Our method works on data sets acquired with

clinical imaging protocols on conventional CT scanners without modify-

ing the CT hardware or updating the imaging protocol. The calcific le-

sions are quantified by geometric information, density, and some clinical

measurements. A MISVM model is built to predict cardiac events, and

moreover, to give a better insight of the characterization of vulnerable

or culprit lesions in CAC. Experimental results on 31 patients showed

significant improvement of the predictive value with the ROC analysis,

the net reclassification improvement evaluation, and the leave-one-out

validation against the conventional methods.

1 Introduction

Atherosclerosis is the leading cause of morbidity and mortality worldwide. Later
stages of atherosclerosis are characterized by progressive deposition of calcium in
the coronary arterial vessel-wall. CT-based CAC scanning is a three dimensional
imaging technique that efficiently quantifies calcium in the coronary vasculature
in a non-invasive, low-radiation way. CT-based CAC measurements are widely
used clinically for cardiac disease diagnosis and treatment planning.

Presently the popular CAC measurements are the whole-heart Agatston score
(AS) [2] and the whole-heart volume score (VS) [3]. The AS is calculated by mul-
tiplying the area of calcification by an arbitrary weighted density score based on
the maximum Hounsfield unit (HU) value. The VS is defined as the total volume
of the calcification in the major epicardial arteries, where calcification is identi-
fied as voxels with HU≥ 130. The whole-heart AS/VS have been validated to be
independent of, and additive to, the Framingham Risk Score (FRS) in predict-
ing major cardiovascular events [4]. Recently, a coronary calcium coverage score

T. Jiang et al. (Eds.): MICCAI 2010, Part I, LNCS 6361, pp. 484–492, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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was proposed to quantify the percentage of coronary arteries affected by calcific
plaque, but it was not superior to the whole-heart AS/VS in prediction of hard
cardiac events[5]. Some standard statistical methods, such as Cox regression and
Kaplan-Meier estimator, are widely used to evaluate predictive values of coronary
events on relatively long term data sets[6,7], and a very significant conclusion
has been made: the absolute CAC measure is more predictive of coronary events
than other regular clinical measurements. However, the information obtained by
the relatively long-term studies is limited to individual patient treatment. In
clinics, near-term event prediction is more desirable for treatment planning in
intermediate to high-risk patients. In [1], a comparison study has shown that the
whole heart AS/VS CAC measurements does not accurately predict near-term
future coronary events in high-risk adults.

In this paper, we aim at improving CAC’s near-term predicative value of major
adverse cardiac events (MACE) including death, nonfatal myocardial infarction,
and revascularization, in intermediate to high-risk population by using lesion-
specific CAC quantification. Besides the whole heart AS/VS, a three dimensional
CAC volume contains other clinically significant relevant information, such as
the number of plaque lesions and geometric characteristics of lesions. These
lesion-specific CAC evaluations will be more helpful for near-term prediction
of MACE than the conventional whole heart CAC. For instance, the decision
making of revascularization is largely based on the severity and location of the
arterial stenosis. [8] showed that distance to corresponding ostium was a good
indicator in analyzing cardiac events. However, different patients have different
numbers of calcific lesions with different lesion distributions. MACE is generally
caused or induced by one or a few culprit or vulnerable lesions, but it is hard to
discriminate such risky lesions without further examinations. Thus, conventional
pattern-level supervised learning approaches can not work well.

To handle these issues, we proposed to use multiple instance support vector
machines (MISVM) [9] to estimate the predictive value of CAC scan for the
incidences of MACE. The idea of MISVM is to perform a soft-margin based
SVM on the unobserved instances, subjected to constrains defined by the la-
beled bags. The bag is labeled as positive if at least one instance in a bag is
positive. Otherwise a bag is negative. We model each patient’s lesion-specific
CAC quantification results as a bag of instances, in which each lesion is taken
as an instance. While each instance may posses an associated true label, i.e.,
leading to a event (positive) or not leading to a event (negative), the labels of
the instances are only implicitly accessible through the labels associated with
the bags. The MISVM model can not only predict the event risk efficiently, but
also it can evaluate the culprit or vulnerable lesions. We assessed our method
on 31 patients’ data including 11 patients with MACE and 20 patients without
MACE all within 2 years after the CAC scan. Experimental results showed it
significantly improved the prediction accuracy with the ROC analysis, the net
reclassification improvement evaluation, and the leave-one-out testing compared
to the conventional methods including the whole AS/ VS [2,3] and FRS [4].
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2 Methodology

2.1 Lesion-Specific CAC Quantification

Although the whole-heart CAC scores can indicate the risk of cardiac disease,
the lesion-specific details of the calcification have a potential to play an additive
and indispensable role in determining the extent and severity of the coronary
disease. In this paper, we aim to extract lesion-specific detailed information
for CAC event analysis. Our method works on data sets acquired with typical
clinical imaging protocols on conventional CT scanners without modifying the
CT hardware or updating the imaging protocol.

Fig. 1. The major coronary arteries and

the arterial ostia
Fig. 2. Calcific lesion segmentation result

We only take account of 4 major coronary arteries: the left main coronary
artery (LM), the left anterior descending artery (LAD), the left circumflex artery
(LCx) and the right coronary artery (RCA), as shown in Figure 1. A simple
but efficient 3D 6-connectedness flood-fill operation is adopted to segment the
lesions, which is defined as a group of calcific voxels that are 6-connected to
each other, but not connected to any other calcific voxel in the binary calcium
volume. The definition of 6-connectiveness is shown in Figure 3: (a) the blue
voxel in the center is 6-connected to its 6 neighboring green voxels; (b) Voxel
1 is 6-connected with voxel 2 by a 6-connected path. Starting from the user-
specified seed point in an epicardial arterial calcified lesion, the 3D lesion is easily
segmented by propagating the 3D 6-connectedness flood-fill operations.Figure 2
shows the segmentation result of one sample. The locations of the major arterial
ostia are identified manually in the 3D CAC volume.

Fig. 3. 6-connectiveness in 3D volumes Fig. 4. The lesion’s length and width
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Suppose lesion L has N voxels with physical coordinates pi, i = 1, 2, · · ·N
and the same resolution of r = (rx, ry, rz)′; The physical coordinates of the
corresponding artery ostium is po. We quantify L with a 10 dimensional feature
covering geometrical information, density, and clinical measurement as:

Length and Width: Given the covariance matrix of the voxels in the lesion,
we calculate its eigenvectors v1, v2, v3 and corresponding eigenvalues λ1, λ2, λ3.
Assuming λ1 ≥ λ2 ≥ λ3, we define the length as the maximum distance be-
tween any two lesion voxels along the direction of v1, and the width is the
maximum distance between any two lesion voxels along the direction of v3,
L = max

i,j=1,2,...N,i�=j
|(pi − pj)′ · v1| and W = max

i,j=1,2,...N,i�=j
|(pi − pj)′ · v3|, respec-

tively. Figure 4 shows an example.

VS: The lesion’s volume score is calculated by, V S = N ·rx ·ry ·rz. If the volume
score is smaller than 1, we will treat it as noise and discard it.

Distance to Ostium: We also take account of the distance of the lesion to the
ostium, and it is calculated by, D = ‖po − p̄‖2 , where p̄ = (

∑N
i=1 pi)/N .

Neighborhood Relationship: A group of adjacent calcific lesions with spotty
appearance are usually associated with higher event risks [10]. To describe such
geometric inter-dependence between the lesions, we introduce a relationship fea-
ture for each lesion, defined as: Ri = 1

σ
√

2π

∑
j exp−(dij)2/(2σ2), j != i, where

the j -lesion is the neighbor of the i-lesion locating in the same artery; σ deter-
mines the neighborhood size; dij is the distance between two lesions.

Maximum HU and Average HU Values: HU value is widely to measure
the density of CAC. Besides the maximum HU (MHU) value in the lesion, we
also calculate the average HU (AHU) value to describe the lesion’s density.

2D/3D AS: 2D AS is the popular clinical measurement used by the doctors.
We also define 3D AS to measure the lesions, which is scored by the whole 3D
volume and the highest HU value in the whole 3D lesion like the 2D AS scoring.

Artery Index: We should also indicate the artery where the lesion exists in.
We label LM, LAD, LCx, and RCA by Ind = 1, 2, 3, 4, respectively.

2.2 MISVM Based Cardiac Event Prediction Model

As mentioned in the introduction, different patient’s CAC scans contain different
number of calcific lesions, which will result in different length of the patient-
scan-based feature vector. MACE is generally caused or induced by one or a few
culprit or vulnerable lesions, but it is hard to label culprit or vulnerable ones
without further examinations. All these issues make conventional pattern-level
supervised learning methods difficult to predict cardiac event.

In this paper, we developed a novel MISVM model to predict MACE using
lesion-specific CAC quantifications. MISVM is an extension of the conventional
SVM classifier, in which training class labels are associated with sets of samples
(or bags), instead of individual samples (or instances) [9]. The labels of instances
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are only indirectly associated with the labels of bags. If a bag is labeled as
positive, it means that at least one instance inside the bag is positive. A bag is
labeled as negative if and only if all the instances in the bag are negative. Besides
MISVM does not need the label information of instances, the size of instances
in each bag can be different, so MISVM can deal with the above issues well. We
take each patient as a bag, and each calcific lesion as an instance. We label the
patient with MACE as a positive bag and one without MACE as a negative bag.

For convenience, we define some notations first. The patient bag Bi has ni

instances (lesions), Bi = {xi,1, xi,2, ..., xi,ni}, and its label Yi = 1 or − 1. The
labels of the instances in the bag Bi as {yi,j} ∈ {1,−1}j=1,2...,ni, but they are
unknown. {yi,j} is indirectly associated to Yi following this constrain:

ni∑
j=1

yi,j + 1
2

≥ 1 : Yi = 1, and ∀j, yi,j = −1 : Yi = −1. (1)

Similar to the conventional SVM, the goal of MISVM is to find a separating
hyperplane (w, b) to make maximum margin between the positive instances and
the negative instances, so as to efficiently separate the positive bags and the
negative bags. The MISVM classifier can be defined as:

min
{yi,j}

min
w,b,ξ

1
2 ‖w‖

2 + C
∑
i,j

ξi,j

s.t. ∀i, yi,j(< w, xi,j > +b) ≥ 1− ξi,j , yi,j ∈ {1,−1} and ξi,j ≥ 0

∀i, Yi = 1 :
ni∑

j=1

yi,j+1
2 ≥ 1, Yi = −1 : ∀j, yi,j = −1

(2)

where ξi,j are slack factors. This is a typical mixed integer programming problem,
which is difficult to be solved directly, for it aims to find the optimal labeling of
instances and the optimal hyperplane based on the bags. [9] presented a heuristic
optimization to solve this problem as: (1) given the labels of the instances, solve
the associated quadratic program (QP) as the conventional SVM; (2)use the
solution of the QP to label the instances; (3) update some labels of the instances
to follow the definition of bags. The iteration continues until the labels no longer
change. Initially, the labels of the instances are set according to their associated
bags’ labels.

3 Experiments

The experimental data consisted of 31 patients including 11 patients with MACE
and 20 patients without MACE in 2 years after the CAC scans. 10 MACE
patients underwent invasive revascularization procedures, and another MACE
patient died from a myocardium infarction. CAC examinations were performed
on a 64 MDCT system (Siemens Somatom), and the images were acquired using
3mm collimation with 2mm inter-slice gap with non-constrast enhanced scans.
Acquisition parameters included a gantry rotation of 330-375ms, pitch 0.24, tube
voltage 120kV, and tube current of 250mAs.
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3.1 MACE Prediction Result Analysis

We adopted three testing analysis methods to evaluate the performance of the
proposed MISVM model: ROC analysis, the net reclassification improvement
evaluation [11], and leave-one-out validation. We compared the proposed MISVM
model with the whole AS/VS [2,3] and FRS [4]. Different from Cox Regression
and Kaplan-Meier estimation that require longer follow-up[6,7], we focus on near-
term estimation, so we do not consider them for comparison. The Gaussian kernel
is adopted for the MISVM model, k(x, y) = exp(−γ ‖x− y‖2), and γ = 0.65.
For two lesions in the same vessel, if their distance is less than 5mm, we take
them as neighbors and set σ = 3.

ROC Analysis: We first evaluate the proposed method by the ROC analysis.
The ROC curves of the whole AS, the whole VS, and FRS were directly generated
by an adaptive decision threshold search on the original values, and the ROC
curve of MISVM was obtained by adaptively adjusting the decision values of
SVM [12]. Figure 5 shows the comparison results, where the left is the ROC
curves and the corresponding accuracy (AUC), standard error (S.E.), and 95%
confidence interval (C.I.) are listed in the right. We can see MISVM obtains a
better performance than the other three methods. The AUC of MISVM is 0.8318,
while the whole-heart AS/VS and FRS are 0.65, 0.6636, and 0.5075 respectively.
At the sensitivity level of 80%, which is commonly used as the clinical cut-off
point for choosing preventive treatment, the specificity of MISVM is improved
to over 75% compared to the specificities of about 35% by using the whole-heart
AS/VS respectively. Because FRS is basically equal to guess from Figure 5, we
will not discuss it in the following experiments.

Fig. 5. Comparison of the ROC analysis

The Net Reclassification Improvement Evaluation: The goal of MACE
risk prediction is not to simply give an individual’s risk, but to help further
diagnostic and therapeutic decision-making for improving clinical outcomes and
lower cost. As suggested by the American Heart Association guideline, the net
reclassification improvement (NRI) quantitatively assesses the improvement in
risk prediction offered by the new marker by quantifying the correct movement
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Table 1. Comparison of NRI

MISVM vs. MISVM vs.

Whole AS Whole VS

NRI 76.36% 90.45%

p 0.001 0.0005

Table 2. Leave-One-Out Validation

MISVM Whole AS Whole VS

αdeterm 65.38% 66.7% 61.5%

η 16.13% 61.5% 58.1%

αoverall 54.84% 25.8% 25.8%

in risk categories[13], in which the risky is divided into three categories: a safe
category that is below 90% sensitivity cut-off point for conservative treatment,
a high-risk category that is above the 90% specificity cut-off point for aggressive
treatment, and an indeterminate category in between the two cut-off points for
further diagnostic testing. The NRI-based experimental results are reported in
Table 1. NRI of MISVM over both the whole AS/VS are 76.36% with p =
0.001 and 90.45% with p = 0.0005 respectively, which shows the significant
improvement of MISVM to CAC’s event predication accuracy.

Leave-One-Out Validation: Furthermore, we cross validated our method on a
leave-one-out basis with the above safe, high-risk, and indeterminate categories.
For diagnostic purposes, physicians will be interested in improving the predic-
tive accuracy in the safe and high-risk categories, and reducing the proportion
of patients in the indeterminate category. Thus, we define three measurements
for evaluation: (1). the predictive accuracy in the determinate safe and high-risk
categories, αdeterm = (Ns

n + N r
p )/(Ns

p + Ns
n + N r

p + N r
n); (2). the patient per-

centage in the indeterminate zone, η = (Nt − Ns
p − Ns

n − N r
p − N r

n)/(Nt); (3).
the overall predictive accuracy, αoverall = (Ns

n + N r
p )/(Nt), where Ns

p and N r
p

are the number of safe and high-risky categories in the positives respectively, Ns
n

and N r
n are the numbers of safe and high-risky categories in the negatives, and

Nt is the number of the total patients.
Table 2 lists the results of the leave-one-out validation. We can see that the

proposed MISVM achieves similar αdeterm accuracy level compared to the whole
AS/VS (65.38%, 66.7%, and 61.5% respectively) in the safe and high-risky cate-
gories, while the undecidable patient percentages in the indeterminate category
are largely decreased from 61.5% and 58.1% to 16.13%. MISVM improves the
overall predictive accuracy from 25.8% to 54.84%.

3.2 Lesion-Level Risky Analysis

As described in Section 2.2, MISVM can also discriminate whether or not the
patient has lesions of event risk. Table 3 reports the statistical mean value of
safe and high-risky lesions predicted by MISVM. We can see some differences
that are in good accordance with clinical observations. For instance, the high-
risky lesions are statistically much larger than the safe lesions in VS, AS, length,
and HU values. Although the statistics of the lesion distance seem inconsistent
with clinical observation, we find that many small non-risky lesions with small
distances to the ostia could be a reason of this inconsistency.

Additionally, we found that most high-risky lesions are from LAD. It is con-
sistent to clinical observations: LAD is a major coronary artery that supplies
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Table 3. Overall comparison between the risky and safe lesions

VS 2D AS 3D AS Length Width Distance MHU AHU

Risky 136.38 180.29 173.12 13.46 1.08 49.68 507.1 235.45

Safe 29.37 36.43 33.18 5.64 0.81 28.23 351.5 196.63

the most important myocardial territory. Revascularization is more likely per-
formed in LAD than the other coronary arteries [14]. For the MACE samples,
we also found about 85% high-risk lesion with neighbors and 15% high-risk le-
sions without neighbors. Figure 6 (a) and (b) show two representative samples
that were correctly predicted as MACE. The lesions in red were classified as
risky, while the lesions in green were non-risky. The risky lesions predicted in
(a) are relatively larger lesions with high AS and VS. The risky lesions predicted
in (b) are spotty calcification. In addition, Figure 6 (c) shows a representative
non-event sample that was incorrectly classified, with the red risky lesions. It is
interesting to see that these lesions have both the characteristics of large size
and spotty calcification, which suggests that CAC scan might not be a complete
indicator of MACE. In future work, we plan to include more clinical cues, such
as patients’ age, gender, history of smoking, hypertension, and diabetics, and
biomarkers from blood tests, to develop a more accurate event predictor.

Fig. 6. Representative samples. (a) and (b) are two positive samples that are correctly

classified; (c) is a negative sample that is incorrectly classified as positive.

4 Conclusion

In this paper, we proposed a MISVM based lesion-specific CAC quantification
framework to improve the event prediction value of CAC scanning. Different from
the conventional whole-heart CAC scores, it took account of a more comprehen-
sive lesion-specific CAC information from routine CAC scans, and achieved bet-
ter prediction sensitivity and specificity. Besides event prediction, it can also be
used to characterize culprit or vulnerable calcific lesions, and evaluate their as-
sociated event risks. Experimental results demonstrated that it has the potential
to significantly improve the clinical predictive value of CAC.
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Abstract. In this paper we propose a Markov random field (MRF)

based method for joint registration and segmentation of cardiac per-

fusion images, specifically the left ventricle (LV). MRFs are suitable for

discrete labeling problems and the labels are defined as the joint occur-

rence of displacement vectors (for registration) and segmentation class.

The data penalty is a combination of gradient information and mutual

dependency of registration and segmentation information. The smooth-

ness cost is a function of the interaction between the defined labels.

Thus, the mutual dependency of registration and segmentation is cap-

tured in the objective function. Sub-pixel precision in registration and

segmentation and a reduction in computation time are achieved by using

a multiscale graph cut technique. The LV is first rigidly registered before

applying our method. The method was tested on multiple real patient

cardiac perfusion datasets having elastic deformations, intensity change,

and poor contrast between LV and the myocardium. Compared to MRF

based registration and graph cut segmentation, our method shows supe-

rior performance by including mutually beneficial registration and seg-

mentation information.

1 Introduction

Dynamic perfusion magnetic resonance (MR) images are characterized by rapid
intensity change over a region of interest, low spatial resolution, poor contrast
and noise. Therefore, registration or segmentation of the left ventricle (LV) in
cardiac perfusion datasets is a challenging task. However, there are certain char-
acteristics of perfusion images which make it appealing for joint registration
and segmentation. The LV is characterized by varying levels of intensity over
the image acquisition process. While the changing contrast makes registration
difficult, it also helps in segmentation. Clear identification of object boundaries
leads to greater accuracy in feature extraction and hence improved registration.
Motivated by this scenario and the need to implement a computationally effi-
cient method, we propose a Markov random field (MRF) framework for the joint
registration and segmentation of the LV in cardiac perfusion datasets.

The first work on joint registration and segmentation [1] used an active con-
tour framework to interleave level set segmentation with a feature based regis-
tration method. It successfully segmented and registered portal images to CT

T. Jiang et al. (Eds.): MICCAI 2010, Part I, LNCS 6361, pp. 493–501, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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scans. Partial differential equations were used in [2] for joint registration and
segmentation while a statistical model was presented in [3]. Wyatt and Noble
in [4] combine MRFs and Bayesian estimation for joint registration and seg-
mentation where the use of MRFs is limited to segmentation. There are other
methods where registration plays an important role in segmentation and vice-
versa. In [5] an image is registered to an atlas or a clearly identified object using
level sets. Likewise, including shape information in active contours requires a
model of shape variation [6] involving accurate registration of training images.
In combining registration and segmentation, the major challenges are to ensure
convergence and prevent estimates of registration or segmentation parameters
adversely affecting each other. Equally important is to define appropriate energy
functions and include relevant information for both processes.

The important contribution of our work is in developing an MRF method
for the joint registration and segmentation of cardiac perfusion images. Previ-
ous methods are based on active contours which, being iterative, have a high
computation time, are likely to be trapped in local minima, and are sensitive to
initialization. On the other hand discrete optimization techniques for MRFs, like
graph cuts, can find a global or strong local optima in less time. We formulate
the joint registration and segmentation problem as one of labeling where each
label defines the joint occurrence of displacement field (for registration) and seg-
mentation class. The cost function is a combination of the mutual dependency of
registration and segmentation information at every label and a multiresolution
graph cut optimization reduces the computation time. The rest of the paper is
organized as follows: Section 2 gives details about joint registration and segmen-
tation and our MRF formulation. Section 3 presents our experiments and results
and we conclude with Section 4.

2 Theory

2.1 Joint Registration and Segmentation

In registration the objective is to match each pixel in the floating image to the
most similar pixel in the reference image and the similarity metric depends on
the type of images being used. The displacement field is regularized to give a
smooth deformation and the smoothness constraints depend upon the registra-
tion framework. For B-spline [7] and other curve based registration methods,
curve gradients are used as smoothness constraints. In [8], Shekhovstov et al.
used MRFs for non-rigid registration where smoothness depends upon the rela-
tive displacement between labels. Since the smoothness formulation is not based
on the boundary properties of the object being registered it may result in un-
expected deformations of the registered image, especially at object boundaries.
This shortcoming is overcome by smoothness criteria based on object features
which is integral to joint registration and segmentation.

To achieve joint registration and segmentation between a pair of images the
following points have to be kept in mind when formulating the energy func-
tion: 1) mutual dependency of registration and segmentation is considered; 2)
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registration and segmentation information contribute equally; and 3) estimate
of registration parameters does not adversely affect segmentation parameters or
vice-versa. The active contour framework in [1] was able to achieve joint registra-
tion and segmentation by defining a continuous valued mapping between refer-
ence and floating images. A major disadvantage of the active contour framework
is the multiple iterations needed for convergence. As with all energy minimiza-
tion techniques using gradient descent, there is the possibility of the curve being
trapped in local minima. The position of the initial curve also influences the final
solution. Although this can be overcome by employing a standard segmentation
technique to obtain an initial curve, the problems of multiple iterations and
getting trapped in local minima still persist. The number of iterations can be
greatly reduced by using graph cuts. Graph cuts is based on max flow approach
and is very effective in finding the global minima or a strong local minima of
discrete MRF energy formulations [9].

2.2 Markov Random Fields

MRFs have been previously used with perfusion images for elastic registration
[10] and segmentation [11]. Its energy function takes the following form

E(f) =
∑
s∈P

Ds(fs) +
∑

(s,t)∈N

Vst(fs, ft), (1)

where P denotes the set of pixels, fs denotes the label of pixel s ∈ P in the
floating image and N is the set of neighboring pixel pairs. For joint registration
and segmentation fs gives both the displacement vector and the segmentation
class of pixel s, i.e., fs = {x1

s, x
2
s, Ls} with xs= {x1

s, x
2
s} denoting displacement

along the two axes and Ls denoting the segmentation class (Ls = 1 denotes
object and Ls = 0 denotes background). The labels of the entire set of pixels are
denoted by f . D(fs) = D1(xs) + D2(Ls, xs), is a unary data penalty function
derived from observed data and measures how well label fs fits pixel s. Vst is a
pairwise interaction potential that imposes smoothness and measures the cost
of assigning labels fs and ft to neighboring pixels s and t. The optimization
scheme for (1) using graph cuts is discussed later. Next, we discuss each term of
the energy function in detail.

Data Penalty Term: Ds assigns a penalty to a pixel s taking on a particular
label fs = {x1

s, x
2
s, Ls}. Ds is defined as the sum of two penalty terms. The first

term is a function of gradient information and by itself is suitable for registration.
The second term includes mutual dependency of registration and segmentation
in the penalty term. The following issues are considered in combining the two
penalty values: 1) the individual penalties have the same dynamic range, i.e., the
difference between their maximum and minimum values should be same; 2) the
individual terms are robust for their specific purposes; and 3) the combination of
the two terms truly captures the mutual dependency of registration and segmen-
tation. For greater accuracy and robustness a pixel block centered at the pixel is
used to calculate the data penalty. We refer to the block centered at pixel s as sb.
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Let If (sb, i) denote the intensity of the ith pixel of block sb in the floating image
If and Ir(sb, i) denote the corresponding pixel intensity in the reference image
Ir. The pixel block at s + xs is denoted as sb + xs and the intensity of its ith
pixel in Ir is given by Ir(sb + xs, i). The corresponding edge orientation angles
in the two images are given by βf (sb, i) and βr(sb + xs, i) and the correspond-
ing edge magnitudes are given by Mf(sb, i) and Mr(sb + xs, i). Note that the
data penalty is for each pixel but is calculated over a pixel block for robustness.
D1(xs) incorporates registration information in the objective function and is a
function of gradient orientation information. It is given by

D1(xs) =
1
2

[
1−

∑
i Mr(sb + xs, i)Mf (sb, i) cos (Δβ(xs, sb, i))∑

i Mr(sb + xs, i)Mf (sb, i)

]
, (2)

where Δβ(xs, sb, i) = βr(sb + xs, i) − βf (sb, i). Edge information has been suc-
cessfully used to register contrast enhanced images [12] and is a robust feature
in the face of intensity changes. D1 is a normalized metric that gives values be-
tween 0 and 1 with 0 indicating a perfect match. Since D1 is a penalty, its value
is low for greater similarity between the pixel blocks.

The second penalty term, D2 is a function of the mutual dependency of seg-
mentation class and displacement vectors. The LV and myocardium are identified
in If by drawing masks around it and If is rigidly registered to Ir . The inten-
sities of pixels inside (outside) the mask are used to create Gaussian models of
object (background). Let pfo(s) denote the posterior probability of pixel If (s)
belonging to object and pfb(s) denote its probability of belonging to background.
The probability of pixel Ir(s + xs) belonging to object/background is given by
pro(s+ xs)/prb(s+ xs). Note here that by s we refer to the pixel at s. Similarly,
s + xs refers to the pixel at location s + xs. We do not use i because D2 is
calculated from individual pixel intensity values. Thus, D2 is given by

D2(Ls = 1, xs) = 1−
√

pfo(s)× pro(s + xs),
D2(Ls = 0, xs) = 1−

√
pfb(s)× prb(s + xs)

(3)

For registration and segmentation to jointly influence the penalty term, the
segmentation information from the reference and floating image are combined
as a function of displacement vectors. If pfo(s) and pro(s + xs) both have a
value greater than 0.5 the pixel is likely to belong to the object and the penalty
for Ls = 1 is low. The corresponding penalty for Ls = 0 is high. If pfb(s) and
prb(s + xs) have probability values greater than 0.5, indicating a background
pixel, the penalty for background class is low and the corresponding penalty for
object class is high. When there is ambiguity over the segmentation class, i.e.,
pfo(s) ≥ 0.5 and pro(s + xs) < 0.5 or pfb(s) ≥ 0.5 and prb(s + xs) < 0.5 then
the square root of the product of the probabilities ensures that both the floating
and reference image contribute to the penalty of each label.

Pairwise Interaction Term: This term is used to regularize the solution and
combines smoothness constraints due to displacement vector and segmentation
class. It is defined as
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Vst(fs, ft) = λst

⎧⎨⎩0.002, (Ls = Lt) and |xs − xt| ≤
√

2,
0.002, (Ls != Lt) and |xs − xt| ≤ 3,
∞, otherwise.

(4)

λst is a spatially varying weight that depends upon the intensity difference be-
tween the neighboring pixels of the floating image and is given by

λst = exp
{
− [If (s)− If (t)]2

}
. (5)

When neighboring pixels have the same segmentation class (Ls = Lt), they are
likely to have similar displacements because pixels on the same object tend to
move together. Thus we constrain the maximum relative displacement between
the pixels to be

√
2 pixels. If neighboring pixels have different segmentation class

(Ls != Lt), then they can have different displacements since pixels on different
objects may move differently. Therefore we allow relative displacement between
such pixels to be up to 3 pixels.

Optimization using Graph Cuts: The energy function is optimized using
graph cuts [9] which is suitable for discrete MRF labeling problems. Its ability to
enforce piecewise coherence makes it especially suitable for vision applications.
We represent pixels as nodes Vp in a graph G which also consists of a set of
directed edges E that connect nodes. For l labels, l terminal nodes are created.
First, ±6 displacement positions along x and y axis are defined with a step
of 1 pixel between two consecutive positions. For every position there are two
segmentation classes. The total number of labels are 2× (2 × 6 + 1)2 = 338. In
the second stage ±4 displacements along each axis with a step of 0.5 pixel is
defined and the total number of labels is 162. Pixel blocks of size 5×5 were used
for determining the penalty values.

3 Experiments and Results

Registration Results: Cardiac images were acquired on Siemens Sonata MR
scanners following bolus injection of Gd-DTPA contrast agent. The pixel spac-
ing ranges from (1.5× 1.5)− (2.8× 2.8)mm2. Contrast agent flows into the right
ventricle (RV), then into the LV and finally into the myocardium. The acquired
datasets were all in 2D and a total of 10 datasets were used to test our method.
Each dataset had 60 frames. In some of the datasets, the images before contrast
enhancement did not show the LV and were discarded. The total number of
test images were 538 with one reference image from each dataset. The LV nad
myocardium was identified in each image by drawing masks and then rigidly reg-
istered before applying our method. We compared the registration performance
of our method (JRS) and an MRF method that does not use segmentation
information, i.e.,

E(f) =
∑
s∈P

D1(fs) +
∑

(s,t)∈N

Vst(fs, ft), (6)
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where fs = xs = {x1
s, x

2
s} and Vst is given by

Vst(fs, ft) =
{

0.002, |fs − ft| ≤
√

2,
∞, otherwise.

(7)

The reference image (Fig. 1 (a)) and floating image (Fig. 1 (b)) pair was chosen
such that there is intensity change between them as well as noticeable deforma-
tions. The deformations are highlighted by the difference image in Fig. 1 (c).
Dark areas in the difference image are the ones with negative intensity differ-
ence and bright areas correspond to positive intensity difference values. Areas in
grey have zero intensity difference. The difference image after registration using
only MRFs (Fig. 1 (d)), does not register all the deformations especially at the
boundaries of the RV. The difference image obtained after registration using
JRS (Fig. 1 (e)) shows noticeable improvement in registration performance and
inclusion of segmentation information plays a crucial role in it.

The epicardium and endocardium were manually identified in the reference
image and all floating images. From the obtained deformation field we register
the LV and myocardium in the floating image and calculate the error between
the registered contours and those in the reference image. The measured error
is the average distance between each point on the registered contour and the
nearest point on the reference contour. We also show the outline of the registered
contours (in red) on the reference image using JRS (Fig. 1 (f)) and MRFs
(Fig. 1 (g)). The contours are better registered using JRS as is evident from the
distance between the registered epicardium and endocardium. The quantitative
error measures before and after registration using JRS and MRFs are shown in
Table 1. While the average registration error after using MRFs is greater than
1 mm, in case of JRS it is well below 1 mm. In fact the maximum registration
error for JRS hardly goes above 1 mm, with only a few datasets exhibitng that.

The deformed grids obtained from MRFs and JRS are shown, respectively,
in Figs. 1 (h) and (i). The deformation field obtained from MRFs and JRS are
smooth. Even though segmentation information has been incorporated into the
cost function, the smoothness constraint has been appropriately formulated to
avoid folding. The registration errors given in Table 1 show the greater accuracy
obtained for JRS. While MRFs, without any segmentation information, have
higher registration error, they do not result in folding of deformation field. The
relative displacement threshold in Vst (

√
2 in our case) plays an important role

in influencing the smoothness of the deformation field. An increase in threshold
leads to a disparate displacement field, i.e., neighboring pixels do not have coher-
ent motion. To avoid such issues, the relative displacement between neighboring
pixels is constrained to be within

√
2 pixels, which is the maximum distance

between neighbors. Such an arrangement is necessary for discrete valued cost
functions.

Segmentation Results: The LV and myocardium in each floating image are
also separately segmented using graph cuts [11]. Figures 2 (a) and (b) show re-
spectively the outline of segmented mask using graph cuts and JRS on the same
floating image. By segmentation results using JRS we refer to the segmentation
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(a) (b) (c) (d) (e)

(f) (g) (h) (i)

Fig. 1. Registration results for cardiac perfusion images. (a) Reference image; (b) float-

ing image; difference image (c) before registration; (d) after registration using MRFs

and (e) after registration using JRS. Superimposed outline of registered contours using

(f) JRS and (g) MRFs. Deformed grids obtained from (h) JRS and (i) MRFs.

(a) (b) (c) (d) (e)

Fig. 2. Segmentation results for cardiac perfusion images. Outline of segmented mask

in green using (a) graph cuts; and (b) JRS; (c)-(e) show the outline of the deformed

mask in three floating images. In each floating image, the deformed mask was obtained

by deforming the segmented mask of the reference image according to the corresponding

displacement field.

class from the labels of each pixel in the floating image. JRS results in greater
segmentation accuracy than graph cuts for images with poor contrast between
LV and myocardium. The segmented mask from the reference image is deformed
using the deformation field of different frames of the sequence. This deformed
mask is then superimposed on the corresponding floating image as shown in
Figs. 2 (c)-(e). These results show that registration and segmentation mutually
benefit each other, i.e., the epicardium and endocardium are not only segmented
accurately but also registered to the reference image. Table 1 also shows the
different error measures for segmentation. The average Dice Metric (DM) and
Root Mean Square (RMS) values for each dataset are shown in Fig. 3. JRS con-
sistently shows higher DM and lower RMS values than graph cuts. The average
RMS value for each dataset is close to 1 pixel and the average DM is above 90%
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Fig. 3. Quantitative segmentation results for 10 datasets. (a) average DM values; (b)

average RMS value. Brown bars show results for JRS and blue bars show results for

graph cuts.

Table 1. Summary of registration and segmentation performance on cardiac perfusion

datasets. The values indicate average and standard deviations for all datasets.

Registration Error (mm) Segmentation Result

Before After Registration Graph Cuts JRS
Registration MRFs JRS RMS (mm) DM (%) RMS (mm) DM (%)

Epicardium 2.2±1.2 1.0±0.2 0.7±0.4 1.45±0.43 88.6±1.6 1.13±0.32 92.1±1.1

Endocardium 2.8±1.0 1.1±0.3 0.6±0.3 1.65±0.31 89.2±0.9 1.11±0.39 92.7±0.8

Overall 2.6±1.1 1.1±0.2 0.5±0.2 1.52±0.34 88.93±1.2 1.11±0.34 92.5±0.9

(values above 80% indicate excellent agreement with manual segmentation). For
graph cuts DM values less than 90% are attributed mainly to the poor contrast
between LV and myocardium in many images.

4 Conclusion

We have proposed a novel MRF based method for the joint segmentation and
non-linear registration of the LV in perfusion cardiac images. Our method is
different from previous works using active contours, and MRFs ensure less com-
putation time and high accuracy. The problem was formulated as one of finding
the appropriate labels. The labels give the displacement vector and segmenta-
tion class for each pixel. The cost function depends on contrast invariant edge
information, segmentation class, and mutual dependency of registration and seg-
mentation. The final labels are obtained by minimizing the cost function in a
multiresolution graph cut implementation. The coarse to fine graph cut imple-
mentation gives sub-pixel accuracy for registration and segmentation. The per-
formance of our method was compared with an MRF based registration method
using only gradient information and a graph cut based segmentation method.
Quantitative and visual results are shown for the registration of the epicardium
and endocardium. For comparing segmentation performance, Dice Metric and
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RMS errors between segmented LV and reference manual segmentation are cal-
culated. All sets of results show the superior performance of our method com-
pared to separate registration and segmentation method. In future work we aim
to extend our method for 3D datasets and other imaging modalities, and also
optimize it for less computation time.
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Abstract. We present an approach for segmenting the left ventricu-
lar endocardial boundaries from radio-frequency (RF) ultrasound. The
method employs a computationally efficient two-frame linear predictor
which exploits the spatio-temporal coherence of the data. By performing
segmentation using the RF data we are able to overcome problems due
to image inhomogeneities that are often amplified in B-mode segmenta-
tion, as well as provide geometric constraints for RF phase-based speckle
tracking. We illustrate the advantages of our approach by comparing it
to manual tracings of B-mode data and automated B-mode boundary
detection using standard (Chan and Vese-based) level sets on echocar-
diographic images from 28 3D sequences acquired from 6 canine studies,
imaged both at baseline and 1 hour post infarction.

1 Introduction

Myocardial strain and strain rate measurements have been shown to be impor-
tant for understanding cardiac disease. To this end, it has been reasonably well
established that speckle tracking from high frame-rate radio-frequency (RF) ul-
trasound data can be used to generate dense estimates of displacement that can
be used to solve for strain [1]. Current speckle tracking algorithms suffer from
two drawbacks. First, they are extremely computationally intensive. Second,
they perform well only on spatially homogeneous regions of the myocardium,
but cannot easily identify such regions.

Segmentation of the left ventricle is particularly challenging in echocardio-
graphy due to gross inhomogeneities present in the images that lead to poor
contrast between the blood and myocardium, as demonstrated in [2]. Analysis
of high frame-rate (30 fps) raw RF images may provide important features that
� This work is supported by grants 5R01HL082640-04 and 5R01HL077810-04.
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can be exploited to segment these regions. The primary benefit of using RF as
opposed to B-mode images for boundary detection is that, due to the regular
structure of the myocardium, the phase of the RF exhibits a temporal coherence
not present in the blood pool. This phase information is exploited by looking at
complex correlations in state-of-the-art speckle tracking, and its advantages over
B-mode are documented in the ultrasound physics literature [1]. This suggests
an advantage in using RF data for segmentation. Direct segmentation of the RF
also provides a mask that indicates volumes where meaningful cardiac speckle
tracking results can be expected and thus a means of simplifying computations.

Few segmentation methods thus far have leveraged RF data for boundary
discrimination. Yan et al. [3] and Nillesen et al. [4] use maximum correlation
coefficient (MCC) images obtained from RF speckle tracking to segment the left
ventricle. These methods suffer from the fact that precomputation of the MCC
images is extremely computationally burdensome. Alternatively, Dydenko et al.
[5] propose both a spectral autoregressive model and a velocity based model
for tissue discrimination. The authors of [5] also establish the variance of the
velocity as a meaningful parameter for segmentation.

The key observation in all of the above research is that the temporal correla-
tion in the blood pool and myocardium have different patterns. We also exploit
this effect, although we use a model that is computationally much simpler than
calculating the MCC image, i.e., linear prediction. Experimental observation
shows that this simple model, as opposed to more complex motion models, pro-
vides accurate segmentations. This is the main contribution of this paper. We
also propose the use of the residues of a linear predictor as a basis for seg-
mentation. These residues are similar to the variance of the velocity adopted
in [5]. In addition, as opposed to the single-frame autoregressive model [5], a
two-frame linear predictor is more useful because, while the autoregressive fit
will vary wildly across the image, the temporal coherence in the signal leads to a
more consistent fit that can be used to segment the whole boundary. We adopt
a maximum a posteriori (MAP) approach to the segmentation with a proba-
bilistic model that relates subsequent frames of a cardiac image sequence. This
estimation is performed numerically by means of a level set active contour. We
compare our method to a traditional Chan-Vese intensity based level set seg-
menter on B-mode images [6]. Additional validation is performed by comparison
with manual segmentations.

2 Materials and Methods

2.1 Signal Model

Data Set. The interaction of the base-band RF signal with two specific acoustic
media (blood pool and myocardium) is of interest for this work. The blood pool is
made up of plasma and other elements that are much smaller than the wavelength
of the ultrasound, while the myocardium is made up of primarily muscular fibers
interspersed with blood vessels and bile ducts. The fibers make up 90% of the
myocardial tissue and are thus responsible for most of the received signal [7]. The
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regular structure of the fibers is responsible for the temporal coherence in the
data that we exploit with our algorithm. Likewise, the lack of regular structure
in the blood pool causes the signal to rapidly decorrelate.

It is of particular interest to us that our data is acquired at a high frame rate
so that the motion of the speckle between frames is not significant relative to
the boundaries. As a result, a single linear predictor for each medium (blood
pool and myocardium) suffices for segmentation. Because of this, our algorithm
is computationally efficient.

Preprocessing. The input pulse produced by the ultrasound machine is a real,
bandlimited signal. Since the effects of transmission and reflection in ultrasound
are linear, the signal we record is also real and bandlimited and can thus be
recovered by coherent demodulation [8]. The demodulation results in a vector
image consisting of an in-phase and quadrature component and is referred to as
the analytic signal. It is this vector image we are interested in segmenting. An
example analytic image is shown in Figure 3.

2.2 Linear Predictor

Let IA be the 3D frame we wish to segment and IB be the subsequent 3D frame.
The domain of IA is Ω and C is a boundary between two disjoint regions in the
image, ΩC and Ω̃C , where Ω = ΩC ∪ Ω̃C . Then the absolute linear prediction
residue of the mth voxel is

em =

{∣∣IA
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∑
n αnRe

{
IB
m,n

}
− i

∑
n βnIm

{
IB
m,n

}∣∣
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m −
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m,n

}
− i
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n β̃nIm
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2
, m ∈ Ω̃C .

(1)

Note that voxels in ΩC and Ω̃C have different predictor coefficients; these are
given by vectors α, β, α̃, and β̃ indexed by n where IB

m,n defines the nth neighbor
of voxel IA

m, and i =
√
−1. A diagram of the predictor is shown in figure 1.

2.3 MAP Estimation

We assume that em for m ∈ ΩC and m′ ∈ Ω̃C are distributed normally with prob-
abilities p1and p2, zero mean, and standard deviations σ1and σ2, respectively.
We seek to segment the image within a level set formulation. Let φm : Ω →R be
the level set function whose zero level set is C, and let H be a smooth Heaviside
function. Segmentation is performed by maximizing the following log posterior
probability with α, β, α̃, and β̃ as defined in equation 1:

l(em, φm, α, α̃, β, β̃, σ1, σ2) (2)

=
∑

m∈ΩC

log p1 (em|α, β, σ1) +
∑
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log p2
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)
=
∑
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H(φm) log p1 (em|α, β, σ1) + H(1− φm) log p2

(
em|α̃, β̃, σ2

)
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2.4 Level Set Formulation of the Model

Maximizing the likelihood is equivalent to minimizing its negative,
so we define our energy functional as E(em, φm, α, α̃, β, β̃, σ1, σ2) =
−l(em, φm, α, α̃, β, β̃, σ1, σ2). As in [6], we introduce a standard prior on the
arc length of the propagating front, Eprior(φm). Finally, we introduce a prior on
the smoothness of the predictor parameters given by ES(α, α̃, β, β̃) = αᵀWα +
α̃ᵀWα̃+βᵀWβ+β̃ᵀWβ̃ where W is a finite difference matrix. The overall energy
is thus given by E(em, φm, α, α̃, β, β̃, σ1, σ2) = ELP (em, φm, α, α̃, β, β̃, σ1, σ2) +
λpriorEprior(φm) + +λSES(α, α̃, β, β̃) where λS and λprior are weights on the
smoothness priors.

2.5 Optimization

We minimize the energy functional as follows: 1) Initialize φ inside the blood
pool. 2) Update the other (non-level set) parameters of the model. 3) Update
φ. We then iterate steps 2 and 3 until a local minima of the energy functional
is reached. φ is updated by gradient descent, while the other parameters admit
closed form solutions.

The maximum likelihood estimates of σ1 and σ2 are given by the standard
formula for normally distributed random variables. Solving for the predictor
parameters requires accumulating the voxels of IA to form the vectors xA and
yAthat contain the values of all of the real and imaginary ordered voxels in ΩC .
x̃A and ỹA are likewise formed from voxels in Ω̃C . Similarly, the matrices XB ,
YB , X̃B , and ỸB are generated by defining the rows as the real and imaginary
values of the neighborhoods of all ordered voxels in IB. The estimates for the
prediction parameters are thus given by the following matrix equations, referred
to as the normal equations:

α̂ =
(
XBᵀXB + 2λSWᵀW

)−1
XBᵀxA (3)

β̂ =
(
YBᵀYB + 2λSWᵀW

)−1
YBᵀyA (4)

ˆ̃α =
(
X̃BᵀX̃B + 2λSWᵀW

)−1

X̃Bᵀx̃A (5)

ˆ̃
β =

(
ỸBᵀỸB + 2λSWᵀW

)−1

ỸBᵀỹA (6)

These equations minimize the sum of squared differences between the in-phase
and quadrature predictions.
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Fig. 1. Linear Predictor for point m

3 Experiments

We acquired 28 sequences of canine RF images from 6 studies using a Phillips
iE33 4D Ultrasound imaging system with a sampling rate of 30 frames per sec-
ond. These images came from both healthy and diseased animals. 15 sequences
were acquired at baseline while 13 sequences were acquired one hour post in-
farction. The infarction was performed by angioplasty occlusion. The proposed
algorithm was evaluated at both end-diastole and a frame from ventricular ejec-
tion as these time points represent both the minimum and maximum average
motion of the left ventricle, respectively. To preserve image acquisition statistics
for this analysis and future speckle tracking, the images were left in the Frustum
coordinate system, which consists of one scan line dimension and two angular
dimensions.

To evaluate the algorithm and compare it with standard techniques, two al-
gorithms were implemented: 1) The Chan-Vese algorithm [6]; 2) Our algorithm
based on linear prediction. The Chan-Vese algorithm assumes intensity is ho-
mogeneous over each region of the image and only assumes a smoothness prior
for the boundary. To properly leverage the temporal continuity in myocardial
speckle, the search window for the coefficients of the predictor was chosen such
that it included the maximum observed distance between any given speckle in
two frames (typically on the order of 30 voxels in the axial dimension and 4 in
each angular dimension). This window size is fixed for all experiments. Then,
to further reduce complexity, the number of coefficients was decimated so each
coefficient represented multiple voxels.

3.1 The Advantage of Segmenting Based on Temporal Coherence

Examples of the performance of the algorithms are shown in figures 2, 4, and 5.
The results for the Chan-Vese algorithm are shown in red and our results are
shown in blue. In figure 2a, both contours underestimate the boundary on either
side of the papillary muscle, but while the proposed algorithm underestimates
this boundary to a more significant degree, the Chan-Vese contour leaks out
through a mild dropout in the image that does not affect the results of our
algorithm. Similar results are shown in figures 2b and 2c for images that contains
more significant signal dropout.

Figure 4 shows an example image where, due to poor contrast, the Chan-
Vese algorithm fails to adhere to the endocardial border and instead adheres to
the inside of the specularity produced by the epicardium, while our proposed
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(a) (b) (c)

Fig. 2. Chan-Vese contours leak out

(a) In-phase (b) Quadrature

Fig. 3. Slice of analytic image
containing myocardium and blood
pool

Fig. 4. Chan-Vese
contour fails to find
boundary

Fig. 5. Chan-Vese
contour adheres to
acquisition artifact

algorithm finds the appropriate boundary (true boundaries in yellow). In the
image in figure 5 there is an artifact present in the image that leads to a bright
spot in the blood pool. Our proposed algorithm finds the correct boundary in
the presence of this artifact, while the Chan-Vese contour adheres to the artifact.

3.2 Results

We compared our algorithm and the Chan-Vese algorithm with manually seg-
mented surfaces. Typical segmentations are shown in figures 6a and 6b. Exam-
ples showing how the three contours compare are shown in figure 6b for visual
evaluation. It was observed by visual inspection that, for most of our data sets,
the Chan-Vese model overestimated the size of the blood pool. The error in the
proposed model appears to be related to an underestimation of the extent of the
blood pool in localized regions.

To quantitatively evaluate the results, we utilized the following three segmen-
tation quality indices: 1) Huasdorff Distance (HD); 2) Mean Absolute Distance
(MAD); and 3) the Dice coefficient. It should be noted that 8 Chan-Vese seg-
mentations leaked, failing to find the endocardium, and were thus not included
in the quantitative analysis.

Sequences obtained at baseline and those obtained one hour post infarct pro-
duced no significant difference in any of the quality indices, so all of the sequences
were used to generate the values in Tables 1 and 2.
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(a) Endocardial surface produced by
Linear Predictor RF Segmenter

(b) Manual (Green), Chan-Vese (Red), Linear
Predictor RF Segmenter (Blue)

Fig. 6. Typical segmentations

Table 1. Sample means and standard deviations of quality indices (n=28) for segmen-
tations obtained on frames at end diastole

Chan-Vese Proposed Algorithm
Performance Measures Dice HD MAD Dice HD MAD

Average 0.643 11.885 1.862 0.725 11.436 1.983
STD 0.048 4.526 0.377 0.061 1.943 0.349

Table 2. Sample means and standard deviations of quality indices (n=28) for segmen-
tations obtained on frames from ventricular ejection

Chan-Vese Proposed Algorithm
Performance Measures Dice HD MAD Dice HD MAD

Average 0.653 9.823 1.812 0.723 9.426 1.872
STD 0.036 4.732 0.497 0.056 2.936 0.363

HD and MAD did not differ greatly between the methods. This result can be
explained by the fact that both methods often produce smooth curves that were
close to the ground truth with the Chan-Vese contour overestimating and our
method slightly underestimating the dimension of the blood pool. As such, the
most useful measure in evaluating our method is the Dice coefficient where our
algorithm showed a marked improvement over the Chan-Vese method.

Analysis of frames at end diastole and during ventricular ejection produced
similar results which demonstrate our proposed algorithm functions both during
minimum and maximum motion of the ventricle, which respectively correspond
to maximum and minimum temporal coherence in the signal.

4 Discussion and Conclusions

We have presented an active contour RF ultrasound segmentation model that
leverages temporal linear prediction within an image sequence. The algorithm
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relies solely on features present in the signal rather than a priori knowledge
of expected shape. By utilizing a feature for segmentation that does not make
a piecewise homogeneous assumption for the image, our contour is prevented
from leaking out through boundaries that have relatively poor contrast. Since
the motion of blood is irregular, performing speckle tracking on the blood pool
provides no meaningful information. Our objective function segments based on
the same concept, so it is particularly well suited for providing a geometric
constraint for RF speckle tracking.

We also showed that our algorithm performs well during both peak and min-
imum average motion of the ventricle. Thus the algorithm can be extended to
segment entire 4D data sets. Nonetheless, solving for the predictor coefficients
is not trivial. An extension of this method to larger data sets, 4D segmenta-
tion, and joint endocardial/epicardial segmentation will require modifying this
stage of the algorithm. This will be accomplished by gradient descent or the
Levenberg-Marquardt algorithm.

Other future work includes validation of prediction coefficients and an analy-
sis of their contribution, as opposed to residues, to segmentation. Also, the as-
sumption of a fixed neighborhood for the linear predictor breaks down near the
epicardial boundary causing a slight underestimation of the blood pool, which
will be addressed through minor changes to our model. Ultimately, this method
will be integrated as a preprocessing step into RF speckle tracking algorithms.

Acknowledgments. The authors would like to thank Matt O’Donnell, Univer-
sity of Washington, for helpful discussions and the reviewers for critical feedback.
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Abstract. In this work, we address the problem of automated measure-

ment of the interventricular septum thickness, one of the key parameters

in cardiology, from B-mode echocardiograms. The problem is challeng-

ing due to high levels of noise, multi modal intensity, weak contrast due

to near field haze, and non rigid motion of the septum across frames.

We introduce a complete system for automated measurement of sep-

tum thickness from B-mode echocardiograms incorporating three main

components: a 1D curve evolution algorithm using region statistics for

segmenting the septum, a motion clustering method to locate the mi-

tral valve, and a robust method to calculate the septum width from

these inputs in accordance with medical standards. Our method effec-

tively handles the challenges of such measurements and runs in near real

time. Results on 57 patient recordings showed excellent agreement of the

automated measurements with expert manual measurements.

1 Introduction

Interventricular septum thickness (or diameter) (IVSd) is one of the key param-
eters in cardiology since it is, along with LV size, one of the main indicators
of cardiac hypertrophy. It can be used as a screening parameter for septal hy-
pertrophy and has also shown a correlation to 24h ambulatory blood pressure.
Unfortunately, the manual measurement of the septum thickness on echocardio-
grams suffers from large inter- and intra-observer variability based on the expe-
rience of the user. Further variability results from different acquisitions since it
is not easy to pick the right plane to scan, and this challenge is compounded by
misalignment between available acoustic windows for imaging and the patient’s
heart. These issues can lead to undesirable variations in the diagnosis, result-
ing in missed detection of subjects and unnecessary further testing of healthy
patients. Automating this measurement can avoid this variability and can save
physicians time and effort.

Close observation reveals that the IVSd measurement is a complex cognitive
task performed by the cardiologist. An end-to-end IVSd measurement in ac-
cordance with the American Society of Echocardiography (ASE) guidelines [1]
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involves segmentation of the septum, identification of the tip of the mitral valve,
and measurement of the thickness orthogonal to the centerline of the septum.
The aforementioned procedure must be repeated for all frames of a multi-frame
recording, and the septum thickness is reported on the frame corresponding to
end-diastole.

Our contribution is a solution for end-to-end automation of the complex sep-
tum measurement workflow on PLAX B-mode echocardiograms. Our method
incorporates three main components: a 1D curve evolution algorithm for seg-
menting the septum on each frame, a motion-clustering based method to local-
ize the mitral valve, and a robust method to calculate the septum width from
these inputs in accordance with medical standards. We know of no previous
attempt at end-to-end septum measurement automation. For this reason, we
compare against previously developed approaches for septum segmentation and
identification of the mitral valve, individually.

Any approach to segment the septum from ultrasound images faces several
challenges. Firstly, the intensity in and around the septum region is multi modal,
hence purely intensity and histogram based schemes are challenged. For exam-
ple, the approach proposed in [2] uses multi-level thresholding for measurement
on a single instantaneous frame. This method, however, has an inherent dif-
ficulty on tough clinical cases where near-field haze is encountered. Secondly,
the speckle noise inherent in ultrasound images makes edge-based methods un-
reliable. These methods are sensitive to initialization and are plagued by the
near-field haze which leads to low contrast at the upper part of the septum. For
any approach to segment the septum across several frames reliably, robustness to
noise and initialization is needed. Region based active contour [AC] approaches
have typically offered robustness to curve placement and noise, but methods
using global statistics [3] are not ideal for segmenting objects from multi-modal
data, as in our case. Recent works [4,5] have addressed this issue by locally es-
timating statistics around each pixel, although at a higher computational cost.
There are also efforts that introduce prior shape information into segmentation
schemes based on [AC] [6,7], and these methods have been reasonably successful
in handling low contrast and boundary gaps, but, to be effective, they need to
be carefully trained to acquire a rich description of shape statistics. However,
the shape of the septum varies vastly across patients and with view angles, and
undergoes large non rigid motion across frames. These factors make it difficult
to build a shape atlas of the septum to use within a segmentation approach.

We propose a local region based variational energy to solve the segmentation
problem. One main difference as compared to usual 2D [AC] methods is in our
representation of the septum. As a result of insights gained from clinical data,
we represent the septum using two 1D profiles which correspond to the top and
bottom septum boundaries respectively. This representation allows capture of
regional statistics in and around the septum, and model interractions between
the boundaries (e.g. width) of the septum, and is computationally easier. With
the above terms, our segmentation energy was able to effectively deal with the
data challenges and viable for real time implementation.
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Septum 
Segmentation

2D Echocardiogram

Mitral Valve 
Detection

Septum Thickness 
Measurement

Fig. 1. Fully automatic IVSd measurement: The right figure shows the segmented

septum in red, the detected mitral valve tip as a purple star, the fit of piecewise lines

to the septum medial axis as green lines, the computation of the orthogonal line in

yellow, and calculation of the points used to define septum thickness as green stars

Next, a critical step for defining the measurement line of the septum thick-
ness is the identification of the mitral valve leaflet. Martin et al. [8] propose a
semi-automatic method where a rough segmentation is first obtained and is then
refined using active contours with dynamic program minimization. However, as
outlined by the authors, the approach is sensitive to the manual initialization of
the contours at the muscle-leaflet junction, precluding its application in auto-
mated measurement. We propose a simple method, motivated by the observation
that valve leaflets are the fastest moving cardiac structures. The novelty of our
method is that it is completely unsupervised without the need for prior training
or initialization as compared to previous approaches.

Finally, given the segmented septum and the location of the mitral valve
tip, the thickness measurement is given by the length of the septum region
along the line that is orthogonal to the center line of the septum region and
passing through the mitral valve tip. Our end to end method was validated
on a large variety of patient recordings, many with challenging image quality,
and provided reproducible measurement that follow the guidelines of the ASE.
The automated measurements closely correspond with manual measurements
generated by cardiologists from two separate institutions.

2 Methods

Our approach divides the problem into three steps that can be solved indepen-
dently: septum segmentation, mitral valve tip detection, and septum thickness
measurement as shown in Figure 1.

2.1 Septum Segmentation

As mentioned in the introduction, rather than utilize 2D contour evolution ap-
proaches, we formulate our search space over pairs of smooth 1D profiles. This
representation enables easy access to regional statistics in and around the sep-
tum, and model interactions between the top and bottom septum boundaries,
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in our case, to broadly constrain the width of the segmented septum. The width
term is crucial for effective segmentation under weak contrast at the top part of
the septum due to near field haze. Also from a computational standpoint, our
1D-profile based formulation works over a smaller set of minimization arguments
than regular [AC] representations. Thus the resulting segmentation is very fast
making it feasible for real time use.

Given an ultrasound image I : Ω → R, Ω = [a, b] × [c, d], the goal is to
search for two smooth 1D functions f, g : [a, b] → [c, d], whose profiles represent
the top and bottom parts of the septum. We assume that close to the septum
boundary, the image intensity is piecewise constant. Hence we seek an f and
g that separate local neighborhoods into three regions (see Figure 2), each of
which we model with Gaussian statistics. We denote the septum region, the
region between the 1D profiles of f and g, as Rs. We denote the neighborhood
region above the septum as Ra, i.e. between profiles of g and g + Δ, where Δ
is some pre-defined interval. Similarly, the neighborhood below the septum is
Rb, between profiles of f − Δ and f . Rather than represent the entire septum
region by one distribution, we divide Ω into K disjoint rectangles, Ω =

⋃K
i=1 Bi,

Bi = (ai, bi)× (c, d), which yields multiple, more accurate distributions. In this
way, the image intensity is expected to be Gaussian in the regions Rs∩Bi ,Ra∩Bi,
and Rb ∩ Bi. Under this construction, μa = [μa

1 , μ
a
2 , .., μ

a
K ], σa = [σa

1 , σ
a
2 , .., σ

a
K ]

gives the set of distributions in each of the regions Ra∩Bi, similarly μb, σb gives
the distribution in each Rb∩Bi, and μs, σs gives the distribution in each Rs∩Bi.
To find the septum region, we minimize the following energy over the space of
smooth 1D functions f, g : [a, b] → [c, d], with distributions μa, σa, μs, σs, μb, σb:

E(f, g, μa, σa, μs, σs, μb, σb) =
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The data term drives f, g to take values such that the intensity distribution in
each of Rs∩Bi ,Ra∩Bi, and Rb∩Bi are Gaussian, given by μa, σa, μs, σs, μb, σb.
The smoothness terms for f and g are governed by parameter λsmooth. The last
term constrains the width of the region Rs to be close to the expected septum
width (w) and is balanced by λwidth. To minimize E, we use the Euler Lagrange
equations of Equation 1 to iteratively solve for f, g, and μa, σa, μs, σs, μb, σb,
using an explicit finite difference scheme and given an initial guess f0, g0. Figure
2 illustrates our segmentation evolution on a sample image.

2.2 Mitral Valve Detection

Locating the mitral valve leaflet is critical to septum measurement since clinical
guidelines require measurement to be done at the level of the mitral valve in
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Fig. 2. f, g represent the lower and upper boundaries of the septum, respectively. The

initialization of the functions (middle), and final segmentation of the septum (right).

Regional statistics in the septum (Rs), above the septum (Ra), and below the septum

(Rb) are used to drive evolution of the functions f, g.

the end-diastole frame. This task is challenging since the mitral valve is a fast
moving and thin structure, but we introduce a method to locate the valve leaflet
tip that leverages this characteristic. The main advantages of our method is
that it is fast and is completely unsupervised without the need for prior training
or initialization. It consists of computing a motion map, identifying candidate
locations corresponding to high motion, and computing a representative loca-
tion corresponding to the anterior tip of the mitral valve. The motion map is
computed via frame differencing considering a window of several frames. It is
necessary to consider more than one set of frame differences because the mitral
valve leaflet is not clearly visible in some frames so that only one frame difference
may not yield many locations corresponding to the valve leaflet. Next, pixels cor-
responding to high motion are identified as candidate locations, and these are
grouped into clusters using a K-means clustering algorithm. The cluster center
is then representative of the valve location. In our case, we are interested only
in the mitral valve, and the cluster center corresponds with the mitral valve tip.
The algorithm steps are illustrated in Figure 3.

2D echocardiogram
Estimate 
motion

Cluster motion 
candidates

Compute 
cluster center

Fig. 3. Block diagram of the method for localizing the mitral valve leaflet
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2.3 Septum Thickness Measurement

The manual measurement protocol of the ASE specifies that the measurement
line should be drawn orthogonal to the center line of the septum region and
passing through the mitral valve tip. We embed this requirement directly into
our septum thickness algorithm, which is demonstrated in Figure 1. To represent
the center line, our method first calculates the medial axis of the septum region.
To make the algorithm computationally efficient, we then divide the medial axis
into K regions (for example K = 10 works well) and fit line segments to each of
these regions using linear regression. These K line segments are shown as green
lines in Figure 1. Given the K line segments, we find the line through the mitral
valve tip pm with the smallest distance to each line segment pspe (where ps and
pe are the start and end point of the line, respectively). Each of these lines is
orthogonal to its corresponding fit line segment by definition, and they intersect

at point pi that is found as pi = ps+t∗(pe−ps) where t = − (ps − pm) · (ps − pe)
||pe − ps||2

is the distance to pi from ps.Given the intersection point pi and the mitral valve
tip location pm, the Euclidean distance between these two points is calculated.
This method is repeated for all of the line segments fit to the septum region, and
the line with the shortest distance is chosen for the septum thickness calculation.
The septum thickness is found as the distance between the two points where this
line intersects the septum segmentation mask.

3 Results

We evaluated our framework on two databases of B-mode parasternal long axis
(PLAX) recordings, representing a total of 57 different patients. Each recording
has several cardiac cycles (≈3 cycles/recording).The datasets were acquired on
GE Vivid series ultrasound scanners at clinical sites in two countries. Two cardi-
ologists independently performed manual measurements of IVSd on all datasets.
Both cardiologists used the ECG to identify the end-diastole frame, on which
the septum thickness was measured using calipers in B-mode. One of the cardi-
ologists also scored the images as good, moderate, or poor based on the image
quality and difficulty in imaging the patient.

The performance of the automated measurement algorithm was evaluated by
comparing its measurement value on the selected frame with the cardiologists’
measurements as shown in Figure 4. We report a mean error of 0.88 ±0.96 mm
(min=0.0 & max =5.0 mm) with respect to cardiologist 1, and an error of 1.17
±0.92 mm (min=0.0 & max=3.6 mm) with respect to cardiologist 2. The inter-
observer weighted kappa statistic was 0.58. The weighted kappa statistic for our
algorithm (0.56 vs. cardiologist 1, 0.49 vs. cardiologist 2) compares favourably
with the inter-observer value. Figure 5 shows results on example good, moderate
and poor quality recordings as defined by the cardiologists. Note the robustness
of the algorithm to near-field haze and poor contrast.

In a clinical application, one uses the septum measurement to classify patients
as normal, mildly abnormal, or hypertrophic.Standard recommendations on sep-
tum thickness for each of these categories are separated by approximately 2mm.
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Fig. 4. Comparison of automatic versus manual measurements for two datasets rep-

resenting a total of 57 patient recordings. The plot on the left shows results for 27

cases, and that on the right shows 30 cases. The blue and green circles are the manual

measurements from two different expert cardiologists, and each circle shows the ±2mm

range considered acceptable by the ASE standards. The red stars show the measure-

ments from the automated method, which, in most cases, are within the range of the

manual measurements.

Good Image Quality Moderate Image Quality Poor Image Quality

Good 1 Moderate 1 Poor 1

Patient 3: 0.86, 0.90, 0.99 Patient 4: 0.81, 0.90, 1.00 Patient 5: 1.16, 1.10, 1.17

Good 2 Moderate 2 Poor 2

Patient 17: 0.92, 0.90, 0.98 Patient 7: 0.95, 0.90, 0.98 Patient 10: 1.19, 1.00, 1.14

Fig. 5. Visual comparison of example measurement results from Dataset 1. The three

columns represent good, moderate, and poor image acquisitions, respectively, as classi-

fied by expert cardiologists. The text under each figure lists the patient number (see the

left plot of Figure 4) followed by the thickness measurement by cardiologist 1, cardiol-

ogist 2, and the automatic system, respectively. The red outline defines the automatic

septum segmentation, and the green “+” signs indicate the locations of the septum

width measurement. The white line is given as a reference to show the line connecting

the tip of the probe with the detected mitral valve tip location.
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Hence, defining the success criterion as the automated approach being within
2mm of the cardiologists measurement is clinically acceptable. Using this crite-
rion, the success ratio of the automatic septum measurement solution (within
±2 mm of the expert measurement) was found to be 89% (51/57 cases) with
respect to cardiologist 1 and 82 % (47/57 cases) with respect to cardiologist 2.
Our method runs in near real-time, with an average computation time of 0.1
sec/frame on a 2.6GHZ PC with 2GB RAM.

4 Conclusions

We have developed an automatic approach for septum thickness measurement
consisting of septum segmentation using 1D curve evolutions based on regional
statistics, mitral valve tip detection, and measurement line computation. The
framework and its steps were developed in accordance with the clinical standards
of the ASE, and they run in near real time. Our framework was validated on 57
B-mode PLAX recordings and was within the ±2mm guidelines specified by the
ASE in an average of 85% of the cases. This automated measurement solution
compares favorably with manual measurements by expert cardiologists and is
attractive for clinical application.

Acknowledgements. The authors would like to thank Feng Lin, Kajoli Krish-
nan and Kai Thomenius for valuable insight and discussions.
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Abstract. A novel anisotropic diffusion filter is proposed in this work

with application to cardiac ultrasonic images. It includes probabilistic

models which describe the probability density function (PDF) of tissues

and adapts the diffusion tensor to the image iteratively. For this pur-

pose, a preliminary study is performed in order to select the probability

models that best fit the stastitical behavior of each tissue class in cardiac

ultrasonic images. Then, the parameters of the diffusion tensor are de-

fined taking into account the statistical properties of the image at each

voxel. When the structure tensor of the probability of belonging to each

tissue is included in the diffusion tensor definition, a better boundaries

estimates can be obtained instead of calculating directly the boundaries

from the image. This is the main contribution of this work. Additionally,

the proposed method follows the statistical properties of the image in

each iteration. This is considered as a second contribution since state-of-

the-art methods suppose that noise or statistical properties of the image

do not change during the filter process.

Keywords: Anisotropic diffusion, probability models, diffusion tensor,

structure tensor, cardiac ultrasonic images.

1 Introduction

Ultrasound is a non-invasive imaging modality and a low-cost way to help diag-
nosing, which is widespread for many medical applications. However, ultrasonic
(US) images are characterized by the presence of speckle, which is a granular pat-
tern that degrades resolution and adds spatial noise to the image [1]. Therefore,
many speckle removal filters have been proposed in the literature [2,3,4].

Speckle in ultrasound images can be seen as a random process whose statistical
features depend on the tissue class. The existence of a deterministic component
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due to specular reflections of the echo-pulse depends on the number of obstacles
of the tissue (scatters) into the resolution cell and their size in comparison with
the wavelength of ultrasound signal. Thus, many of the speckle removal filters
are based on local statistics.

Among those filters, we focus on anisotropic diffusion based filters since the
proposed filter can be considered as a probabilistic extension of them. One of
the most popular approaches is Speckle Reducing Anisotropic Diffusion (SRAD)
[2], which extends the well known Perona Malik’s anisotropic diffusion avoiding
to threshold the norm of the gradient. Instead of that threshold, an estimate of
the coefficient of variation of noise is used. Results and stability depends on a
good estimation of the local statistics as it was demonstrated in [3].

In the case of Oriented Speckle Reducing Anisotropic Diffusion (OSRAD) [4],
no logarithmic compression is supposed and the speckle statistics are assumed to
be modeled by a Rician distribution. In the case of high SNR, speckle statistics
are approximated by a Gaussian distribution. This is a reasonable assumption
when resolution cells have a large number of scatters and there exists a deter-
ministic component, which is the case of the myocardial tissue for the raw signal
obtained by the transducer. However, besides logarithmic compression, an in-
terpolation process is performed to reconstruct the image and, therefore, the
probabilistic model is affected. Additionally, the diffusion schemes are iterative,
so the Rician distribution supposition does not hold in each iteration. So, be-
cause of logarithmic compression and interpolation, the statistics of speckle in
reconstructed images do not follow the original distributions of the raw signal.
Hence, many recent works study different probability models in order to obtain
a suitable model to describe the statistical behavior of the speckle [1,5,6].

In this work, we propose a novel anisotropic diffusion filter with application to
cardiac ultrasonic images, which includes the probability models that describe
PDFs of different tissue classes and adapt iteratively to the filtered image. Prob-
ability models for each tissue class were selected from a training database using
real-life cases for cardiac ultrasonic images. A mixture PDF model is adopted
for fitting probabilistic models of tissue classes to the histogram of the whole
image. With this methodology, a Bayesian scheme can be applied to estimate
the probability of belonging to each of the tissue classes for every image voxel.

When the structure tensor of the probability of belonging to each tissue is com-
bined in the definition of the diffusion tensor, better boundaries estimates can
be obtained instead of directly calculating them from the image. The structure
tensor of the probability of belonging to each tissue allows defining a diffusion
tensor, which takes into consideration the boundaries between different tissue
classes for filtering purposes. This is the main contribution of this work and,
to the best of our knowledge, no similar approach has been considered in the
literature for this purpose.

The paper is organized as follows. In section 2, the stasticial study is explained
and the distributions are selected. Section 3 describes the filtering method. Sec-
tion 4 presents some experiments and results on synthetic and real images. In
section 5, we conclude analyzing the results.
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Fig. 1. (a) Example of the regions for blood and myocardial tissue. (b) Blood. (c)

Myocardial Tissue. For blood tissue class, the Gamma distribution performs best. For

myocardial tissue, the best performance is achieved for Rice or normal distributions.

2 Probabilistic Estimation of Tissue Classes in US Images

In this section, the goodness-of-fit of several probabilistic distributions is pre-
sented. The study is extended to a representative set of distributions that were
proposed in the literature: Gamma[1,5], Log-Normal [5], Rayleigh[1,5,6], Normal
[5], Nakagami [1,6], Beta, Rician Inverse Gaussian (RiIG) [6], Rice [7], Exponen-
tial and K [1]. A set of 120 two-dimensional images of size 1024× 768 and 8 bits
per pixel were obtained from a clinical machine Philips iE33 ultrasonographic
system1 with the software PMS5.1 Ultrasound iE33 4.0.1.357 scanned from hu-
man subjects.

The methodology used to carry out the study is the same used in [1,5] where
a χ2 goodness-to-fit test is performed. We used a significance value α = 0.05
for the test. In order to avoid spatial correlation, the image is subsampled by a
factor of 6. Two different tissue classes were considered: blood and myocardium.

In Fig. 1, an example of the analyzed tissues is presented as well as the results
of passing the goodness-of-fit test for blood an myocardial tissue. In Fig. 1.b we
can see the better performance of the gamma distribution in the case of blood,
this result holds with that one obtained in [5]. In the case of the myocardial tissue
(Fig. 1.c), Rice distribution and Normal distributions are the ones with the best
fit. This result is coherent to the interpretation of quasi periodic scatterers,
which gives rise to a Rician model of speckle [7] and confirms the hypothesis of
the OSRAD filter [4]. Due to the simplicity of estimating Normal parameters
for estimating mixtures of PDFs, we chose the Normal distribution as a good
candidate for this tissue class.

3 Probabilistic Directional SRAD

When the histogram of the ultrasonic image is considered as the contribution of
different kinds of tissues which follow different PDFs, the mixture of PDFs arises
as a natural way to fit the histogram. This way, when parametric distributions are
considered, the parameters of each independent variable have to be calculated.
1 Philips Healthcare, Andover, MA, USA.
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Fig. 2. (a) Clinical ultrasound image. (b) Finite Mixture Model. (c) Tissue class proba-

bility map for each voxel of the image. The good fit of the mixture model of the image

(a) becomes clear as well as the structure of the ownership to each class where the

boundaries of the left and right ventricles are clearly defined.

The most widespread method for this purpose is the Expectation-Maximization
(EM) algorithm, which allows estimating the parameters of the mixture. We
decided to adopt the unsupervised learning of mixture models method [8], since
it is capable of selecting the number of mixture components from a maximum
(kmax) and it simultaneously integrates model selection and estimation.

Let X be a random variable (and x a sample) that follows a finite mixture
PDF of K components where K ∈ [1, kmax]. Its PDF can be written as follows:

fX(x) =
K∑

k=1

akfXk
(x|Θk) (1)

where ak > 0 and
∑K

k=1 ak = 1 are the probabilities of belonging to each class of
the mixture, and Θk are the parameters of the class Ck, which follow a Gaussian
or Gamma distribution. The probability of belonging to each class for each voxel
(i.e. each sample x) is the following:

P (x ∈ Ck | X = x,Θk) =
P (X = x | x ∈ Ck, Θk)P (x ∈ Ck | Θk)∑K
i=1 P (X = x | x ∈ Ci, Θi)P (x ∈ Ci | Θi)

(2)

This expresion allows us to calculate a set of images that indicate the probability
of belonging to each class for every voxel and can be seen as the partial volume
contribution of each class. Fig 2 shows an ultrasound image, its finite mixture
PDF, and the probability ownership to each class. In Fig 2.b a good fit of the
mixture model of the image in Fig. 2.a becomes clear as well as the structure
the ownership to each class (Fig. 2.c).

The main advantage of this set of images is that a structure tensor can be
derived from each probability image, which is able to extract the directions of
minimal probability change even when low gradients are presented. This way, an
anisotropic filter can be defined that takes the advantage of these directions in
the probability map for each tissue class. We will refer to it as POSRAD (Prob-
abilistic Oriented Speckle Reducing Anisotropic Diffusion). This filter makes use
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of the extension of the scalar component of the diffusion equation to a diffu-
sion matrix which takes the advantage of the local tissue orientation as it was
proposed in [4,9]. However, in our case we calculate the local orientation of the
probability density function for each tissue class and combine them in the fol-
lowing way.

As in [9], we calculate the structure tensor of the probability density function
for each tissue class as:

Tk = Gσ ∗ (∇σP (x ∈ Ck | X = x,Θk) · ∇σP (x ∈ Ck | X = x,Θk)T ) (3)

where Gσ is a Gaussian kernel of standard deviation σ, and ∇σP (x ∈ Ck | X =
x,Θk) is the gradient of the probability density function for each tissue class
filtered with a Gaussian kernel of standard deviation σ. Finally, let λk

1 ≥ λk
2 ≥

λk
3 be the eigenvalues and (vk

1 ,v
k
2 ,v

k
3) their respective eigenvectors. The local

orientation of the maximal variation of probability of the class Ck is given by vk
1 ,

and the local orientation of the minimal variation is given by vk
3 .

Let consider the following diffusion equation:{
u(x, 0) = u0

∂u
∂t = div(D∇u) (4)

where the matrix D is expressed in a diagonal form with the eigenvectors (v1,v2,
v3) and eigenvalues λ1, λ2, λ3. Since we have K structure tensors (each tissue
class with probability density function), we choose the eigenbase of the structure
tensor with maximal λk

1 : k̂ = arg maxk(λk
1). This base gives the orientation of

the maximal variation of probability among all the classes. The interpretation
of this choice is that we choose as boundary the one with the maximal gradient
of the probability density function over all tissue classes. This way, the most
probable boundary is preserved in the filtering process. In the basis of Tk̂, namely
(e1, e2, e3), the diffusion matrix D is defined as:

D = E

⎛⎝λ1 0 0
0 λ2 0
0 0 λ3

⎞⎠ET where
λ1 = 1 −||∇e1,σP (x ∈ Ck̂ | X = x,Θk̂)||2
λ2 = 1 −||∇e2,σP (x ∈ Ck̂ | X = x,Θk̂)||2
λ3 = 1

(5)

where || · ||2 is the 2-norm, ∇ei,σ is the directional derivative in the direction ei

filtered with a Gaussian kernel with a standard deviation σ, and E is the matrix
whose columns are the eigenvectors (e1, e2, e3). Note that this definition per-
forms a diffusion filtering in the direction of the minimal variation of probability
(e3) while preserves the maximal variation of probability since ||∇e1,σP (x ∈
Ck̂ | X = x,Θk̂)||2 will have a value closed to 1. Note that the discrete approxi-
mations of ||∇e1,σP (x ∈ Ck̂ | X = x,Θk̂)||2 and ||∇e2,σP (x ∈ Ck̂ | X = x,Θk̂)||2
are bounded in [0, 1], thus λ1, λ2 ∈ [0, 1].

The main advantage of this definition is that, in homogeneous areas D be-
comes isotropic and in the presence of boundaries it becomes more anisotropic
and with a main orientation aligned along the boundaries thus preserving the
main contours. Additionally, the evolution of the probabilistic models can be fol-
lowed through the iterative process since the finite mixture model is re-estimated
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in each iteration. This is an important advantage of the presented methodology
over other state-of-the-art filters, which assume that the stastitics of the im-
age/noise do not change during the filtering process. Since no assumptions can
be made about the changes of the statistics of the image, a finite mixture of
Gaussians is adopted during the filtering process except for the first iteration.

4 Experiments and Results

In this section we present some experiments with synthetic and real ultrasound
images in order to compare our technique to other state-of-the-art algorithms.
First we consider the 2D synthetic image presented in [4] which is publicly
available2 and allows us to compare the proposed method to other algorithms.
This image is presented in Fig 3.a which has 6 regions of constant intensity.
The image is corrupted with a Gaussian multiplicative noise with σn = 0.5 (Fig.
3.b).In Fig. 3.c the filtered image with the proposed method is presented. The
parameters of the filter were: 200 iterations, time step 0.5, σ = 1 and kmax = 6.

564

1

3

2

(a) (b) (c)

Fig. 3. (a) Original synthetic image of [4]. (b) Noisy image with multiplicative noise

with σ = 0.5. (c) Filtered image with the proposed filter.

Table 1. Results on filtering synthetic 2D image with σn = 0.5, presented as Mean ±
Standard Deviation of the intensity in each region (R1 - R6) of the Fig. 3.a

Method R1 R2 R3 R4 R5 R6 Mf FOM
Initial 10 20 40 50 60 80 1
Noisy image 10.03 ± 5.00 2.26 ± 9.57 39.39 ± 20.23 54.86 ± 22.09 58.72 ± 29.55 81.12 ± 40.59 0.193
Median 10.00 ± 0.65 18.58 ± 1.96 37.42 ± 4.77 38.42 ± 7.53 57.40 ± 4.89 75.80 ± 9.77 0.01 0.434
Lee 10.09 ± 1.42 19.34 ± 1.93 38.55 ± 5.64 48.66 ± 7.27 56.18 ± 7.20 77.82 ± 11.96 0.02 0.224
Kuan 10.11 ± 1.42 19.33 ± 1.90 38.53 ± 5.47 48.64 ± 7.26 57.13 ± 6.93 77.71 ± 11.52 0.02 0.222
P&M 9.97 ± 2.39 19.95 ± 9.10 39.38 ± 20.17 54.90 ± 22.02 58.72 ± 29.53 81.12 ± 40.58 0.00 0.323
homotopic P&M 9.55 ± 1.53 18.56 ± 6.00 37.80 ± 13.56 51.46 ± 11.37 56.31 ± 19.87 77.85 ± 26.69 0.00 0.533
Catte et al. 10.02 ± 0.89 20.02 ± 1.22 39.39 ± 10.36 54.86 ± 19.65 58.72 ± 17.97 81.12 ± 34.55 0.00 0.626
Flux 10.01 ± 0.61 20.13 ± 0.93 39.58 ± 4.08 55.12 ± 4.93 58.90 ± 5.49 81.36 ± 8.82 0.33 0.693
Rudin et al. 10.01 ± 0.87 15.11 ± 0.41 37.49 ± 2.08 47.16 ± 3.15 56.97 ± 2.62 79.10 ± 6.64 0.04 0.852
Rudin et al. attach 9.85 ± 0.89 15.04 ± 0.42 37.44 ± 2.10 47.14 ± 3.17 56.93 ± 2.63 79.07 ± 6.67 0.03 0.846
SRAD, expl., N4 10.12 ± 0.93 19.95 ± 1.60 39.66 ± 4.63 53.82 ± 5.07 58.89 ± 7.07 81.45 ± 10.44 0.17 0.361
SRAD, expl., N4 10.11 ± 0.98 20.00 ± 1.55 39.64 ± 5.03 54.15 ± 4.36 58.96 ± 7.25 81.48 ± 10.53 0.16 0.347
SRAD, impl., N4 10.47 ± 0.59 20.66 ± 0.90 41.36 ± 2.74 57.51 ± 2.96 60.89 ± 2.06 84.89 ± 4.33 0.24 0.375
SRAD, impl., N4 10.42 ± 0.39 20.42 ± 0.40 41.22 ± 2.54 59.14 ± 0.81 60.69 ± 1.02 84.13 ± 1.37 0.43 0.615
SRAD, impl., N4 10.12 ± 0.93 19.94 ± 1.64 39.64 ± 4.58 53.67 ± 4.89 58.86 ± 6.95 81.37 ± 10.27 0.18 0.387
DPAD, expl., N9 10.11 ± 0.97 20.00 ± 1.55 39.63 ± 4.93 54.03 ± 4.15 58.94 ± 7.08 81.43 ± 10.22 0.17 0.341
DPAD, impl., N4 10.48 ± 0.38 20.65 ± 0.66 41.54 ± 2.19 57.43 ± 3.06 60.61 ± 2.13 85.20 ± 3.72 0.32 0.524
DPAD, impl., N9 10.44 ± 0.35 20.43 ± 0.54 41.09 ± 2.00 58.35 ± 1.11 60.89 ± 0.86 85.00 ± 2.03 0.45 0.731
OSRAD 10.28 ± 0.51 20.09 ± 0.82 40.38 ± 2.38 54.95 ± 1.69 59.64 ± 3.73 83.52 ± 4.26 0.47 0.768
POSRAD 10.09 ± 0.68 19.91 ± 0.85 39.49 ± 1.53 51.90 ± 3.14 58.11 ± 2.11 79.57 ± 3.95 0.55 0.865

2 http://serdis.dis.ulpgc.es/∼krissian/HomePage/Demos/OSRAD/OSRAD.html
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(a) (c)

(b) (d)

Fig. 4. (a) Noisy 3D ultrasound of a liver. (b) Filtered 3D ultrasound of a liver. (c)

Noisy 3D ultrasound of a Heart. (d) Filtered 3D ultrasound of a Heart. The proposed

method achieve a good edge preservation with an efficient noise removal in both cases.

No suppositions were made concerning the probability distributions of the tissue
classes, so a Gaussian mixture model was used.

Since these parameters are the same used by OSRAD, a direct comparison
with the results in [4] can be established. We use the same quality measures for
validation: Mf and figure of merit (FOM)3, see [4] for more details. Both values
are comprised between 0 and 1. The highest the value, the better the filter.
Results presented in Table 1 show that the best FOM and Mf is achieved by
our method. These results show that a better performance can be achieved when
variations of the probability for each class is taken into consideration since the
diffusion tensor becomes more anisotropic near the most probable edges while
homogeneous regions are filtered in an isotropic way.

We now consider a 3D ultrasound image of a liver generated using the Strad-
win v3.8 software (Cambridge University, Cambridge, UK), which has been used

3 The quality measure Mf was recalculated since it measures the quality of the filter

compared to the others filters.
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commonly in the literature [4]. These data were acquired by a freehand sys-
tem and are available on Cambridge University4. The image is a volume with
201× 193× 142 voxels with an isotropic resolution of 0.5× 0.5× 0.5 mm3. Both,
the original and the filtered image are presented in Fig 4.(a-b). Visual inspection
shows that a good edge preservation is obtained with an efficient noise removal.
The parameters for this experiment were: 200 iterations, time step 0.5, σ = 1
and kmax = 6 with a Gaussian mixture model.

As a final experiment, we consider a real 3D ultrasonic image of the heart
obtained with the same clinical machine of section 2. In this experiment we use
the finite mixture model of Gaussian and Gamma distributions, 100 iterations,
time step 0.5, σ = 1 and kmax = 4. Results are presented in Fig. 4.(c-d) were a
good edge preservation is observed. An efficient noise removal is achieved in the
left ventricle when compared to the noisy image.

5 Conclusion

In this work we have presented a new diffusion filter that takes into account the
statistical properties of the image. This methodology offers an advantage over the
follow-up of statistical properties of the image in each iteration while preserving
and enhancing the structures. Experiments on synthetic and real images show
that the proposed method preserves edges of the structures better than others
and performs a good restoration.
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Abstract. Recently, new techniques for minimally invasive aortic valve

implantation have been developed generating a need for planning tools

that assess valve anatomy and guidance tools that support implantation

under x-ray guidance. Extracting the aortic valve anatomy from CT im-

ages is essential for such tools and we present a model-based method for

that purpose. In addition, we present a new method for the detection

of the coronary ostia that exploits the model-based segmentation and

show, how a number of clinical measurements such as diameters and the

distances between aortic valve plane and coronary ostia can be derived

that are important for procedure planning. Validation results are based

on accurate reference annotations of 20 CT images from different pa-

tients and leave-one-out tests. They show that model adaptation can be

done with a mean surface-to-surface error of 0.5mm. For coronary ostia

detection a success rate of 97.5% is achieved. Depending on the measured

quantity, the segmentation translates into a root-mean-square error be-

tween 0.4− 1.2mm when comparing clinical measurements derived from

automatic segmentation and from reference annotations.

1 Introduction

Valvular heart diseases are among the most prominent causes of heart failure
and premature cardiac death. Aortic valve stenosis is a very common valvular
disease and aortic valve replacement in open surgery has been conducted on these
patients for decades. This is, however, a very invasive and expensive treatment.
In addition, it is considered too high risk or contraindicated for many patients [1].
In the last decade, techniques for minimally invasive aortic valve implantation
have been developed [1,2] that offer a new treatment option. The artificial valve
is mounted on a stent which is delivered through a catheter, either transfemoral,
transsubclavian, or transapical, under X-ray guidance. Accurate assessment of
the valve anatomy is essential as, e.g. occlusion of the coronary ostia by the
valve leaflets or the rim of the stent is life threatening. Furthermore, methods
to guide implantation are important as the aortic valve anatomy is not clearly
visible when using X-ray imaging.

T. Jiang et al. (Eds.): MICCAI 2010, Part I, LNCS 6361, pp. 526–533, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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In this paper, we present a method to extract the aortic valve anatomy from
CT images. The method is based on a model-based segmentation approach pre-
viously developed to segment the heart from CT images [3]. In addition, a new
method for the detection of anatomical landmarks is presented that exploits the
model-based segmentation. Within the reference model, the likely regions of the
coronary ostia have been encoded to support their automatic detection. The
aortic valve model refers to a heart phase with closed aortic valve as overpacing
is used to stop the heart during implantation. In addition, it covers not only
the aortic valve and bulbus, but also the aorta and the left ventricle, which are
of relevance when using the transfemoral or transapical approach, respectively.
The model differs in that respect from the work of Ionasec et al. [4] who have
presented methods to generate a dynamic model of the aortic valve only.

Furthermore, we show how a number of measurements that are important
for stent selection and procedure planning (see [5] for relevant measurements)
can be derived from the model and information encoded therein . Examples are
the distance of the coronary ostia to the valve plane and diameter measurements
along the outflow tract, the aortic bulbus, and the ascending aorta. Extraction of
the measurements is done automatically, which distinguishes the work from Ges-
sat et al. [6] who presented a planning system for transapical valve implantation
relying on user selected anatomical landmarks.

The paper is structured as follows: In section 2, we present our approach for
the segmentation of the aortic valve and the new anatomical landmark detection
method that we use to localize the coronary ostia. In addition, we describe how
we determine the planes for measurements and how we compute the desired mea-
surements. Section 3 includes validation results for the segmentation accuracy,
landmark detection, and measurement accuracy.

2 Method

2.1 Model-Based segmentation

Previously, a method for segmenting the heart chambers and the great vessels
[3,7] was presented. The method detects the heart with an adapted General-
ized Hough Transform and positions a generic heart model in the image. Mesh
adaptation is done by iterating boundary detection and mesh deformation.

The pose of the heart chambers is improved by minimizing the external energy
Eext with respect to the parameters of a global similarity transformation during
mesh deformation. After 20 iterations, the point of gravity of the most distal de-
scending aorta segment is computed, and the descending aorta is detected in the
corresponding axial image slice. Another 20 iterations are performed to refine
adaptation of the heart chambers and the most distal descending aorta segment,
where a linear transformation is assigned to each model part and the exter-
nal energy Eext is minimized with respect to the parameters of the multi-linear
transformation. Finally, 30 iterations of deformable adaptation are performed.
The tubular segments building the great vessels are successively activated dur-
ing these iterations. Mesh deformation is done by adding shape constraints to
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the energy E = Eext +αEint. In particular, the internal energy penalizes devia-
tions from the generic heart model undergoing a multi-linear transformation to
account for pose and shape variability.

For acceleration, mesh adaptation is largely performed with a reduced mesh
resolution. In addition, already well-adapted mesh parts are frozen during de-
formable adaptation. Robustness is achieved by assigning optimal boundary de-
tection functions with Simulated Search [8].

(           )

Fig. 1. Merging two models: The upper model contains the detailed aortic valve and

aortic bulbus. These structures are cut and inserted into the lower, whole heart model.

Within the existing heart model, the aortic valve and aortic bulbus have only
roughly been modelled. Therefore, a more detailed model of the aortic valve,
aortic bulbus, and left ventricle was created. For that purpose, these structures
were manually annotated (and reviewed by a clinician) in 20 CT datasets result-
ing in 20 reference meshes. These were used to build a mean mesh model and
to train boundary detection functions by simulated search [8]. The aortic valve
model was subsequently integrated into the heart model (see Fig. 1). For that
purpose, both models were adapted to the same patient to bring them in the
same coordinate system. Both meshes were cut with identical cut planes, one
below the aortic valve and one above the aortic bulbus. Finally, the aortic valve
model was attached to the left ventricle and the aorta of the heart model. The
other parts of the heart model can be added if required by the application. All
mesh-related information, like anatomical affiliations and boundary detectors,
were transferred from one of the models to the merged model.

2.2 Ostia Finder

The shape, diameter, appearance, and position of the coronary ostia vary sub-
stantially between patients (see Fig. 2). This makes it difficult to detect them:
including the ostia directly in the model is difficult as their position varies too
much; a landmark detection method is also difficult as similar structures in the
dataset may lead to many false detection results. We propose, therefore, a new
approach. The basic idea is to use information from model-based segmentation
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a) c)

b) d)

Fig. 2. Examples of Ostia: a) thin and

pointing straight up b) thick and curving

downwards c) pointing straight down, very

near to aortic bulbus d) poor visibility of

first part then calcified

Fig. 3. Ostia candidate patches
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Fig. 4. Ostia search pattern with po-

tential shapes of ostia

and to restrict landmark detection for the coronary ostia to a well-defined area
on the surface of the aortic bulbus.

To encode the area for coronary ostia detection in the model, the mesh vertex
closest to a coronary ostium is determined and the triangles linked to the vertex
are marked. This is done for all manually determined coronary ostia positions
in the training images. Fig. 3 shows the resulting candidate patches of both
coronary ostia. They have a diameter between 1cm and 1.5cm.

Coronary ostia detection itself presumes that model-based segmentation has
been performed. The candidate patch is determined for the actual image and and
pattern matching is performed on the surface of the patch. The pattern consist
of a half-sphere S(c, r) and a ring R(c, r) (see Fig. 4), where r is the radius of
the half-sphere and the inner radius of the ring and c is the centre of both. The
orientation of the half-sphere and the ring is given by the mesh normal at the
centre c. Assuming that the correct ostium position is characterized by a high
image intensity inside the ostium that is surrounded by a ring with low image
intensity, the likelihood for a coronary ostium is computed according to

L(c, r) =

∑
x∈S(c,r) min{I(x), IAB}∑

x∈S(c,r) 1
− α ·

∑
x∈R(c,r) min{I(x), IAB}∑

x∈R(c,r) 1
, (1)

where I(x) is the image intensity at voxel x, IAB denotes the average image
intensity in the aortic bulbus and α is a weighting factor. The threshold IAB

is used to reduce the influence of calcifications and it is computed using the
model-based segmentation result. The coronary ostium position is found with a
complete search on the candidate patch while varying r between 2mm and 4mm.
The weighting factor α was chosen to be 0.5.
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2.3 Planes for Measurements

For computing the measurements for procedure planning and providing support-
ing functionality such as automatic reformatting, a number of planes must be
defined. These planes are derived from the adapted shape model and information
encoded therein.

Fig. 5. Aortic valve plane

landmarks, encoded on

mesh

Fig. 6. Rings encoded

on bulbus

1
2

3
4
5

Fig. 7. Planes for di-

ameter measurements

The aortic valve plane is defined as the plane which touches all three leaflets
of the valve from beneath. To facilitate its computation, three landmarks are
placed on the mesh on the basal ring of the aortic annulus (see Fig. 5). After
segmentation by model adaptation, the aortic valve plane is computed from the
position of the three landmarks.

To define the planes for diameter measurements of the left ventricular out-
flow tract (1), aortic valve annulus (2), the middle of the aortic bulbus (3), the
sinutubular junction (4) and the ascending aorta (5), several rings are encoded
on the mesh (see Fig. 6, 7). After model adaptation, planes are derived from
respective rings by regression analysis.

2.4 Measurements

Diameters along aortic bulbus. The diameter information is important for
selecting the proper stent [5]. The approach proposed for the measurements
differs from common clinical practice, where they are currently derived from
manually adjusted reformats or coronal slices of the CT image. Manual slice
selection in combination with the non-circular cross-sections bears, however, a
significant risk of over- or underestimating the respective quantity. The proposed
3D-based approach aims at delivering more consistent measurements.

To characterize the diameter, the mesh is cut by the respective plane. Then,
an ellipse [9] or an inner and outer circle is fitted to the vertices of the resulting
contour. The ventricular outflow tract and the aorta are normally elliptical, so
here an ellipse is fitted using direct least square fitting (see Fig. 8, left). The
aortic annulus and bulbus, however, have the shape of a rounded triangle. Here,
the radius of the inner and outer circle are estimated from the vertices of the
resulting contour (see Fig. 8, right).
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Distance between ostia and aortic valve plane. The distance between ostia
and aortic valve plane is important to evaluate the risk of ostia occlusion. The
valve leaflets are pressed against the wall of the aortic bulbus by the implanted
aortic valve and it is essential to verify that they cannot occlude the coronary
ostia [5]. The difference of the distance of the ostia to the valve plane and the
outer radius of the valve annulus can be used to asses the risk. Additionally, the
distance is important for the decision, whether a specific stent can be implanted,
where the upper part of the stent could occlude the coronary ostia [5].

Given the location of the ostia and the aortic valve plane, computation of
the distances between the ostia and the aortic valve plane is straightforward
(see Fig 9). The right image of Fig 9 also shows why it is difficult to determine
the valve plane manually in 2D slices: As the valve is not a planar structure
it touches the plane only at three points. If a slice like the one in the image is
chosen to select the plane manually, the result is not correct.

min

max
min

max

Fig. 8. Left: Fitted ellipse with

short and long axis, right: fitted in-

ner and outer circle

Fig. 9. Distance ostia to aortic

valve plane

3 Evaluation Setup and Results

For the evaluation, a leaving-one-out study was conducted. 20 CT datasets (9
with calcified valves) with reference segmentations were available for this study.
Always 19 of the 20 dataset were used to train the model. This includes compu-
tation of the mean shape, boundary detectors and the ostia search regions. The
model was then used to segment the remaining dataset and the measurements
were conducted as described above. Then, the mean surface-to-surface error [3]
of the automatic segmentation and the reference segmentation were computed
and the measurements from the automatic segmentation were compared with
the measurements derived from the reference segmentation.

The segmentation was successful in all 20 datasets. The mean surface-to-
surface error for left ventricular outflow tract, aortic valve and aortic bulbus was
0.5 ± 0.4mm. Example images of the segmentation are shown in Fig. 10. The
localization of the ostia was successful for 39 out of 40 ostia (20 right, 20 left
ostia). For the failure case, the landmark was detected in the coronary artery
but not in the centre of the ostium. For the remaining 39 ostia, the left coronary
ostium was detected with root mean squared (RMS) error of 1.2 ± 0.6mm and
the right coronary ostium with an RMS error of 1.0 ± 0.8mm. The valve plane
was always detected successfully. The centre of the valve annulus was detected
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Fig. 10. Examples of aortic valve segmentation

with a RMS error of 0.8±0.3mm and the normal of the plane had an RMS error
of 1.8± 1.0◦.

For the different proposed measurements, the range of values (mean, stdev,
min, max) was computed on the reference meshes and the RMS errors between
the measurements derived from the automatically segmented data and the mea-
surements derived from the reference meshes were computed. An overview of the
measurements is given in Table 1.

Table 1. Evaluation of measurements (all values in mm)

Measurement mean stdev min max RMS Error

Distance left ostium - aortic valve plane 16.6 3.3 10.4 22.7 0.9

Distance right ostium - aortic valve plane 17.5 2.8 13.2 22.0 0.6

Short axis diameter, LV outflow tract 19.7 1.9 15.5 23.9 1.0

Long axis diameter, LV outflow tract 28.2 2.3 23.5 33.7 1.2

Inner diameter, aortic valve annulus 22.6 2.2 18.3 27.4 0.8

Outer diameter, aortic valve annulus 28.0 2.1 24.4 32.2 1.0

Inner diameter, mid bulbus 29.6 3.0 22.8 35.2 0.6

Outer diameter, mid bulbus 35.8 3.9 28.3 43.3 0.7

Short axis diameter, sinutubular junction 26.4 2.5 21.7 31.0 0.7

Long axis diameter, sinutubular junction 28.2 3.0 22.1 32.9 1.0

Short axis diameter, ascending aorta 27.1 2.2 22.3 31.7 0.5

Long axis diameter, ascending aorta 28.5 2.1 23.8 32.9 0.4

4 Conclusions

We have presented a model-based approach for the extraction of the aortic valve
geometry from CT images and showed on 20 CT data sets that model adap-
tation can be done with a surface-to-surface error of 0.5mm. Furthermore, we
presented a new approach for the detection of the coronary ostia that applies a
simple pattern search method in regions encoded on the model. Accurate model
adaptation in combination with the locality introduced in this way avoids mis-
leading detection results and enables coronary ostia detection with a success rate
of 97.5%. We believe that this approach can be generalized and also be used for
the detection of other anatomical landmarks.
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Furthermore, the resulting aortic valve model and information encoded therein
was used to derive a number of measurements for planning minimally invasive
aortic valve procedures. Compared to the measurements derived from the refer-
ence annotations, automatic segmentation resulted in RMS errors of the mea-
surements between 0.4 and 1.2mm. Respective errors are comparable or smaller
than the difference reported, for instance, for diameter measurements of the aor-
tic valve annulus between CT and transthoracic echo (1.22± 1.3mm) or CT and
transesophageal echo (1.52 ± 1.1mm) [10]. As inaccuracies in sizing the aortic
valve annulus can result in various complications such as paravalvular leaks,
valve embolization or migration, centrivalvular leaks, premature leaflet deterio-
ration or post-procedure heart block, we think that our approach has not only
the potential to improve consistency of clinical measurements, but may also
contribute to an improved clinical outcome.

In the future, the model may also be used to support interventional guidance.
Similar as proposed for electrophysiological procedures, the aortic valve model
may be overlaid onto X-ray images for that purpose. Another approach to sup-
port guidance would be the combination with methods to localize and track the
aortic valve prosthesis as proposed by Karar et al. [11].
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1 Centre for Medical Image Computing, University College London, WC1E 6BT, UK
2 Dementia Research Centre, UCL Institute of Neurology, London, WC1N 3BG, UK

Abstract. Cortical parcellation refers to anatomical labelling of every

point in the cortex. An accurate parcellation is useful in many analysis

techniques including the study of regional changes in cortical thickness

or volume in ageing and neurodegeneration. Parcellation is also key to

anatomic apportioning of functional imaging changes. We present prelim-

inary work on a novel algorithm that takes an entire cortical parcellation

and iteratively updates it to better match connectivity information de-

rived from diffusion weighted imaging. We demonstrate the algorithm

on a cohort of 17 healthy controls. Initial results show the algorithm re-

covering artificially induced mis-registrations of the parcellation and also

converging to a group-wise average. This work introduces a framework

to investigate the relationship between structure and function, with no

a-priori knowledge of specific regions of interest.

1 Introduction

Cortical parcellation is a labelling of every point in the cortex [5]. This labelling
delineates regions throughout the cortex, enabling subsequent analysis on a per-
region basis, and is an essential tool for neuroimaging research. An accurate
cortical parcellation is of use when analysing properties such as thickness [4]
or white matter connectivity [7]. As the parcellation is a key behind-the-scenes
component, it is essential for understanding the underlying anatomy and both
the cross-sectional and longitudinal changes that occur in neurodegenerative
diseases.

Using magnetic resonance imaging (MRI), previous parcellation methods have
looked at labelling parts of the cortex, such as prominent sulci, to sub-divide the
volume of each hemisphere [10], or using watershed techniques to label all sulci
[8]. Subsequently, Fishl et. al. [5] developed a comprehensive method to label
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all voxels in the cortex. This method, based on a probabilistic atlas derived
from manually labelled datasets is incorporated into the widely used FreeSurfer
software package.

However, it is known that the topographical boundaries in a cortical par-
cellation may not be visible in structural MRI scans and only have a limited
correspondence to underlying cytoarchitecture [1]. Recently it has been shown
that connectivity profiles derived from diffusion data can elucidate functionally
distinct regions in the cortex [6,2]. These methods infer a parcellation directly
from diffusion weighted imaging (DWI) data by clustering together voxels with
similar connectivity. Thus far, these voxel based methods have been applied to
regions of the brain such as the supplementary motor cortex (SMA) and pre-
SMA [6] and also to define 9 subregions of the cingulate cortex [2]. Most recently,
surface based methods have been developed to register brains based on regional
connectivity [9] and also analyse which areas have sufficient connectivity to drive
a parcellation [3]. We describe work that combines DWI and volumetric MRI
data to modify an existing parcellation of the whole cortex, with the hypothe-
sis that a parcellation based on functional connectivity provides a parcellation
that is more functionally and cytoarchitecturally correct when compared with
conventional topology driven parcellation. Importantly we first asked whether
these approaches give concordant or different results, without pre-judging which
is better since this judgement may be dependent upon the use to which the
parcellation is put.

2 Methods

We first describe several pre-processing steps, before describing the proposed
algorithm. For these experiments, we use the cortical parcellation, and spherical
surface model produced by FreeSurfer1 [5] and probabilistic tractography imple-
mented in MRtrix2[11], however, the proposed algorithm could be applied to any
triangulated surface model representing the cortex with pointwise connectivity
established. Furthermore, we pre-process our T1-weighted (T1w) images using
the FreeSurfer pre-processing pipeline. The FreeSurfer pre-processing pipeline
includes steps that linearly resample to 1mm iso-tropic voxels, performs N3 in-
tensity inhomogeneity correction, registers to Talairach space and then performs
another white matter specific intensity normalisation before continuing on to per-
form a cortical thickness and volume based processing stream. These FreeSurfer
pre-processing steps are not discussed as part of this paper.

2.1 Combining Structural and Connectivity Information

For each subject’s T1w scan, we run the FreeSurfer cross sectional pipeline,
and extract the triangulated white matter surface, the inflated spherical sur-
face and the 36 anatomical labels, for both the left and right side of the brain.
1 http://surfer.nmr.mgh.harvard.edu/fswiki
2 http://www.brain.org.au/software/
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Fig. 1. Overview of method. (a) Spherical representations of the left and right cortical

surfaces are extracted using FreeSurfer. (b) Connectivity information from MRtrix

is added (only the first 500 tracts are shown). (c) The parcellation boundaries are

optimised using the bi-spherical model, and then mapped back to the white matter

surface. (d) The difference can be visualized, and the updated parcellation used in

further cortical analysis.

FreeSurfer guarantees the ordering of points listed in the white matter surface
matches the ordering of points in the corresponding inflated spherical surface,
for each side, thereby enabling simple mapping between the two. The left and
right spherical mesh models were combined into a single file3, with each sphere
offset by ±(100, 100, 100)mm to aid visualization, and the left hemisphere la-
belled with anatomical regions 0-35, and the right hemisphere labelled with the
same anatomical regions, but with labels 36-71, illustrated in Fig. 1(a).

For each subject’s DWI scans, Fibre Orientation Distributions (FODs) were
computed by Constrained Spherical Deconvolution with a maximum harmonic
degree of eight[11], using the MRtrix package. Probabilistic tractography was
performed by seeding 100,000 tracts within a cortical mask using MRtrix with
default parameters. The tracts were then filtered to only store the endpoints of
tracts that started and finished within the cortical mask (i.e. those that connect
grey matter). Typically this resulted in circa. 70,000 tracts per subject.

The diffusion data was registered (9 degrees-of-freedom) to the T1w scans,
and the tracts and FreeSurfer white matter surfaces transformed into T1w image
space. For each end of each tract, we find the closest point in either the left or
right white matter surface, and then the corresponding point in the left or right
spherical models. Each tract is thus attached to the spherical model, and is
illustrated in Fig. 1(b). In practice, the number of triangles in the white matter
mesh is far greater than the number of tracts, leading to a sparsely populated
model. Thus we subsample each spherical model, and re-attach the tracts to the
nearest spherical surface point. The output of the pre-processing is a single bi-
spherical model containing two labelled spheres representing the left and right
cortical hemispheres and a large number of lines representing the connectivity,
as determined from the tractography.

2.2 Cortical Parcellation Optimisation Algorithm

The algorithm we propose is a group-wise optimisation, designed to update each
subject’s cortical parcellation, to achieve consistency between subjects in the
3 http://www.vtk.org
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within subject connectivity. We desire a mean connectivity profile to remove
bias caused by any one individual. Implicitly, we are assuming that the group
of subjects should have similar connectivity. This may not be the case under
various disease conditions, so to investigate the framework, we concentrate on
healthy controls.

Consider a dataset of P points in R3, where with each point pi=1...P we
associate a single label lj=1...L. Consider also that the dataset contains T lines,
denoted by tk=1...T where ti,i

′
k denotes the fact that the k-th line connects point

i with i′ and l(tik) and l(ti
′

k ) denote the label values associated with line k at
points i and i′ respectively. For a given configuration of labels, we can compute
a symmetric 2D histogram H , where each bin H(lj , lj′) contains the number of
label lj connected to label lj′ via the set of T lines. Thus:

H(lj , lj′) =
1
T

T∑
k=1

{
1 if l(tik) = lj and l(ti

′
k ) = lj′

0 otherwise
(1)

Thus, for a given bi-spherical model (see Fig. 1(b)), we can compute a 2D his-
togram of label connectivity. Furthermore for N 2D histograms of label connec-
tivity, we define the mean connectivity histogram as

Ĥ(lj , lj′) =
1
N

N∑
n=1

Hn(lj , lj′ ) (2)

Finally for two 2D histograms Hn and Hn′ , we define a sum of squared difference
histogram similarity measure as

S(Hn, Hn′) =
L∑

j=1

L∑
j′=1

(Hn(lj , lj′)−Hn′(lj , lj′))2 (3)

Algorithm 1 outlines a single subject optimisation that matches a single subject’s
bi-spherical model to a label connectivity histogram. This could be used in a
stand alone sense if the label connectivity histogram was known a-priori from
another process.

The overall optimisation proceeds in a group-wise fashion, and is shown in
Algorithm 2. For a group of N bi-spherical models, an average connectivity his-
togram is calculated, and then for each subject, the parcellation is optimised
using Algorithm 1 to drive towards the average. Within this combined frame-
work, there are many alternatives that could be suggested, some of which are
outlined in section 3. Fig. 1(c) and (d) show the labels mapped to the cortical
surface, and after an update shows the difference image, illustrating updated
region boundaries.

2.3 Experiments and Results

17 healthy control subjects were selected, and each scanned on a 3T Siemens
TrioTim scanner, with a 32 channel head coil, using an MPRAGE sequence
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Algorithm 1. Individual subject optimisation
1. Until a maximum number of iterations

2. Evaluate S(Hn, Ĥ)

3. For each point pi find neighbours with different labels

4. If the number of differing labels > 0

5. For each differing label calculate ∇S(Hn, Ĥ) using eqn (3) by swapping label

6. Store the label li that minimises eqn (3) in a list

7. Update labels using list created in step 6

8. Evaluate S(Hn, Ĥ). If this is larger than step 2, stop

9. Goto 1.

Algorithm 2. Group-wise optimisation
1. Until a maximum number of iterations

2. For each subject n = 1 . . . N
compute histogram Hn(lj , lj′) using eqn (1)

3. Compute the mean connectivity histogram using eqn (2)

4. For each subject n = 1 . . . N
optimise the parcellation values using Algorithm 1.

5. Goto 1.

(TE=2.9ms, inversion interval TR=2200ms, TI=900ms). T1-weighted volumet-
ric images were obtained with a 28.2-cm field of view and 256×256 acquisition
matrix to provide 208 continuous 1.1mm thick slices. DWI images were obtained
(TE=91ms, TR=6800ms, 64 gradient directions, b=1000smm−2, and 8 × B0

images) with a 24-cm field of view and 96×96 acquisition matrix, providing
55 continuous 2.5mm slices. FreeSurfer’s cortical processing stream was run on
each subject’s T1 image, and MRtrix’s tractography performed using a single
B0 image and 64 gradient directions.

For each of the 17 subjects, the histogram of label connectivity was generated.
The labels were then mis-registered by selecting every other region (i.e. regions
0, 2, 4 . . .70) in turn, and updating the neighbours of each boundary point to
that region label, similar to dilating a boundary in an intensity image. We did
this 1, 2 . . .5 times, resulting in 5 datasets of 17 mis-labelled models. We then
used Algorithm 1 to optimise the labels, on a per-subject basis, to match them
to their original label connectivity histogram. We visually inspected the results.
For all the levels of mis-registration, and for all subjects, the algorithm moved
the boundaries of the regions. It could be seen that in some cases the apparent
mis-registration increased. Even in this case, there is no gold standard, as the
diffusion data may suggest a different parcellation to the initial topographical
parcellation.

Fig. 2 shows a visualisation of the results for a single subject. Fig. 2(a) shows
the bi-spherical model showing left and right hemispheres, with parcellation
labels attached. Fig. 2(b) shows a difference image, the thick blue and red lines
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Fig. 2. Results of Algorithm 1 (a) Spherical representations of the left and right

cortical surfaces. (b) A difference image showing the change in region label before

running Algorithm 1. (c) A difference image showing the change in region label after

running Algorithm 1.

shows boundaries that have been moved. Fig. 2(c) shows the boundaries after
the optimisation algorithm has run. It can be seen that Algorithm 1 has reduced
the size of the thick blue and red lines, indicating that the algorithm converged
back towards the original label connectivity histogram. Fig. 2(c) also shows that
some noise has been introduced, most likely caused by lack of regularisation at
the boundary.

Then, for all 17 subjects the full group-wise optimisation Algorithm 2 was
run. The aim of the experiment was to see how well Algorithm 2 converged, and
to see the effects of the diffusion imaging. Again we have no gold standard, as
we are hypothesising that the parcellation should change to something that’s
only visible on diffusion images, which have not been manually segmented. We
ran the main loop, Algorithm 2 for 5 iterations, by which point the internal
loop running Algorithm 1 had converged. Fig. 3 illustrates the movement of the
parcellation boundary on a single subject. Once the groupwise registration had
converged, the difference in the boundary can be seen.

Fig. 3. Results of Algorithm 2 (a) Initial (FreeSurfer) atlas based parcellation. (b)

After groupwise optimisation using Algorithm 2, the boundaries have moved. (c) A

difference image showing the difference between (a) and (b).

3 Discussion and Conclusion

We have demonstrated an algorithm to update a cortical parcellation using diffu-
sion imaging. This work shows promising and interesting results. Importantly it
shows that with a simple optimisation scheme, tract based connectivity does in-
deed alter an atlas based topographical parcellation, implying that a topography
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based parcellation is not entirely concordant at a functional level between indi-
viduals. This is not at all surprising given the well described differences between
structure, function and cytoarchitecture correlates [6,2] and may be particularly
relevant in functionally driven applications. While we are aware that we have
only performed visual inspection, it is already interesting to see that there may
be some regions where the boundary only moves a little, indicating a good con-
cordance between structure and connectivity, and regions where the boundary
moves a lot. Further work will investigate the reasons for this.

There are many opportunities for improvement of this algorithm, both on a
purely technical basis, and on a more philosophical one. We started this work,
inspired by the Spherical Demons paper[12]. We aimed to compute a force at each
vertex along the boundary. The algorithm attaches connectivity lines directly to
points to avoid repeatedly searching for the closest line. However, it is difficult to
match the resolution of the tractography to the resolution of the spherical mesh.
This results in a sparse number (approx 20-30%) of boundary points having
connection data. For these results, we down-sampled the spherical mesh, using
larger triangles, and attached the connections to the closest available point. This
increased the percentage of points having connections, but effectively reduced
the resolution. We need to study the effect of different tract seeding strategies,
the number of tracts, and the masks used.

Our optimisation was simple, and could certainly be improved. We have not
yet implemented any form of regularisation which leads to small islands ap-
pearing in the parcellation. This could be remedied by maintaining an explicit
boundary model, enforcing boundaries are not broken. Alternatively, rather than
optimise on a point by point basis, a regular grid of control points could be used.
Furthermore, the connectivity histogram is complex, and could be smoothed [9]
or a more global optimisation scheme adopted.

The question of how closely structure and function should match, on an indi-
vidual and group-wise basis, is an interesting one. It has been shown that there
can be significant differences between subjects [1]. It may be better to simply
deal with each subject individually. The voxel based methods described in [6,2]
provide a way to search for clusters, purely within the tractography information
with no a priori knowledge of the existence of any parcellation. A combination
of an existing parcellation from an atlas, and also a clustering technique on the
tracts rather than a clustering on the connectivity histogram may provide a
stronger indicator of distinct regions.

For applications where the scale of interest is large, such as thickness mea-
surements over large regions of the cortex, then deriving fine grained boundary
detail may provide little statistical difference. Techniques such as this and [6,2]
may provide greater insight in areas where from a clinical perspective there is
a need to sub-divide a given region. Another interesting area of study would
be in longitudinal analysis. Over time, changing regional boundaries may con-
found atlas based parcellation algorithms. Using diffusion imaging and a model
of how a disease process might affect tracts over time, may provide a way for
connectivity information to iteratively update the parcellation boundaries.
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In conclusion, we have demonstrated a prototype framework to iteratively
update an atlas based parcellation using diffusion imaging. Initial results prove
promising, and potentially open up many more areas of research.
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Tract-Based Probability Densities of Diffusivity
Measures in DT-MRI

Çağatay Demiralp and David H. Laidlaw

Brown University, USA

Abstract. We evaluate probability density functions of diffusivity measures in
DTI fiber tracts as biomarkers. For this, we estimate univariate and bivariate den-
sities, such as joint probability densities of the tract arc length and FA, MD, RD,
and AD, in the transcallosal fibers in the brain. We demonstrate the utility of es-
timated densities in hypothesis testing of differences between a group of patients
with VCI and a control group. We also use the estimated densities in classifying
individual subjects in these two groups. Results show that these estimates and de-
rived quantities, such as entropy, can detect group differences with high statistical
power as well as help obtain low classification errors.

1 Introduction
Tract-based approaches to analysis of diffusion brain data sets are attracting interest be-
cause they can geometrically localize quantities while reducing sensitivity of associated
statistics to computational errors and noise (e.g., [1,2,3]). In this context, we propose
using probability densities in characterizing diffusion along diffusion-tensor MRI (DTI)
fiber tracts generated from diffusion-weighted imaging data sets. We experiment with
well known diffusivity measures such as fractional anisotropy (FA), mean diffusivity
(MD), radial diffusivity (RD), and axial diffusivity (AD) [4]. We estimate univariate and
bivariate diffusion densities of these four measures nonparametrically, using histogram
and kernel density estimation methods. We use the estimated densities for hypothesis
testing of differences between a group of patients with vascular cognitive impairment
(VCI) and a control group. Results indicate that probability density estimates can detect
group differences with high statistical significance.

Contributions. Our main contribution is to introduce tract-based probability density
functions, including the joint density of tract arc length and scalar diffusivity measures,
as potential metrics for characterizing diffusivity in DT-MRI brain data sets. Our ap-
proach is a simple and effective addition to existing methods. We also show that proba-
bility density entropy itself is a useful biomarker.

2 Related Work

Using voxel or integral curve (as in tractography) representations of fiber tracts, previ-
ous research has proposed tract-based analysis of diffusion-derived measures in order to
increase the specificity and robustness of related statistics [1,2,3]. A typical approach in
these earlier studies is to find a representative skeleton (or curve) first and then project
the diffusivity measures of individual subjects on this representative. For example, tract-
based spatial statistics (TBSS) has been proposed to overcome some of the disadvantages

T. Jiang et al. (Eds.): MICCAI 2010, Part I, LNCS 6361, pp. 542–549, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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of approaches using voxel-based morphometry (VBM) [1]. TBSS reduces the sensitiv-
ity of statistics to alignment problems by projecting subject data onto a voxel skeleton
of the white matter as characterized by FA. Using tractography makes the incorporation
of fiber tract arc length into the analysis easier. One of the joint densities evaluated here
is the probability of a diffusivity value given an arc-length distance. Parametrization of
tracts based on arc-length distance has already been shown to be useful [5], and tract arc
length by itself has been proposed as a metric [6]. As in TBSS, previous studies using
tractography have also been able to detect differences between groups of subjects by
analyzing diffusivity measures projected onto an arc-length parametrized representative
tract [2,3].

Recently, probability density functions (PDFs) have been used as shape descriptors
in cortical folding analysis and in quantifying FA change with respect to the thickness
of the surface sheet covering the corticospinal tract [7,8].

While earlier tract-based analysis methods essentially collapse bundles into a single
representative subset (skeleton or curve) and run the subsequent analysis through this
subset, our approach considers each bundle directly and separately, modeling the full
spectrum of individual bundle’s data as a sample from a probability distribution charac-
terizing the corresponding subject. Also, our use of PDFs is simple, general (it can be
applied to any tracts and combine any number of variables), and truly spatial, since we
orient tracts.

3 Data Collection

The underlying premise of using tract-based probability densities in clinical research is
that they have different values in patients with and without known white-matter injury.
In order to verify this, we generated tractograms of a group of patients with vascular
cognitive impairment (VCI) and a group of healthy control subjects and compared the
group differences using probability densities. VCI is a general term for vascular cogni-
tive deficits caused by injuries to the white matter from cerebrovascular diseases. VCI
typically manifests itself with problems in speech, language, and the ability to orga-
nize thoughts and track actions. Its effects on memory, however, are considered mild
in comparison to Alzheimer’s disease. Often, deficits in cognitive domains caused by
VCI are similar to those common in individuals of advanced age. Below we give only a
summary of our data collection process; details can be found in [6].

Subjects. Our subjects were 19 patients with VCI and 20 healthy individuals who
served as a control group. The subjects were age-matched. Diffusion-weighted MRI
(DWI) sequences for each subject’s brain were acquired on a 1.5T Siemens Symphony
scanner with the following parameters in 12 bipolar diffusion encoding gradient direc-
tions: thickness = 1.7 mm, FOV = 21.7 cm×21.7 cm, TR = 7200 ms, TE = 156 ms, b
= 1000, and NEX = 3.

Fiber-tract Generation. From acquired sequences, we calculate tensors and then de-
rive the three principal eigenvalues and eigenvectors for each image voxel after inter-
leaving the three sets of DWIs. We then generate fiber-tract models of the whole brain
for each subject by integrating (by second-order Runge-Kutta integration) the major
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Fig. 1. Transcallosal fiber tracts obtained from a healthy subject. The gray surface representing the
ventricles is displayed for anatomical correspondence. Left: Sagittal view. Right: Tilted coronal
view, where spheres (blue in color) indicate the “beginning” of each tract.

eigenvector field of the diffusion tensor field bidirectionally at seed points (see Fig-
ure 1). Transcallosal fibers, defined as all trajectories passing through the corpus callo-
sum, for each participant were selected manually by a rater using a custom interactive
visualization program. Selected models were checked by two experts for anatomical
correctness. Since tract of interest (TOI) selection was based on each participant’s own
anatomy, registration was not necessary.

Orienting Tracts. Since we compute the joint probabilities of arc length and the diffu-
sivity measures, we need to assign start- and end-point designations consistently within
and across fiber tracts and across subjects. We achieve this by simply computing the
start-to-end vector for each curve and iteratively reorienting the curves until all the vec-
tors are in the same half-space; we repeat this interactively between data sets.

4 Methods

Density Estimation. Since we do not assume a particular distribution of diffusivity
measures along tracts, we take a nonparametric approach to estimation. We use two
widely studied estimators, histogram and kernel estimators [9,10]. Let XN

1 ={X1, . . . ,XN}
be independent and identically distributed (i.i.d.) random variables drawn from a den-
sity f (x). The histogram estimator of f is obtained simply by dividing the range of the
samples into bins of width h and counting the number of samples falling into each bin.

Kernel density estimation (KDE) addresses some of the obvious disadvantages of
histograms, including non-differentiability and reference-point dependency. The kernel
estimator of f using XN

1 is given by f̂ (x) = 1
Nh ∑N

i=1 K( x−Xi
h ), where K(x) is some kernel

satisfying
∫ ∞
−∞ K(x)dx = 1 and h is the kernel bandwidth, analogous to the histogram

bin width. We omit here multivariate versions of the equations; they can be found in
any good multivariate statistical analysis book (e.g., [9,10]).
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Fig. 2. Univariate density estimates of FA, MD, AD, and RD measures for control subjects and
subjects with VCI. They suggest an increase in variances of MD, AD, RD densities with VCI.
Also, the shifts in the densities of the two groups are consistent with previous reports: while FA
decreases, MD, RD and, to a lesser extent, AD increase with atrophy in the brain.

Both bin width and kernel size can affect the results significantly. Therefore we use
a data-driven rule originating in the L2 theory of histograms, minimizing the mean in-

tegrated square error (MISE) [10,11]. We set the histogram bin width h = 3.5σ̂N−
1

d+2 ,
where d is the dimensionality of the data (e.g., d = 2 for a bivariate distribution) and
N is the number of samples. We select σ̂ = min{s, IQR/1.349} as discussed in [12],
where s is the standard deviation of samples and IQR is the inter-quantile range. We
use a Gaussian kernel with both univariate and bivariate estimators. As for the kernel
bandwidth h, we apply the “normal scale” rule introduced in [9], which is also asymp-
totically optimal.

Non-parametric Multivariate Hypothesis Testing. Both histogram and kernel esti-
mates (kernel estimators in their discretized forms) essentially provide a vector of values
identifying the underlying distribution. These “density vectors” can be used for testing
differences between groups, which requires a multivariate test statistic. We use the per-
mutation Hotelling’s T 2 test [13]. Hotelling’s T 2 statistic is a multivariate extension of
Student’s t statistic and permutation is a common method for running non-parametric
tests using using scores obtained with parametric statistics.

Entropy. One of the usual quantities computed over probability densities is entropy
(or Shannon entropy) [14]. While entropy has different interpretations in different do-
mains, it can be viewed here as a measure of randomness in data (i.e. uniformity of its
distribution). We compute the entropy of the density f using the estimated density as
H( f̂ ) =−∑x x f̂ (x) and evaluate it in group comparison of our subjects.

Classification. Classification is now a standard approach to exploring medical data
sets. We use a support vector machine (SVM) classifier to assess the usefulness of quan-
tities derived from tract-based diffusivity probability densities. SVM is a maximum-
margin classifier minimizing the classification error while maximizing the geometric
margin between the classes [15]. It is particularly suitable for two-class problems.

5 Results

We estimate univariate densities of FA, MD, AD, and RD as well as joint densities of
these measures with fiber tract arc length, where arc length is normalized to 1, in each
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Fig. 3. Kernel density estimates of FA and arc length joint PDF for 8 subjects–4 controls (first
row) and 4 patients (second row). The third local maximum (on the mid-right) starts disappearing
with VCI. Also, observe, in the last column, the similarity between a healthy subject of advanced
age and a young patient.

subject’s transcallosal fiber tract. Overall, results show that the tract-based probability
densities help detect differences between groups and classify individual subjects with
high accuracy. Figure 2 shows kernel estimates for univariate FA, MD, AD, and RD
probability densities. Even in this simple univariate form, estimated PDFs are rich in
information. They suggest an increase in variances of MD, AD, RD densities with VCI.
Also the shifts in the estimated densities of the two groups support previous reports
that, while FA decreases, MD, RD and, to a lesser extent, AD increase with atrophy
in the brain. Figure 3 shows kernel estimates for the joint probability of FA with the
arc length. These 2D density results are visually informative and can help generate
hypotheses. For example, it is clear from the figures that the third local maximum (on
the mid-right) starts disappearing with VCI and age. Similarly, the decrease in MD with
VCI is clear in MD and the arc length joint density shown in Figure 4.

5.1 Group Comparisons

Using Entropies. We expect neurological diseases to affect the entropy of probability
distributions of diffusivity-related measures. We test this hypothesis for all the measures
using their univariate and bivariate densities. The results show that MD, RD, and AD
entropies increase significantly while FA decreases (see Figure 5 and Table 1a). This
outcome is in line with previous findings that AD is more sensitive to atrophy than
FA [16].

Density Vectors. Using vectorized “raw” density values, we compare the group of
subjects with VCI with our control group, employing the multivariate permutation



Tract-Based Probability Densities of Diffusivity Measures in DT-MRI 547

subject id# 20−control, age:45

ar
c 

le
ng

th

MD
 

 

0.1 3.5
0

1

0.5

1

1.5

2

x 10−3subject id# 29−control, age:83

MD0.1 3.5
0

1
subject id# 30−control, age:59

MD0.1 3.5
0

1
subject id# 26−control, age:83

MD0.1 3.5
0

1

x 10
−3

x 10
−3

x 10
−3

x 10
−3

subject id# 7−vci, age:53

ar
c 

le
ng

th

MD
 

 

0.1 3.5
0

1
subject id# 11−vci, age:52

MD0.1 3.5
0

1
subject id# 19−vci, age:58

MD0.1 3.5
0

1
subject id# 12−vci, age:45

MD0.1 3.5
0

1

2

3

4

5

6

7

8
x 10−4

x 10
−3

x 10
−3

x 10
−3

x 10
−3

Fig. 4. Kernel density estimates of MD and arc length joint PDF for 8 subjects–4 controls (first
row) and 4 patients (second row). The joint PDFs tend to spread out (i.e., increase in variance)
with VCI. As seen in the last column, aging can have an effect similar to VCI.
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Fig. 5. Entropies for univariate probability density estimates of FA, MD, AD, and RD for all
subjects. MD, AD, and RD density entropies significantly increase with VCI, but the FA entropy
decreases, though not significantly (see also Table 1b).

Table 1. (a) p-values for the group comparison (VCI vs. control) using entropies of the estimated
probability densities. Except for FA, the entropy measure was able to detect the group difference
for all densities. (b) p-values for the group comparison (VCI vs. control) using probability density
vectors. Histogram estimates of univariate densities were able to detect the group differences.

(a)

univariate bivariate

histogram kernel histogram kernel

FA 0.36797 0.01239 0.0297 0.8379
MD 0.00000 0.00000 0.00000 0.00000
AD 0.00106 0.00878 0.0042 0.00016
RD 0.00000 0.00000 0.00000 0.00000

(b)

univariate

FA 0.00078
MD 0.00000
AD 0.00005
RD 0.00002
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Table 2. Classification results for our 39 subjects, obtained using an SVM classifier with 10-fold
cross-validation. Data points used for classification are univariate histogram density estimates.

density sensitivity specificity error

FA 83.3% 81% 17.9%
MD 90% 94.7% 8%
AD 77.2% 88.2% 17.9%
RD 89.5% 90% 10.2%

Hotelling’s test [13,17]. We reduce the dimensionality of the density vectors using prin-
cipal component analysis (PCA) before running the test, while preserving 99% of the
variance. The results show that the density vectors of univariate estimates are able to
detect group differences (see Table 1b).

5.2 Classifying Normal and Pathology

We ran an SVM with a polynomial kernel on 39 data sets using 10-fold cross-validation.
Using density estimates of MD yields the best classification. Table 2 summarizes the
results.

6 Discussion and Conclusions

We have proposed a simple and practical addition to existing tract-based multi-subject
diffusion data analysis techniques, which are essentially based on collapsing bundles
into a representative subset and sampling diffusion measures along this subset. Our
approach considers all the tracts in a given bundle and treats the associated diffusivity
measures as samples from a PDF characterizing the subject. We estimate this PDF using
the histogram and kernel estimators. While using the histogram density estimator is
fast and simple, the kernel estimator provides smoother results with useful differential
properties.

Given a reasonable choice of variables, estimated PDFs are likely to be descriptive
and rich in information, and therefore well-suited for analysis of individual and group
differences in diffusion data sets. In the case examined here, both PDFs themselves and
their entropy measures appear to be good indicators of group differences, although ad-
ditional work is required to understand how this generalizes to other cases. Similarly,
our initial results on the classification of subjects based on densities suggest the poten-
tial utility of PDFs in detecting individual differences. Note that using natural distance
measures on PDFs such as the Bhattacharyya distance and Kullback-Leibler (KL) di-
vergence could further improve the analysis discussed above. Finally, although we have
not dealt with alignment issues, the probabilistic approach discussed here can also in-
crease the robustness of the analysis to registration errors in fully automated settings.
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Abstract. This paper presents a method inferring a model of the brain

white matter organisation from HARDI tractography results computed

for a group of subjects. This model is made up of a set of generic fiber

bundles that can be detected in most of the population. Our approach

is based on a two-level clustering strategy. The first level is a multires-

olution intra-subject clustering of the million tracts that are computed

for each brain. This analysis reduces the complexity of the data to a few

thousands fiber bundles for each subject. The second level is an inter-

subject clustering over fiber bundle centroids from all the subjects using

a pairwise distance computed after spatial normalization. The resulting

model includes the large bundles of anatomical literature and about 20

U-fiber bundles in each hemisphere.

1 Introduction

An interesting way to compare the different DW-MRI acquisition schemes, dif-
fusion models and tractography algorithms proposed in the literature lies in the
exploitation of the large sets of generated tracts to infer atlases of the fiber bun-
dles. Hence, this paper presents a method taking as input the sets of diffusion-
based tracts of a population of subjects and producing as output a list of generic
fiber bundles that can be detected in most of the population. The usual strate-
gies proposed for the reconstruction of fiber bundles follow two complementary
ideas. The first approach is based on regions of interest (ROI) used to select or
exclude tracts [1]. The second strategy is based on tract clustering using pair-
wise similarity measures [2]. This last approach is potentially less intensive in
terms of user interaction and can also embed predefined knowledge represented
by a bundle template [3]. Furthermore, when applying the clustering after spatial
normalization with a set of tracts stemming from several subjects, this strategy
can help to discover new reproducible bundles. The fiber clustering approach has
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been successfully used to map the well-known fiber bundles of deep white matter
(DWM). Until now, short fibers of superficial white matter (SWM) have been
barely considered. The cartography of fiber bundles of SWM is a complex and
unachieved task for the human brain. In a recent paper, Oishi et al. performed
a group analysis to study SWM using a voxel-based approach relying on linear
brain normalization [4]. They could identify only four U-fiber bundles because
of the blurring occuring with such a normalization. In this paper we show that
the fiber clustering approach can overcome this weakness.

We propose a two-level strategy chaining intra and inter-subject fiber cluster-
ing. The first level can be viewed as a compression procedure reducing a huge
set of fibers to a few thousand bundles. This step is developed following a mul-
tiresolution paradigm. A key point is the use of a voxel-based parcellation of
white matter, allowing the analysis of any number of fibers. This parcellation
produces small fiber subsets that can be split further using additional clustering
performed in the space of fiber extremities. The second level is an inter-subject
clustering of the resulting fiber bundles. This group analysis relies on a pair-
wise distance between bundles computed after affine spatial normalization. A
simulation is performed to prove that affine normalization is sufficient to create
consistent clusters in the bundle space.

2 Material and Method

2.1 Diffusion and Tractography Datasets

Analysis was performed for twelve subjects of the NMR public database. This
database provides high quality T1-weighted images and diffusion data acquired
with a GE Healthcare Signa 1.5Tesla Excite scanner. The diffusion data presents
a high angular resolution (HARDI) based on 200 directions and a b-value of
3000 s/mm2 (voxel size of 1.875x 1.875x 2 mm). DW-weighted data were ac-
quired using a twice refocusing spin echo technique compensating Eddy cur-
rents to the first order. Geometrical distortions linked to susceptibility artifacts
were corrected using a phase map acquisition. T1 and DW-weighted data were
automatically realigned using a rigid 3D transform.

The diffusion Orientation Distribution Function was reconstructed in each
voxel using a spherical deconvolution of fiber Orientation Distribution Function.
It is a spherical deconvolution transform (SDT) reconstructed from q-ball imag-
ing with a constrained regularization [5], using a maximum spherical harmonic
(SH) order 8 and a Laplace-Beltrami regularization factor λ = 0.006.

Tracts were reconstructed using a deterministic tractography algorithm [6]
provided by BrainVISA public software (http://brainvisa.info). Tractography
was initiated from two seeds in each voxel of the mask (voxel size of 0.94 x 0.94 x
1.2mm), in both retrograde and anterograde directions, according to the maxi-
mal direction of the underlying ODF. Tracking parameters included a maximum
curvature angle of 30◦ and a minimum and maximum fiber length of 20mm and
200mm, respectively, leading to a set of about 1.5 millions tracts per subject.
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2.2 The Two-Level Clustering Method

Intra-subject clustering. The intra-subject clustering follows a multiresolu-
tion strategy including five steps (see Fig. 1 A):
Step 1: Hierarchical decomposition: The complete tract set is segmented
into four parts, called fiber subsets : right hemisphere, left hemisphere, inter-he-
mispheric and cerebellum tracts. The following steps are applied separately to
each subset.
Step 2: Fiber segmentation based on length: The subset is split into differ-
ent fiber groups, containing fibers of similar length. While looking unsignifiant,
this second step is of key importance because it partially overcomes a big limi-
tation of the voxel-based approach: the difficulty to separate fiber bundles with
different shapes overlapping for a large part of their voxel support.
Step 3: Voxel-based clustering: Each fiber group obtained in the preceding
step is divided using a connectivity-based parcellation of white matter voxels.
A T2 fiber mask is calculated containing voxels crossed by tracts. The mask is
randomly parcellated using a geodesic k-means leading to about 12,000 parcels
per fiber group. Parcels are clustered using an average-link hierarchical cluster-
ing (HC) based on a parcel connectivity measure defined as the number of tracts
passing through the pair of parcels. The tree resulting from the hierarchical
clustering is analyzed in order to get an adaptive partition where each clus-
ter contains ideally only one putative fiber bundle. The tree analysis discards
small isolated clusters and split the large clusters until reaching sizes compatible
with the largest actual bundles. Finally, each cluster mask is used to extract
corresponding diffusion-based fiber clusters.
Step 4: Extremity-based fiber clusters subdivision: Fiber clusters are di-
vided into several thin and regular bundles, called fascicles, based on the fiber
extremities. For each cluster, the list of fiber extremities is converted into a
voxel-based density image. This image is segmented by a 3D watershed into
maxima-based regions. These regions are used to divide the extracted fiber clus-
ters into several fascicles, each one composed of the fibers whose extremities pass
through two particular regions.
Step 5: Fiber fascicle centroids clustering: This step considers all the fasci-
cles from all the fiber length groups of a subset. It consists in a second clustering,
aiming to agglomerate fiber fascicles that were over-segmented in the fiber clus-
ters subdivision step (Step 4 ) or in the length-based segmentation step (Step 2 ).
For this, a centroid tract, localized in the center of each fascicle, is computed
as a representative of the fascicle. It is determined as the tract minimizing a
distance to the rest of the fascicle fibers. The distance measure employed is a
symmetrized version of the mean closest point distance [7,2,3]. Centroids from
all the fascicles of a set are clustered using an average-link hierarchical cluster-
ing over a pairwise distance between centroids. The distance is defined as the
maximum distance between corresponding points, which is more stringent than
the mean closest point distance. This step aims only at regrouping fascicles that
have very similar shapes and positions.



Inference of a Fiber Bundle Atlas 553

Fig. 1. A: General scheme of the intra-subject clustering: Step 1: Hierarchi-

cal decomposition, Step 2: Fiber segmentation based on length, Step 3: Voxel-based

clustering, Step 4: Extremity-based fiber clusters subdivision, Step 5: Fiber fascicles

centroids clustering. B: Example results for the intra-subject clustering. Short

and long bundles obtained for the right hemisphere fiber set of one subject.
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Inter-subject clustering. The second clustering level aims at matching the
putative bundles produced by the previous level across the population of sub-
jects. This step is very similar to the clustering performed in section 2.2 (Step 5 )
but this time the calculation considers the bundles obtained from all the sub-
jects in the same fiber subset. A centroid is first calculated for each bundle using
the mean of the two mean closest point distances [7,2,3]. Once all the centroids
are computed, they are transformed to the Talairach space (TS) using an affine
transformation estimated from the T1-weighted image. Then, a bundle centroid
affinity graph is computed using the maximum distance between corresponding
points, normalized by the bundle length. This restringent measure puts a focus
on matching bundles with similar shapes and positions in TS. The affinity graph
is used to compute an average-link HC. The resulting tree is analyzed in order to
extract only very tight clusters, where the distance between all the fibers within
a cluster is inferior to a maximum distance (tMdcp). The resulting clusters are
discarded if they do not contain more than half of the subjects. A final proce-
dure aims at relaxing the constraints in order to recover some instances of the
generic bundles that were missed during the stringent clustering analysis. The
goal is to be less demanding on the match between centroids, which is specially
important for the subjects that present a deficient normalization in Talairach
space. For each non attributed centroid, we compute the distance to each of
the centroids of the tight clusters. When the distance to the nearest neighbord
is below a threshold, the non attributed centroid is added to the final generic
bundle representation. Most of the added centroids belong to long fiber bundles.
Inter-subject clustering validation: In order to study the behavior of the
inter-subject clustering over a population of subjects aligned with affine registra-
tion, we created a simulated dataset of fiber bundles centroids. First, one subject
of the NMR database was selected to generate a set of 200 simulated bundle
centroids. These bundle centroids were fibers selected from the right hemisphere
of this subject with a minimum pairwise distance across the set. The distance
used was the maximum distance between corresponding points. The minimum
distance was set to 12mm (see Fig. 2 A1). The obtained bundle centroids set
was transformed to the space of each one of the eleven remaining subjects of the
database, using a non-rigid transform, calculated between T1 images using Med-
INRIA (http://www-sop.inria.fr/asclepios/software/MedINRIA). Hence, we ob-
tained a set of ground truth clusters, each one containing a centroid in each
subject (see Fig. 2 A2). In addition, 500 fibers from each subject were selected
to simulate noise. These fibers were pairwise separated by a minimum distance
equal to 11mm (see. Fig. 2 A4). For each subject, we got a fiber dataset of 700
fibers (200 centroids and 500 added noise fibers), leading to a total number of
8400 fibers for the twelve subjects. We applied the inter-subject clustering to the
fibers dataset, with the maximum distance within clusters (tMdcp) varying from
5 to 25mm. Resulting clusters where analyzed and compared with the ground
truth. First, only clusters containing centroids from a minimum of seven differ-
ent subjects were selected. Then, a cluster was counted as recovered only if all
its centroids belonged to the same simulated cluster, otherwise, it was counted
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Fig. 2. A: Inter-subject clustering validation: A1: the orignal 200 fibers selected

as simulated centroids. A2: simulated bundles for the 12 subjects in talairach space.

A3: a selection of bundles from A2. A4: noise fibers set (500 fibers) of one subject. A5:
inter-subject clustering simulation results presenting recovered clusters (color bars),

missed clusters (red line) and clusters with added noise (black line). B: Inter-subject
clustering results for twelve subjects: B1: centroids of one subject. B2: exam-

ples of tight clusters and the added centroids by the nearest neighbor procedure (in

black). B3-B9: long generic bundles centroids (manually labelled): cingulum (CG),

corticospinal tract (CST), uncinate (UN), inf. longitudinal (IL), inf. fronto-occipital

(IFO), arcuate (AR), and thalamic radiations (TAL-(FR,PAR,TM,OCC)). B10-B12:
selections of generic short bundles centroids. B13-B16: generic bundles for one subject.

B15 shows all the U-fibers while B16 contains a selection of U-fibers.
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as a missed cluster. Fig. 2 A5 presents the simulation results as a function of
the distance tMdcp. From the analysis, we note, as expected, that the number of
recovered clusters (color bars) increases with tMdcp, as the number of subjects
in the clusters (indicated by different colors, from 7 to 12). For distances tMdcp

superior to 11mm, a large number of clusters was recovered, but for distances
between 11 and 15mm, most of the clusters miss some centroids. This behav-
ior is accepted by the method, which adds a cluster to the model as soon as it
includes more than half of the subjects. The red line indicates the number of
missed clusters, which is very low. These are most of the time fused with other
clusters. The black line shows the number of recovered clusters that contain also
added noise fibers. Finally, a large number of clusters made up of only noise
fibers was found but discarded by the method because none of these clusters
had fibers from more than six different subjects.

3 Results

Individual fiber bundles were extracted for twelve subjects. The results obtained
for one subject (right hemisphere) are presented in Fig. 1B. Inter-subject cluster-
ing of the left hemisphere is presented in Fig. 2B. Ten DWM generic fiber bundles
were identified in all the subjects. Some of them are split into several generic fas-
cicles: Inferior fronto-occipital fasciculus, Cortico-spinal tract, Arquate fascicu-
lus, Uncinate fasciculus, Inferior Longitudinal fasciculus, Cingulum, and Frontal,
Temporal, Parietal and Occipital Thalamic Radiations. Twenty generic U-Fiber
bundles (SWM) occuring in at least seven subjects were detected in the left
hemisphere model.

4 Discussion and Conclusion

As for any fiber tracts analysis method, our results depend strongly on the
quality of the tractography results. Our method can not detect bundles that are
not tracked in individuals. Also, spurious bundles can not be differentiated from
real bundles if they are reproducible across subjects. Besides, anomalous final
bundles can be found due to errors in the propagation mask. Since this mask
defines where fibers are tracked, bundles can be erroneously cutted or fused.
Nevertheless, independently of the tracking results, our method is a powerfull
tool to extract the main bundles that constitute the dataset.

Our method is able to analyze huge fiber datasets and infer a model of the
generic bundles present in a population. The first level, composed by an intra-
subject clustering, can be seen as a compression of information and a filter-
ing, where bundles representing the individual whole white matter structure are
identified. The second level, an inter-subject clustering, deals with a reasonable
number of bundle centroids from a population of subjects and is capable to ex-
tract generic bundles present in most of the subjects. Long known bundles were
identified, but the result of major significance is the capability to identify generic
short association bundles. Hence, our approach will scale up easily to the 1mm
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spatial resolution that can now be achieved with highly parallel imaging or very
high fields. This spatial resolution is bound to highlight a myriad of U-fiber
bundles and better delineate other bigger bundles crossing.

The general idea of hierarchical decomposition underlying our method will be
pushed further with the use of a segmentation of the deep grey matter structures
to improve the clustering of their connections with the cortex. The corresponding
tracts will be filtered out and clustered independently.

We have shown that the affine registration to standard space is sufficient to
align reasonably the deep tracts across all the subjects. Each U-fiber bundle
inferred in this paper did require a reasonable alignment of the bundles of only
half of the subjects, which happens in the most stable brain regions. However,
increasing the number of generic U-fiber bundles, will require an improvement
of the spatial normalisation used to compare bundles across subject. Further
work will lead us to improve iteratively the spatial normalization using the in-
ferred bundles as constraints in order to better align other bundles. Moreover, we
will compare our results with the strategy computing bundles after computing
an average atlas of diffusion data based on high quality diffeomorphic spatial
normalization. Deciding which strategy is the best is one of the goals of our
research.
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Abstract. The paper presents a method of creating abnormality classi-

fiers learned from Diffusion Tensor Imaging (DTI) data of a population

of patients and controls. The score produced by the classifier can be

used to aid in diagnosis as it quantifies the degree of pathology. Us-

ing anatomically meaningful features computed from the DTI data we

train a non-linear support vector machine (SVM) pattern classifier. The

method begins with high dimensional elastic registration of DT images

followed by a feature extraction step that involves creating a feature

by concatenating average anisotropy and diffusivity values in anatom-

ically meaningful regions. Feature selection is performed via a mutual

information based technique followed by sequential elimination of the

features. A non-linear SVM classifier is then constructed by training on

the selected features. The classifier assigns each test subject with a prob-

abilistic abnormality score that indicates the extent of pathology. In this

study, abnormality classifiers were created for two populations; one con-

sisting of schizophrenia patients (SCZ) and the other with individuals

with autism spectrum disorder (ASD). A clear distinction between the

SCZ patients and controls was achieved with 90.62% accuracy while for

individuals with ASD, 89.58% classification accuracy was obtained. The

abnormality scores clearly separate the groups and the high classification

accuracy indicates the prospect of using the scores as a diagnostic and

prognostic marker.

1 Introduction

High dimensional pattern classification methods like support vector machine
(SVM) can be used to capture multivariate relationships among various anatom-
ical regions for more effectively characterizing group differences as well as quan-
tifying the degree of pathological abnormality associated with each individual.
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DC008871 and MH060722.
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In this paper, we propose a method for region-based pattern classification that
creates abnormality classifiers using information from DTI data in anatomically
meaningful regions.

Classification not only elucidates regions that are sufficiently affected by
pathology so as to be able to differentiate the group from that of healthy con-
trols, but also assigns each individual with a probabilistic score indicating the
degree of abnormality. Such a score can be used as a diagnostic tool to predict
the extent of disease or group difference and assess progression or treatment
effects.

Pattern classification has been previously implemented in neuroimaging stud-
ies, mainly in structural imaging [1,2,3,4,5] and a few using DTI information
[6,7]. The process can be divided into 4 steps: feature extraction, feature selec-
tion and classifier training and testing or cross-validation. Pattern classification
methods differ on the basis of features extracted. Typical methods for feature
extraction use direct features like structural volumes and shapes [2,5], principal
component analysis (PCA) [6], automated segmentation [4], wavelet decomposi-
tion [1], and Bayes error estimation [7]. High dimensionality of the feature space
and limited number of samples pose a significant challenge in classification [2].
To solve this problem, feature selection is performed in order to produce a small
number of effective features for efficient classification and to increase the gener-
alizability of the classifier. Feature selection methods that are commonly used
for structural neuro-imaging data involve filtering methods (e.g. ranking based
on Pearson’s correlation coefficient) and/or wrapper techniques (e.g. recursive
feature elimination (RFE)). Classifiers are then trained on the selected features
either using linear classifiers like linear discriminant analysis (LDA) or non-linear
classifiers like k-nearest neighbors (kNN)[7] and support vector machines (SVM)
[1,2,4,5]. Prior to their application to a new test subject, it is important that the
classifier be cross-validated, for which jack-knifing (leave-one-out) is a popular
technique. When applied to any subject individual, these cross-validated classi-
fiers produce an abnormality score that can be combined with clinical scores to
aid in diagnosis and prognosis.

While most classification work used structural images few studies did attempt
DTI-based classification. Caan et al. [6] used fractional anisotropy (FA) and
linear anisotropy images as their features, followed by dimensionality reduction
using PCA and trained the data using linear discriminant analysis (LDA). Wang
et al. [7] used a k-NN classifier trained on full brain volume FA and geometry
maps. The former used a linear classifier incapable of capturing complex non-
linear relationships, while the latter used a non-linear classification albeit on the
full brain.

We describe a classification methodology based on DTI features of anisotropy
and diffusivity computed from anatomically meaningful regions of interest (ROI).
The regions are based on an atlas and do not require a priori knowledge of af-
fected region. An efficient two step feature ranking and selection technique is
implemented. A non-linear SVM classifier is then trained and cross-validated
using the leave-one-out paradigm. The classifiers are then applied to 2 different
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datasets: one includes patients with SCZ and another with ASD, where each
individual is assigned a classification score that quantifies degree of pathology
relative to the population. Despite the difference in size of the dataset and the
heterogeneity of the pathology, we obtained classifiers with high cross-validation
accuracy. This establishes the applicability of the classifier scores for aiding diag-
nosis and prognosis. The classifier also produces a ranking of features, anatomical
regions in our case, which contribute towards the separation of groups, thereby
making the classification score of abnormality clinically meaningful.

2 Methods

Our method of creating ROI-based classifiers using DTI-based information in-
volves 4 steps: a. Feature extraction b. Feature selection c. Classifier training
and d. Cross-validation.

2.1 Feature Extraction

Our method begins with spatial normalization of all the tensor images to a stan-
dard atlas created by Wakana et al. [8], with 176 anatomical regions labeled. A
high dimensional elastic registration introduced that involves matching tensor
attributes, is used and all scans are registered to the template [9]. In the earlier
studies that involved classification [6,7], the whole brain was used as a feature.
This is challenging for training classifiers as the sample size is small while the
data dimensionality is very high. As a result of the inter-individual structural
variability, using fewer features computed from small anatomical regions of inter-
est may lower the dimensionality while maintaining the spatial context, thereby
producing more robust features [4]. Therefore we use the ROI’s from Wakana
et al.’s [8], diffusion tensor template, as shown in figure 1(a). The FA and mean
diffusivity (TR) are computed from the spatially normalized tensor images for
each subject and then averaged over each ROI. Thus, each subject is associated
with a feature vector (eq. 1) that involves ’n’ ROI’s. Eq. 1 describes the feature
vector where each component is the average value of the scalar in that ROI.

fs = (ROIFA
1 , ROIFA

2 ....ROIFA
n , ROITr

1 , ROITr
2 ....ROITr

n ) (1)

2.2 Feature Selection

Identifying the most characteristic features is critical for minimizing the clas-
sification error. This can be achieved by ranking and selection of the relevant
features and eliminating all the redundant features. We use a two step feature
ranking and selection as suggested in most of the pattern classification theo-
ries, where the the two steps involve a filter and a wrapper yielding best results
[10]. We filter the features using minimum redundancy and maximum relevance
(mRMR) ranking introduced by Peng et al. [11]. This method involves compu-
tation of the mutual information between 2 variables x and y which is defined
by their probability density functions p(x), p(y) and p(x, y).
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I(x; y) =
∫ ∫

p(x, y)log
p(x, y)

p(x)p(y)
dxdy (2)

Based on the mutual information values, Peng et al. have defined 2 criteria to
find the near optimal set of features: 1. Maximum relevance and 2. Minimum
redundancy. In maximum relevance, the selected feature xi is required individu-
ally to have the largest mutual information with the class label c which reflects
the highest dependency on the target class. If we assume the optimal subset of
features is S that consists of m features, the maximum relevance of the whole
dataset is obtained by max(D(S, c)) where D is given by equation 3.

D =
1
|S|2

∑
I(xi; c) (3)

It is likely that features with maximum relevance are highly redundant i.e.
the features highly depend upon each other. The minimum redundancy criteria
therefore is given by min(R(S)) where R is obtained from equation 4.

R =
1
|S|2

∑
I(xi; xj) (4)

Optimizing D and R values simultaneously, we get the ideal set of features
that can be implemented in classification of the data. Details of the mRMR
method can be found in [11]. For selecting the feature subset after ranking, the
cross validation error from the classifier is computed sequentially for the ranked
features and plotted against the number of features. From this error plot, the
area with consistently lowest error is marked and the smallest number of features
from that area are chosen as the candidate feature set [11].

Once a feature subset is chosen from the mutual information based filter, a
recursive backward elimination (RFE) wrapper is applied over this subset. Unlike
the filter, the wrapper explicitly minimizes the classification error by recursively
excluding one feature with the constraint that the resultant feature set has lower
leave one out (LOO) error [12].

2.3 Training Classifiers Using SVM

A non-linear support vector machine (SVM) is amongst the most powerful pat-
tern classification algorithms, as it can obtain maximal generalization when pre-
dicting the classification of previously unseen data compared to other nonlinear
classifiers [13]. By using a kernel function, it maps the original features into
higher dimensional space where it computes a hyperplane that maximizes the
distance from the hyperplane to the examples in each class. Having found such
a hyperplane, the SVM can then predict the classification of an unlabeled ex-
ample by mapping it into the feature space and checking on which side of the
separating plane the example lies.

The input to the classifier consists of feature matrix and a vector of class labels
consisting of 1 and -1 values defining the two classes (the controls are labeled
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as 1 and the patients as -1, in our case). The classifier performs a non-linear
mapping φ : Rd → H by using a kernel function, which maps the feature space
Rd to a higher dimensional space H . We use the Gaussian radial basis function
as a kernel function.

Based on the distance from the hyperplane, the classifier computes a prob-
abilistic score between 1 and -1 for each test subject. When the probabilistic
score is ≥ 0, the subject is classified as class 1 (controls), otherwise as class
2 (patients). The probabilistic classifier score, therefore, represents the level of
abnormality in the subject.

2.4 Cross-Validation

We compute the probabilistic abnormality score for each subject by implement-
ing the leave one out (LOO) cross validation method. In the LOO validation, one
sample is chosen for testing, while other samples are trained using the methods
described in section 2.3. The classifier is evaluated based on the classification
result of the test subject. By repeatedly leaving each subject out as a test sub-
ject, obtaining its abnormality score, and averaging over all the left-out subjects
we obtain the average classification rate. Validation is also performed by plot-
ting the receiver operating characteristic (ROC) curves. The ROC is a plot of
sensitivity vs. (1-specificity) of the classifier when the discrimination threshold
is varied.

3 Results

Two datasets were used for carrying out the classification:

– The SCZ dataset consisted of 37 female controls and 27 female SCZ patients.
The DWI images were acquired on Siemens 3T scanner with b= 1000 and
64 gradient directions.

– The ASD dataset consisted of 25 children with ASD and 23 typically de-
veloping kids. The DWI images were acquired on Siemens 3T scanner with
b=1000 and 30 gradient directions.

Fig. 1. (a) ROI’s introduced by Wakana et al. [8] showing 176 structures
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(a) (b)

Fig. 2. Plot showing LOO classification (abnormality) scores vs. frequency of occur-

rence of the score value (PDF) where green indicates patients and blue indicates con-

trols. Each subject’s score is represented with a star. (a) SCZ data where the stars

overlap as a result of a large number of samples. The controls and patients are very

well separated with 90.62% accuracy. (b) ASD dataset shows 89.58% classification even

with less number of samples.

The SCZ dataset has a large sample size in comparison with the ASD dataset.
Moreover, the SCZ data consists of a cohesive population as only females are
considered, while the ASD data consists of a heterogeneous population. We chose
such different datasets to test the versatility of our classification method.

As mentioned in section 2, the scans were spatially normalized to the DTI
template. Subsequently, the mean FA and MD measures for each ROI were
derived. Feature selection was performed using mutual information values and
the RFE wrapper as described in section 2.2. After employing the filter, 130 top
features for SCZ dataset were chosen while for ASD 150 top features were picked.
The selection of number of features was based on the error plot as described in
section 2.2. From this feature subset, the RFE wrapper chose 25 top features for
SCZ and 17 top features for ASD by minimizing the classification error. For the
non-linear classifier, a suitable kernel size was determined based on the ROC
curves, after testing different σ values ranging from 0.001 to 1. It was found
that the kernel size ranging from 0.05 - 0.15 was optimal. The C value, which is
the trade off parameter between training error and SVM margin, was tested for
1,5,7,10 and 50, and it was observed that values between 5 and 50 were a better
choice for our classification.

Using the LOO method, we computed the classifier score for each subject.
Figure 2 shows the classification results. A normal probability density (PDF)
which represents the likelihood of each LOO score is plotted against the LOO
score. The average LOO classification for SCZ data was 90.62% (6 subjects
misclassified) while for ASD data it was 89.58% (5 subjects misclassified). The
ROC curves are shown in figure 3. Both the datasets shows a steep curve with
a large area under the curve (AUC) of 0.905 for SCZ and 0.913 for ASD (fig.
3(a and b)). We also applied our method to test asymptomatic relatives of SCZ
patients. The abnormality scores of the relatives were closer to the patients than
the healthy controls, suggesting similar brain abnormality patterns.
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(a) (b)

Fig. 3. ROC curves for classification between controls and patients. The area under

the curve (AUC) defines the level of performance. (a) SCZ data with an AUC of 0.905

(b) ASD with an AUC of 0.913.

(a) (b)

Fig. 4. Top ranked ROI’s mapped on template image. These ROI’s contributed largely

towards classification based two step feature selection.(a) SCZ (b) ASD data.

Besides computing the abnormality score, it is important to know which ar-
eas of the brain significantly contribute towards the classification. The selected
features are the most discriminating features and contribute most towards group
differences between controls and patients. Fig. 4 shows the top 25 ROI’s for SCZ
(fig. 4(a)) and 17 ROI’s for ASD (fig. 4(b))that were chosen by the wrapper are
overlaid on the template image and color coded according to their rank.

4 Conclusion

We have presented a classification methodology based on anatomically meaningful
DTI features for identification of white matter abnormality in diseases like SCZ
and ASD. Use of ROI based features reduces dimensionality and simplifies the
clinical interpretation of pathology induced changes. Superior experimental re-
sults over different populations indicate that our method can successfully classify
patients and controls, despite the sample size and heterogeneity of the population.
Based on the abnormality score of the test subject, this method can quantify the
degree of pathology and the score can be potentially used as a clinical biomarker.
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Thus, our method can be applied in various studies involving disease progression,
treatment effects etc. The application to family members underlines the applica-
bility of the method to prognosis. Future work includes extending the classifica-
tion method for controlling for age and treatment effects. Moreover, we can add
other features like radial and axial diffusivity measures or utilize the whole tensor
in log-euclidean form as our feature for further investigation.
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Abstract. Diffusion magnetic resonance imaging has led to active re-

search in the analysis of anatomical connectivity in the brain. Many

approaches have been proposed to model the diffusion signal and to ob-

tain estimates of fibre tracts. Despite these advances, the question of

defining probabilistic connectivity indices which utilize the relevant in-

formation in the diffusion MRI signal to indicate connectivity strength,

remains largely open. To address this problem we introduce a novel nu-

merical implementation of a stochastic completion field algorithm, which

models the diffusion of water molecules in a medium while incorporating

the local diffusion MRI data. We show that the approach yields a valid

probabilistic estimate of connectivity strength between two seed regions,

with experimental results on the MICCAI 2009 Fibre Cup phantom[1].

Keywords: Diffusion-MRI, Tractography, Connectivity, 3D stochastic

completion field.

1 Introduction

During the past decade advances in diffusion magnetic resonance imaging have
led to the development of a variety of tractography algorithms which reconstruct
connectivity patterns between distinct cortical and subcortical areas in the hu-
man brain. The early deterministic tractography methods, based on stream-
line tracking and diffusion tensor imaging [2], verified the inherent potential of
diffusion-MRI to capture anatomical connectivity non-invasively. However, these
approaches suffered from the limitation that they did not explicitly consider the
effects of partial volume averaging, the underlying noise in the data and other
imaging artifacts. More recent probabilistic tractography algorithms [3,4,5] have
attempted to address these concerns by providing an approximation of the under-
lying noise and incorporating it into the fibre propagation framework. Whereas
some of these latter schemes employ Monte-Carlo simulations to perform trac-
tography for many iterations [3], others use front propagation approaches to
evolve a surface from a seed region and then find the minimum cost trajectories
between each voxel and the seed region by back propagating through a “time of
arrival” map [4]. In these approaches a measure of connectivity is either defined
based on the number of times a voxel has been passed through [3,6] or by con-
sidering the lowest confidence value of all tract segments along a reconstructed

T. Jiang et al. (Eds.): MICCAI 2010, Part I, LNCS 6361, pp. 566–573, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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streamline [4]. In a related but distinct approach, Fletcher et al. propose a front
evolution scheme to compute a connectivity measure between two regions of
interest without explicitly obtaining fibre tracts first [7].

A different class of algorithms tackles the problem of fibre tractography and
white matter connectivity by solving a partial differential equation (PDE) and
finding the minimal path given the PDE [8,9]. O’Donnell et al. use diffusion
tensor estimation and solve for the steady state concentration of the diffusion
equation governed by the Fick’s law in an anisotropic medium. A Riemannian
metric is then used to compute geodesic distances between two points, which
in turn is interpreted as their degree of connectivity. Batchelor et al. improve
this framework by adding a convection term which incorporates a measure of
the anisotropy in the diffusion MRI data at each voxel. The main advantage of
these algorithms is their potential to incorporate all the relevant information
contained in orientation distribution functions (ODFs), or any other diffusion
model, into the tractography framework.

In work that is somewhat distinct from the above methods Momayyez et al.
have modeled the Brownian motion of water molecules by a probabilistic 3D
random walk, leading to an application of stochastic completion fields to fibre
tractography [10]. While this framework is also PDE-based, the given PDE de-
scribes the evolution of the probability distribution of particles following the
random walk, as indicated by the Fokker-Planck equation. The present arti-
cle extends their results by developing a new, unconditionally stable numerical
implementation, which allows for the local diffusion data to be incorporated di-
rectly into the stochastic completion field framework. The extension allows for
probabilistic estimates of fibre tracts between two seed regions with the property
that connectivity strength emerges as an inherent characteristic. We validate the
new approach by comparing it with a state-of-the-art probabilistic tractography
algorithm on the MICCAI 2009 Fiber Cup Phantom [1].

2 3D Stochastic Completion Fields

Using an extension of a model introduced by Williams and Jacobs [11], a 3D
stochastic completion field represents the probability that a particle undergo-
ing Brownian motion passes through a given location (x, y, z) with orientation
(θ, φ) in 3D, while completing a path between two seed regions. In a 3D random
walk, particles tend to travel in straight lines with slight changes in orientation
controlled by two successive deviations in the osculating and binormal planes,
which are respectively proportional to the diffusion parameters σ2

φ and σ2
θ . Ad-

ditionally, a fraction of particles
(
1− e−

1
ζ

)
decays per unit time step. While

σφ and σθ maintain the prior assumption of smoothness, the latter decay rate
ζ gives more support to shorter paths. Furthermore, the inherent Markov as-
sumption of the 3D random walk leads to a notion of a stochastic source field
and a stochastic sink field. The former represents the probability of passing
through any state (x, y, z, θ, φ) for a particle which begins in a source state
(xp, yp, zp, θp, φp), while the latter represents the probability of reaching a final
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sink state (xq, yq, zq, θq, φq) from any initial state. The stochastic completion field
is computed by scalar multiplication of the source and sink fields.

While Monte-Carlo simulation provides a direct way to compute the stochastic
completion field, a more efficient and powerful alternative is to discretize the
Fokker-Planck equation which expresses the evolution in time of the probability
density function of the particles analytically[10]:

∂P

∂t
= − sin θ cosφ

∂P

∂x
−sin θ sin φ

∂P

∂y
−cos θ

∂P

∂z
+

σ2
φ

2
∂2P

∂φ2
+

σ2
θ

2
∂2P

∂θ2
− 1

ζ
P . (1)

Here P is the probability that a particle passes through state (x, y, z, θ, φ) in the
course of its random walk from a source to a sink region.

Whereas the results in [10] demonstrate a type of proof of concept, they
are based on a simple first-order finite difference scheme to solve for the final
steady-state distribution of P , and as such are quite limited. In particular, such
a numerical scheme suffers from instability for complicated fibre pathways with
highly curving or twisting tracts. Moreover, the estimation of the completion field
in [10] is performed in a manner that is independent of the local diffusion-MRI
data, with the final connectivity pattern being obtained by post-multiplication
in a Bayesian framework. The Bayesian approach further requires empirical ad-
justments of parameters which is a significant challenge without prior knowledge
of the fibre pathways being estimated.

3 An Unconditionally Stable Numerical Scheme

The Fokker-Planck equation given by Eq. 1 is a multi-dimensional PDE which
can be solved by implementing an operator splitting strategy, where each time
unit is divided into six subunits, each of which formulates separate numerical
scheme for each variable. When performing operator splitting, it is usually suf-
ficient to have stable numerical estimation for each operator in order to make
the overall scheme stable. For the x, y and z dimensions which are included in
the advection part of Eq. 1, we propose to use the Lax-Wendroff scheme which
is second-order accurate in time and space. Since in Eq. 1 all the advection co-
efficients (− sin θ cosφ,− sin θ sin φ,− cos θ) are always smaller than or equal to
one, instability is not an issue. The main challenge in terms of numerical estima-
tion is for the σ (diffusion) terms. These terms can get large for fibre tracts with
highly curved or twisted segments. To handle this we propose the use of the more
complex implicit and unconditionally stable Crank-Nicholson numerical scheme.
The numerical estimation is again second order in time and space but because
of its implicit character, it involves matrix computation. However the method
eliminates the need for thresholds on maximum curvature or torsion values and
makes the local incorporation of the diffusion MRI data into the framework
possible. The overall numerical scheme is summarized by the following set of
equations, where t denotes the time parameter:

P
t+ 1

6
x,y,z,θ,φ = P t

x,y,z,θ,φ − sin θ cos φ
Δt

2Δx

(
P t

x+Δx,y,z,θ,φ − P t
x−Δx,y,z,θ,φ

)
+

(sin θ cos φ)
2 Δt2

2Δx2

(
P t

x+Δx,y,z,θ,φ − 2P t
x,y,z,θ,φ + P t

x−Δx,y,z,θ,φ

)
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It is clear from Eq. 2 that the computation at each voxel is local and hence allows
for parallelization and reduction in time complexity of the algorithm. In addition,
for every voxel distinct diffusion σθ, σφ and decay ζ coefficients can be specified
using properties of the local diffusion-MRI data. Thus, the applicability of the
stochastic completion field model to fibre tractography is significantly extended.
We re-emphasize that although the new numerical scheme is computationally
more complex than that of [10] (the run time increases by approximately 40%),
the method in [10] has limited practical utility for curved fibre pathways.

4 Local Incorporation of Diffusion-MRI Data

To tune the diffusion parameters σφ, σθ and the decay parameter ζ locally, we
use information from the fibre orientation distribution (FOD) function at each
voxel, calculated using the approach of Anderson [12]. The basic idea is to de-
crease diffusion (and correspondingly increase the likelihood of trajectories) in
directions that are aligned with fiber orientations supported by the data. Specif-
ically, σφ and σθ are determined by finding the closest FOD maximum to each
(φ, θ) direction and computing the two angular differences between a given di-
rection and the chosen maximum. The local corresponding σφ and σθ values are
then set equal to these angular differences. The decay rate ζ is also chosen based
on the angular difference between a given direction (φ, θ) and the chosen FOD
maximum. When the angular difference is greater than π/4, the decay coefficient
is made very small to suppress trajectories in directions that are far from the
FOD maxima. When the (φ, θ) direction closely matches the FOD maximum, a
fixed decay coefficient is assigned to it. Overall this strategy allows parameters
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to be set automatically from the FODs and it supports smoothly varying fibre
tracts while avoiding an excessive penalty for curved fibre pathways.1

To reconstruct the connectivity pattern, two independent probability distri-
butions are evolved based on Eq. 1. In the first, the particles are initially placed
in one seed region to generate the source field. In the second the particles are
constrained to end in the other seed region to generate the sink field. The fi-
nal stochastic completion field, which is a probabilistic representation of the
connectivity pattern, is given by the multiplication of these two fields.

5 Connectivity Strength

Defining an index of anatomical connectivity is itself a topic of great interest
in the neuroscience community. Most of the connectivity measures proposed
thus far in the literature are based on tractography algorithms. Two of the
most commonly used connectivity measures reported in the literature consists
of: (1) voxel counting: counting the number of times an ROI has been reached
from a seed region when employing a Monte-Carlo simulation [3,5,6] or, (2)
finding the weakest link : assigning a weight to each tract segment along a re-
constructed fibre pathway based on some weight function or on the previous
Monte-Carlo approach and considering the lowest confidence value of all tract
segments along the streamline [4]. A limitation of these methods is that they
are heuristic in nature. They do not incorporate relevant information along the
reconstructed fibre tract into the connectivity measure in a principled fashion.
They also suffer from reduced connectivity values with distance from the seed
region.

The stochastic completion field model offers a potential solution. The algo-
rithm’s output is the steady-state probability distribution of all the states when
joining the source and sink regions. In other words, the probability of reaching
each state has been calculated during the evolution of the probability distribu-
tions from the source and the sink regions while integrating all the computed
probabilities along the connectivity pattern. Consequently, the probability val-
ues computed for the source and sink ROIs during the computation actually
represent the measure of connectivity between them. Moreover, choosing the de-
cay rate based on the approximate length of the fibre tract eliminates the length
dependency issue. To obtain the connectivity strength between the source and
sink ROIs, it is therefore sufficient to compute the average probability values of
all the voxels included in these regions.

1 Ultimately, in order to make the results obtained for different fibre tracts comparable,

the decay rate has to be chosen relative to the length of each fibre. To accomplish this

the algorithm is run once using a decay rate proportional to the Euclidean distance

between the source and sink regions. Following this run, the obtained connectivity

pattern is used to approximate the length of the underlying fibre tracts. This length

is then used to set the fixed decay rate for a second run of the algorithm.
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6 Experiments

6.1 Diffusion-MRI Phantom Data

The proposed algorithm was tested on the MICCAI 2009 Fibre cup phantom [1],
for which ground truth fibre tracts are available. The phantom is made of hy-
drophobic acrylic fibres whose diameter is of the same scale as that of myelinated
axons2. Two diffusion-MRI datasets have been provided with different spatial
resolutions of 3x3x3mm3 and 6x6x6mm3 of which we have selected the higher
resolution images with an associated b-value of 1500 s/mm2.

6.2 Results

The results of the algorithm for six different source and sink region pairs are
shown in Fig. 1, which depicts the steady-state probability distribution for each
pair. Based on the ground truth, it is known that the first four pairs are asso-
ciated with a true fibre tract while the latter two are not. For the purpose of
comparison, we have implemented a probabilistic fiber tractography algorithm
similar to that of [5], where a residual bootstrapping scheme is first used to es-
timate the uncertainty of a voxels FOD using a single HARDI acquisition. The
estimated uncertainties are then used in a Monte-Carlo simulation of a proba-
bilistic streamline tractography algorithm. Confidence values are also assigned
to the reconstructed streamlines using a weakest link approach. The probabilis-
tic streamline tractography was run for 500 iterations, with a seed frequency of
10 per voxel for all ROIs and a threshold of 75◦ for the maximum turning angle
from one voxel to the next. The latter threshold was optimized empirically.

Table 1 summarizes the connectivity indices obtained from our algorithm
and from probabilistic tractography. The connectivity index for each scenario is
computed by taking the average of the corresponding values for all the voxels
included in the sink and source ROIs.

Table 1. Connectivity indices obtained for six different seed region pairs

Algorithm (a) (b) (c) (d) (e) (f)

Stochastic Completion Field 0.17152 0.22445 0.04716 0.24342 0.00551 0.07559

Probabilistic Tractography 0.00008 0.24051 0.00819 0 0 0

There are several observations that can be made from Table 1. First, the
connectivity indices obtained from probabilistic tractography span a wide range,
which can be due to the heuristic nature of the algorithm and its dependency
on length. Moreover, while the algorithm assigns a connectivity index of zero
to cases (e) and (f), which are not associated with a true fibre pathway, it is
also not capable of finding the true connectivity for case (d), which is a straight
fibre tract and should be an easy pathway to reconstruct. The connectivity
2 For details, visit http://www.lnao.fr/spip.php?article107

http://www.lnao.fr/spip.php?article107
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Fig. 1. Results of the local completion field algorithm. The probability of a state is

inversely proportion to the transparency of the associated orientation (The reader

is encouraged to zoom-in on the electronic version to get a better sense of the 3D

characteristics). Top-Left: Mean diffusivity image and the seed regions used.

measures obtained by the completion field algorithm, on the other hand, are
comparatively in the same range for cases (a), (b) and (d), which represent
true connections. The value obtained for case (e) is very small, showing the
low confidence of the algorithm in finding a connection. For cases (c) and (f),
however, the algorithm fails to assign a higher connectivity to tract (c). This
is due to the fact that the true fibre tracts form a bottle neck with another
pathway along the streamline. As a result, at a local scale the algorithm favors
the smoother connections leading to a lower connectivity value for case (d) and
a higher value for case (f). This failure can be essentially solved by acquiring
higher resolution data. In the meantime, one of our future goals is to modify the
algorithm to incorporate constraints such as curvature consistency to be able to
handle such ambiguous situations.

7 Conclusion

We have addressed the problem of anatomical connectivity by extending the
stochastic completion field algorithm introduced in [10]. A new, unconditionally
stable numerical implementation has been developed which allows for the local
incorporation of the diffusion data into the framework. The extension provides
a basis for theoretically derived measures of connectivity based on probabilistic
estimates of fibre tracts. The results obtained on the phantom demonstrate the
inherent ability of the algorithm to compute consistent connectivity measures
and to reconstruct the most probable fibre pathways between two seed regions.
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This approach can find highly curving fibre tracts without the need to impose
thresholds on maximum curvature or torsion. The algorithm has low computa-
tional complexity, which is independent of the size of the seed regions, and the
automatic tuning of its parameters is a further advantage.
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Abstract. In this paper we present a method for reconstructing D-MRI

data on regular grids from sparse data without assuming specific diffu-

sion models. This is particularly important when studying the fetal brain

in utero, since registration methods applied for movement and distortion

correction produce scattered data in spatial and angular (gradient) do-

mains. We propose the use of a groupwise registration method, and a

dual spatio-angular interpolation by using radial basis functions (RBF).

Experiments performed on adult data showed a high accuracy of the

method when estimating diffusion images in unavailable directions. The

application to fetal data showed an improvement in the quality of the se-

quences according to criteria based on fractional anisotropy (FA) maps,

and differences in the tractography results.

1 Introduction

Diffusion Magnetic Resonance Imaging (D-MRI) is an imaging modality increas-
ingly used for studying the normal and pathological development of the fetal
brain. Since the limited sensitivity of fetal ultrasound to detect and depict the
maturational processes of the developing white matter, D-MRI can be consid-
ered as one of the most promising methods for studying in vivo the human white
matter development.

Eddy current-induced image distortions and patient motion during prolonged
acquisitions cause image misalignment in D-MRI sequences, invalidating the as-
sumption of a consistent relationship between image space and anatomy in the
image processing. Such distortions are generally assumed to be affine, and usu-
ally corrected by coregistration with the T2-weighted image (T epi

2 ) by using affine
transformation models and mutual information (MI) [1]. When imaging a fetus,
there exists the additional problem of movement, and the acquired slices are no
longer a regular sample of the volume [2][3]. This may be compensated by relax-
ing the 3D transformation model to a set of transformations applied to each slice
independently. When these transformations are applied to the original sequence,
scattered data are generated in the spatial and angular (gradient) domains, re-
quiring an interpolation in both fields. Recently, Jiang et al. [3] have presented

T. Jiang et al. (Eds.): MICCAI 2010, Part I, LNCS 6361, pp. 574–581, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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an interpolation method assuming that the local diffusion properties can be rep-
resented by a rank-2 tensor model. However, this model cannot describe voxels
containing multiple fibers with different orientations, a condition referred to as
intravoxel orientational heterogeneity (IVOH) [4].

In this paper, we present a reconstruction method independent of the diffu-
sion model than can be used with more complex diffusion models like Gaus-
sian mixture models or higher-order diffusion tensors. Distortion corrections are
performed by applying groupwise registration with an affine slice-by-slice trans-
formation model. A dual RBF-based interpolation in the spatial and angular
domains was then used for reconstruction on a regularly sampled grid.

2 Method

2.1 Origin of Sparse Data

Typically, a D-MRI sequence consists of a set of N +1 regularly sampled images
S = {S0, S1, · · ·SN} where S0 is the image obtained without diffusion weight-
ing, and Si=1:N are diffusion-weighted (DW) images obtained with diffusion-
sensitizing gradients Gi of direction Ui and strength b. Ideally, S0 and Si are
related by the Stejskal-Tanner equation, but distortions caused by eddy currents
and fetal motion invalidate this relationship. Image registration techniques can
be applied to restore the lost spatial correspondence between S0 and Si, but a
reconstruction from sparse data is then required.

Let us express the original sequence as S = {(X, Θ, S(X, Θ)}X∈Ωs,Θ∈Ωa where
Ωs is a regular spatial grid, and Ωa is a regular angular grid on the unit sphere.
After correction, S becomes S′ = {X ′, Θ′, S(X, Θ))}X∈Ωs,Θ∈Ωa , where X ′ =
Az

i (X) are the transformed spatial points, and Θ′ = Rz
i (Θ) are the coordinates

of Ui corrected with the rotational component Rz
i of Az

i . In these equations,
the superscript “z” has been added to indicate the slice-to-slice nature of the
transformations. Differently of (X, Θ), the transformed coordinates (X ′, Θ′) do
not belong to regular grids, and S′ results sparse.

2.2 Registration Approach

Distortion correction methods relying on the registration of Si to S0 may fail
when applied to fetal D-MRI, probably a consequence of the large differences be-
tween both images [3]. In this paper, we propose a method that takes advantage
of the similarity between DW images to first ensure their joint alignment. The
mean of the registered images is characterized by a higher SNR than images Si,
and provides a better depiction of the anatomical structure of the brain. These
properties allow an accurate registration to S0, necessary to map all the sequence
in its space of coordinates. This method is illustrated and explained in Figure 1.
In essence, the method is similar to the one propose by Guimond et al. [5]. The
main difference is the separation of the registration into (1) a groupwise regis-
tration of the DW images, and (2) the registration of the resulting mean image
with the anatomical image.
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Fig. 1. Groupwise registration method. Initially all images Si are registered to an arbi-

trary DW image S∗ taken as reference. Then, all images are resampled and averaged to

obtain a first average S
(1)

, which becomes the new reference. At iteration k, the images

Si are registered to the mean S
(k)

to obtain the transforms A
(k)
i . After convergence,

S
(k)

is registered to T epi
2 , and the composition of transformations T ◦ Az

i
(k)

is applied

to map all images Si into the coordinate system of T epi
2 .

2.3 Sparse Interpolation

To interpolate values on a regular grid from scattered data, we have used ra-
dial basis functions (RBF). RBFs have already been applied for interpolation on
spherical geodesic grids in the context of numerical weather prediction, outper-
forming linear interpolation strategies [6]. The idea behind RBF interpolation is
that every point has an influence on a neighborhood according to some functional
φ(r), where r is the distance from the point. Then, the value of the function at
the point P is given by a linear combination of the φ’s centered in the points Pi:

y(P ) =
N−1∑
i=0

wiφ(‖P − Pi‖) (1)

where the weights wi are calculated by solving a linear system of equations for
the function to agree with the observations at points Pi.

In this paper, we have used a Gaussian function as RBF since this function
tends to zero for high r, and the influence of points Pi distant from P can be
neglected. This allows considering only points in a neighborhood N (P ) of P
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for interpolation, which reduces the computational complexity of the method.
N (P ) was formed by points Pi falling inside the support region of the Gaussian
function, defined in the context of this paper as the interval [−sφ, +sφ] so that
φ(sφ) = 0.01× φ(0).

In our case, each point contains spatial and angular coordinates which must
be considered separately because of the difference in scale between both types of
coordinates. This situation is different from the problem dealt in [6] where only
an interpolation in the sphere is required. To take into account these differences,
we propose to modify Equation 1 by replacing the single RBF with the product
of an spatial (φ) and an angular (ψ) RBF:

y((X, Θ)) =
N−1∑
i=0

wiφ(|X −Xi|)ψ(|Θ −Θi|) (2)

where X = (x, y, z) are the spatial coordinates, and Θ = (φ, θ) the spherical
coordinates of the sampling vector Ui. Differently from Equation 1, Equation 2
allows a dual interpolation in two different unrelated spaces. In Equation 2,
|X − Xi| represents the Euclidean distance, whereas |Θ − Θi| is the geodesic
distance over the unit sphere.

3 Materials and Experiments

3.1 Image Data

Fetal MRI was performed on a 1.5 T Siemens Avanto MRI Scanner (SIEMENS,
Erlangen, Germany) at the Hautepierre Hospital (Strasbourg, France) using an
6-channel phased array coil combined to the spine array positioned around the
mother abdomen. An axial spin echo single-shot echo-planar sequence was ac-
quired along 30 non-collinear diffusion gradient encoding directions with a b value
of 700s/mm2. The following pulse sequence parameters were used: TR=6800 ms;
TE=99 ms; FOV=250×250 mm2; matrix = 128×128; 41 contiguous axial slices
of 3.5 mm thickness covering the whole fetal brain; no gap; number of excita-
tions = 2. The total imaging time was 7mi 10s. Pregnant women were briefed
before the exam and signed informed consent. To reduce motion artifacts, fetal
sedation was obtained with 1 mg of flunitrazepam given orally to the mother 30
mi before the exam. The study was approved by the local ethics committee.

For validation purposes, three D-MRI sequences of the brain were acquired for
an adult healthy subject in the following conditions: (i) static in supine position
(Sref , the reference), and (ii) static with the head rotated with respect to the
reference (Srot).

3.2 Slice to Volume Registration Accuracy

Initially we want to explore the ability to recover slice to volume alignment for
typical but known motion, on typical anatomical structures. Fetal data are not
suitable for assessing accuracy since motion artifacts are always present to some
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degree. Therefore only the adult dataset Sref was used to this aim. Central slices
of the volume were modified with a specific transformation and then registered
independently to the whole volume. The displacements were chosen from a uni-
form distribution with a varying range of [−8, +8]mm for translations in each
direction, and between [−10, +10]◦ for each rotation. These ranges of variation
represent movements much larger than those observed in real fetal data.

The accuracy was assessed by computing a registration error measured on a
set of 4 points Pi within every slices as follows: RMS = ( 1

N

∑N
i=1 TREi)

1
2 , where

TRE is the target registration error defined as TRE = ‖Pi − T̂−1(T ∗(Pi))‖2.
T ∗ denotes the known applied motion transformation, and T̂ is the estimated
geometric transformation. Pi are the corners of the intersection between the
bounding box containing the brain, and each slice. The error previously defined
provides thus an upper bound of the registration error for the region of interest.

3.3 Evaluation of RBF Interpolation

Leave-one-out test. A leave-one-out test by using the adult data Sref was
performed for evaluating the capability of recovering non-acquired DW images
from the available measurements. This test estimates the image Sref

j at a point
(Xj , Θj) from Sref\Sref

j and N (Xj)\Xj, which in terms of RBF interpolation
can be expressed as:

Ŝref (Xj , Θj) =
N−1∑

i=0,i�=j

wiφ(|Xj −Xi|)ψ(|Θj −Θi|) (3)

We have then computed the RMS error between Ŝref (Xj , Θj) and Sref (Xj , Θj)
for a set of random points distributed uniformly over the brain.

DW image estimation from a rotated sequence. In this experiment, DW
images of Sref were estimated from Srot after performing a registration to put
Srot into the frame of reference of Sref . Differently from the leave-one-out ex-
periment, here all DW images of Srot at all spatial positions were employed for
estimation.

3.4 Diffusion Descriptors

To evaluate the performance of the registration method, we have also considered
two criteria for quality assessment of the resulting FA image.

Mean FA. The average value of FA over the cerebrospinal fluid (CSF), FAcfs

is expected to be close to zero because of the isotropic diffusion properties of the
CSF. Registration errors may induce an increase of this measure, since voxels
belonging to the CSF in some DW images may be matched with voxels belonging
to the gray or white matter in others.
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Entropy. Nielsen et al. [7] have compared polynomial and affine distortion
correction, and observed a reduction in erroneous regions of FA maps along with
a more spiky FA distribution in favor of the polynomial registration. Netsch and
van Muiswinkel [8] have reported an increase in the sharpness of FA maps after
distortion correction. These observations correspond to lower HFA values.

4 Results

The slice-to-volume test was applied to Sref
0 and Sref

i . RMS values higher than
0.2 mm were considered as registration failures, and discarded for analysis. Un-
der this criterion, successful registrations were obtained in 95% of the applied
transformations. The obtained RMS errors were 0.162± 0.004 mm for Sref

0 , and
0.105± 0.011 mm for Sref

i . Figure 2 (a) shows this error distribution.
Th RMS error between the original sequence Sref and its leave-one-out esti-

mation Ŝref was lower than 0.001 for sφ ∈ [2.0, 4.5] mm, and sψ ∈ [0.6, 0.9] rad.
The minimum values were obtained for sφ = 3.5mm (the inter-plane resolution),
suggesting that the use of only in− plane neighbors is not sufficient for interpo-
lation purposes, and adjacent slices must be included. Higher values of sφ make
the interpolated value dependent of remote regions which could not present the
same diffusion properties, and the error starts increasing. No dependence of sψ

was found in this experiment.
Figure 2 (b) shows the results when estimating Sref from Srot. In this case

the error does depends on sψ , being lower for higher sψ values. After a given
value (0.72 in our case) the error starts increasing again, because of the influence
of distant gradient directions.
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Fig. 2. (a) Slice to volume registration accuracy. This Figure shows the RMS error

before and after registration for Si (◦) and T epi
2 (+). Each point corresponds to a

specific applied transformation. (b) Estimation of Sref from Srot. The figure shows

the normalized RMS error for different support regions of the RBF functions φ and ψ.
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Table 1. Diffusion descriptors based on FA maps. HF A = Entropy of FA, FAcsf =

mean FA in the CSF. For each column, the best value is shown in bold.

Method Fetus #1 Fetus #2 Fetus #3 Fetus #4

HFA FAcsf HFA FAcsf HFA FAcsf HFA FAcsf

Original 2.04 0.14 2.17 0.26 2.15 0.23 2.31 0.24

Manufacturer 2.11 0.12 2.09 0.21 2.20 0.20 2.33 0.19

Our approach 1.93 0.08 1.78 0.13 1.72 0.16 2.20 0.10

Table 1 compares the values of FAcfs and FAcfs for the original sequences,
the values provided by the scanner’s manufacturer, and after applying the re-
construction method presented in this paper.

To perform the tractography, an expert radiologist traced regions containing
the following bundles on T se

2 images: (i) corpus callosum, (ii) pyramidal tract,
and (iii) Middle cerebellar peduncle. These regions were used for seeding the
tractography after propagation to the T epi

2 image by using affine registration,
and to check the presence of specific bundles. Tensor was estimated by using a
standard least squares method, and the tractography was performed by applying
a streamline method. In both cases we have used the algorithms implemented in
Slicer1. Figure 3 shows an example of the obtained results.

(a) (b)

Fig. 3. Tractographies performed on a sequence corresponding to a fetus of 28 weeks

of gestational age showing the corpus callosum (CC), the right pyramidal tract (PR),

and the left pyramidal tract (PL). (a) Fibers. (b) Tensors.

1 http://www.slicer.org
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5 Discussion and Conclusions

In this paper, we have presented a method for reconstructing fetal D-MRI se-
quences from sparse data. A groupwise registration method based on slice-by-
slice affine transformations was applied to compensate motion and eddy-current
distortions, and a dual spatio-angular interpolation based on RBFs was used
to estimate signal values on regular sampling grids. As the proposed method
does not assume any diffusion model, the generated data can be used to study
diffusion patterns even in IVOH. Experiments with adult data showed a high
accuracy for the slice-to-volume registration, and for the estimation of DW im-
ages along unavailable gradient directions. In fetuses, the method improved the
quality of the sequences as evidenced by the lower values of FAcfs and HFA

with respect to the original ones. The tractography provided different results
for the original and reconstructed sequences, but they must be quantified and
compared with objective criteria in order to assess their clinical significance.
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Abstract. A novel method for estimating a field of orientation distribu-

tion functions (ODF) from a given set of DW-MR images is presented.

We model the ODF by Cartesian tensor basis using a parametrization

that explicitly enforces the positive definite property to the computed

ODF. The computed Cartesian tensors, dubbed Cartesian Tensor-ODF

(CT-ODF), are symmetric positive definite tensors whose coefficients

can be efficiently estimated by solving a linear system with non-negative

constraints. Furthermore, we show how to use our method for convert-

ing higher-order diffusion tensors to CT-ODFs, which is an essential

task since the maxima of higher-order tensors do not correspond to the

underlying fiber orientations. We quantitatively evaluate our method us-

ing simulated DW-MR images as well as a real brain dataset from a

post-mortem porcine brain. The results conclusively demonstrate the

superiority of the proposed technique over several existing multi-fiber

reconstruction methods.

1 Introduction

Diffusion tensor imaging (DT-MRI) is a non-invasive imaging technique that
measures the self-diffusion of water molecules in the body, thus capturing the
microstructure of the underlying tissues. Second order symmetric positive defi-
nite (SPD) tensors have commonly been used to model the diffusivity profile at
each voxel with the assumption of a single coherent fiber tract per voxel. Under
this assumption diffusivity was defined as d(g) = gT Dg where g is the diffusion
weighting magnetic gradient vector and D is the 2nd order tensor to be estimated
from a set of DW-MR images. This model, despite its simplicity and robustness,
has been shown to be incorrect in regions containing intra-voxel orientational
heterogeneity such as crossing and merging of fiber bundles [1,2].

Severalmethodshavebeenproposed to overcome the single fiber orientation lim-
itation of second order tensors. Tuch et al. [1] proposed the use of diffusion imaging
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with diffusion weighting gradients applied along many directions distributed al-
most isotropically on the surface of a unit sphere; a method known as high angular
resolution diffusion imaging (HARDI). In contrast to rank 2 tensors, this method
does not assume any a priori knowledge about the diffusivity profile. A number of
approaches have been proposed to compute the ensemble-average diffusion propa-
gator P(r, t) of HARDI data. These methods include q-ball imaging (QBI) [3], dif-
fusion spectrum imaging (DSI) [4], and diffusion orientation transform (DOT) [5].
These methods, collectively known as q-space imaging techniques, identify multi-
ple fibers components by calculating the probability distribution function (PDF)
of the diffusion process in each voxel, based on the Fourier transform relationship
between the PDF of diffusion displacement and the diffusion weighted signal atten-
uation in q-space.DSI performs a discreteFourier transform to obtainP(r,t),which
requires a time intensive Cartesian sampling in q-space and hence is impractical for
routine clinical use. QBImethod takesmeasurements on a q-spaceball and approx-
imates the radial integral of the displacement probability distribution function by
the spherical Funk-Radon transform. One problem with QBI is that the estimated
diffusion orientation distribution function(ODF) is modulated by a zeroth-order
Bessel function that induces spectral broadening of the diffusion peaks. DOT com-
putes ODF at a fixed radius by expressing the Fourier transform in spherical coor-
dinates and evaluating the radial part of the integral analytically assuming signals
decay can be described by either a mono or a multi-exponential model, where the
latter requires data acquisition over multiple concentric spheres, a time consuming
proposition.

Another approach for multi-fiber reconstruction is to describe the apparent
diffusion coefficient (ADC) by higher order diffusion tensors (e.g. 4th and 6th)
that generalize the 2nd order tensors and have the ability to approximate multi-
lobed functions [6]. Several methods have been proposed for estimating 4th order
tensors with positive definite constraints [7,8,9] as well as for processing higher
order tensor fields [10]. This approach is attractive not only because the rich set
of processing and analysis algorithms developed for second order tensor fields can
be extended for higher order tensors but also unlike spherical harmonics basis,
the local maxima of higher order tensors can be easily computed [11,12] due to
their simple polynomial form. Unfortunately, the use of higher order diffusion
tensors has been confined to the estimation of tensor ADC profiles, although
it is now known that the local maxima of ADC profiles estimated using higher
order tensors generally can not be used to directly represent the orientations for
the intravoxel crossing fibers [2,13,14].

In this paper, we propose the use of higher order SPD Cartesian tensors to model
ODF profiles and present a novel method for estimating tensor field of ODF pro-
files froma given set ofDiffusion-WeightedMR images. In our technique theODF is
modeled by Cartesian tensor basis using a parametrization that explicitly enforces
the positive definite property to the computed distribution functions. The com-
puted Cartesian tensor ODFs (CT-ODFs) are SPD tensors whose coefficients can
be efficiently estimated by solving a linear system with non-negative constraints.
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We quantitatively evaluate our method and demonstrate the superiority of the pro-
posed technique over several existing multi-fiber reconstruction methods.

There are two main contributions in this paper: 1) We present a novel method
for positive-definite CT-ODF estimation from DW-MRI. To the best of our
knowledge there is no existing ODF model in literature that imposes explicitly
the positivity to the estimated ODF, which is naturally a positive-valued spher-
ical function. 2) We present a use full application of our method for converting
higher-order diffusion tensor ADC profiles to CT-ODFs. We should emphasize
that this is an essential task since the maxima of higher-order tensors do not
correspond to the underlying fiber orientations. On the other hand, our method
computes Cartesian Tensor ODFs whose maxima can be computed analytically
and correspond to the true axonal orientations.

2 Method
2.1 Symmetric Positive-Definite Cartesian Tensors of Even Orders

Any spherical function f(g) can be approximated by higher order Cartesian
tensors:

f(g) =
3∑

i=1

3∑
j=2

· · ·
3∑

l=1

gigj · · · glCi,j,··· ,l (1)

where gi is the i− th component of the 3-dimensional unit vector g, and Ci,j,··· ,l
are the coefficients of the l − th order tensor.

When approximating certain spherical functions in DW-MRI, we are inter-
ested in tensors of even orders with full symmetry, due to the antipodal sym-
metric nature of the DW-MR signal acquisition. In this case of symmetry, those
tensor coefficients which correspond to the same monomial ga

1gb
2g

c
3 are equal to

each other (e.g. C2,2,2,1 = C2,2,1,2 = C2,1,2,2 = C1,2,2,2, since they all correspond
to the monomial g1g

3
2).

Furthermore, if the approximated function f(g) is a positive-valued function,
the Cartesian tensor should be positive-definite, i.e. f(g) > 0 ∀ g ∈ S2. Therefore
Eq. 1 needs to be re-parametrized such that this positivity property is adhered
to. In this work, we use the higher-order positive-definite tensor parametrization
that has been recently proposed in [9]. According to this parametrization, any
non-negative spherical function can be written as a positive-definite Lth order
homogeneous polynomial in 3 variables, which is expressed as a sum of squares
of (L/2)th order homogeneous polynomials p(g1, g2, g3; c), where c is a vector
that contains the polynomial coefficients.

f(g) =
M∑

j=1

λjp(g1, g2, g3; cj)2 (2)

The parameters λj in Eq. 2 are non-negative weights. This parametrization ap-
proximates the space of Lth order SPD tensors and the approximation accuracy
depends on how well the set of vectors cj sample the space of unit vectors c. It
has been shown that by constructing a large enough set of well sampled vectors
cj , we can achieve any desired level of accuracy [9].
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2.2 Positive-Definite Cartesian Tensor ODF (CT-ODF) Profiles

The Diffusion-Weighted MR signal for a given magnetic gradient orientation g
and gradient weighting b, can be modeled using the standard multi-fiber recon-
struction framework as follows

S(g, b) =
∫

S2

w(v)B(v,g, b)dv (3)

where the integration is over all unit vectors v, B(v,g, b) is a basis function, and
w(v) is a non-negative spherical function that can be seen as a mixing/weighting
function. There have been several proposed models for the basis function B()
such as a Rigaut-type function [15], von Mises-Fisher distribution [16] and oth-
ers. In all of these models, the integral in Eq. 3 cannot be computed analyt-
ically, thus one needs to approximate the space of unit vectors v by a dis-
crete set of vectors v1, · · · ,vK . In this case Eq. 3 is correctly discretized by
S(g, b) =

∑K
k=1 wkB(vk,g, b) iff there are at most K underlying neural fibers

that are oriented necessarily along the vectors vk. Another problem with the
aforementioned discretization is that the function w() is not anymore continu-
ous over the sphere (it equals to wk for vk and it is zero everywhere else).

The main idea in this paper is to avoid the above unnatural discretization
of the space of orientations, by using a blending function w(), which can be
appropriately decomposed so that: 1) it is positive-definite, and 2) is continuous
over the sphere. In this work, we model such blending function as a Lth order
SPD tensor (say 4th) by plugging Eq. 2 into Eq. 3 as follows

S(g, b) =
∫

S2

M∑
j=1

λjp(v1, v2, v3; cj)2B(v,g, b)dv (4)

where v1, v2, v3 are the three components of the unit vector v.
Given a data set of DW-MRI signal attenuations Si/S0 associated with mag-

netic gradient orientations gi and diffusion weighting b-value b, the coefficients
of a Lth order positive-definite CT-ODF can be estimated by minimizing the
following energy function with respect to the unknown polynomial-weighting
coefficients λj

E =
N∑

i=1

(
Si/S0 −

M∑
j=1

λj

∫
S2

p(v1, v2, v3; cj)2B(v,gi, b)dv
)2

(5)

In order for the basis function B() to reflect the signal attenuation of a single and
highly oriented fiber response, we require the basis function to be a Gaussian
that represents the diffusion process which is highly restricted perpendicular to
the orientation v. This is given by

B(v,g, b) = lim
δ→+∞

e−δ(vT g)2 (6)

Here we should emphasize that the model in Eq. 6 agrees with the properties
of the DW-MR signal response, i.e. it takes maximum and minimum values for



586 Y.T. Weldeselassie, A. Barmpoutis, and M.S. Atkins

diffusion sensitizing gradient orientations g that are perpendicular and parallel
to the underlying fiber orientation v respectively. Moreover, δ is such that it
captures information about b and mean diffusivity (D) and can be adjusted by
altering either b or D. So this ‘symmetry’ can be simplified by using only δ in
Eq. 6.

In order to compute the CT-ODF, we need to solve Eq. 5 for λ′
js. This problem

can be rewritten into an equivalent linear system problem Bx = y where x
is an M -dimensional vector of the unknown λj , y is an N -dimensional vector
containing the given signal attenuations S/Si and B is a matrix of size N ×M
with the elements Bi,j =

∫
S2

p(v1, v2, v3; cj)2B(v,gi, b)dv.
This linear system is solved for the non-negative x using the efficient non-

negative least squares algorithm and runs in 12ms/voxel. We can then easily
compute the CT-ODF coefficients by multiplying the solution vector with a
matrix C, (i.e. Cx), where the matrix C is of size (2+L)!

2(L!) × M that contains
monomials formed by the vectors cj . Note that L is the order of the CT-ODF
and (2+L)!

2(L!) is the number of the unique coefficients in an Lth-order Cartesian
tensor. In the case of 4th-order CT-ODFs, the multiplication Cx gives the 15
unique coefficients of a positive-definite tensor.

We applied our proposed method for estimating 4th-order CT-ODFs (L = 4),
using a set of M = 321 polynomial coefficients cj and δ = 200. Regarding the
parameter δ, we performed several experiments using different values δ > 100
and we obtained similar fiber orientations density profiles, which shows that our
method is not sensitive to the selection of the value of δ.

2.3 Computing CT-ODF from Higher-Order Diffusion Tensor

Now, we present an application of our proposed framework for computing the
coefficients of a CT-ODF from a given higher-order diffusion tensor and diffu-
sion weighting b-value b, which is an essential task since the maxima of higher-
order tensors do not correspond to the underlying fiber orientations. Given a
higher-order diffusion tensor, the coefficients of the corresponding CT-ODF are
computed by using the technique we presented in the previous section as follows

CB−1exp(−bGt) (7)

where the matrices C and B are as defined in the previous section, G is of size
N × (2+L)!

2(L!) and contains only monomials constructed from N unit vectors gi

uniformly distributed on the unit sphere, and t is a vector of size (2+L)!
2(L!) that

contains the unique coefficients of the given higher-order diffusion tensor. For
example, in the case of 4th-order tensors, the 15 unique coefficients are given in
the vector t, and G is of size N × 15.

Note that in Eq. 7 the exponential function exp() acts in an element-by-
element fashion. Furthermore, the matrix inversion in Eq. 7 should be performed
using non-negative least squares, as it has been shown in the previous section.
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3 Experimental Results

In this section, we present experimental results of the proposed method applied
to simulated as well as real DW-MRI data from a post-mortem porcine brain.

3.1 Synthetic Dataset

The proposed method was tested on a synthetic dataset by comparing the actual
fiber orientations with the maxima of estimated CT-ODFs. In order to compare
our results with spherical deconvolution techniques, included is also the results
obtained using MOW [15], QBI [3], DOT [5] and MOVMF [16] methods by
computing the maxima of either the PDF or ODF profiles of the corresponding
methods.

The data was generated by simulating the MR signal from two crossing fibers
whose orientations are (cos20◦, sin20◦, 0) and (cos100◦, sin100◦, 0) using
the realistic diffusion MR simulation model in [17] with b-value = 1500s/mm2

and 81 gradient directions. Six distinct Rician noise levels were added to the
simulated data and for each noise level the experiments were repeated 100 times.

Figure 1 shows a plot of the means and standard deviations of deviation angles
between the actual fiber orientations and the maxima of estimated CT-ODFs.
For the particular noise level with std. dev. = 0.08 the deviation angles for all the
methods are reported in the adjacent table. Also notice that in this experiment
the deviation angle of the computed orientations is compared to its closest actual
fiber orientation because the crossing fibers are weighted equally in generating
the MR signals. The results demonstrate the superiority of the proposed method
over QBI, DOT, MOVMF and MOW methods.

3.2 Real Dataset

Here we present CT-ODFs computed from high-quality DWI on post-mortem
pig brain, which resemble the human brain in neuroanatomical complexity and
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Method Mean St. dev.

QBI 9.125 ±4.545

DOT 6.645 ±3.720

MOVMF 5.624 ±3.514

MOW 5.010 ±2.955

CT-ODF 4.7926 ±2.8726

Fig. 1. Deviation angle between actual fiber orientations and maxima of estimated CT-

ODFs using a simulated 2-fiber crossing data with orientations (cos20◦, sin20◦, 0) and

(cos100◦, sin100◦, 0) at different levels of Rician noise
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Fig. 2. CT-ODF field estimated by the proposed technique using data from a post-

mortem porcine brain

where perfusion fixation was used to ensure that tissue characteristics were com-
parable to in vivo conditions [18]. Images are acquired using a pulsed gradient
spin echo pulse sequence with echo time of 60ms, 128×128 matrix with 10 slices,
and voxel size of 0.5×0.5×0.5mm3. Three image were collected without diffusion
weighting (b ∼ 0s/mm2) and 61 DWI with gradient strength 61mT/m, gradient
duration 23ms, and gradient separation 30ms. Each of these image sets used dif-
ferent diffusion gradients with approximate b values of 3146s/mm2. Fig. 2 shows
CT-ODFs computed using our method along with generalized anisotropy and
S0 images. As can be verified in the generalized anisotropy image; the branch-
ing, bending and crossing of white matter tracts are correctly depicted by the
computed CT-ODFs.

4 Conclusions

We presented a novel technique to estimate ODFs modeled as SPD high order
tensors from DW-MR images. The performance of the proposed method is com-
pared against several existing ODF measures on a synthetic dataset with differ-
ent noise levels and outperformed the other methods. We also demonstrated the
use of our method on a real DT-MR image obtained from a post-mortem porcine
brain. Our results clearly demonstrate that crossing and merging of fibers are
correctly depicted with CT-ODFs. Since higher order tensors have been used
for segmentation, registration and computations of anisotropy measures for DT
images, it remains to be seen if these tasks can be performed with the proposed
CT-ODF fields as well.
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Abstract. How to estimate the di�usion Ensemble Average Propagator (EAP)
from the DWI signals in q-space is an open problem in di�usion MRI field.
Many methods were proposed to estimate the Orientation Distribution Function
(ODF) that is used to describe the fiber direction. However, ODF is just one of
the features of the EAP. Compared with ODF, EAP has the full information about
the di�usion process which reflects the complex tissue micro-structure. Di�usion
Orientation Transform (DOT) and Di�usion Spectrum Imaging (DSI) are two im-
portant methods to estimate the EAP from the signal. However, DOT is based on
mono-exponential assumption and DSI needs a lot of samplings and very large b
values. In this paper, we propose Spherical Polar Fourier Imaging (SPFI), a novel
model-free fast robust analytical EAP reconstruction method, which almost does
not need any assumption of data and does not need too many samplings. SPFI
naturally combines the DWI signals with di�erent b-values. It is an analytical
linear transformation from the q-space signal to the EAP profile represented by
Spherical Harmonics (SH). We validated the proposed methods in synthetic data,
phantom data and real data. It works well in all experiments, especially for the
data with low SNR, low anisotropy, and non-exponential decay.

1 Introduction

Di�usion MRI is a non-invasive technique to explore the complex white matter by prob-
ing the di�usion process of water molecules. EAP has the full information about the
di�usion process. Estimating the EAP is at the heart of dMRI. When the narrow pulse
condition is met, EAP is related with the signal attenuation by a Fourier transform.

P(R) �
�

E(q)e�2�iq�Rdq� (1)

where R is the displacement vector in R-space, and q is the reciprocal vector in q-space.
There are many articles about Orientation Distribution Function (ODF) in High Angular
Resolution Di�usion Imaging (HARDI) [1,2]. But ODF is just one of the features of
EAP and it has no radial information.

Historically, DTI was proposed by assuming P(R) as a Gaussian distribution [3].
It is actually a model-based method to estimate P(R), which cannot describe the non-
Gaussian di�usion. Di�usion Spectrum Imaging (DSI) [4] is a well known model-free

T. Jiang et al. (Eds.): MICCAI 2010, Part I, LNCS 6361, pp. 590–597, 2010.
c� Springer-Verlag Berlin Heidelberg 2010
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method to estimate EAP. The main shortcoming of DSI is that it uses a numerical
Fourier Transform and needs very large range of b values and a lot of samplings.

Di�usion Orientation Transform (DOT) [6] is a fast analytical method based on
mono-exponential decay assumption on E(q). It was proposed to relax the Gaussian
assumption in DTI to the assumption of mono-exponential decay. This assumption lets
us have the full information about E(q) in the whole 3D q-space from the E(q0u) only
in a single shell. Then EAP profile at a given radius R0 could be calculated analyti-
cally. However the estimated EAP is the true PDF convolved by the Fourier transform
of the function E(q� u)q2�q2

0 E(q� u)�1 [6], where q � qu, q � �q�. It was shown surpris-
ingly that the estimated P̃(Rr) in some synthetic experiments is sharper than the real
P(Rr). But since this e�ect comes from the intrinsic modeling error, it is still not clear
whether DOT can work well in the complex real data with non-exponential decay, low
anisotropy and low SNR. The author in [6] has extended mono-exponential model to
multi-exponential model so that it can reduce the modeling error and work for the data
from multiple shells. However, it is impractical because a nonlinear fitting is needed
for every direction [6], su�ering from limited samples, local minima, computational
complexity, and an analytic solution exists only when three b values satisfy an arith-
metic process. Di�usion Propagator Imaging (DPI) [7] is another analytical estimation
which assumes the E(q) can be represented as the form of the solution of 3D Laplacian
equation. It seems to work well just with small number of samplings. However, that
assumption is unrealistic for E(q), since E(0) does not exist based on that assumption.

E(q) �
N�

n�0

L�
l�0

l�
m��l

an�l�mRn(�q�)Ym
l (u) Bn�l�m(q) � Rn(�q�)Ym

l (u) (2)

Rn(�q�) � �n(�) exp

�
��q�

2

2�

�
L1�2

n (
�q�2

�
) �n(�) �

�
2

�3�2

n!
�(n � 3�2)

�1�2

(3)

Compared with Laplacian equation modeling in [7], Spherical Polar Fourier Expres-
sion (SPFE) of E(q) seems better. It was proposed to sparsely represent E(q) [8]. See
formulae (2),(3), where Ym

l (u) is the l order m degree Spherical Harmonic (SH) basis
and Rn(q) is the Gaussian-Laguerre polynomial basis. Since Bn�l�m(q) is the orthonormal
basis in R3, any E(q) could be represented by a linear combination of �Bn�l�m�. While
Laplacian equation modeling can not. In [8], the authors proposed two methods to esti-
mate the coeÆcients �an�l�m�, a least square fit and a nonlinear robust estimation which
considers the Rician noise. After �an�l�m� are estimated, a inner product of al�n�m and a
kernel bn�l�m was used to calculate some features of P(R), e.g. the ODF in [1], EAP pro-
file [8]. The problem of [8] is that the kernel bn�l�m needs to be calculated numerically
from FFT for every direction or calculated for one direction then rotated by Wigner
rotation matrix for other directions. For EAP profile it can bring some numerical error
since the kernel has some delta functions inside.

In this paper, based on the SPFE in [8], we propose Spherical Polar Fourier Imaging
(SPFI), a novel technique for model-free analytical reconstruction of the EAP profile
from the signals in di�erent Q-shells. It is a linear transformation from the coeÆcients
�an�l�m� of the signal E(q) to the coeÆcients �cl�m� of EAP profile P(R0) represented by
SH for a given R0. First we deduce the transform for EAP profile. Then, we perform the
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method in some non-exponential synthetic data, a challenging phantom data and a real
monkey data with several b values.

2 Analytical EAP Profile Estimation Based on SPF

Our method is close in spirit to the methods in DOT [6] and DPI [7]. Adding a strong
assumption (in DOT) or choosing a good representation of E(q) (in DPI and SPFI) will
dramatically simplify the Fourier transform in (1).

2.1 Estimation of EAP Profile

SPFE is a kind of orthonormal basis representation and it was shown in [8] that it can
sparsely represent the di�usion signal. See formula (2). After we estimate the coeÆ-
cients of the signal via the methods in [8], we proved that there is a linear, analytical
solution to get the coeÆcients of the EAP profile at a given radius R0 under SH repre-
sentation. Firstly consider the plane wave equation in spherical coordinates in (4)

e�2�iq�R � 4�
��

l�0

l�
m��l

(�i)l jl(2�qR)Ym
l (u)Ym

l (r)� (4)

where jl(x) is the l-th order spherical Bessel function. jl(x) �
�

�
2x Jl�0�5(x), Jl�0�5(x) is

the Bessel function of the first kind. Then put the formula (2) into formula (1).

P(R0r) = 4π
∫ ⎧⎪⎪⎨⎪⎪⎩

N∑
n=0

L∑
l=0

l∑
m=−l

an,l,mRn(q)Ym
l (u)

⎫⎪⎪⎬⎪⎪⎭
⎧⎪⎪⎨⎪⎪⎩
∞∑

l′=0

l′∑
m′=−l′

(−i)l′ jl′ (2πqR0)Ym′
l′ (u)Ym′

l′ (r)

⎫⎪⎪⎬⎪⎪⎭ dq

= 4π
L∑

l=0

l∑
m=−l

(−1)l/2
N∑

n=0

{∫ ∞
0

jl(2πqR0)Rn(q)q2dq
}

︸������������������������������︷︷������������������������������︸
Il,n(R0)

an,l,mYm
l (r)

(5)

where we use the orthonormal property of SHs, i.e.
�

S 2 Ym
l (u)Ym�

l� (u)du � Æll�Æmm� , and

define Il�n(R0) �
� �

0
jl(2�qR0)Rn(q)q2dq. It should be noted that in formula (2), if we

fix the SH as the spherical basis and use another radial basis R�
n(q), the equation (5) also

holds. We choose Gaussian-Laguerre radial basis because it could sparsely represent
E(q) [8]. Considering in (3) L1�2

n (x) �
	n

i�0 linxi, lin � (�1)i



n�0�5
n�i

�
1
i! , we have

Il�n(R0) �
�n(�)�1�25

2
�

R0

n�
i�0

lin

� �

0
x2i�1�5Jl�0�5(2�R0

�
�x) exp(�0�5x2)dx (6)

Based on the property of Bessel function [9], we have� �

0
x� exp(��x2)J�(	x)dx �

	��(0�5
 � 0�5� � 0�5)
2��1�0�5(����1)�(
 � 1)

1F1(
� � 
 � 1

2
; 
 � 1;� 	2

4�
) (7)

where 1F1 is the confluent hypergeometric function of the first kind. 1F1(a; b; x) �	�
k�0

(a)k xk

(b)kk! , (a)k � (a(a�1)���(a�l�1)), with (a)0 � 1. Here in (6) � � 0�5, 	 � 2�R0
�
�,


 � l � 0�5, � � 2i � 1�5, then we get
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Il�n(R0) �
�n(�)�0�5l�1�5�l�0�5Rl

0

�(l � 1�5)

n�

i�0

li
n20�5l�i�0�5�(0�5l � i � 1�5)1F1(

2i � l � 3
2

; l �
3
2

;�2�2R2
0�)

Put it into (5), we have

P(R0r) �
L�

l�0

l�
m��l

���4(�1)l�2 �
0�5l�1�5�l�1�5Rl

0

�(l � 1�5)

N�
n�0

fn�l�m(��R0)an�l�m

��� Ym
l (u) (8)

cl�m � 4(�1)l�2 �0�5l�1�5�l�1�5Rl
0

�(l�1�5)

	N
n�0 fn�l�m(��R0)an�l�m (9)

fn�l�m(��R0) � �n(�)
�n

i�0(�1)i
�

n�0�5
n�i

�
1
i! 2

0�5l�i�0�5�(0�5l � i � 1�5)1F1( 2i�l�3
2 ; l � 3

2 ;�2�2R2
0�)

(10)

Now we get the linear transform from �an�l�m� to �cl�m�, which could be implemented as
an matrix multiplication. Moreover please note the important di�erence between SPFI
and DOT. Here our transformation is independent with the data, since fn�l�m(��R0) is just
dependent on � and R0. Once we give a R0 and the basis, we have the transform. While
in DOT, the transform is dependent on the ADC, which could brings some numerical
errors. See appendix A in [6] for error analysis. Similarly with the appendix in [6], here
the confluent hypergeometric function 1F1 could also be calculated from an analytical
solution. Actually in practice a numerical truncated approximation of 1F1 is also ac-
ceptable, since in SPFI we just need the values of 1F1 only at the fixed value �2�2R2

0�

and the transform matrix just needs to be calculated only once. Another important sim-
ilarity with DOT is that if we just choose N � 0 in radial part, our transform will be
the DOT, which could be seen from the formulae (9), (10). That is true since the order
0 of the radial basis follows mono-exponential decay. However, in SPFI we should use
N � 1 to describe anisotropic decay, since the order 0 in (2) is just an isotropic part.

2.2 Zero Displacement Probability

The Po � P(0) is the probability of water molecules that minimally di�use within the
di�usion time � [5]. The Po map could be used in tissue segmentation and some other
applications [5]. In SFPI, we can easily estimate Po from (2), or by setting R0 � 0 in
(6), (5). These two ways are equivalent. Since

� �
0

exp(�st)t	L	
n (t)dt � �(	�n�1)(s�1)n

n!s��n�1 [9]

and
�

S 2 Ym
l (u)du �

�
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2.3 Implementation of Methods

The Implementation includes two steps. The first step is to estimate coeÆcients �an�l�m�
from the signals �E(qi)�. The second step is the linear analytical transform proposed
above from �an�l�m� to �cl�m�, which is actually independent of the first step. The whole
estimation error is just from the first step, since the second step is analytical and com-
pact. [8] suggested two methods to estimate �an�l�m�, a linear least square (LS) fitting
with regularization in the radial and spherical parts, and a non-linear PDE based opti-
mization process, which considers the Rician noise. Here we choose the LS method,
known to be faster, in the first step. We suggest that the Rician correction could be
performed directly on the DWI data as a pre-processing step [10,11], although in our
experiments to perform an appropriate comparison of methods we did not perform any
Rician correction.

For LS estimation, denote signal vector by E � [E(qi)]S�1, the basis matrix by
M � [Rn(q)Ym

l (u)]S�0�5(L�1)(L�2)(N�1) , and the spherical and radial regularization diag-
onal matrices respectively by L � [l(l � 1)] and N � [n(n � 1)]. Then the coeÆcient
vector A � (MT M��lLT L��nNT N)MT E, where �l and �n are the regularization terms
for spherical and radial parts. For the second step, the linear transformation in (9), (10)
could be also implemented as a matrix multiplication, i.e. C � FA. Thus we can com-
bine this two steps or perform separately. To combine two steps, C � �F(MT M��lLT L�
�nNT N)MT �E. The matrix of the whole process, F(MT M � �lLT L� �nNT N)MT , is in-
dependent with E and needs to be calculated only once for the whole data set. It makes
our method extremely fast. Another option is to separate these two steps. and store an�l�m

once it is estimated in the first step. Then estimating the coeÆcients for EAP profile at
a given R0 could be performed directly on the stored �an�l�m�. That means we just need
to calculate �an�l�m� once and could re-calculate di�erent EAP profiles in di�erent radii
very fast. The main computation complex is in the estimation of an�l�m. But it is still very
fast if least square fitting is used.

There are two important points to consider in the implementation. The first one is
about E(0). If a data set has several b values, b1, b2..., bN , we actually use N � 1 b
values, considering b0 � 0 and E(0) � 1 for any u 	 S 2, which makes our estimation
more reasonable and accurate. Otherwise, there is no warranty for the estimated signal
Ẽ(0) � 1. Another advantage is that for the single shell HARDI data, considering b � 0
can let us have 2 shells, which will largely improve the results. The second one is how to
determine the parameter � in basis. The authors in [8] proposed an experience strategy
for it, which is dependent on the radial truncation order N. However, we think the
parameter should be just dependent on the signal, not on the basis order. Considering
E(q) � exp(�4�2q2D), b � 4�2q2, and a typical di�usion coeÆcient of D � 0�7 

10�3mm2�s, a typical b-value b � 3000s�mm2, we set � � 1

8�2
�0�7�10�3 . If 4�2 � 1,
then � is about 700. In our experiments we always set � � 700.

3 Results on Synthetic, Phantom and Real Data

Synthetic data. Gaussian mixture model S (qs) �
	M

i�1 piGi(qs), Gi(qs) �

exp(�q2
su

T
s Dius) has been used widely to generate synthetic data [2,13]. However, it

could bias the results in favor of those methods assuming a model based on Gaussian
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Table 1. For each configuration in each column, the left part and the right part show, respectively
for Gaussian mixture model and non-Gaussian mixture model, the percentage of correct number
of detected maximum of the estimated EAP profile and the mean of angular error. The first four
rows recorded the performance of DOT on single shell data [6] with 81 gradient directions on the
hemisphere. The last row is the results of our methods using 4 shells.

mixture or mono�multi-exponential decay. Here we choose both Gaussian mixture and
non-Gaussian mixture to validate our methods. We set S (q) �

	M
i�1 pi fi(q), f(q) � G(q)

for a Gaussian mixture model and f (q) � 0�5G(q)�0�5T (q), T (q) � exp(�
�

2q2uT Du)
for a non-Gaussian mixture model. It could be proved that the ODF of T (q) are the
same as the ODFs of G(q), although they have di�erent EAPs [9]. The EAP of T (q) is
P(Rr) � 16���D�(4�4�2R2rT D�1r)2 . Thus we have the analytical ground truth of EAP. We use
the same way in [2] to add Rician noise with S NR � 1��. SNR is defined as the ratio of
maximal signal intensity of S (0) � 1 to the standard deviation � of complex Gaussian
noise. We reconstructed EAP profile P(R0r) at R0 � 15�m from our method and DOT
in di�erent configurations of signal generators with di�erent fiber numbers (1 or 2),
eigenvalues of D, SNR, angle between 2 fibers. See Table 1, where (2, [1.7,0.3,0.3]e-3,
35, 60) means two fibers (M � 2), eigenvalues are[1.7,0.3,0.3]e-3, angle is 60o. and so
on. For each configuration, data in 4 shells (b�500,1000,2000,3000s�mm2) were gen-
erated for 1000 trials. For DOT, 4 order SH with � � 0�006 was chosen for single shell
data. For SPFI, we use all data in 4 shells and chose N � 1 for S NR � 10, and N � 2 for
others and L � 4, �l � 1e� 8 �n � 1e� 8, � � 700 for all experiments. We recorded the
percentage of correct number of detected maximum of estimated EAP profile and the
mean of angular error. The experiments showed that SPFI works better in the config-
urations with low anisotropy, much noise and non-exponential decay. Please note that
we did not compare our method with DOT in multi-exponential model [6], because it is
impractical as discussed in the introduction part.

Phantom data. We applied SPFI to a public phantom data with 3 shells with b-values
of 650,1500,2000s�mm2 respectively. This data has been used in the fiber cup contest
in MICCAI 2009 to evaluate tracking methods [12]. The anisotropy of this data is very
low, which makes it hard to detect the fibers. We believe that it is complex enough
to evaluate di�erent reconstruction methods and tracking methods. We compare our
reconstruction method using 3 shells with DOT using one shell (b�2000) using Lapla-
cian regularization term � � 0�006 [2]. For SPFI, we choose L � 4, �l � 5e � 8 in
the spherical part and N � 1,�n � 1e � 9 in the radial part [8]. Two crossing areas
with EAP profiles in R0 � 15�m, 17�m were chosen for visualization using min-max
normalization [1]. To perform a fair comparison, we also tune the Laplacian regulariza-
tion term lambda to 0.002 and 0.02 for region B. The results were shown in Fig. 1. It
shows that SPFI could work well in the data with low anisotropy and non-exponential
decay, which agrees with the results for synthetic data. that the method using 3 shells is
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Fig. 1. First row: phantom data, from left to right: whole view of P(R0r), R0 � 15�m and P(R0r),
R0 � 15�m,17�m in region A and B of phantom data, calculated from SPFI and DOT. Region B
was shown for DOT with � � 0�002� 0�006� 0�02. Second row: real data result from SPFI, from
left to right: whole view of P(R0r), R0 � 15�m and EAP in region C and Po of the real data

better. The bad performance of DOT is probably because of the modeling error of the
mono-exponential assumption.

Real data. We tested our method using real monkey data with 3 shells (b�500, 1500,
3000), 30 directions at each b value, TE�TR�matrix�120ms�6000ms�128
 128. We set
L � 4, N � 2, �l � 5e � 9, �n � 1e � 9 and show the results of P(R0r) at R0 � 15�m.
The glyphs were colored by GFA calculated from EAP profile [1]. Please note that we
did not do any normalization here, e.g. min-max normalization [1]. That is because of
two reasons. 1) the EAP profiles in white matter seem sharp enough and the profiles
in CSF and gray matter are almost isotropic. 2) we will lost the radial information
if we do some normalization. Please note that the radial information in EAP is also
important compared with its peaks. It might be used to infer the axonal diameter and it
is sensitive to white-matter anomalies [14]. From the results, we can see that the CSF
has the largest probability (glyph size) compared with white matter and gray matter, just
like the visualization of tensors in DTI. Tensors cannot illustrate and recover crossing
fibers, while EAP profiles can. We also show in Fig. 1 the Po calculated from SPFI.

4 Conclusion

We proposed Spherical Polar Fourier Imaging (SPFI), a novel model-free fast robust an-
alytical EAP profile reconstruction method based on Spherical Polar Fourier expression
(SPFE) of the signal in q-space. It provides a linear analytical closed form to estimate
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the EAP profile from the signal under SPFE. It is a linear transformation that is inde-
pendent of data. This transformation matrix is just calculated only once for a whole
data set, which makes SPFI extremely fast. SPFI can avoid the error from unrealistic
assumptions and can naturally combine the signals with di�erent b-values. The exper-
imental results from synthetic data, phantom data and real data show that SPFI can
perform better than DOT, especially for the data with low anisotropy, low SNR and
non-exponential decay.

Acknowledgment. This work was partly supported by the Natural Science Founda-
tion of China (30730035), the National Key Basic Research and Development Program
of China (2007CB512305), the National High Technology Research and Development
Program of China (2009AA02Z302), the External Cooperation Program of the Chinese
Academy of Sciences (GJHZ200826), the French ANR “Neurological and Psychiatric
diseases“ NucleiPark and the France-Parkinson Association.

References

1. Tuch, D.S.: Q-ball imaging. Magnetic Resonance in Medicine 52, 1358–1372 (2004)
2. Descoteaux, M., Angelino, E., Fitzgibbons, S., Deriche, R.: Regularized, fast and robust

analytical q-ball imaging. Magnetic Resonance in Medicine 58, 497–510 (2007)
3. Basser, P.J., Mattiello, J., LeBihan, D.: MR di�usion tensor spectroscropy and imaging. Bio-

physical Journal 66, 259–267 (1994)
4. Wedeen, V.J., Hagmann, P., Tseng, W.Y.I., Reese, T.G., Weissko�, R.M.: Mapping complex

tissue architecture with di�usion spectrum magnetic resonance imaging. Magnetic Reso-
nance In Medicine 54, 1377–1386 (2005)

5. Wu, Y.C., Alexander, A.L.: Hybrid di�usion imaging. NeuroImage 36, 617–629 (2007)
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Abstract. We propose an unbiased group-wise diffeomorphic registra-

tion technique to normalize a group of diffusion tensor (DT) images. Our

method uses an implicit reference group-wise registration framework to

avoid bias caused by reference selection. Log-Euclidean metrics on dif-

fusion tensors are used for the tensor interpolation and computation of

the similarity cost functions. The overall energy function is constructed

by a diffeomorphic demons approach. The tensor reorientation is per-

formed and implicitly optimized during the registration procedure. The

performance of the proposed method is compared with reference-based

diffusion tensor imaging (DTI) registration methods. The registered DTI

images have smaller shape differences in terms of reduced variance of

the fractional anisotropy maps and more consistent tensor orientations.

We demonstrate that fiber tract atlas construction can benefit from the

group-wise registration by producing fiber bundles with higher overlaps.

1 Introduction

Diffusion tensor magnetic resonance imaging (DTI) is an emerging imaging
modality to non-invasively measure water diffusion in biological tissues [1]. It
plays an important role in studying brain white matter microstructure and
anatomical connectivity. DTI registration is necessary to estimate correspon-
dences among different diffusion tensor (DT) images, study white matter alter-
ations in developing and disease populations, and build a white matter atlas.
DTI registration techniques have been first proposed in [2]. In contrast to scalar
images, DT images are multidimensional at each voxel, and more information
such as shape and orientation of the tensors can be used in registration. Recently,
many DTI registration methods have been presented using whole tensors [3,4],
features extracted from tensors [5,6], multi-channels [7], and multi-contrasts [8].

In building white matter and fiber tract atlases, group-wise registration is
crucial to map each image to an unbiased common space [9]. In [10], the frac-
tional anisotropy (FA) extracted from DTI is used and registered to a common
space following the work in [11]. Zhang et al. [12] proposed an atlas construc-
tion method using the information encoded in tensors, especially the orientation
information, which may enable more accurate alignment of fiber tracts. This
method estimates the unbiased atlas iteratively. The input DT images are first

T. Jiang et al. (Eds.): MICCAI 2010, Part I, LNCS 6361, pp. 598–606, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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averaged, and each image is registered to it. All deformed images are averaged
again to get the second atlas; the procedure is repeated until the atlas con-
verges [13]. Barmpoutis et al. [14] recently developed a group-wise registration
of 4th-order tensor images and showed the improvement compared to 2nd-order
tensor registration using synthetic fiber crossing data.

In this paper, we propose a group-wise DTI registration technique that ex-
tends the implicit-reference group-wise (IRG) registration framework proposed
by Geng et al. [15]. The DTI IRG registration simultaneously estimates diffeo-
morphic transformations and the deformed DT images converge to the group
average. The unbiased atlas can be obtained by averaging the deformed im-
ages. Tensor reorientation is applied using “Finite Strain” strategy [2] during
the estimation to preserve the geometric features of the tensor fields [9]. The
Log-Euclidean metric is used to define the similarity cost and for tensor interpo-
lation. Compared to the work in [12], our method does not compute the average
input images as the reference and update the atlas by repeating the registration
multiple times. We jointly estimate transformations that deform each pair of DT
images to have similar shapes. Another major difference is that the registration
algorithm in [12] estimates transformations using an enhanced piecewise affine
framework, our registration adapts large deformation diffeomorphic demons ap-
proach [4].

The FA map variance and the directional consistency after the IRG DTI reg-
istration were compared to reference-based registration. Results show smaller
registration errors using the group-wise registration. To demonstrate the ad-
vantage in building a fiber tract atlas, we constructed the uncinate fasciculus
(UF) atlas of a group of healthy normal subjects using group-wise and refer-
ence DTI registration methods. The proposed group-wise registration produces
higher bundle overlap and therefore a sharper UF atlas.

2 Implicit-Reference Group-Wise DTI Registration

Tensor distance computation, interpolation and reorientation are involved in
DTI registration. The Affine-invariant metric, a Riemannian metric, is the nat-
ural metric for diffusion tensors that are positive semi-definite. Here we use
Log-Euclidean metric since it is computationally efficient and provides similar
performance compared to Riemannian metric[16]. The distance between two ten-
sors is defined as:

D(Ti, Tj) = ( Trace (log Ti − log Tj)2)
1
2 . (1)

The log of a rotated tensor can be calculated as log(RT TR) = RT log(T )R.
The interpolation of log tensors can be performed using the Euclidean metric
after taking the log transformation of the tensors. These properties make the
registration convenient by applying a log transform of the input DTI data before
registration, using the Euclidean metric to estimate the transformations and
performing exponential transform to convert log tensors back to tensors.
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2.1 Algorithm Overview

The scalar-based IRG registration with a small deformation elastic model can
be stated as an optimization problem of finding a set of N transformations that
deform N images to an implicit reference by minimizing the following function:

C =
N∑

i=,1

i−1∑
j=1

CSim(Ii(ΦiS), Ij(ΦjS)) +
N∑

i=1

CReg(Φi).

ΦiS is the transformation to be estimated to map image Ii to the implicit ref-
erence IS . CSim is the similarity cost between deformed Ii and Ij . CReg is the
regularization cost and can be defined as an elastic differential operator [15].

To map DT images with large shape differences, a similar framework as dif-
feomorphic demons was used to estimate transformations in diffeomorphisms.
Unlike the work in [4], the exact finite strain differential is not implemented
here, and the diffeomorphic transformations are ensured by constraining veloc-
ity fields small enough at each step. The optimization scheme is to separate the
energy function to two parts by introducing another transformation variable Ψ .
The minimization of the similarity and regularization costs can be separated. A
quadratic regularization can be performed efficiently with a convolution kernel.

The group-wise diffeomorphic DTI registration is formulated as estimating a
set of transformations that minimize the cost function:

C =
N∑

i=1

i−1∑
j=1

CSim(Ti◦Φt
iS , Tj ◦Φt

jS)+
N∑

i=1

D(Φt
iS , Ψ t

iS)2+
N∑

i=1

CReg(Ψ t
iS , vt

iS), (2)

where vt
iS is the velocity field from Ti to the implicit reference at time t, Φt

iS =∫ t

τ=0 vτ
iSdτ , D(Φt

iS , Ψ t
iS) is the distance between Φ and Ψ to constrain Ψ close to

Φ, and the last term is the regularization term to ensure smooth velocity and
transformation fields, which is defined as an isotropic differentiable operator
%(·) in this work. The similarity cost can be defined as the squared Euclidean
distance after log transform of the tensors. Let Ti denote the log transformed
tensor image for simplicity. The cost function in Eq.(2) can be rewritten as:

σ
N∑

i=1

i−1∑
j=1

∫
Ω

||Ti ◦ Φt
iS(x)− Tj ◦ Φt

jS(x)||2dx + ρ
N∑

i=1

∫
Ω

||Φt
iS(x) − Ψ t

iS(x)||2dx

+
N∑

i=1

(λΨ

∫
Ω

|| % (Ψ t
iS(x))||2dx + λv

∫
Ω

|| % (vt
iS(x))||2dx), (3)

where Ω represents the tensor image space, and σ, ρ, λΨ and λv are weighting
parameters for each cost term. We set σ to 1

N−1

∑N
j=1, �=i

1
||Ti◦Φt

iS(x)−Tj◦Φt
jS(x)||2

for each ΦiS , varied ρ to keep the largest update field less than 1 at each iteration,
and set λΨ and λv to be 0.5 and 0.5.

The deformed tensor image Ti ◦ Φt
iS can be computed as:

RiSTi(Φt
iS)RT

iS , (4)
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where RiS is the reorientation matrix extracted from the Jacobian of the inverse
ΦiS in Eulerian space, or from the Jacobian and taking its transpose after-
wards [2]:

R = ((J(Φ) · J(Φ)T )−
1
2 J(Φ))T . (5)

2.2 Optimization of the Cost Function

After linear approximation of the similarity cost function, the first two terms in
Eq.(3) become

σ ||
N∑

j=1, �=i

(Ti ◦ Ψ t
iS − Tj ◦ Ψ t

jS) +%Ti ◦ Ψ t
iS · vt

iS ||2 + ρ

∫
Ω

||Φt
iS(x) − Ψ t

iS(x)||2dx

= ||
[∑N

j=1, �=i

√
σ(Ti ◦ Ψ t

iS − Tj ◦ Ψ t
jS)

0

]
+
[√

σ% Ti ◦ Ψ t
iS√

ρI

]
vt

iS ||2, (6)

where I denotes the identity transformation field. The update of vt
iS can be

calculated by setting the above equation to zero and solving for vt
iS :

vt
iS =

−
∑N

j=1, �=i(%Ti ◦ Ψ t
iS)′(Ti ◦ Ψ t

iS − Tj ◦ Ψ t
jS)

|| % Ti ◦ Ψ t
iS ||2 + ρ

σ I
. (7)

The optimization of the Eq.(3) except the similarity term can be done by con-
volving a Gaussian kernel with viS and ΨiS alternatively [17]. Smoothing viS is
more fluid like registration, and smoothing ΨiS is more diffusion like registration.
The iterative process is done for each image simultaneously. The cost function
is similar to a recent 4D registration study with multichannel diffeomorphic
Demons algorithm[18].

The implementation of the algorithm can be summarized as follows: (1) take
the log transform of the input tensor images; (2) initialize ΦiS and ΨiS to be
identity fields; (3) reorient Ti using Eqs.(4, 5); (4) let Φn

iS = ΨiS ◦ (I + vn
iS) and

estimate the velocity field vn+1
iS according to Eq.(7); (5) regularize v by taking the

Gaussian kernel of it: vn+1
iS = λvK ∗ vn+1

iS ; (6) let Ψn+1
iS = λΨK ∗Ψn ◦ (I + vn+1

iS ),
and Φn+1

iS = Ψn+1
iS ; (7) repeat steps 3–6 until convergence, CSim < ε, or n >

Nmax; (8) apply the exponential transform to convert the log tensors back to
tensors and apply the estimated ΦiS to them to generate deformed DT images.

3 Experiments and Results

We demonstrate the performance of the proposed method using 10 DT images
acquired from a 3T Siemens MRI scanner. An EPI-based spin echo sequence was
used to acquire diffusion-weighted images (DWIs). The whole brain was covered
with 35 axial slices and a 128× 128 in-plane matrix, resulting in a resolution of
1.72 × 1.72 × 4.0mm3. Besides one non-diffusion weighted reference image, 12
directions were used to apply the diffusion-sensitive gradients with a b-factor of
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1000s/mm2. For EPI, TR/TE = 5000/87ms, BW= 1700Hz/Pixel, and NEX=4.
The DT images were reconstructed from DWIs. B0 maps were used to affine align
each map to the average of the original maps, and the transformation matrices
were applied to the DT images to obtain affine aligned images.

To compare the IRG DTI registration with reference-based methods, each
DT image was selected as the reference, and all other images were registered
to it using the same diffeomorphic DTI registration framework with the same
parameter settings. Therefore, 10 groups of reference-based registrations were
performed and compared with the IRG registration. The standard deviation
(STD) of FA maps and the directional consistency (DC) of tensor images after
registration were computed to evaluate different methods. The FA and DC were
computed from the deformed tensor images. The DC is defined as the absolute
value of the dot product of the major eigenvectors of two tensor images, ranging
from 0 (two directions are perpendicular) to 1 (directions are consistent).

Fig. 1. Average tensor images in the genu of the corpus callosum after (a)affine align-

ment, (b) reference-based, and (c) group-wise DTI registration

Fig.1 shows a subregion of the averaged tensor images in the genu of the corpus
callosum before diffeomorphic registration (after affine), after a typical reference-
based and the proposed IRG DTI registration. The average (using Log-Euclidean
metric) of the deformed tensor images has pointier shapes after diffeomorphic
registration which may be due to the more consistent directions of the deformed
tensors. Compared to the reference-based method, the IRG method produced
an average shape closer to the average of the affine aligned images.

Fig.2 plots the STD of FA maps and the DC maps after affine, a typical
reference-base and IRG DTI registration. The maps are shown on a mask gener-
ated from thresholding the average of all deformed FA maps after all registrations
at 0.3. The same mask was used to compute the RMS of the STD of FA maps
and the average of DC maps for 10 reference-based registrations and the group-
wise registration. The RMS of each registration method is listed in Tab.1. The
IRG method produced the least FA variance compared to all reference-based
methods. For each registration, nine DC maps were generated and the average
of each DC map is plotted in Fig.3. To compare the registration with image Ii

as the reference, the DC map was computed between the deformed Ii, and all
other deformed images after IRG registration. The IRG registered tensors with
higher directional consistency compared to all reference-based registrations with
inconsistent performances varying according to the reference selection.
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Fig. 2. Standard deviation of FA and DC maps after (a) affine alignment, (b) reference-

based, and (c) group-wise DTI registration

Fig. 3. Average directional consistency values after 10 reference-based registrations

and the group-wise registration

The construction of an UF atlas was used to demonstrate the advantage of
the group-wise DTI registration. Whole brain white matter fiber tracts were
generated using the software “Trackvis” [19] from the registered DTI data. An
anatomical atlas provided in AFNI [20] was used to provide the ROIs of right
amygdala and medial prefrontal cortex (mPFC). The anatomical atlas was affine
aligned to the average of the deformed FA maps. The ROIs were diluted 2mm
along the boundary to overlap with the white matter tracts. The UF bundles
were extracted for each subject by selecting fibers passing both right amygdala
and mPFC. All points on the fiber tracks were projected to the image grid. The
number of points in each voxel was counted and the values in each voxel were
normalized to 0 to 1, where 0 means no fiber passing the voxel and 1 indicates this
voxel has the highest fiber density. We defined the fiber bundle to be the regions

Table 1. RMS of the standard deviation of the deformed FA maps after reference and

group-wise registration

method ref-1 ref-2 ref-3 ref-4 ref-5 ref-6 ref-7 ref-8 ref-9 ref-10 IRG

RMS .0933 .0955 .111 .108 .114 .115 .103 .108 .111 .108 .0889
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Fig. 4. Uncinate fasciculus atlas generated using group-wise and reference-based DTI

methods. (a) Amygdala and mPFC and the UF fibers from a single subject. (b) The

UF atlas built from group-wise registration. (c) The sagittal view of the UF atlas built

by (from left to right): affine alignment, reference-based registration, and group-wise

registration. The color represent the relative overlap of fiber bundles.

with the fiber density greater than 0.5. The fiber bundle atlas was computed by
averaging each binarized fiber bundle. To evaluate the fiber bundle atlas, the
relative overlap at each voxel x was computed: RO(x) = n(x)/N , where n(x)
is the number of subjects that have fibers at x, and N is the total number of
subjects. Fig.4 shows the UF atlas after affine, a typical reference-based and
IRG registration. The average overlaps of the UF bundles were 0.531, 0.616 and
0.632 after affine, reference-based and IRG methods, respectively.

4 Discussion

Overall, our results show that the IRG DTI registration provides better perfor-
mance in terms of smaller FA variation and higher tensor directional consistency
compared to reference-based methods under the same diffeomorphic registration
framework. Using the UF as an example, the group-wise registration provides
higher overlap of the deformed UF bundles, and therefore improves the construc-
tion of the fiber tract atlas.

Even though the unbiased group-wise DTI registration produces less error
than the pair-wise reference-based method, it is still difficult to match fiber tracts
across subjects due to the large variations and sometimes different topologies
of the same structure. Combining fiber bundle information in the registration
procedure may help to produce better fiber bundle alignment [21]. Since 2nd
order tensors have limitations in representing intra-voxel fiber crossings, tensor-
based registrations may not map the complex white matter structures accurately.
Higher order tensor registration [14] and registration of orientation distribution
functions [22] have the potential to overcome these difficulties.

Acknowledgment. This work was sponsored by the National Institute on Drug
Abuse, Intramural Research Program, National Institutes of Health.
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Abstract. A spectrum of brain-related disorders are nowadays known

to manifest themselves in degradation of the integrity and connectivity

of neural tracts in the white matter of the brain. Such damage tends to

affect the pattern of water diffusion in the white matter – the information

which can be quantified by diffusion MRI (dMRI). Unfortunately, prac-

tical implementation of dMRI still poses a number of challenges which

hamper its wide-spread integration into regular clinical practice. Chief

among these is the problem of long scanning times. In particular, in the

case of High Angular Resolution Diffusion Imaging (HARDI), the scan-

ning times are known to increase linearly with the number of diffusion-

encoding gradients. In this research, we use the theory of compressive

sampling (aka compressed sensing) to substantially reduce the number

of diffusion gradients without compromising the informational content of

HARDI signals. The experimental part of our study compares the pro-

posed method with a number of alternative approaches, and shows that

the former results in more accurate estimation of HARDI data in terms

of the mean squared error.

1 Introduction

The human brain consists of about 1011 nerve cells which can be further sub-
divided into about 1000 different cell types, a complexity that far exceeds that
of other organs of the body. An additional complexity is evident in the way in
which the component cells of the brain interconnect and function. In contrast
to other types of the cells, each neuron communicates with many target cells by
means of its peculiar protoplasmatic protrusion, called an axon. Moreover, ax-
ons with similar destinations tend to form bundles, known as neural fiber tracts.
Taken together, these fibers play a pivotal role in the determination of brain
connectivity, which is presently far from being completely understood. Conse-
quently, by reconstructing the pattern of connectivity of the neural tracts in both
healthy and diseased subjects, it is possible to obtain an abundance of valuable
diagnostic information that could be used for early diagnostics of brain-related
disorders, for assessing the damage caused to the brain by stroke, tumors or
injuries, as well as for planning and monitoring of neurosurgeries [1],[2]. In this
regard, diffusion MRI (dMRI) appears to be an unparalleled tool of diagnosis
imaging of the brain, as it is the only imaging modality which can “sense” the
local orientation of neural fibers tracts.

T. Jiang et al. (Eds.): MICCAI 2010, Part I, LNCS 6361, pp. 607–614, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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Diffusion tensor imaging (DTI) is the most widespread type of dMRI, which
describes the local diffusion of water molecules using a unimodal Gaussian model
[3],[4],[5]. Unfortunately, the performance of DTI is known to deteriorate con-
siderably at the spatial locations where neural tracts cross, touch upon each
other, or diverge [6],[7],[8],[9]. To overcome this intrinsic limitation of DTI, the
High Angular Resolution Diffusion Imaging (HARDI) technique has been pro-
posed [10],[8],[11],[12] which is capable of capturing multi-modal diffusion pat-
terns through sampling the corresponding diffusion signals over a spherical shell
in k-space.

The superiority of HARDI over DTI suggests the possibility of further im-
provement of the diagnostic value of dMRI [13]. Unfortunately, this superiority
comes at a significant price: HARDI requires using a substantially larger number
of diffusion-encoding gradients N , with a typical N being in the range between
60 and 100 (as compared to N ∈ [25, 30] in the case of DTI). As the total scan-
ning time increases linearly with N , HARDI-based analysis is currently deemed
to be “too slow” to be used in clinical applications involving children or patients
with dementia.

The above deficiency of HARDI can be overcome using the theory of com-
pressive sampling (aka compressed sensing) (CS)[14],[15],[16], which provides a
framework to recover HARDI signals from a much smaller number of measure-
ments as compared to the standard range of N . Formalizing such a reconstruction
approach constitutes the main contribution of this work. It should be noted that
there already exists a body of works in which the theory of CS has been used for
reconstruction of grayscale (i.e. T1, T2, PD) MR images from their sub-critical
samples in k-space [17],[18],[19]. The proposed method, on the other hand, is
different in that it applies the tools of CS in the diffusion domain (rather than
in the spatial domain), as is detailed in the sections that follow.

2 Compressed Sensing

A continuum of all possible orientations in IR3 can be identified with the points
of the unit sphere S2 := {u ∈ IR3 | ‖u‖2 = 1}. Let p = (x, y, z) be the spatial
coordinate of an arbitrary voxel within a volume of interest. Then, the diffusion
signal S(u) at p can be formally described as a real-valued function defined
over S2. In practical settings, the signal S(u) can only be measured along N
discrete orientations {uk}N

k=1. The most fundamental question in this regard has
always been: what is the minimum number of diffusion directions N required to
unambiguously represent the signal S in terms of its discrete values Sk?

A particularly important answer to the above question is offered by the theory
of CS. To summarize some fundamental results of the theory, we consider S to
be a member of a Hilbert space, endowed with a standard inner product. Since
diffusion measurements are linear, the discrete measurements Sk := S(uk) can
be expressed in the form of inner products Sk = 〈S, ϕjk

〉, with {ϕjk
}N

k=1 being
a subset of a sampling basis {ϕi}i∈I . Moreover, let {ψj}j∈J be another basis in
the signal space, such that any S can be expressed according to
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S(u) =
∑
j∈J

cj ψj(u), ∀u ∈ S2, (1)

where J denotes the set of indices over which the basis functions ψj are counted.
Note that, in a more general setup, the set {ψj}j∈J may be overcomplete, in
which case it becomes a frame. However, independently of whether it is a basis
or a frame, in what follows, the set {ψj}j∈J is assumed to be finite, with the
total number of its elements being equal to M .

Using the above definitions, we make the following two assumptions:

a) S is assumed to be sparsely representable by {ψj}j∈J , which implies that
the number K of non-zero coefficients cj in (1) is significantly less than M .

b) The bases {ϕi}i∈I and {ψj}j∈J are assumed to be incoherent, implying that
the value of μ = supi,j |〈ϕi(u), ψj(u)〉| is relatively small.

On Conditions (a) and (b), the theory of CS proves that an accurate approxima-
tion of S is possible from only O

(
μ2 log(M)K

)
of its measurements, as opposed

to O(M) in the case of standard sampling theory. Moreover, this approximation
is computable through solution of a convex optimization problem [14],[15],[16].

The above considerations suggest that the applicability of CS to HARDI de-
pends on the availability of a basis/frame {ψj}j∈J for which the assumptions
(a) and (b) above would be valid. Such a basis has been recently introduced in
[20], where it is called a basis of spherical ridgelets – the functions which have
been specifically designed to provide sparse representation of HARDI signals.
Moreover, as the energy of spherical ridgelets is distributed alongside the great
circles of S2, the ridgelets appear to be very incoherent with respect to the Dirac
sampling basis. All this makes spherical ridgelets an ideal candidate to be used
for CS-based recovery of HARDI signals, as it is demonstrated next.

3 Spherical Ridgelets

Spherical ridgelets are constructed using the fundamental principles of wavelet
theory. Let κρ(x) = exp{−ρ x (x+1)}, where ρ > 0 and x ≥ 0. Also, let κj(x) =
κρ(2−jx) be a scaled version of κρ, where j ∈ IN. Then, the Gaussian-Weierstrass
scaling function Kj,v : S2 → IR at resolution j ∈ IN and orientation v ∈ S2 is
given by

Kj,v(u) =
∞∑

n=0

2n + 1
4π

κj(n)Pn(u · v), ∀u ∈ S2 (2)

where Pn denotes the Legendre polynomial of order n and the dot stands for the
Euclidean inner product in IR3. Consequently, following [20], the semi-discrete
frame IF of spherical ridgelets can be defined as

IF :=
{
Ψj,v | v ∈ S2, j ∈ IN ∪ {−1}

}
, (3)

where

Ψj,v =
1
2π

{
R{K0,v} , if j = −1,

R{Kj+1,v −Kj,v} , if j ∈ IN
(4)
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with R standing for the Funk-Radon transform (FRT) [21]. Note that, for an
arbitrary j ∈ IN ∪ {−1} and v ∈ S2, the FRT of Kj,v(u) can be computed as

R{Kj,v}(u) =
∞∑

n=0

2n + 1
4π

λn κj(n)Pn(u · v), ∀u ∈ S2 (5)

where

λn =

{
2π(−1)n/2 1·3···(n−1)

2·4···n , if n is even
0, if n is odd.

(6)

The set IF in (3) is infinite-dimensional, and hence is not suitable for practical
computations. To define a discrete counterpart of IF, one has first to restrict the
values of the resolution index j to a finite set {−1, 0, 1, . . . , J}, where J defines
the highest level of “detectable” signal details. Additionally, the set of all possible
orientations v ∈ S2 of spherical ridgelets needs to be discretized as well. To find a
proper discretization scheme, we first note that the construction in (4) is dyadic,
which suggests that the bandwidth of spherical ridgelets increases proportionally
to 2j . Owing to the fact that the dimension of the space of spherical harmonics
of degree n is equal to (n + 1)2, it is reasonable to define the number of discrete
orientations to be a function of j. Specifically, let m0 be the smallest spherical
order resulting in κ0(m0) ≤ ε for some predefined 0 < ε � 1 (e.g. ε = 10−6).
Then, one can define the number of ridgelet orientations at resolution j to be
equal to Mj = (2j+1m0 + 1)2. Subsequently, for each Mj, let {vi,j}Mj

i=1 be a set
of Mj distinct points on S2. A finite-dimensional set of spherical ridgelets can
then be defined as

IFd =
J⋃

j=−1

{Ψj,vi,j}
Mj

i=1, (7)

where the subscript d stands for “discrete”. It should be emphasized that the
set IFd is finite, as it consists of a total of M =

∑J
j=−1(2

j+1m0 + 1)2 spherical
ridgelets.

Given a measurement set of N diffusion-encoding orientations UN := {uk}N
k=1,

one can use (4) and (5) to compute the values of the spherical ridgelets in IFd

over UN . The resulting vales can be then stored into an N ×M matrix A. Sub-
sequently, if c ∈ IRM is defined to be a (column) vector of ridgelet coefficients
and y := [S(u1), S(u2), . . . , S(uN )]T , then the measurement model can be for-
mally expressed as A c = y + e, where e is an error vector that accounts for both
measurement and model errors.

Assuming that ‖e‖2 ≤ η, an optimal estimate c should satisfy ‖A c− y‖2 ≤ η.
Unfortunately, since N < M , the above condition by itself falls short to define
an optimal c. However, if the coefficients c are known to be sparse w.r.t. IFd, then
the theory of CS states that a useful estimate of the representation coefficients
can be found by solving

c∗ = arg min
c
‖c‖1 subject to ‖A c− y‖2 ≤ η. (8)



Fast and Accurate Reconstruction of HARDI Data 611

Note that (8) is a convex optimization problem, whose solution can be found
using standard tools of optimization theory. In the present work, the problem
has been solved using the �1-magic software freely available at http://www.acm.
caltech.edu/l1magic/.

For the sake of comparison, we also estimate the representation coefficients
c by computing the minimum �2-norm solution satisfying ‖A c − y‖2 ≤ η. It is
important to point out that such solutions are typically not sparse, in which case
there are no a priori guarantees of optimality of resulting estimates. It will be
shown however that, in the case of spherical ridgelet analysis, the �2-solutions
appear to be quite informative. Note that the �2-estimates are attractive for they
admit a close form expression which is

c∗ = AT (AAT )−1 y. (9)

4 Results

To test the performance of the proposed method, HARDI data acquired from an
dMRI phantom [22] were used. Specifically, the data were acquired using 3 mm
isotropic acquisition over a square field-of-view of size 19.2 cm, b = 2000 s/mm2,
and 128 diffusion orientations, uniformly distributed over the sphere. (For more
details on the data acquisition setup see www.lnao.fr/spip.php?article107.)
The acquired HARDI signals were low-pass filtered using the regularized esti-
mation approach of [23] to suppress the effect of measurement noise. The signals
thus obtained were regarded as the original HARDI signals against which their
CS-based estimates were compared. In this work, normalized mean squared er-
ror (NMSE) has been used to assess the performance of different reconstruction
methods.

To simulate CS acquisition, the full set of 128 diffusion directions was reduced
to subsets of N = 16, 18, 20, . . . , 32 spherical points. These subsets were chosen in
such a way that their points covered S2 in a quasi-uniform manner (similarly to
the original coverage by 128 points). For each value of N , its associated sensing
matrix A was constructed with J = 1, ρ = 0.5 and m0 = 4. Subsequently,

Table 1. NMSE (±σ) obtained by different reconstruction methods

Spherical Ridgelets (SR) Spherical Harmonics (SH)

N �1-minimization �2-minimization �1-minimization �2-minimization

16 0.0148 ± 0.0045 0.0176 ± 0.0047 0.0883 ± 0.0329 0.5145 ± 0.0211

18 0.0116 ± 0.0042 0.0147 ± 0.0039 0.0646 ± 0.0304 0.4011 ± 0.0257

20 0.0107 ± 0.0032 0.0127 ± 0.0034 0.0440 ± 0.0183 0.2774 ± 0.0319

22 0.0085 ± 0.0031 0.0120 ± 0.0031 0.0326 ± 0.0138 0.1976 ± 0.0257

24 0.0083 ± 0.0030 0.0118 ± 0.0028 0.0257 ± 0.0097 0.1411 ± 0.0252

26 0.0077 ± 0.0023 0.0115 ± 0.0026 0.0195 ± 0.0071 0.1130 ± 0.0246

28 0.0069 ± 0.0018 0.0113 ± 0.0024 0.0158 ± 0.0045 0.0790 ± 0.0230

30 0.0067 ± 0.0016 0.0112 ± 0.0020 0.0146 ± 0.0037 0.0651 ± 0.0145

32 0.0066 ± 0.0015 0.0109 ± 0.0019 0.0121 ± 0.0033 0.0566 ± 0.0140
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Fig. 1. HARDI signals recovered by different reconstruction algorithms

the optimal ridgelet coefficients were computed using two different approaches,
namely by solving the minimum �1-norm problem (8) and using (9). (These two
estimates will be referred to below as SR-L1 and SR-L2, respectively.) Note
that, in the case of SR-L1, the value of η = 0.12 in (8) was found by trial and
error to result in the most accurate reconstruction in terms of NMSE. Finally,
the estimated ridgelet coefficients were used to evaluate their associated HARDI
signals at the points of the original data set according to (1), followed by the
computation of NMSE.

As an alternative to spherical ridgelets, the applicability of spherical harmon-
ics (SHs) to the problem of CS-based reconstruction of HARDI signals has been
investigated as well [12],[24]. To this end, the orthogonal set of SHs of orders
up to n = 8 inclusive was used to define the sensing matrix A. Note that, since
the diffusion signals are symmetric and real-valued, only the even-ordered SHs
have been employed. Analogously to the case of spherical ridgelets, the SH-based
reconstruction was carried out twice, viz. using both (8) and (9). The respective
estimates will be referred to below as SH-L1 and SH-L2, correspondingly.

Table 1 summarizes the values of NMSE (± one standard deviation) obtained
in the above experiments. Note that each value in the table has been computed by
averaging the results of 500 independent estimations. One can clearly see that the
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ridgelets-based �1-reconstruction (SR-L1) performs incomparably better than
SH-L1. Moreover, the SH-based approach is also outperformed by SR-L2, which
performs surprisingly well in the case of spherical ridgelet analysis (despite the
inability of �2-norm minimization to take advantage of the sparse nature of the
ridgelet coefficients). The results of Table 1 are also supported by Fig. 1 which
depicts a subset of the original HARDI signals together with their estimates
computed by the compared algorithms for different values of N .

5 Discussion and Conclusions

Central to the theory of compressed sensing is the notion of sparse representa-
tion. In particular, if a signal of interest is known to have a sparse representation
in the domain of a linear transform, then it can be accurately reconstructed from
a much smaller number of its discrete measurements, as it is required by the clas-
sical sampling theory. In the case of HARDI data analysis, the most frequently
used representation basis is that of spherical harmonics (SHs). Unfortunately,
SHs do not provide sparse representation of HARDI signals, which makes them
inappropriate for the use in CS-based estimation. The basis of spherical ridgelets,
on the other hand, can represent HARDI signals using a relatively small number
of representation coefficients. As demonstrated by Table 1, the above fact al-
lows one to reconstruct HARDI signals from as few as 20 of their measurements
with the reconstruction error being about 1%. This result suggests that the CS-
based acquisition of HARDI signals has a potential of substantially shortening
the scanning times in dMRI, which is known to be a major bottleneck in clinical
applications of this important tool of diagnostic imaging.
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Abstract. In this paper, a method is developed that reconstructs a high

resolution image from an arbitrary set of multi-slice 3D MR images with

a high in-plane resolution and a low through-plane resolution. Such im-

ages are often recorded to increase the efficiency of the acquisition. With

a model of the acquisition of MR images, which is improved compared to

previous super-resolution methods for MR images, a large system with

linear equations is obtained. With the conjugated gradient method and

this linear system, a high resolution image is reconstructed from MR

images of an object. Also, a new and efficient method to apply an affine

transformation to multi-dimensional images is presented. This method is

used to efficiently reconstruction the high resolution image from multi-

slice MR images with arbitrary orientations of the slices.

Keywords: Super-resolution, multi-slice imaging, reconstruction, con-

jugated gradients, affine transformation, multi-dimensional imaging.

1 Introduction

This paper describes how a high resolution isotropic 3D image can be recon-
structed from a series of multi-slice 3D MR images, in which the slice thickness is
substantially larger than the in plane resolution. Since this method improves the
resolution in all directions up to the in-plane resolution, it is a super-resolution
method. The motivation of this work is that multi slice images are often acquired
with anisotropic voxels. The slice thickness can be substantially higher than the
in-plane resolution in order to increase the Signal to Noise Ratio (SNR). As
will be shown, several of these multi-slice MR images, recorded with different
slice orientations, can be combined into a single, high resolution 3D image with
isotropic voxels. The advantage of multi slice images, compared to full 3D acqui-
sitions is that it is possible to interleave the acquisition of slices. That is, while
waiting for the (T1) relaxation of the magnetization of a slice, (a part of) the
k-space of various other slices can be excited and recorded. In general, when the
repetition time (TR) is limited by the T1 decay, it is possible to record multi
slice images significantly faster than full 3D images with the same resolution [1].

Previously, several attempts have been made to improve the resolution of MR
images. The methods of Peled et. al. [2] and Carmi et al. [3] try to improve the
in-plane resolution. The validity of such methods was questioned by Scheffler [4],
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since each in-plane shifted image acquires the same points in k-space, only intro-
ducing a linear phase shift in the k-space samples. This means that each of the
shifted images does contain the same information, except for measurement noise,
with no possibility to improve the resolution. A different method, presented by
Greenspan et al. [5], improves the resolution in the slice direction, i.e. the direc-
tion in which the different slices of a multi-slice MR image are recorded. Several
multi-slice MR images with different positions in the slice direction are com-
bined. This method is not limited to the original resolution as the acquisition in
the slice direction is not band limited. However, only MR images with identical
orientation can be combined. This limitation is partially removed by the method
of Shilling et al. [6], in which multi-slice MR images rotated around a common
frequency encoding axis are combined. It allows the reconstruction of high reso-
lution slices with iterative projection reconstruction algorithms. In their method
they state the projection as a linear system and solve the high resolution im-
age from the set of linear equations with iterative solvers that are also used in
Computed Tomography (CT) reconstructions.

In our work, the method of Shilling et al. [6] is extended to allow for any orien-
tation of the slices of the multi-slice MR images, i.e. the images do not need to be
rotated around a common frequency encoding axis. Furthermore, the projection
via matrix multiplication is reformulated as affine transformation, followed by
a filter operation, which reduces the number of computations substantially. Fi-
nally, the method presented in this paper uses the Conjugated Gradient method
to solve the large linear system in a low number of iterations.

2 Methods

2.1 Introduction

The acquisition of multiple MR images with the same contrast can be seen as
acquiring multiple samples from the same object. For each slice of a multi-slice
MR image, the MR acquisition records a part of the k-space of the object. With
the discrete Fourier transform, a projection of the object intensities in each slice
is reconstructed on a discrete grid. Since MR acquisitions record a limited part
of the k-space, the intensity at a grid point does not depend exclusively on the
intensity of the object at the location of the grid point, but a low-pass filter is
applied to the excited slice of the object before sampling the intensities at the
grid nodes. An alternative interpretation is that the intensity value of each voxel
of the MR image is obtained by multiplying a properly shifted version of a (3D)
sampling function with the object.

2.2 Model of the MRI Acquisition

Let o (no × 1) be a vector containing the intensities of the continuous object o
at the 3D grid points xm, m ∈ {1, . . . , no}, where xm is a coordinate in object
space. Let Sj (nSj × 1) be the samples of the jth ∈ {1, . . . , N} MR image Sj

at the grid nodes yl, l ∈ {1, . . . , nSj}, where yl is a coordinate in the space of
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the jth MR image, and let the measurement noise be described by ej (nSj × 1).
When the coordinates x and y are linked by a coordinate transform Tj, the
acquisition of the MR images can be modeled with:

S = Xo + e, (1)

where

S =
[
ST

1 . . . ST
N

]T
, X =

[
XT

1 . . . XT
N

]T
, e =

[
eT

1 . . .eT
N

]T
, (2)

and

Xj(l, m) = w(Tj(xm)− yl), (3)

where w is the sampling function. This sampling function is assumed to be
separable in MR- image coordinates, w(y) =

∏3
i=1 wi(yi), which can, without

loss of generality, be numbered 1,2, and 3 for the read, phase, and slice encoding
directions, respectively. The sampling function w is (implicitly) defined by the
MR image acquisition method. The in-plane sampling functions w1 and w2 are
defined by the rectangular part of k-space that is sampled and thus are Dirichlet,
or periodic sinc functions. For multi-slice MR images, w3 depends on the slice
selection excitation, which usually is either a (windowed) sinc or a Gaussian
shaped RF pulse. In our experiments, with windowed sinc slice excitation, w3

was modeled with a smoothed box function :

w3(y) =

⎧⎨⎩ 1 |y| ≤ 1
3

1
2 −

1
2 sin

(
3π(|y| − 1

2 )
)

1
3 < |y| < 2

3
0 2

3 ≤ |y|
(4)

Due to the aliasing caused by the slice selection function, it is easier to describe
the acquisition in image space (Eq. (1)), rather than in the k-space.

Note that, in this model, the transformation (Tj(x))2 is not necessarily just
a rotation or even only an affine transformation, but it might also contain other
deformations. For example, when the images are recorded with Echo Planar
Imaging (EPI), it might also describe displacements in the phase encoding di-
rection due to inhomogeneities of the main magnetic field.

2.3 Reconstruction of the Object

When the MR images S are acquired, the reconstruction of the object intensities
o can be stated as a regularized least squares problem:

ô = argmin
o

(Xo− S)T (Xo− S) + λoT Ko, (5)

where K specifies the regularization term, which will be explained below, and
λ is a scalar constant that scales the regularization. In general, the solution of
this regularized least squares problem is given by:

ô = (XT X + λK)−1XT S (6)
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2.4 Regularization

Regularization is a standard technique to solve under-determined or badly con-
ditioned problems [7]. The current problem is badly conditioned due to the high
resolution of the grid on which the object intensities are reconstructed. This
grid should contain all spatial frequencies present in the MR images. Thus, it
will most likely also contain spatial frequencies that are (almost) not sampled
by any of the MR images. As there is no information about these (high) spatial
frequencies, it is best to force the amplitude of them towards zero by adding the
power in the (high) frequencies to the minimization criterium. In this work, this
is achieved with the square of the discrete second derivative of the reconstructed
o:

oT Ko =
(

∂2o

∂x1
2

)2

+
(

∂2o

∂x2
2

)2

+
(

∂2o

∂x3
2

)2

. (7)

The strength of the regularization is controlled by the variable λ in Eq. (6).
Increasing λ increases the bias in the solution, while reducing the variance. A
good value for λ is a value that (approximately) minimizes the Root Mean Square
Error (RMSE).

For realistic image dimensions, the matrices in the general solution given in
Eq. (6) are too large to actually store, even as sparse matrices. Furthermore,
the solution of the linear system with QR or LU decomposition would consume
way to much computation time for any realistic size of images. Therefore, the
conjugated gradients method [8,9], which is an efficient iterative method to solve
linear systems, was used to obtain the solution.

2.5 Affine Transformation

It is possible to evaluate the matrix vector multiplications that are required for
the conjugated gradient method explicitly. However, this will require a large
amount of computation time. When the transform Tj is an affine transform, or
a subset of an affine transform, such as a combination of translation, scaling,
and rotation, the acquisition of the MR images can be reformulated as an affine
transform of the object o, followed by subsequent filter operations with the three
orthogonal sampling functions wi.

An affine transform of the initial coordinate x to the final coordinate y is
given by

y = Tx + C, (8)

where T (n× n) specifies the affine transformation matrix in n dimensions, and
C (n× 1) specifies the translation part of the transformation. Then, the affinely
transformed image õ of a continuous image o is given by

õ(x) = o(Tx + C). (9)

This transform of a continuous image specifies the ideal transform that we try
to approximate with the discretely sampled images. Different affine transforma-
tion methods exist. The most common methods interpolate the source image,
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with linear interpolation or (approximate) sinc interpolation. However, for multi-
dimensional images, a better transformation method is given below.

In order to properly evaluate the different transformation methods, both the
spatial and the frequency domain should be studied. This is easy since an affine
transform of an image also causes an affine transformation and a frequency
dependent phase shift in the frequency domain:

Õ(f) = O(fT−1)eifC , (10)

where O = F(o), Õ = F(õ) are the Fourier transformed o and õ, and f (1 × n)
is a position in the frequency domain. Obviously, the spatial transformations
induced by a transformation method should be as specified by the affine trans-
form. However, this is the case for all methods that are discussed and displayed
in Fig. 1, so it cannot be used for discrimination. Also, the magnitudes of the
spatial frequencies should not be modified by the transformation method. Linear
interpolation fails in this respect. An stronger discriminating feature is aliasing.
The energy in spatial frequencies of the source image that are aliased to different
(thus: wrong) spatial frequencies should be minimal. The aliasing in multi di-
mensional (n > 1) images might arise from three subtly different sources. First,
spatial frequencies which are below the Nyquist frequency in the continuous
source image o, might be transformed to above the Nyquist frequency in the
destination image õ. Secondly, spatial frequencies which are above the Nyquist
frequency in the source image o, might be transformed to below the Nyquist
frequency in the destination image õ. Thirdly, spatial frequencies that are above
the Nyquist frequency in both the continuous source and destination images
might alias to below the Nyquist frequency of the destination image due to the
sampling of this image.

The new transformation method proposed in this paper applies the affine
transform Tf efficiently by splitting it into a Set of SHear transformations (SSH).
The shear transformations T̃j, j ∈ {1, . . . , 2n} satisfy Tf =

∏2n
j=1 T̃j . Each T̃j

differs from the identity matrix only in row dj , so the image is only deformed
along the dth

j main axis, allowing efficient interpolation with a 1D low pass filter.
An optimal set of these T̃j can be constructed with:

– Initialize all T̃j to the (n + 1)× (n + 1) identity matrix.
– By computing the total cost of the transformations defined in the following

steps, search for the optimal permutation p of the numbers {1, . . . , n}.
– Initialize the remaining transform to the inverse transformation: R0 = T−1

f
– for j = 1 . . . n:

(T̃j)pj ,p1...j =
((

(Rj−1)p1...j ,p1...j

)−1
)

j,1...j
uj (11)

Rj = T̃jRj−1, (12)

– for j = n + 1 . . . 2n

(T̃j)pj−n,1...n+1 =
(
R−1

j−1

)
pj−n,1...n+1

(13)

Rj = T̃jRj−1. (14)
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Fig. 1. Elementary frequency cell (zero spatial frequency at center, Nyquist frequency

at edges) after rotating over 45 degrees with several methods. Colors: non constant

Blue indicates spectral distortions. white: First type of aliasing, Yellow: Second type

of aliasing, Purple: Third type of aliasing. Ideal transformation is Blue octagon and

black triangles in the corners. Subfigure (a) and (b) display the result of the linear

interpolator, scaled differently. Of the methods considered, linear interpolation is the

only that has significant spectral distortions. (c) Sinc interpolation with a 11 × 11

neighborhood. (d) Rotation when the transform is split in a set of shear transforms.

The length of the filters of (d), which is 15, was chosen such that the number of

computations was (approximately) equal to (c).

– Find the lowest up-sampling factors uj such that no distortion or aliasing
is present in the final image and derive the cutoff frequency of the low-pass
filter from the maximum frequency that needs to be transferred to the output
image.

See Fig. 1 for a comparison of this SSH method to linear interpolation and a
windowed sinc interpolation, when rotating a 2D image over 45 degrees. Note
that, for 2D images, with the same computational complexity, the quality of
the SSH method is substantially better than windowed sinc interpolation. When
transforming 3D instead of 2D images, this method requires only approximately
50% more computations per voxel, which compares favorably to sinc interpola-
tion where the number of computations is multiplied by the number of samples
in the windowed sinc function.

3 Experiments

Several datasets of a bird were recorded with a Bruker small animal scanner.
The resulting MR images were 192×192×32 with voxel dimensions 0.125mm×
0.125mm× 0.75mm. MR images in N = 36 different orientations were recorded
and the reconstructed volume spanned the whole head in a volume of 21mm×
21mm× 22mm with isotropic voxel dimensions 0.1mm× 0.1mm× 0.1mm.

As preprocessing step, the MR images were aligned by computing the required
translations from the projections of the MR images to the object space,

bj = XT
j Sj . (15)
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Since the images are assumed to have the same contrast, the optimal translation
between two images was computed with a mean square difference measure,

Δ̂j,k = arg min
Δj,k∈R3

∑
x

(bj(x)− bk(x + Δj,k))2 . (16)

The position of each image j was adjusted by 1/N
∑N

k=1 Δ̂j,k.
After the alignment of the images, the conjugated gradient method with affine

transformation with the SSH method was used to approximately solve Eq. (6).
In our implementation each iteration of the conjugated gradient method took
approximately 5m:35s of CPU time on one core of a Intel Core 2 Quad CPU @
3.0 GHz, with 8GB of RAM.

4 Results

One of the original MR images and the high resolution reconstructed image
are shown in Fig. 2. The 3D MR image is displayed in the read-phase, read-
slice, and phase-slice directions, which, for this image, coincide with the coronal,
sagittal and transversal directions in which the high resolution reconstructed
image is shown. Note the substantially lower resolution of the MR image in the

(a) coronal (b) sagittal (c) transversal

(d) coronal (e) sagittal (f) transversal

Fig. 2. (a), (b), and (c) show one of the 36 original MR images. (d), (e), and (f) show

the high resolution reconstructed image.
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slice direction, especially when compared to the high resolution reconstructed
image. Also, observe the factor 2 reduction of the noise standard deviation.
Furthermore, note the improved detail in the coronal views, which is due to the
reduced blurring in the slice direction.

The conjugated gradient method converged quickly. After 15 iterations the
update to o was approximately 0.001 of the magnitude of o, which is below
the noise magnitude, indicating that 15 iterations are sufficient. Note that this
number of iterations needed for convergence is substantially lower than the ap-
proximately 1000 iterations required by the methods in [6]. This is due to the
high rate of convergence of the Conjugated Gradient method.

5 Conclusion

In this paper, a method was developed by which a high resolution isotropic image
can be reconstructed from a set of anisotropic multi-slice MR images, recorded
with different slice orientations. In contrast to previous reconstruction methods,
this new method does not constrain the slice orientations. The reconstruction
method uses an improved model of the MR acquisition, but does not require
any prior knowledge about the imaged object. The high resolution image of the
object is accurately reconstructed by the conjugated gradient method in a small
number of iterations, substantially less than previous methods. The experiments
show that the quality of the reconstructed isotropic image is substantially better,
both in resolution and SNR, than any of the original MR images.
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Abstract. This work presents diffusion MR protocols that allow esti-

mation of axonal parameters like diameter and density in the live human

brain. Previous approaches demand very high field experimental systems

or suffer from long acquisition times and are therefore impractical for use

in clinical studies. We propose a method that significantly reduces scan

time by making use of the a-priori known fibre orientation in structures

with well defined single fibre (SF) organisation like the corpus callosum

(CC) and produces protocols that can be performed in under 25 minutes

on a standard clinical system. Results from a computer simulation exper-

iment show that our SF protocols can generate parameter estimates with

similar precision to previously proposed orientation invariant (OI) pro-

tocols. Furthermore, we acquire the 20 minute long SF protocol and the

1 hour long OI protocol in a scan/rescan study on two healthy subjects

and compare the axonal parameter maps from both protocols.

1 Introduction

Diffusion weighted imaging (DWI) is an MRI technique that is sensitive to the
random motion of water molecules and thus provides an insight into the mi-
crostructural properties of biological tissue. In recent years, numerous studies
have demonstrated the great potential of DWI measures for the investigation
of pathological and developmental changes of the human central nervous sys-
tem. One of the most commonly used DWI method is diffusion tensor imaging
(DTI) [1]. DTI allows the computation of useful indices, e.g., mean diffusivity
or anisotropy of diffusion in each voxel but those measures are unspecific to
individual microstructural characteristics.

Recently, Assaf et al[2] developed the AxCalibre model of cylindrical axons
with gamma distributed radii to estimate axon diameter distributions in white
matter tissue. The method is validated in in-vitro optic and sciatic nerve samples
and estimated parameters show good correlation with corresponding histology.
Barazany et al[3] applies the AxCalibre approach to image axon size distributions
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in the corpus callosum of live rat brain. However, scan times are long and the high
7T magnetic field and maximum gradient strength (400 mT/m) are impossible
to achieve on a live human scanners, that typically operate at 1.5-3T and can
achieve maximum gradient strength between 30-60 mT/m. Alexander et al[4]
demonstrates measurements of axon diameter and density in the live human
brain on a standard clinical scanner using a simplified AxCalibre model and
multi shell high angular resolution diffusion imaging (HARDI). The method
relies on an experiment design optimization [5] to achieve sensitivity without the
need of high gradient strengths and long acquisition times. The use of HARDI
permits orientation invariant (OI) estimation of microstructure parameters over
large areas of the brain with a range of different fibre orientations. However,
with scan time close to an hour this approach is still impractical for clinical
studies. Furthermore, with increasing scan time subjects are more likely to move
during the acquisition, which results in a loss of signal quality and decreases the
accuracy of parameter estimation.

Our aim in this study is to reduce total scan time to a clinical feasible maxi-
mum of 20-25 minutes while maintaining accuracy of the parameter estimation.
To attain the reduction we discard the requirement for orientational invariance
and focus on structures with known fibre orientation such as the corpus callo-
sum similar to earlier studies [2,3]. We modify the existing protocol optimization
framework [5] to incorporate this a-priori information about fibre organisation
and define single fibre (SF) protocols that measure only the diffusion signal
perpendicular and parallel to the known fibre orientation. We use computer
simulations to compare the SF and the OI approach and perform a scan/rescan
experiment on two healthy volunteers to investigate feasibility of estimating mi-
crostructural parameters in-vivo.

2 Methods

2.1 Tissue Model

As in Alexander et al[4], we model diffusion in a white matter voxel as a combi-
nation of water particles trapped inside three different compartments:

1. Intra-axonal water experiencing diffusion restricted inside cylindrical axons
with equal radius R as in [8]

2. Extra-axonal water that is hindered due to the presence of adjacent axons.
Diffusion is approximated by a diffusion tensor, with parallel diffusion coef-
ficent d‖ in the direction of the cylinders and symmetric diffusion d⊥ in the
perpendicular directions.

3. Water that experiences unhindered diffusion, e.g., in the cerebro-spinal fluid
(CSF), modeled by an isotropic Gaussian distribution of displacements with
diffusion coefficient dI .

To reduce the number of free parameters in the model, we express d⊥ by using
the tortuosity model of Szafer et al[9].
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The diffusion weighted MR signal is measured by the pulsed gradient spin
echo (PGSE) method, which has has the following free parameters: diffusion
sensitising gradient vector G of strength |G| and duration δ, and diffusion time
Δ. We combine the analytic expressions for the PGSE signal of each compart-
ment Si(G, δ, Δ) with i in 1, · · · , m to approximate the total signal S in each
voxel by:

S(G, δ, Δ) = S0

3∑
i=1

fiSi(G, δ, Δ) , (1)

where S0 is the MR signal with no diffusion weighting and fi is the volume
fraction of each tissue compartment with 0 ≤ fi ≤ 1 and

∑3
i=1 fi = 1.

2.2 Protocol Optimisation

The aim of this work is to use a model-based imaging approach in each voxel to fit
a set of MR signals acquired with different combinations of PGSE parameters to
the tissue model parameters. A minimum of 6 different diffusion MR signals are
required to estimate all model parameters but usually we acquire more signals
to overdetermine the solution and add noise control. We define a set of PGSE
parameters that acquires N different MR signals as protocol

P = {G1, δ1, Δ1 · · · , GN , δN , ΔN} . (2)

As mentioned above, the aim of the optimisation algorithm [5] is to find the
protocol P , that allows the most accurate estimation of the tissue model param-
eters under given hardware and time constraints. The Fisher information matrix
(FIM) provides a lower bound on the inverse covariance matrix of parameter
estimates, i.e., the P that maximizes the FIM will maximize the precision of
those estimates. We use the d-optimality criterion [6], which is defined as the
determinant of the inverse FIM of protocol P and tissue model parameters θ:

D(θ,P) = det[(JT ΩJ)−1] , (3)

where J is the N × 6 Jacobian matrix with the ijst element ∂S(Gi, δi, Δi)/∂θj .
In the original approach Ω = diag{1, · · · , 1}. Following [5], we use a stochastic
optimization algorithm [7] that returns P ′ with minimal D among all possible
P with respect to the given scanner hardware limits.

In the original approach, N is chosen to account for the acquisition time limit.
The acquisition is divided in M sets of different PGSE settings with gradient
directions in each set being fixed. However, in this approach a decrease of the
total number of acquisitions N must reduce the angular resolution of gradient
direction sampling, which will increase the uncertainty in fibre direction esti-
mates and thus tissue parameter measures. The OI approach also requires that
N and M are known so that for every combination of N and M the full op-
timization algorithm has to be performed. Furthermore this method does not
reward protocols that sample more important measurements more heavily.
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In this work we introduce the asymptotic SF protocol optimisation. We fo-
cus on specific structures with known fibre orientation like the CC. This avoids
the need for high angular resolution, which potentially dramatically reduces the
number of required measurements. As in [2,3], we constrain most measurements
in the protocol to have gradient direction perpendicular to the fibre bundles,
but we include one measurement in the parallel direction for the estimation of
diffusivity along the axons. We extend the algorithm to optimize M different
PGSE settings and include Ω = diag{w1, · · · , wM} with

∑M
m=1 wm = 1 in the

optimisation of Eq. 3. The weighting factors wm reflect how important each
measurement is, i.e. how often it should be sampled relative to the other mea-
surements. For any given N we can calculate the number of measurements for
each element of P by Nm = wmN , hence the resulting protocols are independent
of N .

2.3 Model Fitting

We use the three stage fitting algorithm as described by Alexander et al[4], to fit
the tissue model to the acquired MR signal in each voxel. We increase stability by
fixing d‖ to 1.7·10−9m2s−1 and dI is fixed to 3.0·10−9m2s−1[2,3,4]. The objective
function is defined as the maximum likelihood of model parameters given the
observed MR signals under Rician noise (σ = 0.05). An initial estimation is
found using a coarse grid search algorithm over a set of physiologically possible
parameters. Then a gradient descent algorithm further refines the parameter
estimates. Finally a Markov Chain Monte Carlo (MCMC) algorithm with a
burn-in of 2000, 50 samples at an interval of 200 provides posterior distributions
of the parameters f1, f2 and the axon radius r. An average over the MCMC
samples provides the final parameter estimates. We report the axon diameter
index a = 2r and the axon density index ρ = 4f1π

−1r−2.

3 Experiments and Results

We motivated our protocol optimization by the aim to produce protocols that
can be performed on a typical human scanner in a clinically feasible time. To
validate our approach, we generate optimized protocols for a clinical 3T Philips
Achieva scanner with a maximum gradient strength of |Gmax| = 60mT/m. We
use the asymptotic optimization to generate SF protocols that can be performed
in 20 minutes with a total number of acquisitions N = 90 (SF90). For comparison
with previous studies, we also generate an OI protocol using N = 360 (OI360)
and an SF protocol with the same number of acquisitions (SF360). The resulting
protocols are presented in table 1. For the SF90 and SF360 protocols we set M = 8
but only sequences with w > 0 are reported. The OI360 protocol optimisation
uses M = 4 and report the three unique PGSE parameter settings.

3.1 Simulations

We use the free diffusion simulation of Hall and Alexander[10], which performs
a Monte Carlo (MC) simulation of water particles in packed cylinders. We use
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Table 1. PGSE settings of SF90, SF360 and OI360 protocols. ⊥ and ‖ mark acquisitions

perpendicular and parallel to the fibre bundles.

(a) SF360 and SF90 protocols

Nm

Δ
[ms]

δ
[ms]

G
[mT/m]

b
[s/mm2]

70 18 0 0 0 0

72 17 33.0 14.5 36.8 550 ‖
38 10 22.4 15.9 60.0 1114 ⊥
45 11 29.3 22.8 60.0 2908 ⊥
68 17 48.0 26.6 43.7 3666 ⊥
67 17 40.5 34.0 60.0 8692 ⊥
360 90

(b) OI360 protocol

Nm

Δ
[ms]

δ
[ms]

G
[mT/m]

b
[s/mm2]

71 0 0 0 0

101 19.2 11.7 60.0 540

107 38.2 12.5 47.8 870

81 29.1 21.6 60.0 2634

360

the 44 synthetic white matter substrates from Alexander et al[4] with diameter
distributions and packing densities similar to previously reported histology stud-
ies. We perform the MC simulation with 50000 walkers and 20000 time steps for
each protocol. For each substrate we generate 10 sets of noise-free MR signals
and add Rician noise of σ = 0.05, resulting in total of 440 sets of noisy MR
signals. For each protocol we apply the model fitting procedure to the 440 sets
of MR signals and retrieve the tissue model parameters.

To compare the axon distributions with the estimated axon diameter index a
we have to take into consideration that the contribution of each axon to the MR
signal depends its volume and is proportional to the square of its diameter. As
in [4] we correlate the estimated axon diameter index a with the weighted axon
diameter average â = f̂ /

∫
p(α)α3dα, where p is the true distribution of axon

diameter α and f̂ is the intracellular volume fraction f̂ =
∫

p(α)α2dα.

3.2 MRI Experiment

The SF90 and OI360 protocols (see table 1) are implemented on a 3T Philips
Achieva scanner to test the clinical viability of the 20 minute SF90 protocol
and compare it to the three times longer OI360 protocol. Diffusion weighted
MR images of two healthy volunteers (male 32yo, female 25yo) are acquired
using a cardiac-gated EPI sequence with the following imaging parameters: 10
slices, slice thickness=5mm, in-plane resolution=128x128 (FOV=35x35mm2),
TR=7RR, TE=125ms/TE=100ms for SF90 and OI360 respectively. We position
the centre slice so that it is aligned with the mid-sagittal body of the CC to be
able to acquire DWI measurements perpendicular and parallel to the fibres of
the CC. SF90 acquisition is repeated twice on two separate days for each subject
to investigate the reproducibility of the estimated parameter maps.

3.3 Results

Figure 1 presents the results from fitting the model to the synthetic MC data
sets as described above. For all three protocols we plot the fitted axon diame-
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Fig. 1. Scatter plots of estimated tissue model parameters a and f1 (grey) and and

mean a and f1 over 10 replications (black) against true â and f̂ of the MC substrates

ter index a against â and the intra-cellular volume fraction f1 against the true
intra-cellular volume fraction f̂ for all 440 noisy sets of MR signals. We also
compute the mean over the 10 replications for each of the 44 unique substrates
and display them in the same plot. The bottom row of Fig.1 shows that all pro-
tocols estimated the volume fraction accurately with little variance. Further, all
protocols estimate larger a that agree with â. The estimated a varies arbitrarily
between 0− 2μm for â � 3μm. Thus smaller â can be distinguished from larger
ones but not accurately measured. This is because the limited maximal gradient
strength that does not attenuate the signal from water inside axons of diameter
< 2μm. Despite the limitation, the trends of a agree with the true values for â
and suggest that the index a is a useful discriminator of axon diameter distribu-
tions. SF360 estimates both indices more accurately than OI360 and variations
among the 10 estimates in each substrate are smaller. SF90 and OI360 appear to
have similiar accuracy and precision in estimating â and f̂ . This suggests that
we can reduceby a third by exploiting a-priori known fibre orientation while
maintaining similar quality of parameter estimates.

Figure 2 shows maps of a and ρ in the centre slice of the CC for all acqui-
sitions in two volunteers. From previous histological studies [11] we expected
low axon diameter and high density in the splenium and genu and higher axon
diameters with lower density in the body of the CC. As predicted by the MC
simulations (see also [4]), all protocols overestimated a because of the lack of
sensitivity to lower diameters. The high-low-high trend in a and low-high-low
trend of ρ can be observed in both subjects in OI360 results but are less apparent
in SF90 scans. The worst case is is SF90 of subject 1, which presents very noisy
parameter maps. This is likely to be caused by a misalignment with the true
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Fig. 2. Color coded parameter maps of a and ρ in the centre slice of the CC in two

subjects. Scan and rescan results for the SF90 are shown together with results from the

OI360 acquisition.

fibre direction of the CC and the gradient directions, which demonstrates the
sensitivity of the SF protocol to accurate positioning. Furthermore, all SF scans
consistently produce larger estimates of a than OI360. Variation in true fibre ori-
entation is again the likely explanation. Unlike the SF protocols, the OI protocol
can better compensate for this variation because of the high angular gradient
sampling. However, despite the limitations, the results of subject 2 demonstrate
reproducible estimates of a and ρ. This suggests that with accurate positioning,
the 20 minute SF90 protocol is able to produce comparable parameter maps to
OI360, which requires more than three times the scan time.

4 Conclusion

In this work we propose optimized diffusion MRI protocols that use the known fi-
bre orientation in specific structures like the CC and allow us to estimate indices
of axon diameter and density in the live human brain. We develop a new op-
timization algorithm that overcomes several limitations of previous approaches
and produces DWI protocols that can be acquired in under 20 minutes. While
previous protocols were too time consuming for clinical practise, the short ac-
quisition time of our protocols opens the possibility to be included in a variety
of studies. Experiments on synthetic data show that our protocols can provide
axon diameter and density indices with similar variance to those from longer
orientational invariant protocols. In-vivo scans on two healthy volunteers show
the potential of our method to produce parameter maps of axon diameter and
density that agree with the general histologic trend but also reveal the limita-
tions caused by misalignment and variation in fibre orientation compared to the
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longer OI protocol. If such protocols are to be used, great care must be taken to
align gradient directions with the fibre orientation. Future work aims to account
for uncertain or erroneous fibre orientation by incorporating some tolerance for
fibre orientation variation in the optimisation.
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Abstract. We present a novel technique for the tract-based statistical analysis of
diffusion imaging data. In our technique, we represent each white matter (WM)
tract as a tract probability map (TPM): a function mapping a point to its prob-
ability of belonging to the tract. We start by automatically clustering the tracts
identified in the brain via tractography into TPMs using a novel Gaussian process
framework. Then, each tract is modeled by the skeleton of its TPM, a medial rep-
resentation with a tubular or sheet-like geometry. The appropriate geometry for
each tract is implicitly inferred from the data instead of being selected a priori,
as is done by current tract-specific approaches. The TPM representation makes
it possible to average diffusion imaging based features along directions locally
perpendicular to the skeleton of each WM tract, increasing the sensitivity and
specificity of statistical analyses on the WM. Our framework therefore facili-
tates the automated analysis of WM tract bundles, and enables the quantification
and visualization of tract-based statistical differences between groups. We have
demonstrated the applicability of our framework by studying WM differences
between 34 schizophrenia patients and 24 healthy controls.

1 Introduction

Diffusion tensor imaging (DTI) has become of modality of choice for studying the
white matter (WM) pathology due to its unique in vivo characterization of WM mi-
crostructure [1]. A wide range of paradigms have been developed for studying group
differences between healthy subjects and a population with pathology using DTI. Of
these, the tract-based spatial statistics (TBSS) [2] made a break from voxel-wise tech-
niques by performing statistics on the skeletonization of the full WM1. This technique
has rapidly gained popularity for finding group differences in WM. However, TBSS
relies on a whole-brain approach disregarding anatomical specificity. Recently, tech-
niques tried to alleviate this problem by analysing WM tracts individually by repre-
senting each tract as a lower-dimensional structure, using tubular geometries [3,4,5] or
sheet-like parametrizations [6,7]. However, there is an issue in these tract-specific tech-
niques: the need to a priori choose between a tubular or a sheet-like representation of
the WM tracts which introduces an artificial bias as some fasciculi as inferior-fronto

1 In this work we follow the same definition of skeleton as in Smith et al. [2].
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occipital have a spreading structure which is not accurately represented by a tube and
the cingulum are tube-like and not well represented by a sheet.

In this paper, we propose a technique to perform tract-specific statistical analyses
overcoming the previously mentioned limitations. For this, we model each WM tract
as a function mapping any point in space to the probability of its belonging to such a
tract. This model is called a tract probability map (TPM) and can be robustly calculated
using a recently proposed mathematical framework for WM bundles based on Gaus-
sian processes (GPs) [8]. Within this framework, we develop a skeleton-based statisti-
cal analysis [2,6,7] technique for finding differences among populations. In developing
this technique, we present two contributions: first, a general approach for tract-based
statistical analysis which is not bound to a sheet-or-tube representation; and second,
the applicability of the mathematical framework for the segmentation of WM structures
presented by [8] for statistical analysis.

2 Computing Tract Probability Maps

The first step in developing our statistical analysis technique is the calculation of
tract probability maps for a set of WM tracts obtained from whole brain DTI-
tractography [9,8]. DTI-tractography is a technique to trace pathways followed by axons
in the WM, representing them as smooth three dimensional trajectories at super-voxel
resolution [1]. These trajectories provide the means to work on elements which are more
anatomically-oriented than isolated voxels and can be grouped into WM tracts like the
cingulum or the fornix. We show examples of TPMs for WM tracts in fig. 1.

In order to calculate TPMs for WM tracts from these trajectories while preserving
super-voxel resolution, we use a GP framework [8]. The advantages of this representa-
tion are two-fold: first, the TPMs calculated using GPs are continuous functions which
can be sampled at any desired resolution; second, being a parametrical representation
the GP framework allows us to work robustly on its parameter space instead of perform-
ing operations in image space. In the remainder of this section we detail the calculation
of TPM for a WM tract: we start by describing the representation of a trajectory within

(a) Arcuate Fasciculus
Left

(b) Inferio Fronto
Occipital Right

(c) Cingulum Right (d) Cortico-Spinal Tract
Right

Fig. 1. Population-averaged tract probability maps for four WM tracts. These maps are shown
over FA (a-b) and as iso-probability surfaces (c-d). The probability at each voxel is calculated
using eq. (2). Color code for fig. (c-d) is as follows, Blue: TPM(p) = .01, Yellow: TPM(p) =

.2, Red: TPM(p) = .6 .



Diffusion-Based Population Statistics Using Tract Probability Maps 633

(a) F1 (b) F2 (c) F3 (d) F4 (e)
∑

i
Fi
4

0

1

Fig. 2. Mean indicator function for four fiber tracts (a-d) and mean indicator function for the
bundle formed by averaging them according to our framework (e). Color code ranges from blue
when it is likely that a voxel belongs to the bundle of fibres to red when it does not belong.

the GP framework; next, we show how to go from the GP representation of a single
trajectory to the representation of a bundle of trajectories; and finally, using the GP
framework, we describe the calculation of the TPM for a bundle of trajectories.

We model each trajectoryF as a blurred indicator function y(·), such that if the three
dimensional point p belongs toF , the value of y(p) is 1 and it decays to 0 as p is further
away from F . Several examples of blurred indicator for a trajectory are shown in fig. 2
(a-d). Formulating the hypothesis that the least curved a blurred indicator function is
the better it represents a smooth trajectory, it is possible to model the indicator function
y(·) for a trajectory F as a GP [8]. Then, using the properties of the GPs, the value
of y(·) for a trajectory can be characterized at each point in space p as an univariate
Gaussian: y(p) ∼ G(y∗(p), σ2(p)). Particularly, the mean and the variance of this
univariate Gaussian are inferred from a sampling of F , f = {f1 . . . fN} ⊂ F :

y∗(p) = [Cf (p)]T C−1
ff 1 and σ2(p) = c(p,p)− Cf (p)T C−1

ff Cf (p) (1)

where [Cf (p)]i = [c(fi,p)]i, [Cff ]ij = [c(fi, fj)]ij , 1 = [1 . . . 1]T and

c(p,p′) := ψ(‖p− p′‖), ψ(r) =

{
2|r|3 − 3Rr2 + R3 r ≤ R

0 r > R
.

Once we have represented single trajectories as GPs, obtaining the representation for
a bundle of trajectories B = {F1, . . . ,FN} is straightforward: the fact that at each
point the value of the indicator function for each trajectory F , yF(p), has a univariate
Gaussian distribution, enables us to calculate the mean and covariance of the Gaussian
distribution characterizing the indicator function for B at a point p as [8]

y∗
B(p) =

1
N

N∑
i=1

y∗
F (p) and σB(p) =

1
N2

∑
F∈B

σ2
F (p).

The result of the combination of the indicator functions representing various trajectories
into a bundle is illustrated in fig. 2(e).

Finally, according to [8], the TPM for a WM tract formed by a bundle of trajectories
B is calculated using the GP framework as

TPM(p) := prob{p ∈ B} ∝ E[yB(p) = 1] =
1

2
√

π(1 + σ2
B(p))

, (2)
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where E[·] stands for the expected value of a random variable. Figure 1 illustrates the
tract probability map calculated from a GP for a bundle using color-coded surfaces and
probability maps overlaid on the FA image of the spatially normalized subject.

In the above, we have introduced our GP-based framework for representing white
matter fiber bundles and its two operations: combination of fibers into a bundle and cal-
culation of the TPM. These tools are fundamental to performing a tract-based statistical
analysis of the WM, which we develop in the next section.

3 Skeleton-Based WM Tract Analysis

Our statistical analysis framework is designed to help identify precise differences in
tracts. The algorithm to analyse a particular fibre bundle starts by generating its TPM
as in section 2. By construction, the TPM(·) function has a ridge (or valley) of high
probability at the centre of the tract that decays going outwards. Consequently, the main
idea is to find a representation of the tract as a sheet or a line and to project diffusivity
information on that representation. For this, we adapt the thinning algorithm of [2]
which is used extensively in recent literature. However, our work can be easily restated
using a different thinning algorithm. Then, we project a scalar diffusivity measure (e.g.
the FA) on the skeleton and perform group analysis on it. This process is shown in fig. 4.

Skeleton Calculation. The first step in the algorithm is to obtain the skeleton. For this,
we start by identifying the voxels contained in such a skeleton. We compute the centre
of gravity (CofG) of a sphere of radius r around the voxel p, S(p, r) ⊂ R3,

CofG(p; r) =

∫
q∈S(p,r) qTPM(q)dq∫
q∈S(p,r)

TPM(q)dq
. (3)

If the centre of gravity is sufficiently close to p, it is reasonable to assume that p is very
close the ridge or valley which we will call skeleton from now on. This is illustrated in
fig. 3(a) where p is a cross, S(p, r) a circle and the CofG(p, r) a square. Then, to select
a voxel in the skeleton, we start from each voxel that is sufficiently close to its centre
of gravity and move in a direction perpendicular to the skeleton until we reach a local
maximum. The voxels containing such a maximum are considered to be in the skeleton.

As we have seen previously, in order to extract the skeleton, we need to calculate
the direction that is perpendicular to it. If the voxels are sufficiently far away from it,
this direction is provided by the gradient of the TPM. This is due to the fact that the
probability of a voxel belonging to the underlying tract of the TPM decreases when
we move away from the skeleton. However, if we are on the skeleton, meaning on a
ridge or a valley, the gradient will have a 0 norm and no defined orientation. In these
cases it is reasonable to assume that the gradient changes more rapidly in the direction
perpendicular to the skeleton [10]. Thus, we take the eigenvector corresponding to the
largest eigenvalue of the Hessian of the TPM, as the direction perpendicular to the
skeleton. This is illustrated in fig. 3. Then, the direction perpendicular to the skeleton at
p is given by
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(a) TPM Centre of Gravity (b) Direction perpendicular
to the skeleton ( skel⊥(·) )

(c) Voxels projected to a point
in the skeleton

Fig. 3. Finding the direction perpendicular to the tract probability map skeleton. Fig.(a): the devi-
ation of the TPM’s centre of gravity (square) from the centre of a neighbourhood (cross) indicates
the distance from the skeleton. Fig.(b): when the voxel is far enough from the skeleton, the direc-
tion of the gradient (green) is perpendicular; when it is close enough, the gradient norm is close
to zero, in these cases the principal direction of the Hessian (blue) indicates the perpendicular
direction. Fig. (c): skeleton of a WM tract (blue) and the voxels which are closest to it.

skel⊥(p) :=

{
∇TPM(p)/‖∇TPM(p)‖ if ‖CofG(p; r)− p‖ > ε

e1

(
∇2 TPM(p)

)
if ‖CofG(p; r)− p‖ ≤ ε

. (4)

In this equation ε is taken to be a tenth of the voxel width and e1(M) is the eigenvector
corresponding to the largest eigenvalue of M , and ∇ and ∇2 are the gradient and the
Hessian operators. Moreover, due to the properties of our GP framework, the gradient
and Hessian of the TPM (eq. (2)) can be calculated analytically.

Finally, it is important to emphasize that this is just one technique to calculate the
skeleton. The statistical analysis algorithm is not dependent on it, but is general and can
be applied to any skeleton calculated from a TPM. Most of the ridge and valley calculation
algorithms are based on the gradient and Hessian of the analysed function [10], hence it
is possible to reformulate them in terms of the GP framework for white matter bundles.

Voxel Projections and Statistical Analysis. Having created the skeleton for a tract, we
project all the voxels within the thresholded TPM to their closest point on the skeleton.
This is achieved by starting at every voxel and following the direction perpendicular
to the skeleton at that voxel, calculated in eq. (4), until the skeleton is reached. Then,
we calculate the expected scalar diffusivity measure at every point of the skeleton. In
fig. 3(c), we show a point on the inferio-fronto occipital tract (IFO) skeleton in green and
the voxels in the image which are closest to it. The values of these voxels are projected
to the skeleton and averaged according to their probability of being in the bundle. This
procedure for the IFO and the fractional anisotropy (FA), is as follows: for each point
in the skeleton of IFO, s, we calculated the set of voxelsN (s) within the TPM having s
as the closest on the skeleton. This is done by following the direction perpendicular to
the skeleton calculated in the previous section. Then, the expected value of FA on each
skeleton voxel s, is the expectation of the value of the FA on N (s) projected to s:

EIFO
FA (s) =

∫
N (s) TPMIFO(p) FA(p)dp∫

N (s) TPMIFO(p)dp
(5)
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Starting from the 
population-averaged
tract probability map

It is skeletonized in order to 
have 2D (or 1D if it is tubular 

like the cingulum) 
representation of it

For each patient, the values of the FA(or
other quantity) around the tract are

projected to their closest point on the 
skeleton and averaged (with a weight

according to the tract probability map)

This produces two
populations of projected
functions on the skeleton,
one for patients and one 

for healthy subjects

Finally, voxel-wise analysis
is carried on at each 

voxel. In this case Mann-
Whitney’s U test.The red
areas have a p-value<.01 

Fig. 4. Skeleton-based tract-specific statistical analysis on a WM tract

Finally, for each voxel in the skeleton, we perform voxel-based analysis. In this case
we use the Mann-Whitney U test to find voxels where the distribution of the fractional
anisotropy or the axial or radial diffusivities among patients and controls is different,
and we report trends indicated by the analysed t-score.

4 Data

Whole-brain DWI datasets were acquired on 58 volunteers (35.60 ± 10.48 years, 28
Male, 24 healthy, 34 diagnosed with schizophrenia) on a Siemens Trio 3T scanner with
1.71× 1.71mm2 in-plane resolution, 2mm slice thickness. Six unweighed B0 images
and 64 diffusion weighted images (b=1000s/mm2) were acquired with non-collinear
diffusion sensitizing gradients.

Data Preparation. DTI images for each subject were computed and deformably regis-
tered, using DTI-DROID [11], to a DTI atlas [9]. Full brain tractography was performed
by seeding in sub-voxel resolution by taking every voxel with linear anisotropy higher
than .3, dividing it into 0.25 × 0.25 × 0.25mm3 sub-voxels and seeding from each
sub-voxel. On average, 10,000 fibre tracts where obtained for each subject.

Identification of WM Tracts. In order to identify white matter tracts, the cluster-
ing algorithm presented by [8] was applied to every subject individually. Population-
averaged tract probability maps for major tracts were obtained for each extracted white
matter tract: on both hemispheres the arcuate, inferio-fronto occipital, uncinate fasciculi
and cingulum bundle along with the fornix; also, the frontal and posterior forceps were
extracted. In order to perform the statistical analysis, we extracted the skeleton of each
population-averaged tract.

Statistical Analysis of Tracts. To characterize diffusion properties of the white mat-
ter structures, four scalar quantities derived from the diffusion tensors were used:
Fractional Anisotropy (FA) [1], axial diffusivity (λ‖ = λ1) and radial diffusivity
(λ⊥ = 1

2 (λ2 + λ3)). The FA measure was used due to its biological interpretation
as a measure of tract integrity and its popularity in the literature. We chose the other
two measures because there are several reports relating differences on axial and radial
diffusivity with differences in myelination and axonal calibre [12].
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(a) Left Fornix areas with
an increase of λ‖

(b) Left Fornix areas with
an increase of λ⊥

(c) Left arcuate fasciculus,
areas with a decrease of FA

(d) Right inferio-fronto
occipital fasciculus, areas

with an increase of λ‖

(e) Left inferio-fronto
occipital fasciculus, areas

with an increase of λ‖

(f) Left inferio-fronto
occipital fasciculus, areas
with an increase of λ⊥

(g) Left pyramidal tract,
areas with an increase of

λ‖

(h) Left pyramidal tract,
areas with an increase of

λ⊥

(i) Frontal forceps, areas
with a decrease of λ⊥

(j) Posterior forceps, areas
with an increase of FA

(k) Posterior forceps, areas
with an increase of λ⊥

Fig. 5. Differences between healthy and schizophrenic populations in tracts obtained using the
statistical analysis described in section 3. We show tracts where more than 10% of the number
of voxels in the whole skeleton, shown in blue, have a p-value < 0.001. For the regions defined
by these voxels, shown in red, we report trend of the difference between patients and controls
indicated by the t-statistic.

5 Results

Results of our skeleton-based analysis are shown in fig. 5. In this figure we show
tracts where more than 10% of the number of voxels in the whole skeleton have a
p-value< 0.001. For the regions of the tracts defined by these voxels, we report the
trend of the difference between patients and controls indicated by the t-statistic in order
to characterize the detected change in diffusivity properties . In the left fornix, there are
regions with an increase of λ‖ and λ⊥; the right arcuate fasciculus shows regions with
a decrease of FA; the right inferio-fronto occipital fasciculus shows areas of decreasing
λ‖; in the left inferio-fronto occipital fasciculus there are areas of increased axial and
λ⊥; the frontal forceps shows areas of decreased λ⊥; the posterior forceps has areas of
increased FA and λ⊥; and the left pyramidal tract exhibits an increase of λ‖ and λ⊥.

6 Discussion

Our results are in agreement with current literature. The predominance of differences
in tracts within the left frontal and temporal lobes has been reported by a recent meta-
analysis of DTI studies in schizophrenia [13] and a detailed survey [14]. Particularly, the
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decrease of the FA on the left arcuate fasciculus, shown by our analysis was reported
by [15]. Regarding our studies analysing FA changes in tract skeletons, we found an
increased FA in left IFO which was previously shown by [16] and decreased FA in
the fornix is consistent with [17]. This agreement with literature demonstrates that our
statistical analysis is suited for white matter studies, therefore encouraging us to carry
on with a more comprehensive study on larger databases.

Regarding the analyses of parallel (λ‖) and perpendicular (λ⊥) diffusivities, even
if recent work shows that these measures are easier to correlate with biologi-
cal changes [12], there are no studies in schizophrenia using DTI that consider
them [14,13]. However, our results agree with [13] in that the differences found are
predominantly in the temporal and frontal lobes of the left hemisphere. In future work,
we expect that an in-depth study of the differences in these quantities will shed some
light into the biological characteristics of white matter changes in schizophrenia.

Finally, the method presented is not bound to a single scalar diffusivity measure, it
is even generalizable to full-tensor studies as done, for instance, by [6]. Moreover, it is
possible to correlate these changes with age and cognitive benchmarks in order to better
analyse the relation between white matter changes and the different degrees of disease
progression.
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Axon Diameter Mapping in the Presence of
Orientation Dispersion with Diffusion MRI
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Abstract. Direct measurement of tissue microstructure with diffusion

MRI offers a new class of biomarkers, such as axon diameters, that give

more specific information about tissue than measures derived from dif-

fusion tensors. The existing techniques of this kind assume a single axon

orientation in the tissue model, which may be a reasonable approxima-

tion only for the most coherent brain white matter, such as the corpus

callosum. For most other areas, orientation dispersion is not negligible

and, if unaccounted for, leads to overestimation of the axon diameters,

prohibiting their accurate mapping over the whole brain. Here we propose

a new model that captures the effect of orientation dispersion explicitly.

An efficient numerical scheme is developed to enable the axon diameter

estimation by fitting the proposed model. Synthetic data experiments

demonstrate that the new model provides an axon diameter index that

is robust to the presence of orientation dispersion. Results on in vivo

human data show reduced axon diameter index and better agreement

with histology compared to previous methods suggesting improvements

in the axon diameter estimate.

1 Introduction

Diffusion MRI reveals tissue microstructure by measuring patterns of water dif-
fusion as influenced by the microscopic environment of the tissue. The most pop-
ular technique of this kind is the diffusion-tensor imaging (DTI) [1]. It provides
simple biomarkers, such as mean diffusivity (MD) and fractional anisotropy (FA),
that are effective at indicating major microstructural changes in tissue during
normal development or due to disease. However, a limitation of these biomarkers
is that they are inherently non-specific [2], e.g. changes in FA may be attributed
to changes in a combination of the underlying microstructure features, such as
axon density and diameter, and cannot isolate their individual contributions.
Direct measurement of these features can shed new light into development and
disease mechanisms by offering a new class of highly-specific biomarkers.

Previous work, e.g. [3,4,5,6,7], shows the feasibility of using diffusion MRI to
measure microstructure features directly in excised biological tissues as well as in
vivo. A particularly successful approach, exemplified by [3,4], is the model-based
strategy in which a geometric model of the microstructure of interest predicts the
MR signal from water diffusing within. In estimating axon diameters using this
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approach, the earlier attempts, e.g. [5,7], assume a single and known orientation
of axon in the tissue model. Alexander [6] demonstrates in simulation that it is
possible to estimate axon diameters of unknown orientation using a multi-shell
high angular resolution diffusion-weighted imaging (HARDI) protocol optimized
with realistic in vivo diffusivities and constraints typical of a clinical scanner.
Later work [8] gives promising results in both fixed monkey brains and live
human brains that show trends in the midsagittal corpus callosum (CC) and
cortico-spinal tract (CST) that we expect from histology.

The model in [8] simplifies real white matter (WM) in two important ways:
it assumes a single axon diameter rather than a distribution; it assumes all the
axons within single voxels have the same single orientation. The first simplifi-
cation means that the fitted model provides a single index (summary statistic)
of the axon diameter distribution rather than the full distribution. The index
correlates with the mean diameter weighted by volume so is still useful. The
second simplification holds for all previous methods of axon diameter estima-
tion [3,4,5,7] and limits estimates only to the most coherent structures, e.g. CC;
even there the assumption of coherent orientation is questionable. Most brain
WM has significant orientation dispersion. This leads to the overestimation of
the axon diameter index or distribution because axons oblique to the assumed
single orientation appear to have larger cross section, as shown in Fig. 2(a). The
limitation prevents the accurate mapping of their microstructure features over
the whole brain and casts doubt on estimates even from CC and CST.

Here we aim to ameliorate this limitation by introducing a new tissue model
that explicitly represents the dispersion in axon orientation. An efficient numeri-
cal scheme makes the proposed model feasible for axon diameter estimation. Ex-
perimental results demonstrate that the proposed model estimates axon diameter
indices from synthetic data and human brain data, and other microstructure fea-
tures, more accurately than previous ones. The rest of the paper is organized as
follows: Section 2 describes the proposed tissue model and its numerical implemen-
tation; Section 3 gives the experimental design and results; Section 4 summarizes
the contribution and discusses future work.

2 Tissue and Signal Model

The proposed model is based on the simplified version [6] of Assaf et al.’s compos-
ite hindered and restricted model of diffusion [4]. It models WM as a population
of cylindrical axons with a single radius and impermeable cell walls embedded in
a homogeneous medium as in [3,4,9,5,6,7]. To account for the CSF contribution
through the partial volume effect, an isotropic compartment is included as in [7].
The normalized MR signal A(G, Δ, δ) from the standard pulsed-gradient spin-
echo (PGSE) sequence, with gradient pulses of length δ, strength and direction
G, and separation Δ, can be written as

(1 − νiso)(νicAic(G, Δ, δ) + (1− νic)Aec(G, Δ, δ)) + νisoAiso(G, Δ, δ), (1)

where νiso ∈ [0, 1] is the volume fraction of the isotropic compartment, νic ∈ [0, 1]
the relative volume fraction of the intra-cellular compartment among WM, and
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Aic, Aec, and Aiso the normalized signals from the intra-cellular, extra-cellular
and isotropic compartments respectively.

Intra-Cellular Model. Let the distribution of axon orientation be ρ : S2 �→
R+, where ρ(n) = ρ(−n) and

∫
ρ(n) dn = 1. The intra-cellular signal is then

Aic(G, Δ, δ|ρ, R) =
∫

ρ(n)Acyl(G, Δ, δ|n, R) dn, (2)

where Acyl is the signal from water restricted by a cylinder of radius R and ori-
entation n for which we use the Gaussian phase distribution approximation [10],
as in [6].

Here we consider two models for ρ:

– The Delta model where ρ(n) is a δ-function, which reduces (2) to the form
of previous models in [4, 6].

– The Watson model where we model ρ with a Watson distribution [11] so
that

ρ(n) = f(n|μ, κ) = M(
1
2
,
3
2
, κ)−1eκ(μ·n)2 , (3)

where M is a confluent hypergeometric function, μ is the unit vector about
which the distribution is cylindrically symmetric, and κ, the concentration
parameter, controls the extent of orientation dispersion.

The Watson distribution is the spherical analog of the Gaussian distribution
with cylindrical symmetry. It allows us to capture the essential characteristics
of nonparallel axons with κ, the single extra parameter compared to the Delta
model. Although the general admissible values for κ range from −∞ to +∞, here
we constrain it to be strictly positive such that μ represents the mean orientation
of the distribution with larger κ corresponding to lower dispersion about μ.

Extra-Cellular Model. This compartment exhibits hindered diffusion and is
modeled with simple (Gaussian) anisotropic diffusion, such that Aec(G, Δ, δ) =
e−(Δ−δ/3)γ2δ2GT

DecG, where Dec is the (apparent) diffusion tensor of the com-
partment. We define Dec in terms of the distribution of axon orientation ρ as

Dec =
∫

ρ(n)Dh(n) dn, (4)

where Dh(n) is the diffusion tensor for axons with a single orientation n for
which we use the definition Dh(n) = (d − d⊥)nnT + d⊥I, with d⊥ being the
apparent diffusion coefficient perpendicular to axons and I being the identity
tensor, as in [4]. For the Delta model, Dec = Dh. For the Watson model, Dec =
(d′ − d′⊥)μμT + d′⊥I, where

d′ = d + (d− d⊥)
(

1
2
√

κDawsonF (
√

κ)
− 1

2κ
− 1

)
(5)

d′⊥ = d⊥ + (d− d⊥)
(

1
4κ
− 1

4
√

κDawsonF (
√

κ)
+

1
2

)
(6)

and DawsonF is the Dawson’s integral [12]. We use Szafer et al.’s tortuosity
model [13] and set d⊥ = d(1 − νic).
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Isotropic Model. The isotropic compartment does not depend on the distri-
bution of axon orientation and is modeled as a simple isotropic diffusion process
such that Aiso = e−(Δ−δ/3)γ2δ2‖G‖2D with D being the intrinsic diffusion coeffi-
cient of the compartment.

Numerical Implementation. The integral in (2) does not have a closed-
form analytic solution while brute-force numerical integration is prohibitively
expensive, up to 1000 times longer than computing the Delta model. To make
parameter estimation using the Watson model feasible, we express the Watson
distribution function by its spherical harmonic (SH) expansion which makes the
integral in (2) analytic leading to the following summation:

Aic =
∞∑
l=0

fl0(κ)

√
2l + 1

4π
Pl(q · μ)Gl(d, νic, R), (7)

where fl0(κ) is the spherical harmonic (SH) coefficient (order l and 0) of the
canonical Watson distribution f(n|μ = z, κ) and has a closed-form analytic ex-
pression for all l, Pl is the Legendre polynomial of order l, Gl is a real function,
nonzero only for even l, and can be calculated analytically. In the current imple-
mentation, the summation is truncated at l = 12 to give a good approximation
for κ up to 128. The implementation is orders of magnitude more efficient than
numerical integration, taking approximately only 50% longer than computing
the Delta model.

3 Experiments and Results

This section describes the synthetic and in vivo human data experiments and
results that compare the proposed Watson model to the Delta model in terms of
their ability to estimate axon diameters and other microstructure parameters.
The synthetic experiments compare the accuracy with which known tissue pa-
rameters can be recovered by each model while the in vivo experiments compare
each model’s performance in real human data.

Data Acquisition. In vivo imaging uses a clinical 3T Philips scanner to acquire
360 diffusion-weighted images of a healthy volunteer in about an hour with the
protocol in [8]. The protocol, determined via the optimization procedure in [6],
divides the measurements into 4 HARDI shells each with 90 gradient directions
and includes 4 b = 0 images. It uses sagittal echo-planar imaging with in-plane
resolution 128 × 128 with 1.8 × 1.8mm2 voxels and thickness 3.9mm, no gap,
resulting in white matter signal-to-noise (SNR) at b = 0 about 20.

Model Fitting. For both experiments, we fit the models to data with the
Rician Markov Chain Monte Carlo (MCMC) procedure in [6], after an initial
grid search and gradient descent to determine the maximum likelihood (ML)
estimates of the parameters. The MCMC procedure refines the ML estimates for
R and νic, for both models, and κ, for the Watson model, by computing their
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Fig. 1. The parameter estimates from the synthetic experiments using the Delta (top)

and Watson (bottom) models. The dotted lines indicate the true parameter values.

posterior distributions, the means of which provide the final estimates for these
parameters. Throughout, we fix d and D to their expected values in human in
vivo data, which are 1.7 and 3.0×10−9 m2s−1, respectively. The MCMC setting
is 40 samples at intervals of 200 iterations after a burn in of 2000 iterations.

Synthetic Experiments. We synthesize MR data from the proposed Watson
model using the imaging protocol of the human data described above and adds
synthetic Rician noise with σ = 0.05 to match the SNR of the human data.
The true model parameters are νic = 0.7, νiso = 0.2, R ∈ {1, 2, 5, 10}μm, and
κ ∈ {4, 8, 16, 32, 64}. We test 10 different orientations, uniformly distributed over
the sphere. For each parameter, we report the mean and standard deviation of
its 10 estimates over the different orientations.

Fig. 1 shows the recovered model parameters for both the Delta and Watson
models. The Delta model consistently overestimates the axon radius, as expected,
with the effect more pronounced for small radii and large orientation dispersion
(i.e., lower κ). It also consistently underestimates νic with increasing bias for
decreasing κ. The estimate for νiso is similarly biased downward except for the
largest value of R which is biased upward. For the very high κ values, 32 and
64, the bias in the estimation becomes negligible for all the parameters.

In contrast, the Watson model provides consistently more accurate estimates
for these parameters with just a few exceptions. It overestimates the smallest
value of R, making it indistinguishable from R = 2μm, but the overestimation is
slight, which does not prevent it from being distinguished from R = 5μm. The
model slightly underestimates the radius for some κ and R values but there is
no systematic pattern.

The Watson model also supports the direct estimation of orientation disper-
sion via κ, the results of which are shown in Fig. 2(b). The estimates are accurate
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Fig. 2. (a) The schematic illustration of the overestimation of axon diameters due to

orientation dispersion. (b) The estimated κ using the Watson model from the synthetic

experiments. The dotted lines indicate the true κ values. The numerics underneath the

x-axis indcate the polar angle value containing 95% of orientation variation in the

corresponding Watson distribution.

Delta

Watson

80Radius (10-6m) νic

Delta

Watson

0.70.4Intra-cellular VF νiso

Watson

Isotropic VF 0.350

Delta

Fig. 3. The parameter estimates for the midsagittal slice of CC using the Delta and

Watson models

for smaller κ values but become increasingly biased downward for higher κ. The
highest values, 32 and 64, are more difficult to distinguish.

In Vivo Human Brain Data Experiments. Here we fit each model to real
brain data. To avoid regions with fiber crossing, we compute the linearity and
planarity [14] maps of the best-fit diffusion tensor and select only the voxels with
high linearity, greater than 0.6, and low planarity, less than 0.2.

Fig. 3 shows the estimated parameters from both models in the midsagittal
slice of CC. The corresponding κ estimates are shown in Fig. 4 (bottom row
& middle column). The results agree strongly with the trends observed in the
synthetic experiments, i.e., for κ lower than 32, the Delta model overestimates
R and underestimates νic and νiso. They are also much more consistent with
histology [15] than results from the Delta model, i.e., axons have smaller radii,
are more densely packed (higher νic) and coherent (higher κ) in the genu and
splenium of CC than its midbody. Fig. 4 shows additional results of the estimates
of R from both models and the estimates of κ from the Watson model for two
lateral slices in addition to the full midsagittal slice. Besides confirming the trend
observed above, it shows that the estimates of κ in the genu and the splenium
of CC, as expected, are the highest for the whole brain.
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176κ

Watson

Watson

Delta

R 80

Fig. 4. The estimates of R for 3 sagittal slices using the Delta (top) and Watson

(middle) models, with the corresponding κ estimates (bottom) from the Watson model

4 Discussion

In this paper, we proposed a new white matter tissue model for the direct es-
timation of axon diameters and other microstructural features using diffusion
MRI. The proposed model advances the state-of-the-art by explicitly accounting
for the presence of orientation dispersion in axon bundles to mitigate the overes-
timation bias in estimating axon diameters. Synthetic experiments demonstrate
that, in the presence of orientation dispersion, models assuming a single orienta-
tion not only overestimates axon diameters but also underestimates intra-cellular
volume fractions and biases isotropic volume fractions. In contrast, the proposed
model can both estimate these key tissue parameters more accurately without
systematic bias and provide estimates to the extent of orientation dispersion.
Results from in vivo human data experiments agree strongly with the findings
from simulation, which suggests the orientation dispersion must be taken into
account even for the most coherent structures like CC and CST.

One possible limitation of the present approach is its use of the Watson distri-
bution to model the underlying orientation dispersion in brain data. For voxels
with significant spanning or bending axon bundles, the cylindrical symmetry of
the Watson distribution may prove overly simplistic and introduce potential bias
in estimating microstructural parameters. Future work will explore the use of
more complex orientation distributions, such as the Bingham distribution [11],
to model such effects.
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Abstract. High Angular Resolution Imaging (HARDI) can better explore the
complex micro-structure of white matter compared to Di�usion Tensor Imaging
(DTI). Orientation Distribution Function (ODF) in HARDI is used to describe the
probability of the fiber direction. There are two type definitions of the ODF, which
were respectively proposed in Q-Ball Imaging (QBI) and Di�usion Spectrum
Imaging (DSI). Some analytical reconstructions methods have been proposed to
estimate these two type of ODFs from single shell HARDI data. However they all
have some assumptions and intrinsic modeling errors. In this article, we propose,
almost without any assumption, a uniform analytical method to estimate these two
ODFs from DWI signals in q space, which is based on Spherical Polar Fourier
Expression (SPFE) of signals. The solution is analytical and is a linear transfor-
mation from the q-space signal to the ODF represented by Spherical Harmonics
(SH). It can naturally combines the DWI signals in di�erent Q-shells. Moreover
It can avoid the intrinsic Funk-Radon Transform (FRT) blurring error in QBI and
it does not need any assumption of the signals, such as the multiple tensor model
and mono�multi-exponential decay. We validate our method using synthetic data,
phantom data and real data. Our method works well in all experiments, especially
for the data with low SNR, low anisotropy and non-exponential decay.

1 Introduction

High Angular Resolution Di�usion Imaging (HARDI) is used to probe non-Gaussian
di�usion which represents more intricate micro-structure in the tissue. Orientation Dis-
tribution Function (ODF) [1,2] was proposed to describe the fiber directions. There are
two type of ODFs. One is denoted as �t, proposed using radial projection by Tuch in
QBI [1]. Another one is denoted as �w, proposed as the marginal probability of the
Ensemble Average Propagator (EAP) P(Rr) by Wedeen in DSI [2]. �t need to be nor-
malized and Z is the normalization factor. While �w is naturally normalized.

�t(r) �
1
Z

� �

0
P(Rr)dR �w(r) �

� �

0
P(Rr)R2dR �

1
2

� �

��
P(Rr)R2dR (1)

where R � Rr is the displacement in 3D space. It has been shown that �w is more
sharper than �t [2,3,4], which means �w is more discriminative for fiber detection.

T. Jiang et al. (Eds.): MICCAI 2010, Part I, LNCS 6361, pp. 648–656, 2010.
c� Springer-Verlag Berlin Heidelberg 2010
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Historically, Funk-Radon Transform (FRT) was used in QBI to estimate �t numeri-
cally [1] or analytically [5]. However, the intrinsic blurring e�ect of FRT can bring some
errors [1]. �w was firstly proposed in DSI and was estimated from numerical radial in-
tegral after the numerical Fourier Transform of the signals [2]. Most recently, several
similar analytical reconstruction methods were proposed separately to estimate �w from
single shell HARDI data [6,3,4]. Elegant analytical solutions were found [6,3,4] based
on the mono-exponential decay assumption [7] which gives the full information about
E(q) in the whole 3D q-space from the E(q0) only in a single shell. The approximated
EAP P̃(Rr) actually is the true EAP P(Rr) convolved by the Fourier transform of the
function E(q� u)q2�q2

0 E(q� u)�1 [7], where q � qu, q � �q�. It was shown surprisingly
that the estimated P̃(Rr) and �̃w are sharper than the real P(Rr) and �w [6,3,4] in the
synthetic data generated from mixture tensor model. However, since this surprising re-
sults come from the intrinsic modeling error from the unrealistic kernel smooth, it is
still not clear if the methods based on that assumption can work well in the complex
real data with non-exponential decay, low anisotropy and low SNR. Similarly with [7],
the authors in [3] extended mono-exponential model to multi-exponential model so that
it can reduce the modeling error and work for the data in multiple shells. However,
it is impractical because a nonlinear fitting is needed for every direction [7], su�ering
from limited samples, local minima, computational complexity, and an analytic solution
exists only when three b values satisfy an arithmetic process.

E(q) �
N�

n�0

L�
l�0

l�
m��l

an�l�mRn(�q�)Ym
l (u) Bn�l�m(q) � Rn(�q�)Ym

l (u) (2)

Rn(�q�) � �n(�) exp

�
�
�q�2

2�

�
L1�2

n (
�q�2

�
) �n(�) �

�
2

�3�2

n!
�(n � 3�2)

�1�2

(3)

In [8], the Spherical Polar Fourier Expression (SPFE) was proposed to sparsely repre-
sent E(q). See formulae (2),(3), where Ym

l (u) is the l order m degree Spherical Harmonic
(SH) basis and Rn(q) is the Gaussian-Laguerre polynomial basis. Since Bn�l�m(q) is the
orthonormal basis in R3, any type of E(q) could be represented by a linear combination
of �Bn�l�m�. After the coeÆcients �an�l�m� of the signal are estimated from a least square
fit or a nonlinear robust estimation [8], �t could be calculated through an inner product
of the coeÆcients an�l�m and a kernel bn�l�m. The problem in [8] is that bn�l�m needs to
be calculated numerically from FFT for every direction or calculated for one direction
then rotated by Wigner rotation matrix for other directions. That is ineÆcient and can
bring some numerical error, especially for these kernels which have some delta func-
tions inside, e.g. the kernels for �t and �w. And it can not provide an elegant analytical
parametrized result like analytical QBI [5].

In this paper, instead of adding strong assumptions for single shell data in [6,3,4]
and numerical solution using FFT and Wigner matrix in [8], we propose a uniform
analytical estimation method for �t and �w based on SPFE, which includes two linear
transformations from the coeÆcients �an�l�m� of E(q) to the coeÆcients �ct

l�m� of �t and
�cw

l�m� of �w represented by SHs. First we deduce the transformations for �t and �w.
Next, we perform the method in some non-exponential synthetic data and a challenging
phantom data. At last we test our methods in a real monkey data with several b values.
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2 Analytical ODF Estimation Based On SPF

It has been shown that the line integral of P(Rr) in R-space in (1) is equivalent to the
integral in the plane in q-space which is orthogonal to the line in R-space [3,4,6]. See
formula (4), where �b is the Laplace-Beltrami operator. Our contribution is to deduce
the elegant analytical solution for data in multiple shells based on these previous stud-
ies in [3,4,6,8]. Our analytical estimation methods almost do not need any assumption
about the signal. The only assumption we need is that the signal E(q) can be sparsely
represented by SPF in formula (2), which has been validated in [8].

�t(r) �
1
Z

��
�r

E(q)qÆ(rTu)dqdu �w(r) �
1

4�
�

1
8�2

��
�r

�bE(q)
q

Æ(rT u)dqdu (4)

2.1 Estimation of �t

Put the formula (2) into (4), we can easily get the solution.

�t(r) �
1
Z

��
�r

N�
n�0

L�
l�0

l�
m��l

an�l�mRn(q)Ym
l (u)qÆ(rTu)dqdu

�
1
Z

N�
n�0

L�
l�0

l�
m��l

an�l�m

�� 2�

0
Ym

l (u)Æ(rT u)du
� �� �

0
Rn(q)qdq

�

�
1
Z

N�
n�0

L�
l�0

l�
m��l

an�l�m

�
2�Pl(0)Ym

l (r)
� ��n(�)�

2

� �

0
exp(�

x
2

)L1�2
n (x)dx

�
(5)

�
2��
Z

	L
l�0

	l
m��l

�	N
n�0

	n
i�0 �n(�)

�
i�0�5

i

�
(�1)n�iPl(0)an�l�m

�
Ym

l (r) (6)

where Pl(0) is the Legendre polynomial of order l at 0. We get (5) because SH is the
eigenfunction of the FRT [5]. From (5) to (6), we use the property of Laguerre polyno-
mial [9]. Thus here we have a linear transformation from the coeÆcients an�l�m of E(q)
to the coeÆcients ct

l�m �
	N

n�0
	n

i�0 �n(�)
�
i�0�5

i

�
(�1)n�iPl(0)an�l�m. Please note that the au-

thor in [10] gave a solution for �t in page 122. Unfortunately, the integrand there was
wrong because of wrong volume element. Here we give the right analytical formulae.

We also give the result of the integral in a given disk �(r�C) whose radius is C. In the
formula (4), the integral �t(r) gives the same weight for E(q) with large q and for E(q)
with small q. However, if we just have several b values, the error of estimated signal
Ẽ(q) will be small if q is between these b values and will be large if q is large than all
b values. Thus if an approximate C is given, the disk integral �t(r�C) may have better
angular resolution than �t(r) [4]. Considering L1�2

n (x) �
	n

i�0 linxi, lin � (�1)i
�
n�0�5
n�i

�
1
i! ,

and the lower incomplete gamma function 	(i� x) �

 x

0
ti�1 exp(�t)dt, we have

�t(r�C) �
2��
Z

N�
n�0

L�
l�0

l�
m��l

an�l�m
�
Pl(0)Ym

l (r)
� ������� �n(�)

2

� C2��

0
exp(�

x
2

)L1�2
n (x)dx

�					
 (7)

�
2��
Z

�L
l�0

�l
m��l

��N
n�0

�n
i�0 �n(�)


n�0�5
n�i

�
(�2)i

i! �(i � 1� 0�5C2��)Pl(0)an�l�m

�
Ym

l (r)
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2.2 Estimation of �w

Similarly, put the formula (2) into (4) we can get the analytical expression for �w.

�w(r) �
1

4�
�

1
8�2

N�
n�0

L�
l�0

l�
m��l

an�l�m

�� 2�

0
�bYm

l (u)Æ(rT u)du
� �� �

0

Rn(q)
q

dq

�
(8)

However, we can not solve it just like what we did for �t, because the division by
q introduces a pole. It is a little hard to find the analytical solution for �w. And the
author in [10,8] did not give any solution for that. We solve this problem by considering
E(0) � 1, which is a true fact for any DWI data. That means, for our basis, the identity
E(0) �

	
n�l�m an�l�mRn(0)Ym

l (u) �
	

n�l�m an�l�m�n(�)Ym
l (u) � 1 holds for any u � S 2. Also

keep in mind that a constant addition inside �b does not change the final result. First we
consider the integral inside a given disk �(r�C), then we have

�w(r�C) �
1

4�
�

1
8�2

��
�(r�C)

�b(E(q) � E(0))
q

Æ(rT u)dqdu (9)

�
1

4�
�

1
8�2

N�
n�0

L�
l�0

l�
m��l

an�l�m

�� 2�

0
�b

�� C

0

Rn(q) � Rn(0)
q

dq

�
Ym

l (u)Æ(rT u)

�
du

�
1

4�
�

1
8�2

N�
n�0

L�
l�0

l�
m��l

an�l�m�n(�)

�� 2�

0
�bIn(C)Ym

l (r)Æ(rT u)du
�

(10)

Now there is no pole! For In(C) we have

In(C) �
� C

0

Rn(q) � Rn(0)
�n(�)q

dq (11)

�
1
2

� C2��

0

������exp(�x�2) � 1
x

�

n�
i�1

lin xi�1 exp(�
x
2

)

������� dx (12)

� 0
5(�	 � E1(0
5C2��) � log(0
5C2��))����������������������������������������������������������������������������������������������
I1
n (C)

� 0
5
n�

i�1

lin2i	(i� 0
5C2��)

����������������������������������������������������
I2
n (C)

(13)

where 	 � 0
5772 is the Euler–Mascheroni constant, E1(x) �

 �

x
exp(�t)

t dt is the expo-
nential integral. Although there are two parts in In(C) and I1

n(C) tends to infinity, it actu-
ally has no contribution for �w(r�C), because

	
n�l�m an�l�m�n(�)Ym

l (u)I1
n(C) � I1

n(C) is a
constant inside �b. Then considering Ym

l (u) is the eigenfunction of FRT and �b, we have
the analytical result for �w(r�C) and �w(r) � limC���w(r�C), cw

l�m � limC�� cw
l�m(C)

�w(r�C) �
1

4�
�

1
8�

�
n�l�m

an�l�m�n(�)
n�

i�1

lin2i	(i� 0
5C2��)Pl(0)(�l)(l � 1)Ym
l (r) (14)

cw
l�m(C) � 1�

4�
Æ(l)Æ(m) � 1

8�

�N
n�1

�n
i�1(�1)i�n(�)


n�0�5
n�i

�
2i

i! �(i� 0�5C2��)Pl(0)(�l)(l � 1)an�l�m (15)
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cw
l�m � 1�

4�
Æ(l)Æ(m) � 1

8�

	N
n�1

	n
i�1(�1)i�n(�)

�
n�0�5
n�i

�
2i

i Pl(0)(�l)(l � 1)an�l�m (16)

Now we have two estimations for the true �w. One is the integral in the whole plane,
which is similar with [3], and another one is the integral in a given disk, which is
similar with [4]. However, the mono-exponential decay model was assumed during the
disk in [4], and in the whole plane in [3], so that the integral for the radial integral
could be approximated just using the data in the q-circle. While our method does not
need any assumption on the data and it can handle the data in di�erent q-shells. Also
please note three important points in the formulae above. First, we get the the E1(x) in
the derivation process, but it is negligible. While in [4], it is indispensable. Second, the
formulae (15),(16) tell us that at least order 1 of Rn is needed to represent an anisotropic
ODF. That is true because if we just use the radial basis of order zero, it is easily seen
that the estimated signal is just an isotropic one, which means the estimated ODF is
isotropic. Thus we need to use at least two shells to get a reasonable results, although
our methods can be performed in single shell data. Third, since in (4) 1�q gives small
weight for E(q) with large q and large weight for E(q) with small q, that means the
error in large q may be negligible! Thus �w is more robust to estimation error of E(q).
How to choose an approximate C for �w(r�C) and �t(r�C) is still an open question out
of the scope of this paper. And since the improvement of �w(C) in [4] over �w in [3] is
very subtle [4], here we just consider the �w and �t, not �w(C), �t(C).

2.3 Implementation of Methods

The Implementation includes two steps. The first step is to estimate coeÆcients �an�l�m�

from the observed signals �E(qi)�. The second step is the uniform linear analytical so-
lution proposed above from �an�l�m� to �ct

l�m� and �cw
l�m�, which is actually independent

of the first step. The whole estimation error is just from the first step, since the second
step is analytical and compact. The authors in [8] suggested two methods to estimate
�an�l�m�, a linear least square (LS) fitting with regularization in the radial and spherical
parts, and a non-linear PDE based optimization process, which considers the Rician
noise. Here we choose the LS method in the first step since it is more faster. We sug-
gest that the Rician correction could be performed directly on the DWI data as a pre-
processing step [11,12], although in our experiments to perform an appropriate compar-
ison of methods we did not do any Rician correction. For LS estimation, let’s denote the
signal vector by E � [E(qi)]S�1, the coeÆcient vector by A � [an�l�m]0�5(L�1)(L�2)(N�1)�1 ,
the basis matrix by M � [Rn(q)Ym

l (u)]S�0�5(L�1)(L�2)(N�1) , and the spherical and radial
regularization diagonal matrices respectively by L � [l(l � 1)] and N � [n(n � 1)],
where �l and �n are the regularization terms for spherical and radial parts. Then A �

(MT M � �lLT L � �nNT N)MT E. For the second step, the linear transformations in (6),
(7), (15), (16) could be also implemented as a matrix multiplication. Thus the whole
process is just a linear matrix multiplication on the data vector E. Similarly with an-
alytical Q-ball in [5], the matrix is independent of E and needs to be calculated only
once for the whole data set. It makes our method extremely fast.

There are two important points to consider in the implementation. The first one is
about E(0). If we have a data set with several b values, b1, b2..., bN , we actually use
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N � 1 b values, considering E(0) � 1 for any u � S 2, which makes our estimation
more reasonable and accurate. Otherwise, there is no warranty for the estimated signal
Ẽ(0) � 1. For the single shell HARDI data, considering b � 0 can let us have 2 shells,
which will improve the results. The second one is how to determine the parameter �
in (3). The authors in [8] proposed a strategy for it, which is dependent on the radial
truncation order N. However, we think the parameter should be just dependent on the
signal, not on the basis order. Considering E(q) � exp(�4�2�q2D), b � 4�2�q2, and a
typical di�usion coeÆcient of D � 0
7�10�3mm2�s, a typical b-value b � 3000s�mm2,
we set � � 1

8�2��0�7�10�3 . If 4�2� � 1, then � is about 700. In our experiments we always
set � � 700.

3 Results on Synthetic, Phantom and Real Data

Synthetic data. Gaussian mixture model S (qs) �
	M

i�1 piGi(qs), Gi(qs) �

exp(�q2
su

T
s Dius) has been used widely to generate synthetic data [1,5,6,3,4]. However,

that could bias the results in favor of those methods assuming a model based on Gaus-
sian mixture or mono�multi-exponential decay. Here we choose both Gaussian mix-
ture and non-Gaussian mixture to validate our methods. We set S (q) �

	M
i�1 pi fi(q),

f (q) � G(q) for a Gaussian mixture model and f (q) � 0
5G(q) � 0
5T (q), T (q) �
exp(�

�
2q2uT Du) for a non-Gaussian mixture model. It could be proved that the �t

and �w of T (q) are the same as the ODFs of G(q), although they have di�erent
EAPs [9]. Thus we have the analytical ground truth of ODFs. We set the eigenval-
ues of D as [0
3� 0
3� 1
7] � 10�3mm2�s. and use the same way in [5] to add Rician
noise with S NR � 1�, which is defined as the ratio of maximal signal intensity of
S (0) � 1 to the standard deviation  of complex Gaussian noise. We test the meth-
ods with S NR � 10 in four configurations of ODF: one fiber or two orthogonal fibers
with Gaussian model or non-Gaussian model. For each configuration, data in 4 shells
(b�500,1000,2000,3000s�mm2) were generated. For the single shell methods, e.g. �t

estimation in [5] and �w estimation in [3], 4 order SH with � � 0
006 was chosen.
For the proposed methods, we use all data from four shells and chose N � 2, L � 4,
�n � 5e � 8, �l � 1e � 7, � � 700. We recorded the percentage of correct number of
detected ODF maximum and the mean of angular error over 1000 trails [5]. See table 1.
The experiments showed: 1) Normally, the �t is more robust to Rician noise than �w,
although �w is more sharper and has better angular resolution. It is the similar conclu-
sion in [4]. 2) our methods for �t and �t both got better performance than the methods
for single shell data in [5,3]. 3) the method in [3] will get worse results for the data with
non-exponential decay or much noise.

Phantom data. We performed our methods in a public phantom data with 3 shells,
where b-value is 650,1500,2000s�mm2 respectively. This data has been used in the fiber
cup contest in MICCAI 2009 to evaluate tracking methods [13]. The anisotropy of
this data is very low, which makes it hard to detect the fibers. We believe that it is
complex enough to evaluate di�erent reconstruction methods and tracking methods.
We compare our reconstruction method using 3 shells with the method in [3] using
one shell (b�2000), since the result of b�2000 is better than the results of b � 650
and 1500 for the method in [3]. For our method, we choose L � 4, �l � 5e � 8 in the
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Table 1. Each column shows the percentage of correct number of detected ODF maximum and
the mean of angular errors under an given ODF configuration. The left part and the right part
in each column are respectively for the estimation methods for �t and �w. The first four rows
recorded the performance of previous works on single shell data in [5] and in [3] with 81 gradient
directions on the hemisphere. The last row shows the results of our methods using 4 shells.

Fig. 1. First row: phantom data, from left to right: whole view of �w from our method, �w in
region A and B from our method, method in [3] with 	 � 0�006� 0�02� 0�03� 0�04; Second row:
real data result from our method, from left to right: whole view of �w, �w and �t in region C

spherical part and N � 1,�n � 1e�9 in the radial part [8]. To perform a fair comparison,
we choose L � 4 and tune the Laplacian regularization term � from 0.006 (suggested
in [5,3]) to 0.02, 0.03 and 0.04 for the method in [3]. Two crossing areas were chosen
for visualization using min-max normalization [1]. The results were shown in Fig. 1.
It shows that the method using 3 shells is better. The bad performance of the method
in [3] probably comes from the error of the mono-exponential assumption.

Real data. We perform our method in a real monkey data with 3 shells (b � 500, 1500,
3000 s�mm2), 30 directions at each b value, TE�TR�matrix�120ms�6000ms�128�128.
We set L � 4, N � 2, �l � 5e � 8, �n � 1e � 9 and show, in Fig. 1, the results of �t
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with min-max normalization and �w without normalization, since �w is sharper than
�t. The glyphs were colored by GFA calculated from ODF [1].

4 Conclusion

We proposed a uniform model-free fast robust analytical ODF reconstruction method
based on Spherical Polar Fourier (SPF) expression of the signal in q-space. The coeÆ-
cients of the two kinds of ODF under SH could be linearly and analytically calculated
from the coeÆcients of the signal under SPF. It is a linear transformation that is inde-
pendent of the data. This transformation matrix is just calculated only once for a whole
data set, which makes the method very fast. Our method can avoid the error from unre-
alistic assumptions and can naturally combine data from di�erent Q-shells. The results
in synthetic data phantom data and real data show that our method can get better results
compared with previous single shell HARDI methods in [5] and in [3], especially for
the data with low anisotropy, low SNR and non-exponential decay.
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Abstract. Recent advances in diffusion weighted MR imaging (dMRI) has made
it a tool of choice for investigating white matter abnormalities of the brain and
central nervous system. In this work, we design a system that detects abnormal
features (biomarkers) of first-episode schizophrenia patients and then classifies
them using these features. We use two different models of the dMRI data, namely,
spherical harmonics and the two-tensor model. The algorithm works by first com-
puting several diffusion measures from each model. An affine-invariant represen-
tation of each subject is then computed, thus avoiding the need for registration.
This representation is used within a kernel based feature selection algorithm to
determine the biomarkers that are statistically different between the two popu-
lations. Confirmation of how well these biomarkers identify each population is
obtained by using several classifiers such as, k-nearest neighbors, Parzen win-
dow classifier, and support vector machines to separate 21 first-episode patients
from 20 age-matched normal controls. Classification results using leave-many-
out cross-validation scheme are given for each representation. This algorithm is
a first step towards early detection of schizophrenia.

1 Introduction

A recent World Health Organization (WHO) report estimates that nearly 1% of the
population in the US is affected by schizophrenia. A growing body of evidence suggests
that early detection and treatment of schizophrenia (and many other brain disorders) is
critical in forming and predicting the course and outcome of the disorder [1]. The tools
proposed in this work can serve as a first step towards early detection of schizophrenia,
which may result in better prognosis and functional outcome. However, very little work
has been done on developing a biomarker that characterizes first-episode schizophrenia
or other subtle psychiatric disorders such as mild to moderate traumatic brain injury.

There has been some work done on classifying patients with chronic schizophre-
nia using structural MRI [2,3]. The authors in [4,5] use dimensionality reduction fol-
lowed by linear discriminant analysis for classification of patients with schizophrenia
(chronic). They, however, only use the fractional anisotropy (FA) images derived from
single tensor estimation as a discriminant feature. Another related work is by [6], where

T. Jiang et al. (Eds.): MICCAI 2010, Part I, LNCS 6361, pp. 657–665, 2010.
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the authors use kernel methods for discriminating schizophrenia patients. Recent work
has also focussed on using other imaging modalities, such as, functional MRI for detec-
tion of schizophrenia in prodromals [7]. The work presented in this paper, can provide
complementary anatomical input to such fMRI based techniques for early detection of
schizophrenia.

2 Our Contribution

In this work, we propose to design an algorithm that locates abnormal features of first-
episode (FE) schizophrenia patients. These features are then used within a classifica-
tion system to determine their potential use as biomarkers. While several studies have
reported statistical differences in diffusion measures for FE patients [8,9], to the best of
our knowledge, this is the first study that uses them to perform classification.

Existing work on distinguishing chronic schizophrenia used the single tensor model,
which is known to be inadequate in regions of crossing and branching - a common
configuration occurring throughout the brain [10]. In this work, we use a nonparametric
spherical harmonics model [11], as well as a parametric two-tensor model [12] to detect
biomarkers and perform classification of FE patients. These models can better capture
multi-fiber configurations and hence the abnormality in the underlying anatomy.

Another novel aspect in this work is the use of an affine invariant probabilistic rep-
resentation of each subject, which avoids the computational cost of registration along
with errors due to mis-registration. Finally, we use a kernel based method [13] to locate
statistically different diffusion measures (biomarkers) followed by classification of FE
patients using several classifiers, i.e., Parzen window classifier, k-nearest neighbor and
support vector machines.

3 Preliminaries

Schizophrenia is characterized by several symptoms such as, hallucinations, delusions,
suspiciousness, etc. These occur in varying degrees in people affected by this disorder.
Chronic schizophrenia typically implies that the patient has had psychotic symptoms
for atleast five years, while first-episode schizophrenics are patients who have recently
had their first psychotic episode (thus they are in the early stage of the development
of the disease). Thus, knowing anatomical biomarkers that can reliably distinguish FE
patients can be quite useful in determining the risk for prodromal subjects (subjects
with high risk of schizophrenia). Recent studies have shown that around 30-40% of
prodromals convert into schizophrenics. Thus, a tool that can provide the probability of
a prodromal subject being anatomically close to FE patients can be immensely useful
for early detection of schizophrenia. This is the main motivation behind our work.

In diffusion weighted imaging, image contrast is related to the strength of water
diffusion along fiber orientation. At each image voxel, diffusion is measured along a
set of distinct gradients, u1, ...,un ∈ S2 (on the unit sphere), producing the corre-
sponding signal, s = [ s1, ..., sn ]T ∈ Rn. One of the simplest model that explains
s is the diffusion tensor model, which provides a Gaussian estimate of the fiber ori-
entation [14]. However, this model is highly inadequate in regions of crossings and
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branching fibers [15]. To overcome this limitation, several other models have been pro-
posed [15,16,17,18,19,20,12]. Of these, we use the nonparametric spherical harmonics
(SH) model of computing the orientation distribution funciton (ODF) [11] and the un-
scented Kalman filter (UKF) based two-tensor model proposed in [12]. These choices
are guided by the following considerations: 1). The SH model can represent an arbitrary
number of fiber configurations at each voxel, 2). The UKF based two-tensor model es-
timation incorporates the correlation in diffusion of water along the fiber direction, and
thus is a robust estimator of the diffusion profile for one and two fiber configurations.

Spherical harmonics (SH): This nonparametric model is one of the popular techniques
for estimating the diffusion ODF [11]. The method works by first computing the coeffi-
cients of the spherical harmonic (SH) basis of order L that best fits the measured signal
and subsequent analytical computation to obtain the ODF. Given any bandlimited signal
s defined on the sphere, one can write it as an expansion in terms of the SH basis as:
si =

∑L
l=0

∑l
m=−l cl,mYl,m, where Yl,m are the spherical harmonic basis functions.

The above equations can be written as a linear system of equations and cl,m can be
computed using least squares.

Filtered Two-tensor (F2T): In this case, the signal is assumed to be generated by a
mixture of two Gaussians. Thus, si =

∑2
j=1 exp(−buT

i Djui), where {D1, D2} are
the two diffusion tensors estimated recursively within an unscented Kalman filtering
framework [12]. The method works by starting tractography from the seed region and
diffusion tensors are estimated as a fiber is traced from seed to termination. In this work,
we perform whole brain tractography, by seeding the entire brain (except CSF). Thus,
the F2T model is estimated at every voxel of the brain (in terms of the fibers that pass
through each voxel), apart from CSF.

4 Methods

Validation studies have indicated the correlation between de-myelination, cellular pack-
ing, and axonal damage to diffusion measures such as fractional anisotropy (FA), trace
(TR), norm (N), etc., [21,22]. Thus, these measures are potential candidates for be-
ing used as biomarkers. In the case of the SH model, generalized fractional anisotropy
(GFA) and generalized norm (GN) are the diffusion measures of interest [23]. These
measures can be readily computed in the SH basis as follows 1:

GFA =

√
n
∑n

i=1(Si − S̄)2

(n− 1)
∑n

i=1 S2
i

, GN =‖ c ‖2, with S = [S1S2...Sn],

where S is the estimated signal using the SH model, c = [c1c2...] are the coefficients
in the SH basis, and n is the number of samples. GFA captures the anisotropy of the
signal, while GN measures the “size” or amount of diffusion. Note that, these measures
are typically used for ODF’s, but given the linear relation between the signal and the
ODF in the SH basis [11], the measures computed above are equivalent (upto a linear
transformation) to those computed for ODF’s. Computing these measures directly for
the signal avoids computation of the ODF.

1 The acquired scanner signal is denoted by s, while the estimated signal is denoted by S.
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The F2T model allows for computation of a different set of orthogonal diffusion mea-
sures such as the FA, Mode (MD) and norm (N) [24]. These measures capture different
(orthogonal) aspects of the shape of the tensor. Thus, FA measures the anisotropy while
norm captures the amount of diffusion. Mode distinguishes between planar, ellipsoidal
and spherical shapes. Given, a diffusion tensor D, these measures can be computed as
follows:

N =‖ D ‖, FA =
√

3D̃√
2 ‖ D ‖

, MD = 3
√

6

∣∣∣∣∣
(

D̃

‖ D̃ ‖

)∣∣∣∣∣ , D̃ = D − 1
3
tr(D)I

where, |.| denotes the determinant, tr(.) is the trace, I is the identity matrix and ‖ . ‖
denotes the frobenius norm of a matrix. These measures can be computed for each
tensor, and thus six features are obtained.

4.1 Affine Invariant Representation

The next step in our algorithm is computing an affine invariant representation, i.e., a
representation that does not change even if an affine transformation is applied to the
underlying data. We achieve this by computing a probability density function (PDF)
of each diffusion measure defined above. A nonparametric estimate of the PDF can be

computed using the following expression [25]: p(z) = 1
Mh

∑M
i=1 G

(
z−I(x)

h

)
, z ∈

{Range of I}, where I(x) is a scalar value at spatial location x, M is the number of
data points, G is a Gaussian kernel and h denotes the bandwidth of the kernel. Notice
that, the spatial position x is arbitrary and applying an affine transformation to it does
not change the PDF.

For each of the diffusion measures discussed earlier, we compute a PDF from values
estimated throughout the brain. Thus, for the SH model, an affine invariant representa-
tion of a subject is given by: Psh = [pgfa pgn], where pgfa and pgn are the PDF’s of the
GFA and GN respectively. The PDF’s are computed at nb bins, and thus Psh is an nb×2
matrix. Similarly, for the F2T model, we compute PDF’s for all the 6 diffusion measures
to obtain a probabilistic representation Pf2t = [pfa1 pmd1 pn1 pfa2 pmd2 pn2 ] of each
subject (nb × 6 matrix).

4.2 Biomarker Detection and Classification

Once a PDF of each diffusion measure is computed for each subject, the goal is to de-
termine, which of these measures characterize FE patients. Since each PDF is a high
(nb) dimensional vector, appropriate methods have to be used. As such, we will use
the kernel based method of [13] for statistical hypothesis testing. This method has sev-
eral advantages, chief among them are : a) It can be used with high dimensional data
without sacrificing robustness and accuracy. b) The data need not necessarily lie in a
Euclidean vector space, i.e., any type of data with an appropriate kernel can be used. c)
This method computes statistical differences without any assumption on the distribution
from which the samples are drawn (the popular t-test assumes a Gaussian distribution
for the samples in each population). Thus, subtle differences can be captured using the
kernel based method.

This method tests the hypothesis of two distributions being equal p = q. The test
statistic used is the maximum mean discrepancy (MMD) between the two samples. Let
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F be a class of functions f : X → R and p, q be probability distributions (with domain
X ), then MMD is defined as: MMD[F , p, q] = supf∈F (Ex∼p[f(x)]− Ey∼q[f(y)]) ,
where E represents the expected value. Computing MMD involves, mapping the data to
a reproducing kernel Hilbert space (RKHS) and computing the inner product (between
high dimensional features) in this space using an appropriate kernel (Gaussian in our
case). If MMD is greater than a certain threshold, the null hypothesis (p = q) is rejected.
The hypothesis threshold is selected based on significance level α, typically set to 0.05.

We will use this kernel method for feature selection (biomarker detection). Thus, in
the case of F2T model, each of the PDF’s pi ∈ Pf2t is tested, and the ones which are
statistically different are used for classification. Classification involves learning a func-
tion that minimizes a particular metric so as to best separate the groups in the training
data set. Several classifiers have been proposed in the literature. We will use three pop-
ular ones: Parzen window classifier [26], k-nearest neighbor [27] and support vector
machines (SVM) [28]. A typical way to ensure robustness to overfitting for any clas-
sifier is to perform a leave-many-out cross validation. In this technique, a certain per-
centage of the available data are randomly selected (without replacement) for training
the classifier. Testing is then performed on the remaining data and classification error
computed. This process is repeated several thousand times and the overall performance
of the classifier is computed in terms of its sensitivity and specificity.

Briefly, the entire algorithm can be summarized as follows:

Algorithm 1. Biomarker detection and classification

1: Compute diffusion measures and their PDF’s for each subject to obtain Psh, Pf2t.
2: Randomly select x% of the subjects for training the classifier C. This process is repeated to

obtain M training data sets {Ti}M
i=1.

3: For each training data set Ti, use the kernel based hypothesis testing method [13] to find
the PDF’s pb ∈ Psh or pb ∈ Pf2t which are statistically different. This is the biomarker
detection part of the algorithm.

4: Train the classifier C on the training data set Ti using the selected features pb (PDF’s).
5: Test the classifier on the remaining data (corresponding to Ti) and compute correct detection

rate and false positives.
6: Perform steps (3)-(5) for all training data sets {T1..., TM} and compute the overall sensitivity

and specificity of the classifier.

In step 3 above, a counter (corresponding to each diffusion measure) is incremented
each time a diffusion measure is selected as statistically different. Thus the measure that
best characterizes a given population will be chosen frequently, thereby indicating its
potential use as a biomarker.

5 Results

We applied the above algorithm for detecting biomarkers of FE schizophrenia patients.
The data set consisted of 21 FE patients (17 males, 4 females, average age: 21.21±4.56
years) and 20 normal controls (15 males, 5 females, average age: 22.47 ± 3.48 years)
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Table 1. Classification accuracy for SH and F2T models

SH model F2T model
Classifier 40% 60% 80% 98% 40% 60% 80% 98%

Sp Se Sp Se Sp Se Sp Se Sp Se Sp Se Sp Se Sp Se
knn 0.71 0.72 0.76 0.76 0.78 0.77 0.80 0.78 0.83 0.82 0.85 0.85 0.85 0.85 0.85 0.86

SVM 0.70 0.69 0.75 0.71 0.77 0.73 0.77 0.77 0.79 0.78 0.83 0.80 0.84 0.81 0.85 0.81
PWC 0.70 0.72 0.70 0.76 0.68 0.79 0.70 0.84 0.79 0.77 0.80 0.85 0.82 0.87 0.80 0.85

with the p-value for age being 0.34. dMRI data was acquired for all the subjects on
a 3T scanner with 51 gradient encoding directions and 8 baseline images. The spatial
resolution was 1.66× 1.66× 1.7mm3 with a b-value of 900.

The SH model was estimated throughout the brain, while F2T model estimation was
done in terms of whole brain tractography [12]. Thus, F2T was not estimated in CSF
areas, where no fiber tracts exist. Estimation of both these models was done for all 41
subjects and the proposed algorithm was applied as described before (Algorithm 1).

For the SH model, the generalized norm (GN) was consistently chosen as the biomar-
ker by the kernel hypothesis testing method [13] for all the training data sets. The reason
is evident from the plots of PDF’s of all subjects (see Figure 1). In the case of F2T
model, norm of the two tensors (N1, N2) were the distinguishing features that separated
the two groups. No differences in FA or mode were observed. Thus, for both the models,
a measure of the “amount of diffusion” was chosen as the biomarker that characterized
FE patients, i.e., overall diffusivity in FE patients is higher than NC. Biologically, this
implies that, in the FE patients there is demyelination of the axons or lower density of

GFA GN

N1 N2
Fig. 1. PDF’s of diffusion measures for 21 FE patients (red) and 20 NC (blue). Top row: GFA and
GN are shown, but only GN was chosen as biomarker for the SH model. Bottom: Norms of both
the tensors in F2T model show significant difference between the groups.
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cellular packing, allowing for more diffusion of water. Another point to note, as evident
in Figure 1, is that the tensor norms (N1, N2) measure the diffusivity, which is higher
for FE patients, while the signal norm (GN) is lower for FE patients. This is because,
higher diffusivity D implies lower signal S : S(ui) = S0 exp(−bD(ui)).

Table 1 gives the sensitivity (Se) and specificity (Sp) of each of the classifier’s (for
both models) with different number of samples (x = {40%, 60%, 80%, 98%}) in the
training data set. For each x, 10000 training data sets were randomly generated from
the original data and testing was done on the remaining samples. This method of cross-
validation is a very good estimator of the generalization property of any classifier [29].

For the k-nearest neighbor (knn) classifier, we used 6 nearest neighbors, with cosine
of the angle between the PDF’s as a measure of similarity (the PDF’s can be thought of
as nb dimensional vectors). In the case of SVM and Parzen window classifier (PWC),
the kernel width was chosen so as to minimize the error during training.

In general, the k-nearest neighbor (knn) classifier gave the best performance for this
data set. Also, the F2T model performed much better in terms of the classification ac-
curacy than the SH model. Notice that, the performance of knn is close to optimal even
when only 60% of the data is used in the training data set. Combining the features from
both the models did not improve the performance of any classifier.

6 Discussion and Application

In this work, we proposed a system for detecting biomarkers of FE schizophrenia patients
using two representations; spherical harmonics and two-tensor. The effectiveness of using
these biomarkers to characterize FE patients was obtained by testing their classification
accuracy (85% specificity and 86% sensitivity). Future application involves using these
biomarkers to determine the probability of a prodromal subject being at risk of developing
schizophrenia. This can be easily done by computing P̂ = [pn1 , pn2 ] for a prodromal
subject and then using a nonparametric density estimator to compute the probability of P̂
being a FE patient. This will be the focus of our future work. Thus, the proposed method
can be of great clinical significance for early detection of schizophrenia.
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Abstract. This paper presents a novel white matter fibre tractography approach 
using average curves of probabilistic fibre tracking measures. We compute “rep-
resentative” curves from the original probabilistic curve-set using two different 
averaging methods. These typical curves overcome a number of the limitations of 
deterministic and probabilistic approaches. They produce strong connections to 
every anatomically distinct fibre tract from a seed point and also convey important 
information about the underlying probability distribution. A new clustering algo-
rithm is employed to separate fibres into branches before applying averaging 
methods. The performance of the technique is verified on a wide range of seed 
points using a phantom dataset and an in vivo dataset. 

1   Introduction 

Fibre tractography using diffusion tensor magnetic resonance imaging (DT-MRI) is a 
promising method for reconstructing the pathways of white matter fasciculi in the 
human brain noninvasively. A variety of algorithms have been proposed aiming to 
generate fibre-tract trajectories [1-5]. Generally these algorithms can be categorised 
into two main types, deterministic and probabilistic. Deterministic approaches are 
capable of creating anatomically reliable reconstructions of major white matter tracts. 
However, they do not correctly deal with branching of white matter tracts as such 
techniques produce only one path per seed point and there is no measure describing 
the confidence or uncertainty of the reconstructed trajectories. Probabilistic tractogra-
phy algorithms have been developed to overcome these shortcomings. 

The aim of probabilistic tracking methods is to provide a natural approach for model-
ling uncertainty and generate multiple curves originating from a seed point. Probabilistic 
methods have also been developed to resolve fibre crossings at the intravoxel level [6] 
and these methods allow branching of white matter tracts. However, the deterministic 
tractography approaches have several advantages over probabilistic tractography for 
some applications such as neurosurgery. Firstly, visualization of the deterministic 
streamline trajectories is similar to the expected in vivo white matter fibre tracts, 
whereas the output of probabilistic methods is a connectivity map, which is not a single 
well-defined trajectory, but rather a spatial distribution. These connectivity maps con-
tain dense 3D volumes of potential connectivities, which cannot be easily inspected. 
The determination of a connectivity map is also a time-consuming process and requires 
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large amounts of memory. Connectivity maps derived using frequency of connection 
methods demonstrate high frequency connections close to the seed point and low fre-
quency connections at distance from the seed point. This can lead to difficulty in inter-
preting tracking results, because the derived connection probabilities are not comparable 
at different distances from the seed point [7]. The connectivity maps from probabilistic 
tractography are no more than an indication of the number of times that a range of tra-
jectories pass through a voxel from the seed point. The aim of any tractography algo-
rithm is to reconstruct tracts that accurately correlate with the underlying white matter 
pathways. Secondly, output tracts from probabilistic methods can leak into unexpected 
regions producing incorrect white matter connections [8]. 

In this study, we present a novel fibre tractography algorithm using average curves of 
the output of a probabilistic method, which overcomes a number of the limitations of 
deterministic and probabilistic tractography techniques described above. The perform-
ance of the algorithm has been evaluated using images of a phantom and an in vivo data. 

2   Methodology 

We generate a number of tracts from a seed point based on a probabilistic algorithm; 
we then divide the curves into two sections, forward and backward from the seed 
point, then each of the two sets of curves are separated further using a clustering algo-
rithm to find all branch sets. Curves that are very short/long compared to the average 
arc-length of curves of each branch and curve branches with small number of tracts 
are deleted from the set. Finally the average curves methods were applied for each set 
of branched curves from the seed point and the resultant curves concatenated. The 
tractography algorithm connecting the above steps is described in Algorithm 1.  Fig-
ure 1 illustrates the concept of our method with the example of a seed point from the 
phantom data using random walk curves and mean averaging. 

We investigated the use of three probabilistic algorithms (a wild bootstrapping [5], 
a Bayesian [4] and a Random walk [3]) in this work. Two pair-wise distances between 
curves  γ  and γ  were implemented for clustering and median averaging algorithms: 

1. The Hausdorff distance:  H γ , γ max H γ , γ , H γ , γ ,   (1) 

where    γ , γ max  min ,      (2) 

 
 

 
 
 
 
 
 
 
 

Fig. 1. Overview of the framework of our tractography method (a) Seed point, (b) probabilistic 
tracking from the seed point, (c) forward and backward tracks, (d) clustered branches, (e) 
branches after pre-processing and (f) average curves 

(a) (b) (c) 

(b) (b) (f) (d) (e) 
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2. The average closest distance: G γ , γ mean G γ , γ , G γ , γ , (3) 

where G γ , γ mean  min                       (4) 

Here, we define the mathematical framework for representing and averaging probabil-

istic fibre tracking curves in . Let Γ be a set of  probabilistic fibre tracking 

curves from a seed point, where each curve γ  is defined by a set of  ordered points 

in 3 dimensions, represented by a   matrix. Γ γ ,   1 i N, γ , , Here ,  denotes the set of all n m 
matrices. 

2.1   Clustering 

We developed a distance based divisive hierarchical clustering scheme that uses vari-
ous curve distance metrics to find all branches. The fibre tracking algorithm and the  
 

Algorithm 1. The tractography algorithm. 

Given a DTI volume, a probabilistic method and predefined parameters:  for  
branching and r, t, c for pre-processing. 
1. Using a given probabilistic tracking method, generate N tracts as a set of curves Γ 

from a seed point.  
2. Divide the curves Γ based on their direction forward and backward from the seed 

point. Γ γ , 1 i N, γ  ,  and Γ γ , 1 i N, γ  ,  , 

where k k k 1 

3. Define the branch sets Γ ,  , p 1 … P and Γ ,  , q 1 … Q for Γ  and Γ  , 

using the clustering algorithm (threshold l), where P and Q are the number of 
branches.  Γ , γ , , 1 i N ,   γ , , , , ∑ N , N and Γ , γ , , 1 i N ,   γ , , , , ∑ N , N  

4. Pre-processing 

a. Delete branch set if number of curves in branch   %   

b. Delete curves in every branch set if the arc-length of the curve < t% or >c% of 
the average arc-length of the curves in the branch c. Output: Γ γ , 1 i N , γ  , ,    b 1, … , B, where  ∑ N N and B P Q 

5. Estimate average curve  γ  for each branch set Γ  and concatenate each result-

ing average curve γ  giving output γ  from seed point s. 
6. Repeat from step 1 for a new seed point. 
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separation at the seed point provides a set Γ  , k 1 or 2 of 3D curves γ . Given a 
pair-wise distance d and a fibre γ , d is computed between γ  and γ  for all γ  in Γ , j  i. A similarity matrix  is defined which organizes the pair-wise distances d be-
tween each pair of curves.�Matrix  is then used in a classical divisive hierarchical 
clustering algorithm, described by the following steps. 

1) Clustering algorithms begins with all the curves as a single cluster. 
2) Select the maximum value in the D and find the corresponding curves γ  and γ .  
3) Divide the curves γ , i c1, c2, into two clusters, one  related to γ  and the 

other related to γ  using a measure  d γ , γ , d γ , γ .  

Repeat steps 2 and 3 for every cluster and successively divide the curves into a hierar-
chy of smaller and smaller clusters until the maximum value  , where  is a thresh-
old to be chosen. 

2.2   Average Curves 

We consider a representative curve from a given collection of curves in space as the 
average curve of the collection. Clearly the representative curve needs to be as close 
as possible to all curves in the collection. This can be achieved by ensuring that the 
average curve is that which minimises the difference from all the other curves. Two 
types of average measures are implemented for this work. 

Mean Curve: The mean curve is calculated using an arc-length re-parameterisation 
method, which re-parameterises the curves by placing a high number of points at 
equal arc-length steps on each curve. In our implementation, we used a parameter for 
deciding the constant arc-length step based on the average arc-length of the set of 
curves in the branch to reparameterize the curves. We consider the collection of 
parametric curves as being an independent realization of a probabilistic process   
that has mean  . A random curve from the population may then be 
expressed as  

Γ t  μ t  ε t                                                     (5) 

where ε t  are independent and 0. For non parametrical estimation of 

the overall mean function μ t , we use the least squares estimate of μ, which is ob-

tained by averaging the data values separately at each parameter value t.  

μ t   ∑ x t ,    i 1,2, … Max                         (6) 

where µ ,  , p t  is the number of curves involved in the calculation and 
 is the maximum number of points placed in the reparameterization process. 

Median Curve: The median curve is selected from the collection as the curve which 
differs least from all other curves. This is computationally easier than constructing a 

new curve. We use the matrix of pair-wise distances D, described in section 2.1, to 
identify the best curve(s) from the set of likely curves in the branch-set. We use a 
hierarchical algorithm to find the median curve with the following steps.  
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1) Select the maximum value in the D and find the correspondent curves γ  and γ . 
2) Remove the two curves γ  and γ  from the set. 
3) Repeat steps 1 and 2 for every remaining curve-set and successively remove the 

curves into a hierarchy of smaller and smaller numbers of curves until one or two 
curves remain in the set. 

If the number of resultant curves is two, the mean curve approach described above is 
applied to the resultant curves to produce a single curve. 

2.3   Data Acquisition 

Diffusion-weighted data were acquired from a physical phantom [9] on a 3T MRI 
system with 3x3x3 mm3 voxel resolution, b value=1500 s/mm2 and 64 diffusion direc-
tions. We applied the average curves algorithm to the phantom data, using three prob-
abilistic tracking methods, described above, from 16 pre-defined seed positions with 
1000 iterations. The same fibre structures were then extracted using the FACT [2] 
deterministic algorithm using the same parameters.  

Quantitative Error Analysis: The ground truth curves γ  is the ideal trajectory and γ   the resultant curves using the average curves method of most probable branches 
and FACT method from the 16 seed points of the phantom data. The two most prob-
able branches from the forward and backward curve sets are selected from the set of 
different branches from the seed point as that containing the highest number of 
curves. Performance measures ( ) were calculated using the average closest distance G  from γ  to γ , and the Hausdorff distance H  from γ  to γ .  

Diffusion weighted images were acquired from a healthy human on a 1.5 Tesla 
scanner with 64 diffusion encoding gradients and a b-value of 1000 s/mm2 (2x2x2 
mm3 voxels). Random trajectories were initiated from a seed point in the corpus cal-
losum and two points in the right/left internal capsule using Bayesian and wild boot-
strapping probabilistic methods respectively. 

3   Results 

Figure 2 shows the typical results of average curves of the most probable branches for 
each seed point of the phantom data. The average curve results are consistent with the 
ground truth except where some paths meet crossing regions. A comparison of our 
method with an implementation of the FACT deterministic method using the same 
seed points showed that our algorithm is more robust in the presence of complex 
pathways. The FACT trajectories show unusual tract behaviour, sharp bends and 
loops, while the average curve trajectories generally did not. The lengths of the result-
ing FACT tracking curves were also smaller than the average curve lengths. 

Table 1 presents mean and standard deviation values for the performance measures 
(ξ) for the 16 pre-defined seed points of the phantom data. The average curve methods 
are more accurate than the streamline tracking methods with significantly lower errors. 
The mean curve results are considerably lower than the results of the two distance me-
dian curves. Here we used asymmetric measures to estimate the error, in order to avoid 
accumulation of errors due to early stopping curves or mis-directed paths. 
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Table 1. The performance measures (ξ) in mm (F -FACT method, D-Distance, A-Average 
closest distance, H-Hausdorff distance, W-Wild bootstrap, B-Bayesian, R-Random Walk). 

D 
F 

Mean curve Median Curve(A) Median Curve(H) 

W B R W B R W B R 

A 
6.25 
±7.6 

 

2.82 
±1.3 

 

2.95 
±1.6 

3.18 
±1.9 

3.08 
±0.8 

 

3.31 
±1.6 

3.67 
±2.1 

3.51 
±2.1 

 

3.96 
±1.6 

4.08 
±2.9 

H  17.6 
±27.8 

8.75 
±8.3 

9.74 
±8.2 

11.07 
±10.1 

8.73 
±7.6 

11.04 
±10.2 

13.04 
±11.4 

11.07 
±11.1 

11.08 
±11.1 

14.63 
±14.1 

  
 

 
 

 
 

 
 
 
 
 
 
 
 

Fig. 2. (a) Ground truth and seed points and results of (b) FACT (c) mean and (d) median 
curves (A) of wild bootstrapping and (e) mean and (f) median curves (A) of Bayesian tracking 

The desired results observed from performing clustering of the corpus callosum 
(Figure 3) are its division into anatomic regions according to the fibre projections. 
Mean and median curves of the clusters show representative connections from the 
seed point to different regions. Using more than one seed point will increase the num-
ber of branches and average curves. However, we have illustrated the results using a 
single seed point in order to provide a clear view of the average curves and to sim-
plify the evaluation.  

 
 
 
 

 
 
 

Fig. 3. Tractography results using Bayesian probabilistic tracking from a seed point in the 
corpus callosum (a) Forward and backward tracts (b) clustered tracts (c) mean curves (d) me-
dian curves (A) 

(a) (b) (c) 

(d) (e) (f) 

(a) (b) (c) (d) 



672 N. Ratnarajah et al. 

 
 
 
 
 
 
 
 
 

 
 

Fig. 4. Tractography results using wild bootstrap tracking obtained from a seed point placed in 
the cortico-spinal tract. (a), (c) Clustered trajectories and (b), (d) mean curves. (a), (b) front 
view and (c), (d) lateral view. 

 
 

 
 
 
 
 
 
 
 
 

Fig. 5. Tractography results using wild bootstrap tracking obtained from a seed point placed in 
the left/right cortico-spinal tract from a front view. (a) Clustered trajectories, (b) mean curves, 
(c) mean curves of branches which contain more than 20% of the total number of generated 
curves and (d) mean curve of most probable branches. 

The estimated corticospinal tracts (Figure 4 and 5) propagate inferiorly through the 
internal capsule and the results show that our average curves properly reconstruct the 
fibres to the different motor areas. The clustering result shows that the tracts were 
grouped into different plausible bundles. However, the outputs of the wild bootstrap-
ping method showed that a number of deterministic curves erroneously cross the pons 
and project into the contralateral hemisphere. Figures 5 (c) and (d) show that ana-
tomically implausible pathways are mostly represented by branches with low number 
of curves. When thresholded at > 20% number of curves, the results demonstrate 
plausible routes.  

4   Discussion 

In this paper, we have introduced a novel fibre tractography method based on average 
curves of probabilistic methods, which results in a single well-defined trajectory  
for every strong anatomically distinct connection from a seed point by combining the 

(a) (b) (c) (d) 

(a) (b) (c) (d) 
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advantages of both deterministic and probabilistic algorithms. We evaluated the average 
curves algorithm on both phantom and in vivo data. The overall shape of the fibre tract 
trajectories has been shown to correspond with known anatomy, providing quantitatively 
useful data. However, there are conceptual and practical issues that must be understood 
when choosing this approach. The results of our average curves approach depend on the 
probabilistic methods which we applied. While the probabilistic methods still suffer from 
the general problems of tractography, relying only on the overall shape of trajectories 
gives an inherent degree of protection against the effects of noise and partial volume.  

The accuracy of fibre tractography is influenced by the diffusion tensor measure-
ments’ sensitivity to image noise and various other factors. Several studies have in-
vestigated the accuracy of deterministic tractography algorithms. We have used aver-
age curves as a tool to analyse errors in these probabilistic methods. 

The results of our tractography algorithm show that the method handles branching 
correctly and addresses many of the difficulties faced by traditional probabilistic 
methods. The average curves were also shown to be good representations of optimal 
fibre paths of strong connections using both phantom and in vivo data. We have also 
presented new techniques for clustering probabilistic curves in 3D, to find anatomi-
cally distinct branches and remove outlier curves. The average curve methods we 
describe here are fast and relatively easy to implement. One limitation of our study is 
that we use some semi-automated parameters to identify the short curves and separate 
the curves from generated curves.  
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Abstract. In analyzing diffusion magnetic resonance imaging, multi-

tensor models address the limitations of the single diffusion tensor in

situations of partial voluming and fiber crossings. However, selection of

a suitable number of fibers and numerical difficulties in model fitting have

limited their practical use. This paper addresses both problems by mak-

ing spherical deconvolution part of the fitting process: We demonstrate

that with an appropriate kernel, the deconvolution provides a reliable

approximative fit that is efficiently refined by a subsequent descent-type

optimization. Moreover, deciding on the number of fibers based on the

orientation distribution function produces favorable results when com-

pared to the traditional F-Test. Our work demonstrates the benefits of

unifying previously divergent lines of work in diffusion image analysis.

1 Introduction

The diffusion tensor model [1] is widely used for analyzing data from diffusion
weighted magnetic resonance imaging (DW-MRI), but is inadequate in situations
of partial voluming and fiber crossings. Multi-compartment models provide a
natural extension by combining multiple diffusion tensors. They have been used
to study the effects of partial voluming [2], and to analyze the diffusion weighted
signal in voxels with multiple fiber contributions [3].

Fitting multi-tensor models requires nonlinear optimization, for which previ-
ous work has used descent-type algorithms [3,4,5,6]. However, these methods only
find the global optimum when provided with an initial guess that is sufficiently
close to the final solution. At the state of the art, numerous randomized re-
starts are tried to reach a suitable optimum with high probability [3,7,6], which
incurs an excessive computational cost. Alternatively, regularization over spatial
neighborhoods [8] requires numerical solution of a partial differential equation.

We present a novel way of applying spherical deconvolution [9] to “kick-start”
model fitting, as summarized in Figure 1. We derive a deconvolution kernel to
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Fig. 1. In our framework, deconvolution and ODF approximation make Levenberg-

Marquardt fitting of ball-and-stick models faster and more reliable

approximate the ball-and-stick model [10,11], a common variant of the multi-
tensor model. The deconvolution result is analyzed by a recent method for fit-
ting discrete models to continuous orientation distribution functions [12]. This
decides the number of fibers and provides a starting point to make subsequent
optimization [13,4,5,6] more reliable and efficient.

Diffusion image analysis approaches based on spherical deconvolution have
generally been distinct from those involving explicit fitting of multi-fiber models.
Our main contribution is showing how these two approaches can be adapted and
combined to create a unified algorithmic solution that offers advantages of both.

2 Related Work

2.1 Multi-tensor Models

Multi-tensor models assume k diffusion compartments with little or no exchange
during measurement time [2], each parametrized by a symmetric 3× 3 diffusion
tensor Di per compartment, with eigenvalues λ1 ≥ λ2 ≥ λ3 ≥ 0. The signal
fractions fi ∈ [0, 1] sum to unity. With this, the signal S(g) is predicted as

S(g) = S0

k∑
i=1

fie−bgTDig, (1)

where k is the number of compartments, S0 is the non diffusion-weighted signal,
b is the diffusion weighting, and g is the diffusion-sensitizing gradient.

A full k-tensor model has 7k−1 degrees of freedom, but additional constraints
are imposed in practice. When a single non-zero b-value is used, a mathemati-
cal indeterminacy prevents simultaneous estimation of the isotropic part of Di

and its volume fraction fi [7]. Most authors constrain the isotropic part, for
example by assuming equal eigenvalues on all Di [3,14,5], but some prefer to fix
the fi instead [7,15]. A very common assumption is axial symmetry (λ2 = λ3)
[3,7,8,10,14,15,16]. In many cases, k is limited to k ≤ 2 [3,7,16,5].

In this work, we focus on the ball-and-stick model [10], which assumes that
all Di have equal λ1; a single “ball” compartment is completely isotropic (λ1 =
λ2 = λ3), the remaining “stick” compartments are perfectly linear (λ2 = λ3 = 0).
For n fiber terms, this leads to k = n + 1 compartments and 3n + 1 degrees of
freedom. We consider the model up to n = 3.
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2.2 Spherical Deconvolution

Rather than assuming a fixed number of compartments, spherical deconvolution
reconstructs an orientation distribution function (ODF) F (θ, φ), which specifies
a continuous density of volume fractions on the unit sphere. The predicted signal
S(θ, φ) is then defined as the convolution of the ODF F (θ, φ) with an axially
symmetric single-fiber response function R(γ),

S(θ, φ) =
∫ 2π

0

∫ π

0

F (θ′, φ′)R(γ′) sin(θ′) dθ′ dφ′ (2)

where γ′ is the angle between directions given by (θ, φ) and (θ′, φ′). Typically,
S(θ, φ) and R(γ) are estimated from the data and modeled in spherical harmonics
and rotational harmonics, respectively. This reduces spherical deconvolution to
simple scalar division, and yields F (θ, φ) [9].

It has been pointed out [10] that Equation (2) describes a continuous version
of the ball-and-stick model when substituting

R(γ) = S0e−bd cos2 γ (3)

and adding S0fiso exp(−bd) outside the integral, where fiso is the volume frac-
tion of the ball compartment. We use this relation to compute an ODF F (θ, φ)
that corresponds to the continuous ball-and-stick model. FORECAST [14] has
followed a similar goal, though corresponding to a multi-tensor model with non-
zero perpendicular diffusivity (λ2 = λ3 > 0) in the individual compartments.

2.3 Discrete Approximations of Continuous ODFs

From a continuous ball-and-stick model, the discrete case is recovered by replac-
ing the continuous function F (θ, φ) with a discrete ODF F̃ (θ, φ) that is a finite
sum of weighted delta peaks. Even though it is common to recover discrete di-
rections by locating maxima in F (θ, φ) [9,17], this is not accurate. It ignores the
fact that delta peaks represented by finite-order spherical harmonics no longer
have negligible width, so the individual peaks interfere with each other.

Therefore, we employ nonlinear optimization based on higher-order tensor
representations to find a discrete approximation F̃ (θ, φ), as described in [12].
Selecting the maximum spherical harmonics order involves a tradeoff between
increasing peak sharpness and reducing the influence of noise. Unlike maximum
extraction, the optimization in [12] explicitly accounts for the blurring of ODF
peaks at low orders. We found that because of this, a good tradeoff is already
achieved at maximum order four.

3 Using Spherical Deconvolution for Model Fitting

3.1 Fitting the Ball-and-Stick Model

The previous section described how fitting the ball-and-stick model can theoret-
ically be formulated as a deconvolution problem with a discrete ODF F̃ (θ, φ).
We now describe an efficient and reliable algorithm based on this insight.
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Initial per-voxel estimates of the diffusivity d and the isotropic volume frac-
tion fiso of the ball-and-stick model are obtained from the maximum apparent
diffusion coefficient dmax and the average diffusion-weighted intensity S̄

dmax = −1
b

min
i

log
Si

S0
S̄ =

1
n

n∑
i=1

Si, (4)

where Si are the diffusion-weighted values. Integrating Equation (1) over the unit
sphere shows that S̄ varies linearly with fiso between S̄ = S0

√
π/(4bd)erf(

√
bd)

(at fiso = 0) and S̄ = S0 exp(−bd) (at fiso = 1), where erf is the Gauss error
function. Assuming that d ≈ dmax, this allows us to compute fiso from S̄. These
initial estimates are refined further as part of the final descent-based fitting.

Now, the predicted isotropic part S0fiso exp(−bd) is subtracted from Si, and
a spherical harmonics representation of S(θ, φ) is fit to the remainder. Like [12],
we deconvolve to a non-ringing cosine power lobe (cos4 γ) instead of a truncated
delta peak. Using computer algebra software, the order-four coefficients of the
deconvolution kernel that corresponds to R(γ) in Equation (3) are found as:

R0 =
5
√

πS0

2
√

bd
erf(

√
bd); R2 =

−35S0

32
√

(bd)3

(
6
√

bde−bd+
√

π(2bd− 3)erf(
√

bd)
)

(5)

R4 =
105S0

512
√

(bd)5

(
−30

√
bd(2bd + 21)e−bd + 9

√
π (4bd(bd− 5) + 35) erf(

√
bd)
)

Dividing the order-n spherical harmonics coefficients of S(θ, φ) by Rn gives
F (θ, φ) [9], which is then approximated by a discrete ODF F̃ (θ, φ) with the
algorithm in [12]. This involves nonlinear optimization, but it is much simpler
than fitting Equation (1) directly: Instead of fitting to 50–100 DWI values, it
considers only 15 coefficients of F (θ, φ) (at maximum order four). Moreover,
both the objective function and its derivatives involve only additions and mul-
tiplications.

The peaks in F̃ (θ, φ) approximate fiber directions, their weights provide rel-
ative volume fractions. In a final step, these estimates are refined by fitting
Equation (1) to the original DWI data, using Levenberg-Marquardt (LM)1 [13].

3.2 Selecting the Number of Sticks

For best quality, the correct number of compartments needs to be selected in the
multi-tensor model: If it is chosen too low, the model might indicate fiber direc-
tions that do not align with any true tract. On the other hand, overestimating
the true number reduces the accuracy of the result due to overfitting.

In spherical deconvolution, it is common to estimate the number of fiber
compartments from the maxima in the ODF F (θ, φ) [17]. Since our framework
uses deconvolution, we explore a similar strategy based on the discrete ODF
F̃ (θ, φ). We use a three-stage test with thresholds t{0,1,2}: If fiso > t0, no fiber

1 http://www.ics.forth.gr/~lourakis/levmar/ [Accessed on 22 Feb 2010].

http://www.ics.forth.gr/~lourakis/levmar/
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is detected. Otherwise, F (θ, φ) is normalized to integrate to unity and a discrete
ODF with two delta peaks is extracted, whose weights are w1 > w2. If w2 < t1,
a single fiber is used. Otherwise, a three-peak approximation is found with w1 >
w2 > w3. If w3 < t2, we assume two fibers, else three compartments are used.

4 Results

4.1 Synthetic Data

Synthetic diffusion-weighted data with 60 directions, b = 3000 s/mm2, and Ri-
cian noise at SNR0 = 30 was created from a multi-cylinder model with non-zero
λ2 = λ3. Eigenvalues were sampled from Gaussian distributions with parame-
ters according to estimates from real DW-MRI data. Principal eigenvectors and
volume fractions were sampled uniformly at random. Cases in which any volume
fraction was below 0.2 or any pair of vectors was closer than 30◦ were rejected.

We created 5000 one-, two-, and three-fiber configurations each and used
Levenberg-Marquardt with 100 random restarts, sampled in analogy to data
generation, to find the global optimum for the predetermined, correct number of
compartments. We then counted the number of times a single randomized run
and a run that was kick-started by spherical deconvolution found the correct
optimum. Table 1 shows that in the two- and three-fiber cases, the prediction
raised the chances of finding the optimum by around 10%. On average, the cost
of deconvolution, finding the discrete ODF, and final refinement by LM, is about
half the computational cost of finding the optimum by LM alone.

Table 2 lists the mean and median angular deviation of the individual stick
compartments, sorted by volume fraction, from the ground truth. It confirms
that spherical deconvolution comes close enough to the final result to be a useful
seed, but subsequent optimization still improves upon its accuracy, especially in
the three-fiber case. To validate our choice of [12] over ODF peak finding, we also

Table 1. Percentage of cases in which the global optimum was found by a single

randomized run of LM, versus our kick-start method, with “speed” in voxels per second

1 Fiber 2 Fibers 3 Fibers

% Found Speed % Found Speed % Found Speed

Randomized Run 99.9 3430 90.3 1496 82.6 805

Kick-Started Run 100 5635 98.6 3264 93.1 1527

Table 2. Mean and median (in parentheses) of angular deviation from ground truth

confirms that spherical deconvolution seeds the optimization close to the final result

1 Fiber 2 Fibers 3 Fibers

Angle Angle 1 Angle 2 Angle 1 Angle 2 Angle 3

Kick-Started Run 1.2 (1.0) 2.3 (1.9) 5.9 (3.9) 3.9 (3.0) 6.8 (4.9) 8.8 (6.3)

Prediction alone 1.3 (1.1) 3.0 (2.3) 7.5 (5.0) 5.8 (4.4) 9.5 (7.3) 12.0 (9.6)

ODF Peaks 1.5 (1.3) 3.5 (2.6) 12.4 (6.3) 5.7 (4.2) 12.4 (8.1) 16.2 (11.1)
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Table 3. In synthetic data, our deconvolution-based test for the number of fiber com-

partments produces better results than standard statistical tests

Prediction

BIC F-Test Our Test

Truth 0 1 2 3 0 1 2 3 0 1 2 3

No Fiber 98% 2% 0% 0% 98% 2% 0% 0% 100% 0% 0% 0%

1 Fiber 0% 29% 43% 28% 0% 82% 6% 12% 0% 94% 5% 1%

2 Fibers 0% 5% 74% 21% 0% 15% 53% 32% 0% 5% 83% 12%

3 Fibers 0% 5% 23% 73% 2% 31% 13% 54% 0% 0% 16% 84%

list the most accurate result we were able to achieve using that more traditional
technique (order 6, truncated delta peak, Laplace-Beltrami regularization [17]).

Finally, we used the synthetic data to compare our criterion for selecting the
fiber number to two statistical tests previously applied to diffusion model selec-
tion, the Bayesian Information Criterion (BIC) [18], and the F-Test [19,6,18].
Automatic relevance determination [11] is not included in our comparison, since
it aims at Bayesian model averaging rather than at making a hard decision. As
shown in Table 3, the parameter-free BIC exhibited a strong bias towards select-
ing two or three fibers. The thresholds t{0,1,2} of the other two tests were set to
balance sensitivity and specificity at each stage. The deconvolution-based test
achieved best results for all ground truth configurations.

We also repeated all experiments with b = 1000 s/mm2. Without providing
the quantitative results, we qualitatively state that the probability of finding the
correct optimum increased, but average accuracy with respect to ground truth
decreased. Our test for model selection became less reliable, while results of
the F-Test improved. Apparently, the F-Test benefits from a low effective noise
level, while the deconvolution-based test requires the better separation of the
individual compartments afforded by higher b values.

4.2 Real Data

In order to identify the voxels in a real dataset (60 directions, b = 1000 s/mm2,
isotropic voxel size 1.72 mm) in which the individual tests are most likely to use
two- and three-fiber models, we calibrated the F-Test and our deconvolution-
based test to generate 25% no-fiber, 40% one-fiber, 25% two-fiber, and 10%
three-fiber voxels within a brain mask.

A detail of the result is shown in Figure 2, the intersection of corpus callosum
and corticospinal tract on a coronal slice. For visualization, we map the stick
compartments to tensors whose perpendicular diffusivity is scaled by the volume
fraction of the ball compartment (λ2 = λ3 = fisod). The fiber fractions are
renormalized to unity and color-coded. In (a), standard single diffusion tensors
are shown for reference. We found that the F-Test tends to fit multiple stick
compartments to voxels that likely just contain a single bending or spreading
bundle, e.g., in the body of the corpus callosum (CC). The deconvolution-based
test is more robust to such cases, as long as they lead to a clear single ODF peak.
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Fig. 2. In real data (a), our deconvolution-based test (c) produced more plausible

results than the F-Test (b), which frequently fits multiple sticks in regions that are

generally thought to contain a single bending or spreading compartment.

We expect that this will allow us to track through crossings like the one presented
in Figure 2, while avoiding spurious tracts. However, design of a tractography
method that makes use of our novel framework is left as future work.

With the deconvolution-based test, Levenberg-Marquardt is only run once per
voxel, which provides an additional speedup. Our complete pipeline, including
testing and fitting the final result, processed 1050 voxels per second with the F-
Test, 2950 voxels per second with the deconvolution-based test, on a single CPU
core of a 2.7 GHz workstation. Finally, 20 randomized restarts of Levenberg-
Marquardt improved upon the optimum found by our method in less than 0.2%
of all voxels. Therefore, we conclude that our pipeline offers a reliable and efficient
solution for fitting ball-and-stick models.

5 Conclusion

Traditionally, multi-fiber models and spherical deconvolution are used as compet-
ing methods, each with its own set of advantages and disadvantages: Linear spher-
ical deconvolution is extremely fast and does not require pre-specification of an
expected number of fibers. On the other hand, multi-tensor models offer higher ac-
curacy for applications like multi-fiber streamline tractography [4,7,17,15], where
it is the primary goal to estimate the most likely fiber directions.

We have presented a framework that combines the best of both worlds: Based
on spherical deconvolution, a plausible number of fiber compartments is found
automatically. Initializing the fitting with the deconvolution result doubles the
speed of the computation, while at the same time increasing the probability of
finding the global optimum to more than 95% in the two-fiber case and to more
than 90% for three fibers. As a result, we achieve a fully integrated, reliable and
efficient algorithmic solution for multi-tensor fitting.
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Abstract. In this paper, we propose a Riemannian framework for statistical anal-
ysis of tensor fields. Existing approaches to this problem have been mainly voxel-
based that overlook the correlation between tensors at different voxels. In our
approach, the tensor fields are considered as points in a high-dimensional Rie-
mannian product space and accordingly, we extend Principal Geodesic Analysis
(PGA) to the product space. This provides us with a principled method for lin-
earizing the problem, and coupled with the usual log-exp maps that relate points
on manifold to tangent vectors, the global correlation of the tensor field can
be captured using Principal Component Analysis in a tangent space. Using the
proposed method, the modes of variation of tensor fields can be efficiently deter-
mined, and dimension reduction of the data is also easily implemented. Exper-
imental results on characterizing the variation of a large set of tensor fields are
presented in the paper, and results on classifying tensor fields using the proposed
method are also reported. These preliminary experimental results demonstrate the
advantages of our method over the voxel-based approach.

1 Introduction

Tensor field data sets are quite commonly encountered in diffusion tensor imaging
(DTI) [1] and Tensor-Based Morphormetry (TBM) [2]. Most tensor fields that have
been reported in recent medical image analysis literature are fields of symmetric
positive-definite matrices (SPDs), and this paper proposes a framework for statistical
analysis on the space of these tensor fields.

The Riemannian geometry of the SPD matrices and its applications to medical im-
age analysis problems that require statistical analysis of ensembles of SPD matrices has
been the focus of intensive study in the past several years, e.g. [3,5,9]. In [5], Pennec et
al. developed a Riemannian framework for computing statistics on SPD tensors. In [9],
Schwartzman discussed the geometry of positive-definite matrices and studied proba-
bility distributions defined on SPD matrices. Principal Geodesic Analysis (PGA), as a
generalization of Principal Component Analysis (PCA) for data on a Riemannian man-
ifold, was introduced in [4]. In [3], Fletcher and Joshi described PGA-based methods
for statistical analysis of diffusion tensors, in the context of computing (Karcher) mean
of a collection of SPD matrices and characterizing their variance.

We remark that all these earlier works have focused on the statistical analysis of
symmetric positive-definite matrices, and to the best of our knowledge there is no lit-
erature on statistical analysis of tensor fields where each field is treated in its entirety
as a single entity. Although the methods for SPD matrices can be applied to study the

T. Jiang et al. (Eds.): MICCAI 2010, Part I, LNCS 6361, pp. 682–689, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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Fig. 1. Left column: Eight input tensor fields. (a) Mean, first mode and second mode of tensor
fields computed using a pixel-based approach: means and modes are determined at each pixel
independently using eight tensors. Note that the two modes are constant fields. (b) Mean, first
mode and second mode of tensor fields computed using the proposed method.

statistics of tensor fields using a voxel-based approach where tensor fields are aligned
and the statistics are gathered independently for every voxel, it is clearly insufficient
and inadequate as it fails to capture global interaction patterns in the tensor fields. This
point can be best illustrated using a simple example shown in Figure 1. Here, we gener-
ate four pairs of 10× 10 tensor fields. Each tensor field contains two constant subfields
occupying the top and bottom regions of the domain. Tensor fields in each pair differ
by a reflection that swaps the top and bottom regions. For this collection of eight tensor
fields, pixel-wise statistics fails to capture the global patterns in the tensor fields as the
first and second modes are all constant fields. This result is not surprising as a pixel-
based approach only considers tensors at each location independently, and it completely
ignores the possible correlation between tensors at different locations.

In this paper, we propose a Riemannian framework for statistical analysis of a set
of tensor fields that is capable of capturing the global correlation within the fields.
Specifically, each tensor field can be represented by a point in the Riemannian prod-
uct space. We extend Principal Geodesics Analysis (PGA) to Riemannian symmetric
products, and this provides a principled method for linearizing the problem by mapping
data (tensor fields) to a Euclidean space that is the tangent space at one specific point.
The global correlations of the tensor field are then captured using Principle Component
Analysis (PCA) in the tangent space, and the modes of variation for the tensor fields can
be determined first in the tangent space followed by the exponential map. In addition,
dimensionality reduction of data can also be efficiently implemented using PCA in the
Euclidean space. This is particularly important as one major difficulty of working with
the space of tensor fields is its dimension. For example, the space of 100× 100× 100



684 Y. Xie, B.C. Vemuri, and J. Ho

tensor-valued images has 6×106 dimension, and dimensionality reduction is necessary
for most applications and analysis. The proposed method is evaluated using OASIS
dataset. We characterized the variation within a set of deformation tensor fields and
applied our method to the tensor field classification problem. Preliminary experimental
results have demonstrated the superiority of our method compared to the voxel-based
approach.

2 Statistical Analysis in the Space of Tensor Fields

In this section, we present the details of statistical analysis in the space of tensor fields,
and we will consider only fields of symmetric positive-definite matrices. Let P (n) de-
note the space of n × n symmetric positive-definite matrices and Sym(n) denote the
space of n × n symmetric matrices. A tensor field defined on a domain Ω in RK is
treated as a function f : Ω → P (n). Since both diffusion tensor fields and deformation
tensor fields used in medical imaging are almost always defined over a grid (pixels or
voxels), Ω will be a collection of m points in RK , and we identify the space of ten-
sor fields on Ω with the product P (n)m = P (n)× P (n)× · · · × P (n)︸ ︷︷ ︸

m

. Thus a tensor

field X in P (n)m is represented as an m-tuple (X1, X2, . . . , Xm), where each Xi is a
symmetric positive-definite matrix, the value of X at one point in Ω.

2.1 Geometry of Tensor Fields

The space P (n) is a symmetric Riemannian manifold [3] with GL(n) as the symmetry
group. This can be generalized directly to product spaces P (n)m using product Rieman-
nian structure, and in particular, the Riemannian geodesic distances, log and exponential
maps have closed-form expressions. Specifically, the group GL(n)m acts transitively on
P (n)m with the action given by φG(X) = (G1X1G

T
1 , . . . , GmXmGT

m), where each
Gi ∈ GL(n) is a n×n invertible matrix and Xi is a n×n positive-definite matrix. The
tangent space of P (n)m at any point can be identified with Sym(n)m since the tangent
space of a product manifold is the product of tangent spaces. Let Y,Z ∈ TMP (n)m

be two tangent vectors at M ∈ P (n)m. The product Riemannian metric gives the inner
product between the two vectors as

〈Y,Z〉M =
m∑

i=1

tr(YiM
−1
i ZiM

−1
i ). (1)

Using this metric, the Riemannian exponential map at M maps the tangent vector Y to
a point in P (n)m

ExpM(Y) =
(
G1 exp(G−1

1 Y1G
−T
1 )GT

1 , . . . , Gm exp(G−1
m YmG−T

m )GT
m

)
(2)

where Gi ∈ GL(n) such that M =
(
G1G

T
1 , . . . , GmGT

m

)
.

Given X ∈ P (n)m, the log map at M is

LogM(X) =
(
G1 log(G−1

1 X1G
−T
1 )GT

1 , . . . , Gm log(G−1
m XmG−T

m )GT
m

)
. (3)

Using this definition of log map in P (n)m, the geodesic distance between two tensor
fields M and X is computed by
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d(M,X) = ‖LogM(X)‖ =

√√√√ m∑
i=1

tr
(
log2(G−1

i XiG
−T
i )

)
. (4)

2.2 Statistics on the Space of Tensor Fields

Using the formula above for the geodesic distance, we define the (intrinsic) mean of N
tensor fields as the tensor field that minimizes the sum of squared geodesic distances:

M = arg min
M∈P (n)m

1
N

N∑
i=1

d(M,Xi)2. (5)

The sum of squares on the RHS above can be re-written as a sum over all points in
Ω. This implies that the value of M(p) of M at one point p ∈ Ω is the usual Karcher
mean in P (n) of X1(p), · · · ,XN (p). In particular, since the Karcher mean is unique
on P (n) [3], this shows that M will be unique as well, and it can be computed using an
iterative algorithm similar to the one in [3].

After obtaining the intrinsic mean M of the input tensor fields X1, . . . ,XN , we will
determine the modes of variation using PGA. Specifically, we use the log map to map
all the tensor fields to the tangent space at M, xi = logM(Xi). This is a Euclidean
space in which we can analyze the data points x1, · · · , xN using principal component
analysis. We define the principal vectors V1, · · · ,Vk in TMP (n)m according to the
following equations:

V1 = arg max
‖V‖=1

N∑
i=1

〈V, LogM(Xi)〉2M ,

Vk = arg max
‖V‖=1

N∑
i=1

k−1∑
j=1

〈Vj , LogM(Xi)〉2M + 〈V, LogM(Xi)〉2M .

The orthonormal vectors Vi spanned a K-dimensional subspace SK that best approxi-
mates x1, · · · , xN in the least-squares sense, and they can be computed using PCA. By

exponentiating vectors in SK , ExpM

(∑d
k=1 αkVk

)
, where αk tells the variation of

kth mode, we obtain the geodesic submanifold SK ⊂ P (n)m that can serve as a good
approximation of the input tensor fields.

There are two important details that differ from the usual application of PGA [3].
First, except at the identity, the inner product defined in Equation 1 does not correspond
to the standard Euclidean inner product, which is required for the familiar PCA algo-
rithm. Therefore, we first transform the data to the tangent space at the identity, which
is accomplished via the following transform, X ∈ TMP (n)m

φG−1(X) : (X1, · · ·Xm) −→
(
G−1

1 X1G
−T
1 , . . . , G−1

m XmG−T
m

)
, (6)

where G = (G1, . . . , Gm) is such that M =
(
G1G

T
1 , . . . , GmGT

m

)
. Once the data have

been mapped to TIP (n)m, we can apply the usual PCA algorithm to obtain principal



686 Y. Xie, B.C. Vemuri, and J. Ho

vectors Ui, i = 1, · · · , K . They are then transformed back to TMP (n)m using Vi =
φG (Ui). Due to the high-dimensionality of P (n)m, we use the Gram matrix instead of
the usual covariance matrix when computing the principal vectors in the tangent space,
which is the approach used in many computer vision applications such as the Eigenfaces
[8]. The complete algorithm is summarized in Algorithm One.

Algorithm 1. PGA for Tensor Fields
1: Input N tensor fields X1, . . . ,XN ∈ P (n)m.
2: Compute intrinsic mean M of input tensor fields.
3: Compute Yi = LogM(Xi) for i = 1, . . . , N .
4: Translate Yi to the tangent space of identity I.
5: Perform PCA in TIP (n)m and get eigenvectors Ui.
6: Translate Ui back to get Vi in the tangent space of M.

2.3 Tensor Fields Classification

We can formulate a tensor field classification algorithm using the principal directions
and geodesic submanifolds. One common method for solving classification problems on
Riemannian manifold is to map input data to the tangent space and do the classification
in the tangent space [6]. However, this approach does not respect the geometry of the
manifold as the geodesic distance between two points on the manifold are usually not
the same or even commensurate with the distance between their images in the tangent
space. A more principled approach is to use the distances to geodesic submanifolds as
the feature for classification.

Assume a binary classification problem, and the training tensor fields are labelled as
one of the two classes. For each label k(k = 1, 2), we compute a low-dimensional
geodesic submanifold Sk using training tensor fields with label k. For a test ten-
sor field X, we can determine its class by comparing the geodesic distances dk =
minY∈Sk

d(X,Y). A tensor field is classified as belonging to class k if dk is smaller
than the other geodesic distance. The key step in this algorithm is to find the minimizer
in Sk that gives the geodesic distance dk. Since any point in the geodesic submanifold

Sk can be written as ExpM

(∑d
i=1 αiVi

)
, where M is the mean and α1, . . . , αd are

real coefficients, dk can be solved via the following optimization problem in Rd,

min
α1,...,αd

d

(
X, ExpM

(
d∑

i=1

αiVi

))2

. (7)

Unfortunately, minimizing Equation 7 can be time-consuming for large tensor fields.
Therefore, we approximate dk by the geodesic distance d (X,Z) between X and Z
defined by

Z = ExpM

(
d∑

i=1

Vi 〈Vi, LogM(X)〉M

)
. (8)

That is, we obtain Z by first map X to the tangent space at M using Log map and
project it onto the principal subspace Sd. The projection is then mapped down to the
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manifold using the exponential map to get Z . In our experiments discussed in the next
section, the differences between the approximated distance and the one computed by the
optimization are less than 1% and have no major influence on the classification results.
We summarize the tensor fields classification algorithm in Algorithm Two.

Algorithm 2. Tensor Fields Classification
1: Training compute geodesic submanifolds S1 and S2 by using PGA on training tensor fields

of different classes separately.
2: Testing for each test tensor field, compute their geodesic distances d1 and d2 to submanifolds

S1 and S2 respectively. If d1 < d2, classify the test data to class1, otherwise, set it to class2.

Fig. 2. Statistical Analysis for deformation tensor fields from old age group. For better visualiza-
tion, we downsample the images, only axial view is shown and set FA as the background in the
display. (a) Tensor field variation along the first principal direction. From left to right, the coef-
ficient α1 is −2σ1,−σ1, σ1, 2σ1. (b) Tensor field variation along the second principal direction.
From left to right, the coefficient α2 is −2σ2,−σ2, σ2, 2σ2. Right column: Mean tensor field.

3 Experimental Results

The data used in our experiments are from the freely available Open Access Series of
Imaging Studies (OASIS) MRI data set, which contains a cross-sectional collection of
416 subjects aged between 18-96 [7]. Each brain image has a resolution of 176×208×
176 voxels. We divided 416 subjects three groups: young subjects (40 or younger),
middle-aged subjects (between 40 and 60 years of age) and old subjects (60 or older).
There is a subset of old subjects that were diagnosed with probable Alzheimer’s Disease
(AD). We compute the atlas for all the MR images in the OASIS data set using a group-
wise nonrigid registration [10], and this also gives the the deformation field from each
image to the atlas. For each voxel, we compute the Jacobian matrix J of the deformation
field and build the deformation strain tensor S = (JT J)1/2. This gives a strain tensor
field for every subject.
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Fig. 3. Comparisons with voxel-based method. (a) and (c) are the first mode (σ1) and second
mode (σ2) computed using Algorithm One. (b) and (d) are the first mode and the second mode
computed using voxel-wise PGA. FA is used as the background in the display.

Table 1. Tensor Fields Classification on OASIS

Old vs. Young Old vs. Middle Middle vs. Young AD vs. Control
Nearest Neighbor 92.43% 87.74% 78.42% 84.29%

Submanifold Projection 96.43% 90.23% 84.32% 88.57%

In the first experiment, we characterize the variation in the tensor fields within an age
group by computing the modes of variation using Algorithm-1. The dimension of the
geodesic submanifold is set at 20 after examining the eigenvalue distribution. Figure 2
displays the mean tensor fields and the variations along the first two principal directions
for the old group. The comparison with the mean and modes computed using the voxel-
based approach in shown in Figure 3. We can clearly see that the modes computed
using voxel-based method are fragmentary and they do not reflect the global structures
of the tensor fields. This is not surprising because voxel-based method does not consider
correlations between different voxels.

For the second experiment, we test our tensor-field classification algorithm. We ran-
domly divide the brain images for each age group into four subsets. Images from one
of the subsets are the test images, while other three subsets give the training images.
The training images are used to compute the geodesic submanifolds Sd, and we clas-
sify the test images for every pair of age groups using Algorithm 2. We use a four-fold
cross-validation in the experiments to fully evaluate the algorithm on OASIS data set.
We compared the performance of our algorithm with the nearest neighbor method that
maps each tensor field to the tangent space of the mean. Low-dimensional feature vec-
tors are generated using PCA projection, and the classification is done using nearest
neighbor of these feature vectors. We have also tested the proposed algorithm on clas-
sification for healthy and diseased (Alzheimer) brain images. All results are tabulated
in Table 1. The experimental results indicate that the deformation strain tensor fields
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do capture the subtle structural changes in the brain images across different age groups
(and also for diseased samples), and the good classification results show the importance
and value of doing statistical analysis on the space of tensor fields.

4 Conclusions

In this paper, we have presented the geometry of the space of tensor fields and pro-
posed a framework for statistical analysis of a set of tensor fields. We have extended the
PGA framework to the space of tensor fields considered as a Riemannian product space,
and the modes of variation computed by the proposed algorithm capture the correlation
between tensors at different locations. We have also proposed a novel tensor field clas-
sification algorithm using distances to the geodesic submanifolds as the main features
for classification. Experimental results have shown that our approach provides a better
characterization of the variation within a collection of tensor fields when compared to
the voxel-based approach. In addition, good classification results on a large population
of brain images have further validated the proposed framework.
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Abstract. Diffusion tensor imaging (DTI) is important for characteriz-

ing the structure of white matter fiber bundles as well as detailed tissue

properties along these fiber bundles in vivo. There has been extensive in-

terest in the analysis of diffusion properties measured along fiber tracts

as a function of age, diagnostic status, and gender, while controlling for

other clinical variables. However, the existing methods have several limi-

tations including the independent analysis of diffusion properties, a lack

of method for accounting for multiple covariates, and a lack of formal sta-

tistical inference, such as estimation theory and hypothesis testing. This

paper presents a statistical framework, called VCMTS, to specifically

address these limitations. The VCMTS framework consists of four in-

tegrated components: a varying coefficient model for characterizing the

association between fiber bundle diffusion properties and a set of co-

variates, the local polynomial kernel method for estimating smoothed

multiple diffusion properties along individual fiber bundles, global and

local test statistics for testing hypotheses of interest along fiber tracts,

and a resampling method for approximating the p−value of the global

test statistic. The proposed methodology is applied to characterizing the

development of four diffusion properties along the splenium and genu

of the corpus callosum tract in a study of neurodevelopment in healthy

rhesus monkeys. Significant time effects on the four diffusion properties

were found.

1 Introduction

In the existing literature, there are three major approaches to the group anal-
ysis of diffusion imaging data including region-of-interest (ROI) analysis, voxel-
wise analysis, and fiber tract based analysis [1], [2], [3]. The region-of-interest
(ROI) method primarily computes averages diffusion properties in some manu-
ally drawn ROIs, generates various summary statistics per ROI, and then carries
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out statistical analysis on these summary statistics [3]. ROI analysis suffers from
identifying meaningful ROIs, particularly the long curved structures common in
fiber tracts, the instability of statistical results obtained from ROI analysis, and
the partial volume effect in relative large ROIs.

Compared with the other two methods, voxel-wise analysis has been widely
used in neuroimaging studies [4]. The voxel-wise analysis involves two sequential
steps. The first step is to fit a statistical model to diffusion properties at each
voxel and generating a parametric map of test statistics (or p−values). The
second step includes a correction to the multiple comparisons across the many
voxels of imaging volume [5]. However, the voxel-wise analysis suffers from the
issues of misalignment and arbitrary smoothing extent [6], [7]. As pointed out
in [7], the final statistical results of voxel-wise analysis can strongly depend on
the amount of smoothing applied to the diffusion tensor imaging data.

The third method is to develop fiber tract based analysis of diffusion proper-
ties, such as eigenvalues and fractional anisotropy (FA) values [1], [2], [8], [9]. In
[1], a tract-based spatial statistics framework is proposed to carry out a point-
wise analysis along the white matter skeleton. In [8], a model-based framework
is developed for the analysis of diffusion properties on the medial manifolds of
fiber tracts followed by testing pointwise hypotheses on the medial manifolds.
In [9], a functional principal component analysis (PCA) is used to compare a
univariate diffusion property, such as fractional anisotropy, across two (or more)
populations for a single hypothesis test per tract [9]. Furthermore, in [10], a
constrained PCA method is proposed to fit age-related changes white matter
diffusion of fiber tracts. The functional and constrained PCA methods suffer
from the issues of the independent analysis of diffusion properties, a lack of
method for accounting for multiple covariates, and a lack of formal statistical
inference, such as estimation theory and hypothesis testing. In [11], a functional
regression framework, called FRATS, is proposed for the analysis of multiple
diffusion properties along fiber bundle as functions and their association with a
set of covariates of interest in real applications.

The goal of this paper is to develop a multivariate varying coefficient model
framework, called VCMTS, to completely address the issues of the functional and
constrained PCA. Compared with the existing literature including [10], [11], and
[9], we have made several novel contributions. We develop a multivariate varying
coefficient model to statistically characterize the association between multiple
fiber bundle diffusion properties and a set of covariates of interest. We use the
local polynomial kernel method to regularize multiple diffusion properties along
individual fiber bundles. We propose both local and global test statistics for
testing hypothesis of interest along and on fiber tracts. We approximate the
p−value of the global test statistic using a resampling method.

2 Method

A schematic overview of VCMTS is given in Figure 1. We have proven that each
component of VCMTS is statistically sound under some mild conditions and the
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Fig. 1. A schematic overview of VCMTS, in which the right internal capsule tract is

used as an illustration

detailed proof can be found in [12]. The associated software for implementing
VCMTS will be available in https://bios.unc.edu/∼hzhu/ and disseminated to
imaging researchers through http://www.nitrc.org/. We describe each of these
components in detail below.

2.1 Multivariate Varying Coefficient Model

We develop a multivariate varying coefficient model to characterize the rela-
tionship between multiple diffusion properties along fiber tracts and a set of
covariates of interest, such as age, group status, and gender. For the i-th sub-
ject, we consider an m × 1 vector of diffusion properties, denoted by yi(sj) =
(yi,1(sj), · · · , yi,m(sj))T , and its associated arc length sj for the j-th location
grid point on the fiber bundle for j = 1, · · · , nG and i = 1, · · · , n, where nG and
n denote the numbers of grid points and subjects, respectively. We assume that

yi,k(s) = xT
i Bk(s) + ηi,k(s) + εi,k(s), (1)

where Bk(s) = (bk1(s), · · · , bkp(s))T is a p × 1 vector of functions of s, xi is a
p× 1 vector of covariates of interest, εi,k(s) are measurement errors and ηi,k(s)
characterize individual curve variations from xT

i Bk(s). The varying coefficient
matrix B(s) = [B1(s), · · · , Bm(s)] characterizes the association between fiber
bundle diffusion properties and the covariates of interest xi. Model (1) is a mul-
tivariate varying coefficient model [13]. Let SP(μ, Σ) denote a stochastic process
vector with mean function μ(t) and covariance function Σ(s, t). We assume that
εi(s) = (εi,1(s), · · · , εi,m(s))T and ηi(s) = (ηi,1(s), · · · , ηi,m(s))T are indepen-
dent, and ηi(s) and εi(s) are independent and identical copies of SP(0, Ση) and
SP(0, Σε), respectively. Moreover, εi(s) and εi(s′) are assumed to be independent
and thus Σε(s, t) takes the form of Σε(s, s)1(s = t), where 1(·) is an indicator
function. Finally, the covariance structure of yi(s), denoted by Σy(s, t), takes
the form of Σy(s, t) = Cov(yi(s),yi(t)) = Ση(s, t) + Σε(s, s)1(s = t).

As an illustration, in our clinical study on early rhesus monkey brain devel-
opment, we are interested in studying the evolution of the three eigenvalues λi
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of diffusion tensor (λ1 ≥ λ2 ≥ λ3) along two selected fiber tracts in 24 healthy
rhesus monkeys (Fig. 2 (a)-(c)). See clinical data for details. We consider a model
of λ1 and λ(2,3) = (λ2 + λ3)/2 along a specific tract as follows:

λi,1(s) = β11(s) + β12(s)× gi + β13(s)× agei + β14(s)× age2
i + ηi1(s), (2)

λi,(2,3)(s) = β21(s) + β22(s)× gi + β23(s)× agei + β24(s)× age2
i + ηi2(s),

where λi,k are the three eigenvalues the i-th subject for k = 1, 2, 3, and gi and
agei denote gender and age, respectively. In this case, m = 2, B(s) = (βjk(s)) is
a 2 × 4 matrix, and xi = (1, gi, agei, age2

i )
T . It is trivial to extend model (2) to

other nonlinear and nonparametric functions of age [13].
To estimate the coefficient functions in B(s), we develop an adaptive local poly-

nomial kernel smoothing technique [14], whereas it is possible to use spline type
of methods including B-spline and smoothing spline. Specifically, using Taylor’s
expansion, we can expand Bk(sj) at s to obtain Bk(sj) = Bk(s)+Ḃk(s)(sj−s) =
Ak(s)zhnG,k

(sj − s), where zhnG,k
(sj − s) = (1, (sj − s)/hnG,k)T and Ak(s) =

[Bk(s), hnG,kḂk(s)] is a p× 2 matrix, in which Ḃk(s) = (ḃk1(s), · · · , ḃkp(s)) is a
p × 1 vector and ḃkl(s) = dbkl(s)/ds for l = 1, · · · , p. We calculate a weighted
least squares estimate of Ak(s) as follows. Let K(·) be a kernel function, such as
the Gaussian and uniform kernels [14]. For a fixed bandwidth h and each k, we
estimate Ak(s) by minimizing an objective function given by

n∑
i=1

nG∑
j=1

[yi,k(sj)− xT
i Ak(s)zhnG,k

(sj − s)]2KhnG,k
(sj − s), (3)

where KhnG,k
(·) = K(·/hnG,k)/hnG,k is a rescaled kernel function. For each k,

we pool the data from all n subjects and select an optimal bandwidth hnG,k,
denoted by ĥ

(1)
k,o, by minimizing the cross-validation score. Based on ĥ

(1)
k,o, we can

obtain an estimate of Bk(s), denoted by B̂k,o(s).

2.2 Smoothing Individual Functions and Covariance Estimating

To simultaneously construct all individual functions ηi,k(s), we also employ the
local polynomial kernel smoothing technique [14]. Specifically, using Taylor’s ex-
pansion, we can expand ηi,k(sj) at s to obtain ηi,k(sj) = di,k(s)T z

h
(2)
nG,k

(sj − s),

where di,k(s) = (ηi,k(s), h(2)
k η̇i,k(s))T is a 2 × 1 vector. We develop an algo-

rithm to estimate di,k(s) as follows. For each k and a fixed bandwidth h
(2)
nG,k, we

estimate di,k(s) by minimizing an objective function given by

nG∑
j=1

[yi,k(sj)− xT
i B̂k,o(sj)− di,k(s)T z

h
(2)
nG,k

(sj − s)]2K
h
(2)
nG,k

(sj − s). (4)

For each k, we pool the data from all n subjects and select the optimal bandwidth
hnG,k, denoted by ĥ

(2)
k,o, by minimizing the generalized cross-validation score.
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Based on ĥ
(2)
k,o, we can estimate ηi,k(s) and ηi(s), denoted by η̂i,ko(s) and η̂i,o(s),

respectively, for all i and k.
After obtaining η̂i,o(s), we can estimate the mean function η(s) and the co-

variance function Ση(s, t) of ηi(s). Specifically, we estimate η(s) and Ση(s, t) by
using their empirical counterparts of the estimated η̂i,o(s) as follows: η̂o(s) =
n−1

∑n
i=1 η̂i,o(s) and Σ̂η(s, t) = (n−m)−1

∑n
i=1 η̂i,o(s)η̂i,o(t)

T .
We construct a nonparametric estimator of the covariance matrix Σε(s, s) as

follows. Let B̂o(s) = [B̂1,o(s), · · · , B̂m,o(s)] and ε̂i(sj) = yi(sj) − B̂o(sj)T xi −
η̂i,o(sj) be estimated residuals for i = 1, · · · , n and j = 1, · · · , nG. We consider
an estimate of Σε(s, s) given by Σ̂ε(s, s) = (n − m)−1

∑n
i=1

∑nG

j=1 K̃h(3)(sj −
s)[ε̂i(sj)]⊗2, where K̃h(3)(sj − s) = Kh(3)(sj − s)/

∑nG

j=1 Kh(3)(sj − s). To select

the optimal bandwidth h(3), denoted by ĥ
(3)
o , we minimize the cross-validation

score. Based on ĥ
(3)
o , we can estimate Σε(s, s), denoted by Σ̂εo(s, s).

2.3 Test Statistics and Resampling Method

In neuroimaging studies, most scientific questions require the comparison of fiber
bundle diffusion properties along fiber bundles across two (or more) diagnostic
groups and the assessment of the development of fiber bundle diffusion properties
along time. Such questions can often be formulated as linear hypotheses of B(s) as
follows: H0 : Cvec(B(s)) = b0(s) for all s vs. H1 : Cvec(B(s)) != b0(s), where C
is a r×mp matrix of full row rank and b0(s) is a given r×1 vector of functions. We
propose both local and global test statistics. The local test statistic can identify the
exact location of significant grid point on a specific tract. At a given grid point sj

on a specific tract, we test the local null hypothesis H0(sj) : Cvec(B(sj)) = b0(sj)
using a local test statistic Sn(sj) = nd(sj)T [C(Σ̂η(sj , sj) ⊗ Ω̂−1

X )CT ]−1d(sj),
where Ω̂X = n−1

∑n
i=1 x⊗2

i and d(s) = Cvec(B̂o(s) − b0(s)). We test the null
hypothesis H0 : Cvec(B(s)) = b0(s) for all s using a global test statistic Sn =
n
∫ L0

0
d(s)T [C(Σ̂η(s, s)⊗Ω̂−1

X )CT ]−1d(s)ds, where L0 is the whole arc length of a
specific fiber bundle. In order to use Sn as a test statistic, we can show that Sn has
appropriate asymptotic distribution as n →∞. We develop a resampling method
(or wild bootstrap method) to approximate the p-value of Sn. The key ideas are
to fit model (1) under the null hypothesis H0, which yields B̂∗

o (sj), η̂∗
i,o(sj) and

ε̂∗i,o(sj) for i = 1, · · · , n and j = 1, · · · , nG, and then to generate random samples
from the fitted model in order to approximate the null distribution of Sn.

3 Results

Clinical Data. Twenty four healthy rhesus monkeys (male and female in-
cluded) at the Harlow Primate Laboratory with age between 10 to 72 months
were scanned on a 3 Tesla GE scanner (SIGNA Excite) with a high-resolution
3DSPGR sequence (0.2344× 0.2344× 0.4980mm3), a T2-weighted spin-echo se-
quence (0.2344 × 0.2344 × 1.5mm3) and a 12-direction diffusion-weighted EPI
sequence (0.5469×0.5469×2.5mm3). After DTI estimation, a nonlinear fluid de-
formation based high-dimensional, unbiased atlas computation method was used
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Fig. 2. Results from a study of neurodevelopment in healthy rhesus monkeys: panels

(a)-(c): (a) anterior, (b) posterior, and (c) superior views of corpus callosum tracts;

panels (d)-(g): − log10(p)−values of Sn(sj) for testing time effect in the genu tract: (d)

λ1, (e) λ(2,3), (f) FA, (g) MD; panels (h)-(k): − log10(p)−values of Sn(sj) for testing

time effect in the splenium tract: (d) λ1, (e) λ(2,3), (f) FA, (g) MD

to carry out a large deformation non-linear registration [15]. Detailed informa-
tion regarding the DTI atlas building procedure has been described in [9]. Major
fiber bundles are tracked in the atlas space within 3D Slicer (www.slicer.org).
With the fiber bundles in atlas space, each subject’s DTI data is transformed
into the atlas space. For each subject at a given time point, the data within the
fiber bundle is parameterized as a sampled function of equidistance steps along
the fiber. The result of the procedure is thus a set of corresponding sampled func-
tions, including FA, MD, etc. parameterized by arc length from the atlas fiber
tract for each individual subject using invert of the atlas-building transforma-
tion. These sampled functions at each point along the fiber tract were then used
to study the effect of age, gender and other covariates on neural development.

For the sake of space, we chose two tracts of interest including the splenium
and genu of the corpus callosum tract and then computed fractional anistropy
(FA), mean diffusivity (MD), and λ1 and λ(2,3) of diffusion tensors at each grid
point on both tracts for each of the 24 monkeys. FA denotes the inhomogeneous
extent of local barriers to water diffusion, while MD measures the averaged
magnitude of local water diffusion. The three eigenvalues of diffusion tensor may,
respectively, reflect the magnitude of water diffusivity along and perpendicular
to the long axis of white matter fibers [16].

We applied VCMTS to the joint analysis of λ1, λ(2,3), FA, and MD values along
the splenium tract as follows. We fitted the functional linear model (2) to these
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four diffusion properties from all 24 subjects, in which xi = (1, gi, agei, age2
i )

T

and m = 2, and then we estimated the function of regression coefficient vector
B̂(s). Secondly, we constructed the global test statistic Sn to test the effects
of all the age effect for each of the four diffusion properties, and performed
hypothesis testing on the whole splenium and genu tracts. The p-value of Sn

was approximated using the resampling method with G = 10, 000.
We considered the genu tract and performed hypothesis testing on time effect

for the whole tract. The p−values of Sn corresponding to λ1, λ(2,3), FA, and MD
equal 0.31, 0.19, 0.007, and 0.29, respectively. This indicates a significant change
of the degrees of anisotropy, not the degree of diffusivity, along the genu tract.
We further performed hypothesis testing at each grid point along the splenium
tract (Figs. 2). For λ1, λ(2,3), and MD, no significant effect of time effect was
found, even though the − log10(p) values of Sn(s) for age at several single grid
points were slightly greater than 2 (Fig. 2 (d), (e), (g)). For FA alone, the effects
of time were significant in the middle and tail of the genu tract (Fig. 2 (f)).

We considered the splenium tract and performed hypothesis testing on time
effect for the whole tract. The p−values of Sn corresponding to λ1, λ(2,3), FA, and
MD equal 0.001, 0.002, 0.000, and 0.004, respectively. This indicates a significant
change of the degrees of diffusivity and anisotropy, along the splenium tract. We
further performed hypothesis testing at each grid point along the splenium tract
(Fig. 2 (h)-(k)). For all diffusion properties, the effects of time were significant
in most of grid points along the splenium tract (Fig. 2 (h)-(k)).

4 Discussion

We have developed VCMTS for statistically analyzing multiple diffusion prop-
erties along fiber bundle and assessing their association with a set of covariates
in real applications. The proposed methodology is demonstrated in a study of
neurodevelopment in rhesus monkey. Significant time effect on multiple diffusion
properties were examined and localized in two representative tracts. VCMTS is
able to delineate the complex inhomogeneous spatial-temporal maturation pat-
terns as the apparent changes in FA, MD, and the eigenvalues of diffusion tensors.
Specifically, our results suggest that white matter maturation patterns are dif-
ferent in different white matter regions. We expect that this novel statistical tool
will lead to new findings in our clinical applications.
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Bó, Antônio P.L. I-267

Boardman, J.P. III-1

Bocan, Thomas I-308, III-57

Bock, Jelena III-416

Boctor, Emad M. II-9

Boese, Jan I-375, I-476

Boisvert, Jonathan II-68

Boomen, R.v.d. I-526

Boone, Darren III-497

Borschneck, Dan II-68

Bourgeat, Pierrick II-125, II-185

Bove, Susan III-57

Brambilla, P. II-177

Breteler, Monique M.B. II-101

Brockmann, Gernot I-476

Brown, Tracy I-308

Brugada, Josep II-1

Brunenberg, Ellen I-175



700 Author Index

Buchner, Anna M. II-480

Buhmann, Joachim M. II-209

Buonaccorsi, G.A. III-121

Burdette, Clif III-311

Caan, Matthan W.A. I-167, II-249

Cabeen, Ryan P. I-357

Cagniart, Cedric III-237

Camara, Oscar II-1

Carpenter, A.E. III-634

Carvajal-Gonzalez, Santos III-57

Castellani, U. II-177

Cavallaro, Alexander I-95

Chakrapani, Shruthi I-357

Chan, Kap Luk II-522

Chan, Tony II-323

Chaney, Ed III-335

Chang, Yu-Bing III-278

Changizi, Neda III-17, III-563

Charbit, Maurice II-34

Chatelin, Simon I-235

Chelikani, Sudhakar I-53

Chen, Elvis III-205

Chen, Hanbo II-412

Chen, Hua-mei I-340

Chen, Mei I-1, I-209

Chen, Sean Jy-Shyang II-92

Chen, Taoyi III-473

Chen, Terrence III-269

Chen, Ting III-65

Chen, Yasheng II-274

Chen, Zhe I-53

Cheng, Jack C.Y. III-538

Cheng, Jian I-590, I-648

Chertok, Michael III-642

Cheung, Carling L. III-408

Chiao, Ping-Chun III-57

Chinchapatnam, P. II-420

Chitphakdithai, Nicha I-367

Cho, Daniel S. III-205

Chowdhury, Ananda S. III-89

Chu, Winnie C.W. III-538

Chu, Xinqi II-522

Chung, Adrian I-69

Chung, Moo K. III-505

Ciompi, Francesco II-59

Clarkson, Matthew J. I-534, II-125

Clatz, Olivier I-111

Coe, Christopher I-690

Cointepas, Yann I-550

Collins, D. Louis II-92, II-290, II-643,

III-41, III-129, III-181

Colliot, Olivier I-316

Comaniciu, Dorin I-28, I-95, I-218,

I-383, I-460, I-476, III-269

Comas, Olivier II-371

Combès, Benôıt II-594
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Richa, Rogério I-267

Richardson, John B. III-181

Ridgway, Gerard R. II-125

Rigolo, Laura II-225

Riklin Raviv, T. III-634

Rinaldi, C. Aldo I-391

Rinehart, Sarah I-484

Risacher, Shannon L. III-611

Risholm, Petter II-554

Risser, Laurent II-610

Rittscher, Jens II-446

Rivaz, Hassan II-9

Rivière, Denis I-550, II-347

Roberts, C. III-121

Roberts, Timothy P.L. I-558

Robles, Montserrat III-129

Roca, Pauline II-217, II-347

Rodriguez Leor, Oriol II-59

Roed, Bjarne III-253

Rohkohl, Christopher I-151

Rohling, Robert N. II-626

Rohr, Karl I-444

Romagnoli, Cesare II-17

Rose, C.J. III-121

Rose, S. II-185

Rosen, Mark III-666

Ross, Ian G. I-409

Ross, James C. III-163

Ross, Thomas J. I-598

Rosso, Charlotte I-316

Roth, Holger III-497

Rother, Diego III-465

Rousseau, Francois I-574, II-339, II-355

Rowe, Matthew C. I-183

Rueckert, Daniel II-610, III-1

Rumbach, Lucien II-117

Rutherford, M.A. III-1

Ryan, Natalie I-534

Saad, Ahmed III-9

Saboo, Rohit III-335

Saha, Punam K. III-172

Sahin, Mustafa II-109

Sakuma, Ichiro II-50

Salcudean, Septimiu E. I-283, II-76,

II-429, II-626

Salganicoff, Marcos I-19

Salvado, Olivier II-125, II-185

Samarabandu, Jagath III-213

Sammet, S. II-201

Samset, Eigil II-554

Samson, Yves I-316

Sánchez, C.I. III-603
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Wedlake, Chris III-205, III-408

Weese, J. I-400, I-526

Wein, Wolfgang I-243

Weiner, Michael III-105

Weizman, Lior I-103

Weldeselassie, Yonas T. I-582

Wells III, William M. II-554

Wen, Xu I-283

Westin, Carl-Fredrik I-191, I-657, I-674,

II-225, II-233, III-163

Whalen, Stephen II-225

Wheeler-Kingshott, Claudia A.M. I-623

Whitcomb, Louis L. III-383

Wiener, Michael III-529

Wiles, Andrew D. III-587

Willinger, Rémy I-235
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