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Preface

The 5th International Workshop on Medical Imaging and Augmented Reality,
MIAR 2010, was held at the China National Convention Center (CNCC), Bei-
jing, China on September 19–20, 2010.

MIAR has remained a truly international meeting, bringing together re-
searchers from all fields related to medical image analysis, visualization and
targeted intervention. In recent years, technical advances in therapeutic delivery
and a growing demand for patient-specific treatment have accelerated the clinical
applications of MIAR-related techniques. Imaging plays an increasingly impor-
tant role in targeted therapy, with interventions such as drug or gene therapy
relying on more accurate delivery tailored to individual patients. Rapid progress
in surgical methodologies, such as those with robot assistance, demands pre-
cise guidance from both preoperative and intraoperative imaging. The volume
of data available from existing and emerging imaging modalities leads to a de-
sire for more automated analysis for diagnosis, segmentation and registration.
Research in this rapidly developing area is highly multi-disciplinary, integrating
research in life sciences, physical sciences, engineering, and medicine.

As a high impact workshop, MIAR continues to grow. For this year, we
received 139 full papers covering medical image formation, analysis and inter-
pretation; augmented reality, visualization and simulation; computer assisted in-
tervention and robotics; surgical planning; systematic extra- and intra-corporeal
imaging modalities; general biological and neuroscience image computing; and
patient specific modeling and medical image understanding. The papers were
judged by up to five reviewers in a double-blind review process. The quality
of the submissions was excellent and 60 papers (43%) were accepted by the
Program Committee. These papers were presented in a single track of oral and
poster sessions.

The organization of MIAR was very much a team effort and we are extremely
grateful to all members of the Program Committee and also members of the
International and Local Organizing Committees. The review process was kept
to a very tight schedule and we appreciate the commitment and professionalism
shown by all those who took part.

We also thank the invited speaker Prof. Zhi-Pei Liang from the University of
Illinois at Urbana-Champaign, USA, for his lecture on fast imaging with sparse
sampling. We are also grateful to Stephane Nicolau from IRCAD Taiwan, for his
invited talk on augmented reality surgical guidance.

We were delighted to host MIAR in Beijing, one of the world’s leading busi-
ness, cultural, and political centers. Its influence on education, entertainment,
media, fashion, and the Arts also contributes to its status as a major global
city. CNCC is the largest and newest international conference center in China.
Situated in the heart of Olympic Green, CNCC is right next to the Bird’s Nest
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(National Stadium) and the Water Cube (National Aquatics Center) and enjoys
unparalleled, easy access to all parts of this vibrant city.

For those who were not able to join us at MIAR 2010, we hope this volume will
serve as a valuable reference and we hope to see you at future MIAR workshops.

September 2010 Hongen Liao
PJ “Eddie” Edwards

Xiaochuan Pan
Yong Fan

Guang-Zhong Yang
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Abstract. Accurate segmentation of neonatal brain MR images remains
challenging mainly due to poor spatial resolution, low tissue contrast,
high intensity inhomogeneity. Most existing methods for neonatal brain
segmentation are atlas-based and voxel-wise. Although parametric or ge-
ometric deformable models have been successfully applied to adult brain
segmentation, to the best of our knowledge, they are not explored in
neonatal images. In this paper, we propose a novel neonatal image seg-
mentation method, combining local intensity information, atlas spatial
prior and cortical thickness constraint, in a level set framework. Besides,
we also provide a robust and reliable tissue surfaces initialization for our
proposed level set method by using a convex optimization technique. Val-
idation is performed on 10 neonatal brain images with promising results.

1 Introduction

Accurate segmentation of neonatal brain structures from magnetic resonance
(MR) images has important implications for normal brain development, as well
as for the diagnose and treatment of neurodevelepmental disorders such as pre-
maturity. Manual segmentation of neonatal brain structures is tedious, time
consuming, and also lacks of reproducibility. Therefore, it is necessary to use
automatic techniques for neonatal brain segmentation. However, despite of the
success of segmentation methods developed for adult brain, it still remains chal-
lenging to segment neonatal brain images [1,2] due to poor spatial resolution,
low contrast, and ambiguous tissue intensity distribution [1,3], as well as the
inverted contrast between white matter (WM) and gray matter (GM) [2].

Most existing methods for neonatal brain segmentation are atlas-based and
voxel-wise [1,3,4,5,6]. For example, Prastawa et al. [1] proposed an atlas-based
approach for neonatal brain segmentation. They generated an atlas by aver-
aging three semi-automatic segmented neonatal brain images and adopted the
� Corresponding author.

H. Liao et al. (Eds.): MIAR 2010, LNCS 6326, pp. 1–10, 2010.
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expectation-maximization (EM) scheme with inhomogeneity correction to achieve
tissue classification. Shi et al. [3] proposed a framework for performing neonatal
brain tissue segmentation by using a subject-specific tissue probabilistic atlas
generated from longitudinal data follow-up of the same subject. All the above-
mentioned methods for neonatal segmentation, however, are based on voxel-wise
segmentation. Geometric information has not been paid much attention in the
neonatal brain segmentation. However, geometric information describes the gra-
dient and boundary of tissue structures, constraints the relationship of structural
shapes, which is appreciated in tissue segmentation to manage the ambiguous
structural distributions, especially in neonatal images.

One of the most effective ways of incorporating geometric information for tis-
sue segmentation is to use active contour/surface models [7]. These models are
able to provide smooth and closed contours/surfaces as final segmentation, which
is not possible for the voxel-based segmentation methods. In fact, geometrically,
the human cerebral cortex is a thin, folded sheet of GM, with a nearly consistent
thickness of 1-5 mm for neonatal brains. Therefore, surface-based techniques are
considered to be more suitable for neonatal brain segmentation than the voxel-
based segmentation methods. To obtain a detailed geometric representation of the
cortex, many algorithms have been proposed using explicit or implicit surface rep-
resentation [8,9,10,11,12]. However, they cannot be directly applied to neonatal
brain images.

2 Method

In this paper, we present a novel surface-based method, utilizing local intensity
information, atlas spatial prior and cortical thickness constraint, for segmenta-
tion of neonatal MR brain images. We adopt the local Gaussian distribution fit-
ting (LGDF) energy [13], which describes local image intensities by Gaussian dis-
tributions with different means and variances. The means and variances of local
intensities are spatially varying functions, which enable the model to deal with
intensity inhomogeneities. A prior knowledge from atlases is then combined with
the LGDF energy to regularize the segmentation and further increase its ability
of handling inhomogeneities. Based on the fact that the cortex has a nearly con-
stant thickness, a constraint of cortical thickness can provide useful geometric in-
formation to guide more accurate segmentation. Accordingly, these three terms
are finally incorporated into a coupled surface-based method in such a way that
the surfaces are driven by the LGDF and spatial prior, while the distance between
the inner and the outer surfaces of cortex remains within a predefined range by
the constraint of cortical thickness. The contributions of this paper are three-fold:

a) We use adaptive mean and variance for the same tissue at different
locations of brain, for dealing with the inhomogeneities;
b) We use atlas prior information to guide the segmentation;
c) We use coupled surfaces to fit the CSF/GM and GM/WM bound-
aries with a cortical thickness constraint.
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An overview of the proposed framework is shown in Fig. 1. The framework con-
sists of three steps: (1) Preliminary segmentation for CSF, WM and GM, as shown
in the right panel of Fig. 1; (2) Partial Volume (PV) removal and correction of
the mislabeled CSF from WM, as shown in the bottom panel; and (3) Coupled
surface-based segmentation, as shown in the left panel. Steps (1) and (2) form an
initialization for the step (3). For better emphasizing our contribution, we will first
introduce step (3) in Section 2.1, and then steps (1) and (2) in Sections 2.2 and
2.3, respectively. The following sections describe the method in detail.

Fig. 1. The proposed framework for neonatal segmentation

2.1 Neonatal segmentation Using Coupled Level Set Method

In this section, we propose an implicit level set method based on local in-
tensity distribution fitting, spatial prior, and cortical thickness constraint for
neonatal brain segmentation. Let Ω be the image domain, I be a given im-
age, and {Ωi}N

i=1 be a set of disjoint image regions, such that Ω = ∪N
i=1Ωi,

Ωi∩Ωj =∅, ∀i �= j, where N refers to the number of regions. Based on the work
in [13], for each point x in the image domain Ω, the local Gaussian distribu-
tion fitting energy is defined as ELGDF

x =
∑N

i=1

∫
Ωi

−ωσ(x − y) log pi,x(I(y))dy,
where ωσ(x − y) is a Gaussian kernel with a scale parameter σ as proposed in
[14,15] and pi,x(I(y)) is the probability density, which is defined as pi,x(I(y)) =
1/(

√
2πσi(x)) exp(−(ui(x) − I(y))2/(2σi(x)2)), where ui(x) and σi(x) are local

intensity means and standard deviations, respectively. It is worth noting that
local intensity means ui(x) and variances σ2

i (x) are the spatially varying func-
tions, which are crucial in handling the inhomogeneity. Due to large overlap in
the tissue distribution, it is necessary to use spatial prior for guiding the seg-
mentation. In the following, we propose a new energy function which combines
the local Gaussian distribution fitting energy and spatial prior knowledge priori

from neonatal brain atlases,
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EL−Prior
x =

∑N
i=1

∫
Ωi

−ωσ(x − y) log(priori(y)pi,x(I(y)))dy (1)

The ultimate goal is to minimize Ex
L−Prior for all the center points x in the image

domain Ω, which directs us to define an energy function as the following double
integral: EL−Prior =

∫
EL−Prior

x dx. We can use one or multiple level set functions
to represent a partition {Ωi}N

i=1. For neonatal segmentation, we use three level
set functions φ1, φ2 and φ3 to represent WM, GM, CSF and background, where
the zero level surfaces of φ1, φ2 and φ3 are interfaces of WM/GM, GM/CSF, and
CSF/background, respectively. Let Φ=(φ1, φ2, φ3). Using Heaviside function H ,
the energy function based on the LGDF energy and atlas spatial prior can be
defined as

F=
∫ ( 4∑

i=1

∫
−ωσ(x−y) log(priori(y)pi,x(I(y)))Mi(Φ(y))dy

)
dx+ν

3∑
i=1

L(φi) (2)

where L(φi) =
∫

|∇H(φi(x))|dx is the length term to maintain a smooth con-
tour/surface during evolution, and Mi(Φ) are defined as M1 =H(φ1)H(φ2)H(φ3),
M2 =(1−H(φ1))H(φ2)H(φ3), M3 =(1−H(φ2))H(φ3), and M4 =1−H(φ3).

Minimization of the energy function F in Eq. (2) with respect to φi is achieved
by solving the gradient descent flow equations as follows,

∂φ1/∂t =−δ(φ1)H(φ2)(e1−e2)H(φ3)+νδ(φ1)K1

∂φ2/∂t =−δ(φ2)(H(φ1)(e1−e2) + (e2−e3))H(φ3)+νδ(φ2)K2

∂φ3/∂t =−δ(φ3)(H(φ2)H(φ1)e1+H(φ2)(1−H(φ1))e2+(1−H(φ2))e3−e4)+νδ(φ3)K3

(3)

where Ki = div
(

∇φi

|∇φi|
)

and ei(x) = −log(priori(x)) +
∫
ωσ(y − x)[log(σi(y))+

(ui(y)−I(x))2

2σi(y)2 ]dy.
As proposed in [9,11], the cortex layer has a nearly consistent thickness which

can be used to guide the surface evolutions. To utilize the cortical structural
information, we design a coupled surfaces model to constrain the distance of zeros
level surfaces of φ1 and φ2 within a reasonable range. Let the allowed distance
be [d D]. We adopt the coupling functions h(·) and ci(φj) in [16,9], where h(x)
is a function that h(x) = 1 when the distance between the two surfaces is within
an acceptable range, otherwise h(x) = 0, and ci(φj) is another coupling function
that remains the distance within an acceptable range. Therefore, we write

∂φ1/∂t = h(|φ2|) [−δ(φ1)H(φ2)(e1−e2)H(φ3)]+c1(φ2)|∇φ1|+νδ(φ1)K1 (4)

where h(·) and ci(φj) are defined as

h(x)=

⎧⎪⎪⎨
⎪⎪⎩

0, [x≤d] ∪ [x>D];
1, [d+f<x<D−f ];
1−(x−d−f

f
)2, [d<x ≤d + f ];

1−(x−D+f
f

)2, [D−f ≤x ≤D].

ci(φj)=(1−h(|φj |))
{

sign(φj), |φj |≥D−f ;
−sign(φj), |φj |≤d+f .

where f is the constant that determines the range of the preferable values for the
distance [d+f, D−f ] (In all our experiments, we set f=1). There are two advan-
tages of this design. First, the image-based force [−δ(φ1)H(φ2)(e1− e2)H(φ3)]



Automatic Segmentation of Neonatal Images 5

guides the surface evolution only when the distance between the two surfaces is
within the acceptable range. Second, when the distance is beyond the acceptable
range, this force does not affect the evolutions but the second term c1(φ2)|∇φ1|
is activated which will deflate the surface if the distance is below the minimum
acceptable value, and inflate the surface if the distance is beyond the maximum
acceptable value.

In a similar way, we write a new evolution equation for φ2,

∂φ2/∂t=h(|φ1|)[−δ(φ2)(H(φ1)(e1−e2)+(e2−e3))H(φ3)]+c2(φ1)|∇φ2|+νδ(φ2)K2 (5)

With the combination of local Gaussian distribution fitting energy, spatial prior
knowledge, and cortical thickness constraint, the proposed method is able to
achieve accurate segmentation for neonatal MR images. However, as 3D convo-
lution operations are performed every iteration, the proposed method is compu-
tationally expensive. A good initialization for the proposed method is not only
necessary to save time but also help avoid being trapped into local minima. In
the following section, we will propose a robust initialization method based on
convex optimization.

2.2 Preliminary Segmentation for CSF, WM and GM

Due to the fact that CSF has the highest intensity in neonatal T2 brain image,
we can first extract CSF from the brain image, and then separate WM from GM.
This design is much easier than the extraction of CSF, WM and GM simulta-
neously as in the conventional methods. To address the issue of inhomogeneity,
we adopt a joint segmentation and inhomogeneity estimation scheme. We first
logarithmically transform the intensities in order to make the bias b additive. We
then use two variables u1 and u2, which take values between 0 and 1, to repre-
sent the membership functions of three regions with M1 =u1u2, M2 =u1(1−u2),
and M3 = (1−u1). The intensities of each region are characterized by a global
Gaussian distribution with mean and variance as (ci, σ

2
i ). The atlas spatial prior

priori is also utilized for segmentation. We then propose the following energy
for segmenting the image into the regions of CSF, (WM+GM) and background,

E(u1, u2, ci, σi, b) = −
∑3

i=1

∫
log(priori(x)pi(x))Mi(x))dx

+ ν
∫

|∇u1|dx + ν
∫

|∇u2|dx, u1 ∈ [0, 1], u2 ∈ [0, 1]
(6)

where pi(x) = 1/(
√

2πσi) exp(−(log I(x) − ci − b)2/(2σ2
i )) and the last two terms

are the total variation of u1 and u2. By constraining both u1 and u2 to be
[0, 1], the minimization problem is convex with respect to u1 and u2 when
(ci, σi, b) are fixed [17,18]. Therefore, we can easily use the Split Bregman method
[19] to minimize u1 and u2. The global means ci and variances σ2

i can be
easily solved. For fixed (u1, u2, ci, σi), the bias field b can be determined by
b =

∑3
i=1((log I − ci)Mi/σ2

i )
/∑3

i=1(Mi/σ2
i ). In view of the slowly varying prop-

erty of the bias field, using the technique in [14], we can derive a smooth bias field
in this form, b =

((∑3
i=1((log I − ci)Mi/σ2

i )
)
∗g
)/((∑3

i=1(Mi/σ2
i )
)
∗g
)
, where
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∗ is the convolution operation, and g is a lowpass filter, such as a mean-filter
kernel or Gaussian-filter kernel.

After preliminary segmentation for CSF, we further apply the same scheme to
segment the image into WM, GM and background by masking off the CSF. The
energy is the same as Eq. (6). With these two convex models, we can achieve a
good preliminary segmentation for the neonatal images. For example, Fig. 2(a)
shows a slice of neonatal brain. Fig. 2(b) shows the preliminary segmentation
result obtained by these convex models.

a b c d

Fig. 2. Demonstration of preliminary tissue segmentation steps. (a) Original slice; (b)
Preliminary segmentation; (c) PV removal; (d) Correction of CSF from WM.

2.3 Partial Volume (PV) Removal and CSF Correction from WM

After preliminary segmentation, we find that many voxels between CSF and GM
are incorrectly classified as WM due to partial volume effect. In [2], Xue et al.
proposed a technique based on EM algorithm and Markov random field (MRF)
to remove the effect of PV. However, their PV removal strategy is somehow com-
plicated. In this paper, we adopt rather simple but effective scheme to handle
PV problem based on the observation that the misclassified WM are commonly
surrounded by the CSF and GM. For each segmented WM voxel, in its neighbor-
hood with size of w×w×w, let the number of WM, GM and CSF/BG be NWM ,
NGM , and NCSF . If NWM ≤ a, while NGM > NCSF ≥ b, then this WM should
be set as GM. If NWM ≤ a, while NCSF > NGM ≥ c, then this WM should be
set as CSF. In this paper, we set a = 3, b = 3, c = 6, w = 3 for all experiments.
Fig. 2(c) shows the correction result achieved by our PV removal scheme. In
our experiment, we also find that there are some CSF voxels in sulci that are
incorrectly labeled as WM. In this case, we adopt the scheme proposed in [2],
which is based on the observation that these mislabeled CSF are unconnected
with true WM volume, to correct these misclassified CSF from WM. Fig. 2(d)
shows the correction result for CSF. This preliminary result will be used as a
good initialization for the coupled level set method in Section 2.1.

3 Experimental Results

Data were acquired from a 3T Siemens scanner. T2 images of 70 axial slices were
obtained with imaging parameters: TR=7380 ms, TE=119 ms, Flip Angle=150,
acquisition matrix=256×128, and resolution=1.25×1.25×1.95 mm3. T2 images
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Fig. 3. 3D automatic neonatal brain segmentation results. From left to right: original
T2 slices, results by the proposed method, segmented WM, GM, CSF, and thickness
between WM/GM and GM/CSF surfaces.

are resampled to 1×1×1 mm3 before further processing. In our experiments, we
set the allowable thickness for cortex as [1 6.5]mm, ν = 0.5 for Eq. (2), ν = 0.25
for Eq. (6), and σ = 3.0. The functions δ and H are regularized as in [20]. The
level set functions are reinitialized every iteration using fast marching method
[21].

Our method has been validated using images obtained from 10 neonates.
Due to the page limit, we show only the segmentation results for five subjects
in Fig. 3. The first two columns show the original T2 slices and segmentation
results of our coupled level set method. To better view the results, we also
present the hard segmentations of WM, GM and CSF in columns 3, 4 and 5,
respectively. Visual inspection of these results shows that WM, GM and CSF are
reasonably well segmented. The last column visualizes the distance (or thickness)
between WM/GM surface and GM/CSF surface. It can be seen that most of
cortical thickness of these subjects are [1 5] mm, which is consistent with what
we assumed.

Validation of the automatic segmentation results is difficult because ground
truth is not available. For comparison, we have to refer to the manual
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Fig. 4. (a): Segmentation results on two representative subjects. Column 1: original
T2 images; columns 2 and 3: manual segmentation results by two experts; column 4:
results by our proposed method; Column 5: results by the method of Shi et al.. (b):
Comparison of segmentation accuracy on WM and GM for 10 subjects by different
methods.

segmentations by experts as our ground truth. Fig. 4(a) shows the segmenta-
tion results of two representative subjects by two expert raters (columns 2 and
3) and by our method (column 4). By visual inspection, our results are compara-
ble with those produced by expert raters. As atlas-based segmentation method
is popular for neonatal brain segmentation, we do another comparison with the
latest atlas-based segmentation method proposed by Shi et al. [3], with their
results shown in the last column. To have a fair comparison for GM, we mainly
compare the segmentation performance in the cortical regions. We employ Dice
Coefficient (DC) [22] to measure the overlapping rate between two segmenta-
tions, which is defined as DC = 2|A ∩ B|/(|A| + |B|). DC ranges from 0 to 1,
corresponding to the worst and the best agreement between labels of two regions.
We first compare our results with manual segmentations by two raters. The mean
and standard deviation of DC values of the WM and GM segmentations of all
10 subjects are presented in the first three pairs of bars in Fig. 4(b). We can
observe that our proposed automatic segmentation method achieves comparable
segmentation performance on WM and GM as manual raters. Taking the manual
segmentation from rater 1 as ground truth, we then compare with the method
of Shi et al. [3], and provide the results in the last pair of bars. It can be seen
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that our proposed method outperforms the method of Shi et al., by achieving
the relatively higher DC values for both WM and GM.

4 Conclusion

We have presented a novel surface-based method for neonatal brain segmenta-
tion. Our method effectively utilizes local image information, atlas prior knowl-
edge, and cortical thickness constraint for guiding the segmentation, by integrat-
ing them into a coupled level set method. We also provide a robust initialization
method using convex optimization for this coupled level set method. Our pro-
posed method has been validated on 10 subjects with promising results. In our
future work, we will test our proposed method with more data.
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1 Center for Imaging Science, Johns Hopkins University, Baltimore MD, USA
2 Imaging and Visualization, Siemens Corporate Research, Princeton NJ, USA

ertan@cis.jhu.edu, {akif.gulsun,huseyin.tek}@siemens.com

Abstract. We present a unified coarse-to-fine approach for extracting
the medial axis representations (centerlines) of human vasculature in
contrast enhanced (CE)-CTA/MRA. The proposed method constitutes
two separate analysis stages that are successively applied (and repeated)
for a refined extraction. The former stage involves the use of a graph-
based optimization algorithm that identifies the minimum-cost paths
between user-specified seed points. The costs of all feasible paths are
efficiently computed via the medialness filter, which is a contrast- and
scale-invariant local operator sensitive to the presence of tubular struc-
tures. Nonetheless, image noise and the presence of nearby blood vessels
can affect the quality of detection and delineation. In the latter stage,
we thereby employ a novel multiscale orientation descriptor so as to
guide/stop additional minimal path extraction steps. Specifically, the de-
scriptor is designed to classify a point of interest as vessel or non-vessel,
as well as to obtain a reliable estimate of the number and directions of
the vascular segments (branches) at a vessel point. Our method improves
the accuracy of extraction by robustly identifying critical configurations
such as bifurcations, endpoints, or non-vessel points, and thereby delin-
eating/eliminating missing/spurious vessel branches.

1 Introduction

In clinical applications, medial axis (centerline) representations of cardiac vascu-
lature are important for diagnosing pathologies through advanced visualizations,
treatment and surgery (e.g., CABG) planning, and follow-up studies. There has
been numerous works in obtaining such representations from contrast enhanced
(CE)-CTA/MRA (see [1] and references therein). In general, centerline segments
between seed points can easily be extracted if the vessel segment is well-isolated
or the user can place additional seed points at anatomically correct locations.
However, in the case of more complex configurations, accurate, automatic and
timely extraction of full centerline trees still remains a challenging problem.

A particularly popular class of algorithms known as the minimal path tech-
niques identify the minimum-cost path as the vessel centerline. The costs of all
feasible paths can be efficiently computed by using different operators such as
the vesselness filters [2], medialness filters [3,4], image Hessian [5], polar intensity
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profiles [6], bank of oriented difference filters [7], or optimally oriented flux [8].
However, a resulting path cannot always correspond to the true centerline as
there may be another path with a lower cost due to the presence of nearby struc-
tures. Furthermore, traditional minimal path schemes often face difficulties in
detecting every vessel bifurcation when the goal is to extract the full centerline
tree, e.g., coronary centerline tree. It is also difficult to determine the endpoints
of the centerlines without producing additional spurious branches, i.e., poor con-
vergence due to leakage towards the non-vascular areas [4].

In this paper, we thereby present a unified coarse-to-fine approach to extract
the centerline representation of vessel trees robustly, timely and automatically.
The proposed method involves the use of a minimal path-type tracking (propaga-
tion) algorithm, which employs an efficient contrast- and scale-invariant operator
called the medialness filter for centerline localization. This stage can be consid-
ered as a traditional minimal path extraction scheme (described in our previous
work [4]) to obtain a coarse estimate of the vessel centerline. The main contribu-
tion of this paper is to further improve the accuracy and robustness of extraction
by characterizing image points on the propagating front via a multiscale orienta-
tion descriptor so as to guide/stop the propagation. Specifically, the descriptor is
designed to classify a point of interest as vessel or non-vessel, as well as to yield
a reliable estimate of the number and directions of the branches at a vessel point.
Inspired by the concept of orientation distribution function (ODF) in diffusion
weighted (DW)-MRI, the descriptor is used to compute a discrete spherical con-
figuration function which provides, for each unit vector (point on the 2-sphere),
an estimate of the probability of having a vascular structure oriented along that
vector. The number of the modes of this function characterizes the configura-
tion at the point of interest, whereas the modes themselves are used to guide the
propagating fronts. We observe that successive application of this unified method
(until the propagation stops) improves the quality of the extracted centerlines
by identifying critical configurations, e.g., non-vessel points, bifurcations, vessel
endpoints, and thereby extracting/eliminating missing/spurious branches.

2 Minimal Paths as Vessel Centerlines

Medical image analysis tools developed for clinical applications often employ
graph-based minimal path extraction techniques for delineating centerlines of
blood vessels [9,6,10]. Due to the existence of efficient implementation schemes,
this type of algorithms provides an attractive approach to select the minimum-
cost path among all feasible paths between user/automatically-placed seed points.
A key ingredient in minimal path techniques is the definition (and use) of a local
operator that computes the individual costs of moving from a voxel to another.
The former stage of our proposed framework comprises such an algorithm, which
employs multiscale medialness filters as the local operator.

Medialness filter: Vascular structures in CE-CTA/MRA have, in general, cir-
cular/elliptic shapes in cross-sectional views, e.g., a bright disk surrounded by
a darker ring, even though the presence of nearby vessels or pathologies might
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cause slight deviations in shape. The medialness filter is designed to capture
this particular structure by means of computing several “edgeness” responses.
Specifically, the medialness response m(x) at a point x is computed on a circle
of radius r centered at x, i.e., m(x) = max

r∈R
∑N−1

n=0 ε(x + ru(2πn/N)), where N

defines the angular resolution, u(α) = sin(α)e1 + cos(α)e2 with e1 ⊥ e2 ∈ R
2,

‖ek‖ = 1, for k = 1, 2, and ε measures the normalized edge response derived
from the image gradients, as described in [4]. While the filter produces a strong
response at the center of a vessel, the response drastically drops towards vessel
boundaries and becomes very small (but non-zero) in non-vascular areas. How-
ever, one should also note that the value of the radius r is critical for decreasing
the corruptive effect of nearby vessels or other bright structures.

Identifying paths from medialness maps: Having defined an operator to
compute the medialness maps, we aim at finding the optimal feasible path (curve)
between seed points, which is expected to coincide with the centerline of the
vessel of interest. For this purpose, let C denote the set of all feasible curves
between two seed points and E(C) represent the total energy (or cost) along a
curve C(s) parameterized by the arc length s. The optimal curve Ĉ is identified
as the curve with total minimum energy, i.e.,

Ĉ = arg inf
C∈C

E(C) = arg inf
C∈C

∫
Ω

(P (C(s)) + ω)ds, (1)

where P (·) is the potential, which corresponds to the inverse of the medialness
measure at x, i.e., P (x) = 1/m(x), and ω is the regularization term. Often
encountered in various applications in computer vision, e.g., segmentation, this
type of optimization problems can be solved by either Dijkstra’s algorithm [11]
or fast marching methods [12]. In this work, we employ Dijkstra’s algorithm to
solve (1) via explicit discrete front propagation. We use a 26-connected 3-D lat-
tice and compute the cost of propagation between neighboring nodes from their
potentials. The optimal curve is obtained by traversing (backtracking) along the
propagation. We kindly refer the reader to [4] for an extended discussion and
further details on the implementation.

The algorithm provides promising results even on vessels with high curvature
or in the presence of strong calcification (see Fig. 1(a)). However, it should also
be noted that it may not always yield the correct vessel centerline. For instance,
as shown in Fig. 1(b), the algorithm might yield an erroneous path with a smaller
cost. Since the medialness responses are low, yet non-zero around and outside
the vessel walls, leakages towards the nearby vascular/non-vascular areas might
occur. Furthermore, convergence of the propagating fronts, i.e., detection of ves-
sel endpoints, might be problematic. In order to address these issues, one needs
to obtain a more accurate, reliable and refined representation of the local vascu-
lar topology and the propagating fronts are remarkably well-positioned points of
interest at which such local representations can be helpful. We thereby present
the design of a multiscale orientation descriptor to obtain such a representation,
i.e., configuration function, for eliminating spurious branches, guiding the prop-
agating fronts towards vascular segments and determining their convergence.
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(a) (b)

Fig. 1. Selected results of the minimal path detection algorithm: (a) Accurate centerline
extractions, (b) Two distinct paths (red: erroneous, blue: correct) on a carotid artery
in CE-CTA. The extraction is affected by the presence of a nearby structure.

3 Characterization of Local Vessel Configurations

In order to accurately guide the fronts towards vascular segments (or stop them
generating spurious branches), we propose the use of a refined local representa-
tion, which we named as the configuration function (CF) p : S2 �→ R

+ computed
via a robust multiscale orientation descriptor. The descriptor takes a spherical
neighborhood around a point of interest x and estimates the value of p(s; x),
i.e., the “probability” of having a linear vessel segment oriented along s. For
computational efficiency, we compute a discrete approximation of the CF at
N = 162 vectors {sn}N

n=1
.= S defined by the twofold icosahedral tessellation.

3.1 Orientation Descriptor

As depicted in Fig. 2(a), the descriptor is an oriented matched filter centered
at a fixed point x and has a moving point f located at a distance l from x.
Being a modified version of the filter presented in [13], it scans a candidate
direction s ∈ S by aligning the segment xf with s such that f = x + ls.
The points {fk}2K

k=1 are placed on a circle of radius r orthogonal to xf so as
to encapsulate the vessel segments around x. Consecutive segments

−→
xfk and−→

xfk+1 are separated by an angle α = π/9 and (fk, fk+K) forms an antipodal
pair. Notice that the shape of the spatial support resembles a cylindrical tube
oriented along s with length l and diameter 2r, which is in accordance with the
assumption of the aforementioned medialness filter on vessel cross-sections.

3.2 Computation of the Configuration Function

The descriptor is used to compute, ∀s ∈ S, three separate yet intertwined mea-
sures: intensity homogeneity, minimum gradient flux, and nonlinear photometry.
Their combination gives an estimate of the CF at a point of interest.
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Intensity homogeneity: The intensity values along a tubular structure are
expected to be coherent. The first measure, similar to the one in [14], quantifies
this homogeneity along s ∼ xf as

H(s, l; x) .=
1
l

∫ 1

0
|I(x + λls) − I(x)|2dλ ≈ 1

|Ωs|
∑

p∈Ωs

|I(p) − I(x)|2, (2)

where Ωs denotes the set of voxels on xf . The homogeneity is maximized,
i.e., H(s, l; x) is minimized, when s aligns with the vessel direction. The re-
sulting measure is computed as p1(s; x) = exp(−β1 ×

∑
l∈L H(s, l; x)), where L

is the set of feasible lengths and β1 > 0 is a user-specified parameter.

Minimum gradient flux: This component uses a flux-type measure that seeks
to align the normal vectors at {fk} with the image gradients [15] as

F (s, l, r; x) .=
1
K

K∑
k=1

min{|n�
k ∇I(fk)|, |n�

k+K∇I(fk+K)|}, (3)

where nk is the unit vector such that fk = f + rnk, nk = −nk+K , and
∇I(p) is the image gradient at p. Assuming that the vessels have circular
cross-sections, F is maximized when {fk} are placed on the vessel boundary.
A coarse estimate of the radius of a vessel segment is thereby obtained as r̂ =
argmaxr∈R

∑
l∈L F (s, l, r; x). The resulting measure is computed as p2(s; x) =

exp(β2 ×
∑

l∈L F (s, l, r̂; x)) with a user-specified parameter β2 > 0.

Nonlinear photometry: Here, the estimate of the radius is first used for
repositioning the points {fk} such that r = r̂ + 1, in order to fully encapsulate
the vessel. These points are then utilized, together with {x, f}, to obtain the
nonlinear photometry of the descriptor at x. Specifically, for the k-th pair of
antipodes (fk, fk+K), the partial photometry is computed as

Dk(s, l; x) =

{
1 if |I(f )−I(x)| ≤ min{|I(f)−I(fk)|, |I(f )−I(fk+K)|}
0 otherwise.

(4)

The cumulative photometry is subsequently computed over all pairs of antipodes
as D(s, l; x) = 1

K

∑K
k=1 Dk(s, l; x). Notice that this response should be high

when s aligns with the vessel direction. The resulting measure is computed as
p3(s; x) = exp(β3 ×

∑
l∈L D(s, l; x)) with a user-specified parameter β3 > 0.

The CF at a point x is computed by multiplying the aforementioned measures,
i.e., p(s; x) ∝

∏3
i=1 pi(s; x). By using such a combination strategy, one does not

observe the sensitivity of the intensity homogeneity to noise or numerical errors
in the computation of the image gradients for very thin vessels. However, each
individual measure should have mode(s) (or relatively high values) at directions
close to the ones of actual vascular segments in order not to cancel the contri-
butions of the remaining measures out. Fig. 2(b) shows a bifurcating synthetic
tubular structure with three points of interest and the resulting CFs at those
points. Notice that the directions at which the CFs attain their modes coincide
with (or are close to) the actual local orientations.
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Fig. 2. (a) Support of the descriptor and its usage along candidate vectors, (b) 3 points
of interest on a 3-D synthetic fiber (top view), the descriptor aligned with the vessel
segments at point 2, and the CFs whose values are color-coded (blue∼low, red∼high)

3.3 Identification of Vessel Configurations

Characterization of the local vessel topology is performed by analyzing the CFs.
If x is on a vessel, its CF p(·; x) is expected to have a “modal shape”, otherwise
the values p(sn; x) ≈ 0, ∀n. In addition, since {sn} ⊂ S2 can be considered as
data points with weights {p(sn; x)}, estimating the front propagation directions
is equivalent to finding the modes of the CF. Therefore, one can apply the
uniformity test [16] on spherical distributions to initially classify a point x as
vessel or non-vessel, and then locate the modes of the CF if x is a vessel point.

Classification via the uniformity test: This test is primarily useful in iden-
tifying and pruning spurious branches. Let us denote the value p(sn; ·) with ρn

and write sn = (xn, yn, zn). The uniformity test involves the computation of the
resultant vector r

.= (
∑

n ρnxn,
∑

n ρnyn,
∑

n ρnzn). The reliability of the test
can be further improved by defining a brightness factor γ to modify the resultant
vector such that r ← γr. Here, the factor γ emphasizes locally brighter voxels,
which is a common occurrence for blood vessels in CE images. It is computed as

γ
.= [1+exp(−β4×| max{I(p) : p ∈ PsHmin

}−min{I(p) : p ∈ PsHmax
}|)]−1, (5)

where β4 > 0 is a user-specified parameter, PsHmin
and PsHmax

are the sets of
voxels along the direction of minimum and maximum homogeneity, respectively.
The uniformity test proceeds as follows: If ‖r‖ ≈ 0, then the vectors {sn} with
weights {ρn} are “uniformly” distributed on S2 and the point of interest is
identified as non-vessel. However, if ‖r‖ � 0, the corresponding CF has mode(s)
and the point of interest is on a vascular segment. For the latter case, we further
identify the type of vascular topology by detecting the mode(s) of the CF.

Mode detection via spherical clustering: The mode detection problem is
solved by employing a nonparametric kernel density estimator called the mean
shift algorithm [17]. The kernel is selected to be the von Mises-Fisher kernel
Φ(s, µ; κ) [16] between µ and s with the concentration parameter κ > 0. The
method approximates a CF at µ as p̃(µ; x) = ZΦ

∑
n

ρnκn

4π sinh(κn) exp(κns�
n µ)
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with a normalization term ZΦ [13]. The adaptive factor κn is computed as the
inverse of the geodesic distance between sn and its third nearest neighbor and
the modes are located by gradient ascent. As a result, the algorithm can, for
instance, further identify a vessel point as a bifurcation (trimodal CF), a regular
point (bimodal CF), or an endpoint (unimodal CF) (see Fig. 2(b)).

4 Unified Approach: Overview and a Motivating Scenario

The propagation algorithm employing the medialness filter produces promising
trajectories, which often coincide with the actual vessel centerlines. Nonetheless,
longer propagations to locate the branch endpoints may yield anatomically in-
correct results as well as unnecessarily increased computation times due to the
accumulative nature of the method. Moreover, in the case of bifurcations, the
fronts should propagate towards the vessel walls to track both branches. How-
ever, the filter response might be low when a branch is very thin relative to
the other (Fig. 3(a)). We address these issues by integrating the aforementioned
topology characterization stage into the propagation scheme.

Specifically, we apply the orientation descriptor at the front points, denoted by
X , to either guide the propagation solely towards unexplored vessels/branches
or to terminate it at a branch endpoint. In other words, if a front point x ∈ X
is identified as non-vessel, we remove x from X and terminate its propagation.
Alternatively, if x is identified as a vessel point, we find the direction(s) at which
the CF p(·; x) attains its mode(s) and favor the propagation towards the “unex-
plored” direction(s). We demonstrate this procedure in Fig. 3(b), which shows
three points of interest {A, B, C} on the moving front of an artery. Accordingly,
the front point A is removed from the propagation while B and C are kept for
further propagation as the CFs at these points indicate the presence of possibly
unexplored areas. Likewise, the orientation descriptor at the endpoint of a vessel
branch would yield a unimodal CF whose mode indicates an already-explored
area, generating a termination flag for the algorithm.

(a) (b)

Fig. 3. (a) Response of the medialness filter (blue∼low, red∼high) along a bifurcating
vessel, (b) Local orientations extracted via the descriptor at points {A, B, C}
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5 Validation and Discussions

Validation of the proposed method is performed via two different experiments.
We initially evaluate the stand-alone performance of the orientation descriptor at
selected points of interest in CTA data. Recall that the support of the descriptor
should be constructed to fully encapsulate the coronary arteries. Therefore, after
a careful examination of the structure (width and curvature) of the arteries
in the dataset, the support is formed1 such that l ∈ {0.3, 0.6, . . . , 3} and r ∈
{0.4, 0.8, ..., 2} (in voxels). It is also worth noting that the maximum value of
l determines the extent of “multiscale” characteristic of the descriptor. Finally,
the values for βi, which describe the amount of deviation from the modes, are set
to {βi}4

i=1 = {6, 3, 3, 10}. Although the performance of the descriptor does not
change drastically depending on the values of βi, a good rule of thumb would be
to select values between 1 to 20. Fig. 4 shows the outputs of the descriptor at
several points of interests (in blue) placed on/outside of two coronary arteries.
While the trajectories in yellow delineate the actual centerlines, the points in red
are placed to indicate the local vessel directions, i.e., vectors from blue points
to nearby red points. We obtained such promising results that for the selected
arteries, the descriptor achieves an excellent performance by misidentifying only
one bifurcation. Overall, it correctly classified about 90% of the analysis points
in the dataset and different parameter settings produced comparable results.

We subsequently tested the proposed unified approach on several coronary
CTA data where the ostia points are automatically detected for algorithm ini-
tialization. Fig. 5 shows two automatically constructed coronary centerline trees
using this approach. We observed that the method successfully detected clinically
significant branches and decreased the number of spurious branches. In addition,
small distal centerlines were detected due to improved convergence. Another ad-
vantage of the algorithm is that since a vessel bifurcation can be detected at one
of the many moving front points, missing the bifurcation at a single front point
does not affect the extraction accuracy. Due to strong empirical evidence, we an-
ticipate that the proposed approach quantitatively outperforms its predecessor
in [4], whose performance was reported in great detail in [1].

In conclusion, the integration of the estimation and analysis of the configura-
tion function into the minimal path detection algorithm improves the accuracy
of vessel centerline tree extraction by identifying critical configurations such
as bifurcations, endpoints, and eliminating erroneous vessel branches. Specifi-
cally, the unified approach provides the following improvements: 1) leakage to
neighboring vessels or other bright structures are often prevented, 2) automatic
convergence of the propagating fronts are established, and 3) branching topolo-
gies are identified more accurately. Our future work will focus on achieving such
results in real-time. In addition, other supervised mode detection strategies such
as k-means or expectation-maximization will be tested as the local topology of
the arteries is anatomically restricted.

1 An alternative strategy to adjust such parameters is to perform statistical inference
from training data.
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Fig. 4. Evaluation of the orientation descriptor on selected arteries: Ground truth cen-
terline (yellow), analysis points (blue), resulting vessel/branch directions (blue→red)

Fig. 5. Extracted coronary centerline trees using the proposed unified approach (initi-
ated at automatically detected ostia points)
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Abstract. Statistical shape models provide versatile tools for incorporating sta-
tistical priors for image segmentation. Difficulties arise, however, when the tar-
get anatomical shape differs significantly from the training set used for model 
construction. This paper presents a novel approach for fast and accurate seg-
mentation of subject-specific geometries based on models largely derived from 
normal subjects. This technique is particularly suitable for analyzing complex 
structures such as severely abnormal patient datasets. The proposed method 
uses online principal component update to incorporate subject-specific geome-
try. Mixture models are used to estimate the latent density distribution of the 
data, thus enabling adequate constraining during active shape propagation. Va-
lidation based on hypertrophic cardiomyopathy (HCM) datasets with MRI 
shows significant improvement in overall accuracy and increased adaptation to 
complex structures. 

Keywords: Statistical shape models, subject-specific segmentation, incremental 
principal component analysis, Gaussian mixture models. 

1   Introduction 

In medical image computing, statistical shape modeling [1] has an established role for 
studying complex 3D geometries. One of the main challenges of the technique is in 
the handling of unseen shapes, particularly for morphological variations associated 
with pathological changes. For patients with Hypertrophic Cardiomyopathy (HCM) – 
a common form of genetic myocardial disease, for example, a large part of the myo-
cardium may be thickened at the septal region, thus causing significant deviations to 
normal cardiac morphology. To compensate for the associated functional abnormality, 
the left ventricle undergoes significant shape remodeling over time at different parts 
of the myocardium. In particular, the endocardium can lose its sphericity and the 
remodeled morphology tends to be arbitrarily complex [2]. In such situations, the 
application of statistical shape modeling can result in poor approximation of what is 
often an unpredictable structure based on the captured modes of variation of the train-
ing data. To cater for better approximation of unseen shapes, a number of shape mod-
eling techniques have been proposed to improve the capabilities of statistical models 
built from limited training samples. In [3], for example, the use of wavelet transforms 
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as the underlying variables has been attempted to alleviate the model over-fitting 
problem in active shape models (ASMs). In [4], synthetic models were combined with 
statistical modes of variation to allow for additional flexibility during segmentation. 
An alternative solution was developed in [5], suggesting the enlargement of the train-
ing set by the incorporation of artificial variations. These techniques, however, cannot 
handle the case of arbitrarily abnormal shapes such as the ones encountered in HCM 
datasets, which tend to differ significantly from subject to subject, even among the 
same family. Consequently, a more practical approach is to incorporate adaptive (in-
cremental) training during segmentation such that a certain amount of information 
about the subject-specific geometry can be learnt. In [6], for example, the authors 
propagate the end-diastolic boundaries across the cardiac cycle by using a multi-linear 
dynamic model. The technique, however, is not designed for analyzing severely  
abnormal cases. 

In this paper, a method is introduced for efficient incorporation of subject specific 
information for accurate spatio-temporal segmentation. The technique is particularly 
suitable for complex and diseased anatomical structures that are described by cine 
image data. An incremental principal component algorithm is presented, which en-
ables fast and efficient modification of the main modes of shape variation. The gath-
ered knowledge is then incorporated into a mixture model for improving the  
constraints used for segmenting subsequent image data. In essence, this enables the 
new model to combine both the temporal properties as captured offline from the ini-
tial training data and subject-specific properties online. The framework is applied in 
this paper to MR segmentation of the endocardial boundaries of patients with HCM. 
Detailed experiments are carried out to quantify the performance achieved by the 
proposed incremental mixture model (IMM). 

2   Methods 

2.1   Incremental PCA  

One of the key considerations of this paper is on efficient online learning of com-
plex shapes. For normally distributed samples, Principal Component Analysis 
(PCA) is widely used for statistical shape modeling. This is not appropriate for 
online dimensionality reduction since this would involve the computation of a new 
set of eigenvectors from a growing training set. In this paper, an update scheme 
based on Incremental PCA (IPCA) is used instead. IPCA and Incremental Singular 
Value Decomposition (ISVD) [7] are effective methods for estimating missing or 
contaminated information by back projecting the data from the PCA space to the 
original axes. In this paper, a more robust IPCA method as recently proposed in [8] 
is used, which involves the following key steps. Firstly, in order to obtain the re-
siduals r  associated with a new shape x , its closest instance within the current 
model is computed as follows:  

nnaUy μ+=  (1) 
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where ( )n
T

n xUa μ−= , yxr −= , and nU  is the current eigenvector matrix and nμ  
the mean of all the batch samples. In Eq. (1), x  is the new shape, y  represents the 
closest shape vector within the model. Subsequently, the eigenvector matrix is in-
creased by one dimension before rotation, i.e.,  
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where U ′  is the appended eigenvector matrix. The dimensionally-increased eigenvec-
tor matrix is in the same form as a real eigenvector matrix, except that it does not 
balance the new data coefficients. To this end, PCA is performed on the appended 
coefficient matrix with the aim to obtain the rotation matrix from the principal com-
ponents, i.e., 
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where A′  and nA  are the appended and current coefficient matrices in the eigenspace, 
respectively. μ ′′ , U ′′  and λ ′′  are the mean, eigenvectors and eigenvalues of A′ , 
respectively. The new eigenvectors of the balanced system are those in the dimension-
increased eigenvector matrix after rotation, i.e., UUUn ′′⋅′=+1 and μμμ ′′′+=+ Unn 1 , 
where 1+nU  and 1+nμ  are the rotated eigenvectors and the updated mean, respectively. 
The least significant principal components are then removed as in conventional PCA. 
In this study, user delineations are incrementally added into the new model by using 
the IPCA as described above. As a result, the space is balanced as the variation energy 
of the newly added shapes in the PCA space is reduced. 

2.2   Incremental Mixture Models  

In practice, the delineated samples can have a large distance to the mapped training 
data in the multi-dimensional feature space due to the very nature of subject-specific 
modeling. In this case, the PCA axes would attempt to interpolate this new non-
Gaussian distribution, thus introducing a bias in the allowable domain that will pro-
hibit suitable use of the incorporated subject-specific information. To circumvent this 
problem, we have combined IPCA with a mixture model approach [9]. With this 
method, the probability associated with a given shape is computed and if it is lower 
than a predefined threshold, the shape is regarded as invalid even if it is within the 
original allowable domain as defined by PCA. With this mixture model, the shape 
regulation can be regarded as a multi-class classification problem, where the member-
ship of a shape belonging to a certain cluster of shapes can be computed by using 
Bayes rule. In this way, the density estimation based on training data is a maximum 
likelihood estimation (MLE) problem [10]: 

( ) ( )∑
=

=
g

i

ii xfxf
1

;;ˆ θπφ  (4) 
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where f̂  is the estimated density of the mixture models, if  is the ith model, iπ  is the 
weight of the ith model, θ  is the parameters of the model, g  is the total number of 
models, and φ  are the nuisance parameters to be estimated. By choosing a Gaussian 
kernal for the density estimation of the multivariate data, Eq. (4) becomes:  

( )∑
=

=
g

i

iii SxNxf
1

,:)(ˆ μπ  (5) 

and the nuisance parameters are the weights, mean iμ  and variance iS  of all the 
Gaussian bumps. To compute the MLE, ideally marginal likelihood functions should 
be known. The estimation of these functions is performed through an expectation-
maximization (EM) algorithm [9], i.e.,     
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where iT  is a fixed covariance of each sample.  
Based on the incremental principal components and the mixture models described 

above, the implementation of IMM is as follows: by incorporating the results from 
IPCA, the starting position of the modified EM algorithm becomes the updated eigen-
coding rather than the batch eigen-coding. The means of Gaussian clusters are IPCA 
eigen-codings of randomly selected shapes in the training set, i.e., ( )jIPCAi sT=μ  and 

ji TS = , where i and j denote the ith Gaussian bump and the jth sample, respectively, 
and IPCAT  denotes the IPCA transformation as described in section 2.1 while js  is the 
jth shape in the training set.  

To perform segmentation, we first use all shapes in the training set to build a statis-
tical shape representation based on the mixture models. The new subject-specific 
shapes are then incorporated by updating the original components using IPCA. Sub-
sequently, the EM algorithm as described above is used to generate the density of 
latent variables, with the starting positions obtained from IPCA update. For a new 
segmentation task, the boundary points detected through appearance matching on the 
image data are projected into the updated PCA space. If the probability of the pro-
jected shape is above the predefined threshold, it is considered as valid and can be 
used for the next iteration of appearance matching and regulation. If the probability is 
below the threshold, the shape is classified to the closest shape cluster. It then moves 
uphill in terms of the cost function towards the relevant cluster until its probability is 
greater than the threshold and thus the regulated shape can be used for subsequent 
active search iteration. It is worth noting that an appropriate threshold can be chosen 
as a factor (generally chosen between 2 and 3) of the standard deviation of the lowest 
Gaussian bump. 
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The proposed incremental mixture model has a number of advantages for spatio-
temporal tracking of abnormal morphology. Unlike approaches based on the ASM [1] 
or batch mixture models [9], it can efficiently update the statistical model with sub-
ject-specific information that can guide the spatio-temporal tracking towards more 
plausible solutions. Additionally, while the incremental PCA proposed in [11] uses a 
multivariate Gaussian hypothesis that promotes solutions closer to the normal training 
data, IMMs are particularly suitable for the segmentation of outlying test shapes (e.g., 
severe abnormal data) as illustrated in Fig. 4, where it can be seen that they can con-
strain subsequent tracking accurately. 

2.3   Data Collection  

The left ventricular samples used for validation were collected by scanning a total 
of 81 subjects (60 normal and 21 patients with HCM) using a 1.5T MR scanner 
(Siemens Sonata 1.5T, Erlangen, Germany) and a trueFISP sequence. The acquisi-
tion parameters consist of an in-slice pixel resolution between 1.5 and 2 mm, a slice 
thickness of 10 mm, and a temporal resolution from 31.5 ms to 37.8 ms. For deriv-
ing the ground truth for the endocardial boundaries of the LV, manual delineation 
was performed by an expert clinician using 128 landmarks for each 3D shape. Addi-
tionally, the RV/LV junction points were manually defined in all short-axis images 
and frames. Based on these positions, the landmarks were uniformly distributed 
along the boundaries to establish point correspondences. Finally, the image datasets 
were temporarily re-sampled so that they have approximately a temporal resolution 
of 48 ms. 

3   Results 

The proposed framework was applied for the segmentation of the 21 HCM cine data-
sets, where the batch model was constructed based on the 60 normal datasets. For 
comparison, three different versions of the ASM that include the original formulation 
in [1], the Gaussian mixture model technique (MM) [9] and the IPCA in [11] were 
implemented. Both the ASM and the MM techniques utilized the batch model for the 
segmentation, while the IPCA and the IMM performed a model update at each 
search based on the shape at previous frame Therefore, the user was only required to 
delineate the first frame in order to initiate the segmentation process for the entire 
cardiac cycle. All the segmentation techniques were initialized at each frame by 
placing the 3D shape obtained at previous frame at the center of the target LV. The 
4D tracking was carried out starting at end-diastole until the end-systolic time frame. 
For all four methods, 30 principal components were selected to form the feature 
space. For the modeling and evaluation of grey-level local appearance, standard 
eigen-profiles were used following the method by Cootes et al. in [12]. We have 
focused in this paper on the endocardial boundaries because they are geometrically 
challenging for HCM datasets due to the significant remodeling and complexity 
involved. Validation with other cardiac structures, e.g., LV epicardial borders, is part 
of our future work. 
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Table 1. Segmentation error statistics for the ASM, MM, IPCA and IMM (in mm) 

 ASM MM IPCA IMM 
Mean error 4.78 4.90 4.98 2.86 
St. deviation 1.84 1.31 2.05 1.90 

 

 Flg. 1. Detailed segmentation results for the 21 HCM datasets as obtained by using the ASM 
and the proposed IMM framework  

Table 1 summarizes the mean point-to-point errors and standard deviations for all 
the techniques used for comparison. For a more detailed evaluation of the results, the 
segmentation errors for the 21 HCM data are displayed in Fig. 1 for the IMM and the 
ASM. It can be seen from the results that the proposed framework introduces a 
marked improvement for most datasets, with an average improvement of 40% over 
the original ASM. This performance is particularly significant given the complex 
geometry and motion associated with HCM datasets. This is clearly evident in the 
examples of Figs. 2 and 3, where the target endocardial structures display severely 
abnormal morphology due the cardiac remodeling. As expected, the original ASM 
over-constraints the search procedure, thus generating new instances that distance 
themselves from the image data. The same problems can be seen with the MM and 
IPCA techniques, which are affected by the severely abnormal morphologies. The 
proposed technique, however, allows for more flexibility during shape localization 
through improved projection onto the new model components. These results demon-
strate the clinical potential of the technique, since manual delineation of a single 
frame is sufficient to obtain reasonably accurate segmentations of datasets as chal-
lenging as those of HCM patients.  

Fig. 4 illustrates the benefits of the proposed technique for the segmentation of  
severely abnormal data. It can be seen from the projection onto a shape subspace that 
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Flg. 2. Three illustrations at 142 ms of the cardiac cycle showing surface localization errors for 
the four methods used for comparison. With the proposed technique, marked improvement is 
achieved throughout the entire surfaces.  

the target shape (blue triangle) is significantly different from the normal training sam-
ples (red circles). When updating the model based on the shape at previous frame 
(blue circle) and by using the IPCA technique in [11], the allowable shape space is 
still biased towards the training data (ellipse). As a result, the associated segmentation 
fails to recover the true boundaries (red star). With the proposed technique, however, 
the use of incremental mixture models means the segmentation is guided towards a 
more plausible solution and the output segmentation (blue star) is very close to the 
target HCM shape. 

A number of points related to the implementation of the proposed technique need 
to be discussed. Firstly, the probability rejection threshold in the IPCA space is a key 
factor for the performance of the proposed algorithm. In practice, choosing a very 
high value can lead to over-fitting problems, while a small threshold can be vulner-
able to noise. We found that setting the probability rejection threshold to the probabil-
ity at two times the standard deviation of the lowest Gaussian bump in the mixture 
model leads to satisfactory results. A more systematic study of the sensitivity of this 
parameter is part of our future work. Moreover, the off-line standard EM algorithm 
used in this paper is inherently time consuming, thus prohibiting rapid segmentation 
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and data analysis. However, online versions of the EM algorithm have been recently 
developed (e.g., [13]), which can be implemented as an alternative for faster segmen-
tation using the proposed framework. 

 

Flg. 3. Three illustrations at 332 ms of the cardiac cycle showing surface localization errors for 
the four methods used for comparison 

4   Conclusion 

In this paper, we have presented a robust segmentation scheme that provides efficient 
online update of the statistical shape model. The framework enables the incorporation 
of subject-specific information that is otherwise difficult to obtain through prior train-
ing sets. This is achieved by an incremental mixture model that permits the analysis of 
plausibility measures for new shapes based on the latent data. The constraints provide 
improved adaptation to complex shapes and permit more accurate tracking of the 
boundaries across the cardiac cycle. Validation with HCM left ventricular datasets 
demonstrates the potential clinical value of the technique.  
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Flg. 4. Illustration of the adaptability of the proposed IMM method to arbitrarily complex 
shapes. Unlike the IPCA which is biased by the normal subjects despite the model update, the 
proposed IMM is guided towards a solution in the shape space that is more plausible. 
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Segmentation of the Infarct and Peri-infarct
Zones in Cardiac MR Images
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Abstract. This paper presents a novel approach for segmentation of the
infarct and peri-infarct tissue in the left ventricular wall of the heart.
This paper is motivated by a recent finding that shows the infarct and
peri-infarct zones to be independent predictors of post myocardial in-
farction. This paper proposes a method to segment the endocardial and
epicardial contours of the left ventricle in the presence of the enhanced
infarct and peri-infarct tissues. A level set method using shape priors,
obtained from a 3D active appearance model of the ventricle wall on
cine MR images is presented. From the extracted 3D cardiac ventricular
wall, a method is proposed to segment the infarct and peri-infarct tissues
using intensity, volume, shape and heart wall thickness features. The pa-
rameters of end-diastolic volume, end-systolic volume, myocardial mass,
ejection fraction and infarct and peri-infarct mass are computed using
the proposed method and compared with the gold standard provided
by the cardiologists. Promising results and comparisons demonstrate the
potential of our approach for a practical computer assisted diagnostic
system.

1 Introduction

Over the past decade, the use of image processing methods to quantitatively
analyze the acquired image data has developed rapidly. Methods have evolved
to quantify parameters crucial to diagnose heart diseases such as coronary artery
disease using cardiac MR imaging. Particularly, there is interest in the assessment
of volumetric change of the infarct and the peri-infarct tissue in the ventricular
wall to monitor myocardial infarction (MI). This is based on recent studies that
have shown that the infarct and peri-infarct zone is an independent predictor of
post MI mortality [1,2]. Animal and human studies have demonstrated that this
technique delineates infarct morphology with a high degree of correlation to in-
farct morphology by pathologic analysis [3]. Furthermore, cardiac MR performed
in a prospective outcome study of 100 patients with coronary artery disease has
shown that infarct mass is an independent predictor of mortality [4].

Consistent with these results, other cardiac MR investigators have also per-
formed similar studies [5, 6]. In addition to infarct size the peri-infarct zone or
border zone or gray zone has generated significant clinical interest. Yan, et al [2]
showed that the peri-infarct border zone may be an important arrhythmogenic
substrate. They utilized a computer-assisted, semiautomatic algorithm to quan-
tify the total infarct size and divided it into the core and peri-infarct regions

H. Liao et al. (Eds.): MIAR 2010, LNCS 6326, pp. 31–41, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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based on signal-intensity thresholds (>3 standard deviation and 2 to 3 standard
deviation above remote normal myocardium, respectively). The peri-infarct zone
was normalized as a percentage of the total infarct size. The investigator con-
cluded that for patients with a prior myocardial infarction, the extent of the
peri-infarct zone characterized by cardiac MR provides incremental prognostic
value beyond left ventricular systolic volume index or ejection fraction.

In another study, Schmidt [7] used gadolinium-enhanced images for infarct
characterization. The investigator pre-specified the definitions of 2 standard in-
tensity thresholds that would distinguish the dense, infarct core from the het-
erogeneous infarct periphery and applied them to the study group. They also
used a simplified version of the full-width half-maximum method [8] to define
the infarct ”core.” After the endocardial and epicardial borders were traced by a
trained observer, the myocardial segment containing the region of high standard
intensity myocardium was outlined, and the maximum standard intensity within
this region was determined. The infarct core was then defined as myocardium
with standard intensity >50 % of the maximal intensity [8].

Despite the interest in the infarct and peri-infarct tissues, the ability to quan-
titatively analyze these tissues from the acquired images is still not sufficiently
available in routine clinical care. Infarct size measures by human manual con-
touring and by computerized simple intensity thresholding based on the standard
deviation of normal myocardial signal intensities have been shown to significantly
overestimate the infarct area in a laboratory animal model [9]. Thus in this pa-
per, we propose a method to segment the infarct and the peri-infarct tissue from
the left ventricular wall in an automatic manner. The first step to achieve this
segmentation is to determine the endocardial and epicardial heart contours in
the presence of the enhanced infarct and peri-infarct tissues. There is extensive
research on the segmentation of the endocardial and epicardial walls [10–13] us-
ing techniques like deformable models and active contours (snakes) based on the
edge, shape and intensity information. But none of these techniques analyze the
problem in the presence of infarct and peri-infarct tissue. The delay enhanced
infarct and peri-infarct tissues have a similar intensity as the blood in the ven-
tricle in delay enhanced MR images. This makes the problem of left ventricular
wall segmentation even more challenging. We propose to achieve this segmenta-
tion by a two step method. The first method accomplishes the segmentation of
the ventricular wall on short axis cine MR images using 3D active appearance
model. In the second step, we propose to use the contours extracted from the 3D
AAM in a level set technique based on shape priors. After the 3D left ventricular
wall is extracted, we propose a set of features based on intensity, volume and
wall thickness to segment the infarct and peri-infarct tissues.

2 Left Ventricle Segmentation

This section discusses the method proposed for segmenting the endocardial and
epicardial contours of the left ventricle based on the development of 3D Active
appearance model [14]. The Active appearance model (AAM) is a statistical
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approach that exploits a priori knowledge of the cardiac shape and image ap-
pearance from expert-segmented training examples. In our method, the AAM
model is trained over short axis CINE cardiac MR images as in these images
the infarct and peri-infarct tissue have a similar intensity as the normal ventric-
ular wall. Prior to implementing the AAM, the cine MR images are subjected
to background substraction to extract the cardiac region for improved perfor-
mance of the model. The CINE MR dataset consists of different slices of the
heart taken along the long axis of the subjects at different time instants from
end diastole to end systole to next end diastole. Since these images show the
ribs, lungs and other structures around the heart, we extract the heart in these
images by identifying the pixels in the current frame that deviate significantly
from the background. A common approach is the approximated median back-
ground substraction method. In this, the running estimate of the median is
incremented by one if the input pixel is larger than the estimate, and decreased
by one if smaller. This estimate eventually converges to the median. The largest
connected component from the foreground identifies the cardiac region.

2.1 Development of 3D Active Appearance Model

The statistical method of 3D AAM has been previously used for the segmentation
of the left ventricular wall [11] [10]. Hence in this paper, the implementation of
3D AAM is very briefly discussed. The development of the 3D shape model
is achieved by a unique sampling of the left ventricular surface, alignment of
the shape samples using Procrustes analysis and principal component analysis
(PCA) on the 3D models. The 3D appearance model is developed by eliminating
the shape variation using piecewise affine warping on a tetrahedral representation
of volume using the 3D Delaunay triangulation algorithm. After the warping
phase, the images are intensity normalized and PCA is performed on the training
data to compute the 3D appearance model. Now the shape information (shape
vectors) and the intensity information (intensity vectors) are combined into a
single vector and a final PCA gives the 3D AAM. The model is superimposed
over known annotated data and the model parameters are disturbed slightly.
The affine transformation, intensity parameters and the appearance co-efficients
are perturbed from their original value. The resulting difference between the
model and image is determined. A relation between image differences and model
parameter differences is estimated by multivariate linear regression.

To segment the 3D image the model has to be matched to it. This match-
ing will be achieved by iteratively minimizing the root-mean-square difference
between the model and the image by modifying the model appearance param-
eters and the affine transformation. This classical optimization problem can be
solved efficiently by iteratively estimating the model parameter updates. When
the model is matched to unknown data, the model is placed somewhere close to
the object which is to be segmented. Then the texture differences are determined
and the estimated relation is used to estimate the optimal change of model pa-
rameters. The parameter updates are repeated until the texture differences falls
below some threshold.
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Fig. 1. Figure showing an example of unique sampling of the left ventricular wall and
the tetrahedral representation of ventricle

2.2 Segmentation of the Left Ventricular Walls in the Presence of
Infarct

The 3D AAM model shows a poor performance when implemented on the single
shot delay enhanced MR images as the enhanced infarct and peri-infarct tissues
have a similar intensity as the blood in the ventricle and in many cases extend
from the endocardium to the epicardium wall. To address this problem, we pro-
pose to use a level set based segmentation method that incorporates prior shape
information obtained from the 3D AAM. A level set variant of the active shape
model has the ability to account for local image features while being able to
introduce prior shape knowledge and has been previously implemented in [15].
The endocardial and epicardial contours extracted using the 3D AAM model is
used as the prior shape information in the level set space. For the level set repre-
sentation, consider a closed evolving surface [C : [0, 1] → R2, p → C(p)] and let
C(p, t) represent the entire surface driven by the propagation of an initial curve
C0(p) according to:

Ct(p) = F (p)N(p), C(p, 0) = C0(p), (1)

where F is a scalar function and N is the inward normal. The entire surface is
evolved to minimize a metric defined by the curvature and image gradient. The
zero-level set function (φ = 0) of a surface z is z = (x, y, φ(x, y, t)) ∈ R3. The
motion of the surface can be obtained by deriving φ(x, y, t) = 0 with respect to
time and space.

φ(C0(p), 0) = 0, φt(p) = F (p)|∇φ(p)|, (2)

where |∇φ| is the norm of the gradient. Let the level set representation evolving
over time φ : Ω × R+ → R+ be a Lipchitz function given by:

φ(x, y, t) =

⎧⎨
⎩

0, (x, y) ∈ C(t);
+D((x, y), C(t)) > 0, (x, y) ∈ Cin(t);
−D((x, y), C(t)) < 0, (x, y) ∈ Cout(t) = [Ω − Cin(t)].

(3)

where (x, y) = p, Cin(t) is the area enclosed by the curve C, D((x, y), C(t))
is the minimum Euclidean distance between the pixel (x, y) and C(t) at time t.
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The Dirac (δ) and Heaviside functions can be used to define terms along C and
the interior and exterior of C:

(x, y) ∈ Ω : {limα→0+ [δα(φ(x, y))] = 1} = C
(x, y) ∈ Ω : {limα→0+ [Hα(φ(x, y))] = 1} = Cin.

(4)

Using the above level set representation, the curve propagates with respect to
known shape properties derived from the left ventricular contours.

Let us consider a set Ci of contours obtained from 3D AAM. Typically for a
patient, this consists of 200 to 300 cine short axis MR images along the axis of
the heart from end-diastole to end-systole to next end-diastole. The 2D active
shape model is constructed to get an equation in the form of the level set function
φ:

φ = φM +
m∑

j=1

pjUj , (5)

where m is the number of modes of variation, Uj are the eigenvectors from
PCA and pj are linear weight factors within the allowable range defined by the
eigenvalues.

There is an ideal transformation A = (Ax, Ay) between the shape prior and the
propagating level set representation φ. The optimal transformation will satisfy
the conditions:

(x, y) → A(x, y)φ(x, y) ≈ φM (A(x, y)), ∀(x, y) ∈ Ω (6)

The sum of squared differences is used for optimization. Scale variation is added
to the transformation A = (s, θ, Tx, Ty). Estimating the prior in the vicinity of
the zero crossing and close to the origin of transformation, the energy minimiza-
tion functional is:

E(φ, A) =
∫ ∫

Ω

δε(φ)(sφ − φM (A))2 dΩ (7)

By calculus of variations, the equation of evolution for φ is given by:

dφ

dt
= −2δε(φ)s(sφ − φM (A)) (8)

To map φ to the best φM the parameters of transformation are also updated
according the equations:⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ds
dt = 2

∫∫
Ω

δε(φ)(sφ − φM (A))(−φ + ∇φM (A).∂A
∂S dΩ;

dθ
dt = 2

∫∫
Ω

δε(φ)(sφ − φM (A))(∇φM (A).∂A
∂θ dΩ;

d
dt

Tx
Ty

= 2
∫∫

Ω
δε(φ)(sφ − φM (A))(∇φM (A). ∂A

∂
Tx
Ty

dΩ; (9)

The ideal transformation derived from the equations will map each value of
current representation to the best level set representation belonging to the class
of the training shapes. Typically, pixels of infarct have intensity larger than or
equal to 3 standard deviations (SD) of a normal myocardial region and pixels of
peri-infarct have intensity between 2 SDs and 3 SDs [17].
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2.3 Segmentation of the Infarct and Peri-Infarct Tissue

From the extracted ventricular wall, the mass and volume of the infarct and
the peri-infarct tissues can be determined. Due to the enhancement of these
tissues, the left ventricular wall has primarily two intensities - the dark normal
ventricular tissue and the bright infarct and peri-infarct tissues. A simple inten-
sity histogram of the ventricular wall separates these regions. But segmentation
based on an intensity based model significantly overestimates the infarct area [9].
Even a slight error in ventricular wall segmentation leads to the possibility of
the blood in the ventricular wall to be identified as infarct. Hence we propose
to use certain features that uniquely identify the infarct and peri-infarct tissues.
The intensity based potential infarct regions are analyzed for their volume and
shape. The nature of the infarct and the peri-infarct tissues is that they originate
from the endocardial surface and spread towards the epicardium. Hence, if the
volume of any of the regions is below a certain threshold or if any of the regions
appear on the epicardial wall and are not connected to the endocardial wall then
these regions are identified as false detection. In previous studies on animals and
humans [16, 17], the change in the myocardial wall motion and wall thickening
for myocardial infarction is clinically determined. Particularly in [16], the rela-
tion of wall thickening and motion for infarcted tissue is determined using two
dimensional echocardiography. Comparing infarcted with normal zones in each
slice, the percentage wall thickening shows a clear separation with little overlap.
Regional percentage of systolic thinning (Systhin) is calculated as:

Systhin =
ThES − ThED

ThED
× 100 (10)

where ThES is the thickness of the myocardial segment at end-systole and ThED

is the thickness of the segment at end-diastole (in cm). Negative values indicate
systolic wall thinning. The unique sampling of the ventricular surface is achieved
in a method described in 2.2. At each of the points the regional percentage
of systolic thinning is computed. If any of the potential infarct regions have
a significant positive Systhin value, then these regions are identified as false
detections. From the clinical study in [16] it is also determined that the wall
motion feature may over-estimate the infarct zone. Since we use these features on
the regions segmented using intensity histogram, the problem of over-estimation
of the infarct zone should not arise.

After implementing the features described above, the infarct and the peri-infarct
tissues are segmented using k-means algorithm. The surface areas and the mass of
the infarct and peri-infarct regions can then be determined. The number of pixels
identified as infarct (Inf pixel) and peri-infarct (Pinf pixel) in each slice is iden-
tified. The parameters of in-plane resolution (ip res) and effective slice thickness
(thickness) are known from the MR examination. The infarct volume (Inf vol) and
mass (Inf mass) is computed on the individual slices using the equation:

Inf vol = Inf pixel × ip res × thickness
Inf mass = Inf vol × 1.05 (11)
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The peri-infarct mass and volume is computed using similar equations. The
values obtained are compared with the values obtained from manual contouring
and the results are discussed in the next section.

3 Results

In this section, we present our results for (i) the segmentation of left ventricle
using 3D AAM on short-axis cine images, (ii) segmentation of the left ventricle
using the level set method with shape prior on single shot delay enhanced images,
and (iii) segmentation of the infarct and the peri-infarct tissue. Cardiac MR
images consisting of the cine short axis image sequences and the single shot
delay enhanced images were collected for 25 patients with an ejection fraction
<50%. The cine short axis image sequence of each patient consists of exactly
25 frames and the number of slices acquired along the long axis of the subjects
ranged between 8 and 12. Each patient’s dataset consists of 200 to 300 2D
images, with a resolution of 256 X 256 pixels. Background modeling on the cine
images of each patient results in images of resolution 125 X 125 pixels. Of the
25 patients, five of them had a clearly visible infarct tissue. Each patient’s single
shot delay enhanced dataset consists of 10 images acquired along the long axis.
The 3D AAM was trained by manually extracting the endocardial and epicardial
contours from the cine images of 10 patients. The model was tested on the cine
images of the remaining 15 patients. The endocardial and epicardial contours
extracted with the 3D AAM showed good agreement with the manual contours
on majority of the slices except on the extreme apex slices. Manual contours
were present in the extreme apical slices but the 3D AAM failed to identify
contours. Parameters of end diastolic volume (EDV), end systolic volume (ESV),
myocardial mass (MM) and ejection fraction (EF) are computed for manual
contouring (gold standard) technique and the 3D AAM using the equations:

EDV = (Summation of pixel areas in diastole) × (ip res) × (thickness)
ESV = (Summation of pixel areas in systole) × (ip res) × (thickness)
MM = (Epicardial volume - Endocardial volume) in diastole × 1.05
EF = (EDV − ESV )/EDV

(12)

Fig. 2. Regression plots comparing the performance of 3D AAM with manual contour-
ing in cine MR images
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Fig. 3. The performance of the propagating level set function on three patients. The
images on the left show the initial contours and the images to the right show the final
output.

 

Fig. 4. a) Original Delay enhanced SAX MR images for 3 patients b)Result of ventric-
ular wall segmentation using level set with shape prior on background modeled images
c)Segmentation of the infarct (green) and peri-infarct tissue (red) using the proposed
features and k-means d)Manual contouring of the infarct tissue using ImageJ

The regression plots comparing the performance of 3D AAM with manual con-
touring for the above mentioned parameters is shown in figure 2. Correlation co-
efficient of 94.54%, 93.64%, 95.69% and 98.83% is obtained for the end diastolic
volume, end systolic volume, myocardial mass and ejection fraction respectively.

For segmenting the endo and epicardial contours on the single shot delay
enhanced images for the 5 patients with clearly visible infarct tissue, an active
shape model is developed from the endocardial and epicardial slices obtained
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Fig. 5. Infarct mass computation on 10 slices of 5 patients for manual contour method
and the proposed feature based method

Fig. 6. Regression plots comparing the performance of 3D AAM with manual contour-
ing in cine MR images

from the 3D AAM model for each patient. The single shot delay enhanced images
are aligned to the cine images using rigid registration. The end diastolic contours
of the closest corresponding slice along the long axis of each patient is used as
the starting contour for the level set method. The active shape model for the
patient is used as the shape prior for the propagating level set. The result of
the proposed level set method is shown in 3. The images on the left show the
starting contour for the level set functions for three patients which are obtained
from 3D AAM at end diastole. An intermediate stage of the propagating contour
is shown in the middle images and the final output is shown in the rightmost
images. Particularly, the region marked with the red arrows in the images from
left to right clearly shows the improvement in performance of the propagating
level set.

The complete results of background modeling, the level set method and the
segmentation of the infarct and the peri-infarct tissues for a particular slice of
a patient is shown in 4. The figure also shows the comparison of the infarct
and peri-infarct tissues segmented with the manually contoured infarct tissue.
Promising results demonstrate that the proposed method can be used for auto-
matic segmentation of the endocardial and epicardial contours in the presence of
the infarct and peri-infarct tissue. The infarct mass is computed on the 10 slices
of the 5 patients. Figure 5 shows the comparison of the infarct mass (in grams)
computed using equation 11, for manual contouring (using ImageJ) method
and the proposed method. Regression plot in figure 6, shows a high correlation
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co-efficient of 94.33%. The comparison for the segmented peri-infarct tissue with
manual contouring is not shown as this zone is difficult to identify manually
(using ImageJ).

4 Conclusion

In this paper, we have proposed a method of segmenting the endocardial and
epicardial contours of the left ventricle in cardiac MR images in the presence
of the enhanced infarct and peri-infarct tissues. A level set function was formu-
lated which includes the prior shape information obtained from an active shape
model. Since we propose to develop the active shape model as a patient specific
model, promising segmentation results are obtained. Using these results, we have
proposed to use a unique set of features for segmenting the infarct and the peri-
infarct tissues. High correlation co-efficients of above 90% are obtained for all
the segmentation results. In our future work, we will explore including temporal
information in the 3D AAM model and additional features like wall motion to
identify infarct and peri-infarct tissues with higher accuracy. We believe that
incorporating these features and using a larger training dataset will lead to a
better segmentation performance.
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Abstract. Longitudinal infant studies offer a unique opportunity for revealing 
the dynamics of rapid human brain development in the first year of life. To this 
end, it is important to develop tissue segmentation and registration techniques 
for facilitating the detection of global and local morphological changes of brain 
structures in an infant population. However, there are two inherent challenges 
involved in development of such techniques. First, the MR images of the 
isointense stage – the duration between infantile and early adult stages in the 
first year of life – have low gray-white matter contrast. Second, temporal 
consistency cannot be preserved if segmentation and registration are performed 
separately for different time-points. In this paper, we proposed a 4D joint 
registration and segmentation framework for serial infant brain MR images. 
Specifically, a spatial-temporal constraint is formulated to make optimal use of 
T1 and T2 images, as well as adaptively propagate prior probability maps 
among time-points. In this process, 4D registration is employed to determine 
anatomical correspondence across time-points, and also a multi-channel 
segmentation algorithm, guided by spatial-temporally constrained prior tissue 
probability maps, is applied to segment the T1 and T2 images simultaneously at 
each time-point. Registration and segmentation are iterated as an Expectation-
Maximization (EM) process until convergence. The infant segmentations 
yielded by the proposed method show high agreement with the results given by 
a manual rater and outperform the results when no temporal information is 
considered. 

1   Introduction 

Infants undergo rapid developments of brain structures and functions after birth, 
especially in the first year of life [1]. Tissue segmentation, a standard procedure in 
image analysis, is however challenging for infant images due to their inherently 
insufficient spatial resolution and low tissue contrast. Recently, numerous methods 
have been proposed for automatic brain segmentation of neonates (less than 3 
months) [2-4] and infants (over 1-year-old) with varied success. However, little 
attention is paid to the segmentation of infants in the duration between birth and one 
year of age. Brain in this age range is affected by a combination of factors such as 
maturation and myelination. We show a series of longitudinal MR images in Fig. 1 
for an infant scanned at an approximately 3-months interval, starting from two weeks. 
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We can observe that, in the T1 images, white matter (WM) initially has lower signal 
intensity than gray matter (GM) (e.g., 2 weeks), but eventually becomes higher and 
reaches the adult-like pattern after 9 months. A reversed contrast but same pattern can 
be observed in the T2 images. Our observations agree with Dietrich et al.’s findings 
[5], showing that three distinct gray-white matter signal intensity patterns appears in 
chronological order in images of developmentally normal infant – infantile (birth), 
isointense, and early adult (10 months onward). Images at isointense stage have the 
lowest gray-white matter contrast and have not been fully explored in previous 
studies.  

To address this problem, we first make two observations. First, for the purpose of 
segmentation, T2 images are usually preferred in the infantile stage and T1 images in 
the early adult stage. This suggests that balance is needed between T1 and T2 images 
for guiding the segmentation. Second, infantile and early adult stage images can be 
segmented relatively easily compared to those from the isointense stage. This hints 
that priors could be constructed from both two stages and propagated to the 
isointesnse images for segmentation guidance. 

Temporal consistency is an important consideration factor in longitudinal infant 
studies. To analyze a 4D dataset, a conventional pipeline would perform segmentation 
on the images separately for each time-point. The segmented images are then 
registered across time-points for determining anatomical correspondences. Tissue 
density maps characterizing the volume and shape changes are finally employed for 
comparing brain changes over time. Great successes using this approach have been 
achieved in understanding early brain development [1]. However, inconsistency might 
be introduced by performing segmentation and registration independently with 
disregard of the temporal constraint, which could in the end reduce the reliability and 
statistical power of the findings. 

 
Fig. 1. T1 and T2 images of an infant scanned at 2 weeks, 3 months, 6 months, 9 months, and 
12 months. The gray-white matter contrast varies as a function of time, with three major stages 
– infantile, isointense, and early adult. 

In this paper, we address the above-mentioned issues and propose a 4D joint 
registration and segmentation framework, the key idea of which is illustrated in Fig.2. 
Segmentation of images from the isointense stage is difficult, but this difficulty can be 

T1

T2

2 weeks 3 months 6 months 9 months 12 months
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ameliorated if we borrow information from neighboring time-points, providing 
constraint from temporal correspondences. By taking information from all time-points 
into consideration, temporal consistency can also be better preserved. To achieve this 
aim, we formulate a spatial-temporal constraint to make optimal use of the T1 and T2 
images and to adaptively propagate the prior probability maps of each time-point to 
its neighboring time-points. In this process, 4D registration is employed to determine 
anatomical correspondences across time-points, and a multi-channel segmentation 
algorithm, which take into consideration the spatial-temporal constraint as prior, is 
used for segmenting the image at each time-point. Registration and segmentation are 
iterated as an Expectation-Maximization (EM) process until convergence. Details of 
the proposed method are given in the following sections. Note that although detection 
of within-tissue differences caused by myelination and maturation is also an important 
direction in early development study, this paper focuses on segmenting brain into 
general GM, WM, and CSF, in which WM contains both myelinated and 
unmyelinated tissue, GM contains both the cortical GM and basal ganglia. 

 

Fig. 2. Spatial-temporal constraint for joint registration and segmentation of serial images from 
the first year of life. Three major gray-white matter patterns are shown. Probabilistic maps of 
tissues from the images of infantile and early adult stages are used to guide the segmentation of 
brain tissues in the isointense stage. 

2   Method 

We propose a 4D joint registration and segmentation framework, which alternates 
between 4D registration, spatial-temporal constraint construction (i.e., prior 
probability maps for each time-point), and multi-channel segmentation. T1 and T2 
MR images are collected from 5 time-points – 2 weeks, 3 months, 6 months, 9 
months, and 12 months. Images are skull-stripped with BSE [6], followed by manual 
editing to ensure the clean removal. Intensity inhomogeneity is corrected with N3 [7]. 
For initialization, we first segment the last time-point T1 image with an adaptive K-
means algorithm. The resulting segmentation is taken as a longitudinal prior for 
guiding the initial segmentation of earlier time-point images independently, using the 
method described in [4]. This preliminary segmentation is fed as an input to our 
framework. In the following subsections, we will discuss the formulation of the 
spatial-temporal constraint, followed by the 4D joint registration and segmentation 
mechanism. 
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2.1   Formulation of Spatial-temporal Constraint  

T1-T2 Preference Factor. As mentioned above, T2 is preferred for segmenting 
infantile images, and T1 for images from the early adult stage. To achieve balance 
and make optimal use of T1 and T2 images, we define preference factors  and 

 for each time-point , where 1 , 1,2,3,4,5 , for 
reflecting the reliance of the segmentation algorithm on the T1 and T2 images, 
respectively. Since segmentation reliability is dependent on gray-white matter 
contrast, we compute the preference factors by comparing the histograms of GM and 
WM using the Jensen–Shannon (JS) divergence, which measures the difference of the 
two probability distributions and is symmetric. Initial GM and WM intensity 
distributions are obtained with the help of the initial segmented images and are 
updated as we have a more segmentation as we iterate through the registration-
segmentation process. A plot of the JS values of the subject shown in Fig. 1 is given 
in Fig. 3(a). It can be observed that the tissue contrast of the T1 image is initially low 
and eventually increases to a value higher than that of the T2 image. The T2 image 
has a relatively good contrast throughout, except during the isointense stage. We thus 
define the preference factors as below: , / , ,  (1) 

1  (2) 

where ,  is the JS divergence value, as a function of time-point   and image 
modality , . These preference factors will be employed in the multi-
channel segmentation algorithm for utilizing the T1 and T2 images more effectively. 

 

Fig. 3. (a) GM-WM JS divergence values signifying tissue contrasts in the T1 and T2 images of 
5 different time-points. (b) Temporal impact for each time-point, and the Gaussian distribution 
of the impact factor for each time-point and their evaluation direction.  

 



46 F. Shi et al. 

Temporal Impact Factor. We combine the T1 and T2 preference factors to obtain a 
measure called the temporal impact factor: , ,  , ,, ,  

(3) 

where the impact factor  is weighted as a Contraharmonic mean of JS values of 
T1 and T2 images, which assigns more weight on the one with larger JS value. 

This measure describes the across-time-point influence of an image. Time-point 
with high contrast image has a high impact value, implying that its influence will be 
propagated a long distance in the temporal dimension, and its probability map would 
have a greater impact on guiding the segmentation of other time-points. An example 
of this is the time-point of 12 months (see Fig. 3(b)). Due to the temporal changes in 
the brain, such as the generation of synapses and myelination, this impact is expected 
to be lower when propagated further along the temporal dimension. To simulate this, 
we incorporate the temporal impact factor into a Gaussian kernel and define: 

, 2  (4) 

where  is the temporal distance between the current time-point  and time-
point  (with a unit temporal distance defined as equivalent to 3 months), and  is a 
variance parameter for controlling the flatness of the Gaussian distribution. The 
parameter  starts with  and ends with a value of 1.  is a factor dealing 
with the scale difference of the temporal and the impact axes. ,  are indicated 
by red curves in Fig. 3(b). 

The segmentation prior probabilistic map at a certain time-point , is obtained via a 
linear combination of the segmentation probabilistic map at each time-point, weighted 
by the temporal impact factor: ∑ , |∑ ,  (5) 

where  is a segmentation label,  is the deformation field pointing from time-point 
 to , which is used to warp the probabilistic map from the space of time-point  to 

the space of time-point , resulting in | , and  is the obtained prior 
probabilistic map of  at time-point . 

Notice that the segmentation result at each time-point is progressively refined and 
the dependence of other time-points is gradually reduced. Images from a certain time-
point might have a large impact initially by providing significant prior information to 
other time-point images. As the segmentation result at the influenced time-point is 
getting better, less information needs to be borrowed from the neighboring time-
points, and temporal impact factor of the neighboring time-point is decreased. On  
the other hand, an initially small temporal impact factor may also be increased, if the 
segmentation result of the current time-point is getting better, to help share the 
segmentation information with neighboring time-points. These two temporal impact 
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factor changing patterns can be controlled by the parameter  in (4), to expand or to 
restrict as the temporal impact, as illustrated in Fig. 3(b).  

2.2   4D Joint Registration and Segmentation Framework  

4D registration helps determine anatomical correspondence between time-points, and 
also provides a means to warp the segmentation probabilistic maps of a certain time-
point to other time-points. Segmentation, on the other hand, helps provides 
information for better registration of the images at each time-point. This can be 
described as an Expectation-Maximization (EM) process [8], with the E- and M-steps 
detailed as follows: 

a) E-step: Segmentation. Given the intensity images , , ,  and prior 
probability maps  obtained from M-step, at each time-point t, we can obtain a 
single segmentation  for both T1 and T2 images with multi-channel segmentation 
technique. 

b) M-step: Registration and Constrain Construction. Deformation  is updated 
based on the new segmentations  from the E-step, providing anatomical 
correspondence between time-points. The parameter  is changed to progressively 
control the temporal impact factor changing patterns. Then the spatial-temporal 
constraint  is then computed by weighting the warped tissue probability maps |  across time-points, as detailed in subsection 2.1.  

These two steps are iterated and progressively refine segmentation and registration. 
The program stops when segmentation results do not show further significant 
changes. In what follows, we briefly introduce the 4D registration and multi-channel 
segmentation approach used in this framework. More details can be found in [8, 9]. 

4D Registration. Given a group of segmentations  for the input image sets , , , , we need to determine the anatomical correspondences across time-

points by a series of deformation fields . A template set  is first 
generated by duplicating the last time-point ( 5) segmented image (with best 
contrast) to each other time-point. To register the image sets  to , we 
hierarchically determine the optimal transformation which minimizes the difference 
between the attribute vectors of images in  and  [9]. The attribute 
vector is composed of the Geometric Moment Invariants (GMI) for extraction of 
structural information. The cost function for the 4D registrations is: 

 (6) 

where  and  are the attribute vector similarity cost functions related to the 
forward and backward transforms, and  is a spatial-temporal smoothness 
constraint. 4D registration has been evaluated and utilized in many applications such 
as in the studies of longitudinal changes of hippocampal volumes [9] and myocardial 
motion estimation [10].  

Multi-Channel Segmentation. Having both T1 and T2 images allows us to make 
optimal use of the information from both modalities for better segmentation. Some 
multi-channel segmentation algorithms produce two individual results for T1 and T2 
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images. However, since both T1 and T2 images reflect the same tissue structures, 
producing a single segmentation result might be more appropriate. To this end, we 
employ a multi-channel segmentation algorithm which works with joint probability 
distributions. Denoting  as the intensity image, we view the T1 and T2 images as a 
single vector image with 2 elements at each voxel. We extend the single-channel 
Gaussian mixture model (GMM) segmentation [8] to its multi-channel counterpart by 
using axis-aligned multivariate Gaussians. In particular, for a voxel with vector , , we can estimate the mean , , ,  and variance , , ,  for the -th Gaussian for a certain tissue, and the probability of  belongs 

to this tissue can be defined as √ | | / . 

The preference factors are taken into account by defining 
00 , and 

incorporating it in the probability, as follows:  1√2 |Σ |12 12 TΣ 1
 (7) 

Initial means and variances are estimated based on a set of previously segmented 
images. Using Bayes rule, posterior probability maps can be obtained for image , 
giving the probabilities of each voxel of belonging to gray matter (GM), white matter 
(WM), and cerebrospinal fluid (CSF). We apply the majority rule and assign the label 
with the maximal probability to each voxel. This newly updated segmentation label 
can be used to better estimate the parameters and perform another iteration of 
segmentation for better accuracy.  

3   Experimental Results 

To validate our proposed 4D joint registration and segmentation method, we apply it 
to a group of infants, scanned at 2 weeks, 3 months, 6 months, 9 months, and 12 
months, with variations of same time-point scans less than 1 week. These healthy 
subjects were not sedated for MRI. T1 images were acquired using a 3T head-only 
MR scanner, with 144 sagittal slices at resolution of 1×1×1 mm3. Meanwhile, T2 
images of 64 axial slices were obtained at resolution of 1.25×1.25×1.95 mm3. 
Standard preprocessing steps such as skull stripping and bias correction are 
performed. T2 images are affine aligned to their T1 counterparts and are resampled 
with a 1×1×1 mm3 resolution before further processing. We evaluate the segmentation 
accuracy on all time points by visual inspection and quantitative measurement. 

For evaluation, we choose 3 subjects, and manually segment all their 5 time-points 
by a trained rater. The proposed segmentations are compared with manual ground 
truth using the Dice ratio, , 2| |/ | | | | , where  is the 
estimated segmentation label and  is the manual segmentation label. Dice ratio 
ranges from 0 to 1. For comparison, the initial segmentations are used, which are 
performed by a longitudinal segmentation method described in [4]. Briefly, the fuzzy 
segmentation result of the 12-month T1 image is used as a prior to guide the 
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segmentations of all other time-points, respectively. Unlike our method, it is a one-
way prior propagation and only two time-points can be involved. Their results are 
referred to as “LongSeg-T1” and “LongSeg-T2”. Segmentations of a representative 
infant are shown in Fig. 4. Visually, our results show better anatomical details and are 
more consistent compared with the two control methods without temporal 
consideration, by taking manual segmentations as reference. The quantitative results 
are shown in Fig. 5. The accuracy of the independent segmentation on T1 images is 
initially low, but is eventually higher. A reverse pattern can be observed for T2 
images. The proposed method is robust and achieves the best segmentation accuracy.  

 

Fig. 4. Segmentation results of LongSeg-T1, LongSeg-T2, the proposed method, and a manual 
rater. The original T1 and T2 images are shown in Fig. 1. 

 

Fig. 5. Mean Dice ratios (y-axis) of 3 subjects for the LongSeg-T1, LongSeg-T2 and the 
proposed method, compared with the manual segmentations. X-axis is the postnatal month 
when image acquired. 
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4   Conclusion 

A 4D joint registration and segmentation framework is proposed in this paper. The 
goal is to improve segmentation of infant images from the isointense stage, and at the 
same time preserve temporal consistency. Spatial-temporal constrain is introduced in 
the construction of prior probabilistic maps, by making optimal use of both T1 and T2 
images, and by adaptively borrowing knowledge from the neighboring time-points. 
4D registration and multi-channel segmentation are iterated as an EM process, 
assisting each other to progressively generate better results. Experimental results 
indicate that our method yields the highest agreement with the manual rater, and 
outperforms other methods in comparison.  

Different with the longitudinal segmentation method in [4], the proposed method 
considers significantly more time-points, with the ability to take advantage of 
information from both temporally increasing and decreasing directions. It also 
incorporates a more principled structural-temporal constraint, effectively gathering 
more information spatially and temporally for accurate segmentation of not only 
neonatal images but also images at the 6 months time-point, which typically have 
images with very low tissue contrast. The proposed method will be further tested 
using a large set of longitudinal infant images currently acquired in the authors’ 
institute, and is expected to facilitate longitudinal infant brain development research 
by providing an effective means for segmenting infant images from the isointense 
stage with temporal consistency. 
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Abstract. Traumatic brain injury (TBI) is ranked as the fourth highest cause of 
death in the developed world. The majority of patients sustain mild TBI, and a 
significant number suffer persistent neuropsychological problems. Conventional 
neuroimaging methods (CT, MRI) do not reveal abnormalities consistent with 
the cognitive symptoms. Imaging methods offering prognostic information in 
acutely injured patients are therefore required. Here we applied advanced 
quantitative MRI techniques (T1, T2 mapping and diffusion tensor MRI) in 24 
mild TBI patients and 20 matched controls. We applied a support vector 
machine (SVM) to classify the quantitative MRI data. Univariate classification 
was ineffective due to overlap between patient and control values, however 
multi-parametric classification achieved sensitivity of 88% and specificity of 
75%. Future work incorporating neuropsychological outcome into SVM 
training is expected to improve performance. These results indicate that SVM 
analysis of multi-parametric MRI data is a promising approach for predicting 
prognosis following mild TBI.  

Keywords: Traumatic Head Injury, Support Vector Machine, Magnetic 
Resonance Imaging, Multi-parametric, TBI, relaxometry, DTI, T1, T2. 

1   Introduction 

Traumatic brain Injury (TBI) is a significant cause of death and disability in adults. 
Each year in the UK more than 112,000 people are admitted from accident and 
emergency departments with a primary diagnosis of TBI [1].  TBI is ranked as the 
fourth highest cause of death in the developed world, and the number of people 
sustaining head injuries increases yearly [2]. Around 90% of admissions for head 
injury are classed as mild, with the remainder divided equally between moderate and 
severe injuries [3]. Focussing on the mild injury group it is clear that a considerable 
number of patients have cognitive difficulties related to their injury, including 
problems with concentration and memory[4] which persist for months if not years. 
Developing non-invasive methods which provide early prognostic information is an 
important goal in this patient group. 
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Computed tomography (CT) is used for initial assessment of TBI patients but CT and 
conventional MR imaging (e.g. T1W and T2W) in mild TBI patients often does not 
correlate with the severity and longevity of the clinical neurological picture [5, 6]. It has 
been reported in small cohort studies of TBI that advanced MRI techniques such as 
diffusion tensor imaging (DTI) and image relaxometry do detect subtle quantitative 
changes in brain tissue properties [5, 7, 8], but single measurements do not have 
prognostic value in individual patients. In view of these previous findings we anticipate 
that combination of a range of quantitative MRI parameters will be more sensitive in 
detection of subtle neuronal damage than when using single parameters. Hence we 
hypothesised that multi-parametric analysis would offer a better prediction of tissue 
damage in TBI patients than univariate analysis. In order to test our hypothesis we 
applied the machine learning classification method of Support Vector Machines (SVMs).  

SVMs are supervised classification algorithms which use training sets to learn the 
differences between groups to be classified. The wide ranging application of SVM to 
biological problems is due its high accuracy during classification, the ability to deal 
with multi-dimensional and large datasets and the high flexibility in modelling of data 
from various sources [9]. Current applications of SVM include classification of 
patients and control groups in diabetes mellitus [10] and Alzheimer disease [11]. 

2   Materials and Methods 

2.1   Subjects 

A total of 44 subjects were recruited for this study. This comprised 24 mild TBI 
patients (Glasgow Coma Score, GCS 14-15, mean age 38±15 yrs) and 20 healthy 
adults (mean age 41±16 yrs) with no clinical evidence of neurological diseases or 
prior history of TBI. Scanning in the patient group was performed within 10 days of 
injury (mean 4.9, range 1 -10 days).  

2.2   MR Imaging and Protocol 

Human brains are anatomically divided into gray matter (neuronal cell body), white 
matter (axon fibres) and cerebral spinal fluid (CSF), and MR signal characteristics 
arising from each compartment are distinctly different. T1 weighted anatomical 
images (T1W) are the standard clinical high resolution anatomical images commonly 
used for visual assessment due to the high contrast delineating GM, WM and CSF 
from each other. T1W imaging is useful for image registration and definition of 
regions of interests. However, the information provided by T1W is qualitative because 
it depends on both tissue properties and scanner performance factors.  

The magnetic resonance relaxation times (longitudinal relaxation time, T1 and 
transverse relaxation time, T2) are indicators of the local tissue micro-environment 
experienced by water molecules from which the MR signal originates and which are 
altered by disease or injury.  Measurement of T1 and T2 provides scanner independent 
quantitative information reflecting fundamental tissue properties.  

Diffusion tensor imaging (DTI) probes the tissue microstructure through Brownian 
motion of water molecules, estimating the mean diffusivity (MD), an indicator of the 
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level of diffusion restriction and tissue boundaries. MD provides quantitative 
information about the tissue microstructure and it is well known that the MD values 
are also sensitive to disease processes.  

We anticipate that combination of these three quantitative images (T1, T2 and MD) 
will lead to improved classification of patient or disease groups from healthy controls. 
In view of this we acquired the sets of images with details given below.  All images 
were acquired on a 3.0T whole body Philips Achieva MR System (Philips Medical 
Systems, Best, NL) using an 8-channel SENSE head coil.  The protocol was approved 
by the local ethical committee and all subjects provided written consent prior to 
imaging.  The following scans were acquired in each subject.  

T1W Imaging: High resolution 3D T1 weighted anatomical scan (Magnetization 
Prepared Rapid Gradient sequence, TR/TE=8.1/4.6ms, matrix size 150×240 with 240 
contiguous slices, 1mm slice thickness, in-plane resolution of 1mm). 

T1 Mapping: A fast quantitative T1 measurement using a custom inversion recovery 
prepared Echo Planar Imaging sequence (TR/TE=15s/24ms, TIR=0.25 to 2.5s in 
uniform 12 steps, matrix 128×128, 72 axial slices, isotropic 2mm resolution).  

T2 Mapping: A fast quantitative multi-echo T2 measurement based on a Gradient and 
Spin Echo Imaging sequence (TR=4.7s, 8 spin echoes at 20ms spacing, EPI factor 5, 
matrix 128x128, 72 slices, isotropic 2mm resolution). 

Diffusion Tensor Imaging:  DTI using a spin-echo, echo-planar sequence (SENSE 
factor 2, TE/TR=71/2524ms, matrix 128x128, 24 slices, 6 mm thickness and 2mm in-
plane resolution, 16 diffusions directions, b values 0 and 1000 s mm-2).  

Bo Field-map: MR images are subjected to geometry distortions resulting from 
magnetic field variations across the subject.  A Bo field-map (dual echo 3D Gradient 
Echo sequence TR=27ms, TE=2.6/6.1ms, matrix 128×128×72, 2mm resolution) was 
collected to correct the spatial distortion in Echo Planar Imaging based images. 

2.3   Image Analysis 

Patients with visible lesions were removed before analysis. We therefore analysed 
only normal appearing tissues. We expected to find micro structural damage in areas 
known to be affected by diffuse axonal injury. In mild TBI, damage can be slight and 
whole brain analysis is not sensitive enough in these cases. We therefore increased the 
likelihood of detection by subdividing the brain into the specific regions of interests. 

We applied an automatic image analysis method whereby the whole brain is 
automatically divided into 16 regions of interest (ROI) for each tissue type [12]. 
These regions are pairs of right and left inferior frontal lobe, superior frontal lobe, 
temporal lobe, temporal-occipital lobe, occipital lobe, temporal-parietal lobe, 
parietal lobe and the cerebellum. This analysis method operates in patient space 
which was demonstrated to significantly reduce partial volume errors compared to the 
same analysis performed in standard space [13].  In brief, the method uses a set of 
standard space brain ROIs parcellating the entire brain, which are transformed into 
patient space based on a multi-step registration using the patient’s high resolution T1 
weighted anatomical scan.  Next, the same anatomical scan is segmented into white 
matter, grey matter and CSF masks [14] and combined with the brain region template 
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to generate tissue specific anatomical ROIs which are applied to the quantitative 
images under analysis.  Multi-spectral analysis using k-means clustering is applied to 
the regional quantitative data for removal of partial volume errors in order to improve 
ROI definitions. The algorithm was implemented in MATLAB R2009b (The 
MathWorks Inc., Natick, MA 01760-2098, USA) running on a Linux platform using 
in-house developed routines but incorporated existing processing methods from the 
FSL [15] package when appropriate. All segmentation steps were performed using 
FSL Segmentation Tool (FAST, [14]).   

T1 and T2 Mapping: Quantitative T1 maps (qT1) were calculated on a pixel by pixel 
basis by fitting the acquired data to T1 inversion recovery curve using the standard 3 
parameter fit (Mo, flip angle and T1) while quantitative T2 maps (qT2) were calculated 
using a 2 parameter (Mo and T2) monoexponential fit to the acquired data.  

Diffusion Tensor Imaging: DTI data were preprocessed with FDT (FMRIB's 
Diffusion Toolbox) [16]. Head movement and eddy currents were corrected using 3D 
rigid body registration to a reference volume.  Raw DTI data were brain-extracted 
using FSL BET tool, and mean diffusivity (MD) images were created by fitting a 
tensor model to the raw diffusion data using FDT.  

The algorithm was then used to automatically determine regional grey and white 
matter qT1, qT2, and MD in each of the 16 target ROIs. Finally, the regional mean 
values for both grey and white matter were computed in each ROI and used for SVM 
classification. 

2.4   Support Vector Classification of TBI Data 

SVM was used to classify the regional mean values computed from qT1, qT2 and MD. 
Each subject's data was divided into the 2 tissue classes of interest (grey matter and 
white matter) with each comprising of 16 x 3 matrices, representing the 16 ROIs for 
each of the 3 quantitative MRI parameters. These matrices were used as input vectors 
for SVM. Each of the two groups (mild TBI and control) was divided into 2 mutually 
exclusive subsets, the training set and the validation set. Selection was done using the 
holdout cross validation method; this method randomly divides a given dataset into 2 
equal groups. Training and classification were evaluated in each ROI for both white 
matter (WM) and grey matter (GM) using combinations of qT1 and qT2, qT1 and MD, 
qT2 and MD and qT1, qT2 and MD. We compared a number of kernel functions using 
sensitivity and specificity analysis, only the radial basis function gave a desirable 
result. In view of this finding (no data presented) our implementation used radial basis 
function. 

3   Results and Discussions 

Table 1 shows the mean and standard deviation for qT1 qT2 and MD in selected 
regions of interests. This result shows that values of T1WM, T1GM, T2GM and 
MDWM were elevated in almost all ROIs in the patients compared with the control 
group. This result agrees with previous work showing increase in mean diffusivity 
[8]. Statistically significant group differences (p<0.05) were found in White matter T2 
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(left parietal), White matter MD (left frontal superior, left temporal parietal and right 
frontal superior), Grey matter T1 (right temporal, right occipital and left temporal 
parietal) and Grey matter T2 (right temporal and right occipital).   

Figure 1 shows selections from typical control and patient datasets. Figure 2 shows 
a representative scatter plot and SVM results. The scatter plots show that there is 
significant overlap between the 2 groups along each axis but that combination of axes 
reveals some intra-group relationships. The SVM results on the right hand side of 
each plots show the separation between groups. We used sensitivity (True positive) 
and specificity (True negative) to measure the performance of SVM.  

Table 1. Quantitative T1 T2 and MD (mean and standard deviation) values in 20 control 
subjects and 20 patient subjects (* p<0.05) for Selected Regions of Interests 

Controls Group- (T1 and T2 in ms, MD×10-6 mm2s-1)
ROI T1WM T2WM MDWM T1GM T2GM MDGM
Right Fron. 813 ±34 84 ±5 680 ±31 1164 ±51 90 ±5 822 ±39
Left Fron. 811 ±33 84 ±5 673 ±29 1158 ±46 90 ±5 824 ±48
Right Temp. 805 ±29 78 ±2 830 ±26 1216 ±36 90 ±3 770 ±125
Right Occi. 804 ±40 82 ±2 775 ±21 1038 ±62 81 ±3 846 ±38
Right Temp. 794 ±30 81 ±2 781 ±25 1251 ±22 90 ±3 926 ±47
Left Temp. 806 ±46 80 ±2 764 ±24 1250 ±23 91 ±3 919 ±37
Left Parietal 819 ±34 84 ±2 749 ±37 1182 ±40 86 ±4 873 ±43

Patients Group - (T1 and T2 in ms, MD×10-6

ROI T1WM T2WM MDWM T1GM T2GM MDGM
Right Fron. 819 ±46 83 ±4 708 ±24* 1181 ±109 91 ±5 814 ±57
Left Fron. 817 ±45 83 ±4 701 ±21* 1181 ±84 91 ±4 824 ±72
Right Temp. 818 ±36 78 ±2 842 ±41 1279 ±116* 94 ±6* 808 ±54
Right Occi. 811 ±36 82 ±4 779 ±36 1140 ±163* 86 ±6* 836 ±38
Right Temp. 798 ±38 80 ±2 793 ±26 1275 ±58* 91 ±4 918 ±62
Left Temp. 806 ±44 80 ±3 781 ±23* 1271 ±35 91 ±2 927 ±58
Left Parietal 818 ±45 82 ±2* 763 ±25 1207 ±58 87 ±5 875 ±56  

Table 2. Average Sensitivity and Specificity as a measure of performance for SVM 

Control Vs Mild TBI
Combinations White Matter Grey Matter

Sensitivity Specificity Sensitivity Specificity
T1 and T2 82 70 80 75
T1 and DTI 82 70 87 79
T2 and DTI 81 73 88 75
T1,T2 and DTI 83 68 85 81  

Table 2 shows the average sensitivity (and specificity) for both white matter and grey 
matter averaged across all the 16 regions of interests. For white matter the average 
sensitivity ranged from 81% to 83% (specificity from 68 to 73) and from 80 to 88% 
(specificity from 75 to 81) for grey matter. The table also shows that for white matter 
regions, combining 3 parameters gives a higher sensitivity as compared with the 
combination of 2 parameters. For grey matter regions the highest sensitivity is achieved 
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when T2 and MD are combined.  It should be stressed that the analysis considers only 
normal appearing brain tissue and hence these results suggest that multi parametric 
analysis using SVM offers a promising tool for detecting tissue damage in mild TBI. 

Epidemiologically, only approximately half of mild TBI patients manifest ongoing 
neuropsychological problems related to their injury [4]. In view of this, approximately 
50% of the TBI population is expected to be indistinguishable from normal controls 
and this could cause misclassification. We believe that this may be a significant 
contributing factor to the low specificity of our analysis. Our future work will include 
follow up studies in order to identify the mild TBI patients who have fully recovered 
without any neuropsychological symptoms which will help us to redefine the groups 
which could lead to improved specificity. Our future work will also attempt to 
increase the sample size for both the control and the patient group in order to increase 
the statistical power of the classification method. 

SVM has been used in a few studies to investigate patients with TBI [5, 17, 18] and 
it is important to place our findings in context with existing work.  Mourao-Miranda 
et al. [17] performed a study based on functional MR to investigate brain activity and 
did not evaluate structural changes while Davies et. al. [18] used only categorical data 
such as age, gender, injury severity and GCS scores.  In these studies, only Meyer et 
al. [5] used MRI parameters in a fashion similar to our study. 

 

Fig. 1. Typical quantitative images representing the control and patient populations. Columns 1, 
2, 3 and 4 are the T1W, MD, qT2 and qT1 images respectively 

Meyer et al. [5] used SVM to evaluate multiple data in mild TBI patients. In that 
study, Fractional Anisotropy (FA, another metric derived from diffusion tensor MRI) 
was combined with clinical measures (e.g. attention, memory, emotional complaints 
etc). According to Meyer et al. the use of clinical measures did not improve 
classification which implies that, technically speaking, their classification is based 
only on FA. Additionally, they evaluated 3 specific regions of interests namely the  
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Fig. 2. The scatter plot and SVM results in the Frontal Superior region of white matter. First 
row qT1 against qT2, Second row qT1 against MD and third row qT2 against MD. 

Corpus Callosum and left and right hemisphere in the white matter tissue class. 
Although we did not include FA in our current analysis, our data suggest that single 
MR parameters do not show sufficient separation to be prognostic.  In our study we 
therefore combined 3 quantitative MR parameters (qT1, qT2 and MD) and our analysis 
covered all the brain regions within both white and grey matter tissue classes.  Our 
results show that there are regional changes not only in white matter but also in grey 
matter regions. Extending the dimensionality of the data gave sensitivity (and 
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specificity) of 88% (and 75%) which is an improvement on previously reported 
findings (81% and 63% respectively [5]). 

To the best of our knowledge we are the first to apply the robust SVM method for 
classification of mild traumatic brain injury patients from control subjects based on 
automatic analysis of multiple quantitative magnetic resonance parameters. 

4   Conclusions 

We have shown that a multi-parametric analysis of quantitative MRI data can be used 
to separate mild TBI patients from the control group. Our results show that SVM can 
detect changes in normal appearing tissues in some patients suffering mild TBI as 
compared with the control group. These changes may represent damage to neuronal 
tissue and further work is needed to determine whether this is responsible for the 
cognitive and affective symptoms commonly seen following mild head injury, which 
include memory loss, inability to concentrate, irritability and depression. 
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Abstract. Automatic, non-rigid registration of blood vessels (and other tubular 
structures) within a timescale suitable for use in image-guided surgical 
applications remains a significant challenge. We describe a novel approach to 
this problem in which an extension to the coherent point drift (CPD) algorithm 
is developed to enable landmarks, such as vessel bifurcations, to improve the 
registration accuracy and speed of execution. The new method – referred to as 
landmark-guided CPD (LGCPD) – is validated using vessels extracted from 
brain MRA and liver MR images, and is shown to be robust to missing vessel 
segments and noise, commonly encountered in realworld applications. 

1   Introduction 

Blood vessels, and other tubular structures, such as ducts, appear commonly in 
medical images. They can therefore provide very useful features for driving image 
registration schemes, particularly in image-guided surgical applications where 
knowledge of the location of blood vessels relative to surgical instruments is 
extremely important. Typical applications include neurosurgery, liver resection, liver 
transplant surgery, and vascular interventions where image guidance and registration 
technology is becoming increasingly relied upon to implement novel minimally-
invasive techniques. Since vessels are distributed throughout organs, when they can 
be imaged, they provide a useful feature for capturing non-rigid deformation fields. 
However, modality-specific artefacts, organ deformation, missing vessel segments, 
and the different grey-level intensity characteristics of vessels imaged using different 
modalities mean that vessel-based registration in general remains a challenging task. 
This is particularly the case in the interventional setting where robustness, accuracy 
and speed are key criteria for clinical acceptance. 

Vessel-based registration techniques have been reported for a number of research 
groups, principally those involving the liver or brain [1-4].  Many of the existing 
algorithms for vessel-based algorithms are feature-based approaches, which require 
prior segmentation of vessels and vessel centrelines [2;3]. Such methods have the 
advantage that the registration can often be performed very rapidly, but there is the 
additional overhead of the segmentation task, which may require manual interaction 
and can be subject to error. Intensity-based approaches, on the other hand, such as 
those described in [4-6] do not require prior image segmentation, are relatively 
computationally intensive, making them difficult to apply in many realtime 
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applications. Aylward et al. [1], Penney et al. [7] and Lange et al. [3] all combine 
feature- and image-intensity-based registration approaches.  

Realtime, non-rigid vessel-based registration with little or no user interaction 
remains a significant challenge; Lange et al. [2;3] report a computation time of 10min 
for non-rigid registration, excluding the time taken to segment vessel images and 
manually identify bifurcations, whilst Reinersten et al. [4] report that registrations 
were completed within 1 minute. Both of these studies adopt thin-plate splines (TPS) 
to approximate the non-rigid component of the registration transformation that 
matches vessel centrelines. In this paper, we propose an alternative approach for fast, 
non-rigid vessel registration, based on the recently introduced coherent point drift 
(CPD) method [8]. In the CPD framework, it is assumed that the points in one dataset 
are generated by a mixture model centered on the points in the transformed dataset. 
The expectation maximization (EM) algorithm can then be used to solve the 
maximum likelihood estimation (MLE) problem, where the point correspondences 
and transformation are updated in the E and M steps, respectively. A solution from 
the calculus of variations is derived in [8] that allows efficient estimates of the 
regularised non-rigid transformation, where a regularisation term comes from a prior.  

CPD has the advantage of flexibility since most existing general-purpose rigid and 
non-rigid point-based registration schemes can be formulated using the framework. In 
practice, however, CPD assumes no specific point correspondence other than the one 
derived from the Euclidean distances between points. As a result, it is insufficiently 
constrained in situations where, for example, physical constraints prevent certain 
types of deformation. In such cases, the likelihood function may not have a well-
defined maximum. Furthermore, because the assumption of a Gaussian Mixture 
Model (GMM) may be inadequate or incorrect with imperfect data, leading to false 
global maxima in the likelihood function, the algorithm can be sensitive to the 
presence of outliers and/or missing data.  

To address these limitations, we extend the original CPD algorithm so that 
explicitly defined, corresponding pairs of anatomical landmark points can be 
introduced, leading to improved behaviour and registration accuracy compared with 
the standard algorithm. Automatic registration of blood vessels using the landmark-
guided CPD (LGCPD) algorithm is demonstrated using images of cerebral and liver 
vessels.  

2   Methods 

2.1   Vessel Segmentation 

In this study, vessels to be registered were represented in two forms: a set of vessel 
surface points and a set of points that define the vessel centreline. These data were 
extracted from vessel images as follows: (1) the vessel image was first enhanced 
using an ITK implementation of a multi-scale vessel enhancing filter [9]. The outputs 
of this filter are a ‘vesselness’ image in which the intensity of each voxel provides a 
measure of the likelihood of a locally vessel-like feature being present in that voxel, 
and a 3D vector field, where the 3D local vessel direction vector is defined at each 
voxel [10]; (2) the vesselness image is converted to a binary volume, B, by applying a 
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user-defined threshold; (3) the surface pointset was sampled from the iso-surface 
computed from B; (4) the centrelines were extracted from B using the 3D thinning, 
described in [11]. 

2.2   Coherent Point Drift Framework 

The CPD method provides a framework for rigid and non-rigid alignment of two 
pointsets, where a target pointset is represented by ‘data’ vectors, xn (n=1,2,…,N), and 
a source pointset is represented by ‘model’ vectors, ym (m=1,2,…,M). Both vectors 
contain D-dimensional coordinates (D=3 here). Each transformed model vector 
T(ym,θ) is considered to contain the centroids of a set of Gaussians, where T is the 
spatial transformation of ym with transformation parameters θ. This pointset forms a 
mixture of M Gaussians with a weighted uniform distribution p(x|m=M+1)=1/N 
(with scalar weight ω, 0≤ω≤1) to explicitly account for outliers. The probability 
density function of the random vector x is then given by: 
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where the isotropic Gaussian distribution with parameter σ and mean vector µ is 
defined as G(x|µ,σ2)=(2πσ2)-D/2exp(-||x-µ||2/2πσ2)  Given the pointset xn, 
representing the observed data, the following negative log-likelihood function for the 
parameters, θ and σ, can be used as an objective function and measure of the goodness 
of alignment: 
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Registration, which requires estimates of the transformation parameters, becomes a 
MLE problem and may be efficiently solved by the EM algorithm. The rigid or affine 
transformations are parameterised by a D-dimensional translation plus a D-
dimensional rotation, or a D×D unconstrained matrix, respectively. Closed-form 
solutions for these cases are derived in [8]. 

As explained in [8], an appropriate prior for a non-rigid transformation is 
P(v)=exp(-(λ/2)||Pv||2), where v is a displacement function, which defines a non-rigid 
deformation field, and P is a linear operator that acts in this case as a high-pass filter. 
Using this prior, the objective function becomes E-log(P(v))=E+(λ/2)||Pv||2. The 
EM algorithm can again be employed to solve this maximum a posterior problem so 
that 1) the E steps remain the same as in MLE; and 2) the negative complete log-
likelihood function – the objective function to minimise in M steps – takes the 
following form: 
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where the terms independent of σ and v are ignored and ∑ ∑= =
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posterior probabilities, Pmn (also known as the responsibilities or membership 
probabilities) are computed in E steps, and are given by: 
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where θold are the parameters estimated in a previous iteration. 
According to the calculus of variations approach and motion coherence theory [8], 

CPD chooses a Gaussian kernel with one parameter β, namely k (yi,yj)  
=exp(-||y i-y j||

2/2β2) . Thus, the optimal function form of v that minimises eq.(3) 
becomes a linear combination of the Gaussian kernel and M sets of D-dimensional 
coefficients. Therefore, the coefficients can be estimated by solving a linear least-
squares problem and σ2 may be estimated by equating the corresponding derivative to 
zero. In [8], it is also suggested that a good minimum generally can be achieved with 
a single iteration of these two evaluations. A more detailed description of the solution 
and the implementation are omitted here for brevity, but can be found in [8]. 

2.3   Landmark-Guided Coherent Point Drift 

In this section, we consider the situation where L additional landmark pairs are 
available to constrain the registration. In practice, such landmarks are treated 
differently from other vessel points. If xl* and yl* contain the co-ordinates of 
corresponding landmarks for l=1,2,…,L, we can in turn define a mathematically 
convenient prior over θ as the following joint probability of L Gaussians: 
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where σ*2 is the new hyper-parameter, which controls the influence of the prior. 
Furthermore, in the non-rigid case, by assuming the independence between the known 
correspondence and the prior on the displacement field P(v), the new “joint” prior 
may be given by: 
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Therefore, the new objective function to minimise in M steps becomes:  
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where Q is defined as in eq.(3). To obtain the transformation minimising eq.(7), the 
same approach described in Section 2.2 may be used. Taking the functional derivative 
of Q*, so the independent terms may be omitted, gives: 
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where,
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to compute Pmn in E steps. As shown in the derivation of eq.(8), the new objective 
function has the same form of functional derivative as ∂Q/∂v, so the same variational 
procedure to minimise Q given above may be used to minimise Q*, with matrices 
[Pmn], [xn] and [ym] being replaced by [Pij*], [xj] and [yi], respectively. The same 
procedure also applies for rigid and affine cases, where setting the partial derivatives 
of the objective function in M steps to zeros leads to direct solutions for θ and σ2, 
subject to the same matrix replacements described as above. To update σ2, equating 
the corresponding derivative to zero gives the estimator:  
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The original CPD has three parameters, ω, λ and β, controlling the influence of 
outliers, the amount of smoothness regularisation and strength of the points’ mutual 
interaction, respectively. The additional parameter σ* reflects the localisation error of 
the corresponding landmarks. The smaller the value is set for σ*2, the stronger the 
constraints on the corresponding landmarks. In practice, this parameter can be 
adjusted depending on the spatial accuracy with which landmarks are defined. 

2.4   Validation 

In order to evaluate the performance of the LGCPD algorithm for vessel-based 
registration, experiments were performed using vessels extracted from one patient 
brain MR image, and two liver MR images, obtained on the same volunteer. A 
significant issue in validating registration algorithms is establishing an accurate gold 
standard transformation between images that is independent of the method under 
evaluation. In the first set of experiments, a finite element (FE) model was used to 
apply a physical deformation to a volume containing cerebral vessels, segmented 
from a brain MR images. This volume was used as the target volume, to which the 
original source volume was registered. This approach has the advantage that the voxel 
displacement field is known and can be compared directly with displacements 
estimated by the vessel-based registration. In a second experiment, an MR image of a 
liver was deformed using a displacement field generated by registering two MR 
images obtained at different phases of the breathing cycle. This displacement field 
was then applied to one of the MR images to generate a target image. Again, the 
displacement field is known, and therefore provides a “perfect” gold standard for 
validation. 
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2.4.1   Brain Vessel Deformation Using a Biomechanical Simulation 
Using the method described in Section 2.1, surface and centreline points from a 
section of a cerebral blood vessel were extracted from a MR angiography (MRA) 
image of a consented patient who underwent neurosurgery at the National Hospital 
for Neurology and Neurosurgery, London. The voxel size of the MR volume 
0.49x0.49x0.7mm3, and the image was acquired using a 3D TOF (MOTSA) sequence 
on a GE Signa Excite 1.5T scanner and an 8-channel SENSE phased-array head coil.  

A tetrahedral mesh of the blood vessels was created from the binary image 
obtained by thresholding the vesselness image resulting from filtering the original MR 
image. This binary image was then labelled and imported to the MATLAB meshing 
interface tool, iso2mesh [12], which automatically constructs 3D solid tetrahedral 
meshes. As shown in Fig.1, a spherical region near to the vessel was included in the 
FE mesh to represent a region of interest (ROI), such as a tumour. The tissue region 
between the vessel and ROI was assumed to be homogeneous. 

An anisotropic, nonlinear finite element (FE) solver [13] was used to simulate a 
physically plausible deformation of the vessel and tumour model. Displacement loads 
with a magnitude of 15 mm, in x, y and z directions, were applied to nodes within 
regions near the ends of the two vessel branches, while the other side of the mesh, 
near hepatic hilum, was left fixed. The tumour and surrounding tissue were assumed 
to be isotropic elastic materials described by a neo-Hookean model. The vessel wall 
was assumed to be a transversely isotropic, nonlinear material [13]. At each point 
along the vessel, transverse plane was defined as the plane orthogonal to the local 
vessel direction vector output from the vesselness filter.  For the purposes of this 
study, all the isotropic materials were assumed to have a shear modulus of, 33.6kPa 
and 0.336kPa, and a bulk modulus of, 1.67GPa and 16.7kPa, for the ROI and 
surrounding tissue, respectively. The transverse isotropy for the vessel results in one 
extra stiffness parameter [13] which was set to 16.7kPa. Mesh node displacements 
were computed using the non-linear FE solver, described in [13] and implemented to 
run on a graphics processing unit (GPU).  

The surface and centreline points defining the cerebral vessel were transformed 
into the deformed space by interpolating the FE nodal displacement field. The 
resulting points were considered as target points in the registrations. An additional 
rigid transformation was also applied before registration to test the algorithm. 

2.4.2   Liver Vessel Deformation 
To obtain a gold standard displacement field due to breathing motion from MR scans 
where the liver vasculature was clearly visible, two breath-hold MR volumes were 
registered using a fluid registration method [14]. This registration has been previously 
evaluated using real-time MR data and found to accurately model the respiratory liver 
motion [15]. The images were acquired on a healthy volunteer using a 1.5 T cylindrical 
bore Philips Achieva MR scanner at Guy’s Hospital, London. The breath-hold scans 
were acquired at maximum exhale and mid-cycle with a field-of-view of 400x400x270 
mm3 covering the whole abdomen. The voxel size was 1.4x1.4x1.7 mm3. 

For the liver vessels, vessel surface and centreline points were extracted as 
described above. The right hepatic vein was identified by manually defining one point 
within and finding all connected voxels from the binary representations of both the 
source and target images. 
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2.4.3   Registration Experiments 
To investigate the effects of missing and noisy data on the vessel-based registration, 
the target (deformed) cerebral vessel pointsets were modified in the following ways: 
First, a 7mm segment from one branch was removed at a random position. Second, 
random anisotropic Gaussian noise with a variance of 1mm along the vessel and 9mm 
orthogonal to the vessel was added to the location of each target point. Third, the first 
two modifications were applied simultaneously. One hundred registrations were 
performed for each of the three cases using the original CPD method (without 
landmarks) and then the LGCPD method with three pairs of manually defined 
landmarks: one at the bifurcation and the one at each end of the two branches. The 
parameter values σ*=0.01, ω=1, β=1 and ω=0.1 were used in all the experiments.  

For the MR liver data, registrations were performed using the same parameter 
values, apart from a larger smoothness parameter of β=3 due to the relatively noisy 
data. In LGCPD experiment, two pairs of landmarks were identified manually at two 
bifurcations, as shown in Fig.2.  

To quantify the registration accuracy, a set of points were defined in the source 
images. For the cerebral vessel registration, the nodes inside the tumour and vessel 
surface points were used, whereas for the liver vessels the 3D volume surrounding the 
vessels was uniformly resampled. In each case, the displacement field produced by 
the CPD/LGCPD registration transformation was used to propagate the point co-
ordinates into the target space. The target registration error (TRE) was calculated as 
the root-mean-square distances between point locations propagated using the 
CPD/LGCPD registration transformation versus using the gold standard displacement 
field (derived using a FE simulation or fluid registration for the cerebral and liver 
vessel images, respectively).  

3   Results 

An example of LGCPD versus CPD registration of the cerebral vessel is illustrated in 
Fig.1. The TRE results for all the cerebral vessel registrations are summarised in 
Table 1. The initial TREs for the vessel and the tumour before registration were 19.24 
and 18.47 mm, respectively. Approximately 250 points were registered using the 
centreline representation, and 1000 using the surface representation. It can be seen 
from Table 1 that the LGCPD outperforms the CPD method in terms of registration 
accuracy. Furthermore, LGCPD registration using the centreline points was found to 
lead to a lower TRE for the tumour in all cases. 

For the liver vessels, approximately 150 (250) and 300 (500) points were used for 
the source (target) centreline and surface representations, respectively. Fig.2 shows 
the result of registering these vessels. The TREs using the standard CPD method were 
7.35 and 6.57mm using surface and centreline points, respectively, whereas these 
were improved to 5.51 and 2.60mm, respectively, by using LGCPD registrations. The 
initial TRE before registration was 14.12 mm. The TRE of a voxel as function of 
distance from the liver vessel surface is plotted in Fig.3. It was found that for any 
location with distance to the vessel surface smaller than 6.8mm, the TRE was smaller 
than 3mm. As the example shown in Fig.2, visual assessment of the registration 
results indicates incorrect correspondence found using the CPD method; in contrast,  
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Fig. 1. Registration of a cerebral vessel (red), extracted from a patient MR image, to a 
deformed and corrupted version of itself (gray mesh). Left: The gray meshes represent the 
deformed vessel and tumour following a FE simulation. Middle: Example of the source vessel 
before and after registration using the LGCPD algorithm, shown in pink and red, respectively. 
Regions of the vessel removed to test the registration algorithm are shown in cyan, whilst the 
green crosses and blue circles indicate corresponding landmarks (bifurcations and ends of 
vessels). Right: Example of using the CPD registration algorithm without landmarks. It can be 
seen that, compared to the middle image, the alignment of the tumour and the ends of the 
longer branch are much less accurate. 

Table 1. Summary of the TREs following registration of the cerebral vessels 

Missing Data Noisy Data Missing & Noisy Data TREs in mm 
(mean±SD) Vessel ROI Vessel ROI Vessel ROI 

Surface 2.88±0.87 5.20±1.59 1.15±0.21 3.53±1.60 2.51±1.05 4.27±1.75 CPD 
Centreline 3.02±0.97 4.45±1.81 2.40±0.78 4.87±2.05 3.43±1.06 5.52±2.51 

Surface 0.80±0.16 1.26±0.37 0.63±0.08 1.15±0.23 0.87±0.26 1.20±0.27 LGCPD 
centreline 0.58±0.18 0.54±0.12 1.02±0.18 1.05±0.33 1.12±0.22 1.10±0.33 

  

Fig. 2. Left: The right hepatic vein surface and centreline (shown in red) extracted from a 
deformed MR image of the liver. The bifurcations are denoted by green markers; the green 
crosses indicate the two landmarks used in the LGCPD registrations. Middle: example of a 
successful LGCPD registration showing the source vessel (red) aligned with the target vessel 
(gray). Corresponding landmarks (bifurcations) are shown as green crosses and blue circles. 
Right: Example of a CPD registration performed without using landmarks. It can be clearly 
seen that one source branch is aligned with the incorrect target branch.  

the use of landmarks ensured that none of the LGCPD registrations produces such 
errors, both in the brain and liver cases.  

Although the proposed LGCPD algorithm has the same computational complexity, 
and therefore speed, as the original CPD algorithm, it was found to execute faster in 
practice because fewer iterations were required to converge to a solution. In all the 
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experiments using our (unoptimised) implementation on a desktop PC with a 
2.33GHz Intel® Core™ dual CPU processor and 3GB RAM, the centreline-based 
LGCPD registrations all converged within 1s. Registrations of the relatively larger 
number of vessel surface points were completed within 3s. 

 

Fig. 3. Plot of the TREs of all voxels w.r.t. corresponding distances to the vessel surface 
(negative values indicate locations inside a vessel) 

4   Discussion and Conclusions 

In this paper, a new landmark-guided registration approach, based on the CPD 
algorithm, is proposed. The proposed method enables point landmarks to be 
incorporated in manner consistent with the original CPD formulation, resulting in an 
algorithm that is straightforward to implement, faster and more accurate than the 
original for vessel-based registration applications. Using centreline and surface point 
representation of vessels extracted from brain MRA and liver MR data, our results 
indicate that registrations can be performed within a few seconds, meaning that the 
method is highly appropriate for intraoperative applications, provided a method is 
employed that enables such representations to be generated in a similar timescale. A 
number of algorithms for automatic bifurcation identification and automatic vessel 
segmentation exist [16]. For the purpose of this study, all the landmarks were 
identified manually. One topic for further investigation is incorporation of a robust, 
automatic method to extract corresponding landmarks. 

In this study, we used an unoptimised implementation of a well-known vesselness 
filter combined with simple thresholding and thinning to extract vessels and centreline 
points automatically. However, since all of these processes are parallelisable, 
significant speed-up in execution would be readily achievable using dedicated 
hardware. Furthermore, the algorithms could be optimised, for example, to limit the 
search space to regions near to vessels, or to utilise prior knowledge on likely vessel 
location and geometry form preoperative images or an initial slower registration, 
performed at the start of interventional procedure.  
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Abstract. To improve the intra-operative image fusion performance in
the ablation procedure of atrial fibrillation (AF) treatment, this paper
presents a novel registration method for CT segmented surfaces and
three-dimensional (3-D) cardiac electroanatomical maps. Random per-
turbation is introduced to deform the electroanatomical maps in the
registration process. The magnitude of deformation automatically atten-
uates during iterations. Compared to the typical iterative closest point
(ICP) algorithm that often converges to local minima, the proposed al-
gorithm is much less sensitive to the initial transformation and able to
move out of the local minima and converge to a solution with smaller
registration error. Through experiments using both in vivo and simula-
tion data, the results show significant improvements on the registration
accuracy and success rate over the existing method being used in the clin-
ical environment. The improved intra-operative registration results can
help physicians easily navigate the catheter during the AF interventional
procedures.

Keywords: intra-operative registration, electroanatomical maps, ICP,
local minima.

1 Introduction

Atrial fibrillation (AF) is the most common cardiac arrhythmia [1]. During AF
episodes, the normal electrical impulses generated from the sinoatrial node are
overwhelmed by disorganized electrical impulses that originate in the atria and
pulmonary veins, leading to conduction of irregular impulses to the ventricles. It
results in irregular heartbeats which may occur in episodes lasting from minutes
to weeks, or it could occur all the time over years. AF risk increases with age,
with 8% of people over 80 having AF [2]. AF is often asymptomatic and is not
in itself generally life-threatening, but may result in palpitations, fainting, chest
pain or congestive heart failure. People with AF usually have a significantly
increased risk of stroke [3,4].

AF may be treated with medications which either slow the heart rate or revert
the heart rhythm back to normal. Synchronized electrical cardioversion may be
used to convert AF to a normal heart rhythm. Surgical therapies may also be
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used to prevent recurrence of AF in certain individuals. In recent years, minimal
invasive radiofrequency ablation has become a well-established therapy for the
AF treatment. A catheter is inserted through a vein and radiofrequency energy
is applied on the tip electrode to destroy abnormal electrical pathways in heart
tissue or normal parts that are contributing to a cardiac arrhythmia. Besides
the fluoroscopy, the physician also sees the catheter tip on the monitor, which is
being tracked in three-dimensional (3-D) space. In a typical AF interventional
procedure, the physician creates a 3-D electroanatomical map of the heart cham-
ber by sampling a number of points on the endocardium to guide the subsequent
ablations. An image integration module CARTOMERGETM was introduced by
Johnson & Johnson, which enables the fusion of the 3-D electroanatomical maps
and the preoperative computed tomography (CT) or magnetic resonance images
(MRI). Merging CT/MRI with the 3-D electroanatomical maps assists physi-
cians more effectively to navigate catheter to the targeted points within the
heart.

The registration accuracy of CT/MRI and the 3-D electroanatomical map
has a direct impact on the AF interventional procedure results [5-10]. Regis-
tration of CARTOMERGETM [11] is based on the iterative closest point (ICP)
algorithm proposed by Besl and Mckay [12], which minimizes the distance be-
tween two point clouds by iteratively revising the rigid transformation. One of
the problems of the ICP algorithm is that the solution is often trapped in local
minima, especially when the source and target models have a large initial offset.
User interaction is needed to initialize the transformation before applying the
registration algorithm.

We propose a retrospective ICP (RICP) algorithm for registration of CT/MRI
segmented surface and the 3-D electroanatomical map. The algorithm deforms
the 3-D electroanatomical map by applying random displacement to the sampled
electroanatomical points. During the iterations, the algorithm retrospects previ-
ous results and automatically decreases the deformation level. The method ef-
fectively overcomes the local minima problem and the final results give a smaller
or at least equal registration error than the ICP algorithm. The improved intra-
operative registration results can further help the physicians during the AF
interventional procedures.

The rest of this paper is organized as follows. In Section 2, the ICP and
stochastICP algorithm are briefly reviewed. Section 3 presents the RICP regis-
tration method of CT segmented surfaces and the 3-D electroanatomical maps.
Section 4 shows the experimental results and the paper concludes in Section 5.

2 Review of the ICP and StochastICP Algorithms

The ICP algorithm is designed to rigidly register two point clouds, from a source
model to a target model. It minimizes the sum of square distances with respect
to the target points and their corresponding closest source points. First, an
initial estimate of the transformation must be provided. Then for each point in
the target model, the ICP algorithm finds the corresponding closest point on the
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source model. These corresponding point pairs are used to calculate a translation
vector and a rotation matrix that transform the source model towards the target
model. This process is repeated until the sum of square distances between two
point clouds is below a predetermined value.

Since the ICP algorithm is prone to be trapped in local minima, the stochas-
tICP algorithm was proposed by Penney in 2001 [13], which applies random
Gaussian noise to perturb the coordinates of one of the two models. The trans-
formation is expressed by 6-tuple parameters of three angles and three offsets.
If the maximal change of all parameters between the current iteration and one
of the previous sets of iterations is within a threshold, the algorithm reduces
the perturbation magnitude. The threshold, which is dependent on dataset, is
empirically chosen as a fraction of the perturbation magnitude. Although the
proposed RICP algorithm is also based on random perturbation concept, we
retrospect to a previous iteration with the least registration error to guide the
perturbation magnitude reduction.

3 Registration Algorithm of CT Segmented Surfaces and
the 3-D Cardiac Electroanatomical Maps

The proposed RICP registration algorithm in this paper can make that the
registration error is smaller than or at least equal to the ICP algorithm. We
apply this algorithm to the rigid registration of CT segmented surfaces and the
3-D cardiac electroanatomical maps.

We define CT segmented surface as the source model and the 3-D cardiac
electroanatomical map as the target model. Assume the target model consists
of m points and the source model consists of n points, which are denoted re-
spectively by p = {pi|i = 1, · · · , m} and q = {qj |j = 1, · · · , n} (pi and qj are
considered as 3×1 column vectors). Generally, n is much larger than m since
the CT segmented surface has tens of thousands of vertices and the 3-D cardiac
electroanatomical map usually has less than a hundred points. Two models are
in different coordinate systems with a transformation

p = Rq + T, (1)

where T is the translational offset and R is the rotation matrix.
The registration error for each point pi in the target model is

‖ei‖ = ‖pi − (Rqi + T )‖ , (2)

where qi is the corresponding closest point of pi searched within q using a KD-
tree algorithm. Thus, we obtain m point pairs and minimize the average of sum
of the square errors

E =
1
m

m∑
i=1

||ei||2. (3)

Before corresponding point pairs are searched, we impose a random perturbation
ni to each point pi,

p′i = pi + ni, (4)
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so that the target model is deformed, where ni is a 3×1 column vector whose
components have a normal distribution N(0, σ2).

For points p′ = {p′i|i = 1, · · · , m} on the deformed target model, we search
the corresponding nearest points q′ = {q′i|i = 1, · · · , m} on the source model. We
define centroids of p′ and q′ by

p̄ =
1
m

m∑
i=1

p′i and q̄ =
1
m

m∑
i=1

q′i. (5)

Let us denote p′′i = p′i − p̄ and q′′i = q′i − q̄. We calculate the 3×3 matrix

M =
m∑

i=1

q′′i (p′′i )t
, (6)

and find the singular value decomposition (SVD) of M

M = UDV t. (7)

Here, the superscript t denotes matrix transposition, U and V are 3×3 orthonor-
mal matrices, and D is a diagonal matrix. Then we calculate R and T by

R = V U t and T = p̄ − Rq̄. (8)

Finally, the transformation between the two models is

Z =
(

R 0
T 1

)
. (9)

We define the initial registration error as E0 and the initial transformation as Z0.
We apply the transformation matrix Z to the source model in order to transform
it towards the target model. Due to the random perturbation, the registration
error could either increase or decrease. We repeat above procedure L times, calcu-
late and record all the transformations {Zi|i = 1, · · · , L} and the corresponding
registration errors {Ei|i = 1, · · · , L}. Then we get Emin = min{E1, E2, · · ·EL}
and the corresponding transformation Zmin. If Emin � E0, we replace Z0 with
Zmin as the initial transformation for the next L times iterations, otherwise we
keep Z0 as the initial transformation. At the same time, the control parameter
of random perturbation is automatically attenuated as σ = σ

/√
2.

The iteration stops when the registration error between the two models is
below a predetermined threshold. The algorithm also stops if it reaches a pre-
determined maximum number of iterations. For different models, the algorithm
starts with an arbitrarily large initial value of σ. If the initial transformation is
already the best, the registration result would remain the same. Typically, the
RICP algorithm gives a better or at least the same solution as the ICP algorithm.

The proposed rigid registration method has a much larger domain of conver-
gence and can effectively move out of the local minima. The registration accuracy
and success rate are higher than the ICP algorithm.
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4 Experimental Results

All experiments in the paper are performed on a 2.0 GHz Pentium 4 computer
with 1 GB of RAM. The criterion for stopping the iteration is that the regis-
tration error is smaller than 0.1 mm. The initial perturbation parameter σ is
defined to be 50 and L is defined as 100.

4.1 The in Vivo Models Study

The left atrium segmented surfaces in the experiments are generated from the
CT datasets of AF patients, using a threshold-based segmentation algorithm
and 3-D punching tool of a 3-D image analysis software. The 3-D cardiac elec-
troanatomical maps are obtained using the ablation catheter tip to pick a number
of points on the endocardium of patient’s left atrium. We use CT segmented left
atrium surfaces and the electroanatomical maps of four patients. For each pa-
tient data, we randomly generate 800 transformations, each of which consists of
a translational offset within the scope of 100 mm in x, y, and z axes directions
and a rotation deviation within the scope of 20 ◦ around x, y, and z axes. These
transformations are applied to each pair of models as the initial registration.

Table 1. The registration results of different initial translations and rotations

Patient Ave. Error (mm) Std. Dev. Success Rate Computation Time (s)
Data ICP RICP ICP RICP ICP RICP ICP RICP

1 4.30 1.65 3.14 0.04 53.6% 99.6% 0.16 6.82
2 2.37 1.91 1.06 0.12 79.3% 99.1% 0.14 5.51
3 5.04 1.79 3.59 0.06 42.6% 99.8% 0.07 3.15
4 1.92 1.66 0.58 0.05 83.6% 99.8% 0.15 6.60

Table 2. The registration results of different initial rotations

Initial Ave. Error (mm) Std. Dev. Success Rate
Rotation ICP RICP ICP RICP ICP RICP

30 ◦ 4.27 2.18 2.75 0.45 32% 96%
45 ◦ 5.92 1.75 3.72 0.28 26% 88%
60 ◦ 5.89 1.68 3.52 0.16 14% 37%

Table 3. The registration results of the simulation data

Simulation Ave. Error (mm) Std. Dev. Max Error (mm) Min Error (mm)
Data ICP RICP ICP RICP ICP RICP ICP RICP

1 4.04 2.49 2.12 0.76 13.86 11.92 0.14 0.05
2 3.38 2.47 1.92 0.94 11.20 8.86 0.08 0.06
3 3.98 2.35 1.88 0.82 12.66 7.73 0.14 0.07
4 3.90 2.74 1.68 0.69 13.81 9.58 0.13 0.21
5 3.74 1.91 2.68 1.02 11.14 6.52 0.17 0.06
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Fig. 1. Image fusion results. (a) before registration of patient data 1, (b) after regis-
tration of patient data 1, (c) before registration of patient data 2, (d) after registration
of patient data 2

Fig. 2. The registration and image fusion results of non-uniform distribution models

Table 1 shows the average registration error of 800 registration attempts and
success rate for the ICP and RICP algorithms. Success rate is defined as the
percentage of registrations from 800 initial positions in which the registration
error is smaller than 2 mm.

The registration errors of the RICP algorithm are significantly smaller than
the ICP algorithm. The success rates are also much higher than the ICP algo-
rithm. It is not sensitive to the initial positions compared to the ICP algorithm.
On the other hand, the RICP is more time consuming since it retrospectively
seeks the optimal position in every L iterations. In Table 1, we list the com-
putation time for all datasets. Since the user does not need to perform manual
alignment, the increased computation time is acceptable to automatically get a
more accurate registration.

Since the registration result is more sensitive to the initial rotation compared
to the initial translation, we perform the experiments by applying larger initial
rotations. For 100 times, the source model is given initial positions with a fixed
100 mm translational offset and different rotations of 30 ◦, 45 ◦, and 60 ◦. Table 2
shows the average registration error and success rate of 100 registration attempts
for one pair of models. Although the success rate drops when the initial angle
deviation increases, the RICP still performs better than the ICP algorithm.
Figure 1 shows the image fusion results of CT segmented surface of left atrium
and the electroanatomical map represented by a point cloud. The lines show
the connection of points on the electroanatomical map and the corresponding
nearest points on the CT segmented surface.
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4.2 The Simulation Study

For the simulation study, the left atrium segmented surface is generated from a
CT dataset of a patient. The left atrium anatomical map is obtained using the
catheter to pick a number of points on a transparent plastic left atrium model
which is made by rapid prototyping of the segmented surface. We sample the
model for five times and create five simulation data of the left atrium. Table 3
shows the registration results, including the average registration error, standard
deviation, maximum error, and minimum error.

Figure 2 shows image fusion results of four pairs of models, in which the
3-D mapping points distribute only on one side of the simulation data. The
result shows that the RICP algorithm performs well for non-uniform distribution
models.

5 Conclusions

We have presented a novel rigid registration method for CT segmented surfaces
and the 3-D cardiac electroanatomical maps. From the results using in vivo
and simulation data, the proposed RICP registration algorithm can effectively
overcome the local minima problem. It is more robust and accurate than the
ICP algorithm. In addition, it performs well on the non-uniform distribution
models. The improved intra-operative registration results can greatly help the
physicians during the AF interventional procedures. Future work will focus on
thorough validation using more datasets from the clinical environment of the
atrial fibrillation interventional procedures.
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Abstract. In this paper, we present a method for coronary artery mo-
tion estimation from 4D cardiac CT angiogram (CTA) data sets. The
proposed method potentially allows the construction of patient-specific
4D coronary motion model from pre-operative CTA which can be used
for guiding totally endoscopic coronary artery bypass surgery (TECAB).
The proposed approach consists of three steps: Firstly, prior to motion
tracking, we form a coronary probability atlas from manual segmenta-
tions of the CTA scans of a number of subjects. Secondly, the vesselness
response image is calculated and enhanced for end-diastolic and end-
systolic CTA images in each 4D sequence. Thirdly, we design a special
purpose registration framework for tracking the highly localized coronary
motion. It combines the coronary probability atlas, the intensity infor-
mation from the CTA image and the corresponding vesselness response
image to fully automate the coronary motion tracking procedure and im-
prove its accuracy. We performed pairwise 3D registration of cardiac time
frames by using a multi-channel implementation of the Large Deforma-
tion Diffeomorphic Metric Mapping (LDDMM) framework, where each
channel contains a given level of description of the registered shapes. For
validation, we compare the automatically tracked coronaries with those
segmented manually at end-diastolic phase for each subject.

1 Introduction

As one of the leading causes of death worldwide, coronary artery disease oc-
curs due to the failure of the blood circulation to supply adequate oxygen and
nutrition to cardiac tissues. It is typically caused by the excessive accumula-
tion of atheromatous plaques and fatty deposits within certain regions of the
arteries which restrict the blood flow. To treat this disease, arteries or veins
grafted from the patient’s body are used to bypass the blockages and restore
the supply to the heart muscle. Conventional bypass surgery requires invasive
sternotomy and the use of a cardiopulmonary bypass machine, which leads to
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long recovery period for the patient and has high infectious potential. Using
image-guided robotic surgical system, totally endoscopic coronary artery bypass
(TECAB) surgery techniques have been developed to allow clinicians to perform
bypass surgery off-pump with three pin-hole incisions in the chest cavity, through
which two robotic arms and one stereo endoscopic camera are inserted. However,
20-30% conversion rates from TECAB surgery to conventional invasive surgical
approach [1,2] have been reported due to the vessel misidentification and mis-
localization caused by the restricted field of view of the stereo endoscopic images.
To reduce this conversion rate and facilitate the TECAB procedure, we aim to
construct a patient-specific 4D coronary artery motion model from preoperative
cardiac CTA sequence. The main challenge of constructing this motion model
is to follow the motion and deformation of the coronaries from end-systolic to
end-diastolic phase accurately. In this paper, we propose a pyramid registration
framework to achieve this. Finally, through temporally and spatially aligning the
coronary motion model with the intraoperative endoscopic views of the patient’s
beating heart, this work has the potential to assist the surgeon to identify and lo-
cate the correct coronaries during the robotically-controlled TECAB procedures.

1.1 Related Work

Recent advances in computed tomography of coronary arteries [3] have attracted
several studies on using CTA for coronary artery disease diagnosis and surgical
planning. Extensive reviews on coronary artery segmentation are given in Schaap
et al. [4] and Lesage et al. [5]. Although coronary artery segmentation has been
well studied, particularly in the Grand Challenge of Coronary Artery Center-
line Extraction [6], constructing motion models of coronaries from pre-operative
CTA sequences to assist the diagnosis and surgery is a topic which has received
less attention. The work in this paper differs significantly from 3D vessel segmen-
tation approaches: our aim is not the extraction of the coronaries in single-phase
high-quality CTA datasets as in [6], but instead estimating the coronary motion
from end-systolic to end-diastolic phase in multi-phase cardiac CTA sequence.

Previously, Shechter et al. [7,8] tracked coronary artery motion in a tem-
poral sequence of biplane X-ray angiography images. In their approach, a 3D
coronary model is reconstructed from extracted 2D centrelines in end-diastolic
angiography images. The deformation throughout the cardiac cycle is then re-
covered by a registration-based motion tracking algorithm. The limitation of this
approach is that 3D reconstruction of the coronary from 2D X-ray images is re-
quired. An alternative approach for the extraction of the coronaries from cardiac
CTA has been proposed by Metz et al. [9]: Here the coronaries are manually or
semi-automatically identified at one time frame and then tracked throughout
the cardiac cycle using non-rigid registration of the multi-phase cardiac CTA
images. The restriction of this approach is that highly localized motion of the
coronaries cannot be fully recovered by the motion tracking of the entire heart,
particularly for right coronary artery as shown in Fig. 2 and Fig. 3 in [9].

In this paper, we present a novel approach for automatic segmentation of the
coronary lumen and motion tracking of the coronaries from end-systolic to end-
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diastolic phase in 4D cardiac CTA images. This is achieved by using tensor voting
to improve the connectivity of the coronary vessels in vesselness response im-
age and a special-purpose registration framework for coronary motion tracking.
The advantages of the proposed approach here are two folds. Firstly, it contains
less manual pre-processing procedures, since no 3D reconstruction from X-ray
images is required in order to perform 3D coronary motion tracking as in [7,8]
and no manual segmentation or user-iteraction is required for patient-specific
coronary motion modeling. Secondly, by combining greylevel CTA image, its
vesselness response image and coronary probability atlas in the proposed regis-
tration framework, this approach provides a robust estimation of the coronary
motion in 4D CTA.

2 Method

In order to augment the intraoperative images acquired with stereo-endoscope
during TECAB procedure, a patient-specific 4D motion model of coronaries is
constructed from the pre-operative dynamic CTA sequence. This is achieved by
forming coronary probability atlas and using multi-channel LDDMM registra-
tion [10,11]. The formalism of LDDMM makes large diffeomorphic (smooth and
invertible) transformations possible when registering two shapes. Contrary to al-
ternative methods [12,13], the LDDMM formalism is designed to compute shape
deformations that are geodesics. An optimal flow of deformation is then esti-
mated between the source and the target images according to a regularization
metric and a similarity measure. Being able to follow the coronary motion using
this formalism then offers new possibilities for the statistical characterization
of this motion. However, in this context and for coronary motion tracking from
CTA sequences, mono-channel registration on the grey level images does not
capture accurately the highly localized coronary motion which is surrounded by
large anatomical structures . The method in [10] has previously been extended
to treat multi-channel images [11]. Our methodological contribution is then to
use multi-channel registration, where each channel contains a level of description
of the registered shapes: (1) original images, (2) coarse but robust extractions of
the coronary vessels and (3) highly smoothed original images. We then denote
our approach as Multi Level- or ML-LDDMM.

Fig. 1. Overview of the proposed coronary motion estimation method
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By using tensor voting and extracting the largest connected components, the
coronary lumen is segmented from the post-processed vesselness response image
at end-systolic phase for each 4D CTA sequence. The segmented coronary lumen
is then transformed to the end-diastolic time frame according to the deformation
from ML-LDDMM registration. The estimated coronary lumen at end-diastolic
is then compared to manual tracking of the coronaries at end-diastolic phase.
Fig. 1 shows an overview and illustrates the connections between the components
in our proposed algorithm.

2.1 Coronary Atlas Construction Using Affine Registration

Chillet et al [14] presented a method for forming brain and liver vascular atlases
using a vessel-to-image affine registration method. Here a 3D probability atlas A
containing left anterior descending (LAD), left circumflex artery (LCX) and right
coronary artery (RCA) is constructed from the manually marked centerlines in
a group of single-phased 3D CTA scans acquired from 26 patients. One subject’s
CTA scan is chosen as reference R and the rest of the CTA scans are affine
aligned with R. The manually segmented centerlines are transformed according
to the resulting affine transformation in order to match with the centerline from
the reference subject. All the transformed centerlines and the corresponding
reference centerline are then wrapped as a tubular structure with a pre-defined
radius and blurred with Gaussian kernel. For each coronary artery, the blurred
tubular structures are averaged together using a Gaussian kernel to create the
atlas for that branch. The process is repeated for all three coronary arteries,
LAD, LCX and RCA in order to form a probability atlas for coronary tree.

By affine alignment of the reference image R used for creating the probability
atlas and the end-diastolic phase of a new patient CTA sequence, this atlas A is
affinely registered to the patient dataset to create patient-specific coronary mask
MED. For each patient CTA sequence, the 3D mask MED is then warped to
create a mask MSD corresponding to end-systolic phase by non-rigid registra-
tion [15] of the CTA images. Each patient-specific coronary mask is then used to
select the coronary artery region from its corresponding vessel response image
and incorporated in the ML-LDDMM registration.

2.2 Multi-scale Vessel Enhancement Diffusion and Filtering

Prior to the coronary artery segmentation, vessel enhancing diffusion [16] is
used to improve the visibility of the coronaries in CTA images. To reduce the
effect of the presence of inhomogeneous background (e.g. air and tissue mixed
region) or irrelevant neighboring structures (e.g. bone or metal implant), multiple
thresholds are selected automatically by 4D multi-level thresholding extended
from Otsu’s method [17] for each 4D data set. The intensities of the background
voxels are increased so that they match the average myocardial intensity level.
Voxels with intensities above the upper threshold level that represents bone
structure are assigned average myocardium intensity value.

We perform a coarse segmentation of the coronary arteries in the CTA im-
age using a multiscale Hessian-based vessel enhancement filter [18]. The filter
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utilizes the 2nd-order derivatives of the image intensity after smoothing (using a
Gaussian kernel) at multiple scales to identify bright tubular-like structures with
various diameters. The six second-order derivatives of the Hessian matrix at each
voxel are computed by convolving the image with second-order Gaussian deriv-
atives at pre-selected scales. Assuming a 3D image function I(x), the Hessian
matrix at a given voxel x at scale σ is denoted as Hσ(x). A vesselness term V (x)
is defined as in Frangi et al. [18] and is based on the eigenvalues and eigenvectors
of Hσ(x). The vesselness response is computed at a range of scales, exponentially
distributed between σmin and σmax . The maximum response with the corre-
sponding optimal scale is obtained for each voxel of the image. The vesselness
image is then constructed using the maximum response of each voxel as the
intensity value.

2.3 Tensor Voting

Due to artifacts introduced in CT reconstruction and the low signal-to-noise
ratio in certain phases caused by the application of ECG pulsing windows to
reduce the radiation dose for the patient [19], segmenting the vessels directly
from the vesselness images does not provide satisfactory results. To alleviate
those effects, we propose to use a post-processing step of tensor voting [20,21]
to enhance the extraction of the coronary vessels. Tensor voting was initially
developed to reconstruct shapes from point clouds but was also shown efficient
to recover volumes, surfaces and curves from noisy images. Here it is adapted to
fill discontinuities in vesselness response image.

Consider a vesselness image Iv ∈ Ω. We associate a tensor-valued image TV
∈ Ω to Iv. Each voxel of TV is a 3×3 matrix that allows the local communication
between the noisy data of Iv. Using the framework of [21], each non-null voxel
xi of Iv is considered as an island token i, where i ∈ {1, ..., N}. A token is then
here a point being potentially in a curve according to the vesselness image. This
token generates a tensor field TV i around xi. For x ∈ Ω, TV i(x) is computed
as the tensor product of a vector W i(x) with itself. This vector is defined as:

W i(x) = e−
d(xi,x)2

δ2
xix

d(xi, x)
, (1)

where d(xi, x) is the Euclidian distance between xi and x and δ is a scale at
which the structures are recovered. In our computations, we set δ to values
slighly higher than the typical radius of the vessels. Note that in practice, we
only compute TV i(x) in a bounding box in which its values are not negligible.
The communication between the island tokens is then performed in TV by using:

TV (x) =
N∑

i=1

TV i(x), ∀x ∈ Ω. (2)

By using the saliency map to a curve: L(x) = λ1(x) − λ2(x), where λ1(x) and
λ2(x) are the two highest eigenvalues of TV (x), we finally measure how the
point x fits into a curve according to its neighborhood. This map enhances the
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coronary vessels even where the contrast between the vessels and the surrounding
tissues is low. Note that this simple interpretation of the tensor voting generates
a small ghosting effect around the vessel centerlines. So L(x) is smoothed with
a Gaussian filter of standard deviation δ/2.

2.4 Multi level LDDMM Registration

Image registration is performed using three channels (C1,S , C2,S , C3,S) and
(C1,T , C2,T , C3,T ) computed from the source image IS and the target image IT

using the pipeline summarized in Fig. 1 and explained in the previous subsec-
tions. The first channel C1 contains the original images IS and IT . The second
one contains the enhanced vesselness images LS and LT , calculated in subesc-
tion 2.3. Finally, the third channel represents the original images smoothed by a
large gaussian filter (5mm in our calculations). These channels are a multi-level
representation of the registered shapes. The channel C3 pushes the source im-
age to the target image without any consideration of the details, so the global
motion of the large components of the CTA images is tracked. The channel C2
has a similar role, but only focuses on the coronary region. Finally, the channel
C1 is complementary to C2 and C3 since it takes image details into account.

A multi-level strategy, as in Fig. 2, is adopted to register the images efficiently.
In the first level, an initial estimation of optimal deformation is obtained using
the smoothed images C3, then this estimation is refined using registration based
on the second channel C2. Finally by introducing channel C1, all the information
is taken into account for the finest estimation of deformation. This strategy is
particularly robust. For the first two levels, it can be performed on down-sampled
images speedily without losing much accuracy.

The registrations are performed using the LDDMM framework [10,11]. In
this framework, the images are deformed through time dependent diffeomorphic
transformations φt, t ∈ [0, 1], which are defined by a time dependent velocity field

Fig. 2. Multi-level strategy of the registration
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v as follows: ∂tφt = vt(φt), where φ0 is the identity deformation and t ∈ [0, 1].
The velocity field vt deforms the image coordinates at time t and φt is the
induced deformation. For notational convenience, we introduce φt,s

.= φs ◦ φ−1
t .

Contrary to [10], where the similarity measure is computed directly from IS and
IT , the images are indirectly compared here using the information contained in
the channels. The energy we minimize, as a function of v, is then:

E(v) =
∫ 1

0

1
2
||vt||2V dt +

3∑
i=1

(
αi||Ci,S ◦ φ−1

1 − Ci,T ||2L2

)
, (3)

where αi ∈ [0, 1], controls the weight of the channel i. These weights are tuned
to have a similar influence of each channel. In the energy of the deformations,
the time dependent velocity field v is assumed to lie in L2([0, 1], V ), where V
is a Hilbert space of vector fields. Underlying this space, there exists a smooth
matrix valued kernel K that controls the spatial correlation of the deformations.
The minimization of the energy is described hereafter.

We denote Di,S
t = Ci,S ◦ φt,0 and Di,T

t = Ci,T ◦ φ1,t. The Jacobian of φt,1 at
time t is also noted |Dφt,1|. The minimization of the variational problem of Eq. 3
is performed by using a steepest gradient descent approach. Practical resolution
then involves the iterative use of the gradient of the functional E at time t:

∇vEt = vt − K 	

(
|Dφt,1|

3∑
i=1

(αi∇Di,S
t (Di,S

t − Di,T
t ))

)
, (4)

where 	 is the convolution operator. In our computations, we used an isotropic
Gaussian kernel K of standard deviation 10mm. Such kernel offers a good bal-
ance between enough spatial correlation to ensure vessel radius preservation and
enough spatial flexibility to properly match curved vessels.

3 Results and Evaluation

The coronary atlas is constructed from the CTA scans of 26 patients. The pro-
posed motion estimation algorithm is tested in 4D CTA sequences from eight
subjects. For each subject, we segmented the coronary lumen automatically and
performed a thinning algorithm to get the coronary tree centerlines from both

source t = 0.25 t = 0.5 t = 0.75 t = 1 target

Fig. 3. ML-LDDMM registration results. From left to right, source image IS, interme-
diate transformed results (t = 0.25, 0.5, 0.75), final result (t = 1) and target image IT
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end-systolic (ES) and end-diastolic (ED) phases. The centerlines in ES phase are
then deformed according to the optimal deformation from ML-LDDMM regis-
tration to estimate the coronary positions in ED phase.

In order to quantitatively measure the accuracy of the motion tracking algo-
rithm, we manually marked the centerlines for the ED and ES phases in these
eight CTA sequences. We compare the transformed centerlines with the man-
ually marked ones in ED phase as in the third row of Table 1. The distance
between the manual segmentation U and the automatic tracked coronaries W
in each time frame is measured as:

D (W, U) =
1

NW

∑NW

i=1 ‖wi − l(wi, U)‖2 +
1

NU

∑NU

j=1 ‖uj − l(uj , W ))‖2 (5)

where NW and NU are the number of points representing vessel W and vessel
U correspondingly. For each point mi ∈ W, l(mi, U) calculates the closest point
to wi on the automatically extracted vessel U . Similarly, for each point uj ∈
U, l(uj, W ) defines the closest point to uj on the vessel W . As comparison, we

source t = 0.25 t = 0.5 t = 0.75 t = 1 target

Fig. 4. Registration results. The top row shows starting position of RCA. From
left to right, the source image, the intermediate transformed source images (t =
0.25, 0.5, 0.75), the final result (t = 1) and the target image. Similarly, the bottom
row shows the mid-section region of RCA deforming from source to match with target.
Note that in each row all images were taken in the same region of interest.

Fig. 5. Coronary artery lumen (P6). Left: segmented coronary artery lumen at ES
(green) and ED (red) phases. Right: estimated coronary lumen at ED phase (green)
compared with segmented lumen at ED (red).
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Table 1. Coronary displacement and error of motion estimation

P1 P2 P3 P4 P5 P6 P7 P8
Displacement (mm) 8.18 7.63 8.36 7.79 8.62 10.05 8.09 7.88

Estimation error (mm) 1.79 1.26 1.43 1.25 0.69 1.19 1.35 1.04
Compensation (%) 78.12 83.49 82.89 83.95 92.00 88.16 83.31 86.80

also present the natural displacement of coronary tree from ES to ED as in
the second row in Table 1. The fourth row shows the percentage of coronary
displacement that has been compensated by our motion estimation method.
The results show that ML-LDDMM registration based motion estimation has
performed robustly and accurately. By automatically segmenting the coronary
artery and tracking the coronaries from ES to ED in CTA sequences, the patient-
specific coronary model and motion estimation are performed robustly in all eight
testing subjects.

4 Discussion

We have presented a novel approach for patient-specific coronary artery segmen-
tation and motion estimation from dynamic cardiac CTA sequences that signif-
icantly improves the robustness of motion tracking and eliminates the manual
interaction. The proposed method has been tested on the clinical CTA datasets
acquired from eight subjects. By segmenting coronaries and tracking their mo-
tion from pre-operative cardiac images and aligning this motion with the series
of 2D endoscopic images capture during the operation, we aim to assist the
surgical planning and provide image guidance in robotic-assisted totally endo-
scopic coronary artery bypass (TECAB) surgery. Through this work, we expect
to reduce the conversion rate from TECAB to conventional invasive procedures.
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Abstract. Cardiac Motion artifacts in PET are a well known problem.
The heart undergoes two types of motion, the motion due to respiratory
displacement and the motion due to cardiac contraction. These move-
ments lead to blurring of data and to inaccuracies in the quantification.
In this study a continuity equation based optical flow method is presented
and results on 3D PET patient datasets for cardiac motion correction
are presented. The method was evaluated with respect to three crite-
ria: correlation between the images, myocardial thickness and the blood
pool activity curves. The results showed that the method was successful
in motion correcting the data with high precision.

Keywords: Motion correction, Optical Flow, PET, CT, Mass
Conservation.

1 Introduction

PET (Positron Emission Tomography) is one method of acquiring metabolic in-
formation in patient studies, e.g. to visualize and quantify glucose metabolism in
the body. To achieve this, a radioactive substance is injected in the patient body
prior to image acquisition. The radioactive isotope decays with time and emits
radiation which can be detected in specially built scanners. The distribution
of the radioactivity in the body can thus be visualized and gives information
on the metabolism. In PET, β+ radioactive molecules are used for this pur-
pose. These molecules emit positrons which collide with electrons and produce
two gamma quanta which fly away from each other in opposite directions. The
gamma quanta can now be detected in the scintillation detectors of the PET
scanner. Using specialized reconstruction methods the activity distribution can
thus be reconstructed [1].
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As this process of image acquisition requires a relatively long period of time,
typically several minutes, the motion of the heart due to respiration and due to
the cardiac contraction blurs the images. Image blur may cause wrong staging
[2], inaccurate localization [4] and wrong quantification [5] of lesions. Thus PET
studies have to take this into account.

This problem is compounded further if computed tomography (CT) data is
used for attenuation correction, as in the case of modern PET/CT scanners. The
CT data represents a snapshot in comparison to the PET images and therefore,
the PET data is not always in spatial correspondence with the CT data.

One method of avoiding this problem is to use respiratory and cardiac signals
from the patient to divide the PET data into phases with respect to either or
both signals [6]. This is called gating. However, gating leads to reduction of
the amount of information per phase. To get the same amount of information
the image acquisition time has to be proportionally extended or the amount of
radioactivity has to be increased. The first option is costly whereas the second
exposes the patients to increased radioactivity.

Most recent studies related to this problem estimate the motion on the high
resolution and less noisy gated CT images [7],[8],[9]. But this comes at the cost
of an increased exposure of the patient to x-rays, which should be avoided where
possible.

Two important studies related to the correction for cardiac motion are [10]
and [11]. In the first study optical flow is used for estimating the deformations
in the images by modeling the myocardium as an elastic membrane. The second
study combines the motion estimation of the first study with reconstruction in
a single framework. However this study is confined to 2D images and deals with
cardiac motion.

1.1 Aim

The aim of this study is to present a new method based on optical flow which
can correct the PET images for cardiac motion and is also computationally
simple enough to allow reasonable times for motion correction. The method is
essentially different from the brightness consistency based optical flow methods
[12],[16] as it is based on the continuity equation. This change in the basic model
is necessary as brightness consistency is not given in cardiac gated PET data
due to the partial volume effect (PVE).

The PVE is a result of the limited resolution of the scanners. All objects
smaller than the scanner resolution limit can not be accurately delimited and
therefore appear blurred. As the heart muscle contracts and expands during the
cardiac cycle its thickness varies. In phases with thicker heart wall, the activity
is better resolved and has a higher amplitude as compared to other phases where
the activity is spread over a larger area. However, the total amount of the activity
remains the same.

The presented method is thus applicable to gated cardiac PET data. It is
evaluated on software phantom and real patient data.
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2 Intensity and Mass Conserving Optical Flows

Optical flow methods estimate the motion between two image frames. As a voxel
with intensity I(x, y, z, t) moves between the two frames, its intensity is assumed
to remain constant in intensity conserving optical flow methods. Therefore the
following equation holds [16]:

I(x, y, z, t) = I(x + δx, y + δy, z + δz, t + δt) (1)

Here x, y, z are the spatial 3D coordinates and t is the time. Assuming the
movement to be small enough and with Taylor expansion we get:

Ixu + Iyv + Izw = −It or
∇I · u = −It (2)

with u, v, w for the x,y and z components of the velocity or optical flow u, and
Ix,Iy ,Iz,It for the derivatives of the intensity image I in corresponding directions,
respectively time.

To find the optical flow from this equation with three unknowns, additional
constraints are required. Smoothness in flow is one such constraint. The famous
optical flow algorithm by Horn/Schunck [17] also uses this constraint. The optical
flow is thus found using an iterative scheme, whereby an energy functional is
minimized. This functional can be given as:

f = min
∫

((∇I · u + It)2 + α(|∇u|2 + |∇v|2 + |∇w|2))dxdydz (3)

where larger values of α lead to a smoother flow. The minimization can be
achieved by calculating the corresponding Euler-Lagrange equations.

Such methods have been applied to the problem of respiratory motion on 3D
PET/CT data successfully [15].

The optical flow estimation presented so far is applicable to data where the
intensity of the objects remains constant. However, in some cases this constraint
does not hold true. Cardiac PET studies are one such example. As the resolution
of the PET scanners is limited, the real radioactive intensity present in an object
cannot be accurately located below the limit of resolution resulting in image blur.
In case of the heart, the myocardium (the heart muscle) expands and becomes
thin in the end-diastolic phase whereas it contracts and becomes thick in the end-
systolic phase (see figure 1). Therefore, the intensity seen on PET images of the
myocardium varies largely depending upon the heart phase under observation.

In the case of cardiac PET images, another approach is thus required. The
here presented method is based upon the continuity equation, more precisely
upon the conservation of mass. This law says that the mass in a closed system
is conserved. If we substitute activity by mass, the law must still hold, as the
total activity in the system remains same from systolic to diastolic phases of the
heart. It is only blurred in the diastolic phase. It should be noted that our data is
pre-corrected for the time dependent radioactive decay during the reconstruction
process so that the decay itself plays no role for our considerations.
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Fig. 1. Two phases from the cardiac cycle of the heart. Above: End-Systole, Below:
End-Diastole. A coronal slice from the 3D PET image volume is shown. Images from
an FDG study are shown here without attenuation correction.

The continuity equation for mass conservation is given as [13]:

∂I

∂t
+ div(Iu) = 0 (4)

where I is the intensity value, u = (u, v, w)T is the velocity vector i.e. the optical
flow. Deviations from this eqution can be penalized by the following functional:∫

(∇I · u + It + I · div(u))2dxdydz (5)

The derivative in time It can be calculated on discrete image volumes by using
the difference: I2 −I1, where I2 is the floating and I1 is the target image volume.
As with the intensity based optical flow, this is again an under-determined system
of equations and therefore a smoothing term can be added to solve it. In the
present study we used the same smoothing term as given in equation 3. The
resulting optical flow functional is thus:

f = argmin
[∫

V

D2dV + α

∫
V

SdV

]
(6)

with
D = div(Iu) + It, S = |∇u|2 + |∇v|2 + |∇w|2

The minimization of the equation (6) can be achieved by using the corre-
sponding Euler-Lagrange equations. These are given by:

0 = DxI + αΔu

0 = DyI + αΔv (7)
0 = DzI + αΔw
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Fig. 2. The optical flow calculated with the proposed method. A coronal slice is shown
with superimposed vectors. Only two components of the flow are shown.

where Dx, Dy, Dz are the first derivatives of D in the corresponding directions.
The weighting parameter α was set to about 0.05 based upon our previous
experience with the data.

Once the optical flow is found (see Figure 2), the images have to be trans-
formed to get the motion corrected data. The equation (4) can be used for this
purpose. As the time derivative It was calculated as I2 − I1 and the flow u is
now assumed to be known, the transformed image can be calculated as:

I2mc = I2 + div(I2u) (8)

3 Software Phantom and Patient Data

To validate the methods, software phantom data was used. The NCAT software
phantom by segars et al [14] provides a widely used tool for emission tomographic
data simulation. The phantom data were produced for a cardiac cycle with 10
phases. The first gate was set to be end-diastolic and thus the end-systolic phase
was gate number 5. The voxel size was 3.125 mm in each direction. Default
parameters for the size and activity were used. The data was noise free and
contained only minimal partial volume effects.

Fourteen patients with known coronary artery disease were included in this
study. Patients were routinely referred to the 18FDG PET scan for evaluation of
myocardial viability prior to revascularization. A listmode dataset was acquired
for 20 minutes, 1 hour post injection of 18FDG (4 MBq/kg). To enhance FDG
uptake in the heart, the patients underwent a hyperinsulinemic euglycemic clamp
technique prior to and during the scan [18]. All patients received β-blockers to
slow down and stabilize the heart rate during CT examination.

The Siemens Biograph Sensation 16 PET/CT scanner (Siemens Medical Solu-
tion) with a dedicated listmode research package was used in these studies. This
PET scanner has a spatial resolution of around 6 mm [19]. The cardiac signal
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for gating was acquired during the PET acquisition. The listmode file contains
the coincidences along with the time of occurrence. This information together
with the ECG information was used to sort the data into 10 cardiac phases. The
data was then reconstructed without attenuation correction with the help of an
expectation maximization algorithm [3]. In patient datasets, the end-diastolic
phase was gate 3 and the end-systolic phase was gate number 9.

4 Results and Discussion

The performance of the proposed method was estimated with help of three cri-
teria. These are 1) the correlation coefficient, 2) the myocardial thickness and
3) the left ventricular blood pool activity. The results of these experiments are
given below in the corresponding subsections.

In all studies the diastolic phase was used as the target gate. It should be
remembered that the cardiac cycle does not follow a linear pattern. This means
that some phases are very close to each other and there are large differences
among others.

4.1 Correlation Coefficient

The spatial correlation between the original and the motion corrected volumes
was calculated between the target phase (end-diastolic) and all other phases be-
fore and after motion correction. To discard the influence of the stationary voxels,
such as out of body pixels, a 40x40x40 voxels large volume of interest (VOI) was
selected around the heart. The correlation coefficient was then calculated as:

cc =
∑

m

∑
n(Amn − Ā)(Bmn − B̄)√

(
∑

m

∑
n(Amn − Ā)2)(

∑
m

∑
n(Bmn − B̄)2)

(9)

where Ā and B̄ are the means intensities of the respective volume.
The results for the software phantom are given in Table 1. The average cor-

relation after motion correction is 99.86 as compared to 88.51 before the same.
Besides high correlation, it is to be noted that the variation among the uncor-
rected data is far greater (min 80.25, std: 2.67) than after motion correction
(min 99.81, std: 0.23). This shows that the algorithm effectively corrected the
motion for all phases.

Table 1. Results of the correlation analysis on software phantom dataset

Phase 1 2 3 4 5 6 7 8 9 10 Avg
Before MC 100.0 94.53 92.99 86.65 81.73 80.25 80.75 82.22 90.88 95.08 88.51
After MC 100.0 99.87 99.87 99.85 99.83 99.81 99.82 99.83 99.87 99.87 99.86



94 M. Dawood et al.

Fig. 3. Results of the correlation analysis on systolic phase of all patient datasets

An overview of results on patient data can be seen in Figure 3. For better
readability the results are given only for the correlation of the end-systolic with
the target phase. Again, a high mean of 99.76 for all patients (min 99.54, std:
0.11) as compared to the original data (min 71.70, std: 5.84) was achieved.

4.2 Myocardial Thickness

The thickness of the left ventricular wall increases from the end-diastolic to the
end-systolic phase to pump blood into the arteries. As this variation follows the
cardiac cycle, the wall thickness for all phases should correspond to that of the
target phase after motion correction.

To calculate this measure, line profiles were taken across the left ventricular
wall after manual reangulation of the heart. The distance between the ascending
and descending flanks of the profile curve was taken as the width of the my-
ocardial wall. For this the line profile was fitted with a gaussian curve and the
FWHM of the fittgin function was used. To reduce the influence of noise, three
consecutive slices were selected in the mid ventricular area and the average wall
thickness calculated. As opposed to the correlation coefficient, this measure is
more localized in nature.

The results on phantom data are given in Table 2 and show that the myocar-
dial thickness is consistently (within 0.1 mm) similar to that of the target phase

Table 2. Myocardial thickness [mm] on software phantom dataset

Phase 1 2 3 4 5 6 7 8 9 10
Before MC 10.0 10.1 10.7 12.6 13.6 13.0 12.3 11.3 10.7 10.2
After MC 10.0 9.9 9.9 10.0 9.9 9.9 9.9 9.9 9.9 9.9
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Fig. 4. Results of the myocardial thickness analysis on all patient datasets

(to be recalled: voxel size was 3.125 mm3). The standard deviation was reduced
from 1.32 mm to 0.04 mm.

The results for patient data are given in Figure 4. The wall thickness was 17
mm on average in the end-systolic phase, which compared to 14 mm on average
for the end-diastolic phase. After motion correction the new transformed end-
systolic phase also showed a wall thickness of 14 mm on average. The sum of
squared differences between the wall thickness in end-systolic and end-diastolic
phases was reduced from 133.9 to 2.5 after motion correction. The wall thickness
appears larger than usual as attenuation correction was not performed.

4.3 Mean Activity in Blood Pool

The third criterion to assess the performance was the mean activity in the blood
pool in the left ventricle. Due to the PVE, activity radiates from the myocardium
into the blood pool. In the end-systolic phase the blood pool is small, the ven-
tricular walls closer to each other and accordingly there is a greater blurring
effect as compared to the end-diastolic phase, when the blood pool is larger
and the walls farther apart. After motion correction the blood activity values
should be similar for all phases. For this analysis a 6x6x6 voxels large VOI was
selected inside the left ventricle manually for each data set and the mean activity
calculated in this VOI.

The results given in Figure 5 show that the activity in the blood pool becomes
relatively independent of the cardiac phase after the proposed algorithm is ap-
plied. In the case of patient 10, the patient with the highest myocardial uptake
on the Figure, the standard deviation of mean VOI activity among all cardiac
phases was reduced from 409.5 to 26.5. The radiation into the blood increases
with higher uptake in the myocardium. Consequently, the patients with high
myocardial uptake show the largest variance among blood pool activities of the
systolic and diastolic phases.
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Fig. 5. Results of the mean activity in blood pool analysis among all patient datasets.

5 Conclusions

A continuity equation based optical flow method for cardiac PET data motion
correction is presented. The method is able to correct the data despite partial
volume effect. It was validated on patient and software phantom data. The results
showed that the cardiac motion was corrected precisely.
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Abstract. Tagged magnetic resonance (MR) imaging is unique in its
ability to noninvasively image the motion and deformation of the heart.
However, it is difficult to identify and quantify structures of interest in
the cardiac anatomy since the tags obscure the anatomy. In this paper,
we present a novel and fully automated technique based on nonrigid im-
age registration for the analysis of myocardial motion using both tagged
and untagged MR images. The novel aspect of our technique is its si-
multaneous usage of complementary information from both tagged and
untagged images. No manual intervention is required to obtain the seg-
mentation of the end-diastolic images. To estimate the motion within
the myocardium, we register a sequence of images taken during systole
to a set of reference images taken at end-diastole, maximizing a spatial
weighted similarity measure between the images. We use short-axis and
long-axis images of the heart as well as tagged and untagged images to
estimate a fully four-dimensional motion field within the myocardium.
We have evaluated the proposed approach on 8 patients both in terms of
robustness, accuracy and consistency of the motion tracking. The pro-
posed method is significantly more consistent than motion tracking on
tagged MR images only.

1 Introduction

The ultimate objective of cardiac image analysis is to provide useful and efficient
tools for the diagnosis and treatment of patients with cardiovascular diseases.
An increasing amount of attention has been focussed on the estimation of local
deformation parameters, such as strain. The analysis of such parameters can
help to better understand diseases such as cardiomyopathy and ischemia and
can lead to improved methods for the treatment of patients with cardiovascular
diseases.

Myocardial tissue in the body can be labeled by altering its magnetization
properties which remain persistent even in the presence of motion. MR tagging
was first proposed by [17] as a means of non-invasively introducing markers
within the myocardium of the left ventricle. Using this technology, noninvasive
markers can be introduced directly into the tissue being imaged during the image
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acquisition process. By tracking the motion and deformation of the tag patterns,
the motion of the myocardium can be reconstructed by cardiac motion analysis
algorithms [9][16][10] including nonrigid image registration [2] [7] [1] [3]. The
cardiac motion is reconstructed by registering a sequence of images taken during
the contraction of the heart to a reference image taken at the start of the cardiac
cycle.

A common difficulty in model-based and registration-based motion tracking
is to address the tag fading. Tagged MR images are analyzed in two steps to deal
with this difficulty. The first step requires the identification and tracking of tags
in the MR images, which involves the segmentation of the LV wall by identifying
its outer and inner contours. The second step involves the reconstruction of 3D
cardiac motion and the computation of motion-related variables, such as strain,
displacement field, and torsion. It is either difficult or time consuming to auto-
mate the first step on tagged MR images. HARP based motion tracking on the
other hand, cannot construct real 3D motion since it is inherently 2D. Although
[10] reconstructed 3D motion based on the results of 2D in-plane motions, it is
more desirable to extract the 3D motion from images directly and consistently.

In this paper we focus on motion tracking using both tagged and untagged MR
images simultaneously. An advantage of untagged MR images is that the cardiac
anatomy and in particular the myocardium is clearly visible and can be identi-
fied using state-of-the-art image segmentation algorithms [6,4,5]. In additional,
the radial motion of the myocardium can be tracked easily in untagged MR im-
ages since the epi- and endocardial surfaces are clearly visible. A disadvantage
of untagged MR images is that circumferential and longitudinal motion can-
not be accurately quantified as there are few landmarks inside the myocardium
which can be reliably tracked. On the other hand, tagged MR images allows
easy tracking of both longitudinal circumferential and radial motion. However
in tagged MR images it is difficult to identify and quantify the cardiac anatomy
since the tags obscure the anatomy. Although tag removal technologies exists
[12], the quality of the resulting images is not as good as conventional untagged
MR images. Moreover, it is especially difficult to remove grid-like tag patterns,
which are often used as they help to reduce acquisition time and registration
complexity. The lack of visible anatomy in the tagged MR images can cause
problems during the motion tracking as it is difficult to differentiate between
tissue and fluids (e.g. the blood pool). Nevertheless, both types of MR images
sequences provide complementary information that can be exploited.

One of the advantages of the combined usage of tagged and untagged MR
images is that both anatomical and tagging image information can be used at
the same time. Another advantage is that the anatomical information in the
untagged MR images enables a wide range of potential automatic segmentation
technologies to be used in the registration process. This eliminates the need to
manually segment the myocardium.

In this paper we developed a combined registration and motion tracking algo-
rithm using both tagged and untagged images. For this purpose we have extended
a registration algorithm which has been previously used successfully for motion
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tracking [2] . Before registration we use a Haar-feature based object detection
algorithm [15] [11] to detect a region of interest containing the left ventricle.
Because the motion of the heart is 3D, both short- (SA) and long-axis (LA)
images of the heart are used. A spatially-varying, weighted similarity measure
is used for the image registration. This similarity measure combines information
from both LA and SA images as well as from tagged and untagged images. The
weighting between the different images is spatially varying and depends on the
intensity gradient and probabilistic segmentation of the untagged image: At the
epicardial and endocardial boundaries (indicated by high intensity gradients in
the untagged images), the weighting favours the untagged images. Inside the
myocardium (indicated by the EM segmentation of the untagged images) the
weighting favours the tagged images.

The next section describes the proposed approach and details of the com-
bined registration algorithm. Section 3 describes the evaluation of the proposed
technique in terms of accuracy, robustness and consistency using data from 8
patients. Finally, section 4 includes a discussion of the results and future work.

2 Combined Registration

During the systolic phase, the left ventricle undergoes a number of different
types of deformations including: twisting motion, radial motion and longitudinal
motion. Since the imaging planes defined in the MR scanner are stationary with
respect to the coordinate system of the scanner, the motion of the heart is not
confined to a single plane during the cardiac cycle. Thus, to fully reconstruct
the deformation field within the myocardium, we need to acquire multi-slice SA
and LA images of the LV.

Consider a material point in the myocardium at a position p = (x, y, z)T at
time t0 = 0 that moves to another position p′ = (x′, y′, z′)T at time ti = iΔt
where Δt is the time interval between two consecutive frames and i corresponds
to the frame number. The problem is to find the transformation T for all time
frames i such that:

T(p, ti) = p′ (1)

We represent T using a series of free-form deformations [14] as described in [2].
An overview of the tracking algorithm is given in the following section.

2.1 Overview

The estimation of the deformation field T proceeds in a sequence of registration
steps. We first map all images into the scanner coordinate system using the po-
sition and orientation information obtained from the DICOM headers of images.
After that, we detect the position of the heart and bounding box in the untagged
images using an object detector [15]. Within the bounding box, we use an EM-
based segmentation algorithm to classify each voxel according to its tissue type.
In addition, a gradient detector is used to identify the epicardial and endocardial
contours. The information from both EM segmentation and gradient-detection is
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combined into spatially varying weight function which moderates the influence of
the tagged and untagged image information. We then register the images taken
at time t1 to the reference image t0 and obtain a transformation representing
the motion of the myocardium at time t1. We use the resulting transformation
as input and continue the process until all the volumes in the sequence are reg-
istered to the first frame[2].The algorithm allows us to relate any point in the
myocardium at time t = 0 to its corresponding position throughout the sequence.

2.2 Detection and Segmentation of the Heart

We use a modified Viola-Jones object detection framework [15] [11] to detect the
interest region from the untagged images in the world coordinate.

We use an atlas-based EM segmentation algorithm [5][8] to segment the MR
images into three different classes – background, blood pool and myocardium. An
affine registration followed by a non-rigid registration [13] is performed between
untagged MR images and the atlas.

Fig. 1. Four images are from left to right: Untagged MR image, segmentation result,
weight map for untagged MR image and weight map for tagged MR image

2.3 Weighted Similarity Measure

To exploit the complementary nature of the tagged and untagged MR images we
have developed a spatially varying weight function that accounts for the different
types of information available: Tagged images characterize well the motion inside
the myocardium while untagged images characterize well the motion at the epi-
and endocardial borders of the myocardium. Outside the myocardium, e.g. inside
the blood pool or in the lungs, neither images contain any useful information
for cardiac motion tracking. Weights are generated based on target image of the
registration in our case which is the end diastole frame.

Let L denote the EM-based segmentation of the untagged image I. This seg-
mentation assigns a label Λ = {Lbg, Lmyo, Lblood} to every voxel. Furthermore
assume that ∇Iσ denotes the gradient of image I after convolution with a Gaus-
sian kernel G with standard deviation σ. The weights for the untagged image
are defined as

Wu(p) =
||∇Iσ(p)||||∇Pσ(p, Lmyo)||

max ||∇Iσ(p)|| max ||∇Pσ(p, Lmyo)||
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where ||∇Iσ(p)|| is the gradient of intensity at location p and ||∇Pσ(p, Lmyo)||
is the gradient of myocardium probability at location p. The weights for the
tagged image are defined as

W t(p) =

⎧⎨
⎩

1 − Wu(p) if L(p) = Lmyo

0 otherwise

An example of the resulting weight maps is shown in Figure 1. Given a weight
map, we define the similarity between two images IA, IB as the weighted nor-
malized cross-correlation between the image intensities:

C(IA; IB ; W,T) =
∑

W (p)(IA(p) − μA)(IB(T(p)) − μB)√∑
W 2(p)(IA(p) − μA)2(IB(T(p)) − μB)2

(2)

Here μA and μB denote the average intensities in image IA and IB respectively.
For simultaneous registration of the tagged and untagged images, the correlation
across tagged images and the correlation across untagged images are combined
into a similarity measure as:

S =
∑

s∈LA,SA

|Ωs|
[
C(It,s

t0 , It,s
ti

, W t,s,T) + C(Iu,s
t0 , Iu,s

ti
, Wu,s,T)

]
/

∑
s∈LA,SA

|Ωs|

Here |ΩSA| and |ΩLA| denotes the number of voxels in the short- and long-axis
images. Note, that the similarity takes into account that the short- and long-
axis images have usually a different number of voxels and the correlation must
be weighted accordingly. Using the above similarity measure, the registration
relies on the untagged image at those voxels where there is a high gradient value
indicating possible presence of an edge outside the myocardium and on tagged
images where inside the myocardium.

3 Evaluation

In our experiments we have used images from 8 patients. For each patient four
different image sequences were acquired during the same scanning session which
correspond to short- and long-axis with and without tagging. All images were
acquired on a Siemens Sonata 1.5 T scanner consisting of 10 SA and 3 LA slices
covering the whole of the LV. A cine breath-hold sequence with a SPAMM tag
pattern was used with imaging being done at end expiration. The image voxel
sizes were 1.45 × 1.45 × 8mm , with the distance between slices being 10mm .14
frames for all sequences were acquired during the cardiac cycle. The imaging
parameters used a repetition time of 40 ms, an echo time of 4 ms, and a 15o flip
angle. An example data set is shown in Figure 2 together with the reconstructed
motion fields.

The evaluation of algorithms for cardiac motion is often difficult because of
the lack of a gold standard for motion tracking. Instead, one has to compare the
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Fig. 2. Untagged (top row), tagged (middle row) MR images and the extracted motion
fields (bottom row) from one volunteer

motion tracking to other established techniques. In our application, the problem
is compounded by the fact that any comparison to techniques using tagged
or untagged images only will be biased. For each data set we have manually
tracked 32 landmarks in-plane in the tagged short-axis images and 9 additional
landmarks in the tagged long-axis images. During the manual landmark tracking,
the position of the landmarks is automatically refined using a center-of-gravity
operator. This allows landmark tracking with sub-voxel accuracy. To assess the
quality of the registration we compare the position of the manually tracked
landmarks with the landmark position predicted by the nonrigid registration.
The RMS distance between the landmarks is shown in Figure 3.

The results indicate that the registration using tagged and untagged images
with a mean of 1.85mm performs much better than using only untagged images
with a mean of 3.44mm. However, the registration using tagged images only
performs slightly better with a mean of 1.67mm. This is expected since the
manual landmarks have been identified in the tagged images. The evaluation
is therefore inherently biased towards tagged images. We have also evaluated
the relative error which is the

∑n
i=1

ε
d/n where the d is the magnitude of the

displacement estimated from the transformation and ε is the distance between
the transformed original point and the manually tracked evaluation point. The
relative error of our combined method is very close to the tagged only method
on average and better in many cases figure 4. For frame 7 the relative error of
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Fig. 3. This figure shows the tracking error when comparing the result of manual tag
tracking with registration-based motion tracking. Results are shown for each time frame
in 8 datasets.

Fig. 4. Relative error when comparing the result of manual tag tracking with
registration-based motion tracking normalized by the deformation’s distance. Average
results are shown for each time frame over 8 datasets of two different methods

the combined method is 0.29 compare to 0.31 for the tagged only method and
0.64 for the untagged only method. The combined method has similar accuracy
to the tagged only method.

A limitation of the tagged only methods is that, if there is a sufficiently large
motion between two time frames, the motion tracking algorithms may become
confused and report no motion at all. This can happen if the number of slices
acquired and the temporal resolution of the images is not sufficient to capture
the deformation of the myocardium on tags. Thus an alternative strategy for
evaluating the performance of the algorithm is by measuring the consistency
of the motion tracking. This provides a measure of the robustness and can be
defined as the RMS distance between T(p, ti) and T′(p, ti) as shown in Figure 5.
The result in Figure 6 show that the consistency of the motion tracking is 8
times better if tagged and untagged images are used simultaneously compared
to the use of tagged images only. Figure 4 shows registration done consecutively
versus skip one frame. If the registration is consistent then the distance between
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Fig. 5. Definition of consistency in the context of motion tracking. T(p, ti) is generated
by optimizing T(p, ti−1) with image frame 0 and frame ti while T′(p, ti) is generated
by optimizing T(p, ti−2) with image frame 0 and frame t − i.

Fig. 6. Consistent measure from tagged-only registration and combined registration,
the average distance of motion of voxels in every pair T(p, ti) and T′(p, ti) is plotted in
this figure with respect of the patients. Combined registration provided 8 times better
consistency than the tagged only registration.

T(p, ti) and T′(p, ti) should be small in order to be able to recover from coarse
frames, noise and lose of information. A small value indicates higher robustness.
This could be achieved by a consistent but inaccurate registration. However the
combined evidence of the accuracy in the landmark tracking and the consistency
suggests that our method works well.

4 Conclusion

We have presented a novel method for cardiac motion tracking using both tagged
and untagged image sequences from short and long axis simultaneously. The key
advantage of the proposed method is the simultaneous exploitation of comple-
mentary information contained in the tagged and untagged images. Evaluation
shows that there is a significant improvement of consistency compare to tagged
only methods. We think it due to improved ability to track larger deformation
with spatial weight emphasizes on myocardium edges in untagged images.

The advantage of the presented approach is to reconstruct real 3D motion
directly from the MR images. We provide a fully automated registration scheme,
which is robust to the tag fading and provides a more consistent and presumably
more accurate motion tracking.
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Abstract. Development of imaging predictor of brain cytoarchitecture has been 
of significant interest in neuroimaging. Cortical geometric characteristic has 
been shown to be a good predictor of cortical cytoarchitecture. In this paper, a 
novel method based on sulcal geometric features is proposed for the extraction 
of sulcal banks, which are the cortical regions bounded by sulcal fundi and ad-
jacent gyral crest lines. Given parcellated sulcal basins, we apply two graph 
partition techniques including the normalized cuts and the graph cuts to parti-
tion a sulcal basin into two opposing sulcal banks. Particularly, we designed 
novel geometric similarity metrics and cost functions to adopt these two graph 
partition algorithms specifically for our applications. As a test bed application, 
we applied this method to extract the anterior and posterior sulcal banks of the 
central sulci on over 400 cortical surfaces and achieved promising results. In 
addition, we applied this method to study the cortical thickness of central sulci 
and found that the cortical thickness of the anterior sulcal bank is significantly 
thicker than that of the posterior sulcal bank, suggesting that the segmented sul-
cal banks can differentiate cortical thickness layout, which is believed to be an 
indicator of brain cytoarchitecture. Finally, the asymmetry and longitudinal 
changes of cortical thickness are analyzed using the OASIS database and rea-
sonable results are obtained. 

Keywords: sulcal bank, sulcal basin, cortical thickness, graph partition. 

1   Introduction 

Geometric folding characteristic has been shown to be a good predictor of brain cy-
toarchitecture [1]. For example, many different cytoarchitectonic regions are sepa-
rated by sulcal fundi [2], which are believed to be the geometric boundaries of sulcal 
banks. It has also been suggested that cortical thickness is a good marker of cytoarchi-
tecture [3]. For instance, it has been reported that the anterior bank of the central sul-
cus, corresponding to the primary motor cortex, is thicker than the posterior bank  
of the central sulcus, corresponding to somatosensory area [4]. Despite previous sepa-
rate studies in sulcal fundi extraction [5], cortical thickness measurement [4], and 
whole cortex parcellation [6], investigation of finer granularity parcellation of sulcal 
regions into sulcal banks and their correlations with the cytoarchitectonic signature of 
cortical thickness is still in its infancy. A systematic elucidation of the relationship 
between cortical geometry and cortical thickness can potentially contribute to better 



 Cortical Sulcal Bank Segmentation via Geometric Similarity Based Graph Partition 109 

 

understanding of normal brain architecture and alternations in brain aging and brain 
diseases. Therefore, we were motivated to develop a robust and effective method to 
extract sulcal banks so that we can systematically study the cortical thickness on op-
posing sulcal banks. As the central sulcus (CS) is one of most reliable and important 
anatomic landmark on the cortical surface, we use CS as a test bed for algorithm de-
velopment and evaluation using a large population of subjects. The proposed sulcal 
bank segmentation method consists of two major steps: parcellation of the cortical 
surface into sulcal basins and segmentation of parcellated sulcal basins into sulcal 
banks. For the first step, we employ the cortical sulcal parcellation method proposed 
in [7]. We concentrate on the second step: segmentation of the extracted sulcal basin 
into opposing sulcal banks, which is treated as a graph partition problem, which will 
be described in the following section.   

2   Methods 

Given a parcellated triangular sulcal basin, the sulcal bank segmentation method con-
sists of two steps: 1) rough segmentation of the sulcal basin into two opposing sulcal 
banks using the normalized cuts (Ncuts) method [8]; 2) further refinement of the 
boundary using the graph cuts (Gcuts) method [9]. Fig. 1 provides an example of the 
sulcal bank segmentation method. Please note that the boundary between opposing 
sulcal banks can be considered as the sulcal fundus.    

2.1   Normalized Cuts for Rough Sulcal Bank Segmentation 

To adopt the Ncuts method [8] for sulcal bank segmentation, the triangular mesh of a 
sulcal basin is represented by an undirected weighted graph ),( 11 EVG = , where V  is 

the collection of the vertices in the sulcal basin, and 
1E  is the collection of the edges 

in the graph, which are formed between each pair of vertices in the sulcal basin. In the 
graph, the weight ),( jiw  on each edge represents the similarity between two vertices 

i  and j . The Ncuts criterion for partitioning the graph into two disjoint parts A  and 

B  is defined as: 
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defined similarly. The advantage of the Ncuts criterion is that it measures both the 
total dissimilarity between the different groups of data and the total similarity within 
the same groups without bias. In addition, the Ncuts method requires neither an ex-
plicit representation of the groups in data nor all vertices within a group being similar 
to a single representative vertex. These features are quite suitable for sulcal bank 
segmentation, since sulcal banks might be curved patches (Fig. 1) and an explicit 
representation of a sulcal bank by a parametric model or by a single representative 
vertex might not be appropriate.  
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Fig. 1. An example of the proposed sulcal bank segmentation method. The sulcal basin is 
viewed from inside of the cortical surface for the convenience of inspection. (a) A central sulcal 
basin with the maximum principal curvature map. The color bar is on the left. (b) The sulcal 
bank segmentation results using Ncuts. The blue and red colors represent extracted two oppos-
ing sulcal banks and the green color represents the boundary between them. (c) The distin-
guished three parts. The green color represents the adjacent sulcal fundi region and the red and 
blue colors indicate two partial sulcal banks. (d) The final sulcal bank segmentation results. 

 

Fig. 2. An illustration of the similarity definition. (a) A cross-section of a central sulcal basin. 
The yellow arrows represent the normal directions. The red curve is the geodesic path between 
two vertices on opposing sulcal banks, and the blue line is the Euclidean distance. (b) and (c): 
the similarity map of a vertex labeled by the blue cross on a sulcal bank to all vertices on two 
sulcal opposing basins. The color bar is on the right.  

Defining the appropriate similarity metric that captures the essence of the problem 
of sulcal bank segmentation is vital. According to our extensive observations, typi-
cally, a sulcal basin consists of two opposing sulcal banks that meet at the sulcal  
fundus, and the cross-section of a sulcal basin appears as a “V” or “U” shape. For 
instance, the central sulcal basin consists of anterior and posterior sulcal banks, which 
meet at the central sulcal fundus. In principal, the similarity between two vertices 
within the same sulcal bank should be large and the similarity between two vertices in 
opposing sulcal banks should be small. The similarity ),( jiw  is defined as a linear 

weighed combination of two similarity terms: 

),()1(),(),( jiwjiwjiw nd ×−+×= αα                              (2) 
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where α  ( 10 ≤≤α ) is a parameter used to control the trade-off between the distance 
similarity ),( jiwd  and the angular similarity ),( jiwn

. ),( jiwn
 is defined as: 

2/)1),( jin jiw nn ⋅+=（
                       

                          (3) 

where n  is the normal direction. The distance similarity ),( jiwd  is defined as the 

ratio between the Euclidean distance ),( jide
 and the geodesic distance ),( jidg

: 

),(/),(),( jidjidjiw ged =                                                (4) 

The range of ),( jiw  is: 1),(0 ≤≤ jiw . The geodesic distance is the shortest path con-

necting two vertices along the triangular mesh of a sulcal basin. The basic idea is: if 
two vertices are within the same sulcal bank, the angular similarity of the two normal 
directions will be large and the ratio between the Euclidean distance and the geodesic 
distance is close to 1. Otherwise, the angular similarity will be low, and the ratio be-
tween the Euclidean distance and the geodesic distance is small. α  is set to be 0.8 in 
this paper. Fig. 2 shows an illustration of the similarity definition for sulcal bank 
segmentation in Ncuts, which above criterion is approximated by solving a general-
ized eigenvalue problem [8]. 

2.2   Graph Cuts for Fine Sulcal Bank Segmentation 

Since Ncuts is an approximate spectral technique for graph partition, the boundaries 
between the extracted sulcal banks could be inaccurate. Figure 1b shows an example. 
Therefore, we need to refine the sulcal bank segmentation result to obtain the accurate 
boundary between opposing sulcal banks. When refining the segmentation result, we 
impose hard constraints by automatically specifying certain vertices that have to be 
parts of a sulcal bank A or B. Meanwhile, we define a clear energy function for the 
segmentation. Thus, the rest of vertices are segmented as either parts of sulcal bank A 
or B by computing an optimum of the energy function that satisfies the hard con-
straints. To define the hard constraints, the sulcal bank segmentation result by Ncuts 
is divided into three parts: a part of sulcal bank A called A′ , a part of sulcal bank B 
called B′ , and the adjacent sulcal fundi region, which is defined as all of the two ring 
neighborhood vertices of the boundary between two segmented sulcal banks by 
Ncuts. The remaining two disjoint parts in the sulcal basin are considered as A′  and 
B′ , which are treated as hard constraints, thus the feasible segmentation can only 
happen within the banded adjacent sulcal fundi region. Figure 1c shows an example 
of the distinguished three parts in a sulcal basin. Adding hard constraints helps obtain 
desirable segmentation results. 

Let ),,,( 1 Np LLLL ……=  be a binary vector and 
pL  represents the label assigned to 

vertex p  in a sulcal basin. Each 
pL  can be either 0 or 1 (indicating sulcal bank A or 

B respectively). The energy function for sulcal bank segmentation is defined as:  

    ),()( )()()(
, ,∑∑ ∈∈

+⋅==+⋅=
ε

λλ
qp qpqpPp pp LLBLRLBLRLE          (5) 
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where ε  is the neighborhood system on the triangular sulcal basin. )(LR , called the 

regional term, measures the cost of assigning the label 
pL  to the vertex p . )( pp LR  

should be small value when assigning vertex p to the sulcal bank which it belongs to. 
If a vertex is in the adjacent sulcal fundi region, the regional term is defined as: 

         ))()(),((ln)( ∑∑ ==⋅−==
i ii ipp lLlLpiwlLR δδ                         (6) 

where ),( piw  is the similarity between vertices i  and p  defined in Ncuts. If 

lLi = , 1)( == lLiδ ; otherwise, 0)( == lLiδ . }1 ,0{∈l  correspond to sulcal bank A and 

B respectively. )(LB , called the boundary term, measures the cost of assigning the 

label 
qp LL  ,  to adjacent vertices qp,  and is used to impose spatial smoothness. 

),(, qpqp LLB  should be large value when two vertices are within the same sulcal bank. 

To define the boundary term, we adopt the maximum principal curvature c , which 
are large negative values at sulcal bottoms and are large positive values at gyral crests 
[7]. The basic idea is: if the two vertices are at different sides of a sulcal fundus, 
where the two maximum principal curvatures will be large negative values since these 
two vertices are in sulcal bottoms, the boundary term should be a small value; other-
wise, and the boundary term should be a large value. The boundary term ),(, qpqp LLB  

is defined as: 

)(2/)))(exp())((exp(),(, qpqpqp LLqcpcLLB ≠⋅+= δ                 (7) 

If qp LL ≠ , 1)( =≠ qp LLδ  ; otherwise, 0)( =≠ qp LLδ . The parameter λ  determines the 

relative contribution between the region term and the boundary term in the energy 
function. λ  is set to be 30.0 in this paper. The optimal segmentation is the L̂   
that minimizes the energy function and meanwhile satisfies the imposed hard  
constraints. 

Table 1. The definitions of graph edge weights 

Edge Weight Condition 
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To adopt Gcuts method for sulcal bank segmentation, a graph is defined as 
),( 222 EVG = , where 

2V  is the collection of the nodes, and 
2E  is the set of edges. 

},{2 TSVV ∪= , where V  is set of vertices in the sulcal basin, S  and T  represent two 

terminal nodes: source and sink, which stand for A′  and B′  respectively. 

tn EEE ∪=2
, where 

nE  and 
tE  represent two collections of edges: n-links and t-links. 

The edges between adjacent vertices are called n-links. And the edges connecting 
vertices to two terminals are called t-links. Each vertex p has two t-links },p{ S  and 

},p{ T  connecting it to two terminals. Each pair of neighboring vertices }q,p{  is con-

nected by an n-link. The weight of edges in the graph 
2G  is defined in the Table 1. It 

has been proved that the segmentation defined by the minimum cut of the above con-
structed graph minimizes Eq. (5) among all segmentations satisfying the hard con-
straints [9]. In our implementation, we adopt the max-flow graph cut algorithm in 
[10]. Figure 1 shows an example of the sulcal bank segmentation. 

3   Results 

The publicly available OASIS neuroimaging dataset [11] is used to evaluate the pro-
posed method. The sulcal bank segmentation is performed on the gray/white matter 
surfaces. All of the topologically correct and geometrically accurate cortical surfaces 
used here are reconstructed via the method in [12]. We have successfully recon-
structed 414 cortical surfaces from the OASIS dataset. After parcellation of cortical 
surfaces into sulcal basins using the method in [7], we obtained 401 correctly ex-
tracted central sulcal basins on both hemispheres. We found that the sulcal basin seg-
mentations are quite reasonable. The central sulcal basins are interactively identified 
from the parcellated cortical surfaces by experts. All of the correctly extracted central 
sulcal basins are segmented into anterior and posterior sulcal banks using the pre-
sented method in this paper. We extract the anterior and posterior sulcal banks of 401 
left and 401 right central sulci from the OASIS dataset [11]. Our inspection of 60 
randomly selected central sulci shows visually correct results. Figure 3 shows the 
sulcal bank segmentation of 15 randomly selected central sulci. 

 

Fig. 3. The sulcal bank segmentation results on 15 randomly selected central sulci 

To quantitatively evaluate the sulcal bank segmentation results, we have two ex-
perts who manually annotated the anterior and posterior central sulcal banks of both 
hemispheres of 15 randomly selected subjects. We applied the Dice coefficient  
between automatically extracted and manually labeled sulcal banks to validate the 



114 G. Li et al. 

 

proposed method. The Dice coefficients of the anterior and posterior sulcal banks on 
both hemispheres for the 15 subjects are above 0.92 for both experts, indicating the 
relatively accurate performance of our method. Figure 4 shows the details of the Dice 
coefficients on both hemispheres of the 15 subjects, in comparison with expert 1. 

4   Applications 

With the sulcal bank segmentation results, we are able to quantitatively study the 
cortical thickness on anterior and posterior sulcal banks of central sulci. We adopt the 
method in [4] to calculate the cortical thickness on all of the extracted central sulcal 
banks in the OASIS dataset [11]. Over all, we have 401 central anterior and posterior 
sulcal banks on each hemisphere of 307 healthy subjects. In the 307 subjects, on right 
hemispheres, the average cortical thicknesses of the central anterior and posterior 
sulcal banks are 2.66±0.28mm and 2.30±0.30mm, respectively. On left hemispheres, 
the average cortical thickness of the central anterior and posterior sulcal banks is 
2.81±0.34mm and 2.30±0.29mm, respectively. Figure 5 and 6 show the detailed dis-
tributions of the average cortical thickness of the central anterior and posterior sulcal 
banks of the 307 subjects on right and left hemispheres, respectively. These figures 
also show the differences between average cortical thickness of the central anterior 
sulcal bank and that of the corresponding central posterior sulcal bank on both hemi-
spheres. The t-test is applied to these results. Considering that P<0.001 on both hemi-
spheres, we conclude that the anterior sulcal bank is significantly thicker than the 
posterior sulcal bank of central sulci on both hemispheres. These results are consistent 
with previous reports on imaging studies [4], but with much larger number of subjects 
and in a more systematic fashion. 
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Fig. 4. The Dice coefficients compared to expert 1 for the anterior and posterior central sulcal 
banks of the 15 subjects 

It has been reported that the cortex was generally thicker in the left hemisphere 
than the right hemisphere, and significant leftward asymmetry has been identified in 
several cortical regions [13]. We are interested in inspecting whether there exit a 
significant leftward asymmetry in these two opposing sulcal banks of central sulci. In 
the 307 normal subjects, we find 301 subjects with successfully extracted both left 
and right central sulcal banks. The average cortical thickness of left and right central 
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anterior sulcal banks are 2.81±0.34mm and 2.66±0.28mm, respectively. Figure 7 
shows the detailed distributions of the average cortical thickness of the left and right 
central anterior sulcal banks of the 301 subjects. The figure also shows the differences 
between average cortical thickness of the left central anterior sulcal bank and that of 
the corresponding right central anterior sulcal bank. The t-test is applied to these re-
sults. Considering that P<0.001, we conclude that the central anterior sulcal bank is 
significantly thicker at left side. The average cortical thickness of left and right central 
posterior sulcal banks are 2.30±0.29mm and 2.30±0.30mm, respectively. No signifi-
cant asymmetry has been found on central posterior sulcal banks.  
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Fig. 5. The average GM thickness distributions of the anterior and posterior sulcal banks of the 
central sulci on right hemispheres of 307 subjects 
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Fig. 6. The average GM thickness distributions of the anterior and posterior sulcal banks of the 
central sulci on left hemispheres of 307 subjects 

Many cross-sectional studies have reported thinner cortices in older than younger 
individuals [14, 15], especially for the central sulcus. Therefore, we studied the age-
related trend of the average cortical thickness of the anterior and posterior sulcal banks 
of the central sulcus using second order polynomial regression analysis. The correla-
tion of the anterior and the posterior banks of the right central sulcus are 7127.0R −=  
and  7851.0R −= , respectively. And the correlation of the anterior and the posterior 
banks of the left central sulcus are 7915.0R −=  and 7900.0R −= , respectively. 
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Fig. 7. The distributions of average GM thickness of the left anterior and right anterior sulcal 
banks of the central sulci of 301 subjects without dementia 
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Fig. 8. The distributions and trend lines of average cortical thickness of right anterior (blue) and 
posterior sulcal bank (yellow) of the central sulcus along with the ages 
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Fig. 9. The distributions and trend lines of average cortical thickness of left anterior (blue) and 
posterior sulcal bank (yellow) of the central sulcus along with the ages 

Figure 8 and 9 show the distributions and trend lines of mean cortical thickness of 
anterior and posterior sulcal banks of central sulci along with the ages of 307 healthy 
subjects on right and left hemispheres, respectively. All these results indicate a  
gradual decrease in cortical thickness across the adult life span of both the anterior 
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and the posterior banks of both the left and right central sulci of 307 healthy subjects. 
These results support the report that thinning of cortical thickness was found in the 
central sulcus [14, 15]. 

5   Conclusion 

In this paper, we presented a novel method of geometric similarity based graph parti-
tion for sulcal bank segmentation. As a test bed application, we applied the segmenta-
tion method to study the cortical thickness of anterior and posterior sulcal banks of 
the central sulcus in the OASIS dataset and obtained reasonable results. Our results 
support that cortical geometric characteristic is a good predictor of cortical cytoarchi-
tecture. In the future, we plan to apply the method to other major sulci in normal 
brains, in order to systematically elucidate the relationships between sulcal banks and 
the cortical thickness.  

References 

1. Fischl, B., Rajendran, N., Busa, E., et al.: Cortical folding patterns and predicting cytoar-
chitecture. Cereb. Cortex 18(8), 1973–1980 (2008) 

2. Welker, W.: Why does cerebral cortex fissure and fold? A review of determinants of gyri 
and sulci. Cereb. Cortex 8b (1990) 

3. Lerch, J.P., Worsley, K., Shaw, W.P., et al.: Mapping anatomical correlations across cerebral 
cortex (MACACC) using cortical thickness from MRI. NeuroImage 31(3), 993–1003 (2006) 

4. Fischl, B., Dale, A.M.: Measuring the thickness of the human cerebral cortex from mag-
netic resonance images. Proc. Natl. Acad. Sci. 97(20), 11050–11055 (2000) 

5. Li, G., Guo, L., Nie, J., Liu, T.: An automated pipeline for cortical sulcal fundi extraction. 
Medical Image Analysis 14(3), 343–359 (2010) 

6. Fischl, B., van der Kouwe, A., Destrieux, C., et al.: Automatically parcellating the human 
cerebral cortex. Cereb. Cortex 14(1), 11–22 (2004) 

7. Li, G., Guo, L., Nie, J., Liu, T.: Automatic cortical sulcal parcellation based on surface 
principal direction flow field tracking. NeuroImage 46(4), 923–937 (2009) 

8. Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Trans. Pattern Anal. 
Mach. Intell. 22(8), 888–905 (2000) 

9. Boykov, Y., Funka-Lea, G.: Graph cuts and efficient N-D image segmentation. Interna-
tional Journal of Computer Vision 70(2), 109–131 (2006) 

10. Boykov, Y., Veksler, O., Zabih, R.: Fast approximate energy minimization via graph cuts. 
IEEE Trans. Pattern Anal. Mach. Intell. 23(11), 1222–1239 (2001) 

11. Marcus, D.S., Wang, T.H., Parker, J., et al.: Open Access Series of Imaging Studies (OA-
SIS): cross-sectional MRI data in young, middle aged, nondemented, and demented older 
adults. J. Cogn. Neurosci. 19(9), 1498–1507 (2007) 

12. Liu, T., Nie, J., Tarokh, A., et al.: Reconstruction of central cortical surface from brain 
MRI images: method and application. NeruoImage 40(3), 991–1002 (2007) 

13. Luders, E., Narr, K.L., Thompson, P.M., et al.: Hemispheric asymmetries in cortical thick-
ness. Cereb. Cortex 16(8), 1232–1238 (2006) 

14. Salat, D.H., Buckner, R.L., Snyder, A.Z., et al.: Thinning of the cerebral cortex in aging. 
Cereb. Cortex 14(7), 721–730 (2004) 

15. Rettmann, M.E., Kraut, M.A., Prince, J.L., Resnick, S.M.: Cross-sectional and longitudinal 
analyses of anatomical sulcal changes associated with aging. Cereb. Cortex 16(11), 1584–
1594 (2006) 



A Framework for 3D Analysis of Facial
Morphology in Fetal Alcohol Syndrome

Jing Wan1,2,4, Li Shen1,2,�, Shiaofen Fang1, Jason McLaughlin1,
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6 Folkhälsan Research Center, Helsinki, Finland
7 Department of Psychology, San Diego State University, CA, USA

8 Sanford School of Medicine, University of South Dakota, Vermillion, SD, USA
9 St. Vincent Women’s Hospital, Indianapolis, IN, USA

Abstract. Surface-based morphometry (SBM) is widely used in biomed-
ical imaging and other domains to localize shape changes related to dif-
ferent conditions. This paper presents a computational framework that
integrates a set of effective surface registration and analysis methods
to form a unified SBM processing pipeline. Surface registration includes
two parts: surface alignment in the object space by employing the itera-
tive closest point (ICP) method, and surface alignment in the parameter
space by using conformal mapping and landmark-based thin-plate spline
methods. Statistical group analysis of registered surface data is then
conducted by surface-based general linear model and random field the-
ory addressing multiple testing issues. The effectiveness of the proposed
framework is demonstrated by applying it to a fetal alcohol syndrome
(FAS) study for identifying facial dysmorphology in FAS patients.

1 Introduction

The adverse effects of alcohol on the developing fetus fall along a continuum.
The collection of these disorders is known as fetal alcohol spectrum disorders
(FASD). Fetal alcohol syndrome (FAS), considered as a more severe subset of
FASD, can be defined by recognizable facial dysmorphology, growth deficits,
and behavioral problems [6]. Individuals diagnosed with FAS present a pattern
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of minor facial anomalies including short palpebral fissures, flat nasal bridge,
smooth philtrum, thin upper lip, and flat mid-face [12]. The ongoing clinical
challenge is to expand the recognizable facial features so more individuals with
prenatal alcohol exposure that do not exhibit the classic facial phenotype can
be identified, allowing for early interventions.

Craniofacial anthropometry has been used to accurately identify individuals
with FAS [13]. However, anthropometric assessments can be time consuming and
usually require an experienced anthropometrist to obtain the measurements. So
there is a need for newer techniques, which in combination with a clinician’s
assessment, would provide rapid and accurate pre-screening and early diagnosis
of children with a FASD [6]. Three-dimensional (3D) surface-based morphometry
offers the opportunity to solve the problem.

Surface-based morphometry (SBM), widely used in biomedical imaging to study
various structures of interest, is used to identify morphometric abnormalities asso-
ciated with a particular condition, assisting with diagnosis and treatment. Many
studies [3,9] of facial morphology focus on the delineation of characteristic fea-
tures or building computational models of face-shape variation. Hammond et al.
[9] proposed a dense surface model of the huaman face. They used 3D thin-plate
spline (TPS) to align the landmarks of each face, employed iterative closest point
(ICP) method to build correspondence by taking the closest point on each sur-
face from each vertex on a base mesh, and then applied the inverse of the TPS
warp to map each surface back to its original location. The base mesh was cho-
sen as an individual from the data and thus not a regular mesh. Using such a base
mesh to sample other meshes may not be ideal for SBM which typically works on a
uniformly sampled surface manifold. In addition, since 3D TPS has no analytical
inverse, the error introduced by approximating the TPS inverse and its compu-
tational complexity are unclear. Wang et al. [21] proposed a non-rigid 3D motion
tracking algorithm using harmonic maps with added feature correspondence con-
straints to build dense one-to-one inter-frame correspondences. This method may
not be applicable to data sets where only geometric information is available or
surface correspondence cannot be implicated by texture information.

Here we propose a novel computational framework that performs SBM on 3D
facial imaging data and demonstrate its effectiveness via an FAS application.
We are given two groups of 3D facial surfaces represented by triangular meshes.
Each mesh is assumed to have a disk topology and does not contain any hole.
A set of landmarks are available on each mesh to pre-define a coarse correspon-
dence between surfaces. Our goal is to localize morphological changes related to
the group condition (i.e., FAS versus controls). Our SBM framework includes
three key components: (1) Surface alignment in the object space is achieved by
employing the ICP algorithm. (2) Surface registration in the parameter space
is obtained by using conformal mapping and landmark-based 2D TPS methods.
(3) Statistical group analysis of registered surface data is conducted directly on
the surface manifold to avoid distortion introduced by surface flattening, and a
surface-based general linear model with random field theory is used to achieve
this goal and address multiple testing issues.
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Our approach sacrifices full automation by using landmarks in exchange for
more robustness and higher accuracy to surface registration, allowing users to
define critical locations where surface correspondence should be established. In-
stead of directly working in 3D domain like [9], our approach establishes the
surface correspondence via a 2D parametric domain, making the entire process-
ing pipeline simple, efficient, and easy to implement and interpret. While this
pipeline is demonstrated in an FAS study, it is a general framework and could
be applied to other 3D surface objects with disk-like topology and landmarks.

2 Materials and Methods

2.1 Data Set

The data set used in this study included 44 (18 males and 26 females, age
13.0 ± 3.6) FAS and 52 (20 males and 32 females, age 13.9 ± 3.6) healthy con-
trol (HCL) participants from Helsinki, Finland. The participants or their legal
guardians provided written informed consents. Each participant was examined
and classified as FAS, no FAS, or deferred according to a standardized assess-
ment [11]. Preliminary diagnosis was determined on the basis of facial structural
features and growth deficiency consistent with the revised Institute of Medicine
criteria [10]. The final diagnoses were considered with alcohol exposure data
which were collected through a standard questionnaire consisting of four ques-
tions in the interview or from a review of available study data. This study only
included the individuals determined as FAS with prenatal alcohol exposure and
the ones designated as no FAS without prenatal alcohol exposure.

A standard scheme was utilized to collect 3D facial images using Minolta
Vivid 910 laser scanners. Each participant was seated approximately 660 mm
from the scanner and six scans were taken as: two frontal, two 45 degree to the
right of the frontal axis, and two 45 degree to the left of the frontal axis. These
three directions of scans ensured the entire facial area was covered. A stitching
processing using a commercially available software package, Rapidform 2004, was
applied to merge the scans of the three views into one single 3D surface image [6].
33 landmarks (Figure 1) were then manually defined by a trained technician. The
landmarks were prominent and easily identifiable points on each face (e.g. the
corners of the eyes). They provide meaningful constraints for regions of interest
in facial dysmorphology to guide the registration procedure.

2.2 Surface Registration

We first register all the surfaces in the object space. The iterative closest point
(ICP) algorithm [1] is used to register each surface to a template surface, which
is pre-selected as an HCL surface. This rigid transformation normalizes the ori-
entation and location of each surface. After that, surface correspondence is es-
tablished via 2D parameterization, where conformal mapping and 2D thin-plate
spline (TPS) [2] are employed. Our goal is to achieve a smoothing mapping
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between any surface and the 2D parameter domain, and assign the same land-
mark of different models with the same location in the parameter space.

We first describe how conform mapping is implemented. To perform statistical
shape analysis on 3D facial surfaces, we need to establish a meaningful correspon-
dence between them. One way to achieve the goal is to map these facial surfaces into
a standard space while preserving geometric information on the original structures
as much as possible [7,8]. So this becomes a surface parameterization problem.

Surface parameterization, defined as one-to-one mapping from a surface into
another parameter domain, can always introduce distortion in either angles or
areas [7]. A good mapping is the one which minimizes the distortions to some
extent. To achieve this goal, conformal mapping is one way to minimize the
angular distortion [8]. Riemann theorem states that conformal mapping of a
smooth surface into a plane exists for any simply-connected plane domain [4].
Since meshes of a smooth surface can be viewed as approximations of the surface,
it is possible to map them to a plane with very little angular distortion [15].

Before describing the comformal mapping algorithm used in our framework,
we first introduce some basic concepts. Suppose a surface M1 ⊂ R

3 has the para-
metric representation x(u1, u2) = (x1(u1, u2), x2(u1, u2), x3(u1, u2)) for points
(u1, u2) in some domain in R

2. The first fundamental form of M1 is

ds2
1 =

∑
ij

gijduiduj where gij =
∂x
∂ui

· ∂x
∂uj

(i, j = 1, 2) (1)

Another plane M2 ⊂ R
2 is similarly represented by x̃(ũ1, ũ2). Define a mapping

f : M1 �→ M2 between two surfaces. If f is a conformal mapping, then there
is some scalar function η �= 0, such that ds2

1 = η(ũ1, ũ2)((dũ1)2 + (dũ2)2). As
shown in [7], two Laplace’s equations are obtained as

�sũ
1 = 0, �sũ

2 = 0 (2)

�s is the Laplace-Beltrami operator, which can be written as �s = divsgrads.
To find the solution to Equation (2), the conformal mapping f can be viewed as
minimizing the Dirichlet energy:

E0(f) =
1
2

∫
s

‖gradsf‖2 (3)

To compute f , Eck et al. [5] proposed an approach, called discrete harmonic map,
which extends the graph embedding method of Tutte [19]. In their method, the
boundary vertices of the meshes are first mapped to the boundary of the unit disk.
Then the positions of the remaining vertices canbe computed by solving equations:

Lũ1 = 0, Lũ2 = 0 (4)

Lij =

⎧⎨
⎩

−
∑

k 	=i Lik, i = j

wij , (i, j) ∈ E
0, otherwise

(5)

wij = cotαij + cotβij , (6)
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where αij and βij are the opposite angles in the two triangles sharing an edge
(i, j) [15].

This study employs Eck’s method to perform conformal mapping from 3D
facial meshes to 2D meshes in the unit disk. A public matlab toolbox, Toolbox
Graph [14], is used to implement the algorithm. Here we perform conformal
mapping to map each vertex of a 3D mesh to the corresponding 2D position in
a unit disk with fixed boundary. Suppose an individual is represented as a set of
vertices (Xa, Y a, Za). After applying conformal mapping Φ, which is bijective,
each individual gets new coordinates (Φ(Xa), Φ(Y a)) in the 2D disk domain. As
an example, let the height (i.e., Z value of each vertex in the original model) be
the geometric information of our interest, and thus the mapped individual can
be represented as (Φ(Xa), Φ(Y a), Za). Of note, other surface features (e.g., x, y
coordinates, curvature, etc.) can be studied in the same way. For simplicity, we
explain our method here by focusing on z coordinates only.

After applying conformal mapping to all the subjects in the data set, we pick
a healthy individual as the template and then register all the subjects to the
template using landmark based thin-plate splines (TPS) warp Ψ [2] in the 2D
domain. Now the landmarks of each individual are exactly aligned to those of
the template. The remaining parts of the individuals are interpolated according
to the movement of their landmarks. An individual can then be represented as
(Ψ(Φ(Xa)), Ψ(Φ(Y a)), Za), where Ψ denotes the TPS registration function.

Since each individual mesh has different number of vertices and triangles,
we need to resample them using a regular mesh grid defined in the disk. After
resampling, all the individuals in the data set have the same mesh topology and
can be compared with each other. Z-coordinates (i.e., heights) of the re-sampled
points can be obtained by using cubic interpolation for each individual, and are
used to extract surface signals in subsequent analyses.

2.3 Statistical Shape Analysis

After surface registration, all facial surfaces are aligned to the same reference
system. This facilitates the subsequent analysis on the facial surfaces, including
extracting surface signals and performing statistical inference on the surface
manifold using general linear model (GLM) [17,20]. We use Xt to denote the
atlas, which is computed as an average of all registered healthy controls (HCLs).
For an individual surface X , we use its deformation field δ(X) = X − Xt as
surface signals to describe the shape based on the atlas Xt. In this study, we
examine two types of surface shape signals: (1) deformation scalar along z-axis
direction and (2) mean curvature of each vertex.

Remember our goal is to detect significant shape changes on facial surfaces
between HCL group and FAS group. We consider the following GLM

y = XΨ + ZΦ + ε (7)

where the dependent variable y is our surface signal; X = (x1, · · · , xp) are the
variables of interest such as Group; Z = (z1, · · · , zk) are the variables whose
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Fig. 1. Registration in the object space by aligning an individual to the template using
ICP: (1) template, (2) individual, and (3) ICP-aligned individual

effects we want to exclude, such as Age and Gender; and Ψ = (ψ1, · · · , ψp)T and
Φ = (φ1, · · · , φk)T are the coefficients; and ε is the error term. The goal is to
test if X is significant (i.e. Ψ �= 0) for y ∈ ∂Ω, where ∂Ω indicates the surface
manifold. We use SurfStat to test our GLMs. SurfStat is a Matlab toolbox for
statistical analysis of univariate and multivariate surface and volumetric data
using linear mixed effects models and random field theory (RFT) [22]. Using
SurfStat notation (coefficients excluded in the equation), we examine the fol-
lowing two models, where dependent variables (i.e. y in Eq.(7)) are our surface
signals defined above, and RFT is used for multiple comparison correction.

Model Description
M1 = 1 + Status Diagnosis effect on surface signals
M2 = 1 + Status + Age + Gender Diagnosis effect on surface signals

with controlling Age and Gender effect

3 Experimental Results

3.1 Surface Registration

Figure 1 shows an example of registration result in the object space by aligning
an individual to the template using ICP, which normalizes the orientation and
location of the initial configuration. The root mean square distance (RMSD)
between the individual and the template before ICP registration is 4.487 and it
is reduced to 1.322 after ICP registration.

Figure 2 shows a sample registration procedure in the parameter space by
aligning an individual’s conformal map (d) to the template conformal map (c)
using TPS. While landmarks are aligned perfectly between the individual and
the template, a smooth mapping from the individual to the template is obtained
for establishing the surface correspondence. To quantify the registration quality,
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Fig. 2. Registration in the parameter space by aligning an individual’s conformal map
to the template conformal map using TPS: (1) individual face, (2) individual conformal
map, (3) template conformal map, and (4) TPS-aligned individual conformal map

we consider two factors: (1) the area distort cost (ADC) (defined in [16]) from the
object surface to the parameter domain (i.e., 2D disk), and (2) RMSD between
landmarks of the individual and the template in the parameter domain. Our goal
is to achieve RMSD=0 while controlling the area distortion ADC. If we just use
conformal mapping, we have ADC of 1.1508 ± 0.0231 (mean±std) and RMSD
of 0.6841 ± 0.1124 for all the subjects in our data. If we combine conformal
mapping with TPS, we have ADC of 1.3723 ± 0.0987 and RMSD of 0 ± 0. In
this case, although our ADC gets slightly increased, RMSD=0 guarantees that
all the landmarks are perfectly aligned across all the subjects.

Fig. 3. HCL average face and FAS average face: HCL average face is used as the atlas
for extracting surface signals

Figure 3 shows the average of all the HCL faces and the average of all the FAS
faces. The HCL average face is used as the atlas for extracting surface signals.
Figure 4 shows the surface registration and signal extraction results for one HCL
and two FAS examples. The three facial surfaces after being aligned in object
space are shown in Figure 4(a) and their registered surfaces after conformal
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Fig. 4. One HCL and two FAS examples of surface registration and signal extraction
results: (a) original surface, (b) registered surface, and (c) surface signals. Note that
the x, y coordinates of landmarks after registration are consistent across subjects (see
(b)). For each participant, the landmark z values (i.e., heights) stay the same before
and after registration (see (a-b)).

mapping and TPS are shown in (b). Note that the x, y coordinates of landmarks
after registration in parameter domain are consistent across subjects (see (b)).
For each participant, the landmark z values (i.e., heights) stay the same before
and after registration (see (a-b)). (c) shows the surface signals we extract from
the three surfaces. The surface signals visualized here are deformation scalar
along z-axis direction (i.e. height). Red color represents positive surface signal
value while blue color denotes negative surface signal value.

3.2 Statistical Shape Analysis

As mentioned in Section 2.3, we examine diagnosis effect on surface signals be-
tween HCL and FAS, with and without involving age and gender as covariates in
Model M2 and Model M1, respectively. Since the results of M1 and M2 are very
similar, only M2 results are shown in Figure 5: (a,c) the maps of the t statistics,
(b,d) the maps of corrected P values for peak and clusters (only regions with
p ≤ 0.01 are color-mapped). Let us first look at the height results (a,b). As de-
scribed earlier, the signal at each surface location is defined as the deformation
from the atlas to an individual along z-axis direction. So the signals take either
positive values for outward deformations or negative values for inward deforma-
tions. As the contrast of M2 is defined as “FAS−HCL”, the colorful T maps in
(a) can be explained as follows: the shape of an FAS face tends to be contractive
in the red regions and expansive in the blue regions compared to that of an HCL
face. All the significant regions in (b) correspond to the red regions in (a), indi-
cating FAS faces are expansive in those regions compared to HCL faces. When
P threshold is set to 0.01, the significant regions cover the corner of two eyes,
lips, and philtrum. These results are in accordance with previously known facial
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Fig. 5. Diagnosis effect (i.e., FAS-HCL) on surface signals (heights in (a,b), curvatures
in (c,d)) while controlling for Age and Gender. (a,c) show the maps of the t statistics.
(b,c) show the maps of corrected P values for peak and clusters with p ≤ 0.01.

features for FAS diagnosis (e.g., short palpebral fissures, upper lip and smooth
philtrum [10,18]). As to the curvature results (c,d), while few significant areas
are identified in P-map (d), the T-map (c) shows a very interesting red region in
the philtrum. Since curvatures in a philtrum region usually take negative values
indicating concave, red color of that region in (c) denotes larger curvature values
in FAS than in HCL and consequently smoother philtrum in FAS. This matches
the existing findings.

4 Conclusions

In this paper, we presented a novel computational framework for surface based
morphometry (SBM). It integrated a set of effective surface registration and
analysis methods to form a unified SBM processing pipeline. Three parts were
included in this pipeline: (1) surface alignment in the object space by performing
the iterative closest point algorithm, (2) surface registration in the parameter
space by employing conformal mapping and landmark-based thin-plate spline
methods, and (3) statistical group analysis on registered facial surfaces by using
general linear model with random field theory. This framework was applied to
3D analysis of facial morphology in fetal alcohol syndrome (FAS). The goal
was to identify regional facial changes of the FAS group compared to healthy
controls using 3D facial imaging data. The results identified facial dysmorphology
patterns in FAS that were consistent with prior findings. This demonstrated the
effectiveness of our framework. The framework is relatively simple and efficient.
It can be applied to other applications dealing with similar data and derive
results that are easy to interpret. One interesting future direction could be to
examine additional surface signals such as tensors and displacement vectors.
Another direction would be to apply this technique to individuals with known
alcohol exposure that do not exhibit the classic FAS face.
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Abstract. We propose a novel framework for the personalized design of
organic shapes that are constrained to exhibit conformity with the un-
derlying anatomy. Such constrained design is significant for several appli-
cations such as the design of implants and prosthetics, which need to be
adapted to the anatomy of a patient. In such applications, vaguely defined
work instructions are usually employed by expert designers to carry out a
sequence of surface modification operations using interactive CAD tools.
Our approach involves the abstraction of the work instructions and the
expert knowledge into feature dependent machine interpretable rules in a
Knowledge Base. Robustly identified canonical set of anatomical features
are then employed to determine concrete surface shaping operations by a
Smart Shape Modeler. These operations are eventually performed sequen-
tially to adapt a surface to a target shape. The versatility of our approach
lies in a priori defining an entire design workflow through a scripting lan-
guage, thereby yielding a high degree of automation that is completely
flexible and customizable via scriptable rules. Consequently, it eliminates
tedious manual intervention and offers desirable precision and reproducibil-
ity. We validate this framework with a practical application – automatic
modeling of shells in hearing aid (HA) manufacturing (HAM).

1 Introduction

Computer aided modeling of organic shapes, such as implants and prosthetics,
constitutes an important element of digital manufacturing [5]. Typically, it has
two major requirements. First, the designed surfaces should be able to hold essen-
tial components such as electronics. Second, they should demonstrate a tolerable
degree of conformity with the underlying anatomy. The latter is particularly im-
portant to ensure that they comfortably fit to the anatomy of a patient. Due
to biological variability, the design of such shapes has traditionally been carried
out manually, where expert designers start with a surface representation of the
underlying anatomy as an anatomical template, which may be acquired through
3D laser or CT scans [5]. The template is then modified by a sequence of manual
operations, which are vaguely described in application specific work instructions.
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To this end, the designers rely on certain biomarkers on a template to ensure
the conformity between the anatomy and the resulting shape.

The problem is highly significant in various areas, such as HAM, orthopedics,
orthotics, and orthodontics. HAM [8], for instance, requires tedious amount of
manual involvement. In-the-ear HAs are generally custom made to ensure a
comfortable fit to the ear(s) of a patient. A wide range of HA configurations
exist to cater for various levels of hearing losses and styles (Fig. 5). HA designers,
therefore, have to rely on their experience along with lengthy work instructions
for carrying out surface modifications [8] via interactive CAD tools (iCT) [1].

The amount of variation across individuals hinders complete automation. Re-
cently, there have been some advances in this area. In the context of HAs, [6]
employed active shape models for describing the shape of a human ear. [7] used
Markov random fields for highlighting gender differences. Unal et al. [9] proposed
PCA based learning for the design of HA shells. Major limitations of their ap-
proach included minimal interpretability for the HA designers, and lack of explicit
constraints for component placement. Our approach addresses these limitations
by transforming the iCTs to fully automatic tools. In general, iCTs allow a user
to specify, for instance, a surface cutting plane by drawing a line in a CAD soft-
ware, and then to apply the cutting. The design process is simplified if the plane
placement and the cut is done automatically. Other examples include automati-
cally painting a region on a surface for local deformation, or positioning additional
components at a specific location relative to the surface as in Fig. 1 for HAs.

The proposed framework automates modeling workflows by translating human
readable work instructions, and expert knowledge to machine interpretable rules.
First, a set of abstract rules is defined in a knowledge base, and implemented via a
specially designed scripting language. The rules generalize the definition of various
selections, e.g., plane definition, and the execution of surface editing operations
like cutting. The concrete definition of the operations or selections is determined
by a smart shape modeler that combines rules with associated anatomical and ge-
ometrical features found by an automatic feature detector. Once a concrete oper-
ation is determined, CAD tools are invoked for actual editing.

Since the rules are implemented via scripts, various surface modeling operations
are easily configured for a given application, yielding a high degree of customiza-
tion and flexibility. The framework automates a process that otherwise exhibits
large amount of uncertainty stemming from surface variability. To the best of our
knowledge, feature based rules for automated modification of organic surfaces via
abstraction of surface modification operations has not been previously proposed.
We highlight the effectiveness of our framework by replicating the entire workflow
pipeline for the modeling of in-the-ear HAs and substantiate it with experimen-
tal results. A fully functional implementation of this framework has already been
rolled into the production floor of a major HA manufacturer.

2 Motivation

CAD software allows a user to perform surface shaping operations to adapt them
to a final optimal shape. A typical example is provided in Fig. 1, where a sequence
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Fig. 1. Modeling operations. Top row:
Canal tapering, and helix modification.
Bottom row: Vent and electronics place-
ment. The last item corresponds to the
finished shell with labeling.

(a) (b)

Fig. 2. The human ear anatomy (courtesy
[4]) and its 3D reconstruction

of operations is carried out to deform the surface of a 3D outer ear impression
to the surface of a finished HA shell. Irrespective of the application, and the na-
ture of an operation, it is typically applied at a particular region or location on a
surface. Due to the inherent variability in organic surfaces, it has not been tradi-
tionally possible to automate the surface shaping process. A user has to manual
specify the operations of interest. Here, we aim for modeling automation by elim-
inating manual processing to yield consistency, reproducibility, and quality of the
designed surfaces. This leads to rapid manufacturing [5], with reduced number of
recalls. Although our approach was motivated by HAM, it is fairly general and is
applicable to similar applications.

3 Problem Formulation

The design of a surface is defined as a 2-tuple (Ms, Mt) and an associated se-
quence of surface operators TF ,O = (TF ,O1

1 , . . . , TF ,On
n ), where Ms and Mt re-

spectively denote the source and the target shapes:

Mt = (TF ,O1
n ◦ ... ◦ TF ,On

1 )(Ms). (1)

Agiven surface ismodifiedwhenacteduponbya surfaceoperatorMi =TF ,Oi

i Mi−1.
Each operator,TF ,Oi

i : Mi−1 → Mi, is parameterized by a set of anatomical land-
marks F = {fj, j = 1, . . . , m}, and options O = {O1, . . . , On}. For simplicity, we
drop the explicit dependence of the operator on the options for later discussion.
Unless specified otherwise, the dependence is always implied.

For a given source, and a pre-specified target shape, F , and TF are typically
defined by process engineers through work instructions, which are executed by
trained technicians. Examples of operators include but are not limited to cutting,
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Fig. 3. Smart modeling framework for automation via feature driven rules

rounding, tapering, shrinking, scooping, and even more complex boolean and dif-
feormorphic operations.

For a given Ms and pre-specified target Mt, problem under consideration is
to estimate the landmarks F robustly, which will then uniquely identify a subse-
quence of operations TF(R) according to certain rules R = {rk, k = 1, . . . , K}.
For complete automation, F should be consistent for all possible configurations of
Ms and Mt, and rules should be comprehensive to uniquely determine TF(R).
For notational simplicity, we have not indicated the dependence of F on the sur-
face Mi−1, but in general F does not constitute static landmarks, and have to be
determined dynamically.

4 Workflow Automation Framework

Surface shaping steps are generally defined via work instructions. We model this
process through a smart modeling framework (Fig. 3) that combines this infor-
mation with the surface landmarks to perform surface shaping operations. Major
components include a knowledge base (KB), and a smart shape modeler (SSM).

4.1 Knowledge Base

The role of the KB is to digitally represent a workflow through a set of rules R
derived from the work instructions. The rules are application specific and encom-
pass all realizations of the class of surfaces. They describe (1) how to perform var-
ious steps, and (2) which features to utilize in each step. A step, in turn, consists
of one or more surface modification operations TF(R), and combines features F
for carrying them out. For instance, for cutting a surface, the KB must specify
a rule r ∈ R that defines where to perform a cut consistently for a wide range
of surfaces. This rule should be able to compute the cutting plane, as well as the
type of the cut. Although surfaces may exhibit variability, their class member-
ship ensures that some canonical set of features F is always identifiable, and is
sufficient to define such a plane. The existence of the required features drives the
entire framework. The KB implements the rules in a scripting language, allowing
complete flexibility for various shell models and target shapes.

4.2 Smart Shape Modeler

The function of the SSM is to design a surface (or shape) via CAD tools, which are
invoked automatically as directed by the KB. To this end, a surface shaping engine
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Fig. 4. Interaction of SSE with various components

(SSE) interacts with a script interpreter (SI) to sequentially feed it with rules from
a digitized workflow.Each rule r is translated to an operation T F

i (r) that is defined
by features F ⊂ F . Sequential execution of the script rules is ensured through the
SI, which parses the rules, and maintains the state of the current rule in a digitized
workflow.

As shown in Fig. 4, the role of the SSE is to route the script commands to vari-
ous components. Once a surface is specified, the SSE resets the current state of the
surface, and requests the SI for the next rule. From the rule, it identifies the set
of required features, operation type, and the associated parameters (if any). The
feature detector (FD) is then invoked to detect required features, which are used
to uniquely define the actual surface modification operation T F

i (r). This informa-
tion leads to a selection of the desired CAD tool (CT) with correct parameters to
perform Ti on the surface. For instance, for local scooping or smoothing, the KB
informs the SSE about (1) the operation (scooping or smoothing); (2) the scoop-
ing or smoothing parameters; and (3) the identifier for the corresponding region of
interest. Based on this identifier, the FD provides the SSE the area to be scooped
or smoothed. The process is repeated until the SI is exhausted of all applicable
rules, and the current surface is outputted as the designed shape.

The advantage of this modular approach is that the workflow modeler and the
SSE constitute a fully automated smart modeling system that is not specific to a
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particular application. One may readily switch between applications by modifying
the scriptable rules R and the associated feature set F . In addition, the smart
modeling system is highly configurable via scripting.

5 Application to Hearing Aid Modeling

In this section, we consider the modeling of HA shells [8]. Ear impressions are
first acquired by an audiologist by inserting a mold through an injector deep in
the ear canal. The mold is allowed to settle, before taking out the impression
and carrying out a 3D digital scan. The reconstructed surface then represents
the shape of the interior of the ear. During the modeling process, an operator
manually shapes an HA and embeds the electronics (Fig. 1). Some major HA
configurations are shown in Fig. 5. Despite similar in appearance, ear impres-
sions are unique and exhibit large amount of variability across individuals. The
missing data as well as the excess material pose serious challenges to complete
automation. Design inaccuracies potentially result in undesirable fit or
performance.

Fig. 5. Various types of HA shells: (Left Most) In-the-Ear (ITE); (Right Most)
Completely-In-the-Canal (CIC)

5.1 Feature Detection

A canonical set of anatomical features1 [2] is incorporated in the FD of Fig. 3. It
captures comprehensive information about an ear for defining a set of generalized
rules. It include points, planes, areas, and curves, and capture the bumps, bends,
convexities, concavities, ridges, valleys and the intersections of ridges as illustrated
in Figs. 2 and 6. Expert designers already take some of these features into account
while manually designing an HA shell. For instance, canal tapering may be done
at the second bend plane (Fig. 6(a)), where part of the surface above this plane is
removed. Inter-tragal notch (ITN) and crus-side ridge (CSR) (Fig. 6(b)) are used
for the placement of vents. Crus area (Fig. 6(c)) is scooped, bumps are rounded,
and helix region is tapered for comfort. Feedback seal area is scooped for a firm
grip.

We have developed algorithms [2] for the robust detection of these features. The
validation of these algorithms was carried out on a dataset of 198 impressions.
They were tweaked until a detection rate of 95% and a detection quality in excess
of 80% was achieved. Detection quality, in turn, was computed by comparing the
detected results with expert manual annotations. In this paper, we assume that
these features have already been robustly identified.
1 These features are consistent across individuals.
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(a) (b) (c)

Fig. 6. Anatomical Features: (a) Points; (b) Curves and areas; (c) Planes and areas

5.2 Scripting Language

For realizing the rules in SI, a scripting language with context free grammar is
designed using Bison and Flex [3]. The language supports standard data types, in
addition to geometric primitives such as points, planes, and matrices, which al-
low easy manipulation of surface meshes. It includes control structures, such as
if-then-else, and for and while loops. Specialized functions include interfaces to
CAD tool APIs, FD, and primitive surface manipulators. The reason for develop-
ing a customized language is to allow simple handling of the scripts, and its easy
integration with a CAD application, while keeping the latter flexible.

5.3 Scriptable Rules

We now briefly describe the role of features in driving rules for performing a typical
HA modeling operation. In general, different HA configurations employ different
combinations of features, and these combinations are selected through if-then-

else statements in the script. Examples of rules include CutCanalAtSeco- ndBend,
SmoothAtXYZAreaFeature, and CutShellWithPlaneDefinedByXYZPoint Features.

(a) (b) (c) (d)

Fig. 7. Automatic placement of the vent: (a) Set up flare plane from anti-helix, tragus,
and anti-tragus; (b) Set up the bottom plane by shifting helix peak and crus-concha
intersection down and tragus towards the notch; (c) Set up the vent by using the ITN
top and bottom points and vent thickness and diameter parameters; (d) Commit vent
placement via CAD tool.
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Now we describe the usage of the framework, the scripting rules, and the
features via the vent placement step. As mentioned earlier, a vent is a tubular
attachment to the canal of an HA shell. In the simplest configuration, it is
placed along one of the canal ridges because of the acoustic principles and the
size constraints. The side selection (ITN or CSR), the starting and ending points,
and the wall thickness of a vent may easily be specified through scripting rules.
Since the vent runs from the tip of the canal to the bottom of a shell, the script
should first define the tip and the bottom planes. The shell bottom may be
defined in terms of three point features – helix peak, crus-concha intersection,
and tragus.

// Move helix peak down by HelixShift
ShiftedHelixPeak = HelixPeak – HelixShift * BottomCutFlarePlane.Normal
// Move tragus
ShiftedTragus = Tragus – TragusShift * BottomCutFlarePlane.Normal
// Move down by ConchaShift
ShiftedCCIPoint = CrusConchaIntersection – ConchaShift * BottomCutFlarePlane.Normal
SanityCheck(ShiftedHelixPeak, ShiftedTragus, ShiftedCCIPoint)
BottomPlane = Plane(ShiftedHelixPeak, ShiftedTragus, ShiftedCCIPoint)
if Below(BottomPlane, Tip) then

BottomPlane = – BottomPlane
end

Once these features are detected, a CAD cutting tool should be invoked on the
surface to get rid of the excess material:

CutSurface(BottomPlane, Tip)

The starting and ending points of the vent are required for its placement. Based
on the vent side information, a user may opt to place the vent along ITN, or
CSR. The starting and ending points in either case are different, and are found
through features, such as the ITN top and bottom points, or CSR top and bottom
points. The thickness of the vent wall is taken into account to ensure that the
end points fall at the right place on the surface. Eventually, a vent placement
CAD tool is invoked to commit the operation:

if IsNotchSideVent then
VentTop = InterTragalNotchTop
VentDirection = CrusRidgeTop – InterTragalNotchTop
VentBottom = InterTragalNotchBottom

else
VentTop = CrusRidgeTop
VentDirection = InterTragalNotchTop – CrusRidgeTop
VentBottom = CrusRidgeBottom

end
VentOffset = VentWallThickness + VentDiameter / 2
Normalize(VentDirection)
VentTop = VentTop + VentDirection * VentOffset
PlaceVent(VentTop, TipPlane.Normal, VentBottom, BottomPlane.Normal)

KB should contain these instructions in the form of a script, which are sufficient
for a primitive vent placement operation. When initialized with a given surface,
SSE queries the rule from SI, and executes each instruction. Features are detected
on the fly, and the surface modification operation is determined at the run-time.
The result is given in Fig. 7. Without loss of generality, these rules correspond
to a simplified version of the actual vent placement.
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6 Experiments

In this section, we model HAs from 3D ear impressions shown in Fig. 8(a).
Results for automatic modeling are given in Fig. 8(b), which indicate excellent
canal modification, vent placement, receiver positioning, and labeling even with
missing and highly noisy data as in the bottom row.

6.1 Validation

Qualitative Evaluation of Individual Operations. First level of validation was
qualitatively carried out by 6 different experts on a dataset of 39 samples. Each
expert was asked to rate the outcome of each surface shaping operation according
to a quality matrix with {0 = Unusable, 1 = Little Modification Required, 2 =
Acceptable, 3 = Perfect}.

The average of the quality matrix for some common operations as rated by
the experts is given in Table 1. Overall the results are very promising. Excellent

(a) (b) (c) (d) (e)

Fig. 8. Automatic detailing: (a) 3D impression; (b) Finished HA shell; (c) Shell with
associated electronics; (d) Finished HA shell superimposed on the 3D impression shown
with transparency; (e) A 3D error map.

Table 1. Quality matrix for common operations (only for highlighting the appropri-
ateness of the corresponding operations; their description is beyond the scope of the
paper)

Operation Mean ± (Std.Dev.)
Waxgaurd cut 2.57 (0.86)

Optional vent cuts 2.60 (0.76)

Receiver Placement 3.00 (0.00)

ITE anti-helix filling 2.25 (1.10)

ITC measured cut 2.10 (1.01)

Vent placement 2.04 (0.93)

Excess material cut 2.21 (0.86)

Receiver Hole Placement 1.97 (1.06)

Operation Mean ± (Std.Dev.)
ITC crus cut 2.45 (0.78)

ITE cymba rounding 2.43 (0.77)

Canal Tip cut 1.74 (0.98)

Labeling 1.86 (1.26)

ITE Crus scooping 1.07 (1.14)

Canal thickening 1.72 (1.13)

CIC Measured Cut 1.14 (0.81)

Total 2.08 (0.89)
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performance may be noticed for some operations. Although for the others, the
experts were not so satisfied, they were still towards the higher end, with the
exception of ITE crus scooping, and CIC measured cut. In future, we plan to
utilize this matrix as a baseline for fine turning the feature based rules.

Quantitative Evaluation of the Designed Shape. As the second validation, we
identified the agreement between a source surface Ms and the estimated target
(designed) surface M̂t, to quantitatively highlight the fitness of an HA. An error
map D was defined on M̂t as:

D(u) := S(M̂t(u), Ms)||M̂t(u) − Ms(h(u))||, (2)

where u parameterizes M̂t, h represents the closest point mapping from M̂t to
Ms, and S denotes a sign function which assigns a positive value if the M̂t(u) is
outside Ms. The positive values in D indicate where M̂t protrudes outside Ms.
It should be noted that the source surface represents the inner surface of the ear,
and therefore, the positive values means uncomfortable fits. For visualization,
we normalize error maps to [−1, +1] prior to applying a colormap with dark blue
representing −1, and dark red representing +1.

Results given in Fig. 8(e) indicate a high level of agreement with the original
3D impression and the finished product. Red values on the canal correspond to
the so-called feedback seal. The feedback seal is a selection of a narrow band of
triangles on a canal, which is intentionally scooped outwards to ensure a firm
grip. It is pointed out that this operation was also performed entirely auto-
matically. Other than the red values corresponding to the feedback seal, mostly
yellow and blue values in the error map show that the HA shell stays inside the
impression, which amounts to a comfortable fit.

7 Conclusions

This paper has presented a powerful framework for the automation of surface
modeling workflows. It translates human readable work instructions to machine
interpretable rules. Consequently, interactive CAD operations get simulated by
automatic surface shaping operations dictated by the rules. Rules are specified
through a special scripting language, and are based on the features detected
on a surface. Flexibility of this approach lies in the diversity of rules, which
allows handling various configurations in digital manufacturing. The modular
nature of the framework makes it fairly general and applicable to a wide range
of applications, such as modeling of HAs, dentures, braces, orthotic devices, and
orthopedic joint replacements. Results indicate the effectiveness of our approach.
With some intervention, it yields industry standard results. At times, a user
likes to modify the proposed result, rendering the currently devised rules semi-
automatic. In future, we plan to fine tune the rules for full automation, which
will allow batching of the work orders.
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Abstract. Intravascular Ultrasound(IVUS) is an imaging technology
which provides cross-sectional images of internal coronary vessel struc-
tures. The IVUS frames are acquired by pulling the catheter back with a
motor running at a constant speed. However, during the pullback, some
artifacts occur due to the beating heart. These artifacts cause inaccu-
rate measurements for total vessel and lumen volume and limitation for
further processing. Elimination of these artifacts are possible with an
ECG (electrocardiogram) signal, which determines the time interval cor-
responding to a particular phase of the cardiac cycle. However, using
ECG signal requires a special gating unit, which causes loss of impor-
tant information about the vessel, and furthermore, ECG gating function
may not be available in all clinical systems. To address this problem, we
propose an image-based gating technique based on manifold learning.
Quantitative tests are performed on 3 different patients, 6 different pull-
backs and 24 different vessel cuts. In order to validate our method, the
results of our method are compared to those of ECG-Gating method.

Keywords: Manifold Learning, Classification, IVUS, Image-based
gating, ECG gating.

1 Introduction

Intravascular Ultrasound is a unique invasive catheter-based imaging technol-
ogy, which yields a high resolution, real-time cross-sectional view of the blood
vessels from the inside-out. The cross-sectional images are acquired by pulling
the catheter back with a motor running at a previously defined constant speed,
and this whole process is referred as a pullback. Since IVUS modality provides
a very detailed information about the internal vessel structures, it is a unique
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tool for the diagnostics of coronary artery diseases(CAD) and plaque character-
ization. For diagnosis and assessment of the disease, accurate measurements of
the total vessel and the lumen volume in the suspicious lesion areas are crucial.
However, quality of the IVUS evaluations, and accuracy of the measurements
deteriorate due to artifacts caused by heart movement during a pullback[1]. The
most obvious artifact is the back and forth movement of the catheter in the vessel
longitudinal direction due to the periodical change in the blood flow while the
heart muscles are contracting and expanding. In [2], the authors observe that the
IVUS transducers within coronary vessels have a longitudinal movement of aver-
age 1.50±0.80 mm during each cardiac cycle. As the transducer moves back and
forth, it passes through the same locations of the vessel multiple times; thus it
oversamples the vessel. This means gaining unnecessary information which leads
to computational inefficiency for further processing. Furthermore, due to the
movement, the longitudinal cut of the vessel has a saw-toothed appearance(see
Fig. 5 first row) which makes the segmentation of the vessel even harder. An-
other artifact caused by the cardiac cycle is the change of the vessel morphology
due to the varying blood pressure during the cycle. The change in the mor-
phology leads to the variations in the lumen area observed at different cardiac
phases(systole,diastole). In [1,2], it is stated that measured lumen and vessel vol-
umes in non-gated image sets are significantly larger than normal and the choice
of the suitable phase is still a question. A way to account for the problems above
is introducing an electrocardiogram (ECG) signal, which is capable of giving
information about the heart’s current physical status. By utilising the ECG sig-
nal, heart and IVUS transducer are synchronized so as to capture the frames
only near the predetermined fraction of the RR-interval[1]. However online-ECG
gating requires an ECG unit, which may not be always available to the physi-
cian. Furthermore, in the older systems that used ECG triggering, ECG gating
increased the image acquisition time, and in the new systems, the acquisition
time is not affected but some important information about the vessel is lost.

In this paper, we introduce a robust image-based gating method based on
manifold learning. By designing this method, our overall aim is to retain only
the necessary information about the vessel, (the frames at a particular fraction of
the RR-interval), which will be good enough to provide accurate lumen volume
measurements and vessel length; at the same time will avoid loss of important
plaque information in the lesion areas.

2 Related Work

In [3], a method for classification of the IVUS frames as end-diastolic and not end-
diastolic is presented. As preprocessing, important image characteristics such as
edges are enhanced, different feature vectors based on spatial and frequency
characteristics of the images are defined, and finally a nearest neighbor search
based on the Euclidean distance between the feature vectors is used to classify
the frames.
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In [4], a method to retrieve the cardiac phase by examining the features in a
circular region of interest, namely Average Intensity(AI) and Absolute Intensity
Difference between the subsequent frames, was discussed.

In [5,6], an image-based gating algorithm is proposed where a Dissimilarity
Matrix based on the Normalized Cross Correlation (NCC) is built between each
2-tuples of the pullback; then the matrix is filtered with an X-shaped inverted
Gaussian kernel, which highlights the frames with high similarity. Finally an
algorithm to find the highest local maxima along the path on the diagonals,
that represents the optimal gating frames, is introduced.

In [7], the authors use a similar technique to [5], by building the dissimilarity
matrix D based on the image descriptors which are defined based on Gabor
patches. A 1D signal is extracted from D, which defines the similarities between
the frames and finally a local minimum search over the 1D signal is performed
to obtain the best frames.

3 Our Contribution

In all the methods discussed above, even if different techniques were used, the
overall objective is to be able to construct a 1D signal similar to R-waves by
using the information(features) that is embedded in the images. In this paper,
we propose directly projecting our high dimensional data, to a low-dimensional
manifold and thus treating each image frame as a low-D signal in the low-D
manifold.

A variety of dimensionality reduction techniques have been proposed in the
literature, ever since emergence of complex and high-dimensional input data.
The most commonly used linear dimensionality reduction techniques such as
Principal Component Analysis(PCA) and Multi-dimensional scaling(MDS) are
efficient and simple, however are not able to detect nonlinear structures that exist
almost in all true datasets. The human cardiac system is nonstationary,dynamic
and nonlinear; hence, linear analyses may not account for all aspects of cardiac
performance[8,9].

Manifold learning is an effective, geometrically motivated, nonlinear dimen-
sionality reduction technique, which is used to solve a variety of vision prob-
lems such as segmentation, registration, tracking and object recognition. The
technique was validated to be successful, particularly if the input has smooth
appearance variation or smooth deformation[12]. As explained in Section 1, car-
diac cycle’s first effect, slowly varying longitudinal movement of the catheter,
results in a smooth appearance variation. Furthermore, the slight vessel mor-
phology change during the cycle results in a smooth deformation in the input
images.

In addition, in the lesion areas where the cross-sectional view of the vessel
can change faster, using global distance metrics would fail because the lesion
areas would be detected as outliers. However manifold learning preserves locality,
which makes it much less sensitive to noise and outliers.
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With the motivation provided above, our contribution in this paper, is to
adopt and apply the manifold learning framework to our problem of image-based
gating of IVUS pullbacks as explained in the next section.

4 Method

Isomap [10], local linear embedding [11], and Laplacian eigenmaps [12] are three
different techniques for manifold learning. In this paper we will use Laplacian
eigenmaps technique, which is very simple and efficient since it solves only one
sparse eigenvalue problem. We construct our problem as follows:

Given a set of k points x1, ..., xk in R
d, where k is the number of frames xi

in the pullback and d is the dimension of the image; find another set of k points
y1, ..., yk in R

m , where m � d. We assume that x1, ..., xk ∈ M , where M is a
manifold embedded in R

d.
An important issue is the choice of the dimension of the M, denoted by m. We

need one dimension to account for the smooth appearance variation caused by

Fig. 1. An illustration of Manifold idea. Each frame is shown with a dot on the cal-
culated low-D manifold(here m=2), where A,B,C,D,E are the clusters of frames that
belong to different cardiac cycles.
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the first artifact, and another dimension to account for the smooth deformation
caused by the second artifact (see Section 3). Thereby, we choose m ≥ 2. We
heuristically choose m = 3. In another words we choose to represent each image
frame with a 3D vector.

4.1 Laplacian Eigenmaps

Laplacian eigenmaps[12] is an approach that incorporates the neighborhood in-
formation of the input to build a weighted graph. After building the graph, a
low-D representation of the input that optimally preserves local neighborhood
information, is computed by using the Laplacian of the graph. It is worth not-
ing that, since the approach is geometrically motivated, the resulting mapping
will be a discrete approximation of a continuous map from the high dimensional
space to the low-D manifold.

The first step is to construct the graph with representative k nodes for each
xi and edges between the nodes xi and xj , if the nodes are close enough. The
relationship of being close can be defined as an ε neighborhood ||xi − xj || < ε,
where ||.|| denotes the Euclidean norm. The disadvantage of this choice is the
parameter setting. Another option is using n nearest neighbors, where one can
put an edge between the nodes xi and xj if j is one of the n nearest neighbors of
i. If we define the approximate number of frames in each cardiac cycle as ncycle,
the parameter n should satisfy n ≥ ncycle.

Another important issue is defining a similarity measure for the nodes xi

and xj . In our weighting function we used Sum of Squared Distances(SSD),
but different measures such as Sum of Absolute Difference(SAD) or Normalized
Cross Correlation (NCC) can also be used.

The second step is to weight the edges in the graph by the appropriate weights.
Weight function is inspired from the heat equation given by

Wij = exp−||xi−xj||2/2σ2
(1)

where σ2 is the variance. W = [Wij ]; ij ∈ [1, .., k], forms the weight matrix.
As a final step, a diagonal weight matrix D is constructed by summing up

the coloumns of W , and Laplacian L = D −W is then calculated. The eigenvec-
tors corresponding to the smallest eigenvalues (excluding zero) of the Laplacian
matrix gives the desired mapping. We refer to [12] for further details on the
Laplacian eigenmap method.

4.2 Clustering

In general there are about ≈ 90 cardiac cycles in each pullback(see Table 2).
However, to illustrate the idea of manifold learning, a desired mapping for 9
sequential cardiac cycles is given in Fig. 1. In Fig. 1, the low-D manifold gives
a very nice intuition of the clusters that belongs to the same cardiac cycle. We
observed that the largest distance between the eigenvectors Vi and Vi+1 occurs if
Vi is the last frame that belongs to the nth cardiac cycle and Vi+1 is the starting
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frame of the (n + 1)st cardiac cycle. The distance signal d = ||Vi+1 − Vi|| is
constructed. Since the method preserves the local-distances, the global structure
is more visible after normalization of d. In Fig. 2, constructed d function for 400
frames is shown for illustration, where green boxes indicate the local maxima
points in d function.

In order to find the local maxima points of the distance function d, we utilise
a morphological eroding operation. Let mincluster be the minimum number of
frames in a cluster, then a structuring element of size mincluster is constructed
and distance signal is eroded with the structuring element. If the current point
is a local maximum around the structuring element, then eroding operation will
not change its value, thus we check for the points that has not changed after
the eroding operation. This very simple but efficient technique finds the local
maxima points. In some cases, where the frames of the sequential cardiac cycles
are too similar, e.g branching areas, the distance function may not have any
local maxima. In other cases, where the frames of one cardiac cycle are too
different (e.g lesion areas where vessel changes rapidly), the distance function
may have more than one local maxima. In those cases, we refine the results
of the local maxima and check the number of frames between each possible
consecutive maximum. If the difference between the two consecutive possible
maximum points is bigger than 2ncycle, we look for another local maximum
between them, and if the difference is smaller than ncycle/2 we eliminate the
possible maximum. After the post-processing step, local maxima of the distance
function d, hence the gated(stable) image frames are obtained, and the IVUS
gating algorithm is completed.

5 Experiments and Results

We applied our automatic image-based gating algorithm on 3 different patients
and 6 different pullbacks. All the pullbacks were acquired in-vivo in the coronary

Fig. 2. Normalized Distance Function



Manifold Learning for Image-Based Gating of IVUS Pullback Sequences 145

Table 1. Lumen Area Differences Error Analysis, where ptid is the patient id, pbid

is the pullback id, angle is the viewing angle for constructing a longitudinal cut and
LAD Error is the lumen area difference error

ptid 1 2 2 3 3 3
pbid 1 1 2 3 1 2

Angle 10 50 130 150 10 50 130 150 10 50 130 150 10 50 130 150 10 50 130 150 10 50 130 150
LAD Error 0.02 0.04 0.02 0.02 0 0.05 0.1 0.1 0.07 0.03 0.07 0.09 0.02 0 0.03 0 0.03 0.01 0 0.02 0.08 0.1 0.01 0.01
Mean Error 0.02 0.06 0.06 0.01 0.01 0.05

arteries of the patients of our clinical partners with 40 MHz IVUS catheter. The
frame rate was 30 Hz and the motorized pullback speed was 0.5 mm/s.

In our method, we used ncycle to represent the number of frames per cardiac
cycle. ncycle is defined as fRate/1.2Hz , where 1.2 Hz is the average heart beat
rate of human species and fRate is the frame rate of the pullback. Similarly
mincluster is used to represent the minimum number of frames in a cardiac
cycle. mincluster can be equated to fRate/(1.2Hz +2σ) , where σ is the variance
of the heart beat rate. The variance of the heartbeat may be high in the patients
with irregular heart beats. Choosing a large σ would guarantee to find the local
maxima points in d function for those patients. However, the latter may lead to
too many possible local maxima points. In our experiments, we choose a small
σ = 0.1Hz.

In order to validate our results, we compared the number of gated frames ob-
tained by our algorithm and by ECG gating algorithm. In Table 2, the number
of gated frames from the two methods show agreement. As stated in Section 3,
the accurate measurements of lumen is crucial for coronary artery diseases’ di-
agnostics. For that reason, we compared the lumen areas calculated from our
gated pullbacks and ecg gated pullbacks. The lumen areas were drawn by the
expert cardiologists in our team. For more accurate results, we compared the

(a) (b)

Fig. 3. (a)Bland-Altmann Analysis of Lumen Areas drawn by the medical experts on
ecg gated pullback and image-based gated pullback: 790±40.79 pix. (b) Bland-Altmann
Analysis of gated frame normalized count calculated by ecg gating and image-based
gating: 3.1667 ± 0.937.
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Table 2. Comparison of the frame counts chosen by ecg gating algorithm and our image
based gating algorithm.ptid is the patient id, pbid is the pullback id, #ecg represents the
number of frames chosen by ecg, #alg shows the frame count selected by our algorithm
and length[mm] is the actual length of the vessel.

ptid pbid #total #ecg #alg length[mm]
1 1 2328 81 77 38.80
2 1 1627 54 52 27.12
2 2 1800 58 55 30.00
3 1 2388 85 83 39.80
3 2 2379 86 82 39.65
3 3 2358 91 82 39.30

lumen areas in the longitudinal views of the vessel from 4 different angles for
each pullback. In Fig 4, an illustration of vessel longitudinal cuts at different
angles is given. Difference(LAD) error in Table 1 is calculated as the ratio of the
absolute difference of the areas found by the two methods, with the ecg-gated
pullback area used as the ground truth: LADerror = |LAecg − LAalg|/LAecg,
where LAecg is the lumen area in the ecg gated pullback and LAalg in the image
based gated pullback. An LAD error rate of 0.04±0.03 is obtained. In addition,
a Bland-Altmann analysis on the lumen areas (Fig. 3.a), revealed that more
than 95% of the measurements were in agreement between the two methods. In
Fig. 3.b, a plot for the Bland-Altmann analysis based on the number of gated
frames calculated by both methods is given. To account for the different vessel
lengths among our dataset, we considered the normalized counts, computed as
#gated / #total. Longitudinal IVUS views shown in Fig 5, demonstrate similar
qualitative outcome for our manifold-learning based IVUS gating method, and
the ECG-gated method, which is also verified by the expert cardiologist in the
team.

(a)

(b) (c) (d) (e )

Fig. 4. (a)An illustration of longitudinal cuts(LC) at different angles (b) LC from 10 ◦

(c) LC from 50 ◦ (d) LC from 130 ◦ (e) LC from 150 ◦.
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Fig. 5. First row: Nongated pullback. Middle Row; Left: Image-based gated pullback.
Right: Ecg gated pullback. Bottom Row; Left: Lumen Area of image based gated pull-
back. Right: Lumen Area of ecg gated pullback.

6 Conclusion

We presented a novel image-based gating method for IVUS sequences. Our
method is based on manifold learning, which embeds the similar IVUS frames
onto contiguous positions of a low-dimensional manifold lying on a high dimen-
sional image space. Further, we classified the frames by using distances between
consecutive eigenvectors that represent the IVUS frames using the frame rate of
the pullback and basic heart beat rate knowledge. We tested our data on 3 pa-
tients and 6 in-vivo pullbacks. We compared the number of selected frames and
the lumen areas in 4 different longitudinal views, computed by both methods.
Future directions for this work include analysis of lumen volume differences and
the plaque areas of the gated pullbacks.
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Abstract. In this paper, we propose an approach to find the optimal position
of an electrode, for assisting surgeons in planning Deep Brain Stimulation. We
first show how we formalized the rules governing this surgical procedure into
geometric constraints. Then we explain our method, using a formal geometric
solver, and a template built from 15 MRIs, used to propose a space of possible
solutions and the optimal one. We show our results for the retrospective study
on 8 implantations from 4 patients, and compare them with the trajectory of the
electrode that was actually implanted. The results show a slight difference with
the reference trajectories, with a better evaluation for our proposition.

1 Introduction

Nowadays, an increasing number of patients suffering from Parkinson’s disease or es-
sential tremors are treated by Deep Brain Stimulation (DBS). This intervention consists
in implanting an electrode in a deep location of the brain, in order to stimulate a zone
with an electric current, causing an inhibition of the disease effects. This treatment is
very efficient, but also very difficult to plan. The tedious planning phase, mainly relies
on the study of the patient images (such as MRI and CT), acquired before the interven-
tion. Sometimes, a safe planning can not be found, prohibiting such an intervention for
the patient. The objective of the work presented in this paper is to provide the neurosur-
geon with a planning tool able to assist him in finding the optimal linear trajectory for
a DBS electrode.

In the domain of assistance to surgical planning, various tools already exist, for ex-
ample to help in finding automatically the target [1]. However, we focus in this study
on the placement of the surgical tools. In surgical planning in general, a lot of planning
tools are simulators allowing to model what will be the effect of a treatment, for a given
placement of electrodes proposed by the surgeon. However, this forces the surgeon to
perform himself/herself the trial and error search which may be a tedious task. Some au-
thors proposed interesting attempts of automatic targeting methods, for various kinds of
surgeries. However, they also have some drawbacks that we would like to overcome. In
[2], which focuses on hepatic RFA needle placement, authors do not take into account
the presence of surrounding organs. Authors of [3] and [4] confess a long computation
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time, and the first one’s algorithm is only in 2D. In [5], focused on DBS electrodes
placement, authors restrict the search to a limited set of possible entry points, avoiding
possibly good trajectories to be discovered. We prefer to let the software decide by itself
possible entry points, in order to study all possible solutions as long as they satisfy the
rules of the intervention.

In this paper we present a method based on the resolution of geometric constraints,
inspired from [6,7], to automatically compute a safe path to the target for DBS plan-
ning. We chose to develop a generic approach, but to restrict our experimental study and
validation to the targeting of the Sub-Thalamic Nucleus (STN). Our method is based on
2 types of data: the pre-operative patient-specific images, and the rules specific to each
type of intervention. We first detail in Section 2.1 the approach we used to determine
the rules of DBS planning, and detail how we treated them, either formalizing them
into geometric constraints or simply adjusting some parameters. Then in Section 2.2,
we explain how we obtained the patient-specific data from images. In Section 2.3, we
expose our approach and the formal solver we developed to solve geometric constraints
with image data. Section 2.4 exposes the formalized constraints we defined for DBS
planning. Finally, we summarize our results on the retrospective study of 8 implanta-
tions from 4 patients, and discuss the comparison between our results and the reference
trajectory segmented from post operative CT images.

2 Materials and Methods

2.1 Analysis of Rules Governing DBS Planning

First, we examined the literature about DBS planning and intervention procedure, in
order to have a first idea of the overall planning process and of the main rules used
by the neurosurgeons when selecting an optimal path. This enabled us to prepare a
set of questions for the 2 neurosurgeons who participated in our study: one of them
with an experience of approximately 100 DBS implantations, and the other with about
200 implantations. We had 2 interviews with these neurosurgeons. Both interviews also
allowed us to discover new rules, and to progressively refine our set of rules. We also
went to the operating room to observe planning processes and interventions, and had a
third interview, in order to precisely define the main rules to use in our study. The rules
we chose and their formalization or parameterization are presented below.

1. Placing the Electrode in the Target. Our first obvious rule is that the electrode tip
must be in the target (in our case the STN). This rule is necessary to restrict the field
of research of a position. Our solver expects the definition of a target, and has been
natively designed to consider only 3D positions of the tool having the tip inside the
target as possible solutions.

2. Position of the insertion point. The insertion point on the head has to be in the
upper surface of the skin of the head, as the surgeon will never implant the electrode
through the lower parts of the head. This is not only due to accessibility reasons,
but also to aesthetics reasons. We provide our solver with an initial insertion zone
corresponding to the scalp of the head.
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3. Path length restriction. This rule concerns the maximal length of the path, which
restricts the field of research. According to neurosurgeons instructions, we formal-
ized this rule by assuming that the path has to be shorter than 90mm.

4. Avoiding Risky Structures. The third rule is to find an electrode placement that
avoids crossing vital or risky structures. For DBS, the identified “obstacle” struc-
tures include the ventricles and the vessels. Vessels are numerous in the brain, and
usually located in the of the cortical sulci. Unfortunately they are often invisible
when images are acquired without contrast agent or without angiography. So the
neurosurgeons usually rely on the anatomical location of the sulci and avoid trajec-
tories passing through them. We also choose to avoid the bottom of the sulci to be
conform to their methods, and to be generic enough in case no segmentation of the
vessels is possible. We formalized this rule by assuming that the insertion point in
the skull of the patient has to be visible from the target, without any occlusion by
one of the cerebral structures considered as obstacles.

5. Minimizing the length of the path. Even if we are sure that the path is shorter
than the maximum length defined by rule # 3, minimizing the length of the path as
much as possible reduces the risks of a bending of the electrode. We formalized this
rule by assuming that the proportion between the length of the path and the shortest
distance between target and the skin mesh has to be minimal.

6. Maximizing the Distance Between Electrode and Risky Structures. Even if we
are sure that the electrode will not cross any risky structure thanks to rule # 4, it
is less risky if the trajectory passes as far as possible from those structures. We
formalized this rule by assuming that the distance between the electrode and the
structures designated as risky has to be maximized.

7. Optimizing the Orientation of the Electrode According to Target Shape. The
surgeons also expressed their wish, when selecting a trajectory, to have its axis close
to the main axis of the target. This way, they can try several possible depths to cover
almost all of the target without needing another insertion at a different location. We
formalized this rule by assuming that the angle between the axis of the electrode
and the main axis of the target has to be minimized.

2.2 Data

The proposed algorithm needs to be provided with a set of spatially defined objects,
such as: an initial insertion zone, the target, and all structures that come into play in the
constraints as obstacles or risky structures. In this section, we describe how we obtained
those data.

All patients we retrospectively studied had the same image acquisitions: one pre-
operative 3-T T1-weighted MR (1 mm x 1 mm x 1 mm, Philips Medical Systems),
one pre- and one post-operative CT scans (0.44 mm x 0.44 mm x 0.6 mm in post-
operative acquisitions and 0.5 mm x 0.5 mm x 0.6 mm in pre-operative acquisitions, GE
Healthcare VCT 64). The MRI and the pre-operative CT were acquired just before the
intervention, and the post-operative CT was acquired 1 month after. The three images
were denoised with a Non-local means algorithm. A bias correction algorithm based
on intensity values was also applied on MR images. CT images were rigidly registered
to pre operative MR images, using the Newuoa optimization. From these co-registered
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images, we segmented the ventricles (from MRI), the cortical sulci (from MRI), and the
reference electrode for validation (from post-operative CT scans).

We also used a mono-subject anatomical template, made from 15 3T MR acquisitions
at high-resolution [8], to segment the initial zone once for all. Thanks to an affine regis-
tration, this surface mesh was adapted to each studied patient’s MRI. Finally, anatomical
structures and objects were defined in the same common space, allowing us to compute
the trajectory constraints.

In this study, we focused on the computation of the trajectory to reach a target, and
not on the delineation of this target. Our goal was to compare our proposition with
reference trajectories. To this end, we needed to use the exact same target position as
the one actually performed during the intervention. That is why we chose to segment
the contacts of the electrode in the post-operative CT and used them as the target.

2.3 Global Strategy

Our strategy consists in formalizing the rules described in Section 2.1 into geometric
constraints in order to solve them with a constraints solver. Among those constraints,
some are boolean (#1, 2, 3, 4) and others are numerical (#5, 6, 7). The first ones are
called strict constraints. They have to be satisfied necessarily, and define the space
of possible solutions. The second ones are soft constraints that need to be optimized
at best, according to a weighting factor defined by the surgeon. Among the space of
possible solutions, the optimal path will be the one that satisfies the soft constraints at
best. Let us note that constraints #1 and 2 are not solved but included as input image
data in our solver (target and scalp).

We developed our own geometric constraints solver in C++, based on MITK software
system, and using ITK and VTK libraries. We gave a great importance to the genericity
in our approach, our goal being to dispose of a generic solver able to be used for any
surgical intervention involving a path planning for a rectilinear tool. Therefore, our
solver takes as input data not only the images and segmented cerebral structures, but
also the rules of the intervention written in a specifically defined meta-language, and
written in a separate XML file which is loaded when the software is launched. If we
want to add an extra constraint, we only have to write it in this file.

A solution is constituted by a position in the 3D space for the electrode. It can be
represented indifferently either by a point (i.e. the tip of the electrode) and a direction, or
by two points (coordinates in R

5 are sufficient). We chose to use the second alternative
that was more intuitive, by using the tip and the insertion point on the skin. We start with
an initial solution space constituted by the mesh of the initial insertion zone constituted
by the scalp of the skin for the insertion point, and the whole target for the tip point.

The resolution is performed in two steps. The first phase consists in reducing the ini-
tial insertion zone by eliminating the triangles of the mesh that do not satisfy the totality
of the strict boolean constraints. The second phase consists in a numerical optimization
of the soft numerical constraints. Each soft constraint corresponds to a cost function to
minimize. In order to take into account all constraints with a weighting factor defined
by the physician, we chose to combine them into an aggregative cost function. After
an initialization of the process, consisting in a rough evaluation of the values at some
insertion points homogeneously spread over the zone of possible insertion points, we
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compute some connected components around the best candidate points, and we start
an optimization using Nelder-Mead optimization method from the best candidate. This
way we avoided to fall into local minima, as we proved in a previous paper [7].

2.4 Geometric Constraints

Using our meta-language, the rules (or their corresponding cost function) are translated
as geometric constraints represented as terms, combining operators and known data,
according to a geometric universe. The geometric universe we defined for our constants
and unknowns includes the usual types (e.g. integers, real numbers, booleans) and com-
posed types such as point, tool, shape, or solution. We also defined a certain number
of operators: usual operators such as plus, minus, multiply, and, or, as well as complex
operators as for instance distMin, distToolOrgan, angle, visible. In order to add an extra
constraint in the XML file, the necessary operators must have already been defined. The
terms can be seen as trees, which are solved using a depth-first approach.

(a) Tree representing Rule #7 (b) Scheme representing Rule #7

Fig. 1. Different representations of Rule #7

As an example, let us analyze Rule #7. This rule aims at optimizing the orientation of
the electrode according to the shape of the target (as shown on Fig.1(b)). It is translated
into a soft geometric constraint expressing that the angle between the trajectory of the
electrode and the main axis of the target has to be minimal. It is computed by the
minimization of a numerical cost function forientation : R

5 → [0, 1]. This cost function
is chosen in a way that the resulting values are between 0 and 1, in order to obtain an
order of magnitude comparable to the cost functions of the other rules before combining
them. Without this normalization, a rough combination of these functions would be
meaningless. So we transform the formalization by saying that the ratio between the
angle and 90 has to be minimal. This way, forientation tends to 0 if the angle is close to
0, and to 1 if the angle is close to 90 degrees. Function forientation is then defined by
(1). In this equation, X represents the degrees of freedom in R

5 of the trajectory of the
tool.

forientation(X) =
angle between(X, axis target)

90
(1)
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To express this function as a constraint understandable by our solver, we use our
meta-language and write it as a term. This term uses: existing operators defined in the
solver (divide, angle, mainAxis), constant data (target shape coming from the images,
integer 90), and the variable which will be filled with a candidate value (toolTrajectory).
The final constraint in XML syntax is shown in Table 1. The corresponding tree is
illustrated on Fig.1(a): operators are in red, given constant data are in blue, and the
variable is in green. In the solver, we use this tree structure to represent the constraints.
If a data or variable node is used in more than one constraint, it exists only once and
doesn’t have to be re-evaluated several times.

Table 1. XML formalization of Rule #7

<soft constraint name="optimized orientation" label="sc ori">
divide( angle ( toolTrajectory, mainAxis ( target ) ), 90.0 )
</soft constraint>

This way, all the constraints we detailed in Section 2.1 were written in XML syntax
using our operators and data. One last soft constraint is added, representing the aggrega-
tive constraint which combines the previously defined soft constraints with the chosen
weighting factors, and corresponds to the aggregative cost function ffinal (2).

ffinal(X) = kdepth.fdepth(X) + krisk.frisk(X) + korientation.forientation(X) (2)

2.5 Validation Method

We performed a retrospective validation of our method. For each case, we compared
our solution with the position of the electrode that has been implanted in the patient’s
head, used as the reference trajectory. This actual trajectory was segmented from the
post-operative CT images.

For each case, we computed the angle between our proposed optimal electrode tra-
jectory, and the reference trajectory, in order to compare them. We also computed the
scores of both trajectories for all of the individual soft constraints and the aggregative
soft constraint, i.e. the result of their respective cost functions, in order to quantify their
quality regarding the rules set with the neurosurgeons.

3 Results

We performed a retrospective study on 8 cases, constituted by 4 patients who each had
a bilateral STN implantation. We treated each side as a separate case for our study. For
each case, we performed the registrations and segmentations described in Section 2.2
on preoperative and postoperative images, and we obtained the necessary structures and
the targets. Then we launched the automatic planning application, using the constraints
defined in Section 2.1, and weighting factors of 0.2 for kdepth (soft constraint #5),
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Table 2. Comparison between trajectory produced by our planning and reference trajectory

Case # 1 2 3 4 5 6 7 8
areal (degrees) 9.67 12.62 8.58 18.06 3.90 3.98 5.67 7.20

global score of Tplan 0.100 0.199 0.261 0.220 0.289 0.258 0.290 0.364
global score of Treal 0.295 0.391 0.431 0.429 0.417 0.467 0.473 0.504

0.4 for krisk (#6), and 0.4 for korient (#7) to compute ffinal. The weighting factors
were defined by the neurosurgeons. However they obviously need to be refined more
precisely, and this will be done in a future study.

We computed the angle areal between trajectory Tplan produced by our path plan-
ning algorithm and the reference trajectory Treal of the electrode segmented from the
post-operative CT. Results are shown on Table 2, along with the global scores (value of
ffinal) of each trajectory. As explained in Section 2.4, the global scores are real num-
bers between 0 and 1 (0 being the best score and 1 the worst), and represent in some
way the percentage of satisfaction of the weighted soft constraints. We can notice that
in all cases Tplan has a better global score than Treal.

(a) Depth (b) Risk

(c) Orientation (d) Aggregative: kdepth = 2, krisk =
4, korient = 4

Fig. 2. Color maps of the soft constraints: best zones are in green and worst are in red (case #1).
In snapshot (d) the red line is the computed trajectory Tplan, and the green line is the reference
trajectory Treal.
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Fig. 3. Detail of the risk map. The target is in
blue, the sulcal vessels in white, and the pink
shape in the back is a part of the ventricles.
The background is the grayscale MRI.

Fig. 4. Color map of the aggregative soft
constraint, for different values of the weight-
ing factors (case #1): kdepth = 1, krisk =
8, korient = 1. Tplan is at another location.

Fig.2 shows snapshots of our software. It displays the possible insertion zones com-
puted during the first step of our algorithm: elimination of the areas that would not
satisfy the strict constraints. The points of the possible insertion zones are then colored,
during the second step of our algorithm, according to their scores regarding each soft
constraint (2(a),2(b),2(c)). The color map of the global aggregative soft constraint is
shown on Fig.2(d). On this figure, the trajectory computed as optimal Tplan using the
chosen weighting factors is shown as a red line, and the trajectory actually performed
Treal as a green line. It can be noticed from this figure that very few areas are green, i.e.
acceptable. Most of the areas are yellow or orange/red, i.e. medium or poor candidates
according to the defined constraints and the chosen weighting factors.

Fig.3 shows a detail of the color map of the risk constraint. The map has a border
where a trajectory towards the target (in blue) would meet any obstacle: here an approx-
imation of a sulcal vessel represented by the white shape.

The experiments were performed on a 15” laptop, with a Dual Core CPU at 2.26
GHz and 4Go RAM, equipped with a NVIDIA GeForce Go 9300M GS GPU which is
used to speed up occlusion queries. The constraint solving process and the generation
of the colored maps and the optimal trajectory took less than 2 mn for each patient.

4 Discussion

We proposed a method able to provide valuable information for the neurosurgeon in
the form of colored maps, that allow to see very quickly the individual scores of the
possible insertion areas for each of the defined rules, facilitating the decision making.
This method also computes an optimal path according to those rules, i.e. the path that
has the best global score, result of the aggregative cost function, according to the cho-
sen weightings. The computed angle areal demonstrated that the trajectories performed
by the expert neurosurgeon were not so far from our proposed path (average of 8.71
degrees), but not exactly the same. However in this kind of retrospective study it is dif-
ficult to compare the results with the terrain truth, as the trajectories that were actually
used might not be the optimal ones. That is why we used constraints and weighting
factors defined by the neurosurgeon, and computed the scores from them.
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We can analyze the results in different ways. The weighting factors in the aggregative
cost function might have not been chosen at best, and might need to be refined to obtain
a better fitting with their trajectory. Indeed, in many cases (5 over 8) the scores of
constraint #6 (risk) are better for Tplan, and the scores of constraint #7 (orientation)
are better for Treal, suggesting that the optimization of the orientation of the electrode
relatively to the axis of the target may be of greater importance for the neurosurgeons
than they thought when setting the weighting factors. However we can also say on
the contrary that, as the rules and the weighting factors we used were defined by the
neurosurgeons, the trajectories we plan better fit their theoretical criteria (the global
scores of Tplan are better than the scores of Treal), and maybe the planning tool they
used in clinical routine did not provide them sufficient information and visibility for a
correct selection.

An example of another possible computation with different weighting factors is
shown on Fig.4 (kdepth = 1, krisk = 8, korient = 1). On this figure, the green line
representing Tplan is located in another place. On this example, we can notice that
there is one main green zone (where the optimal trajectory is located). The greatest part
of the areas is orange/red, because we gave a higher weight to the risk constraint that
colors in orange/red the borders of the possible insertion zone. This example, where
the result differs completely from the one we used in our validation, illustrates how the
result is highly dependent on an accurate choice of the weighting factors. That is why
we plan in our future works to refine them.

We might also discover in the future that a constraint is implicitly used by the neu-
rosurgeon but has not been expressed so far. In that case, one great advantage of our
approach is the modularity. The new constraint only has to be translated into a cost
function, formalized, and simply added into the constraints XML file, and it will be
automatically taken into account in the next planning.

5 Conclusion

We described an approach using a geometric constraint solver fed with two types of
input data: the formalization of the rules governing DBS planning and patient-specific
images, to automatically compute an optimal placement for an electrode in the frame-
work of assistance to DBS planning. The results we obtained show that the solutions
proposed by our solver differed little from the solutions that were actually performed
in clinical routine, but they had better scores regarding the rules defined by the surgeon
themselves.

In the future we plan to feed the solver with other types of information, such as clini-
cal scores, or predictions of the deformation of the electrode. Further clinical evaluation
with more surgical cases will also be performed, including other types of targets: globus
pallidus internus (GPi) and ventral intermediate nucleus of the thalamus (VIM). Further
works would also include the addition of new constraints that could be discovered and
enunciated, especially when new targets will be considered. The modularity of our xml
rule-based system will make that addition quite fast and convenient, as long as the new
rules are clearly identified.
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Abstract. It is important to predict the tumor growth so that appropriate treat-
ment can be planned especially in the early stage. In this paper, we propose a 
finite element method (FEM) based 3D tumor growth prediction system using 
longitudinal kidney tumor images. To the best of our knowledge, this is the first 
kidney tumor growth prediction system. The kidney tissues are classified into 
three types: renal cortex, renal medulla and renal pelvis. The reaction-diffusion 
model is applied as the tumor growth model. Different diffusion properties are 
considered in the model: the diffusion for renal medulla is considered as anisot-
ropic, while those of renal cortex and renal pelvis are considered as isotropic. 
The FEM is employed to simulate the diffusion model. Automated estimation 
of the model parameters is performed via optimization of an objective function 
reflecting overlap accuracy, which is optimized in parallel via HOPSPACK 
(hybrid optimization parallel search). An exponential curve fitting based on the 
non-linear least squares method is used for multi-time point model parameters 
prediction. The proposed method was tested on the seven time points longitudi-
nal kidney tumor CT studies from two patients with five tumors. The experi-
mental results showed the feasibility and efficacy of the proposed method. 

Keywords: Tumor Growth Prediction, Finite Element Method, Segmentation, 
Kidney Tumor. 

1   Introduction 

Kidney cancer is among the 10 most common cancers in both men and women. Over-
all, the lifetime risk for developing kidney cancer is about 1 in 75 (1.34%) [1]. It is 
important to predict the kidney tumor growth rate in clinical research so that appro-
priate treatment can be planned. 

During the last three decades, the methods for simulating tumor growth have been 
extensively studied. The representative methods include mathematical models [2, 3], 
cellular automata [4], finite element [3, 5] and angiogenesis based methods [6]. How-
ever, most of these methods are focused on brain tumor growth prediction. Only a few 
can be found for organs in the body region. Pathmanathan et al. [7] proposed to use 
the finite-element method and nonlinear elasticity to build a 3-D patient specific 
breast model, which was used to predict the tumor location. However, this method 
was not for tumor growth prediction. 
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In this paper, we propose a tumor growth prediction system for kidney tumor based 
on finite element method (FEM). The kidney tissues are classified into three main 
types: renal cortex, renal medulla and renal pelvis (or collecting system). Based on 
Chandarana et al. [8], different diffusion properties are considered for the kidney: the 
renal cortex and renal pelvis are considered to be isotropic while renal medulla be 
anisotropic. The reaction-diffusion model is applied here to model the tumor growth 
and the FEM is applied to simulate this diffusion process.  

The growth rate of renal tumors can be very slow. Kassouf et al. [9] followed up 24 
patients over a period of average 24 months, and found noticeable tumor growth in 
only five patients during the surveillance period. Since the growth is slow, longitudi-
nal studies over a long period of time are required to monitor the disease progress. A 
tumor growth prediction based on longitudinal studies over a short time period can 
help the physicians to plan the treatment in the early stage.  

Our main contributions are summarized as follows: 

• To the best of our knowledge, this is the first kidney tumor growth prediction 
system. Three different tissue types and diffusion properties are considered in 
the model. Reaction-diffusion model is applied to model the tumor growth and 
finite element method is employed to simulate the diffusion. 

• Automated estimation of the model parameters is performed via optimization of 
an objective function reflecting overlap accuracy, which is optimized in parallel 
via HOPSPACK (hybrid optimization parallel search). 

• An exponential curve fitting based on the non-linear least squares method is used 
to predict model parameters in longitudinal studies. 
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Fig. 1. The flowchart of tumor growth prediction system 
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2   FEM Based Tumor Growth Prediction 

The proposed tumor growth prediction system consists of three main phases: training, 
prediction and validation. The flowchart is shown in Fig 1. Suppose the longitudinal 
study has n time points. For the purpose of validation, we use first n-1 time point 
images for training, predict the tumor status at the nth time point, and validate with the 
nth images. In clinical practice, all n images are used to train the model parameters and 
predict the tumor status at a future time point. The training phase is composed of five 
steps. First, image registration and segmentation are applied to the kidney images. 
Second, tetrahedral meshes are constructed for the segmented kidney and tumors, 
respectively. Third, the reaction-diffusion model is applied as the tumor growth 
model, and FEM is used to solve this partial differential equation (PDE). Fourth, the 
parameters of the tumor growth model are estimated using the two studies at different 
time points (preferably two adjacent time points). Fifth, after computing the parame-
ters based on the first n-1 image, the model parameters for prediction at the nth time 
point are estimated by an exponential curve fitting based on the non-linear least 
squares method. In the prediction phase, the estimated growth parameters are applied 
to the tumor growth model based on image n-1 to compute the predicted result for 
time point n. In the validation phase, the prediction result is validated by comparing 
with image n.  

2.1   Registration and Image Segmentation 

The baseline study is used as the reference study and all other studies are registered to 
it via a rigid transformation. Then the kidney is segmented by the graph-cut oriented 
active appearance method [10]. This method synergistically combines the active ap-
pearance model, live-wire and graph cut methods to take advantage of their comple-
mentary strengths. The details can be seen in [10]. After the kidney is segmented, the 
tumors, renal cortex and renal pelvis are manually segmented and the remaining tis-
sues are treated as renal medulla. 

2.2   Meshing 

A tetrahedral mesh is built for the segmented tissues. The full meshing procedure is 
composed of the following three steps: 

1) A surface mesh is first generated for the segmented tissue (kidney and tumors) 
by the marching cube algorithm [11]. 

2) This surface mesh is then decimated by the ISO2Mesh method [12]. 
3) The volumetric mesh is finally generated from the surface mesh also by the 

ISO2Mesh method [12]. 

2.3   Tumor Growth Model 

The reaction-diffusion model is adopted to model the growth and spreading of tumor 
cells in the kidney. The reaction-diffusion model [3] was first proposed in chemistry, 
and widely used in biology, geology, physics and ecology. The model is defined as 
follows: 
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where c represents the tumor cell density, D is the diffusion coefficient of tumor cells,  
),( tcS  represents the source factor function which describes the proliferation of tu-

mor cells and ),( tcT is used to model the efficacy of the tumor treatment. 

Since our purpose is only to predict the tumor growth before treatment, the treat-
ment term ),( tcT  is omitted. The source factor ),( tcS  can be modeled using 

Gompertz law [3], which is defined as follows, 
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where ρ is the proliferation rate of tumor cells, Cmax is the maximum tumor cell car-

rying capacity of the kidney tissue. According to [3], Cmax is set to 3.5x104Cells mm-3. 

Combining Equ. (2) and (1) and omitting T(c,t), we can get, 
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Clatz et al. [3] assumed the anisotropic ratio of diffusion is the same for water mole-
cules and tumor cells so that, and computed the brain tumor diffusion coefficients 
based on the diffusion tensor image. However, further experiments are needed to vali-
date the hypothesis. Based on Chandarana et al. [8] and Notohamiprodjo et al. [14], in 
this paper the diffusion in the renal cortex and renal pelvis are considered to be iso-
tropic, while that in renal medulla be anisotropic and the diffusion in the radial direc-
tion is faster than other directions. The diffusion properties of different tissues are 
listed in Table 1. It is important to note that in the diffusivity matrix Dm of medulla, the 
diffusivity in the radial direction is set asλ times of those in other directions. 

Table 1. Diffusion properties (D) of different kidney tissues 

Tissue Diffusivity (10-3mm2s-1) 

Renal cortex Dc (isotropic) 

Renal medulla 
mD (anisotropic) 

Renal pelvis Dp (isotropic) 

The finite element method (FEM) is used to solve the PDE in the above reaction-
diffusion model. Based on the Galerkin method [15], the continuous problem can be 
converted to a discrete problem in a subvectorial space of finite dimension. In princi-
ple, it is the equivalent of applying the method of variation to a function space, by 
converting the equation to a weak formulation [15]. The details of implementation of 
reaction-diffusion model by FEM can be found in [15]. 
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2.4   Tumor Growth Model Parameters Training 

In our tumor growth model, Dc, Dm, Dp, ρ are the parameters need to be estimated. 

The optimal set of tumor growth parameters for a particular patient is not known; it 
must be estimated from the patient’s image. The optimizing of the tumor model pa-
rameters is based on the hypothesis that the optimal tumor parameters minimize the 
discrepancies between the simulated tumor image and patient tumor image. We 
achieve this goal by solving the following optimization problem, 

)(minarg* θθ
θ

E=                                                    (4) 

Where },,,{ ρθ pmc DDD= , E is the objective function. Many criteria can be used 

for constructing function E, such as the overlap accuracy, feature based similarity and 
smoothness of the registration in [18, 19]. Here, we only use the overlap accuracy. As 
mentioned earlier, in this paper the first n-1 studies are used for model parameters 
training. The parameters are trained in pair using consecutive study i and i+1. Our 
objective function is defined as follows, 
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Where, 1+iI  is used here as the validation tumor image, θ,iI  is the predicted tumor 

image using θ  based on image Ii. For giving parametersθ , we can compute the den-
sity for each node in the tetrahedron element based on the tumor growth model. A 
linear interpolation is then used to obtain the density for every point inside the tetra-
hedron. The threshold method is applied to detect the tumor. Tracqui et al. [17] sug-
gested an 8000 cell mm-3 threshold of detection for an enhanced CT scan. This value 
is also applied in this paper. w is the weight for TPVF (in this paper w=0.5). TPVF 
(true positive volume fraction) indicates the fraction of the total amount of tissue in 
the true delineation; FPVF (false positive volume fraction) denotes the amount of 
tissue falsely identified, which are defined as follows,  

TPVF = 
td

TP

C

C
                                                                   (6) 

FPVF= 
d

FP

U

C
                                                                    (7) 

Where, Ud is assumed to be a binary scene with all voxels in the scene domain C set 
to have a value 1, as shown in Fig. 2, more details can seen in [13]. 

The optimization of Eq. (4) is not a trivial task due to the defined objective function 
contains discontinuities. However, Pattern Search methods are suitable for such prob-
lems [22, 23]. They are directional methods that make use of a finite number of direc-
tions with appropriate descent properties. We apply a hybrid optimization parallel 
search method, called HOPSPACK [22], which takes advantage of parallel platforms. 
HOPSPACK comes with an asynchronous pattern search solver that handles general  
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Fig. 2. Illustration of the accuracy factors for delineation for a binary case. Here, Ctd is orre-
sponding scene of ‘true’ delineation, CM is the delineation result by method M. 

 
optimization problems with linear and nonlinear constraints, and continuous and inte-
ger-valued variables. Due to the complicated form of our objective function, it is not 
guaranteed that a global optimum exists. We set an iterations limit of 200 in the opti-
mization process. Usually a minimum was reached and the optimization terminated 
before reaching this limit.  

We assumed here the diffusion properties for the tissues are not changed over the 
time, while the proliferation rate ρ could be changed. Suppose ρ1, ρ2, …, ρm are the 
estimated tumor growth parameters, which corresponding to time point t1, t2, …, tm . 
Then we need to predict the proliferation rate ρ for the future time point. West et al 
[20] shows that, regardless of the different masses and development times, mammals, 
birds, fish and mollusks, all share a common tumor growth pattern. Provided that 
masses and growth times for the different organisms are properly rescaled, the same 
universal exponential curve fits their ontogenetic growth data. In this paper, we also 
assume the tumor growth follows this exponential law, which is defined as follows: 

)*exp(*)*exp(* tdctba +=ρ                                     (8) 

Where, a, b, c, d are the growth coefficients. The non-linear least squares method is 
used for curve fitting. The detail can be seen in [24].  

3   Experimental Results 

We tested the proposed methods on two longitudinal studies of kidney tumors. The 
contrast enhanced CT images in arterial phase were used. Both studies had 7 time 
points images scanned at regular intervals over 3 to 4 years. Three kidney tumors 
were monitored for study #1, and two kidney tumors were monitored for study #2. 
The CT images were acquired from GE LightSpeed QX scanner with the slice spacing 
= 5.00 mm and pixel size = 0.78x0.78 mm2. All images were segmented manually by 
an expert to generate the ground truth. 

Figs. 3 and 4 show the segmentation results and meshes for both patients, respec-
tively. A mesh consisting of 7217 nodes and 40996 tetrahedra was generated for the 
first study, and 6666 nodes and 37857 tetrahedra for the second study. 

As both studies had 7 time point images, the training of tumor growth model pa-
rameters were done on their first six images. As mentioned earlier, we assumed the 
diffusion properties for the tissues are not changed over the time, while the prolifera-
tion rate ρ could be changed. The diffusivities ( pc DD , ) are isotropic, and the trained 
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(a)              (b)           (c)            (d)            (e)  

Fig. 3. Segmentation and meshing results for the first study. (a) Original image, (b) the  
segmented kidney, (c) the segmented tissues and one tumor (cortex: orange, medulla: black, 
pelvis: green, tumor: red), (d) and (e) two different views of volumetric mesh (cortex: orange, 
pelvis: green, tumors: red, pink and blue, medulla is invisible because it is inside). 

 
      (a)                 (b)                (c)            (d)          (e)  

Fig. 4. Segmentaion and meshing results for the second study. (a) Original image, (b) the seg-
mented kidney, (c) the segmented tissues and two tumors (cortex: orange, medulla: black, 
pelvis: green, tumor: red and pink), (d) and (e) two different views of volumetric mesh (cortex: 
orange, pelvis: green, tumors: red and pink, medulla is invisible because it is inside). 
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Fig. 5. Parameter ρ curve fit by eq. (8) for all 5 tumors. The fit was based on the 5 estimated 
values, the 6th value (overlap with ☆) was used for prediction also shown on the figure. 
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Fig. 6. Results of the tumor growth prediction on three slices for the first study. Top row shows 
the original images, bottom row shows the prediction results by green overlaid on the original 
images. Red line represents the manually segmented tumor results. Different column shows 
different tumor. 

 

 
 

 (a)            (b)            (c)             (d)         (e)                  

Fig. 7. Results of the tumor growth prediction on two slices for the second study. (a) and (c) are 
the original images. (b) and (d) shows the prediction results by green overlaid on (a) and (c), 
respectively. Red line represents the manually segmented tumor results. 

 

values are (3.2x10-5, 3.8x10-5) and (3.2x10-5, 3.8x10-5) (mm-2s-1) for study#1 and study 
#2, respectively. mD is anisotropic, the trained values in radial and other directions are 

3.5 x10-5, 2.9 x10-5 mm-2s-1 (λ =1.207) for study #1; and 3.15 x10-5, 2.6 x10-5 mm-2s-1 
(λ =1.212) for study #2, respectively. These values are consistent with the diffusion 
value in [8, 14] (within one order of magnitude). The trained ρ for five tumors (3 for 

patient #1 and 2 for patient 2) are shown in Fig. 5. The curve fitting based on Eq. (8) 
using non-linear least squares method was applied to these data.  The com-
puted ρ based on curve fit was applied on the 6th image to predict the tumor and vali-

dated with the 7th image. Fig. 6 and 7 show the predicted results for these two studies. 
We can find the predicted results are quite good.  

As for quantitative evaluation, the TPVF and FPVF [13] are used to show the accu-
racy of the proposed method, the results are also shown in Table 2. The average 
TPVF and FPVF on all tumors is quite good, 91.4% and 4.0%, respectively. We also  
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Table 2. Volume difference, TPVF and FPVF for each tumor in the two studies 

Study #1 Study #2 
 

Tumor1 Tumor2 Tumor3 Tumor1 Tumor2 

Volume difference  4.1% 5.1% 4.8% 4.5% 5.7% 

TPVF 91.5% 90.9% 91.6% 92.1% 90.8% 

FPVF 4.6% 4.2% 3.7% 3.5% 3.8% 

list the volume difference between the predicted results and the manually segmented 
results in Table 2. The average volume difference is about 4.8%. 

4   Conclusions and Discussions 

Tumor growth prediction provides useful information in tumor treatment planning. 
Based on the prediction, the physician can choose among the treatments such as ra-
diotherapy, chemotherapy or surgery. In this paper, a FEM based 3D tumor growth 
prediction using longitudinal studies of kidney tumor was proposed. The proposed 
method was tested on two longitudinal studies with seven time points on five tumors. 
The preliminary experimental results proved the feasibility and efficacy of the pro-
posed system. The proposed system can be applied to predict tumor growth in other 
organs by modifying the tissue and diffusion properties accordingly. 

In this paper, we adopted a widely used reaction-diffusion model as the tumor 
growth model. A more complex model can be considered, such as coupling diffusion 
with biomechanical model [3, 19]. This will be investigated in the future work. 
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Abstract. GPU based ray casting has become a valuable tool for the
visualization of medical image data. While the method produces high-
quality images, its main drawback is the high computational load. We
present a novel adaptive approach to speed up the rendering. In contrast
to well established heuristic methods, we use the spectral decomposition
of the transfer function and the dataset to derive a suitable sampling
criterion. It is shown how this criterion can be efficiently incorporated
into an adaptive ray casting algorithm. Two medical datasets, which
each represent a typical, but different material distribution, are rendered
using the proposed method. An analysis of the number of sample points
per ray reveals that the new algorithm requires 50% to 80% less points
compared to a non-adaptive method without any quality loss. We also
show that the rendering speed of the GPU implementation is greatly
increased with reference to the non-adaptive algorithm.

Keywords: volume rendering, gpu raycasting, adaptive sampling, spec-
tral analysis.

1 Introduction

The 3D visualization of computer tomographic (CT) data by means of real-time
volume rendering techniques is widely used in clinical diagnostics and medical
education [11]. A very powerful and popular approach to do so is to perform
ray casting on the graphics processing unit (GPU) [7]. This method allows the
interactive rendering of moderately sized datasets on a standard desktop PC.

Many different approaches have been proposed to increase the efficiency of
GPU based ray casting. View-dependent octree data structure have been pro-
posed to reduce the memory consumption on the GPU side [4] [2]. The compu-
tational load can be reduced by adapting either the number of rays (image based
adaptivity) or the number of sample points for each ray (object based adaptiv-
ity). While image based adaptive methods can be effective in combination with
level-of-detail methods [8] we will focus here on object based adaptive sampling.

Even very early GPU based ray casting algorithms employed empty space
skipping and early ray termination to reduce the sample points per ray [7]. A
full adaptive sampling algorithm based on a so-called importance volume was
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proposed by Roettger et al. [10]. Recently presented ray casting engines often rely
on multi-resolution data structures and therefore naturally embed full adaptive
sampling. However, very little attention has been paid to the criteria that control
the sampling distance. The sampling distance is either chosen according to a
given multi-resolution representation of the volume [8] or heuristic properties
such as the gradient of the dataset [6].

Mathematically sound adaptivity criteria can be obtained by applying a Fourier
analysis [1]. The sampling distance then follows through the Nyquist-Shannon
sampling theorem. If non-linear transfer functions are used (which is the case in
medical applications), it is not sufficient to apply the spectral decomposition just
to the scalar data f(x) [5]. In order to capture high-frequency characteristics of
the transfer function g(x) the complete signal (g ◦ f)(x) = g(f(x)) has to be ana-
lyzed instead. However, the transfer function usually changes during the rendering
to highlight different anatomical regions of interest. Therefore, an online Fourier
decomposition of the whole dataset would be necessary in order to determine the
Nyquist rate as soon as the transfer function changes. This is not feasible due to
the large computational effort associated with this analysis.

In order to alleviate this constraint, several authors proposed a technique
called pre-integration of the transfer function [3] [12]. Based on the assumption
that the scalar function is linear between the two sample points s1 and s2, the
volume integral is determined analytically in this interval. The integral values
are pre-computed and can be accessed via a lookup table for all values of s1 and
s2. In this way high frequency behavior of the transfer function can be absorbed
and the sampling rate can be reduced [5].

Unfortunately, the approach does not reduce the sampling rate where small
changes of g actually reduce the maximal frequencies of the complete signal g◦f .
Furthermore, the signal reconstruction with the ray casting technique introduces
further errors that deteriorate the quality of the pre-integrated solution. This
issue will be discussed in detail in the next section. Bergner et al. showed a way
to overcome these limitations [1]. Drawing from well established results in the
field of signal processing they derive a mathematically rigorous estimation for
the spectral decomposition of g ◦ f . The key result establishes an estimate for
the Fourier analysis of g ◦ f based on the Fourier analysis of g and the local
gradient f ′(x).

We build upon the work of Bergner et al. and present a GPU based ray casting
algorithm that incorporates object-space adaptive sampling based on a spectral
analysis of g ◦ f . In Section 2 we describe the errors that are introduced when
applying ray casting for 3D image reconstruction. We subsequently explain the
relation between the Nyquist rate and the sampling frequency. In Section 3 we
show how different local behavior of the transfer function can be incorporated
in the approach. Most importantly, we present how dynamic transfer functions
can be used in the adaptive framework with minimal computational effort. A
memory efficient implementation of the method is presented in Section 4. We
also analyze the 3D rendering of typical medical CT datasets. The performance
of the new method is compared to the theoretical optimal adaptive algorithm and
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to a non-adaptive approach. We conclude with a summary of key contributions
of this paper and give a short outlook for future work in Section 5.

2 Application of Sampling Theory to Ray Casting

A CT dataset can be regarded as a set of samples that have been taken from
a band limited, continuous signal. According to the Nyquist-Shannon sampling
theorem, the sampling frequency must be at least twice as high as the highest
frequency of the original signal. Thus, for an isotropic sample distance of T
between the voxels, the maximal frequency vf that is represented in the dataset
is given by vf = 1/2T . The signal can be perfectly reconstructed by sampling the
dataset once per voxel and then performing a convolution with a sinc filter kernel.
However, additional errors are introduced, if ray casting is used to reconstruct
the signal. These errors are discussed in the following paragraph by means of 1D
examples. However, all results can be easily generalized to the 3D case.

The ray casting method essentially solves the rendering integral by adding
the volume densities along each viewing ray. Usually tri-linear interpolation is
employed to calculate the density values at the sample points. From a mathe-
matical perspective, this approach corresponds to a reconstruction with a linear
(’tent’) filter kernel [9]. The errors that occur due to the reconstruction with
the simplified filter kernel are referred to as filtering artifacts . We note two
important properties of this error source. First of all, the filtering artifacts can-
not be reduced by raising the sampling rate. This is quickly illustrated for a
1D signal (see Fig. 1). If the samples are always taken exactly in the center of
each voxel, there is no additional benefit from sampling the signal with a higher
frequency than once per voxel. Secondly, in contrast to the sinc filter, which has
an infinite support, the tent filter’s support is limited to adjoining voxels. Thus,
the required sampling rate only depends on the local behavior of the material
density.

Fig. 1. A sinusoid signal (black) is reconstructed with a ray casting method (red). The
filter kernel creates filtering artefacts (left). Samples taken with an offset introduce
another error source (right), which can be reduced by performing oversampling.
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In the previous discussion we assumed that the sample points are always
placed in the centre of each voxel. However, during ray casting the samples are
taken along the viewing ray at different positions that not necessarily coincide
with the midpoint of the voxels. Fig. 1 illustrates the error that emanates from
this procedure. The size of the error depends on the frequency of the signal,
the sampling rate and the actual sample point, which cannot be known a-priori.
Although the error scales with the Nyquist frequency of the signal, the simple
1D example (Fig. 1) already suggests that it is often not sufficient to sample
with the Nyquist rate. This is in fact the case for volume rendering of medical
datasets. Previously published results suggest that an oversampling by a factor
of two to four with respect to the Nyquist frequency is enough to remedy the
problem [10].

In order to generate visually pleasant and meaningful images, a transfer func-
tion g is used to assign optical properties to the Hounsfield values stored in the
CT dataset. Thus, the sampling frequency does not only depend on the data val-
ues f , but rather on the composite function g ◦ f . This is especially important,
if the transfer function has high frequency components.

3 Spectral Analysis

The direct spectral decomposition of the composite function g ◦ f (e.g. by the
discrete Fourier transform) is a very computational intensive procedure. If the
transfer function does not change during the rendering this analysis can be done
in a pre-processing step. However, in medical applications the transfer function
is usually changed during the rendering to browse through different anatomical
structures and regions of interest. In this section we present an efficient approx-
imation for the spectral decomposition that can be evaluated with very little
computational effort. This allows the use of frequency based adaptivity criteria
even for transfer function that change dynamically during the rendering.

3.1 Spectral Analysis of the Composite Function

Bergner et al. showed that the maximal frequency vh of the composite function
g ◦ f can be approximated by

vh = vg max
x

|f ′(x)| , (1)

because the energy of the signal decays exponentially for frequencies above this
estimation [1]. Here, vg denotes the maximum frequency of g. In accordance with
these results our experiments showed that no visible artifacts occur even when
no additional oversampling is used.

While the estimate above holds for all volume rendering techniques, it can be
significantly enhanced for the ray casting technique due to the locality of the
reconstruction filter. When approximating the frequency to determine the step
size from sample point s1 to sample point s2 it is obvious that the maximal
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Fig. 2. A typical non-stationary opacity transfer function used for medical visualization
(left). The transfer function is shifted along the x-axis to browse through different
anatomical structures of a human hand (middle, right).

gradient of f ′(x) should be determined over the interval [s1, s2] and not over the
whole volume. Additionally, we propose to determine the maximal frequency of
g not over the entire range of Hounsfield values, but rather over these values I =
[smin, smax] that actually occur in [s1, s2]. The benefits of this approach become
quickly apparent when looking at the transfer functions that are typically used
for medical visualization (see Fig. 2). There are large areas where the transfer
function has minimal variations whereas it changes substantially around a certain
threshold value. The step size can therefore be reduced if all values of f in [s1, s2]
only induce little changes in the transfer function. Using the approximation given
by equation (1) the sampling period is given by

T =
1

2vg(I) · max |f ′(x)| (2)

where vg(I) is the maximal frequency of g for all values in I. This approximation
can be very efficiently implemented as will be detailed in Section 4. We will
discuss next how the maximal frequencies of g are calculated.

3.2 Dynamic Transfer Functions

The spectral decomposition of g is obtained by applying a fast Fourier transform
(FFT). We define the cut-off frequency that contains a pre-defined percentage of
the signal’s energy as the maximal frequency of g. If the transfer function changes
arbitrarily during the rendering, the FFT has to be applied again. Although the
FFT is a very efficient algorithm, this cannot be done in real-time for high-
resolution transfer functions. To overcome this problem, we make use of the
fact that in medical applications the transfer function is only changed in a very
restricted way during user interaction.

Medical imaging workstations (e.g. Vital Vitrea, OsiriX Imaging Software)
typically allow the user to change a 1D transfer function with simple mouse
gestures. In order to highlight different anatomical structures (see Fig. 2) all
four RGBA components of the transfer function g(x) are shifted along the x-
axis or multiplied by a constant factor. This behavior can also be modelled by
defining the affine map

t �→ Ψ(t) = aΨ t + bΨ (3)
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and using this map to adjust the material density f before the transfer function g
is applied. To determine the maximal frequency for a modified transfer function
we have to analyse the function composition g ◦ Ψ ◦ f instead of g ◦ f . By noting
that

(Ψ ◦ f)′ = (aΨf + bΨ )′ = aΨf ′ (4)

we can define the new estimate

T =
1

2vg(I) · |aΨ | max |f ′(x)| (5)

to incorporate the change of the transfer function into the approximation. This
allows to approximate the maximal frequency of the modified transfer functions
with minimal computational effort by using the spectral decomposition of the
original transfer function. An FFT on g has to be performed only if a new
transfer function is chosen, but not if the transfer function is altered in the way
described above. It is important to remark that this perfectly fits the typical
use case for medical visualization. A completely new transfer function is usually
chosen only in the beginning of the examination after loading the dataset. At this
stage the delay caused by the calculation of the FFT is negligible. The change
of the transfer function during the interactive rendering can then be modelled
as described above.

4 Implementation and Results

4.1 Implementation

The ray casting algorithm was implemented as a module for the visualization
toolkit (VTK) using the C++ and OpenGL/GLSL programming languages. We
use pre-integration and store the necessary pre-computed data in a 2D texture. In
order to implement the adaptive sampling using the frequency based criterion,
two additional textures are used. A 2D texture holds the maximal frequency
vg(I) of g in the interval I = [smin, smax]. As detailed above these frequencies can
be calculated in a pre-processing step by performing a spectral decomposition
of g using the FFT.

The gradients f ′(x) are stored in an importance volume that is of the same
size as the dataset. For each voxel the gradient of f is determined in each spatial
direction. It is important that the adaptivity criterion estimates the maximal
frequency of the whole region that is covered in the next sampling step. In
order to achieve this, the gradients are filtered with a max-filter with a width
of 2Tmax and the result is stored in the importance volume. Here, Tmax denotes
the maximal step size. Please note that this procedure essentially implements an
isotropic sampling criterion. Further speed-up could be achieved if the direction
of the ray was taken into account.

In order to estimate the step size we also need the values smin and smax in
the region covered by the ray in the next sampling step. Although it is possible
to store these values in an importance volume similar to the gradients f ′(x),
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this approach would be very memory intensive. To circumvent this problem, we
approximate f with its Taylor expansion

f(x) ≈ f(x0) + f ′(x0)(x − x0) (6)

around the sample point x0. The upper and lower bound for smin and smax can
then be calculated using the relations

smin = f(x0) − f ′(x0)Tmax (7)
smax = f(x0) + f ′(x0)Tmax (8)

and the gradients stored in the importance volume.
We conclude the description of the implementation by summarizing the ad-

ditional computational effort that is associated with the adaptive method. The
algorithm requires some additional floating point operations to calculate the in-
terval I = [smin, smax] values according to equation 8. Due to the fact that the
transfer function changes during the rendering, the interval has to be shifted as
described by the relation 3. Finally, the evaluation of the step size using the fre-
quency approximation (see eqn. 5) has to be performed. Two additional texture
fetches have to be carried out in order to obtain the gradient f ′ and the lo-
cal maximal frequency of vg. Most significantly, the adaptive method uses more
texture memory to store the importance volume. Our implementation uses an
importance volume that is of the same size as the original dataset. However, it
has to be pointed out that it contains a lot of redundancy due to the use of the
max-filter and can therefore be easily compressed.

4.2 Results

In this section the rendering performance of the algorithm for two typical medical
datasets is outlined. The first one is a CT angiography of a human hand (Fig. 3)
featuring a resolution of 300x300x300 voxels. The second one is a section of an
abdominal CT scan with a resolution of 512x512x101 voxels (Fig. 4). The test
system is equipped with a NVIDIA GeForce GTX 280 graphics card with 1GB
of video memory. We use a maximal step size of Tmax = 8 and an oversampling
by a factor of two as discussed in Section 2.

The regular, non-adaptive algorithm is used to render a reference solution. The
transfer function is not changed during the rendering. This allows to compute
the spectral decomposition of g ◦ f in a pre-processing step using the FFT. The
solution that is obtained using the pre-computed frequencies is referred to as
direct sampling. It serves as the theoretical upper bound for the average step
size. As explained in Section 3, direct sampling cannot be used when the transfer
function changes during the rendering. In order to evaluate the performance of
the adaptive method we compare the average number of sample points per ray
as well as the number of frames per second (FPS). Additionally, the number of
sample points for each ray are plotted as black and white images (see Fig. 4,
3). Many sample points are used within white regions, whereas darker regions
indicate that fewer samples have been taken.
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Fig. 3. Close-up view of the human hand dataset (upper left). Black and white images
indicate how many samples are taken per ray if regular sampling (upper right), direct
sampling (lower left) or the proposed sampling criterion (lower right) is used.

Fig. 4. Close-up view of the abdomen dataset (upper left). Black and white images
indicate how many samples are taken per ray if regular sampling (upper right), direct
sampling (lower left) or the proposed sampling criterion (lower right) is used.
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Table 1. Performance of the proposed approximation in terms of samples per ray
(less is better) and frames per second (FPS) for the hand dataset (left) and the ab-
domen dataset (right). Results using regular sampling and direct sampling are given
as reference values.

Sampling type regular direct approx.
Samples/pixel 430 75 88

FPS 1.2 6.5 5.5

Sampling type regular direct approx.
Samples/pixel 752 197 404

FPS 5 8.1 6.2

No visible difference is observed between the images rendered with the differ-
ent methods. The average number of sample points is reduced from 430 to 88
samples per pixel for the rendering of the hand dataset (see Table 1). This is
only slightly more than the optimal solution (75 samples/pixel). A detailed anal-
ysis (see Fig. 3) reveals that most of the speed-up can be attributed to empty
space skipping around the bones of the hand. In contrast to this scenario, the
image generated from the abdominal CT scan does not contain much empty
space. The adaptive method significantly reduces the number of sample points
in all image areas which results in an average reduction of more than 50% (Fig.
4). However, the approximation still needs twice as many sample points as the
optimal solution.

The adaptive method significantly increases the rendering speed. The first ex-
ample shows that the acceleration factor perfectly corresponds to the reduction
of the sample points. This shows that the additional computations for the adap-
tive method only have a very small impact. In the second example the number
of samples per pixel does not scale linearly with the rendering speed which can
be attributed to the parallel execution on the GPU. This suggests that an im-
plementation wich allows a finer control over the hardware (e.g. using NVIDIA
CUDA) could further accelerate the algorithm.

5 Conclusion and Outlook

We have presented a novel adaptive ray casting algorithm. In contrast to well
established heuristic methods, we use the spectral decomposition of the transfer
function and the dataset to derive a suitable sampling criterion. The analysis
of the number of sample points per ray reveals that the new algorithm requires
50% to 80% less points compared to a non-adaptive method without any quality
loss. Furthermore, the approximation of the maximal frequency of g◦f performs
well compared to the optimal solution. Because of the numerical efficiency of the
method, the rendering speed of the GPU is greatly increased with reference to
the non-adaptive algorithm. The presented adaptivity criterion can be effectively
used in a framework that uses a hierarchical data structure to perform adaptive
ray casting (e.g. Gobetti et al. [4]). Such a data structure also allows to efficiently
store the dataset gradients which reduces the necessary texture memory, thereby
alleviating the only major disadvantage of the method. We employed the fast
Fourier transform to obtain the spectral decomposition over certain regions of
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g. It could be beneficial to employ a different transform that has a better spa-
tial resolution such as a Wigner-Ville transform. Finally, the criterion could be
further improved by considering anisotropic behaviour of the dataset.
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Edward Hsu6, Julie Korenberg7, and Chris R. Johnson8

1 The Scientific Computing and Imaging Institute, University of Utah
fjiao@sci.utah.edu

2 The School of Computing, University of Utah
jeffp@cs.utah.edu

3 Numira Biosciences
jeroen@sci.utah.edu
4 DFKI, MMCI, Saarbrcken
jens.krueger@dfki.de

5 The School of Computing, University of Utah
varmanitw@gmail.com

6 The Department of Biomedical Engineering, the University of Utah
edward.hsu@utah.edu

7 The Brain Institute, Department of Pediatrics, University of Utah
Julie.Korenberg@hsc.utah.edu

8 The Scientific Computing and Imaging Institute, University of Utah
crj@sci.utah.edu

Abstract. In this paper, we propose three metrics to quantify the differences
between the results of diffusion tensor magnetic resonance imaging (DT-MRI)
fiber tracking algorithms: the area between corresponding fibers of each bundle,
the Earth Mover’s Distance (EMD) between two fiber bundle volumes, and the
current distance between two fiber bundle volumes. We also discuss an interac-
tive fiber track comparison visualization toolkit we have developed based on the
three proposed fiber difference metrics and have tested on six widely-used fiber
tracking algorithms. To show the effectiveness and robustness of our metrics and
visualization toolkit, we present results on both synthetic data and high resolution
monkey brain DT-MRI data. Our toolkit can be used for testing the noise effects
on fiber tracking analysis and visualization and to quantify the difference between
any pair of DT-MRI techniques, compare single subjects within an image atlas.

1 Introduction

After the invention of Diffusion Tensor magnetic resonance imaging (DT-MRI) [1], a
number of fiber tractography algorithms [2,3,4,5,6,7] have been proposed over the last
decade. The issues of noise, motion effects or imaging artifacts create a certainty de-
gree of uncertainty for fiber algorithms and may produce misleading tracking results.
However, quantifying and effectively visualizing the accuracy and the uncertainty be-
tween results of different fiber tracking algorithms remains a significant challenge. For
quantification, many fiber bundle difference metrics have been proposed [8,9], most of
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which use a Euclidean distance measure based upon predefined correspondences. One
problem with the distance metrics is that it is easily disturbed by the predefined cor-
respondences, with being overestimated or underestimated, as shown in Section 3. In
addition, most difference metrics do not take into account the local fiber directional in-
formation and the local fiber probability information, i.e. the fraction of fibers that pass
through that voxel. This will overweight the peripheral or tail voxels and ignore the di-
rectional information of the local diffusion profile. Recently, Wassermann et al. [10] put
forward a Bayesian framework based on Gaussian Processes, which takes into account
prior information about the fiber structure. Unfortunately, this method assumes the dis-
tribution of the fiber point position is Gaussian, which may not always to be true. In
this paper we proposed three similarity metrics: the area between corresponding fiber
bundles, the Earth Mover’s Distance between two fiber bundle volumes, and the cur-
rent distance between two fiber bundle volume that can help better quantify differences
between fiber bundles and better understand uncertainty associated with fiber tracking
algorithms.

Visualization of error and uncertainty is a growing area with important applications
in science, engineering and medicine [11]. However, there are very few works address-
ing the visualization of uncertainty or the accuracy of tensor fields and specifically of
fiber tracking algorithms. A recent paper by Brecheisen et al. [12], studies how to ef-
fectively visualize how the stopping criteria of FACT algorithm(Fiber Assignment by
Continuous Tracking), can influence the fiber tracking results. However, this study pri-
marily illustrates the quantification of the difference using a single algorithm and does
not provide methods for inter-algorithm comparisons. Furthermore, Brecheisen et. al.
use a technique in which seed points were placed manually by expert users. Such man-
ual placement can influence the outcome of the fiber tracking algorithm and is some-
what time consuming. In this paper we describe an interactive uncertainty visualization
toolkit. Users can choose different fiber tracking algorithms, change the tracking crite-
ria, change how seed points are distributed. Furthermore, our toolkit provides the ability
to track uncertainties within different anatomical regions, easily observe areas of high
uncertainty and interactively explore such high uncertainty regions locally.

2 Materials and Methods

2.1 Data

Synthetic data: The synthetic data used in this paper was simulated by Numerical Fiber
Generator (NFG) [13]. One B0 image (b = 0s.mm2) and twenty diffusion weighted
images (b = 3000s.mm2) were obtained. The image resolution is 0.1mm × 0.1mm ×
0.1mm and the image matrix size is 20 × 20 × 20 voxels.

High resolution monkey brain data: The monkey brain used in this study is the right
hemisphere of a whole brain. Imaging experiments were conducted on a Bruker Biospec
7-T horizontal-bore system (Bruker Inc, Billerica, MA). For data acquisition, a standard
3D diffusion-weighted spin-echo sequence was used (TR 375 ms, TE 26 ms, field of
view 70×51×51mm, Matrix 233×170×170 which yielded an isotropic resolution of
300 microns, b-value is 2,000 s/mm2).
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Adding noise: To test the robustness of our toolkit, different levels of artificial Rician
noise were added to the synthetic and the monkey brain diffusion weighted images.
Six signal-to-noise (SNR) ratio levels of noise are 96,48,32,24,19 and 16, which cor-
responds to about 2%, 4%, 6%, 8%, 10% and 12% measured by the noise mean and
divided by the signal mean. To guarantee the distribution of added noise is Rician, we
proceed as follows: take the Fourier transform of the diffusion weighted image, add
Gaussian noise in both the real and imaginary part of, take the magnitude of the Gaus-
sian noise disturbed complex image, and implement the inverse Fourier transform of
the magnitude image to obtain the noisy image. The same procedure was used for both
synthetic data and monkey brain data. One issue that needs to be specified is that the
smoothed monkey brain data was treated as the ground truth, and different levels of
noise were added directly to it. This is because there is no ground truth available for
real brain data and the main focus of this paper is on how to quantify and visualize the
uncertainties rather than the noise issue itself.

2.2 Fiber Tracking Algorithms and Tracking Parameters

In this study, we implement six algorithms, five deterministic ones: the Streamline,
Tensorline, Tensor Deflection (Tend), Guided and Fast Marching algorithm, and one
probabilistic algorithm: Stochastic Tractography.

The Streamline algorithm starts from seed points and integrates along the the major
eigenvector direction to form the fiber tracts. The Tensorline algorithm integrates along
the following outgoing vector direction: vout = f e1 + (1 − f )((1 − g)vin + gD · vin),
which is the weighted sum of the major eigenvector direction of the current voxel e1 and
the previous voxel vin, and the deflection term D ·vin. Weinstein et al. [3] used a linear
anisotropy measure as f , and named the technique the Tensorline algorithm. Lazar et
al. [4] extended this idea to set f and g to any user defined number between 0 and 1, this
is the Tend algorithm. It is worth noting that when f = 1, both the Tensorline algorithm
and the Tensor Deflection algorithms are exactly the same as the Streamline algorithm.
The Guided tracking algorithm integrates along the major eigenvector direction while
being guided by a priori information, which can be anatomical knowledge or fiber
tracking results from some other algorithms. The Fast Marching algorithm is based
on a fast marching level set method where a front interface propagates in directions
normal to itself with a non-negative speed function. From this speed function, three-
dimensional time of arrival maps generated, which produce the connection paths among
brain regions. The Stochastic fiber tracking algorithm calculates the probabilities of
connections based on a Bayesian framework. To facilitate the comparisons, we use
the same start and end region for all of the six algorithms. We use linear anisotropy
(CL) rather than fractional anisotropy (FA) as the anisotropy value for tracking. The
reason for this choice is that the tensor shape with high FA, i.e disks, do not necessarily
have a clear contrast between the major and secondary eigenvalue, in which case major
eigenvector direction may easily change by 90 degrees based primarily on noise effects.
The step size was chosen to be 0.05 mm for the synthetic data, and 0.15 mm for the
monkey brain data, while the stopping criteria was CL=0.1 for both synthetic data and
monkey brain data. For all of the six algorithms, only fiber tracts starting from the seed
region and ending in the end region are selected for comparison.
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3 Fiber Similarity Metrics

In this section we define three distance measures between pairs of fibers A and B, as
well as between fiber bundles A = {A1,A2, . . .} and B = {B1,B2, . . .}. Each fiber is
described by a sequence of points, that is fiber A = 〈a1,a2, . . .〉. We can also represent
a fiber A by a piecewise-linear curve defined by segments aiai+1 between consecutive
fiber points. More conveniently, we can just denote a set of voxels that a fiber goes
through. For a fiber A, denote this set of voxels as Ā = {ā1, ā2, . . .} and for a fiber bundle
A it is denoted Ā = {ā1, ā2, . . .}. Given a fiber bundle A, for each voxel āh, we can then
determine the fraction of fibers that pass through that voxel (the probability), denoted
as Pāh . Additionally, we can calculate the average tangent direction of the fibers that
pass through a voxel āh, denoted as Tāh . These quantities will be useful in the distance
measures we define for comparing fibers and fiber bundles.

Before we introduce the new measures, we first comment on commonly used dis-
tance measures in the literature. Given two fibers A and B, let the pointwise-order dis-
tance of the common area be defined Dpo(A,B) = ∑i=1 ‖ai − bi‖. Let B� denote the
point on the piecewise-linear curve of fiber B a distance � from the start by arclength,
and let �A(a) be the distance from the start of fiber A to a point a ∈ A. Then let the corre-
sponding arc-length distance be defined Dcal(A,B) = ∑i=1 ‖ai −B�A(ai)‖+∑ j=1 ‖b j −
A�B(b j)‖. Let φB(a) be the closest fiber point in B to point a. Then let the correspond-
ing closest point distance be defined Dccp(A,B) = ∑i=1 ‖ai − φB(ai)‖ +∑ j=1 ‖b j −
φA(b j)‖. These measures are illustrated in Figure 1 of two fibers A and B. Although,
these distances may be easy to compute, they typically take the sum or the average of
distances between points, which are overestimates or underestimates of the true dis-
tances. This is due either to poor predefined correspondences, poor discretization or a
complex local configuration of the fibers or fiber bundles.

For the crossing point of Fiber A and Fiber B in Figure 1, the local difference value
assigned to this point for any Euclidean distance measure will be zero. Although the
spatial locations of the crossing point are the same, the fiber directions at this point are
different for Fiber A and Fiber B. As such, the local difference value at this point should
not be zero. The area difference metric defined in Section 3.1 solves this dilemma. This
local area difference metric can help to visualize the local fiber difference in a more
robust way based on the spatial information. For the Earth Movers Distance and the cur-
rent distance, the predefined correspondences are not needed. Therefore the problem of
poor predefined correspondences, poor discretization or a complex local configuration
of the fibers or fiber bundles can be successfully avoided. Furthermore, when the local
fiber probability or the local fiber directional information are taken into account, this
will further reduce the bias by only considering the spatial location. Thus, these two
global metrics are more applicable for purpose of quantifying distances accurately.

3.1 The Area between Corresponding Fibers or Corresponding Points

We propose a distance measure DArea(A,B) that measures the distance between two
fibers A and B by the area between them. Let Area(a,b,c) describe the area of the trian-
gle between points a, b, and c. Let ψB(ai) and ψA(b j) describe the mappings to points
in fiber B and A, respectively, defined by the discrete Frèchet correspondence [14]; the
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Fig. 1. Different distances: (left) Dpo(A,B), (middle) Dcal(A,B), (right) Dccp(A,B)

closest distance from each point to the other fiber that also preserves the ordering along
the fibers. Formally

DArea(A,B) = ∑
i=1

∑
b j ,b j+1∈ψB(ai)

Area(ai,b j,b j+1)+∑
j=1

∑
ai,ai+1∈ψA(b j)

Area(b j,ai,ai+1).

We can also assign a local distance measure at each point ai ∈ A as

DArea(ai,B) =
1
2

· [1
2

Area(ai−1,ai,ψ−
B (ai))+ ∑

b j,b j+1∈ψB(ai)
Area(ai,b j,b j+1)

+
1
2

Area(ai,ai+1,ψ+
B (ai))],

where ψ−
B (ai) (resp. ψ+

B (ai)) is the min (resp. max) index point in ψB(ai). We use
multiple terms for each point and divide by two so the local distance is symmetric (from
A to B or B to A) and the sum or the average of local distances is the global distance.

3.2 The Earth Mover’s Distance

The Earth Mover’s Distance, also called Kantorovich-Wasserstein distance, can be vi-
sualized as finding the optimal way to move piles of “earth” or dirt to fill a series of
holes, minimizing the total “work” or mass times distance [15]. Based on the voxelsize
representation Ā and B̄ of fiber bundles A and B, the Earth Mover’s Distance between
two fiber bundles is defined as

EMD(Ā,B̄) =
∑i∈Ā∑ j∈B̄ ci j fi j

∑i∈Ā∑ j∈B̄ fi j
=

∑i∈Ā∑ j∈B̄ ci j fi j

∑ j∈B̄ b̄ j
, (1)

where ci j is the cost to move a unit of supply from i ∈ Ā to j ∈ B̄, and fi j is the flow
that minimizes the overall cost

∑
i∈Ā

∑
j∈B̄

ci j fi j, (2)

subject the following constraints:

fi j ≥ 0 i ∈ Ā, j ∈ B̄; ∑
i∈Ā

fi j = b̄ j j ∈ B̄; ∑
j∈B̄

fi j ≤ āi i ∈ Ā, (3)
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where āi is the total supply of supplier i and b̄ j is the total capacity of consumer j. In
this case, they both are the probability values at the ith voxel of fiber bundle Ā and jth
voxel of fiber bundle B̄. The cost function ci j, which can be any predefined distance
measure in any dimension, is the Euclidean distance between the fiber voxels of two
fiber bundles in this paper. Therefore, the Earth Mover’s Distance between two fiber
bundles is the minimum effort to redistribute the probability of one fiber bundle to
match the other. This measure not only takes into account the Euclidean distance but
also considers the fiber probability difference as well.

3.3 The Current Distance

The current distance was proposed by Glanués and Vaillant [16] as a measure to com-
pare a broad class of shapes (including point sets, curves, and surfaces) by how they
interact with each other. Recently, Durrleman et. al. [17] investigated medical applica-
tion in more depth and showed that the current distance is increasing with decreasing
signal-to-noise ratio of the image. The measure can be interpreted as implicitly lift-
ing each shape to a single point in a high (often infinite) dimensional Euclidean space,
specifically, a reproducing kernel Hilbert space, where the similarity can be measured
as the Euclidean distance. As such, fiber bundles can be interpreted as a set of curves,
and the high dimensional vectors corresponding to each curve can be summed to create
a single point representing a fiber bundle. This provides a natural distance to compare
fiber bundles. Furthermore, Joshi et al. [18] showed that we can approximate the cur-
rent distance between shapes arbitrarily well by a fine enough discretization. Thus, for
computational reasons, we approximate each fiber A by the set of voxels Ā it passes
through. Then the similarity between two fibers can be written as

κ(A,B) =∑
i
∑

j
K(ai,b j)(Tāi ·Tb̄ j

), (4)

where K(a,b) is a kernel function (we use the Gaussian kernel with the bandwidth h the
same as the voxel size) and (Tāi · Tb̄ j

) is the dot product between two tangent vectors.
Now the current distance is defined as

CD(A,B) = κ(A,A)+κ(B,B)− 2κ(A,B). (5)

When using a fiber bundle A = {A1,A2, . . . ,An} instead of a single fiber Ai, we can
compute the similarity between two fiber bundles as

κ(A,B) = ∑
Al∈A

∑
ai∈Al

∑
Bh∈B

∑
b j∈Bh

K(ai,b j)(Tāi ·Tb̄ j
). (6)

Because the similarity function κ is a summation over terms, we can accumulate the
total number of fibers that pass through each voxel and take their average tangent vector
in each voxel, and then we can treat each (now weighted) voxel as a single point of the
fiber bundle. The self-similarity of a fiber κ(A,A) or of a fiber bundle κ(A,A) can be
viewed as a norm of that fiber or fiber bundle, denoting how large that shape is in the
high-dimensional vector space. Alternatively, the current distance between two fibers



Metrics for Uncertainty Analysis and Visualization of Diffusion Tensor Images 185

(or fiber bundles) can be seen as the difference in how the fibers act on the underlying
space, measured by how they act on each other. This action is described by its local
influence in the space by the kernel function K and in the direction it flows through the
tangent vector. Thus the current distance measures the difference in how two fibers (or
fiber bundles) flow through a given space.

4 Results and Discussion

4.1 Fiber Track Difference Quantification

Figure 2 shows the tracking results of the Streamline, Fast Marching, Guided and the
Stochastic tracking algorithm on synthetic data and on the monkey brain data. Since the
Tensorline and the Tend method yield similar results to the Streamline algorithm, we
only show the Streamline algorithm result. The Stochastic tracking result is embedded
in each of the other three results as a semi-transparency isosurface. The colormap shows
the local fractional anisotropy (FA) value. The start seed points are shown by the smaller
spheres while the ending region points are shown by the larger spheres. Figure 3 shows
the average closest distance ( Dccp ) and average area between corresponding fibers
of noise free volume and each level of noisy volume using four algorithm: Streamline,
Tensorline, Guided and Tend algorithm, whose correspondence between fibers or points
are easily defined. For the synthetic data, the tracking results from each algorithms are
compared with the ground truth, and for the monkey brain data, the tracking results of
each algorithms under different noise levels are compared with its own tracking result
on the smoothed data without artificial Rician noise. One can see that either the average
distance or the average area difference increases with the increasing noise level. The

Fig. 2. The results for synthetic data (top) and monkey brain (bottom) of four tracking algorithm,
Streamline (left), Fast Marching, (middle), Guided tracking (right), Stochastic tracking (embed-
ded as isosurface), the larger sphere shows the end points, and the smaller spheres show the
starting points
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performance of these four algorithms are very similar, except the Guided tracking algo-
rithm yields slightly different results from the other three methods. The fiber difference
quantification using the current distance and the Earth Mover’s Distance for both syn-
thetic and monkey brain data are shown in Figure 4. The fiber tracks generated using all
of the six tracking algorithms are compared with the ground truth or smoothed monkey
brain data. We can see that the Stochastic tracking algorithm is very stable at different
noise levels and produces the smallest difference for both measures on both data sets,
while the performance of Fast Marching Method is not stable and tends to produce quite
different results from the the ground truth or smoothed monkey brain data. These com-
parisons suggest that the Stochastic tracking algorithm is less sensitive to noise, since
the noise effects are already accounted for during fiber tracking process. Furthermore,
this suggests that the Stochastic fiber tracking algorithm may be good at finding the ma-
jor structure of the data set, even at a very low signal to noise ratio. The Earth Mover’s
Distance and current distance can effectively capture the level of uncertainty for most
of the algorithms, and the distances tend to increase when the noise level increase.

Although further detailed validation is required, the three metrics put forward in
this study show the potential for quantifying the difference between fibers. The area
difference is good at local uncertainty visualization and quantification, which we will
address in the next subsection, however it needs predefined correspondence. Both the
Earth Mover’s Distance and the current distance are global measures, but do not need
any correspondences. Therefore, the combination of these metrics can help to quantify
the uncertainty or accuracy both locally and globally.
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Fig. 3. The average distance (top) and average area (bottom) between fiber tracking results of the
noise free volume and each level of the noisy volume for synthetic data (left) and monkey brain
data (right)
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Fig. 4. The fiber difference quantification using Earth Mover’s Distance (left) and current distance
(right) on synthetic data(top) and monkey brain data (bottom)

4.2 DT-MRI Uncertainty Visualization Toolkit

The interactive uncertainty visualization toolkit we designed to visualize the differences
between different fiber tracking algorithms, noise levels, and fiber difference metrics
was created using the SCIRun problem solving environment (http://www.sci.utah.edu/
software.html). After choosing two DT-MRI volumes to be compared, a user can select
fiber tracking algorithms, tracking parameters such as the stopping criteria, the inter-
polation method and the integration method, etc. The available tracking algorithms are
the six algorithms discussed previously. We note that due to computational costs, the
Fast Marching and Stochastic algorithms cannot be currently used in interactive mode.
The interpolation methods in the toolkit are nearest neighbor, linear, B-spline, Catmull-
Rom, and Gaussian interpolation. An Euler method, as well as forth-order Runge-Kutta
integration methods are used to generate the fiber tracks. The stopping criteria includes,
the threshold for the length of the fiber, the local anisotropy value, the local curvature,
and the number of integration steps. The user can move a widget inside the DT-MRI
volume, the position of the seed points will be linearly interpolated along the widget,
and the local area difference between two preselected volumes will be interactively vi-
sualized. Furthermore, the length of the widget, the shape of the widget and the seed
points density can also be changed interactively. Then correspondence of fibers between
any two volume is defined by whether the fibers come from the same seed points. Fig-
ure 5 illustrates the global and local visualization windows. The left hand side shows
the interactive uncertainty visualization of the synthetic data, the middle column shows
the interactive uncertainty visualization of the monkey brain data and the right column
shows the zoom in view of the monkey brain data. The fiber tracks are generated us-
ing the Streamline algorithm. The global and local difference histograms are shown
through an attached UI interface, and the local difference histogram (in red) is updated
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Fig. 5. The interactive visualization of local closest distance difference (top) and local area dif-
ference (bottom) of the synthetic data (left), monkey brain data (middle) and the zoom in view of
the monkey brain data (right)

interactively. Through this interactive UI, the user can easily compare the uncertainty or
accuracy of the current fiber track with fiber tracks from different anatomical regions,
which helps quickly locate areas with high uncertainty.

In general, the end points of the fibers have a larger uncertainty due to the accu-
mulated tracking error. As shown in Figure 5, these areas are highlighted and easily
located by the average area metric rather than average closesest distance metric, espe-
cially within the monkey brain data. One can also notice that the area with high uncer-
tainty is located to the right and towards the end of the tracking for the monkey brain.
While this area is visible in the distance difference visualization, it is more clearly high-
lighted through the local area difference visualization upon closer inspection at the right
column. Taken together, a user can interactively explore, quantify, and visualize uncer-
tainties within DTI-MR data using the our uncertainty visualization toolkit. We note
that noise is only one of many potential DTMRI uncertainty sources. Imaging artifacts,
partial voluming or even different ber tracking parameters can also produce uncertain-
ties. Although we only focus on the uncertainty associated with different levels of noise,
the toolbox we developed in this study can be used as a tool to quantify and visualize
any kind of uncertainty.

5 Conclusion and Future Work

In this paper, we put forward three metrics to quantify the difference between two fiber
bundles. The quantification results on synthetic data and the monkey brain data show
that the area between corresponding fibers can effectively capture the local or global un-
certainty. The Earth Mover’s Distance, which considers the local fiber probability, also
shows good quantification of the fiber difference. The current distance metric, which
considers the local fiber probability, the local fiber directional information illustrates
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the power of quantifying the global uncertainty. Based on all of these metrics, we illus-
trated an interactive uncertainty visualization toolkit within the SCIRun environment
that includes six fiber tracking algorithms were implemented and associated tracking
parameter and noise level options. The location and the density of the seed points can
be changed interactively, and most importantly, the uncertainties can be visualized in-
teractively and quantitatively compared with the fiber tracks in different anatomical
regions. Thus our toolkit facilitates DT-MRI tracking algorithm comparison, the impact
of noise or other artifacts, and visual uncertainty localization.

Currently, we are working on the analysis of the fiber differences between subjects
from different age groups within a human brain atlas, which will quantify the vari-
abilities of the fiber tracking results for different age groups. In future, we will apply
the metrics defined in this study to fiber clustering and segmentation, which may po-
tentially improve fiber clustering and segmentation accuracy. Fiber bundle difference
quantification can be cast as a registration problem, therefore all of the other metrics
already used in image registration, such as mutual information, may be useful for fiber
bundle difference quantification. Furthermore, since the metrics we presented here are
easily extended, we plan to compare q-ball and other higher order fiber tracking algo-
rithms. We are also working with a group of neurologists to obtain anatomical axon
tracks within the monkey brain as to compare histological ground truth of the brain
connections with the tracking results of different algorithms. Finally, our interactive
quantification and visualization toolkit may potentially be used as a tool for surgical
planning aiding the further improvement of validation of Diffusion Tensor imaging.
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Abstract. Motoneurons (MNs) are neuronal cells involved in several
central nervous system (CNS) diseases. In order to develop new treat-
ments and therapies, there is a need to understand MN organization
and differentiation. Although recently developed embryo mouse models
have enabled the investigation of the MN specialization process, more
robust and reproducible methods are required to evaluate the topology
and structure of the neuron bundles. In this article, we propose a new
fully automatic approach to identify MN clusters from stained histolog-
ical slices. We developed a specific workflow including inter-slice inten-
sity normalization and slice registration for 3D volume reconstruction,
which enables the segmentation, mapping and 3D visualization of MN
bundles. Such tools will facilitate the understanding of MN organization,
differentiation and function.

1 Introduction

Motoneurons (MNs) are neuronal cells from the central nervous system (CNS)
whose axons extend outside of the CNS. Several MN diseases, such as amy-
otrophic lateral sclerosis (ALS), lead to MN cell death correlated with a progres-
sive loss of muscle contractibility. MN specification relies notably on expression of
a defined set of transcription factors. Each combination of transcription factors
ultimately leads to the formation of a MN pool (or bundle) that shares com-
mon characteristics and projects to a common target. Typical amniote limbs
are composed of more than 50 different muscles [17], however little is known
about the intrinsic identity of the corresponding MN bundles. Recent studies
with embryo mouse models, have characterized pool specific transcription fac-
tors such as Pea3 [8], Scip and Runx1 [7] providing basic knowledge of MN pool
differentiation.

Understanding the mechanisms and the precise topography of the transcrip-
tion factors underlying MN specification will provide important insights for the
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elaboration of regenerative therapies (i.e. stem cells therapy). In this field, light
microscopy is commonly used to identify MN clusters on 2D embryo mouse slices,
with manual identification of the clusters [4]. Usually, an expert identifies the
bundle location, the number of MN cells and the cluster diameter on a slice-
by-slice basis. However, this process is time consuming and lacks reproducibility
when attempting to apply a robust analysis across populations in animal studies.
Furthermore, the discontinuity of the 2D histological slices prevents the inves-
tigation of the 3D organization of MN clusters. Therefore, there is a need for
robust automatic 3D reconstruction, segmentation and clustering.

In this article, we propose a fully automatic approach to MN cluster iden-
tification that consists of: inter-slice intensity normalization, reconstruction of
corrupted slices, non-linear symmetric inter-slice registration and a 3D Mean-
Shift clustering of the MNs.

2 Materials and Methods

2.1 Data Acquisition

Runx1 lacZ/+ mice were generated and genotyped as described in [11]. For em-
bryonic staging, the day of appearance of the vaginal plug was considered as 0.5
embryological day (E0.5). All animal procedures were conducted in accordance
with the guidelines of the Council for Animal Care. E13.5 mouse embryos were
collected and fixed in 2% paraformaldehyde, 10 mM sodium periodate, and 70
mM l-lysine for 2 hours; transferred to 30% sucrose for 24 hours. After freezing,
14μm cryostat sections were prepared and subjected to immunohistochemistry
as described in [11] in order to identify specific MNs. All the resulting slices were
captured with an EXi Retiga color camera (QImaging) mounted on an Axio Im-
ager M1 microscope (Zeiss) with a 1.68x1.68μm in-plane resolution (Fig. 1).

Fig. 1. Example of stained histological embryo spinal slice (scale bar = 40μm ) with
specific MN staining (blue).
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2.2 Workflow

Identification of MN clusters requires segmentation and grouping of MN neurons
on each histological slice. While MN neurons are dark and easily segmented,
clustering is difficult because: i) intensity differences exist from slice to slice, ii)
staining and sectioning may result in lost or corruption of slices (e.g. air bubbles,
stretching...), and iii) the slices are not aligned within the stack. For each of these
limitations we propose an adapted image processing as follows:

Inter-Slice Intensity Normalization. Staining inhomogeneity, due in part to
local slice thickness variance, can produce intensity inhomogeneities between slices
that adversely affect visual analysis and automated registration methods. We used
the intensity normalization method proposed by [16] which consists in a linear
transformation of the current slice histogram to match the histogram of the ref-
erence slice, which in this case is defined as the middle slice of the spinal cord.

Inpainting. Cryotomic image acquisition lead to discrepancies such as folding,
stretching, splitting as well as air bubbles which can get stuck between the slides.
In order to recover the corrupted slices identified during the image acquisition
procedure, we applied a robust inpainting method [9]. Initially proposed in mag-
netic resonance imaging, this approach reconstructs the missing voxels by using
the two most similar patches from the previous and the subsequent slices.

3D Image Reconstruction. To correct for morphological inconsistencies be-
tween the slices due to stretching, distortion, rotation and translation during the
slice image acquisition, we propose an iterative 3D reconstruction method based
on inter-slice registration as in [10] [5] [6]. While [10] and [5] used a Single Slice
(SS) before and after to determine the deformation field, and [6] used a Multi-
Slice (MS) reconstruction approach, we proposed a Multi-Slice reconstruction
approach based on a symmetric registration non-linear registration and Gaussian-
Distance weighted interpolation of deformation field (MSDWsym). The ANI-
MAL non-linear registration algorithm [2] allows for the registration parameters
to be set for histological image dimensions [6]. ANIMAL uses a multi-scale vector
deformation estimation with a normalized cross-correlation similarity measure.
Local registration is achieved in a hierarchical manner with a Gaussian blurring
of input images with kernels of varying size to recover large deformations. To
enforce the inter-slice registration consistency and to reduce the effect of outlier
slices with erroneous anatomy, the deformation fields Ti (Eq. 1) of the slice i
is obtained with a Gaussian distance-weighted average deformation [15] to the
6 nearest slices. This proposed MSDW approach gives a stronger weight to the
nearest slices such that:

T (x)i =

3∑
n=−3

T (x)i→n exp (
n2

9
)

3∑
n=−3

exp (
n2

9
)

(1)
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where T (x)i is the deformation field in x of the image i and n the distance be-
tween the reference and the target slices. This iterative process uses the previous
iteration deformation field as an initial deformation for the following registra-
tion and the iteration number was set to 25. In order to produce less pair-wise
registration errors, to avoid registration bias and to preserve the topology of the
images [1], we force ANIMAL to be symmetric. To do so, we applied regulariza-
tion constraints on the forward and the inverse deformation fields [12] for each
registration of the MSDW:

T sym(x)i→j =
T (x)i→j .(T (x)j→i.T (x)i→j) + (T (x)j→i.(T (x)i→j .T (x)j→i))−1

2
(2)

where T (x)i→j is the deformation field in x of the image i to the image j.

Clustering and localization of the MNs. MNs are organized in bundles,
with a tubular form along the spinal cord [14]. Due to the slice-by-slice discon-
tinuity, manual outlining of the 2D slices cannot take in consideration the 3D
structure of the MNs. A 3D reconstruction step is thus required to realign the
structure within a consistent 3D volume to recover the 3D organization of the
MNs. Therefore the clustering was performed on the position of the mask-outed
MNs extracted from the 3D reconstructed volume using a colour filter. Because
the number of MN clusters is still unknown, we applied a spatial Mean-Shift clus-
tering algorithm [13] since it presents the advantage of being a non-a-priori tech-
nique. To achieve the Mean-Shift based clusterization, the 2D position X(x, y)
of the MNs was used. Moreover, to prevent the loss of continuity between the
clusters due to staining and acquisition artefacts that may have omitted MNs,
we propose to apply a multi-slice Mean-Shift algorithm. The MN position of the
3 slices before and after are projected into the 2D space of the current slice. The
cluster centroids of the current slice are obtained by using all these projected
points. This procedure is repeated for each slices of the 3D volume. Since we
expect that each cluster is separated by a distance of 30-50μm [4], we set the
bandwidth kernel to 40μm. Finally, during the label merging step, the cluster
center found in the previous slices is used as a prior to set the label of the
next one.

2.3 Experiments

Simulation: We compared 5 different 3D inter-slice reconstruction algorithms:
the SS approach [5], MS approach [6] and the proposed approaches with and
without the symmetrization (MSDWsym and MSDW). To validate the 3D re-
construction algorithms, we simulated on 100 identical histological slices stacked
together, different random translations, rotations and shearings, which were cho-
sen to mimic acquisition variations (Table 1). The quality of the reconstruction
of each method compared was measured by estimating the MN inter-slice overlap
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Mean Std Min Max
Rotation (◦) 0.3 2.8 -4.7 4.9

Translation (μm) -0.7 4.6 -8.3 8.3
Scale 1.0 0.1 0.87 1.12
Shear 0.0 1.2 -2.0 1.92

Table 1. Simulation transformation parameters and stack of the 100 identical slice
after simulation: axial (a), sagittal (b), coronal (d) and 3D rendering of the MNs(c)

with the Dice’s Kappa (DK) [3] agreement measure between the ground truth
(Fig. 2) and each reconstruction:

DK = 2.V (I ∩ A)/(I ∪ A) (3)

where I and A are respectively the initial aligned and automaticly aligned MNs
volumes (V ). DK value are comprised between 0-1 with 1 indicating perfect
agreement. The topology preservation was assessed by comparing the total MN
volume difference before and after reconstruction (|V (I − M)|/V (I)) where the
value closest to 0 the value is the better the topology is preserved.

Real data: On a mouse embryo spinal cord data set of 180 slices, we first
compared the histogram distance before and after the intensity normalization
with the symmetric Kullback-Leibler divergence coefficient (KL). Essentially,
small differences between histograms correspond to a lower divergence value. The
recent 3D inter-slice reconstruction algorithm of MS [6], our proposed MSDW
and MSDWsym methods were evaluated. For both methods, the final results of
the clustering was assessed with manual slice-by-slice outlining performed by an
expert with a DK agreement measure. The expert performed manual outlining
of the clusters on 10 slices in the native space. The automatic clustering of
the 10 identical slices after the 3D reconstuction was transformed back in the
native space. For each of the methods, the DK agreement measure was compute
between the expert and the automatic clustering into the native space.

3 Results and Discussion

3.1 Simulation

The 3D reconstructions of the simulated stack obtain by each method are pre-
sented in Fig. 2. Visual inspection of the reconstruction shows that the SS recon-
struction method resulted in the worst alignment, compared to the multi-slice
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Table 2. MN DK overlap measure and topology preservation with MN volume differ-
ence prior and after 3D reconstruction

Method DK % Volume difference

SS 0.559 1.9±2.3
MS 0.657 1.4±1.7

MSDW 0.671 1.6±2.1
MSDWsym 0.688 0.4±1.8

approaches (MS, MSDW and MSDWsym). Between the multi-slice approaches,
MS and MSDW tend to a similar registration quality which seems to misalign
the smaller MN clusters present on the top of the images. Because of the reg-
ularization, MSDWsym preserves the topology of small structures and provides
the best overall registration. Table 2 represents the DK value of the MN mask
for the 100 slices after convergence and the percentage of volume preservation.
These quantitative results show that MSDWsym reaches higher DK value com-
pared to the MS and MSDW methods. Furthermore the MN volume difference
prior to and after reconstruction is best preserved using MSDWsym.

Ground truth Simulation SS

MS MSDW MSDWsym

Fig. 2. Sagittal slice of the MN extracted simulated stack

3.2 Real Data

Fig. 3 shows the mouse embryo spinal cord before and after processing. Both
sides of the spinal cord are processed separately and the results are visualized to-
gether. The slice-to-slice intensity inhomogeneity and mis-registration is visible
in the sagittal (c, d) and the coronal (e, f) slices of Fig. 3. After processing, these
artefacts are greatly reduced. The average slice-to-slice KL = 0.714 +/- 0.946
before normalization and 0.060 +/- 0.145 afterwards, indicating good agreement
of the intensity histograms after normalization. The DK measure (Table 3) be-
tween the automatic and the expert segmentation for the different algorithms
shows a higher agreement for the MSDWsym 3D reconstruction method. On
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Fig. 3. MN clustering before (a,c,e,g) after (b,d,f,h) 3D reconstruction: axial (a, b),
sagittal (c, d), coronal (e, f) and 3D rendering of the MN clusters (g, h)
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Table 3. DK value of expert versus automatic clustering

DK
MS MSDW MSDWsym

Cluster
#1 0.622 0.650 0.710
#2 0.580 0.570 0.700
#3 0.650 0.670 0.677

the axial slices (a, b) of Fig. 3, the inpainting algorithm removed the air bub-
ble but preserved the anatomy of the slide, and most importantly preserved
the MN localization and size. Compared to clustering obtained on initial stack
(seen in g on Fig. 3), the MN bundles clustering obtained after reconstruction
with MSDWsym algorithm (seen in h on Fig. 3) show a continuity and a spacial
organization of the MNs.

4 Conclusion and Future Work

We presented a new approach to investigate MNs differentiation topology in a re-
producible and automatic manner. From multiple 2D histological slices of stained
mouse embryo spinal cord, we proposed a worklfow to correct for inter-slice in-
tensity inhomogeneity, slice reconstruction, 3D volume reconstruction and MN
clustering. We validated our 3D reconstruction method on synthetic data and
obtained a better slice-to-slice alignment with the proposed symmetric Multi-
Slice Distance-Weighted algorithm (MSDWsym). On real data, the proposed
clustering method provides good agreements with the expert manual approach.
These results indicate that our method can automatically identify the groups of
MNs thank to a sliding Mean-Shift method and a robust 3D reconstruction. Each
cluster identified on the left and right side of the spinal cord might target spe-
cific limb muscles, and we can also identify sub-clusters that might have more
specific targeting. This exploratory study will enable more extensive analyses
and validations in the future. In conclusion, the proposed method will facilitate
the investigation of different mouse embryo populations and therefore provide
important insights for future MN therapies.
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Abstract. This paper proposes a new method to compute connectiv-
ity information from diffusion weighted images. It is inspired by graph-
based approaches to connectivity definition, but formulates the estima-
tion problem in the continuum. In particular, it defines the connectivity
through the minimum cut in tensor-weighted space. It is therefore closely
related to prior work on segmentation using continuous versions of graph
cuts. A numerical solution based on a staggered grid is proposed which
allows for the computation of flux directly through diffusion tensors.
The resulting global connectivity measure is the maximum diffusive flow
supported between two regions of interest.

1 Introduction

Diffusion weighted magnetic resonance imaging (DW-MRI) can be used to mea-
sure local water diffusion in tissues in vivo. Local diffusion information is com-
monly used to infer connectivity information (for example in the brain) through
tractography. Connectivity measures have been defined using streamline tractog-
raphy, probabilistic tractography [1], optimal path approaches [2], or by geodesics
in a tensor-warped space [3]. One of the major shortcomings of classical stream-
line tractography is its sensitivity to noise, due to the random drift occurring
during the underlying integration process and due to regions with ambiguous
orientation information. Probabilistic tractography alleviates the problem of ori-
entation ambiguity by sampling large numbers of fibers, but it is still based on
streamline tractography. Optimal path approaches on the other hand approach
the tractography problem by finding the shortest path between two regions of in-
terest. This is conceptually nice, because the solution space is better constrained,
however, in practice these methods are prone to taking shortcuts, which requires
tight control through masking to obtain anatomically meaningful connections.

Zalesky et al. [4] recently defined a connectivity measure by computing the
maximum flow through a graph. They identify three desirable properties, which
do not hold for standard connectivity measures: 1) independence to length of the
connection, 2) proportionality to bundle cross-sectional area, and 3) invariance
of the measure under exchange of source and target regions.

The approach developed in this paper is inspired by [4]. However it formu-
lates the solution in the continuum (removing the need for graph construction)

H. Liao et al. (Eds.): MIAR 2010, LNCS 6326, pp. 200–210, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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and uses the full tensor information (opposed to only the direction of the ma-
jor eigenvector) for the connectivity computation. This paper is not concerned
with finding the actual path, but rather the maximally supported flow between
two regions of interest using a tensor-valued metric is computed. More gen-
eral measures could easily be incorporated into the framework. The proposed
method constitutes a continuous tensorial version of a minimum cut/maximum
flow computation and is related to recent work in image segmentation [5,6].

Major advantages of the proposed method over previous work are: (i) The
method allows for the easy integration of tensor information (which is much
harder for a standard graph-based solution) and is extensible to more general
descriptions of diffusion. (ii) The method is essentially parameter-free and di-
rectly computes a physically meaningful quantity which can be used as a surro-
gate measure for connectivity. (iii) The associated optimization problem can be
solved reliably, because it is convex and therefore the globally optimal solution
can be computed.

Sec. 2 formulates the segmentation problem. Sec. 3 discusses the numerical
solution. Synthetic and real results are presented in Sec. 4. Sec. 5 concludes with
an outlook on future work.

2 Segmentation/Maximum-Flow Problem

One of the simplest diffusion models is the diffusion tensor which relates lo-
cal diffusion properties to measured DW signals through the Stejskal-Tanner
equation

Sk = S0e
−bgT

k Dgk ,

where b is the b-value, gk are the gradient directions, S0 is the baseline image,
Sk are the diffusion weighted images, and D denotes the diffusion tensor. Dgk

can be interpreted as the diffusive flux according to Fick’s law of diffusion. A
global measure of connectivity between two regions of interest, which fulfills the
properties given by Zalesky [4] can then be defined as the maximal diffusive flow
between the two regions according to Fick’s law.

Given a source (S) and a target (T ) region, the maximal diffusive flow by an
underlying tensor field assuming an incompressible fluid without internal sources
or sinks can be obtained by solving the segmentation problem associated with
minimizing the energy

E(u) =
∫

‖D∇u‖ dx, x ∈ Ω, u ∈ {0, 1}, u(x) = 1 ∀ x ∈ S; u(x) = 0 ∀ x ∈ T ,

(1)
where u is an indicator function, labeling voxels between the cut and the source
with 1, and 0 everywhere else, and Ω ⊂ R

3 is the domain of definition (in this
setting typically given by a white matter mask), S, T ⊂ Ω. The discontinuity
set of the optimal solution

u∗ = argmin
u

E(u),
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can be considered the tensor-valued, continuous equivalent of a minimum cut in a
graph. The maximum diffusive flow is the flux integrated across this discontinuity
set or more simply the energy value at the optimum, i.e., E(u∗).

Note that an approach to tractography and connectivity information based
on the diffusive flux (Fick’s law) has been previously proposed by O’Donnell [3].
However, in this case the (implied) optimization problem is to minimize

E(u) =
1
2

∫
‖D 1

2 ∇u‖2 dx, x ∈ Ω, u ∈ R, u(x) = 1 ∀ x ∈ S; u(x) = 0 ∀ x ∈ T .

This results in a smooth concentration field which can be used to define cor-
respondences between source and target. A connectivity measures can then be
defined by integrating the flux along the correspondence trajectories between
source and target. In contrast, the minimization of Eq. 1 results directly in a
measurement of the maximal flow by integrating the flux over the discontinuity
set (the tensor-weighted total variation) with u ∈ {0, 1}. There is no need to
explicitly compute the correspondences.

The energy 1 is non-convex, because the domain of u is a non-convex set.
However, relaxing the condition on u to u ∈ [0, 1] results in a convex optimiza-
tion problem [6]. See also [5,7] for segmentation methods using isotropic metrics.
Despite this relaxation, the solutions obtained for u are essentially binary [6],
i.e., any segmentation obtained by thresholding u∗ at a value θ ∈ (0, 1) will be
globally optimal. The discontinuity set indicates the location of the minimum
cut. The energy is also directly related to anisotropic total variation regulariza-
tion [8].

The relaxed problem can be solved by the equivalent minimax problem

{u∗, p∗} = arg min
u

max
p

∫
pT D∇u dx, ‖p‖ ≤ 1 u ∈ [0, 1]. (2)

The dual energy is

Edual = −
∫

S

div(DT p) dx +
∫

◦
Ω

min(0, div(DT p)) d
◦
Ω,

where
◦
Ω denotes all voxels which are neither source nor target voxels. The dual

energy can be used to assess the quality of a current solution iterate, since it is
a tight lower bound on the energy [9].

While increased flow values may be obtained due to the inclusion of flux con-
tributions of anatomically questionable fibers, the result of the method is (in
contrast to optimal path methods) not dominated by potential shortcuts. In-
stead, the value of the maximum flow will be dominated by the influence of the
strongest connection between source and target. Note that a major advantage
of the proposed method is that it is completely parameter-free unlike standard
methods based on streamline tractography, which typically have parameters con-
trolling step-size, curvature, minimal and maximal length, integration method
used, etc.
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3 Numerical Considerations

The gradient descent/ascent scheme to solve 2 is

uτ = div(DT p) pτ = D∇u, ‖p‖ ≤ 1, u ∈ [0, 1], (3)

which is known as the Arrow-Hurwitz-Uzawa method [10]. Implementation re-
quires the computation of the divergence of the transformed dual variables p as
well as the gradient of the indicator function u. To measure flow through tensors
at the location where the tensors are defined the gradient operator should be
chosen such that it is evaluated colocated with p. This is achieved by a staggered
grid, as depicted in Fig. 11. Using trilinear interpolation (for an image volume –
assuming for presentational simplicity isotropic voxels) for the indicator variables
surrounding a dual variable

u(x + dx, y + dy, z + dz) = (1 − dx)(1 − dy)(1 − dz)u(x, y, z)
+ dx(1 − dy)(1 − dz)u(x + 1, y, z) + · · · ; dx, dy, dz ∈ [0, 1],

the gradient is simply the average of the gradients in the respective spatial
directions, i.e.,

(ux)i+ 1
2 ,j+ 1

2 ,k+ 1
2

=
1
4

∑
a,b∈{0,1}2

(ui+1,j+a,k+b − ui,j+a,k+b) ,

and similarly for the other spatial directions. The spatial derivatives for the
divergence operator need to be chosen such that it is the adjoint of the gradient
operator for u, therefore

(px)i,j,k =
1
4

∑
a,b∈{− 1

2 , 1
2}2

(
pi+ 1

2 ,j+a,k+b − pi− 1
2 ,j+a,k+b

)
,

and similarly for the other spatial directions, so that div(p) = px + py + pz. The
dual variables p are defined strictly inside the domain of the indicator variables
u (as illustrated in Fig. 1). The derivatives of p at the boundary of the domain
are computed such that values for p for indices outside the domain are set to
zero. These are the natural boundary conditions for −div(·) to be adjoint to ∇
on the staggered grid.

Using a modified gradient descent for saddlepoint problems due to Popov [11]
instead of the direct scheme 3 accelerates convergence. This is a fast primal-
dual iteration scheme, which was used successfully by Pock et al. [12] for the
minimization of the Mumford-Shah functional. The algorithm for the tensor-
valued case is given in Fig. 2.

1 When defining both the gradient and the divergence operator on the same grid,
for example by forward and backward differences respectively, the solution becomes
asymmetric. Further, the minimum cut will lie in-between voxels, instead of cutting
through their centers. The staggered grid avoids this undesirable behavior.
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Fig. 1. Illustration of the principle of the staggered grid. Flow vectors p are defined
at the location of the gray squares, indicator variables u are defined at the locations
of the circles. Consequentially, gradients are defined on the squares and divergence on
the circles. This allows for computation of flow through the tensors themselves.

Data: Seed points, tensor field D
Result: Indicator function u, flow field p, maximum-flow value μ
Transfer the seedpoints from original grid to the staggered grid ;
Initialize source and target points with u = 1 and u = 0; other points to u = 1

2
;

Initialize p = 0, ua = u, ub = u ;
repeat

Compute gradient: g = ∇ub ;
Update flow field: p = p + τDg ;
Ensure ‖p‖ ≤ 1: p = p/(max(1, ‖p‖) ;
Compute divergence: d = div(DT p) ;
Update u: ua = u + τd; ub = 2ua − u; u = ua ;
Compute relative duality gap: Δ = energy-dual energy

energy

until convergence (Δ ≤ θ) ;
μ is

∫ ‖D∇u‖ dΩ.
Algorithm 1: Primal-dual solution method.

Fig. 2. Algorithmic description of the primal-dual method of [12] as applied to the
tensor-segmentation case

4 Results

Sec. 4.1 shows the performance of the algorithm on synthetic experiments and
compares results to [4]. Sec. 4.2 applies the algorithm to a set of DT-MR images
of macaques at age 2 weeks and 6 months.

4.1 Synthetic Experiments

A simple two-dimensional synthetic example for crossing fibers, illustrated in
Fig. 3, shows the behavior of the algorithm under noise and directional ambigu-
ities (due to crossings under the diffusion tensor model). The noise-free tensors
were chosen as

T1 =
1

1000

(
3 0
0 1

)
and T2 =

1
1000

(
1 0
0 3

)
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3

f = 2
3

f = 1

Fig. 3. Noise-free crossing case for different crossing fractions. The green and the black
bars indicate the source and the target regions respectively. The red and blue colors
are the planar equivalents of color-by-orientation plots, where blue denotes flow in the
up/down-direction and red in the left/right direction. The intensity is modulated by
fractional anisotropy of the underlying tensor.

σ = 25 σ = 50 σ = 75 σ = 100

Fig. 4. Noisy crossing case, to illustrate the noise magnitudes applied
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Fig. 5. Mean energy values (left) and their standard deviation (right) for 25 repetitions
of 100 different σ/fraction pairings for the synthetic crossing dataset. Maximum flow
decreases with increases in noise level, but is highly consistent under changes in crossing
fraction.
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Fig. 6. Synthetic spiral as proposed in [4] (left). Estimation results for varying radii of
the spiral (right; 1, 2, 3, 4 mm radius, bottom to top) for increasing distances of the
target region from the source region along the spiral.

respectively. The eigenvalues of the tensors for the vertical strip were weighted by
a scaling factor f ∈ [0, 1] and tensors were combined in the overlapping region by
selecting the maximum eigenvalues of the two tensors in both directions. To add
noise, DWIs were computed with b-value b = 1000, baseline intensity S0 = 1000
from the tensors at degrees {0, 22.5, 45, 67.5, 90} (defining the two-dimensional
gradient directions) in the plane. Rician noise with varying σ was subsequently
added. Least-squares tensor estimation resulted in a noisy-tensor. Tensors are
zero outside the crossing strips.

A set of experiments was performed combining noise levels for σ ∈ [0, 100] and
crossing fractions f ∈ [0, 1]. Fig. 5 shows the mean and the standard deviation
for the computed maximum flow values for a set of 25 random repetitions of
the experiments over the complete range for f and σ. The exact value for the
noise-free experiment is 45e − 3 (obtained by integrating the diffusive flux over
a cross section), which is matched by the computed value in the noise-free case.
While the computed flow value decreases with increases in the noise level (noise
causes tensors to reorient, resulting in an overall decrease of diffusive flow as
illustrated in Fig. 4 ), its value is consistent with changes in the crossing frac-
tion. Estimation accuracy over the 25 repetitions is high, however an increase in
estimation variance is observed for increases in noise level.

To compare the results to other methods in the literature, Fig. 6 shows results
for the (recreated) synthetic Archimedian spiral by Zalesky and Fornito [4]. The
synthetic dataset consists of noisy cigar-shaped tensors, which are aligned with
the tangent of the Archimedean spiral and isotropic tensors at a given distance
away from the spiral. See [4] for details on the dataset. DWIs for thirty gradi-
ent directions were generated for an image resolution of 256x256x14. No partial
volume modeling (as in [4]) was used, instead the algorithm runs directly on the
original (not upsampled) grid, using a mask with 4 mm radius around the center
of the spiral. Fig. 6 shows maximum flow estimation results for radii of the spi-
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Fig. 7. Connectivity-normalized synthetic simulation results. Comparisons with FSL,
FSL (length bias compensated), and Zalesky’s method recreated from data of [4]. Sym-
bols indicate spiral radius as in Fig. 6. The proposed method produces the most con-
sistent estimation results.

ral of 1, 2, 3 and 4 mm respectively. Results represent computations between an
initial source point and 9 target points distributed evenly over the spiral. The re-
sult of a good method should show increased connectivity measures for increases
in radius, because this corresponds to a larger number of fibers and therefore a
stronger connection. A method should also show essentially flat connectivity pro-
files when sampled along different points of the path, indicating invariance to the
length of the path. The proposed algorithm yields highly consistent estimation
results. Fig. 7 shows the normalized connectivity profiles (with a connectivity of
1 at the source location) obtained from the results in [4] for the method proposed
in [4], for FSL [13], and for FSL with compensation for length bias in comparison
to the maximum flow method of this paper. The maximum flow method clearly
outperforms the other methods in terms of estimation consistency, obtaining a
almost perfectly flat connectivity profile along the spiral.

4.2 Experiments on Real Datasets

The proposed method was applied to scans from an ongoing study of neurode-
velopmental alterations caused by infant maltreatment in rhesus monkeys. Six
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Fig. 8. ROI for the genu (pink), splenium (orange) and the internal capsule motor
tracts (yellow) shown on the FA maps for the 2 weeks (left) and 6 months (right)
monkey data. Fiber tracts from standard streamline method were shown to highlight
the ROI, but are not used in the proposed method.

selected rhesus macaques were scanned longitudinally. Data from 2 weeks old
subjects (neonates) and 6 months old subjects was analyzed. Scans were ac-
quired on a 3T Siemens Trio scanner with 8-channel phase array trans-receiving
volume coil. High-resolution T1-weighted and T2 weighted MRI scans were ac-
quired first, followed by the DTI scans (voxel size: 1.3x1.3x1.3mm3 with zero gap,
60 directions, TR/TE=5000/86 ms, 40 slices, FOV: 83 mm, b:0, 1000 s/mm2,
12 averages). These datasets were selected as they have SNR values at low (at 2
weeks) and intermediate (6 months) level.

An expert rater, trained in streamline fiber tractography, determined source
and target regions that produced valid DTI fiber tracts for the corpus callo-
sum genus, the splenium tracts, and for the internal capsule motor tract (see
Fig. 8 for an illustration). Corresponding source and target regions were used to
compute the proposed connectivity values (see Fig. 9). Connectivity computa-
tions were restricted to an expert-generated white matter mask, obtained by FA
thresholding. From Fig. 9 several conclusions can be drawn: a) as expected the
internal capsule has higher connectivity values than the splenium and the genu,
b) splenium and genu have more similar values, but the genu is slightly higher
(again expected), c) with the exception of the splenium a connectivity increase
from 2 weeks to 6 months is visible, d) surprisingly the inter-subject variability
is higher than the longitudinal changes.

Tract 2 weeks 6 months
Name Mean Stdev Mean Stdev
Genu 0.051 0.008 0.057 0.003

Splenium 0.040 0.015 0.040 0.020
Internal Capsule 0.125 0.026 0.136 0.027

Fig. 9. Global connectivity values (mean and standard deviation) for 3 selected fiber
tract regions in rhesus macaques at age 2 weeks and 6 months
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In summary, while the tests indicated limitations of the method mainly with
respect to inter-subject variability (for the dataset used), the results also point
to the potential use of the maximal flow connectivity measure as an alternative
to existing, tractography based connectivity measures.

5 Conclusion and Future Work

This paper described a global method to compute connectivity measures from
DTI. It can be viewed as a continuous version of the approach by Zalesky [4],
but additionally makes use of a tensor’s diffusion strength. While the method
is described in terms of the tensor model, it can be generalized to more general
descriptions of diffusion. Unlike many other methods, the computed results are
not based on the explicit computation of streamlines. However, a flow-field is
constructed internally (given by the dual variable). Since this flow field is not
unique it is not a replacement for streamline tractography at this stage. However,
the computed maximum flow value is globally optimal (identical for all optimal
flow fields), can be reliably obtained due to the underlying convex optimization
problem of the method, and can be used as a surrogate measure for connectivity.
An interesting future research direction is to construct admissible flow fields
which adhere as much as possible to the underlying tensor-field, while preserving
the flow magnitude and direction at the location of the minimum cut. This would
allow for the reconstruction of flow fields (and fibers) through ambiguous regions.
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Abstract. High angular resolution diffusion imaging (HARDI) has become an 
important tool for resolving neural architecture in regions with complex patterns 
of fiber crossing. A popular method for estimating the diffusion orientation 
distribution function (ODF) employs a least square (LS) approach by modeling 
the raw HARDI data on a spherical harmonic basis. We propose herein a novel 
approach for reconstruction of ODF fields from raw HARDI data that combines 
into one step the smoothing of raw HARDI data and the estimation of ODF field 
using correlated information in a local neighborhood. Based on the most popular 
method of least square for estimating ODF, we incorporated into it local weights 
that are determined by a special weighting function, making it a locally weighted 
linear least square method (LWLLS). The method thus can efficiently perform 
the smoothing of HARDI data and estimating the ODF field simultaneously. We 
evaluated the effectiveness of this method using both simulated and real-world 
HARDI data. 

1   Introduction 

Diffusion Magnetic Resonance (MR) Imaging is a recent MR modality that has made 
possible to characterize in vivo the white matter architecture in the brain [1].  
Diffusion Tensor (DT) is the most prevailing model in use for characterizing the 
displacement probability of water molecules. This model bases on the covariance 
matrix of a hypothesis of water diffusion of a zero-mean Gaussian distribution 
function, which is a second-order positive symmetric tensor, and supposes that the 
water molecules diffuse preferentially along the principal direction of the tensor. 
However, Gaussian probability distribution function is a unidirectional model, and thus 
is unable to characterize diffusion along more than one direction (e.g., in regions of 
fiber crossing), which is a common case in brains. 

Recent advances have attempted to generalize the DT model [1] to a higher 
resolution acquisition technique, i.e., high angular resolution diffusion imaging 
(HARDI) [2], to address this issue. By sampling the q-space on shells with fixed radii 
                                                           
* Corresponding author. 
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and recovering the angular structure of diffusion in lieu of the 3D spin displacement 
probability function, HARDI attempts to characterize the highly complex fiber 
structure of fiber crossing in the brain. 

Several approaches for reconstructing fiber orientations from HARDI data have 
been proposed, such as the q-ball imaging (QBI) technique [3], the Persistent Angular 
Structure (PAS) technique [4], the fiber orientation distribution (FOD) [5,6], diffusion 
orientation transform (DOT) [7] and Orientation Probability Density Function (OPDF) 
[8], for improved estimation of the true probability distribution of spatial displacement 
of water molecules, and subsequently a better inference of underlying fiber 
orientations. Among these techniques, QBI uses the Funk-Radon transform to estimate 
ODFs [4][8-13]. ODFs have also been approximated with different basis functions such 
as spherical harmonics [8-12], the Poussin kernel [13] and Spherical Ridgelets [14]. In 
general, methods based on spherical harmonic expansion [8-12] are preferred for its 
mathematically simplicity. Spherical Fourier analysis [9,11] is a recently developed 
technique of spherical harmony family for further improving the visibility of ODF 
maxima when the QBI model is used. In these works, spherical coefficients 
approximate HARDI data in the least-square sense by truncated series of spherical 
harmonics (SH), and the corresponding ODFs can then be conveniently recovered 
using the Funk-Hecke formula [9,11]. However, heavy noise in HARDI may 
sometimes cause negative values in the estimated ODF, a situation that is physically 
nonsense. A more recent method [6] was therefore developed to eliminate such 
negative values by minimizing a nonnegative least-squares cost function.  

All these approaches work directly on HARDI data with an implicitly hypothesis 
that the HARDI data are good enough for ODF estimation. This unfortunately is not 
exactly correct. Therefore, a treatment for non-negativity or smoothing is desired for 
the HARDI data before ODF estimation [15,16]. There have been separated works on 
this issue [21,22], making the ODF estimation a two-step work: data regularization and 
then ODF estimation. By incorporating a regularization term and nonnegativity 
constraints into a cost function, some work has tried to unify the two steps into one [16]. 

We present a novel one-step approach to ODF estimation, local weighted linear least 
square (LWLLS) [17,18] based on least square (LS) methods [9,11]. This ODF 
estimation unifies into it a systematical and unanimous smoothing mechanism that 
employs the correlated information of the HARDI data in its neighborhood. This 
smoothing term takes into account the HARDI data along all the gradient directions 
together, it thus can smooth the data and estimate the ODF simultaneously in one 
unified step. This method is not only more efficient but also more accurate in theory 
because it treats the HARDI data systematically and unanimously. Compared with the 
ones in literature [15,16], our method does not require initial values that are usually 
tricky to set and ours is computationally efficient without using repetitions for iterative 
optimization. We evaluated the effectiveness of this proposed method using both 
simulated and real-world HARDI data. 

2   Methods 

2.1   Least Square Method with Spherical Harmonics 

Because the HARDI data are real and symmetric in 3D space, a series of modified SH 
basis is defined as follows for expansion of the HARDI data [9]. 
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SH coefficients that parameterize the signal S. B is the N×R SH basis matrix whose n-th 
row is given as Bn = [Y1(θn,φn). . . YR(θn,φn)]. By Laplace–Beltrami matrix operator, a 
regularization term is added [9]: 
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Where L is the R × R diagonal Laplace-Beltrami eigenvalues matrix with Ljj = 
−lj(lj+1), and lj is the order of the j-th term. After getting the SH coefficients C, the 
ODF ψ(θ,φ) can be reconstructed by, ψ(θ,φ) = PCB, in which P is the R×R diagonal 
Funk-Radon transform matrix, and Pjj =2πPlj (0) and Plj (0) are the Legendre 
polynomial of degree lj at 0. 

2.2   Locally Weighted Least Square Method with Spherical Harmonics 

Taking into account the local dependency of HARDI data in least squares method, 
LWLLS has a good smoothing effect in regression process [17,18]. We extend Eq. (1) 
to a locally-weighted least square method (to simplify the expression, we take 2D case 
with a 3x3 neighborhood as an example in the following text): 

2, , ,

2
1

min
N

i h j h i h j h i h j h
k k k

C
k

w S B C− − − − − −

=

−∑      h=-1,0,1           (3) 

Where i and j are the shoulder marks denoting the current voxel under processing, and h 
for navigating all the voxels in the neighborhood. Our method will conduct regression 
in the neighborhood based on individually different weights for different voxels while 
weights for the same voxel along all diffusion directions always remain the same 
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By seeking the minima of Eq. (3) on C, we calculate C as follows 
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Actually, Eq. (4) is a weighted linear least square defined within a given neighborhood. 
Suppose the neighborhood window contains M voxels, S now becomes a vector of MN 
× 1 whose elements are ,i h j h

iS − − , and B becomes a MN × R matrix whose rows are 

Bn
i-h,j-h = BN+n

i-h,j-h =…= BMN+n
i-h,j-=[Y1(θn,φn). . . YR(θn,φn)], C is still a R × 1 vector, 

and 
1−∑  is a diagonal MN × MN matrix whose elements are the weighing factors 

,i h j hw − − . 
By differentiating Eq. (3) on SH coefficients C, we may find that Eq. (3) is basically 

a self-adaptive, local linear filter, known as the Nadaraya–Watson estimator (NWE) 
[17,18]. In particular, this estimator has the following form: 
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Both Eqs. (4) and (6) are obtained by differentiating Eq. (3) on SH coefficients C, but 
are expressed in different forms. Comparing with Eq. (6), we can see that using Eq. (4) 
for estimating the ODF basically is equal to combining into one the two tasks of 
smoothing the HARDI data Si,j (central voxel in the neighborhood) and then estimating 
the ODF using LS method. The novelty of LWLLS lies in that we use one simple linear 
regression procedure to perform smoothing the HARDI data and estimating ODF 
simultaneously.  

2.3   The Weighting Function 

The most commonly adapted weighting function that reflects the correlation in a 
neighborhood in image processing is Gaussian Kernel, which weighs based on normal 
distribution. The weights are usually calculated using one single measure or value, for 
example, distance. For better representing correlated information in neighborhood, we 
consider using a nonlinear bilateral filter, originally developed by Tomasi and 
Manduchi [19]. Such a filter is capable of simultaneously considering the Euclidean 
distance of both imaging intensity (HARDI data) and the spatial relationship of two 
voxels. The bilateral filer that we employ as a weighting function in Eqs. (3)-(6) is 
defined as: 
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Where d2(Vi,Vj) is the Euclidean distance between the physical locations of voxel Vi and 
voxel Vj. d

2(Xi，Xj) is the Euclidean distance between log(Xi) and log(Xj); and Xi and Xj 

are N × 1 vectors of HARDI data, where N is number of the gradient directions. σd is the 
geometric spread in the domain and σr is the photometric spread in the image range.  

3   Experimental Results and Validation 

We performed two sets of experiments to examine the effectiveness of our proposed 
model for optimized tensor estimation. We compared the performance of our method 
LWLLS of Eq. (4) with the LS method of Eq. (2) . In our experiments, 1) we simply set 
σd equal to noise derivation σn and σr equal to 10*σn; 2) we set regularization weight 
λ=0.006 in Eq. (2). 

In the first experiment, we used a synthesized ODF field [9,16] as shown in Fig. 1(a). 
The voxels in the 1st and 3rd quadrants contained 1 fiber, the 2nd quadrant 2 crossing 
fibers and the 4th quadrant 3 crossing fibers (with 1 fiber pointing out of the plane). 
Each ODF was generated using the multi-tensor method [9] with 81 gradient directions 
on the hemisphere (the second-order tessellation of the icosahedron). Noisy HARDI 
signal was generated by adding complex Gaussian noise with zero mean and standard 
deviation σ = S0/SNR [9], where S0 is the baseline signal (S0=100) and SNR is the 
signal-to-noise ratio of S0. We computed the mean square error (MSE) 

2
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=
= −∑  between the estimated ODF field and true ODF field, 

with Z being the total number of ODFs in the field, 
t

ψ  the true ODF field, and eψ  

the estimated ODF field. We first examined whether our proposed method offered any 
advantage over the conventional LS method at various levels of noise on a 6-th order 
SH basis. We then compared the LS and LWLLS methods using different SH orders 
with at a representative noise level of SNR=10 again by calculating the MSE. These 
experiments each based on 100 trials showed that the LWLLS method not only 
combined successfully the two tasks into one unified step, but also efficiently 
outperforms the conventional LS method consistently at various noise levels with an 
improvement of about 3% (Table 1), and at various SH orders with improvements 
from about 3% to 9% (Table 2). Moreover, the ODF of our LWLLS method  
is superior to that of the LS method in that our ODF characterizes the spatial 
orientation much more distinctively and explicitly than does the ODF of LS method 
(Fig. 1(e)&(f)). 

In the second experiment, we applied our proposed method to a HARDI dataset 
acquired from a pig brain [20] (Fig. 2). HARDI data were obtained using the following 
imaging parameters: the diffusion-weighting gradient strength G = 61 mT/ m; pulse 
onset separation DELTA = 30ms; pulse width delta = 23ms; echo time (TE) = 60ms; 
b-value = 3146 s mm-2; number of excitation (NEX)=2. The protocol also included 
three acquisitions with no diffusion weighting and 61 volumes with evenly distributed 
gradient directions. The image volume contained 10 slices with an in-plane resolution 
of 128x128, and a voxel size of 0.5x0.5x0.5 mm3. 
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Table 1. MSE of varying noise levels             Table 2. MSE of varying SH orders 

Order LS LWLLS Improvement 

4 15.7044 14.3010 8.94% 

6 15.9202 14.8092 6.98% 

8 15.9501 15.2011 4.70% 

10 15.9580 15.5979 2.26% 

   
(a)                              (b)                            (c) 

                               
     (d)                                (e)                               (f) 

Fig. 1. The synthetic data for our first experiment. (a) The true ODF field; (b)The ODF field 
estimated using LS; (c) The ODF field estimated using LWLLS; (d) The profile of one single 
ODF corresponding to (a); (e) An amplified view of the content in the red box in (b); (f) An 
amplified view corresponding to the red box in (c). 

Obviously, our one step framework of LWLLS works very well in terms of both 
smoothing and optimization of the ODF (Fig. 2). Comparable to the work in [9] and 
[11], the ODF profile estimated by the LWLLS is notably much sharper in denoting 
the underlying fiber orientations than is the ODF profile estimated by the LS, which is 
a desired feature of ODF for facilitating accurate fiber tracking in areas of fiber 
crossing. 

SNR LS LWLLS Imprmnt 

5 10.8922 10.5679 2.98% 

15 10.9487 10.6414 2.81% 

25 10.8258 10.5282 2.75% 

35 10.9328 10.6185 2.87% 
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(a)                         (b)                                     (c) 

   
                                          (d)                              (e) 

Fig. 2. Experiment results of using imaging data from a real pig brain. (a) The color fractional 
anisotropy (CFA) image of an axial view of the brain (Red for vertical, green for horizontal and 
blue for perpendicular to the view); (b) The ODF field estimated using LS corresponding to the 
selected area (a); (c) Amplified view of the yellow box in (b); (d) ODF field estimated using 
LWLLS corresponding to the selected area in (a); (e) Amplified view of the yellow box in (d). 
All the ODFs in (b)-(e) are superimposed on their corresponding FA image. 

4   Conclusion 

We have presented a novel ODF estimation method that can estimate ODF field and 
smooth ODF field in one step through incorporating spatial information into least 
square method. Experiment results using both synthetic and real imaging data 
demonstrated the success and effectiveness of our proposed framework. 
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Abstract. This paper presents an automatic fractional anisotropy (FA) 
asymmetry analysis and applies it to determine the FA asymmetry (FAA) 
changes associated with the sides of seizure origin of patients with temporal 
lobe epilepsy (TLE) using diffusion tensor imaging (DTI). All the control and 
patient images are first normalized onto the JHU-DTI-MNI atlas using a 
simultaneous deformable DTI registration algorithm, and the FA images are 
warped accordingly. Then, the tract-based spatial statistics (TBSS) algorithm is 
employed to quantify the FA on white matter (WM) skeletons, which are 
divided into different sections by overlapping with the 102 WM regions defined 
by the atlas. The FAA values, i.e., the relative differences of each WM skeleton 
section pair, are calculated. Statistical analysis is then performed to identify the 
regions that significantly contributed to the group differences between control 
and left/right TLE, as well as between left and right TLE. The results indicate 
that FAA correlates with the side of seizure origin, and those of certain regions 
are significantly different between normal controls and left or right TLE. The 
quantitative results can be useful for pre-surgical evaluation of TLE patients 
and for better understanding of the relationship between fiber tracts with the site 
of origin of TLE, EEG tests, the syndromes and neural psychological responses. 

Keywords: Diffusion tensor imaging, temporal lobe epilepsy, tract-based 
spatial statistics, fractional anisotropy asymmetry. 

1   Introduction 

Diffusion tensor imaging (DTI) has been widely used in clinics and research for 
assessment of white matter in the development, pathology and degeneration of 
neurological diseases, surgical planning of neural surgeries, and connectivity of 
neural networks. Tractography provides visualization of white matter (WM) fibers in 
vivo and is an intuitive and meaningful approach to study the connectivity of white 
matter fibers. By extracting the WM bundles, we can perform quantitative analysis by 
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associating them with measures of the fiber bundles, such as fractional anisotropy 
(FA) and apparent diffusion coefficient (ADC) along each bundle. All these results 
illustrated that the automatic and robust calculation of these fiber bundles plays an 
important role in order to perform accurate quantitative analysis. 

Fibers can be automatically classified into different bundles in quantitative tract-
based analysis. In [1], the protocols to manually reconstruct eleven major WM tracts 
based on region of interest (ROI) are described; however due to intra- and inter-rater 
variability, partial volume effects, fiber crossing and fiber branching, such ROI-based 
method is not robust enough to ensure all the fibers of interest are extracted. Much 
work has been done for an automatic neural bundle classification, such as spectral 
clustering [2], normalized cut [3], expectation-maximization (EM) [4], and K-means 
[5]. These methods focused on the automatic grouping of a large number of fiber 
tracts into different classes, and these methods have employed different fiber 
similarity measures and different classification strategies. For the individual subject, 
they provide nice color-coded visualization, but for fiber bundles across subjects, 
image registration is a necessary step to automatically label each bundle according to 
the anatomical structures of an atlas [6]. Because of anatomical variability among 
individuals and registration errors, the automatic bundle labeling tools cannot 
guarantee accurate extraction of all the fibers belonging to the same bundle. 
Therefore, fiber classification errors, registration errors and inter-subject variability 
are important challenges for quantitative analysis. 

The tract-based spatial statistics (TBSS) is proposed in [7], which uses nonlinear 
image transformation and combines the strength of both voxel-wise and tractography-
based analysis. In this algorithm, first, a non-linear deformable registration is used to 
align the subject images with a template image as accurate as possible. Then an 
alignment-robust tract representation called the FA skeleton is extracted, and the FA 
values of each subject are projected onto the skeleton. The advantage of TBSS is that 
compared to the registration of the entire brain image, the correspondence of the FA 
skeleton across different subject is much better, hence the FA analysis based on the 
skeleton improves the sensitivity, objectivity and interpretability of multi-subject 
diffusion imaging studies. In [8], TBSS is applied to investigate diffusion measures 
between alcohol-dependent individuals (ALC) and non- or light-drinking controls 
(LD), and the results showed more robust statistical results.  

This paper presents an automatic FA asymmetry (FAA) algorithm. First, we apply 
the simultaneous diffusion image registration algorithm to align all the subject images 
with the template image. Experimental results showed that this algorithm generated 
relatively accurate results as compared with the free-form deformable registration [9]. 
Then, TBSS is employed to quantify the FA on the WM skeletons. Because the 
template has been manually segmented into 102 WM regions, we divided the FA 
skeleton into different sections according to the atlas. Thus, the FAA on each WM 
skeleton section can be calculated between the left-right skeleton section pairs. 
Statistical tests can then be performed for quantitative analysis. 

In experiments, we applied the FAA algorithm to identify the regions contributing 
significant differences between control and left Temporal Lobe Epilepsy (TLE), 
control and right TLE, as well as left and right TLE. Statistical results of 14 normal 
controls, 9 left TLE and 9 right TLE patients demonstrated that FA asymmetry 
correlates with the side of seizure origin, and the FA asymmetry of certain regions is 
found to be significantly different between normal controls and left or right TLE.  
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2   Method 

2.1   Overview 

The framework of the FAA method is illustrated in Fig. 1. First, all of the input DTI 
data from TLE patients and normal controls are registered with the template image 
using the local Fast Marching (FM)-based simultaneous deformable registration [9]. 
102 WM regions have been previously defined on the template image (the JHU-DTI-
MNI atlas). Then, after warping all the FA maps into the template space, TBSS is 
employed to quantify the FA values on the WM skeletons overlaid on the 102 WM 
regions. The FA asymmetry on the WM skeleton section of each WM label between 
the corresponding left-right WM region pair is calculated. Finally, statistical analysis 
is performed to identify the regions contributing significant differences between 
control and left TLE or right TLE, respectively. In the following two sections, we 
briefly introduce the simultaneous diffusion image registration algorithm and FAA 
analysis. 

 

Fig. 1. The framework of the FAA method 

2.2   Local FM-Based DTI Registration 

Spatially aligned DTI is a key step to quantitatively compare images obtained from 
different subjects or the same subject at different timepoints. (An important feature 
for DTI registration is that tensor orientation should be considered?). Existing 
methods, such as the piece-wise affine transformation [10] and the diffeomorphic 
non-linear registration algorithms [11], use analytical gradients of the registration 
objective functions by simultaneously considering the reorientation and deformation 
of tensors during the registration. However, similar to image-intensity based 
registration, only voxel-wise tensor-similarity is utilized, and such a feature is 
relatively limited to local image information. In order to register DTI more accurately, 
this paper utilizes the local FM-based DTI registration algorithm proposed in [9]. That 
algorithm not only considers the orientation of tensors during registration but also 
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marching [9]. Although the tensors within a neighborhood of a voxel are high 
dimensional systems, a simple fast marching starting from that voxel can extract the 
tensor patterns around it. Thus, the main idea is to not only use the neighborhood 
tensor information but also use local fast marching time maps as tensor features for 
simultaneous DTI registration.  

Experiments on both simulated and real DTI images are performed to validate the 
accuracy of the registration algorithm, respectively. The first row of Fig. 2 shows 
some subject images, and the second row gives the template and the registered 
images. Quantitative measures of the registration errors show that for simulated 
images, the average difference between the registration results and the ground truth is 
about 3.3mm, for images with voxelsize 2mm×2mm×2.7mm. 

2.3   The Fractional Anisotropy Asymmetry Method 

Because of the alignment inaccuracy and anatomical variability among subjects, 
quantitative comparison of FA values within each fiber bundle or ROI can result in 
inaccurate results. The TBSS method attempts to bring together the strengths of 
voxel-based and bundle-based methods and yields relatively stable quantitative 
measures. The key idea of TBSS is to extract the FA skeleton after image registration, 
so that the FA values determined along the FA skeletons of different subjects are 
more stable [7]. This is because the FA skeleton extracts lines in the centers of fiber 
bundles and they are generally consistent across subject. Therefore, the FA values 
found along the perpendicular directions of the skeleton could be stable values to 
capture the fiber information. In this paper, after performing image registration as 
described in Section 2.2, the modified TBSS method is applied to extract the FA 
values of each subject as shown in Fig. 3: 

 

Fig. 3. Examples of FAA results. (a)-(c) Three samples of the FA images; (d) the average FA 
image; (e) the WM skeleton extracted from (d); (f) the tissue labels on the template image 
space. The skeleton is then divided into different sections according to the atlas. 
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1) Calculate the mean FA map from all of the warped FA images, and apply a 
thinning procedure to produce a skeletonized mean FA image. The skeleton is also 
thresholded so that it does not cover the regions with low mean FA or high inter-
subject FA variability. This part is the same as the TBSS algorithm [7].  

2) The skeleton is overlaid with the atlas and is divided into different sections 
according to the anatomical regions. By searching perpendicularly within a range 
of each skeleton point, the maximal FA values are projected onto the skeleton so 
each skeleton voxel is now assigned an FA value. 

3) Finally, the FA feature of each region is defined as the average of the FA values of 
the corresponding skeleton section. 

It can be seen that the anatomical structures are combined with TBSS for detailed 
quantitative analysis. Then we perform statistical analysis on the FA values along the 
WM skeleton of each region of interest. For each subject, the average FA values 
along the WM skeleton of 102 regions are calculated as:  fa , , ∑ fa , , (3)

where ,r sfa is the FA value of region (label)  of subject  belong to the same group, 

and ,  is the number of voxels for the skeleton of region . Fig. 4 shows some 
examples of the mean FA skeletons on the subject image space. It can be seen that 
compared to the entire image, the skeletons overlap with each subject better. 

Because the labels of the brain are symmetric, suppose region  and region 
 are the corresponding region pairs, FAA value can be calculated as:  

, , , ,, . (4)

The FAA values reflect the asymmetry of each anatomical region. In this work, we 
performed statistical tests on the FAA values among normal controls, left TLE, and 
right TLE. The goal is to quantitatively analyze FA changes associated with the side 
of seizure origin of patients with TLE. 

 

Fig. 4. Examples of the mean FA skeletons in the subject images 
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3   Results 

We applied the FAA method on DTI of patients with partial TLE. TLE was defined in 
1985 by the International League Against Epilepsy (ILAE) as a condition 
characterized by recurrent unprovoked seizures originating from the medial or lateral 
temporal lobe. Approximately half of patients with epilepsy have partial epilepsy, and 
partial epilepsy is often of temporal lobe origin. The seizures associated with TLE 
consist of simple or complex partial seizures. For many patients with complex partial 
seizures of temporal lobe origin, anterior temporal lobectomy can provide the 
possibility of seizure-free or nearly seizure-free treatment and reduce dependency on 
antiepileptic drugs. Accurately analyzing the morphological and white matter tracts in 
the temporal lobe provide quantitative measures about the status of the disease as well 
as the outcome of the drug treatment, and also help us to better understand the 
relationship between seizures and the abnormality of the brain to give a better 
accuracy of suitable cases for anterior temporal lobectomy. 

While EEG is the gold standard for identifying the location of seizure foci during 
the surgical work-up of patients with intractable TLE, other methods are routinely used 
to improve diagnostic certainty. DTI can be used to detect the integrity of neural fibers 
and may be useful when conventional neuroimaging is unable to assist in the 
corroborating of the side of seizure focus. In experiments, we relate WM tract integrity 
in TLE with side of seizure focus using the FAA method. 18 patients diagnosed with 
partial epilepsy (9 left and 9 right were confirmed with EEG) and 12 normal controls 
were used in this study. For each set of data, we first registered them with the template 
image and then deformed the FA map of each subject onto the template space using the 
resultant deformation field. The average FA map was calculated and the FA skeleton 
was generated thereafter. Finally, the FA asymmetry of each region is calculated using 
Eq.(4). Statistical analysis was then performed among the three groups. Table 1 
illustrates all the regions/tracts contribute significant to the group differences. 

Table 1. Statistical testing results 

Group comparison Significant regions contributing group difference (p-value<0.008) 

Control v.s. Left TLE 
superior, middle, and inferior temporal WM, uncinate fasciculus, superior 
fronto-occipital fasciculus, middle fronto-orbital WM and lateral fronto-

orbital WM. 

Control v.s. Right TLE 
superior temporal WM, uncinate fasciculus, lateral fronto-orbital WM, 

fusiform WM. 
Left v.s. Right TLE inferior-frontal WM, superior, middle, and inferior temporal WM. 

 
Overall, we can see that temporal lobe WM contributes the most, and seizures of the 

temporal lobe origin can have dramatic effects on an individual's personality. This is 
because temporal lobes are highly associated with language skills. Left temporal 
abnormality disturbs the recognition of words, while that of right temporal damage can 
cause an inhibition of talking. This is in agreement with the symptoms like 
perseverative speech, paranoia, and aggressive rages of TLE [14]. Another important 
structure is the uncinate fasciculus (UF). Although its function is still unknown, it is 
believed that the right UF might be associated with autonoetic self awareness, while 
the left UF may be linked to memory [15]. The third group of WM that can distinguish 
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TLE is bundle linking frontal lobes. Notice that there are relatively less regions to 
distinguish right TLE from controls. Overall, there are significant FA asymmetries of 
the fiber tracts on the temporal lobes as well as associated fibers found using our 
method, which are in agreement with the symptoms of TLE. With the control and TLE 
patients’ data, this paper determines the regions that contribute significantly to the 
group differences. We have shown that by using the FAA method, the left and right 
TLE can be differentiated from controls. With more patient and control data being 
collected from our hospital, a robust classifier can be designed based on these fiber 
tracts for automatic classification of TLEs with different site of origin.  

 

  

Fig. 5. Average FA values of WM skeleton section pairs in patients with left and right TLE. 
Blue bars show the values on the left, and red bar show the values on the right ROIs. The 
percentage shows the difference between them (i.e., (left-right)/right). The ROIs list herein 
includes IFWM, inferior-frontal WM; STWM, superior temporal WM; ITWM, inferior 
temporal WM; and MTWM, middle temporal WM. 

The FA values of the temporal lobe regions contributing significantly to the group 
difference between left vs. right TLE are shown in Fig. 5. It can be seen that the FA 
values of the WM tracks are lower on the side of seizures origin. 

In future works, we will correlate the quantitative DTI findings with neuro 
psychological, EEG, and functional MRI data for increased diagnostic accuracy of 
seizure lateralization during the pre-surgical evaluation of individuals with TLE.  

4   Conclusion 

This paper presents an automatic FA asymmetry analysis and applies it to determine 
the FAA changes associated with the sides of seizure origin of patients with TLE 
using DTI. First, a simultaneous DTI registration algorithm is utilized to differentiate 
the control and patient images into the JHU-DTI-MNI atlas, and the FA images are 
warped accordingly. Then, the TBSS algorithm is employed to quantify the FA on the 
WM skeletons. Using the atlas, the skeleton is divided into different sections 
accordingly. The FAA values, i.e., the relative differences of each WM skeleton 
section pair, are calculated for statistical analysis. In experiments, we have utilized the 
FAA to identify regions that will significantly contribute to the group differences 
between the control and the left/right TLE, as well as between left and right TLE 
groups. We have concluded based on the results indicated that FAA correlates with 
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the location of seizure origin, and those of certain regions are significantly different 
between normal controls and left or right TLE. The quantitative results can be useful 
for pre-surgical evaluation of TLE patients and for better understanding the 
relationship between fiber tracts with the site of origin of TLE, EEG tests, the 
syndromes and neural psychological responses. 
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Abstract. In contrast to the more common Diffusion Tensor Imaging
(DTI), High Angular Resolution Diffusion Imaging (HARDI) allows su-
perior delineation of angular microstructures of brain white matter, and
makes possible multiple-fiber modeling of each voxel for better charac-
terization of brain connectivity. However, in the context of image regis-
tration, the question of how much information is needed for satisfactory
alignment remains unanswered. Low order representation of the diffu-
sivity information is generally more robust than the higher order repre-
sentation, but the latter gives more information for correct fiber tract
alignment. However, higher order representation, when näıvely utilized,
might not necessarily be conducive to improving registration accuracy
since similar structures with significant orientation differences prior to
proper alignment might be mistakenly taken as non-matching structures.
We propose in this paper a hierarchical spherical harmonics based reg-
istration algorithm which utilizes the wealth of information provided
by HARDI in a more principled means. The image volumes are first
registered using robust, relatively direction invariant features derived
from the diffusion-attenuation profile, and their alignment is then re-
fined using spherical harmonic (SH) representation of gradually increas-
ing order. This progression of SH representation from non-directional,
single-directional to multi-directional representation provides a system-
atic means of extracting directional information from the HARDI data.
Experimental results show a significant increase in registration accuracy
over a state-of-the-art DTI registration algorithm.

1 Introduction

The shortcoming of Diffusion Tensor Imaging (DTI) in resolving intra-voxel mul-
tiple fiber crossings has prompted great interest in developing more sophisticated
models. Notably, Tuch et al. [1,2] introduced the High Angular Resolution Dif-
fusion Imaging (HARDI) method, suggesting that the apparent diffusion coeffi-
cients could be evaluated along many different directions without fitting a global
function to the data. The outcome is a diffusivity profile consisting of an angular
distribution of apparent diffusivities, which allows a more complex representa-
tion of each voxel, and makes capturing multi-fiber information possible. This,
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(a) (b) (c)

Fig. 1. (a) Zeroth order, (b) second order, and (c) fourth order SHs for representing
isotropic, single-fiber and dual-fiber diffusivity profiles

however, presents new problems in the context of image registration. In par-
ticular, the question of how much information is actually needed for achieving
satisfactory registration is still unanswered.

In view of the exciting insights into the brain HARDI can offer, there has been
a recent flourish of HARDI registration algorithms. Fourth order tensors [3],
along with a distance called the Hellinger distance, were employed by Barm-
poutis et al. [4] for registration of human hippocampi. Geng et al. [5] proposed a
method which utilizes a spherical harmonic (SH) representation of the orienta-
tion distribution function (ODFs). Reorientation was performed directly on the
SH coefficients, in a manner similar to the Finite Strain (FS) tensor reorientation
technique proposed by Alexander et al. [6], by extracting rotation matrices from
local Jacobians. Cheng et al. [7] took a multi-compartmental approach which
was based on Gaussian mixtures. Reorientation was performed on the individ-
ual Gaussian components, each representing a major fiber direction, using an
extension of the Preservation of Principal Directions (PPD) method [7]. Hong et
al. performed registration on the b = 0 images and applied the estimated defor-
mation field on the diffusion-weighted images with retransformation — taking
into account rotation, scaling, and shearing effects of the spatial transformation
— of the fiber orientation distribution. Bloy and Verma [8] computed the SH
band energies as features for use with a Demons-based multi-channel registration
algorithm for alignment of HARDI data.

For effective utilization of the wealth of information afforded by HARDI, we
propose in this paper a hierarchical SHs based HARDI registration algorithm.
SHs [9] of different orders have been shown to be capable of representing differ-
ent diffusivity patterns [10]. Specifically, zeroth, second and fourth order SHs (see
Fig. 1) have basis functions with shapes which are sphere-like, cigar-like and cross-
like — ideal for representing voxels with isotropic, single-fiber, and dual-fiber dif-
fusivity profiles, respectively. This property presents a natural way of hierarchi-
cally extracting information from the diffusivity profile. The key of our approach
involves representing the diffusion-attenuation profile with increasing complexity
to help progressively refine the registration. This effectively allows lower order,
relatively orientation invariant, but more robust representations to guide the ini-
tial registration and higher order, directional, more precise representations to re-
fine the alignment. This approach puts high and low order information in their
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proper contexts and helps avoid mismatching of diffusion directions arising from
large structural orientation differences. Registration is achieved by employing a
forward-backward-consistent soft-correspondence matching scheme.

2 Diffusion-Attenuation Descriptors

2.1 Spherical Harmonic Representation

SHs, denoted as Y m
l , with l denoting the order and m the phase factor, are a

basis for complex functions on the unit sphere. Explicitly, they are given as:

Y m
l (θ, φ) =

√
2l + 1

4π

(l − m)!
(l + m)!

Pm
l (cos(θ))eimφ (1)

where (θ, φ) obeys the physics convention (θ ∈ [0, π]), φ ∈ [0, 2π]) and Pm
l is an

associated Legendre polynomial. Since diffusion signals are real and antipodal
symmetric, it is sufficient to utilize a real basis function set of even orders, i.e.,
for l = 0, 2, 4, . . . , L and m = −L, . . . , 0, . . . , L:

Y m
l =

⎧⎪⎨
⎪⎩

√
2 · Re (Y m

l ) , −L ≤ m < 0
Y 0

l , m = 0√
2 · Im (Y m

l ) , 0 < m ≤ L

(2)

where Re (Y m
l ) and Im (Y m

l ) represent the real and imaginary parts of Y m
l ,

respectively.
We denote S(g) as the diffusion-attenuation signals at a finite set of points on

a sphere, where g is the diffusion encoding direction in a pulsed-gradient spin-
echo experiment. As a spherical function, it can be approximated as a linear
combination of a set of SH basis functions:

S(g) =
L∑

l=0

l∑
m=−l

ym
l Y m

l (g). (3)

Order L determines the complexity of the representation. A higher value for L
will bring the representation closer to the original signal and will hence extract
more directional information [10]. The SH coefficients ym

l are determined using
a Laplace-Beltrami regularized least-squares estimator, as described in [11].

We note here that the diffusion-attenuation profile S(g) has a shape which is
different compared to the diffusivity profile used in [9,10] (see [11] for examples).
For example, a voxel encoding a single fiber direction will have an oblate shape
in contrary to the typical prolate shape of the diffusivity profile. However, one
can still sufficiently represent the single-fiber-direction voxel by SHs up to the
second order. The same goes for voxels with fiber crossings. SH representation of
S(g) was in fact used in [12,11] for computing the ODFs. Funk-Radon transform,
working in tandem with Funk-Hecke theorem [11], allows us to obtain the ODF
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by using scaled versions of the SH coefficients [11], i.e., 2πPl(0)ym
l , where Pl(x)

is the Legendre polynomial of degree l. That is, the ODF given by S(g) is:

G[S](g) =
L∑

l=0

l∑
m=−l

2πPl(0)ym
l Y m

l (g). (4)

2.2 Statistical Descriptors and Edge Maps

We incorporate, in addition to SHs, the following statistical descriptors of the
diffusion-attention profiles in the registration algorithm. The diffusion mean is
computed over the unit sphere Ω:

μ = 〈S(g)〉 =
1
4π

∫
g∈Ω

S(g)dg =
y0
0√
4π

, (5)

characterizing the average diffusion magnitude. The diffusion deviation, which
measures the deviation of the profile from its isotropic component, is defined as:

ρ2 =

〈
|S(g) − 〈S(g)〉|2

〉
〈
|S(g)|2

〉 =
∑L

l=1
∑l

m=−l |ym
l |2∑∞

l=0
∑l

m=−l |ym
l |2

. (6)

For better characterization of structural shapes, regional statistical descriptors
consisting of regional diffusion mean:

μN = 〈μ(z)〉 =
1

|N |
∑
z∈N

μ(z) (7)

and regional diffusion deviation:

ρ2
N = 〈σ(z)〉 =

∑
z∈N |μ(z) − μN |2∑

z∈N |μ(z)|2 (8)

are computed for the neighborhood N of each voxel. Although the above mea-
sures can be computed via the SH coefficients, considerable time can be saved
by direct computation using S(q). In addition to these descriptors, we applied a
Canny edge detector on the μ and ρ maps to obtain edge information (denoted
as Hμ, Hρ) for guiding the alignment of tissue boundaries. Example statistical
and edge maps are shown in Fig. 2.

2.3 Feature Vector and Similarity Measure

For each voxel at location x, the SH coefficients and diffusion-attenuation sta-
tistical descriptors are grouped into a vector a(x) = [a1(x),a2(x)], with:

a1(x) =
[
μ(x), ρ(x), μN (x), ρN (x), Hμ(x), Hρ(x)

]
, a2(x) =

[
{wly

m
l (x)}

]
(9)
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(a) (b) (c) (d) (e) (f)

Fig. 2. Statistical and edge maps: (a) Mean, μ, (b) Deviation, ρ, (c) Regional mean,
μN , (d) Regional deviation, ρN , (e) μ edge map, Hμ and (f) ρ edge map, Hρ

where {wly
m
l (x)} is the set of weighted SH cofficients computed up to order L.

The weight of each order-band l is given by wl (w0 = 1 ≥ wl−2 ≥ wl ≥ 0). For
our implemetation, we set w2 = u(α2τ) and w4 = u(α4τ), where u(·) is a step
function, for allowing the matching of single-fiber and dual-fiber information af-
ter α2, α4 ∈ [0, 1] (α2 < α4) fractions of the total number of matching iterations,
τ , respectively. This is so that progressively higher order representations can be
employed to refine the registration. Normalizing the elements of a1(x) to have a
range of [0, 1], the similarity measure can be defined as:

η(xT,xS) =
{

Θ [a1(xT) − a1(xS)]
}

×
{

a2(xT) · a2(xS)
||a2(xT)|| × ||a2(xS)||

}
(10)

where Θ[a] = Πk(1 − |ak|), and xT and xS are specific voxels in the template
image and the subject image, respectively. For robustness, we employ instead
regional similarity measures:

ηM(xT,xS) =
1

|M(xT)|
∑

z∈M(xT)

η(z,xS + f(z) − f(xT))

ηM(xS,xT) =
1

|M(xS)|
∑

z∈M(xS)

η(xT + f−1(z) − f−1(xS), z)
(11)

which compare the similarity of the feature vectors in the neighborhood M
surrounding xT in the template image with that of xS in the subject image
with consideration of the transformation f . Note that similariy measures in
both directions are defined so that they can be employed for forward-backward
consistent matching, described in the next section. The SH coefficients are re-
estimated in each iteration of the registration to take into account the effect of
the spatial transformation has on the diffusion-attenuation profile.

3 HARDI Registration

Registration of the HARD images can be achieved by minimizing the following
cost function:

C(PT,PS, f) = C(PT, f) + C(PS, f)︸ ︷︷ ︸
Matching

+ C(PT) + C(PS)︸ ︷︷ ︸
Soft Correspondence

+ C(f)︸ ︷︷ ︸
Smoothness

. (12)
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Matching: Voxel at xT and voxel at xS are deemed as a matching pair if they
are close spatially and if their feature vectors show high similarity. Naturally, a
voxel pair xT and xS satisfying these conditions will be given a higher probability
value p(xT,xS) in the cost function. We also enforce a symmetric matching
mechanism [13] which avoids bias towards the template or the subject. The cost
functions are defined as:

C(PT, f) =
∑

xT∈VT,xS∈VS

pT(xT,xS)
{
||f(xT) − xS||2 − log

[
ηM(xT,xS)

]}

C(PS, f) =
∑

xT∈VT,xS∈VS

pS(xT,xS)
{

||xT − f−1(xS)||2 − log
[
ηM(xS,xT)

]} (13)

where PT = {pT(xT,xS)} and PS = {pS(xT,xS)}. VT and VS represent the
template and subject brain domains, respectively.

Soft Correspondence: Soft correspondence are permitted in the initial stages
of the registration to allow robust matching based on multiple candidate points.
Towards the end of the registration, more exact one-to-one correspondence is
enforced. This is realized by energy terms:

C(PT) = γ
∑

xT∈VT,xS∈VS

pT(xT,xS) log(pT(xT,xS)),

C(PS) = γ
∑

xT∈VT,xS∈VS

pS(xT,xS) log(pS(xT,xS)).
(14)

where VT and VS represent the template and subject brain domains, respectively.
Parameters γ controls the degree of fuzziness of the matching. It has initially
high values, encouraging fuzzy matching, and later progressively lower values,
which enforce exact matching.

Transformation Regularization: Mapping f is required to be smooth for
preserving a biologically sensible topology. This is enforced by energy term:
E(f) = β||Lf ||2. L is an operator which aids in measuring the bending energy.
β is a weighting factor which is decreased throughout the registration to allow
f to model deformation of increasing complexity.

Optimization: The cost function (12) can be minimized by alternating between
correspondence matching and dense transformation estimation [14, 15]. We first
fix f and solve for PT and PS by letting ∂C(PT,PS, f)/∂pT(xT,xS) = 0 and
∂C(PT,PS, f)/∂pS(xT,xS) = 0. We then fix PT and PS, and solve for f using
thin-plate splines (TPS) [16, 17].

Retransformation of Spherical Harmonics: Barmpoutis et al. [4] noted
the limitations of reorientation of diffusivity functions and proposed instead to
employ a full affine retransformation. In our case, although a SH reorientation
strategy was proposed by Geng et al. [5], we have opted accuracy over speed or
convenience by re-estimating the SH coefficients in each iteration of registration.
That is, for a local tranform F, we tilt the gradient directions by g′ = Fg/||Fg||
(see Fig. 3), and compute a new set of SH coefficients {y′m

l }.
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g1

g′
1 =

Fg1
||Fg1||

g2
g′

2 =
Fg2

||Fg2||
Fig. 3. Retransformation of diffusion-attenuation profile. Each diffusion direction g is
transformed by the local transformation matrix F to become g′

i = Fgi/||Fgi||.

4 Experimental Results

Six adult subjects were scanned using an EPI sequence with diffusion gradients
applied in 120 non-collinear directions. 80 contiguous slices with slice thickness
of 2mm covered a field of view (FOV) of 256 × 256mm2 with an isotropic voxel
size of 2mm. Out of the 6 HARD images, one was selected as the template onto
which the rest were registered. To demonstrate the effectiveness of the proposed
method over DTI-based registration, we employed a state-of-the-art DTI regis-
tration algorithm [15,14] for comparison. We reconstructed the diffusion tensors
(DTs) of the diffusion-weighted images and register the DT images using the
above-mentioned algorithm. The estimated deformation fields were then used to
warp and retransform the respective HARD images. We have also compared our
results with FLIRT [18] applied on the deviation maps (see Fig. 2(b)) for affine
registration. The orientation consistency (OC) was assessed using the voxel-wise
scalar product of the principal orientation direction, gPD, of each voxel in an
aligned image with respect to the template:

OC =
∑
x∈VT

|gsubject
PD (x) · gtemplate

PD (x)|. (15)

The absolute value was taken since diffusion directions are antipodal symmetric.
The principal directions were estimated by a 1082 point even sampling of the
orientation distribution functions (ODFs) using Camino [19]. Comparison was
made only for voxel showing significant anisotropy (voxels with deviation value
ρ > 0.1). Compared with DTI-based registration, we found an overall improve-
ment in white-matter orientational consistency of 3.02% (p < 0.05). Compared
with affine registration, an improvement of 7.39% (p < 0.001) was achieved.
Results for each individual subject, shown in Fig. 4, indicate that the proposed
method gives consistent improvement across subjects.
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Fig. 4. White matter orientational consistency for individual subjects

5 Conclusion

We have proposed a HARDI registration algorithm which, in a principled man-
ner, extracts orientation information from the diffusion-attenuation profile. The
useful property of spherical harmonics in representing different levels of orienta-
tion complexity of the diffusion pattern is utilized to progressively provide the
registration process with increasing levels of information for alignment refine-
ment. Experimental results indicate better registration accuracy than DTI-based
registration algorithm, further validating the fact that the information given by
HARDI can be utilized to improve structural alignment.
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Abstract. Electromagnetic navigation bronchoscopy requires the accu-
rate registration of a preinterventional computed tomography (CT) im-
age to the coordinate system of the electromagnetic tracking system.
Current state-of-the-art registration methods are manual or do not ex-
plicitly take patient’s respiratory motion and exact airway shape into
account, leading to relatively low accuracy. This paper presents an au-
tomated registration method addressing these issues. Electromagnetic
tracking data recorded during bronchoscopic examination is matched to
the airways by an optimizer utilizing the Euclidean distance map to the
centerline of the airways for automated registration. Using a cutaneous
sensor on the chest of the patient allows us to approximate respiratory
motion by a linear deformation model and adopt the registration result
in real time to the current respiratory phase. A thorough in silico eval-
uation on real patient data including CT images taken in 10 respiratory
phases shows the significant registration error decrease of our method
compared to the current state of the art, reducing the error from 3.5 mm
to 2.8 mm.

1 Introduction

Bronchoscopy is a useful tool in the diagnosis and treatment of lung and bronchus
cancer, for example to perform transbronchial biopsies of suspicious lymph nodes
or pulmonary nodules. However, due to the complexity of the airways and the
limited view during bronchoscopy, it is still difficult for a bronchoscopist to ad-
vance the bronchoscope and the biopsy needle to a peripheral target without
the aid of fluoroscopy. To overcome this limitation, navigation systems have
been proposed that localize and visualize the bronchoscope camera and biopsy
needle in relation to a preinterventional computed tomography (CT) image and
predefined targets and paths within the image [1,2]. Accurate navigation is es-
sential to guide camera and needle to small targets of only a few millimeters or
centimeters.

H. Liao et al. (Eds.): MIAR 2010, LNCS 6326, pp. 237–246, 2010.
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Such a navigation system requires continuous tracking of the bronchoscope,
for which various techniques have been proposed. Image based techniques try
to register virtual camera images generated from preinterventional computed
tomography data to the real images acquired by the bronchoscope camera [3,4],
which can be time-consuming and fail to continuously track the camera motion.
Continuous and real-time electromagnetic tracking (EMT) of a small sensor
coil attached to the bronchoscope tip can resolve these issues. Promising initial
clinical results have been achieved using such an electromagnetic navigation
bronchoscopy system [1].

Electromagnetic navigation bronchoscopy requires the registration between
the coordinate system of the preinterventional CT image and that of EMT. In
a commercially available system, this is performed by identifying about 5 to 9
landmarks in CT image coordinates by mouse clicks and in EMT coordinates by
measuring their corresponding points with the sensor [1]. This is an unnatural
and time-consuming process of several minutes and does not consider deforma-
tions of the airways caused by patient motion, mainly due to respiratory motion.

To deal with patient motion, Gergel et al. propose to apply particle filtering to
each camera position acquired via EMT and project it to a previously segmented
centerline of the airways [5], while Soper et al. combine electromagnetic tracking,
image based tracking, Kalman-filtering, and a respiratory motion compensation
method utilizing a surrogate sensor [6]. However, these techniques still require
a manual marker-based registration between the CT and the EMT coordinate
system. Automated registration methods were therefore proposed, which collect
EMT data during bronchoscope movement inside the airways and match this
data with airways previously extracted in CT images to obtain a global rigid
transformation [7,8]. Even if virtual breathing motion is added for evaluation in
a static phantom [9], the resulting transformation matrix does not incorporate
dynamic deformations caused by e.g. patient breathing, making the registration
inaccurate. Furthermore, some methods [7,9] assume all branches of the airway
tree utilized during matching to be straight, which is rarely true for most airways.

In this paper we address the issues of previously proposed automated regis-
tration approaches [7,8,9]. We present a marker-free method that incorporates
respiratory motion information and a better representation of the airway shape
into the registration process. This significantly increases registration and navi-
gation accuracy, as shown in our in silico evaluation.

2 Method

A part of our method follows previous works [7,8,9]. First the major airway
branches, their centerline, and their tree structure are automatically extracted
from a preinterventional CT image of the patient. Before bronchoscopy, an EMT
sensor is inserted into the working channel of the bronchoscope and advanced to
its tip or, alternatively, fully integrated into the bronchoscope tip not to obstruct
the working channel. During bronchoscopic examination of the major airway
branches, EMT data of this sensor is recorded and matched to the extracted
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airways. Compared to previous works, our new method presented here refines the
matching strategy and takes respiratory motion into account, which significantly
improves registration and navigation accuracy.

2.1 Respiratory Phase Detection

To acquire surrogate data for the estimation of respiratory motion we use a
second cutaneous EMT sensor attached to the patient’s chest [6,10], so for each
bronchoscope sensor measurement we can obtain a corresponding cutaneous sen-
sor measurement. The main purpose of this cutaneous sensor is to estimate a
linear mapping between its motion and the patient’s respiratory motion.

When our matching procedure is started, a principal component analysis is
performed on all cutaneous sensor positions obtained to date to compute their
principal motion axis. All cutaneous sensor positions are then projected onto
this axis and scaled to lie between 0 and 1, giving our surrogate data. Its local
minima and maxima approximately correspond to full patient inspiration and
expiration or vice versa. As we can be fairly safe to say that also the CT image
was taken in either inspiration or expiration breath hold, as this is the standard
procedure for chest CT, we now only need to determine, whether the minima
of the ground truth data correspond to inspiration or expiration, which is done
automatically in the next step.

2.2 Rigid Registration

During rigid registration, we compute the Euclidean transformation CTTEMT
from EMT coordinates to CT coordinates using the bronchoscope sensor poses
closest to the approximate respiratory phase the CT was acquired in. As CT
data sets used for navigation can come from various hospitals and scanners
sometimes without any information about whether their respiratory phase was
inspiration or expiration, to estimate the correct phase we simply perform two
rigid registrations, one only including bronchoscope sensor poses corresponding
to surrogate sensor data between 0 and 0.1 and the other one only including
bronchoscope sensor poses corresponding to surrogate data between 0.9 and 1.
We then simply select the resulting transformation, which better corresponds to
the CT data.

Each rigid registration is executed following the method proposed in [9], which
can be seen as an iterative closest point-like approach, where all EMT points
gradually converge to the airway tree. However, we can greatly improve regis-
tration performance by changing the error term used in [9] during optimization
of the transformation matrix. Instead of finding the closest point on the straight
line segments of the tree representation of the airways to a bronchoscope sen-
sor position (transformed into CT coordinates) and computing their distance,
we minimize the distance to the curved airway centerline. This can be achieved
effectively by generating a Euclidean distance map d to the centerline obtained
during airway segmentation, which is squared and normalized by division of each
voxel by the average radius of the branch closest to the voxel. This gives less
weight to thick branches than to thin ones, and corresponds to the fact that
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bronchoscope movement naturally deviates much more from the centerline in
thick branches than in thin branches.

In detail, our new error term is

Err
(CTTEMT

)
=

∑
pk∈P,smin≤s(pk)≤smax

1
rk

· d2 (CTTEMTpk

)
, (1)

where pk is the kth of N bronchoscope sensor positions, CTTEMT transforms
pk from EMT to CT coordinates, s(pk) gives the surrogate data (between 0
and 1) corresponding to pk, smin and smax are set once to 0 and 0.1 and once
to 0.9 and 1, respectively, rk is the average radius of the branch closest to pk,
and d (x) returns the distance of our Euclidean distance map for a point x. To
determine the six degrees of freedom of CTTEMT, the error is minimized using
the CONDOR algorithm [11].

After performing the optimization twice, we divide each resulting error by the
number of sensor positions. The lower normalized error will naturally correspond
to the sensor data acquired in the respiratory phase close to the phase the CT was
acquired in. Accordingly, in the following we choose the resulting transformation
CTTEMT with lower error and set the respiratory phase pCT of CT acquisition to
either 0 (approximately corresponding to the result using surrogate data between
0 and 0.1) or 1 (for surrogate data between 0.9 and 1).

2.3 Respiratory Motion Correction

After determination of the best respiratory phase and rigid matching between
CT and EMT coordinates, we now apply an additional translation tcor that is
scaled linearly with the respiratory phase measured by the surrogate sensor to
correct for breathing motion. Even though this is just a rough approximation
of the real deformation that is in fact a spatially varying deformation field, we
will see later in our experiments that our simple linear scaling approach can
already estimate the main bronchial motion well, as also shown in [6]. It can
greatly improve registration accuracy without knowing a dense patient-specific
deformation field that is rarely available for navigated bronchoscopy because of
its necessity for several CT images of two or more respiratory phases.

In this second optimization step we again utilize CONDOR [11] to find a
translation tcor that minimizes the error

Err (tcor) =
∑

pk∈P

1
rk

· d2
((

I ‖pCT − s(pk)‖ tcor
0T 1

)
CTTEMTpk

)
︸ ︷︷ ︸

=:pkcor

. (2)

3 Evaluation

Our institution does not yet permit us to evaluate our experimental electromag-
netic navigation bronchoscopy system in vivo. Moreover, it is not a trivial task
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(a) Simulated data before registration (b) After registration

Fig. 1. Results of our in silico evaluation, showing airway tree line segments in green, a
ground truth bronchoscope path in red, a simulated path (before and after registration)
in blue, ground truth landmarks in pink, and their deformed counterparts (before and
after registration) in 10 breathing phases in black

to generate ground-truth data and perform a quantitative evaluation of electro-
magnetic navigation bronchoscopy in the operating room without significantly
changing the current clinical work flow. This may be solved by deformable phys-
ical phantoms, but they are still far from realistic respiratory motion modeling,
and for those the quantification of ground truth motion is still an open question,
too. We hence decided to set up a thorough in silico evaluation on real patient
CT data with exhaustive and accurate breathing information. Therefore we use
the POPI model [12], which contains 10 respiratory phases and provides dense
deformation fields between all phases as well as landmarks chosen by medical
experts and widely distributed inside the lungs and around the airways1.

We selected the end-inhalation phase of the POPI data to serve as the single
CT image that is usually acquired before bronchoscopy. In this CT image we
extracted the airways, their centerline, and their tree structure (marked green in
Fig. 1a) using our previously proposed method [13], and simulated 10 different
bronchoscope paths and their corresponding bronchoscope EMT sensor data.
Each bronchoscope path was created using a few manually selected keyframes
in every branch close to, but not on its centerline and connecting the frames by
Catmull-Rom splines and Slerp quaternion interpolation. It can be adjusted to
cover a certain number of airway generations, e.g. 1 referring to the trachea, 2
to the trachea and left and right main bronchi, 3 to the trachea, left and right

1 The data was obtained from the Léon Bérard Cancer Center & CREATIS lab, Lyon,
France; http://www.creatis.insa-lyon.fr/rio/popi-model

http://www.creatis.insa-lyon.fr/rio/popi-model
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main bronchi, left and right upper lobe bronchi, left lower lobe bronchus and
right truncus intermedius, and so on. We set the speed of the bronchoscope to 10
mm/s, as this is a good approximation of the average speed during bronchoscopy
[4]. The sampling rate was set to 40 Hz, according to the frequencies of typical
EMT systems such as the NDI Aurora or the Ascension 3D Guidance medSAFE.
These data serve as our ground truth bronchoscope paths (marked red in Fig. 1a).

However, as EMT has a significant amount of distortion and jitter, we also
added normally distributed noise to the ground truth tracking data to create
a more realistic simulation of the bronchoscope paths. According to [14], we
set the standard deviation of the noise for a bronchoscope sensor position to
1 and hence for each of its three translational components to 1/

√
3. According

to the specifications for the orientation accuracy of the NDI tracker and its
corresponding orientation distortion for a metal sheet similar to an operating
table [15], we set the noise for each of the three Euler angles of a measured

camera pose to
√

(1
2 · 0.5)2 + (1

2 · 1.2)2/
√

3 = 0.65/
√

3.
Once noise is added to the bronchoscope path, assuming normal breathing

frequency of 12 breaths per minute, we can transform each sample along the path
according to its respiratory information. For this we apply linear interpolation
between the 10 respiratory phases to care for inter-phase motion as well as within
each deformation field to care for inter-voxel spaces (a resulting bronchoscope
path including noise and respiratory motion is marked blue in Fig. 1a). At the
same time, to simulate cutaneous sensor measurements for our surrogate data,
we select a point at the patient’s chest wall and apply the same sampling rate and
respiratory motion as for the bronchoscope sensor. However, since the cutaneous
sensor only moves within a very limited volume up to about 10 mm and is hence
only marginally affected by distortion and systematic error, we only need to
take measurement precision into account when simulating error, so according
to the specifications of NDI2 we set its standard deviation for x-, y-, and z-
direction (i.e. along the left-right, superior-inferior, and anteroposterior axes) to
(1
2 · 0.9)/

√
3 = 0.45/

√
3.

Finally, we apply a Euclidean transformation to all simulated sensor mea-
surements, so they lie outside the coordinates of the original CT volume. As
now ground truth and simulated data do not overlap any more, we rule out this
trivial solution for the optimizer.

For evaluation of the final registration accuracy, we used 37 of the 41 widely
distributed landmarks in the POPI model provided by medical experts as ground
truth, which are inside the lungs or close to the airways (three of the POPI land-
marks are outside these regions, one is an image artifact). These landmarks serve
as target points for e.g. biopsies and are not in close proximity to the simulated
bronchoscope path used for registration. In our simulation environment, we ap-
ply the same noise to these landmarks as to the bronchoscope sensor, deform
them according to 10 respiratory phases, and transform them to be outside the
original CT volume in the same way as for the bronchoscope path. Figure 1a

2 http://www.ndigital.com/medical/aurora-techspecs-performance.php
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Ground truth

Noise/resp.motion

Prev. method [9]

Our new method

Frame number 175 350 525 700 875 1050 1225 1400 1575 1750 1925 2100 2275 2450

Fig. 2. Exemplary frames of a bronchoscope path, showing ground truth data (first
row), after adding noise and respiratory motion (second row), and corresponding ren-
derings after registration with a previous method [9] (third row) and our new method
(fourth row)

shows the ground truth landmarks in pink and their corresponding ones in 10
different respiratory phases including noise in black. After obtaining CTTEMT
and tcor by our two-step registration approach, we can now transform each sim-
ulated landmark pl to plcor according to Eq. 2 and compare it to the ground
truth data.

Figure 1b shows a bronchoscope path and evaluation landmark positions after
applying our registration and motion compensation method. Figure 2 shows
exemplary frames of a bronchoscope path (using four branch generations) for
ground truth data and after adding noise and respiratory motion as well as the
resulting paths after registration with a previously proposed method [9] and our
new method. The supplementary video demonstration3 shows all frames of this
path and allows the observer to qualitatively evaluate the performance of our
registration method. Table 1 quantitatively compares the registration error of
our new method to [9]. We also integrated only the new error term of Eq. 1 into
[9] to outline individual accuracy differences.

The runtime of our registration method on a PC with an Intel Xeon X5355
processor was between 1 and 3 seconds and mainly depends on the number of
branch generations and hence sample points created along the bronchoscope
path.

4 Discussion

As can be seen in Table 1, all methods perform better the more airway gener-
ations are covered during registration, so we suggest to perform a registration
after exploring as many branches as possible. A one-way analysis of variance
(ANOVA) over the 3700 samples (10 paths, 10 respiratory phases, and 37 land-
marks) of each case confirms that our new registration method significantly

3 http://campar.in.tum.de/files/publications/feuerste2010miar.video path

without noise.avi and http://campar.in.tum.de/files/publications/

feuerste2010miar.video path with noise.avi

http://campar.in.tum.de/files/publications/feuerste2010miar.video_path_without_noise.avi
http://campar.in.tum.de/files/publications/feuerste2010miar.video_path_without_noise.avi
http://campar.in.tum.de/files/publications/feuerste2010miar.video_path_with_noise.avi
http://campar.in.tum.de/files/publications/feuerste2010miar.video_path_with_noise.avi
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Table 1. Registration error in mm over all 10 simulated bronchoscope paths according
to absence or presence of noise, number of airway generations and bronchoscope path
samples, respiratory phase used to compute the landmark registration error, error term,
and utilization of respiratory motion correction

Noise Gen. Samples Phase Registration error [mm]
No respiratory motion correction [9] New method (Resp. mot.
Old error term [9] New error term corr. & new error term)

w/o 2 1319 1|2|3|4|5 5.3|4.9|4.6|5.0|5.5 4.6|4.2|3.9|4.5|5.4 4.2|4.3|4.1|4.2|4.5
±22 10|9|8|7|6 5.2|4.7|4.7|5.2|5.6 4.4|4.1|4.4|5.1|5.7 4.2|4.3|4.5|4.5|4.7

avg 5.1 ± 2.3 4.6 ± 2.3 4.3 ± 2.4
3 1815 1|2|3|4|5 5.0|4.5|4.2|4.6|5.1 3.2|2.6|2.2|3.0|4.1 1.4|1.7|2.4|2.9|3.3

±24 10|9|8|7|6 4.7|4.2|4.1|4.7|5.2 2.9|2.4|2.7|3.7|4.4 1.8|2.1|2.7|3.1|3.5
avg 4.6 ± 2.1 3.1 ± 1.7 2.5 ± 1.4

4 2754 1|2|3|4|5 3.9|3.3|2.6|3.1|4.0 3.0|2.5|2.0|2.9|4.0 2.0|2.2|2.3|2.5|2.8
±25 10|9|8|7|6 3.5|2.9|2.8|3.3|4.2 2.5|1.8|2.1|3.3|4.2 2.0|2.2|2.4|2.5|3.0

avg 3.4 ± 1.8 2.8 ± 1.5 2.4 ± 1.4
w 2 1319 1|2|3|4|5 5.4|4.8|4.6|4.9|5.6 4.6|4.0|4.0|4.4|5.5 4.6|4.5|4.5|4.5|4.9

±22 10|9|8|7|6 5.2|4.7|4.6|5.4|5.6 4.4|4.2|4.5|5.4|5.8 4.5|4.7|4.8|5.0|5.1
avg 5.1 ± 2.4 4.7 ± 2.3 4.7 ± 2.5

3 1815 1|2|3|4|5 5.0|4.3|4.2|4.6|5.1 3.4|2.6|2.4|3.0|4.2 3.2|3.2|3.9|4.1|4.6
±24 10|9|8|7|6 4.8|4.1|3.9|4.9|5.2 3.0|2.6|2.8|3.9|4.5 3.5|3.7|4.0|4.5|4.8

avg 4.6 ± 2.1 3.2 ± 1.7 4.0 ± 3.7
4 2754 1|2|3|4|5 4.1|3.4|2.9|3.0|4.1 3.1|2.5|2.3|2.9|4.1 2.4|2.4|2.8|2.7|3.3

±25 10|9|8|7|6 3.7|3.1|3.0|3.5|4.2 2.7|2.1|2.4|3.5|4.4 2.5|2.6|2.8|3.0|3.4
avg 3.5 ± 1.8 3.0 ± 1.5 2.8 ± 1.6

outperforms the previous method [9] with a p-value of 0.000 in all cases. This is
because it successfully utilizes the actual curved shape of the airways in contrast
to [9] only using straight line segments. Furthermore, our new method first tries
to find the bronchoscope sensor phase best matching the CT data and based
on that linearly adjusts the respiratory motion offset. The positive effect of this
adjustment can be seen e.g. in frames 700, 1225, and 2100 of Fig. 2.

In the presence of noise, our method showed some outliers when registration
was performed using 3 airway generations, leading to an error of 4.0 ± 3.7 mm.
As we attribute this behavior to too noisy cutaneous sensor data, we repeated
our experiments only adding noise to the bronchoscope sensor, but not to the
cutaneous sensor, simulating a perfect respiratory signal. Since this reduced the
registration error for 3 airway generations from 4.0±3.7 mm to 2.8±1.5 mm and
for 4 generations from 2.8±1.6 mm to 2.6±1.3 mm, we are now considering using
a more reliable technique for measuring respiratory motion such as an elastic belt
placed around the abdomen, which is a well established means for gated 4D CT
and MR, SPECT, and PET-CT imaging as well as radiation therapy, or, if a
belt is not available, a method to denoise the surrogate data and match it to a
realistic respiratory curve.

While for the previous method error is distributed over all 10 breathing phases,
for our method it is significantly lower, but at the same time increases between
end-inhalation (phase 1) and end-exhalation (phase 6). This confirms that our
registration method approximates patient breathing well, but still not to its full
extent. One may hence think of matching a (readily available) dense deforma-
tion field of another patient to the current patient to obtain a more accurate
estimation of dense respiratory displacements instead of using a linearly scaled
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translational offset for breathing compensation. However, our current results us-
ing a simple and fast approach for automated registration are very promising.
As soon as permission is granted by our institution, we will also evaluate our
method in vivo.

In our experiments we also tested other methods to compensate for respira-
tory motion such as scaling the tracking data (as lung motion is bigger at the
diaphragm than towards the superior) and rotating all branches around their
branching points (as their motion is not completely linear). However, a simple
translation gave the best results. When optimizing translation and scaling at
the same time, the registration error for the case of four airway generations and
noisy data increased to 2.9 to 3.9 mm (compared to 2.8 mm), depending on
the choice of which axes to scale and the position of the scaling center along
the craniocaudal axis. We attribute this to an overfitting of the tracking data
to the bronchial tree due to additional degrees of freedom. When optimizing
scaling only, the registration error was 4.0 to 4.3 mm.

The automatic approach for phase determination using only rigid registrations
at first glance may sound paradoxical under the assumption of a linear respira-
tory motion model. However, it works well, because the translation assumed for
respiratory motion compensation is only an approximation of the real deforma-
tion, which is more complex. Under this complex deformation it should be clear
that a CT rigidly registered to tracking data from the same phase should fit
better than to tracking data from a different deformed phase. Our initial rigid
registration only considers two subsets of the tracking data, and only yields a
single transformation. The second registration then includes all tracking data
and yields an additional time-dependent translation which approximates the
respiratory motion.

Finally, our method currently only addresses respiratory motion. We are plan-
ning to also add methods for the handling of other kinds of patient motion,
for instance one that is able to exclude outliers from surrogate data caused by
e.g. coughing.

5 Conclusion

This paper successfully reduces registration error caused by respiratory motion
and insufficient utilization of the correct airway shape during optimization. Us-
ing the POPI model, we are able to provide a very realistic respiratory motion
simulation with real patient data, making a laborious in vivo experiment un-
necessary for a first thorough evaluation. Our evaluation shows that our new
automated marker-free registration method is significantly more accurate than
the current state of the art [9]. Even for noisy data, as it is the case for EMT
data, our method performs robust and reduces the registration error from 3.5
mm to 2.8 mm.
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Abstract. Valve replacement is the most common therapy for diseased
aortic valves. Percutaneous approaches are becoming increasingly popu-
lar, due to reduced procedural complications and lower follow-up rates.
Still there is a lack of efficient tools for valve quantification and preoper-
ative simulation of replacement and repair procedures. Thus the success
of the intervention relies to a large portion on experience and skills of
the operator. In this paper we propose a novel framework for preopera-
tive planning, intraoperative guidance and post-operative assessment of
percutaneous aortic valve replacement procedures with stent mounted
devices. A comprehensive model of the aortic valvular complex includ-
ing aortic valve and aorta ascendens is estimated with fast and robust
learning-based techniques from cardiac CT images. Consequently our
model is used to perform a in-silico delivery of the valve implant based
on deformable simplex meshes and geometrical constraints. The predic-
tive power of the model-based in-silico valve replacement was validated
on 3D cardiac CT data from 20 patients through comparison of pre-
operative prediction against postoperatively imaged real device. In our
experiments the method performed with an average accuracy of 2.18
mm and a speed of 55 seconds. To the best of our knowledge, this is
the first time a computational framework is validated using real pre- and
postoperative patient data.

1 Introduction

Percutaneous aortic valve implantation (PAVI) has the potential to revolution-
ize the treatment of aortic valve disease, offering a less invasive alternative to
open heart surgery. PAVI is already emerging as a feasible treatment for pa-
tients with high-surgical risk [1], over 30% of the symptomatic cases, and will
account for 41.1% of the procedures by 2012 (Millennium Research Group 2008)
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Fig. 1. Schematic description of the proposed PAVI computational decision support
workflow

[2]. The prosthetic implants are delivered through catheters using transvenous,
transarterial or transapical techniques, while clinicians do not have direct view
and access to the affected valve and surrounding anatomies.

Hence, critical decisions such as, type of procedure, implant type and sizing, de-
ployment location and timing, and treatment assessment, are exclusively based on
imaging techniques [3]. A misplaced implant can block the coronary ostia inducing
a life threatening ischemic condition. Suboptimal deployment location can result
in poor hemodynamic performance with severe paravalvular leakages and/or high
gradients and suboptimal effective orifice. Wrong implant sizing may require re-
operation or can damage the vessel tissue and cause catastrophic events as arte-
rial dissection or rupture. Therefore advanced image analysis and computational
models for precise planning, procedure guidance, and outcome assessment, may
significantly improve percutaneous valve implantation techniques.

In this paper, we propose a computational framework for percutaneous aortic
valve implantation, which supports decisions throughout the clinical workflow
and is summarized in Sec. 2. Modeling of the aortic valve and ascending aorta
and patient-specific estimation from pre- and post- operative cardiac CT images
is described in Sec. 3. Sec. 4 presents the computational environment, which
allows for in-silico valve implantation for evaluation and prediction of procedure
success under various treatment scenarios. Comprehensive validation and per-
formance evaluation is given in Sec. 5 by comparing the simulation results from
preoperative data with the real device imaged in the postoperative data.

2 Computational Decision Support for PAVI

The proposed PAVI computational decision support workflow is illustrated in
Fig. 1:

Pre-operative workflow: 1) Pre-operative cardiac CT volume acquisition for pro-
cedure planning purposes 2) Patient-Specific anatomical model estimation and
automatic quantification for valve assessment and patient selection 3) In-silico
valve implantation under various interventional procedure conditions for identifi-
cation of optimal device type, size and deployment location as well as treatment
outcome prediction until optimal predicted performance is observed.
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(a) (b) (c) (d)

Fig. 2. Aortic valve and ascending aortic root model. (a) shows a generic model of
the aortic valve including nine anatomical landmarks. (b) shows our point distribution
model of the aortic root. (c) presents the aorta leaflets model - the N leaflet is depicted.
(d) demonstrates the ascending aortic root model. (e) represents the full model with
the corresponding anatomical parameterization.

Post-operative workflow: 4) Post-operative cardiac CT volume acquisition for
treatment evaluation 5) Patient-Specific anatomical model estimation for quan-
titative anatomical assessment 6) Patient-Specific deployed device estimation for
quantitative implant assessment.

3 Patient-Specific Anatomical Modeling and Estimation

This section summarizes the anatomical model of the aortic valve and ascending
aorta as well as the patient-specific estimation of its parameters from imaging
data as in [4].

3.1 Aortic Valve and Ascending Aortic Root Modeling

The aortic root provides the supporting structures for the leaflets of the aortic
valve and forms the bridge between the left ventricle and the ascending aorta.
The root extends from the basal attachments of the leaflets, defined by the
L (left) / R (right) / N (none) Hinges, to the sinutubular junction. The L /
R / N aortic leaflets, are attached to the root on semilunar structures. Valve
leaflets can be thought of as shirt pockets, with one edge stitched to the shirt
and one free of attachment with is center marked by the L / R / N leaflet tips.
These attachment structures interlink at the level of the sinutubular junction
forming the LR / RN / NL commissures. The employed model represents the
complete anatomy of the aortic valve and ascending aorta, which includes the
aortic root, left / right / none aortic leaflets, ascending aorta and 11 anatomical
landmarks.

Anatomical Landmarks: Represented by three-dimensional points in the Eu-
clidean space, the considered anatomical landmarks are: L / R / N Hinges, LR
/ RN / NL commissures, L / R / N leaflet tips, and L / R coronary ostia.
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Fig. 3. A survey of our hierarchical model estimation schema

Aortic valve root and leaflets: The aortic valve root is constrained by the com-
missures, hinges and ostia and represented as a tubular surface mesh. The mesh
is aligned with the aortic circumferential u and ascending directions v and in-
cludes 36 × 10 vertices. The left / right / none aortic leaflets, are modeled as
hyperbolic paraboloids on a grid of 11×7 vertices. Each leaflet is defined by one
hinge, two commissures and one leaflet tip.

Ascending aortic root: The ascending aorta emerges from the aortic root and
incorporates a variable length. The anatomy is composed of a fixed number of
circumferential coordinates u = 36 and a variable number of coordinates along
the ascending direction v. The first ring starts at from the commissures.

3.2 Patient-Specific Model Estimation

The patient-specific parameters of the aortic valve and ascending aorta model de-
scribed in Sec. 3.1 are estimated from volumetric images using a robust learning-
based algorithm as in [5]. The a posteriori probability p(M |I) of the model M
given the image data I, is hierarchically estimated within the Marginal Space
Learning (MSL) [6] framework. Detectors are successively trained using the
Probabilistic Boosting Tree (PBT) [7] with Haar and Steerable features, and
consequently applied to estimate the anatomical landmarks and structures from
cardiac CT volumes as illustrated in Fig. 3. For further details the reader is
referred to [4].

4 Device Modeling and In-Silico Deployment

4.1 Stent Model

A library of virtual devices/implants was created based on manufacturers’ de-
scription to incorporate realistic geometrical properties. In this work two models
of the CoreValve Revalving System by Medtronic (Minneapolis, MN, USA) are
treated, namely the models CRS-P3-640 and CRS-P3-943 (Fig. 4(a)). The im-
plant consists of 165 cells formed by the struts. The two models have length of 53
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and 55 mm and diameters at the inflow, middle and outflow levels of 26, 22, 40
and 29, 24, 43 mm respectively. The Xenograft artificial valve consist of porcine
pericardial tissue, out of which the leaflets are manufactured and mounted to
the implant’s stent. The library can be easily extended with future devices using
the methods described in the following. The device is modeled out of two parts:
a geometric representation, which precisely mimics the exact geometry of the
device, the so-called stent mesh, and a second superimposed 2-simplex mesh,
named in the following computational mesh, which is used for computation and
to guide the expanding deformation [8,9]. Fig. 4(b) depicts the topological rela-
tionship between the computational mesh and the stent mesh, which is composed
of struts connecting a subset of points of the computational mesh. In order to
infer the geometrical properties of the stent model various dimension were mea-
sured from stereolithographic scans of the modeled implants. These are the strut
lengths, the characteristic angles in each cell and the device’s circumferences at
each level, where each level is defined by the strut joints.

(a) (b) (c)

Fig. 4. (a) CoreValve implant, (b) long axis cross section of stent mesh (orange) with
superimposed computational mesh (blue) and (c) CoreValve implant with sketch of
target anatomy. (Sources a & c: http://www.medtronic.com)

4.2 Virtual Stent Deployment

To simulate valve replacement under various conditions, different devices are
chosen from the library and virtually deployed under different parameters, into
the previously extracted patient-specific model of the affected valve. The ex-
pansion of the device is modeled by balancing external and internal forces as
encountered in the actual procedure, using iterative optimization methods. Fol-
lowing the works of Larrabide et. al. and Montagnat et. al. [8,9], the expansion
is described by a finite difference discretization of a second order differential
equation:

pn+1
i = pn

i + (1 − γ)(pn
i + pn−1

i ) + fint(pn
i ) + fext(pn

i ) + freg(pn
i ) (1)

where pi is a point on the computational mesh, n is the iteration number,
fext, fint and freg external, internal and regularizing forces and the weight-
ing parameter γ. Fig. 5 shows a visual description of each of the forces. An
outline of the algorithm is given in Fig. 6. The internal forces fint(pn

i ) =



252 I. Voigt et al.

flength(pn
i ) + fangle(pn

i ) + fcirc(pn
i ) model the intrinsic properties of the stent

and enforce deformation along it’s surface normals and long axis as the device
is self-expandable. Hence they are parameterized by strut lengths, characteristic
angles and device circumferences, which were measured from the expanded tem-
plate. Accordingly, these forces are adapted, such that the implant attempts to
achieve the targeted dimensions, and they induce different expanding pressures
at different levels. Particularly fcirc(pn

i ) = ni(ck −
∑

∀j∈Nk
||pn

j − pn
j+1||)/2π

pushes the points pn
i ∈ Nk along the surface normal ni to satisfy the reference

circumference ck of the stent shape, where Nk is the set of strut joints at a
level k. It is important to note, that fcirc does not enforce the stent diameter di-
rectly but the stent circumference instead to account for expansion into arbitrary
shaped vessel geometries, which have typically non-circular cross sections. flength

and fangle enforce the strut lengths and characteristic angles observed in the ex-
panded shape [8]. The external forces fext(pi) model the interaction of stent and
aortic valve and aorta tissue, and guide the implant deformation by balancing
the internal device forces: fext(pi) = −ni(ni · fint(pi))(||pn

i − ck||/||v − ck||)
with stent centroid ck at level k and the intersection point v of normal and
vessel surface. The regularizing forces freg are solely defined on the computa-
tional mesh to provide smoothness as described in [9]. As mentioned above the
method focusses on self-expanding implants, which inherently exercise forces of
minor amplitudes onto the surrounding vessel tissue. Therefore we argue, that
the resulting minor deformations can be neglected.

(a) (b) (c)

Fig. 5. Forces acting on the model on deployment to converge to the observed geomet-
ric properties: (a) fangle enforces the charateristic angles at the strut joints (green),
(b) flength maintains the strut lengths. (c) fcirc enforces the circumference (green),
while fext dampens and eliminates the all forces acting along the stent mesh normal
wheighted by the fraction of distances of strut joint and vessel wall (red) to the stent
centroid (magenta/yellow). Please note that (c) shows a short axis cross section of the
stent mesh.

5 Experimental Results

The validation of the proposed framework is divided in two experiments. First we
present results on the performance of the automatic patient-specific model esti-
mation from pre- and post- cardiac CT data, as well as the quantitative variation
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Input:

– Patient-specific model of aortic valve and aorta ascendens
– implant placement position and orientation

Output: Deployed Implant
Execute:

– create computational mesh and stent mesh with constant radius of 1 mm at man-
ually selected placement position, oriented along the aortic root centerline

– repeat:
• for each point pn

i on the computational mesh, calculate freg(pn
i ), fangle(pn

i ),
flength(pn

i ), fcirc(pn
i ) and fext(pn

i )
• for each pn

i , compute pn+1
i according to Eq. 1

• if mean point displacement on the stent mesh < ε, convergence achieved; stop
execution

Fig. 6. The outline of our virtual stent deployment algorithm

between pre and postop ground truth anatomies, which is relevant for the subse-
quent virtual imlant deployment. Second we validate the proposed in-silico im-
plantation, by comparing predicted valve deployment, using pre-operative data,
with real deployment from post-operative data.

5.1 Validation of Patient-Specific Anatomical Modeling and
Parameter Estimation

The data set used for patient-specific model estimation consists of 63 multi-phase
(10 frames per cycle) cardiac CT and 21 single-phase cardiac CT acquisitions,
which sums up to 651 CT volumes. Scans are acquired from different patients
with various cardiovascular diseases (including ascending aortic root aneurysm,
regugitation, calcific stenosis and bicuspid aortic valves), using different pro-
tocols, resulting in volumes with 80 to 350 slices and 153x153 up to 512x512
voxel grid resolution and 0.28mm to 2.0mm spatial resolution. Each data set is
associated with an expert annotation used as ground-truth.

For the automatic patient-specific anatomical model estimation a combined
accuracy of 1.45mm is obtained in 30sec on a standard desktop machine (Intel
Xeon 2.66Ghz, 2GB RAM) for both pre- and post-operative volumes. Perfor-
mance is reported on test data, which represents randomized 20% of the complete
dataset, while the remaining 80% were used for training.

Due to different factors, a bias between the pre- and post-operative anatomical
ground truth models can be expected. These are cardiac phase shifts and image
noise but also deformation of the aortic vessel wall due to stent deployment,
where the latter was assumed to be sufficiently small to be neglected in the
deployment algorithm (Sec. 4.2). Therefore we quantified the differences for each
pair of corresponding anatomical models obtained from a subset of 20 patients
with pre- and postoperative image data. The quantitative results in Table 1
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Table 1. Deviation of pre- and postoperative ground truth anatomical models: Differ-
ences in diameter at sinutublar junction, valsava sinuses and aortic annulus are given
in absolute values as well as relative to the postoperative measurement. Values of Mean
and standard deviation are provided as well as 80-percentile and maximum.

absolute (mm) relative (%)
measurement mean (std) 80% max mean (std) 80% max

sinutublar junction 2.3 (1.7) 3.7 5.7 6.46 (4.6) 10.5 14.9
valsava sinuses 1.1 (0.9) 1.7 4.1 3.49 (2.6) 5.2 9.98

annulus 1.5 (1.2) 2.5 5.2 5.06 (3.2) 7.7 14.3
point-to-mesh distance 1.6 (0.98) 2.4 2.8 - - -

support the validity of our assumption, showing a mean relative deviation of up
to 6.46% between pre- and post-operative anatomies.

5.2 Validation of In-Silico Implant Deployment

The validation of the in-silico implant deployment is performed on 20 patients
with pre- and post-operative cardiac CT images, affected by various diseases
such as calcific stenosis as mentioned in the previous section. It is important to
note, that for this purpose the preoperative prediction result is compared with
the real device imaged in the postoperative data, where the latter serves as a
ground truth for this experiment.

The implant is virtually deployed into the associated anatomical model of the
preoperative volume using the algorithm described in Sec 4.2. In the postoper-
ative volume the ground truth implant is manually placed and fit to the im-
aged stent, which is well visible in image data, using a semi-automatic method
based on the thin-plate-spline transformation. In the envisioned target applica-
tion the optimal deployment location and orientation is manually selected by
the clinician. For validation purposes this is indirectly available and has to be
inferred by registering pre- and post-operative anatomical models. A selection
of virtually deployed vs. their corresponding ground truth stents is depicted
in Fig. 7. The performance is reported in Table 2 in terms of internal preci-
sion, by comparing only the virtual and real implants shape in isolation via
symmetric point-to-point distance, and external precision. The latter means
to compare the virtual and real implants position relative to clinically rele-
vant locations, in order to account for the potentially critical conditions due
to wrong implant sizing and placement such as blockage of coronary ostia and
more importantly paravalvular leakages at the annular level as mentioned in Sec
1. This is done by computing the differences of the pre- and postoperatively mea-
sured distances from annulus ring and coronary ostia to the closest stent point
respectively.

In the clinical context, the required accuracy is proportional to the tolerance
between therapeutical alternatives. Considering the diameter differences of 3mm
(at the annular level) of the Medtronic CoreValve implants (Sec 4.1), the system
provides a sufficient approximation in at least 80% of the cases for prevention of
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Table 2. Accuracy of in-silico valve deployment quantified from preop deployment
prediction vs. postop ground truth stent and measured in mm: besides point-to-point
distance, accuracy relative to the anatomies was estimated from the differences in
distances between aortic valve annulus and coronary ostia and implant. Values of mean
and standard deviation are provided as well as 80-percentile and maximum.

mean (std) 80% max
stent point-to-point 2.18 (1.77) 2.4 8.45

annulus 0.7 (0.73) 1.4 2.14
L coronary ostium 1.42 (1.51) 2.16 4.75
R coronary ostium 1.55 (1.24) 2.02 4.27

paravalvular leakages, with an external accuracy of up to 1.4mm at the annular
level. The algorithm performed at an average speed of 55sec on a standard
desktop machine (Intel Xeon 2.66Ghz, 2GB RAM). Thus our framework enables
for fast and efficient preoperative planning and risk minimization by finding
the best implant type, size and deployment location and orientation via varying
these parameters until optimal predicted performance is observed.

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 7. Example results of preoperative virtual stent deployment (a-d) vs. postoper-
ative ground truth stents (e-h) overlayed with with the anatomical models. Note the
deviation of the virtually deployed stent around the sinutubular junction (upper end)
in contrast to the close approximation at sinus and annular level, which is to due to
the fact, that internal stiffness of the stent configuration is not modeled yet.
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6 Discussion
In this paper a framework for computational decision support for percutaneous
aortic valve implantation was presented. A fast and robust estimation of an
anatomical model enables for precise modeling of the patient-specific morphol-
ogy and is consequently used for in-silico implant deployment. The approach
was validated with pre- and post-operative data sets from 20 patients and shows
reasonable accuracy within the variation in appearance given by image and mo-
tion artifacts. To the best of our knowledge, this is the first time a computa-
tional framework is validated using real pre- and postoperative patient data. The
framework is targeted for fast and efficient preoperative planning with a library
of different implants, intraoperative guidance and postoperative assessment of
interventional outcome. It may have impact on the cardiology of the future and
improve the OR towards increased transparency.
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Abstract. The sensitivity of electromagnetic (EM) tracking to electro-
magnetic field distorters in a clinical environment is well known. Correc-
tion of the EM field distortion is challenging given the ill-posed nature
of the problem and the typically sparse set of observations available in
computing an inverse solution. Furthermore, interventional environments
dynamically change during a procedure making pre-procedural calibra-
tion measurements difficult to apply. In this paper, we present the use
of relative measurement errors derived from known geometric features of
interventional instruments to detect reliable regions of operation. Rela-
tive error can be estimated from consecutive measurements of EM sensor
locations without the need for additional information beyond the geom-
etry of an interventional tool or in vivo phantom. We demonstrate the
use of a calibration phantom that allows us to determine the statisti-
cal relationship between “relative” errors and “absolute” errors. Using
this statistical relationship, we develop a method to compute an esti-
mate of the absolute error, which provides real time information about
measurement confidence.

1 Introduction

Many clinical procedures require the tracking of medical instrumentation within
the patient’s body. In these applications, optical tracking systems cannot be
used because of the line of sight (LOS) constraint. EM tracking systems al-
lows for tracking without the LOS constraint. EM tracking systems perform
relatively well in clean, non-ferromagnetic environments, but significant perfor-
mance degradation has been reported when there are source of distortion near
the field generator or sensor coils [1], [2]. The measurement errors have been re-
ported to be several millimeters in position and several degrees in orientation [3].
The magnitude of errors observed in an interventional setting imposes limita-
tions on clinical workflow. For example, in cardiac electrophysiology procedures
for atrial fibrillation ablation, electroanatomical maps derived from EM-tracked
catheters are known to be relevant only when the maps are acquired with the
X-ray detector placed as far away as possible from the patient thorax. However,
this limits the use of X-ray imaging which is the workhorse for visualization and
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guidance in the interventional suites. Whenever the X-ray C-arm is moved to
acquire new imaging data, the EM environment changes and the electrophysiol-
ogist has to repeat electroanatomical maps in order to ensure that ablations are
not being performed based on distorted measurements.

Different protocols have been proposed to evaluate the accuracy of these sys-
tems in different clinical environments [4], [5] and [6]. They are mainly referred
in literature as methods for EM tracking calibration since they tend to perform a
onetime calibration and then by using an interpolation algorithm to correct the
measurements. In practice, medical intervention suites are dynamically changing
and operating instruments that produce EM distortions actively move within the
workspace of interest. These instruments have different sizes and different ma-
terial composition and some instruments have significant distorting effects such
as X-ray gantries, CT scanners, etc. These distortions vary with instrument po-
sitioning and create a dynamic environment where makes it almost impossible
to predict the distortion error in great detail. The main issue with calibration
methods is the high dimensionality of the error space and sparsity of calibration
measurement points, making this a classic ill-posed inverse problem. We believe
that no matter how accurately error is modelled, it is not possible to use a single
unwarping function to correct for errors in all environments. These methods are
time-consuming and can only compensate for static errors in a single environ-
ment when the number of calibration sample points is sufficiently large [7].

Other researchers have proposed hybrid methods for error compensation [8]
and [9]. By fusing optical and EM tracking systems, the EM measurement errors
are corrected. Specifically in [8], authors used the EM relative error measure-
ments along with a look-up-table resulted from optical and EM systems regis-
tration to improve the tracking accuracy. In our approach, we show that for a
variety of environments, a correlation exists between absolute error (AE) and
relative error (RE). This statistical model is established by collecting a large
number of data and finding the probability mapping between AE and RE. The
model provides an approach for estimation of “absolute error” without requiring
any reference measurements from another tracking system such as optical or a
robot. No such statistical histogram has been addressed in literature and is the
key difference from prior art. This model is then being validated and assessed
and has been shown that in more than 75% of experiments, we are able to classify
the AE with an error of 0.46mm in a 2mm error predication.

2 Relative Error vs. Absolute Error

Conventionally, electromagnetic tracking error is defined as the registration error
between the EM tracker measurement and a reference navigation system, such
as a robot or an optical tracking system.This error is used to draw an error
mapping and analyze the workspace of a tool to examine the behavior of the
error. It provides the evaluation of the workspace necessary to guide the tool in
the zones that the error is minimal. The mapping of absolute errors in dynamic
environments is the best way of analyzing the workspace, however, it requires
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a reference tracking system which is not practical in clinical application. In
this paper, we introduce the concept of relative error to estimate the fidelity
of the working EM space. We define relative error as the difference between
the absolute errors in two sensors whose absolute errors are highly correlated
with each other. In this approach, error is computed for a reference point and
consecutive measurement errors are displayed relative to the reference point in
order to characterize the accuracy in near-real-time. The concept of relative error
is shown intuitively in Fig. 1. The real (known) position of a sensors differs from
its tracked position by absolute error. While the absolute errors might be high,
the relative error between the two sensor positions is lesser because the error
fields are correlated and fairly homogenous.

Fig. 1. Relation between relative and absolute error; two EM sensors are placed in a
tool where moves inside the workspace of the EM tracker

In order to establish a statistical relation between the relative error and ab-
solute error, we consider the measurements from sensor 1 and sensor 2 as two
random variables. Relative error (RE) is the difference between the absolute
errors (AE) and defined as:

RE = ||EMs1 − EMs2| − |Refs1 − Refs2|| (1)

where Refsi and EMsi are the measurements of sensor i position in the reference
and EM coordinate systems. The term |Refs1 − Refs2| is the distance between
two sensors and is given by the design. In other words, relative error is the differ-
ence between the measured distance of sensors s1 and s2 and the ground truth
distance, either given by design or computed during calibration (as described in
Section 3). The absolute error AE is defined as:

AEi = |EMi − Refi| (2)

In this work, we compute absolute error from measurements of sensor one (AEs1).
It is possible to take the average of both sensor measurement, (AEs1 +AEs2)/2,
and assign it to AE, but we found out that the statistics does not differ. It is
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important to note that because of high-dimensionality of absolute error, RE is
a well defined measure to recover all the variations in AE. Even a uniform shift
(bias) in a localized area results in a non-uniform variation of AE rather than a
constant shift and therefore it is detected by RE.

The observed relative error can be mapped to the corresponding absolute
error to estimate the statistics of absolute error in any location. Given the value
of RE at each location the minimum-mean square error estimator of absolute
value of error given the relative error measurement is the expected value of the
conditional probability. Therefore,

ÂE = E[AE|RE] =
∫

(ae)f(AE|RE) d(ae) (3)

where f is the conditional probability density function of absolute error for
a known relative error. Equation 3 suggests that if the 2-D joint probability
distribution is empirically measured, then statistics of the absolute errors can be
estimated using the relative errors. This is done statistically by collecting large
samples of data and observing the relationship between AE and RE.

3 Experimental Setup and Error Measurement

In order to validate the concept of relative error, we have designed a cubical
phantom that accommodates 6 sensors, with 2 sensors in X, Y and Z axes.
Fig. 2 depicts one embodiment of the phantom. The sensors are located 10mm
from each other in each axis to satisfy the distance requirement from correlation
factor and at the same time avoid interfering with each other. In an initial
configuration phase, this phantom is calibrated. By moving the phantom in a
clean, distortion-free environment, data is collected for the 2 sensors in each axis.

Fig. 2. Experimental setup (left) in CT scanner environment showing (a) Aurora field
generator, (b) positioning system, (c) phantom mounted on a non-metallic extension
arm, (d) CT gantry and (e) CT table. - Calibration phantom (right) with two 5-DOF
sensors in each axis residing 10mm from each other.
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(a) (b)

Fig. 3. Comparison between relative and absolute error in different environments

A rigid transformation is found between these two sets of data. The translation
vector of this transformation provides the distance between the two sensors. The
same procedure is applied to other sensors and the distances between sensors for
all axes are found.
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Fig. 4. Relative error in different environ-
ments

Experimental setup (shown in Fig. 2)
is composed of three main compo-
nents: a three-axis positioning robot
(Velmex Inc., Bloomfield, NY), an
NDI Aurora electromagnetic tracking
system (Northern Digital Inc., Water-
loo, Canada) and an in-house phantom
containing 6 EM sensors. The robot
provides three orthogonal degrees of
motion that was used to position the
phantom in space. For each sampled
point, the robot moved the phantom to
each position, pausing at each location
to allow position measurements to be
collected from the Aurora for all 6 sen-
sors. The positioning system provided
the ground truth of expected positions, whereas the Aurora dataset contained
the observed measurements. The Aurora position data was registered to the po-
sitioning system data using a rigid body transformation minimizing the least
squares L2-norm. The absolute error is computed as the error between the EM
data and the ground truth. The relative error on the other hand does not require
any information from the robot measurement (ground truth). It is the difference
between the EM data as measured in real-time and the calibrated geometry of
the sensors.

Fig. 3(a),(b) illustrate a point to point comparison between absolute and rel-
ative error for the sensors in X axis for a workspace of 30 × 30 × 30cm with
resolution of 2.5cm. Data were collected in two different environments; a clean
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Fig. 5. Absolute (left) and relative (right) error maps in a 30 × 30 × 30cm workspace
of EM tracker in an interventional X-ray environment - colorbars are shown in mm

(distortion free), and a distorted (with a magnetic field next to the field genera-
tor) environments. Fig. 4 displays the relative in different environments, repre-
senting the same behavior of relative error in different environments. The data is
fairly scattered and they increase sharply further they are from the origin of EM
field generator. Clearly the relative error is more homogenous and shows smaller
values in both environments. This is demonstrated in the absolute and relative
error maps in Fig. 5, rendered from data collected in an interventional X-ray
environment (Philips Allura FD20). Here, the EM field generator is parallel to
the Z axis facing the XZ plane. These error volumes show similar error patterns
for absolute and relative errors implying a statistical correlation between them.
The correlation sustains across different environments as it could be seen from
Fig. 3 and 5 where in former distortion is caused by an external magnetic field
and in latter, distortion is caused by an interventional X-ray.
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Fig. 6. (a) Mapping between absolute and relative error in a highly distorted environ-
ment and a linear polynomial fit. (b) The probability mapping of absolute and relative
error in a CT environment based on 6 sets of experiments each including more than
13000 samples.
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In order to have a model as reliable as possible, we performed several experi-
ments (with both highly distorted and minimally distorted environments), and
in each experiment we collected more than 13000 sample points. As an example,
Fig. 6(a) shows the mapping between absolute and relative errors for a dis-
torted environment for X axis sensor. This figure also shows a linear fit to the
data with R-square value of 0.82 which presents a good linear relation between
two variables. The final histogram will be the union of all the histograms from
all different environments. These environments should replicate the real situa-
tion that the EM tracking system is being used. For each specific application,
the accuracy of the estimation increases by increasing the number of sampled
data. Our application requires data in a CT environment. We collected 6 sets of
data each including more than 13000 points. The union of all these histograms
is normalized to result the probability mapping of absolute error versus relative
error. The mapping is shown in Fig. 6(b). It should be noted that the region
of interest in an EM tracking system is in the area of small relative errors, e.g.
RE < 1mm, where the majority of samples occur in this region.

3.1 Region Based Absolute Error Estimation

In order to make the estimation of absolute error robust over a region, we collect
N samples of relative error in working region and the final estimate of absolute
error is the sample mean of the these N estimates (see Fig. 1). A sample variance
of these N sample can serve as a confidence measure of how robust the estimation
of the absolute error is in this working space. As an example, Fig. 7(a) shows
the conditional probability density functions for three different values of RE
(= 1, = 0.8, and = 0.9 mm) derived from 2-D joint histogram of Fig. 6(b). The
estimated value of AE is equal to 3.89mm with a variance σ2

AE = 11.19. In
practice, we can collect N estimates of RE by waving the calibration phantom
in the operating workspace, and estimate the statistics of AE.

4 Validation and Sensitivity Assessment

We use leave-one-out cross-validation to assess how well our probabilistic model
predicts absolute errors. The joint 2-D histogram in our model is derived from the
union of different environments, empirically correlating the absolute and relative
errors. We leave one observation out and derive the joint histogram from the rest
of environments. Then, a specific absolute error is predicted through our model
and compared with the real value from the original observation. Let’s consider
the joint histogram derived in Fig. 6(b), and examine two areas of interest; where
the absolute error is acceptable (e.g. 2mm) and where it is high (e.g. 5mm). In
each iteration, we fit the model to 5 histograms and calculate the predication
error for the one left out (e.g. shown in Fig. 7(b)). This is repeated 6 times for
both areas of interest and the cross validation factor is calculated as:

CV2mm =
1
6

6∑
i=1

|ÂEi − AEi| = 0.46mm
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Fig. 7. (a) The probability density function of absolute error for three different read-
ings of relative error in a CT environment. (b) The histogram for a CT environment
considered for validation data.

CV5mm =
1
6

6∑
i=1

|ÂEi − AEi| = 0.89mm

which means a classification error of 0.46mm for a 2mm predication and 0.89mm
for 5mm predication.
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Fig. 8. True classification percentage
based on the number of RE samples in a
CT environment

The sensitivity of our model is
evaluated for two main parameters;
the number of RE samples used for
estimating AE and the number of
environments used for making the
histogram. For latter, we considered
the histogram in Fig. 6(b) and added
new environments up to 9 sets in to-
tal. For each new histogram, the esti-
mated value of AE for the three values
of RE (= 1, = 0.8, and = 0.9 mm) is
derived. The range of estimated AEs
is 4.10−3.44 = 0.66mm. Our sensitiv-
ity evaluation showed that increasing
the number of RE samples improves
the accuracy of the AE estimate. Choosing a threshold value of 0.5mm and an
area of interest of AE = 2mm, we increased the number of RE samples and com-
puted the percentage of AE estimates classified truly; |ÂE − AE| < threshold.
Result is shown in Fig. 8. The model is specifically sensitive to smaller number of
RE samples and after collecting sufficient number of samples (in our experiment
10), the estimates did not improve.
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5 Conclusion

In this paper, we applied the concept of relative error for estimating the fi-
delity of EM tracking field. Conventional approaches are limited to compen-
sating errors in static environments, whereas interventional procedures often
produce dynamic time varying distortions to the EM tracking field. The con-
cept of relative error lends itself to estimating tracking error in real time by
using a calibration phantom for real-time quality control of the EM field. We
made a first attempt to derive an empirical statistical relationship between the
relative error and absolute errors and presented a method to estimate abso-
lute error values within a working region. In future work, we plan to use these
absolute error estimates to define and visualize go/no-go regions based on thresh-
olds provided by the operator. Intra-procedural error characterization and vi-
sual feedback in this manner can be used to alter interventional paths and/or
to reposition medical instrumentation for optimal navigation accuracy. We will
study the number of sensors and their orientation used together in a non-linear
constellation and the size of phantom in the intra-procedural data collection
procedure.
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Abstract. In multimodality image-guided intervention for cancer diagnosis, a 
needle with cannula is first punctured using CT or MRI -guided system to target 
the tumor, then microendoscopy can be performed using an optical fiber 
through the same cannula. With real-time optical imaging, the operator can 
directly determine the malignance of the tumor or perform fine needle 
aspiration biopsy for further diagnosis. During this operation, stable 
microendoscopy image series are needed to quantify the tissue properties, but 
they are often affected by respiratory and heart systole motion even when the 
interventional probe is held steadily. This paper proposes a microendoscopy 
motion correction (MMC) algorithm using normalized mutual information 
(NMI)-based registration and a nonlinear system to model the longitudinal 
global transformations. Cubature Kalman filter is thus used to solve the 
underlying longitudinal transformations, which yields more stable and robust 
motion estimation. After global motion correction, longitudinal deformations 
among the image sequences are calculated to further refine the local tissue 
motion. Experimental results showed that compared to global and deformable 
image registrations, MMC yields more accurate alignment results for both 
simulated and real data.  

Keywords: Fluorescence microendoscopy; motion correction; normalized 
mutual information; Cubature Kalman filter; deformable video registration. 

1   Introduction 

Currently the management of small pulmonary nodules found in CT is follow-up due 
to the lack of specific diagnosis for biopsy. To diagnose and treat small peripheral 
lung cancer in an earlier stage, multimodality image-guided intervention for cancer 
diagnosis is a preferred technique [1]. First, the interventional needle can be 
punctured percutaneously with a cannula based on CT-guided intervention systems, 
and then optical imaging can be performed through the same cannula using fiber-optic 
microendoscopy. Fluorescence microendoscopy is a promising new modality  
for molecular imaging-guided diagnosis and is in the stage of animal studies. The 
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FDA-approved Indocyanine Green (ICG) can be used for human, but it might not be 
specific to benign and malignant tumors.  

Current in vivo microendoscopy imaging techniques include bioluminescence [2] 
and fluorescence techniques [3], and one task in the applications for quantitative 
microendoscopy image computing is that the motion in the microendoscopy image 
sequences needs to be corrected for better visualization and stable quantitative 
measures. Many methods such as image registration [4-6] were proposed for motion 
correction. In these methods, measures such as cross-correlation, mutual information, 
or object correspondences can be used to quantify the similarity between images, and 
geometrical transformations such as scaling, affine, and elastic deformations can be 
used to model the longitudinal movement. However, the longitudinal transformation 
parameters of image sequences obtained from registration methods are not stable 
because the temporal information about the image sequences has not been fully 
considered. To improve the longitudinal consistency, temporal smoothness constraints 
were used in registration of image sequences [7, 8].  

In this paper, we use the normalized mutual information (NMI) to calculate the 
similarity between consequence frames, and at the same time, model the longitudinal 
transformations using a nonlinear system. The Cubature Kalman filter (CKF) 
algorithm [9] is used to estimate the underlying transformations. After longitudinal 
global alignment, the deformable transformations across the image sequences are also 
calculated to refine the local tissue movement by embedding the bilateral filter (BF) 
in the optical flow calculation [10].  

Two sets of experiments were performed to evaluate the proposed MMC 
algorithm. First, simulated microendoscopy image sequences are used to compare 
quantitatively the performance of the NMI-based global with MMC. The results 
showed that MMC yields more accurate motion correction results. Then, we applied 
the algorithms to real microendoscopy image sequences. The average normalized 
mutual information between the baseline frame and the frame after motion correction 
was calculated to evaluate the performance of the motion correction. The results also 
confirmed better image alignment results of microendoscopy videos using MMC.  

2   Method 

We developed a minimally invasive multimodality image-guided (MIMIG) 
intervention prototype system aiming at accurately targeting the region of interest 
embedded in deep tissue (e.g., peripheral lung tumor) and performing in vivo 
diagnosis. As shown in Fig. 1, after successfully puncturing the needle inside the 
tumor, fiber-optic microendoscopy can be used to visualize the tumor cells with high-
resolution videos (the field of view is about ~500 μm, the size of each frame is 
266×264 pixel and the frame rate is 12 f/s). With proper contrast agents such as 
IntegrinSense (VisEn Medical Inc. Bedford, MA) targeting specific pathways of cancer 
cells or ICG, the needle can be locally adjusted to either perform a local molecular 
diagnosis or guide the fine needle aspiration biopsy to confirm cancerous tissue.  

This work uses IntegrinSense as the contrast agent and the Cellvizio 660 system 
[11] to collect microendoscopy data for quantification of tumor and normal tissues 
after MIMIG intervention. We utilized the VX2 tumor model in eight White New 
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Zealand Rabbits in the experiments. The goal was to test the feasibility of possible 
cancer detection using fluorescence microendoscopy. In this paper, we present an 
effective motion correction method of the microendoscopy videos for better 
visualization and image quantification. Before motion correction, in the pre-
processing step, we calculated the image similarity between consequent images of the 
entire video (generally last for 2-3 minutes) into shorter video clips to make sure there 
is no dramatic “scene” change in each clip and then focused on stable motion 
correction of each video clip. 

 

                       (a)                                           (b) 

Fig. 1. Optical imaging-guided microendoscopy. After CT-guided intervention (a), a needle 
cannula is placed to target the tumor, and an optical fiber is inserted in the cannula, and in vivo 
microendoscopy is performed for high-resolution optical imaging analysis (b). 

2.1   Modeling the Longitudinal Transformations Using a Nonlinear System 

Given an image sequence 1 2{ , ,..., }NI I I I=  with N  as the number of frames, traditional 

registration methods calculate the global longitudinal transformations across the video 
by maximizing the normalized mutual information, 
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where 1 2 1{ , ,..., }NH H H H −= denotes the longitudinal transformations, and both rigid and 

affine transformations can be fit into this model. Herein, H consists of serial 
translation, rotation, and scaling on actual images. t tH Io  is the globally transformed 

image tI onto image 1tI + . Because there is no temporal information used in the 

alignment, the resultant serial alignment parameters may not be temporally stable. We 
propose to use a nonlinear system to model the longitudinal transformations, i.e., H
can be modeled as the output of a nonlinear system as follows, 
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where tM  is the state of the system, and tu is the system input. tn  and tw  are 

independent system and measurement Gaussian noises. ( )f ⋅  is the nonlinear system 
function and does not need an explicit form when the Cubature Kalman filter (CKF) 
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is used. The system output function ( )g ⋅  is assumed to be an identity transformation. 

Also, the input signal tu  is assumed to be zero. The longitudinal transformations 

obtained from Eq.(1) can be regarded as an observation or output of the nonlinear 
system, H , and tM  is the actual transformation or the state of the system to be 

estimated. We hypothesize that tM as the underlying longitudinal transformations will 

be more robust and accurate than H . For this purpose CKF is used to estimate M
from H . 

Like the Kalman filter, CKF is a minimum mean-square error (MMSE) estimator 
specially designed for nonlinear systems. CKF can provide a systematic solution for 
high-dimensional nonlinear filtering problems and is more accurate in capturing the 
true mean and covariance of system states. CKF converts the nonlinear system into a 
linear system after transferring the cubature points using the spherical-radial rule, thus 
it avoids calculating the Jacobians and Hesssians matrices as in Extended Kalman 
Filter (EKF). Moreover, CKF is more efficient than EKF for tM estimation.  

2.2   The MMC Algorithm 

Combining the nonlinear system model and the NMI-based registration, the new 
energy function of the proposed MMC algorithm is designed as: 
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where α  is the weighting factor. The first term is the same as Eq.(1), and the second 
term embeds the longitudinal transformation system into the image alignment 
procedure. H  can be regarded as an observation or output of the nonlinear system 
for aligning the images, and M is the actual transformation to be estimated. We 
adopt an iterative strategy to solve M by minimizing the objective function. First, 
assuming M  is fixed, the optimal transformations H  can be calculated by 
maximizing NMI, and at the same time, constraining that H should be similar to M ; 
Then, assuming H  is fixed, estimation of tM  can be achieved by using CKF. The 

negative NMI is used here since we minimize the energy function (thus NMI is 
maximized). The transformation error in the second term is defined as the distance of 
two the transformed points using the two given transformation matrices. Compared to 
the NMI-based registration in Eq. (1), the transformation matrix H is subject to a CKF 
filtering, and hence it can provide more stable motion correction for microendoscopy 
image sequences. Fig. 2 shows the flowchart of the global alignment step. From the 
experiments we found that the algorithm can converge in about three iterations.  

 

Fig. 2. The flowchart of the global registration step of the MMC algorithm 
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After global registration, we also applied longitudinal deformable motion 
correction to refine the detailed tissue movement. This step utilizes the standard 
deformable image registration [12]. The transformation vector tv  from the image at 

timepoint t to the next timepoint 1t + can be calculated by minimizing the following,  

1
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where β is the weight of the smoothness constraint. In our work, a fast 2-D 
implementation of this registration has been used [13]. We found that NMI is more 
robust for global registration since it reflects more global image features. For further 
local refinement using deformable registration, image intensity information is more 
important since 1) image intensity reflects relatively local image features, and 2) the 
deformable registration refinement is constrained by the result of global registration 
and the smoothness constraint. So both accuracy and robustness can be obtained.  

3   Results 

The performance of MMC is evaluated using two experiments. In the first 
experiment, the dataset consists of microendoscopy image sequences generated by 
applying simulated serial translation, rotation, and scaling on actual images captured 
during the image-guided intervention procedure using Cellvizio 660 system, added 
with Gaussian noises. The dataset of the second experiment consists of 
microendoscopy image sequences acquired in our image-guided intervention on lung 
cancer rabbit model.  

3.1   Experiments Using Simulated Image Sequences 

Ten simulated microendoscopy sequences using real microendoscopy frames 
collected from the rabbit experiments were used in this experiment. The longitudinal 
transformations were simulated by using sine and cosine signals,  

( ) sin( )i i i i ip t a b t cφ= + + , (5)

and 1,..., 1,  1,..., 4t N i= − = . , ,i ia b and ic are the amplitude, frequency and shifting of 

the transformation signals, respectively. 1 2 3 4, , ,p p p p represent the translations in x- 

and y-directions, rotation, and scaling. The typical amplitude for translation was set 
to 10 pixels, rotation angles were [-20, +20] degree, and frequency was between 0.5 
and 1. The scaling range was between 0.98 and 1.02. The image sequences were 
generated by first transferring the reference frames using the simulated 
transformations and then adding spatially correlated Gaussian noises. Because only 
global longitudinal transformations were simulated, we compared the MMC (without 
deformable registration) with the NMI-based global registration. Fig. 3 shows an 
example of the alignment results using MMC, where the gray scale images were 
color-mapped according to the intensity values: red correspond to tumor cells, and 
the rest correspond to normal tissue and background. Fig. 3(a) shows the first frame, 
and five following frames were shown in the first row. In the second row, the  
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      (a)             (b1)             (c1)            (d1)             (e1)             (f1)                   

         
                     (b2)           (c2)              (d2)            (e2)            (f2)                   

         
                  (b3)            (c3)             (d3)            (e3)             (f3)                   

Fig. 3. Examples of results using simulated data. (a) Reference image; (b1-f1) simulated 
images; (b2-f2) motion corrected results using MMC; (b3-f3) the difference with the reference. 

  

Fig. 4. Comparison of different methods: the alignment errors for each frame 

corresponding aligned images were illustrated. The third row gives the difference 
between images. It can be seen that the difference between the reference image and 
the aligned image after using MMC is low. 

We also calculated the average errors of longitudinal transformations between the 
ground truth and the alignment results. Fig. 4 shows the errors of the transformations 
using MMC and NMI-based global registration respectively. It can be seen that the 
MMC method yields more accurate estimation of the longitudinal transformations. 
Table 1 shows the average errors and standard deviations of the ten simulated 
microendoscopy videos. It can be seen that the errors of MMC are smaller than the 
NMI-based global registration. These results confirm that because of the use of the 
CKF, MMC can obtain more accurate motion correction based on our simulated 
image sequences. Paired t-test also showed that such accuracy improvement is 
statistically significant (p<0.05). 
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Table 1. The average errors and std for the ten simulated image sequence (unit in micron) 

Index NMI-based global registration MMC (global only) 

10 experiments 2.2 (0.3) 1.3 (0.1) 

3.2   Microendoscopy Video Results 

For validating our approach in real microendoscopy video, we used the microendoscopy 
videos collected from the rabbit experiments during image-guided intervention. After 
cutting the whole microendoscopy videos into different clips based on image similarities, 
we applied the MMC algorithm on 30 microendoscopy video clips. For each video clip, a 
frame with the smallest difference to its neighboring frames was selected as the reference 
frame, and all the other frames were aligned with this reference frame. Similarly we 
applied the full MMC algorithm, NMI-based global registration, and NMI-based global 
registration plus the same deformable registration method on these real image sequences. 
Fig. 5 shows a result using MMC. It can be seen that after motion correction the 
difference images is much smaller. We also calculated the NMI values between the 
reference frame and the aligned subsequent frames as shown in Table 2.  

   
            (a)                (b)                (c)               (d)                (e)                        

Fig. 5. Example results for real microscopy video. (a) The reference image; (b) a frame of the 
simulated image sequence; (c) the aligned image of (b); (d) the difference image between (b) 
and (a); (e) the difference image between (c) and (a). 

Using the proposed MMC the accuracy of image alignment is improved for all the 30 
image sequences studied. If we compare the results between NMI-based global registration 
and NMI-based global registration + deformable registration, we can see the improvements 
on image alignment by using additional deformable registration step. If the MMC and the 
method using NMI-based global registration + deformable registration are compared, we 
can see the improvements because of use of CKF in modeling the longitudinal 
transformations. In average, the NMI values are improved for 12.7% by comparing MMC 
with the NMI-based global registration. Our future work will be implementing the method 
in the image-guided system for visualization of the microendoscopy video and for 
quantitative analysis to establish the criteria for tumor detection.  

Table 2. The average NMI values in each video 

Index (a)NMI-based 
global registration 

(b)NMI-based global 
registration + deformable 

registration 

(c)MMC Improvement 
between (b) and 

(c) (%) 
30 experiments 0.58 (0.07) 0.63 (0.08) 0.70 (0.08) 12.7% (4.1%) 

500

1000

1500
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4   Conclusion 

Microendoscopy imaging is a potential powerful tool used in image-guided 
intervention for better guidance in lung cancer diagnosis and treatment procedures. In 
order to generate better visualization of the microendoscopy videos or to 
quantitatively calculate stable features to distinguish tumor tissues from normal 
tissues, an efficient and stable video alignment is needed. This paper proposes a 
longitudinal video motion correction method by applying a nonlinear system to 
enforce the longitudinal stability of global transformations and using a global and 
deformable registration to find the detailed tissue movement. More accurate 
alignment results can be obtained using both simulated and real microendoscopy 
image sequences. In the future, we will apply MMC to our molecular image-guided 
intervention system for peripheral lung cancer and study quantitative methods to 
characterize and differentiate different tissue types of the lung. MMC may also be 
extended to other object tracking applications in computer vision. 

References 

[1] He, T.C., Xue, Z.: A Minimally Invasive Multimodality Image-Guided (Mimig) 
Molecular Imaging System for Peripheral Lung Cancer Intervention and Diagnosis. In: 
Proceeding of Information Processing in Computer-Assisted Intervention (2010) 

[2] Gheysens, O., Mottaghy, F.M.: Method of Bioluminescence Imaging for Molecular 
Imaging of Physiological and Pathological Processes. Methods 48(2), 139–145 (2009) 

[3] Tian, J., Bai, J., Yan, X.P., Bao, S., Li, Y., Liang, W., Yang, X.: Multimodality 
Molecular Imaging. IEEE Eng. Med. Biol. Mag. 27(5), 48–57 (2008) 

[4] Jenkinson, M., Bannister, P., Brady, M., Smith, S.: Improved Optimization for the 
Robust and Accurate Linear Registration and Motion Correction of Brain Images. 
Neuroimage 17(2), 825–841 (2002) 

[5] Vercauteren, T., Perchant, A., Malandain, G., Pennec, X., Ayache, N.: Robust Mosaicing 
with Correction of Motion Distortions and Tissue Deformations for in Vivo Fibered 
Microscopy. Medical Image Analysis 10(5), 673–692 (2006) 

[6] King, A.P., Jansen, C., Rhode, K.S., Caulfield, D., Razavi, R.S., Penney, G.P.: 
Respiratory Motion Correction for Image-Guided Cardiac Interventions Using 3-D 
Echocardiography. Medical Image Analysis 14(1), 21–29 (2010) 

[7] Shen, D.G., Sundar, H., Xue, Z., Fan, Y., Litt, H.: Consistent Estimation of Cardiac 
Motions by 4d Image Registration. Medical Image Computing and Computer-Assisted 
Intervention - Miccai 2005, Pt 2. 3750, 902–910 (2005) 

[8] Castillo, E., Castillo, R., Martinez, J., Shenoy, M., Guerrero, T.: Four-Dimensional 
Deformable Image Registration Using Trajectory Modeling. Phys. Med. Biol. 55(1), 
305–327 (2010) 

[9] Arasaratnam, I., Haykin, S.: Cubature Kalman Filters. IEEE T. Automat Contr. 54(6), 
1254–1269 (2009) 

[10] Xiao, J.J., Cheng, H., Sawhney, H., Rao, C., Isnardi, M.: Bilateral Filtering-Based 
Optical Flow Estimation with Occlusion Detection. In: Leonardis, A., Bischof, H., Pinz, 
A. (eds.) ECCV 2006. LNCS, vol. 3951, pp. 211–224. Springer, Heidelberg (2006) 

 



 A Motion Correction Algorithm 275 

[11] Sonn, G.A., Mach, K.E., Jensen, K., Hsiung, P.L., Jones, S.N., Contag, C.H., Wang, 
T.D., Liao, J.C.: Fibered Confocal Microscopy of Bladder Tumors: An Ex Vivo Study. 
Journal of Endourology 23(2), 197–201 (2009) 

[12] Shen, J., Matuszewski, B.J., Shark, L.: Deformable Image Registration. In: Proceeding of 
IEEE ICIP, pp. 1112–1115 (2005) 

[13] Wei, L., Shen, D.: Effect of Hierarchical Deformable Motion Compensation on Image 
Enhancement for Dsa Acquired Via C-Arm. In: Proceeding of the 20th Annual 
IS&T/SPIE Symposium on Electronic Imaging, pp. 27–31 (2008) 



 

H. Liao et al. (Eds.): MIAR 2010, LNCS 6326, pp. 276–285, 2010. 
© Springer-Verlag Berlin Heidelberg 2010 

Least-Incision Transformable End-Effector Mechanism 
for Forceps for Endoscopic Surgery 

Hiroaki Nakaji and Ryoichi Nakamura 

Department of Medical System, Division of Artificial Systems Science, 
Graduate School of Engineering, Chiba University 

1-33 Yayoi-cho, Inage-ku, Chiba-shi 263-8522, Japan 
hiroaki.n@graduate.chiba-u.jp 

Abstract. The demand for thinner instruments for endoscopic surgery has been 
increasing because thinner instruments minimize invasiveness and increase the 
applicability of endoscopy. However, in thinner instruments, the end effectors 
are smaller, which limits instrument functionality. We have developed a new 
pair of forceps using a least-incision transformable end-effector (LITE) mecha-
nism that transforms its end effectors by increasing its size within the body  
cavity. In our experiments, the grasping force was measured to be greater  
than 5.3 N. Five non-specialists and three surgeons performed endoscopy  
to evaluate the end effector’s transformation and removal times. The average 
transformation and removal times were 108 ± 37 s and 65 ± 23 s and 86 ± 37 s 
and 61 ± 27 s, respectively, for the non-specialists and surgeons, respectively. 
An in vivo experiment was also conducted on a pig using the LITE forceps.  
Our mechanism is extremely useful for performing least-invasive endoscopy 
surgeries. 

Keywords: Endoscopic surgery, Transformable end effector, Forceps, Least-
invasive. 

1   Introduction 

Today, the demand for thinner instruments for endoscopic surgery, including fetal and 
single-port surgeries, has been increasing since thinner instruments reduce the inva-
siveness of endoscopic procedures, improve the applicability of endoscopy, and pro-
mote the development of new devices for new procedures [1][2]. 

However, the thinner the instruments, the smaller their end effectors, which severely 
limits their functionality. Therefore, it is important to develop instruments that  become 
sophisticated within body cavities. A retractor is a medical instrument used in endo-
scopic surgeries. Once inserted into the body cavity, it can open in a fan-like manner to 
displace organs, but it cannot perform complex movements. To achieve finer and more 
selective control, “assemblable hands” that can be assembled inside the abdominal 
cavity and become large instruments have been developed [3]–[5]. However, this is 
sometimes risky since parts of the device might detach and become lost. 
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In this study, we have developed a novel design for a pair forceps—a least-incision 
transformable end-effector (LITE) mechanism is used to transform the instrument into 
a larger end effector inside the body. The LITE mechanism is initially shaped like a 
thin rod before it is inserted. This enables surgeons to use forceps whose end effectors 
are larger than the port size. As a result, there is no risk of loss of device parts because 
all its components are connected. Furthermore, we have also implemented our LITE 
mechanism in a pair of forceps and evaluated its efficacy through experiments. 

2   Methods 

2.1   Requirements 

Our aim is to develop an end effector that transforms into a pair of forceps for appli-
cations to surgical operations. Hence, the form of the LITE mechanism after the 
transformation has to be the grasper form, and its width in the insertion axis has to be 
in the perpendicular direction. In a first trial, the diameter of the end effector is less 
than 10 mm. Subsequently, we aim to develop an end effector with the diameter less 
than 5 mm. 

2.2   LITE Mechanism 

Fig. 1 shows the structure of the LITE mechanism. The mechanism has six pin joints 
and one degree of rotational freedom at each pin joint (Fig. 1(a)). The pipe is used to 
support the transformation and removal procedures of the mechanism (Fig. 1(b)). A 
part of the pipe has a semicircular cross-section that allows the LITE mechanism to 
bend at a specific joint, and it remains straight otherwise.  

 

 
 
 
 
 
 
 
 
 
 

Fig. 1. (a) Transformable end effector for endoscopic surgery and (b) auxiliary pipe 

2.3   Transformation and Fixation Mechanisms 

The transformation process is outlined in Fig. 2. The LITE mechanism transforms by 
bending in two stages, each of which is controlled by a wire connected to the tip and 

(b) (a) 
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tensioned by the user from outside the abdominal cavity. The transformation process 
consists of the following steps: 

Step 1.  Insert the LITE mechanism into the body cavity using an auxiliary pipe. 

Step 2.  Pull wire 1. The LITE mechanism rotates about axes 1 and 2 (first trans-
formation). 

Step 3.  Remove the auxiliary pipe. 
Step 4. Pull wire 2. The LITE mechanism rotates about axes 3 and 4 (second  

transformation). 
Step 5.  The transformation is completed. 
Step 6.  The device can be held and operated via the slider rod. 

  

Fig. 2. Proposed transformation procedure 

It is necessary to fix the grip elements onto the main shaft after the first and second 
transformations. Fig. 3 shows the position of the lock element and Fig. 4 shows the 
lock mechanism used for the first transformation. The fixation parts first close in step 
3; this is the “unlock” mode. The lock part is fastened to the main shaft by the fixation 
parts that open sideways when the rod is inserted; this is the “lock” mode. A spring is 
assembled inside the fixation parts that can then be closed by the force of the spring 
displacing the rod (back to unlock mode). This mechanism makes it possible to disas-
semble and remove the device from the body cavity.  
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Fig. 3. Lock position                                             Fig. 4. Lock mechanism 

Fig. 5 shows the structure and position of wire 2. The transformation shown here is 
achieved by the user pulling wire 2 (Step 4). Therefore, it is possible to fasten the grip 
element 3 to the main shaft by the tension force of wire 2 that is fixed outside the 
abdominal cavity. The tension of wire 2 is sufficient for performing the “lock” opera-
tion of the second transformation because this position is locked mechanically when 
the gripper opens. 

 

Fig. 5. Position of wire 2 

2.4   Grasping Mechanism 

The gripper of the LITE mechanism increases in size after the transformation. Hence, 
to achieve a sufficiently strong grip, a large generative force is required. Therefore, 
the grasping mechanism is implemented with a slider link, as shown in Fig. 6. The 
link is inserted inside a notch in the slider rod during the first transformation. The 
grasper is then driven by pushing and pulling the slider rod. 

 

Fig. 6. Grasping mechanism 
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2.5   Removal Procedure 

Fig. 7 outlines the process for removing the device from the body cavity. This process 
is an exact reversal of the previously performed transformation. The LITE mechanism 
is straightened by pushing on the auxiliary pipe and can then be removed. 

 

Fig. 7. Removal procedure 

3   Prototype 

Fig. 8 shows the device prototype; it has a diameter of 8 mm and a length of 460 mm 
before the transformation. The width of the gripper is 14 mm. 
 

 

 

 

 

 

 

 

Fig. 8. Photographs of device prototype 

 

(a) Before transformation (b) After transformation 
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4   Experiments 

4.1   Measurement of Grip Force 

We measured the grip force exerted by the prototype by using the experimental 
system shown in Fig. 9. A weight, providing an input force Fin between 0 N and 
50 N, was attached to the end of the slider rod, and the resulting grip force was 
measured five times using a digital force gauge (FGPX-5, Nidec-Shimpo Corpora-
tion, Kyoto, Japan). We also calculated the average value for each Fin. For  
comparison, we also measured the grip force achieved with two traditional grasp-
ers—a 5-mm-diameter grasper with a ratchet handle and a 10-mm-diameter grasper 
(Babrock with ratchet handle, Ethicon Endo-Surgery, Inc.). The interfaces of  
these traditional graspers were removed and a weight was attached directly to the 
gripper rod. Fig. 10 shows the results of the grip force measurements. The grip 
force exerted by the LITE mechanism closely follows that exerted by the 5-mm-
diameter grasper. The grip force with an input force of 50 N was 5.3 N. The maxi-
mum standard deviation (SD) of the measured grip force of the LITE mechanism 
was 0.11 N. 

 

 

 

 

 

 

 

 

       Fig. 9. Experimental system                                      Fig. 10. Experimental results  

4.2   Measurement of Transformation and Removal Times  

We measured the time required for transformation and removal in a simulated endo-
scopic surgery environment using an endoscopic surgery trainer (MATT Trainer, 
Limbs & Things).  

The transformation and removal of the LITE mechanism was performed by eight 
persons, five of whom were non-specialists (students) and three were surgeons  
with experience in laparoscopic surgery. Each person performed the operation thrice; 
they controlled the LITE mechanism with both hands without assistance and  
without using additional forceps. Fig. 11 shows photographs of the transformation 
experiments.  
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Fig. 11. Transformation experiments 

Table 1 lists the measurement results for the non-surgeons; the average transforma-
tion time was 108 ± 37 s, and the average removal time was 65 ± 23 s. Table 2 lists 
the corresponding results for the surgeons; here, the average transformation time was 
86 ± 37 s, and the average removal time was 61 ± 27 s. The transformation and re-
moval times of the non-surgeons and professional surgeons are different, but, in gen-
eral, both groups completed the procedures within 1~2 min. 

Table 1. Time taken for transformation and removal (non-surgeons) 

 

Table 2. Time taken for transformation and removal (surgeons with experience in laparoscopic 
surgery) 
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4.3   In Vivo Experiment 

An in vivo experiment was conducted on a pig under simulated laparoscopic surgery 
conditions, as shown in Fig. 12.  

 

Fig. 12. In vivo experiment 

This experiment confirms that the transformation and removal of the LITE mecha-
nism in the abdominal cavity is possible. However, its tip impacted the abdominal wall 
and internal organs, but there was no damage. Although the smoothness of the gripper 
surface made it slippery, it was possible to grasp sections of the small intestine.  We 
weren’t able to confirm that space of operative field was worse because of  using LITE 
mechanism. Hence, there was no problem with a pneumoperitoneum gas leak. 

5   Discussion 

5.1   Grip Force 

The pinch force necessary to avoid slippage is more than 3.3 N [6]. Therefore, the 
result that a grip force of 5.3 N can be achieved with an input force of 50 N shows 
that the LITE mechanism can grip without slippage. Moreover, it can be used as a 
grasper because its grip force equals that of a 5 mm-diameter grasper. On the other 
hand, the grip force of the 10 mm-diameter grasper is below the expected value. 
Hence, it is difficult to pull the rod used for driving the gripper with a low input force 
because of the strong friction in the internal mechanism. To investigate the maximum 
grip force, we performed an additional experiment—we measured the grip force of 
the 10 mm-diameter grasper by gripping the handle with the hand. The maximum grip 
force was more than 30 N. We also measured the grip force of the LITE mechanism 
that was attached to a simplified interface in a similar manner. The grip force of the 
LITE mechanism was more than 30 N. Thus, we can conclude the LITE mechanism 
of power transmission is adequate. 

5.2   Transformation and Removal Times 

The average transformation time achieved by the professional surgeons was 22 s 
faster than that by non-surgeons. This is because the non-surgeons are not accustomed 
to operating surgical instruments while watching an endoscopic monitor. 
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The professional surgeons who participated in this experiment were of the opinion 
that the transformation time must be less than a reasonable threshold for the LITE 
mechanism to be useful as a grasper. Therefore, it is necessary to improve the trans-
formation mechanism in order to shorten the transformation time. We used an auxil-
iary pipe to support the transformation, but this made the procedure time-consuming 
because it is difficult to simultaneously operate the LITE mechanism and the auxiliary 
pipe. Hence, another approach that does not use an auxiliary pipe must be found. The 
professional surgeons and non-surgeons were able to remove the LITE mechanism 
within approximately 1 min, with no significant differences between these two 
groups. This procedure is faster than the transformation procedure because it is con-
siderably simpler.  

5.3   In Vivo Experiment 

A disadvantage of performing the transformation inside the abdominal cavity is that 
the tip of the LITE mechanism, being long, impacts the abdominal wall and internal 
organs. Hence, it is necessary to improve the mechanism by shortening the bending 
radius to avoid causing any damage. The LITE mechanism has three bending joints, 
and it bends at the middle joint during the first transformation. Therefore, the bending 
radius can be shortened by bending the mechanism at the joint closest to the tip. Fur-
thermore, the fixations and link used for grasping collide with the other components 
during the transformation when the current locking and grasping mechanisms are 
used. Therefore, the locking and grasping mechanisms have to be improved. 

However, we confirm that the mechanism is able to grasp and lift the small intes-
tine successfully. According to the surgeons’ advice, the gripper has a sufficiently 
large area for grasping larger organs. The solution to the problem of slippage could be 
to increase friction at the surface by mechanical processing. 

5.4   Future Work 

We have adopted a wire-driven mechanism for performing the transformation, but 
other mechanisms using springs and gears also exist. In the future, we will consider a 
safer mechanism that realizes the transformation instantly. We also aim to reduce the 
diameter of the LITE mechanism to 5 mm. In fetoscopic surgery, to make the inva-
sion of the delicate uterine wall as minimal as possible, the diameter of the instru-
ments must be minimized [2]. Moreover, thin instruments minimize invasions in other 
endoscopic surgeries as well. Our ultimate aim is to develop a LITE mechanism with 
a diameter of 3 mm. In this study, the transformation mechanism was implemented to 
develop a pair of forceps. We aim to apply this mechanism to other types of devices 
in the future. 

6   Conclusion 

We have developed a new pair of new forceps using the LITE mechanism in order to 
meet the requirements of thinner endoscopic instruments. Our experimental results 
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show that the grasping force achieved was greater than 5.3 N, while the average time 
taken by surgeons for the transformation of the LITE mechanism was 86 s. We also 
evaluated the basic performance of the device by conducting an in vivo experiment on 
a pig. Our results confirm that the LITE mechanism can effectively enhance the func-
tionality of forceps. 
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Abstract. Ultrasound tracking of organs or target volumes is a promis-
ing means to correct the displacement caused by respiration and er-
rors from repositioning in medical applications e.g. in radiation therapy.
However, one major problem of ultrasound images is their inherent low
contrast and clutter which often makes standard algorithms instable for
this purpose. In this work we present the adaption and application of
a probabilistic tracking approach based on conditional density propa-
gation (condensation) for real-time tracking on ultrasound images. This
approach promises to facilitate robust real-time tracking with 5 degrees of
freedom (translation and scaling in x-/y- direction, rotation) of anatomic
structures on noisy and low contrast ultrasound images. The real-time
performance and precision of the algorithm are investigated with ul-
trasound data from the liver. The tracking results of the algorithm are
compared with results obtained from image registration. It is shown that
this algorithm is real-time capable with processing time less than 5 ms
per frame and robust on low contrast target structures with a preci-
sion below 1.6 mm in translation. Compared with an independent image
co-registration method, this method leads to a superior displacement
correction in pre-delinated target structures.

1 Introduction

In modern radiotherapy, the procedures of delivering prescribed dose are always
affected by the inevitable organ motion though machines have precision in mil-
limetre range. Real-time tracking of the organ motion can help to improve the
precision by simultaneously and synchronically adjusting the target position.
Due to its real-time, portable and non-invasive nature, ultrasound imaging sug-
gests itself a good choice for tracking. Although substantial work has been done
to facilitate ultrasound tracking of organ motion the problem of robust motion
detection is still partly unsolved. The substantial clutter and low contrast forms a
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major obstacle in motion control in ultrasound images. For non-real time applica-
tions feasible solutions have been proposed to e.g. retrospectively segment organ
boundaries on ultrasound series in echocardiography [1,2,3]. Also, the tracking
of slowly moving surgical instruments, which generally exhibit high contrast
and a known shape, has been successfully pursued with ultrasound images [4].
However, robust (i.e. noise insensitive) real-time tracking of tissue regions still
remains a challenge. Although some promising methods have been suggested to
track resparitory motion in abdominal ultrasound images, these methods are
generally computationally costly and require the incorporation of other imaging
modalities [5] or additional markers [6].To overcome these obstacles we used an
active contour algorithm that possesses beneficial properties to track noisy, low
contrast ultrasound image structures. The algorithm relies on a bayesian proba-
bilistic approach with conditional density propagation (condensation) which was
first proposed by Isard and Blake [7,8]. The statistical nature of this approach
makes the process stable against image noise and hence suits ultrasound image
sequences well. This process was proved to be fast enough to operate and control
the motion in real-time [9].

In this work we implemented the 2D real-time ultrasound tracking and in-
vestigated the motion tracking behaviour in-vivo within the liver. To facilitate
ultrasound tracking with this algorithm, a dedicated measurement and weight
calculation procedure was introduced. The precision of extracted trajectories
was determinated by inverstigating the variances between different real-time
runs of the algorithm. Besides, this contour tracking algorithm have been com-
pared to an independent (non-real-time capable) co-registration of the ultra-
sound frames.

2 Methods and Meterials

2.1 Contour Tracking Algorithm

To track motion with cluttered and noisy ultrasound images an algorithm for
contour tracking using a stochastic random sampling procedure (condensation
algorithm) [8] was adopted in this work and a dedicated measurement and weight
calculation procedure was introduced to meet the special requirements for ul-
trasound tracking. As a first step, a contour on a target structure is delineated
manually by marking several points in one frame of the ultrasound data. In this
delineation procedure points expected to be bright are marked with a bright
point marker and points expected to be dark with a dark point marker. In this
way a base contour with Mb bright points Md dark points(Mb+Md=M) is gen-
erated. To represent the movement of the base contour, a contour state s that
consists of the transform parameters in 5 degrees of freedom(x and y trans-
lation, x and y scaling and rotation) is used. The tracking procedure takes a
Bayesian approach and starts with the initialization of a N size contour state
set {s(n)

0 , n = 1, ..., N} with a gaussian number generator (in this work N was set
as 1000 to enable a real-time tracking). In subsequent procedures a probability
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distribution of current state set {s(n)
k , n = 1, ..., N} for current ultrasound image

is calculated and a predicting state set is derived in the following steps:

1. Observation on the ultrasound data: For each sample an observation Zk is
derived by measuring the gray values Ib of bright markers and Id of dark markers
in the ultrasound frame k . The observation density pz(s

(n)
k ) for a certain sample

s
(n)
k , n ∈ {1, ..., N} is generated in the following way:

pz(s
(n)
k ) = p(Zk|Xk = s

(n)
k ) ∝ (

1
Mb

·
Mb∑
i=1

((Ib)i) −
1

Md
·

Md∑
i=1

((Id)i))2 (1)

Then a weight set {π(n)
k , n = 1, ..., N} which represents the probability of respec-

tive state set is generated as follows:

π
(n)
k =

pz(s
(n)
k )∑N

i=1(pz(si)
, n ∈ {1, ..., N}. (2)

2. Sample selection: As a preparation for the next step, samples in the prior set
{s(n)

k , n = 1, ..., N} with high weight are selected preferentially to generate a new
N-size selected set {s′(n)

k , n = 1, ..., N}, that is to say, the propagation posibility
of a certain sample s

(n)
k , n ∈ {1, ..., N} is proportional to the respective weight

π
(n)
k .
3. Propagation: The selected set {s′(n)

k , n = 1, ..., N} then serves as the base
for the following autoregressive diffusion process to generate a posterior set
{s(n)

k+1, n = 1, ..., N}:

s
(n)
k+1 = sk + A · (s′(n)

k − sk) + σ · G(0, 1), n ∈ {1, ..., N} (3)

and

sk =
N∑

n=1

π
(n)
k · s(n)

k , (4)

where G(0, 1) is a Gaussian diffusion term with a width σ adjusted according to
the tracking problem, while A is the factor defining the process scaling which
describes the weight of the propagated sample relative to the stochastic diffusion
process in the model(in this work A=0.4 was set).

The three steps above iterate themselves to complete a tracking of the target
structures over all the frames in a ultrasound data. To extract a propagated
contour a consensus contour is calculated as a weighted mean of all samples in
the current sample set. The mean state parameters s serve to generate movement
parameters for the control of a medical device.

2.2 Materials

In this work, the algorithm was implemented in C++ on a PC with 2 Pentium
XEON 3.2MHz processors and 1GB RAM. The software makes use of DirectX
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9 to stream ultrasound data and can be used with on-line ultrasound imaging
or off-line with stream playback from a hard-drive. The algorithm performance
was tested in-vivo with respect to real-time tracking of respiratory motion. The
ultrasound data of the liver with approximate sagittal view were acquired in a
volunteer during around 10 deep breathing cycles with an ultrasound system
(Echo Blaster 128 1-Z)from Telemed Inc. (LT). For image generation a curved
linear array transducer (Vermont Inc., 3.5. MHz, 128 lines, FoV=220mm) was
used. The data were acquired in real-time with a frame rate of 25Hz and subse-
quently stored to a hard drive. The algorithm was run on the data by playing
them back with the same frame rate as acquired.

3 Results

To demonstrate the feasibility of robust tracking, the proposed method was
evaluated on liver ultrasound data. The parameters in the algorithm were set as
follows: sample number=1000, σ(x-translation)=σ(y-translation) = 0.01, σ(x-
scaling) =σ(y-scaling)= 0.005, σ(rotation) = 0.01, and the base contour was
generated by manually picking up 28 contour support points (13 bright and
15 dark points) on the diaphragm and vena portae in the first frame of the
ultrasound series. During the tracking, displacement parameters in 5 degrees of
freedom for each ultrasound frame were recorded. An exemplary raw data frame
with corresponding contour delineation is shown in Figure 1. The algorithm
tracked the delineated features in real-time with a average computing time of
3.4 ms for each frame. Visual inspection of the tracking contour shows that the
tracking contour follows the target structures very closely.

3.1 Algortithm Precision

To obtain a measure for the reproducibility of our stochastic procedure, several
real-time runs of the algorithm on the same liver dataset were compared. In

Fig. 1. Left: The field of interest in a ultrasound frame. Middle: The initial contour(28
points) overlayed on the first frame(Δt=0 ms) of the liver ultrasound data. Right: The
tracking contour from our real-time algorithm overlayed on a later frame during deep
breathing (Δt=1000 ms).
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Fig. 2. x-y Trajectory of the contour with a single real-time tracking and the mean
of 5 runs on the liver ultrasound data(36s, 909 frames) during deep breathing with 28
contour points(13 bright and 15 dark points). Tracking parameters were set as followed:
sample number=1000, 5 degrees of freedom, σ(x-translation)=σ(y-translation) = 0.01,
σ(x-scaling) =σ(x-scaling)= 0.005, σ(rotation) = 0.01.

Table 1. Standard deviation of 5 real-time runs in all the degrees of freedom with
contour tracking(1000 samples, 28 contour points)

Standard Translation Translation Scaling Scaling Rotation Computing
deviation -X[mm] -Y[mm] -X [100%] -Y [100%] [rad] time [ms]
Average 0.40 0.17 0.46 0.21 0.007 0.025

Minimum 0.071 0.027 0.082 0.036 0.002 0.001
Maximal 1.54 0.66 1.24 1.27 0.027 1.855

Figure 2 a typical real-time x-y trajectory of the contour (approx. 10 breathing
cycles) is shown together with the mean over 5 independent runs of the exper-
iment. From the figure, it can be seen that the real-time trajectory generally
follows the mean trajectory within a distance of less than 1 mm. As a general
measure for algorithm reproducibility the standard deviation for 5 independent
real-time tracking runs on the same dataset was calculated. The maximal, min-
imum and average values of standard deviation in the time course are shown in
Table 1, from which it can be seen that for typical situations the displacements
of the live structures can be determined with a precision well below 1.6mm with
the computing time for each frame less than 5ms.

3.2 Algorithm Comparison with Image Co-registration

As an independent measure of tracking quality, the results from the tracking
procedure were then compared with an independent frame-by-frame image co-
registration. Due to the relative poor quality of ultrasound images, all the frames
of the ultrasound data were prepocessed with a mean filter of 9-by-9 neighbor-
hood. Then co-registration was implemented using the ITK library, in which
Affine Transform,Linear Interpolator, Mean Squares Metric and Regular Step
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Fig. 3. Time courses of the 5 transform parameters(x-/y- translation, x-/y- scaling and
rotation) for the liver movement during 8 breathing cycles resulting from the contour
tracking algorithm and the co-registration method

Gradient Descent Optimizer are used [10]. Frame 15 in the liver data was de-
fined as the base frame and then registered to all the other frames one-by-one
to get the transform parameters. In this way, a continual spatial transform pa-
rameter set was generated as a contrast of the contour tracking algorithm.

Figure 3 shows the results of the 5 transform parameters with the contour
tracking algorithm and co-registration method, in which frame 15 was adopted
as a reference frame for both results. As we can see, the co-registration and con-
tour tracking algorithm yielded rather similar time-courses for x-/y- translation
and x-scaling. However, certain differences in y-scaling and rotation is notable.

Table 2. Transform parameters from frame 15 to frame 180 using registration and
the contour tracking algorithm

Translation Translation Scaling Scaling Rotation Computing
Method -X[mm] -Y[mm] -X [100%] -Y [100%] [rad] time [ms]

Registration 4.8271 11.8720 1.1139 0.9973 -0.0372 1626640
Contour tracking 4.9212 16.0640 1.0878 0.9845 -0.0195 3.461509
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Also, the y-translation in the maximum inhaled and exhaled states proves sev-
eral millimeters bigger when estimated from the contour tracking algorithm than
from registration. Although in the some degrees of freedom there are large dif-
ferences between the tracking algorithm and image co-registration method, it
makes no sense to investigate the difference in each degree of freedom sepa-
rately, because parameters only make sense as a whole other than considerded
as separate numbers. To clarify the effect of the paramter sets on the actual
ultrasond images the frame 15 was compared to a later frame 180 which has a
large displacement. Respective transform parameters resulting from the contour
algorithm and registration are shown in Table 2. To have a visual judgement
on the transform quality, the resampled frame 15 with transform parameter sets
from each method was subtracted from frame 180, and then the rescaled results
are shown in Figure 4. From the figure, we can see that the major displace-
ments around the diaphragm from the original images were corrected with the
transform results of both methods. It was also shown that the contour tracking
algorithm works better around the vena portae, while the registration yields a
superior match at places where the ultrasound probe was contacted to the skin.
These differences can mainly be attributed to the fact that the contour tracking

Fig. 4. Upper left: the ultrasound frame 15 in the liver data. Upper right: the ultra-
sound frame 180 in the liver data. Lower Left: the rescaled subtraction of frame 180
from frame 15. Lower middle: the rescaled subtraction of frame 180 from transformed
frame 15 using the result of registration. Lower right: the rescaled subtraction of frame
180 from transformed frame 15 using the result of contour tracking.
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algorithm tends to only match the structures a user delineated contour relevant,
while the registration takes into account more or less all the image regions.

4 Conclusion

In this work we presented a method to track organ structures on ultrasound
images using an algorithm based on conditional density propagation [8]. It was
shown that with the method it is feasible to track relevant liver structures real-
time on 2D ultrasound images with computing time in the order of milliseconds.
The algorithm proves to be robust on low contrast target structures and insensi-
tive against image noise and is therefore well suitable for ultrasound applications.
As demonstrated the method provides high reproducibility. Because of the lack
of ground truth in vivo tracking, an independent image co-registration registra-
tion method was introduced to determine the tracking quality. The comparison
shows that the contour tracking algorithm tends to only match the structures a
user delineated contour relevant, while the registration takes into account more
or less all the image regions, which can be the main reason of the differences
between these two methods. As the tracking algorithm leads to superior dis-
placement correction in structures that was previously delineated as part of the
contour, a good tracking of the target in real-time can be yielded with delin-
eation of relevant structures on the image and using the suggested algorithm.

This ultrasound tracking method can then be beneficially used in several med-
ical applications eg. the compensation of organ movements in radiation therapy
to improve the accuracy of dose delivery to the target, and the real-time reduc-
tion of motion artifacts in diagnostic imaging modalities such as CT and MRI.
For further clinical utilization, we are now developing the 3D tracking algorithm
based on this proposed method.
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Abstract. Elastography is the imaging modality focusing on detection of stiff-
ness variation within inhomogeneous soft tissue. We extended a conventional 
2D axial radio frequency (RF) spline correlation based elastography method to 
multiple orientations, and strengthened its power by equipping it with shear-
direction gradient options. This algorithm enhancement explained the elasto-
graphy from multiple dimensions along lateral and angular orientations, and 
thus improved its capability in distinguishing tumours from their surrounding 
desmoplastic fibres. 26 breast cancer cases, from 24 out of 83 recruited patients 
in our previous study, were re-evaluated, and few Phantom cases were intro-
duced to describe the foundation of the proposed method as benchmarks. Re-
sults obtained using the new technique showed strong improvement over the 
previous method on tumour sensitivity, specificity, fibre recognition and 
boundary size assessment accuracy.  

Keywords: 2D multiple orientation Ultrasound Elasticities, Axial, Lateral, and 
Shear Strains, malignant breast cancer, size assessment. 

1   Introduction 

Elastography is an imaging method, first introduced by Ophir et al in 1991 [1], by 
giving inhomogeneous tissue a quasi-static axial compression and computing the 
partial derivative of ultrasound-detected tissue element displacements along the axial 
orientation, indicating tissue stiffness. As cancerous elements are normally stiffer than 
surrounding normal tissue, this method can be applied to detect cancers. Furthermore, 
it has been attested to be very promising in distinguishing malignant tumours from the 
benign [2] and is possible to replace traditional clinical palpation in breast cancer 
detection in the future. However, because axial elastography acts only along the axial 
orientation, it is inherently limited in probing 3D targets.  
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As the target objects all have a certain 3D geometry, lateral displacement during 
the quasi-static axial compression (perpendicular to the axial orientation) is normally 
unavoidable and were first seriously studied and published by Konofagou and Ophir 
in 1998 [3]. The RF signal amplitude and phase information were interpolated along 
lateral orientation for displacement and strain computation, and was named lateral 
elastography. This method compensated for axial strain by considering unconfined 
volume element lateral slips, which are very common in clinical cases where soft 
tissue is not normally confined for compressions.  

 Both axial and lateral strains are designed to demonstrate the central part of a stiff 
lump (where the displacements are the largest), rather than the boundary conditions of 
it (which are indicated only by fuzzy gradient changes). In 2007, Thitaikumar, Ophir 
et al visualized the bonding at an inclusion boundary using axial-shear strain elasto-
graphy [4]. Patterns from both loosely and tightly bounded inhomogeneous elements 
were classified, which clinically correspond to malignant and benign tumour bound-
ary conditions respectively [5].   

Our objective is to use elastography to determine 2D tumour size assessment, 
which includes the interests on both cancer volume and boundary visualization. The 
previous stage of this study focused on the axial strain pattern distribution in 90 breast 
cancer ultrasound data from 87 patients, which started in 2005 [6, 7]. Axial strain is 
the most effective of strain types because its orientation of detection is in line with the 
main displacement. However, in the vicinity of the left and right vertical boundaries 
of the tumourous tissue, where the transducer is less sensitive to displacement differ-
ence among inhomogeneous tissues than to those close to horizontal boundaries, other 
modalities of strain detection, like lateral & shear-strain elastographies which also 
consider tissue slipping or tissue property in other orientations, can help. A multiple 
orientation strain is therefore an obvious enhancement to supply more layers of in-
formation to depict the complex volume and boundary situation of cancer.  

In this second stage, 26 cases from the original datasets have been restudied by 
looking into and extracting lateral, axial-shear, and mathematical angular (Mθ ) strain 
 

 

Fig. 1. Examples of ultrasound RF signals, of a 4-fold harder gelatin circular inclusion, along 
different orientations (A on the left), and its M0 strains (B on the right) 
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patterns (Fig.1A illustrates interpolated RF signals along axial, lateral, and M45 axial 
directions of a gelatin cylinder, included inside a softer gelatin environment, here, θ  
is in degree), which refined our understanding of tissue stiffness distribution by also 
considering orientation dimensions other than axial elastography. Improvements are 
shown in nearly all results by comparing them with pathological scans. In many cases 
(≥ 85%), the desmoplastic fibres were distinguished from the tumourous elements.   

Section 2 will introduce the method we used from the aspects of motion estimation, 
strain extraction, and process control. Section 3 will show results with statistical 
analysis. Section 4 will compare the proposed method with the other main method of 
elastography, (i.e. using phase shift technique), briefly digging their pros and cons. 
Section 5 is a brief update on the ongoing experiments concerning building 3D con-
text for a better 2D elastography understanding, which can be a solid stepping stone 
between 2D and 3D studies.      

2   Method 

In a similar way as for the lateral strain, we interpolated the RF signals to splines 
along Mθ . We started this multi-orientation study from θ =30 and θ =45. The θ  is 
called mathematical rotation angle because it can be converted to an actual angle 
according to specific ultrasound image dimensions (mainly decided by the ultrasound 
focal depth used), e.g., in Fig.1, the actual axial strain detection orientation is along -

19.81⁰ and lateral elastography along 70.19⁰, when θ  is 45. 
Based on our first stage study, a spline-based algorithm for continuous time-delay 

estimation proposed by F Viola [8] was adopted for motion estimation because of its 
good performance on de-noising jitters and bias using a smooth piecewise cubic spine 
fitting function to prepare RF data. For strain extraction, since the direct gradient 
operation normally amplifies image noise, a Least-Square Strain Estimator (LSSE)  
for Elastography proposed by F Kallel and J Ophir [9] was adopted to reduce noise 
artifact. 

2.1   Displacement Detection 

Time Delay Estimation (TDE) is convenient in our study to determine the relative 
time shift between the pre-compression (reference) signal )(1 ts  and post-compression 
(delayed) signal )(2 ts , where t  is the time parameter. Both the reference and the 
delayed signals are frequently seen in a discrete form as 
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In order to find out the relative displacement between ][1 is  and ][2 is , a classic sum 
square error (SSE) pattern-matching function as equation (2) is convenient to conduct 
a rigid registration between this image pair. 
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To obtain good performance on de-noising among time delayed signals, a smooth 
piecewise cubic interpolation was first applied to )(2 ts  (for 2D data, this is conducted 
by a cubic spline interpolation along axial direction, followed by a same interpolation 
along the lateral orientation), and this signal after interpolation is represented 
by )(ˆ2 ts . Since the thi  signal of the continuous )(ˆ2 ts  can be written as 

iiiii dtctbtatf +++= 23)( , the derivative of )(tε with respect to t , ie., the Jacobian error 
shown in equation (3), was computed as an nonlinear optimization scheme to find the 
centre pixel location of the best match area in )(ˆ2 ts  to the centre point of ][1 is .   
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where ][1 is  has no dependence on t . When equation (3) equals to zero, the SSE is 
minimized and the 2D distance between )(tfi

 and ][1 is  central points are the dis-
placement of ][2 is  along axial and lateral directions.  

Since spline correlation for displacement detection on large ultrasound images is 
normally expected to be of high accuracy but is also computationally intensive, 3-
layer Gaussian-window (Gw) downsampled-to-fine scaling pyramid were used to 
convolute )(1 ts  and )(2 ts  as shown in equation (4). So that, a global-to-local best 
signal matching procedure was conducted, combining accuracy with efficiency.  
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We found out that the continuous )(tfij
, ie., the cubic spline interpolation on thj Gw 

downsampled ][2 is , can be equally expressed in a set of divided, independent 2D 
spline blocks∑ =

jK

k ijk tf
1

)( , with approximately 5-pixel margin width along each block 
side removed in avoiding insignificant marginal difference. 

jK is promotional to the 
downsampled signal size. Then, to implement spline fitting along Mθ , ][2 is Gw

 was 
broken into a set of pitches ∑ =

K

k Gw iks
1 2 ][ , and all these pitches were rotated simulta-

neously by Mθ , before 2D cubic spline interpolation. For convenience and the best 
signal to noise ratio (SNR), those pitches were centred at the pixels which also cali-
brate the 3-layer Gw pyramid to obtain the same result resolution, as our previous 
study did, for each strain type. Therefore, the equation (2) was updated as  
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where θℜ is the 2D rotation matrix, and )(tfijkθ is the interpolated signal upon rotated 
post-compression signal ][

2
iks jGw

. 
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Both source and target image blocks were rotated in pairs with a sufficient radius 
to both cover the whole image area in Mθ , and to maintain proper overlap areas 
between blocks for an accurate signal correlation. Thus, rotation windows were super-
imposed onto the correlation windows, with the minimal rotation radius 

minr  and cor-

relation window height min,θh  and width min,θw given in equation (6). 
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where 0Mh  and 0Mw  are predefined window size in our previous study for best detec-
tion sensitivity with lowest noise level. Correlation best matching centre pixels in 
θ were recorded at the same axes location as where they were in our previous study, 
so that results can be compared without registration.  

2.2   Strain Extraction 

Tissue strain is the gradient of signal displacements along detection axes within the 
time interval. Let v and u be the displacements along y and x axes, the strains are 

xvyuxuyvyx ∂∂+∂∂+∂∂+∂∂= ////,ζ ,   (7)[5] 

where the terms are axial, lateral, axial-shear (AS), and lateral-shear (LS) strains.  
For each strain type, LSSE interpolates the M (16 in our study) displacement val-

ues, achieved from the displacement detection stage, into one final set of values for 
strain estimation.    

When the applied tissue compression is small (in our study, 3.75mm), the tissue 
movements are mainly linear. Thus, for each discrete signal ][2 is , 
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where 
iz is the tissue depth, a  and b are constants to be estimated for each strain type, 

and 
izba /+ forms the strain matrix. When 

izb /  is small enough to be ignored,  a  is 
the maximally approximated strain value.  

A quick summarization of this idea is to ascertain the motion state by computing 
LSSE of the obtained displacements to map a strain pattern which can help predict 
their future motion tendency when another pressure is applied.   

To further increase SNR, the elements gained smaller normalized signal correlation 
errors (NSCE) in displacement detection were given higher weights in strain extrac-
tion. The weight values were computed using the reciprocal of the NSCE as  

)2].^[2].^[/(],[2 21 isisuvw iii +=    (9) 
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Thus, using this proposed method, for each axial case in our previous study, 7 
more elastography patterns (M0 lateral and shear strains, Mθ  axial, lateral, and their 
shear strains) were produced for contribution analysis.  

2.3   Orientation Selection and Its Process Control 

Theoretically, the rotation angle θ  can be along any orientation, which should be 
followed by downsampling scale rate changes to avoid changing the actually imple-
mented rotation angle and to satisfy the resolution need for motion detection along 
every axis to supply both accuracy and efficiency. The value used in this study for 
image size of 5×3cm (656×768 in pixel) are:  

for M0, 2: =xy GwGw ;     for Mθ , 1: =xy GwGw .   (10) 

To prevent tissue from slipping outside the 2D scanning plane, tissue decompression 
was used to collect )(1 ts  and )(2 ts . Since tissue displacements and slipping orientations 
were mechanically stimulated by not only the compression force but also the tissue 
internal structure which were not fully demonstrated in static B-mode image because 
of its low resolution, slipping during compression process was hard to predict. De-
compression is the reverse progress of a compression. During a tissue compression-
decompression cycle, clinical doctors first observe the tissue behaviours in compres-
sion progress through dynamic B-mode and adjust the compression force till the tis-
sue motions are satisfying, then we recorded the M set of ][1 is  and ][2 is  pairs during 
the immediately following decompression progress.    

Another challenge we also considered was large tumour detection (greater than 
15mm in radius). To illustrate this, we used a 3.5cm-diameter gelatin cylinder inclu-
sion, larger than any instruction case in literature. We observed during decompres-
sion, that although the inclusion is homogeneous, displacement of elements inside it 
was not smoothly consistent. As a consequence, the strain pattern inside the inclusion 
in deep focal depth (e.g., 8cm instead of 5cm from the previous study) exhibits 
smooth jitters, e.g., the M0 strains in Fig.1B and Fig.1C. Especially for freehand 
compression and ultrasound scanning, any tiny hand tremble of the operator can 
change the element motion speed and cause this problem. However, after observation 
of around 10 freehand cylindrical phantom results applying various displacement 
forces on different stiffness inclusions, we discovered the amplitudes of these strain 
“pulses” can be smoothed by using larger motion detection and/or larger strain extrac-
tion windows (e.g., the smooth Fig.2G using strain extraction window of size 12x12 
pixels, in comparison to noisy Fig.2H, using 1e-7x1e-7, which is however sharp to 
boundary information), or by a post-processing quality refinement – amplitude enve-
lope (AE), given in equation (11). AE was implemented for freehand cases if the 
operator was not steady, where the )(ˆ2 tx  is the Hilbert Transform of )(2 tx .  

))]/(1(*)([)()(ˆ)()( 222 ttxjtxtxtxtA ⋅+=+= π           (11) 

One result examples of this analytic refinement on Fig.1B(1) is shown in Fig.1B(4).  
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3   Result and Evaluation 

26 malignant breast cancer and two phantom cases (the circular inclusion in Fig.1 and 
a plastic dinosaur phantom introduced and shown in Fig.2) have been compared and 
studied. Phantom data were acquired freehand using a Zonare z.one ultra Convertible 
Ultrasound System and an 8.5 MHz L10-5 Linear Array 2D transducer. The clinical 
data were acquired using an Analogic AN2300 digital ultrasound engine which com-
bined a 64-channel digital beamformer front end and a B-K medical 12 MHz 8805 
transducer. To avoid freehand system’s operator tremble error, an assisted freehand 
elasticity ultrasound stepper for breast cancer study was designed in our first stage 
study [6] to contain the transducer, supplying motor controlled automated measure-
able external compression to reduce movement variability. The ultrasound scanning 
was also automated and multi-triggered by the motor moving depths. The increased 
motion control refined image quality and enhanced imaging repeatability. As a radi-
ologist can manually locate it to any lesion area, it also remains sufficiently flexible 
for breast assessment whilst accommodating these mechanical improvements. For 
each clinical case, 3.75mm compression was applied, 16 slides were scanned, and the 
strain extraction window sizes used were 6x3 pixels for Mθ  strains, 0.1x3 for M0 
lateral strain, and 3x1 for M0 axial, AS, and LS strains. 

The results of this method were compared to pathological scans, which was sup-
plied by cellular pathologist, following NHS guidance on recognizing cancer cells 
behind microscopy. 83 patients were recruited, from whom 90 elasticity studies were 
acquired. Patients requiring a mastectomy, instead of a lumpectomy wide local exci-
sion, were excluded in the middle of the study because of the technical problems in 
the pathological evaluation. This left 31 patients with pathological scans, and 5 of 
them with pathological scans not showing the ultrasound scan planes (which is a 
common 2D evaluation difficulty), thus, 26 cases from 24 patients were finally in-
cluded in the result evaluation. Since very few benign cases were presented, no com-
parison between malignant and benign was conducted, and all results mentioned here 
were derived from malignant tumour cases. Result example from a freehand tiny (2%) 
decompression of a confined 4-fold harder circular inclusion in gelatin is illustrated in 
Fig.1B. Since our strain computation is based on linear assumptions, smaller move-
ments normally yield better results. The lateral strain image Fig.1C is equally good as 
the axial strain counterpart in Fig.1B(2) because of its even tinier and stable dis-
placement, or say, lateral slip. The ideal range of tissue movement depends on trans-
ducer sensitivity and the use of other equipments to hold transducer steadily to avoid 
jittering noise. Fig.1B(3) shows the axial-shear strain of Fig.1B phantom, in which the 
boundary of inclusion has been obviously enhanced. Four clinic result examples are 
shown in Fig.3. The central tumour in red (T) and surrounding similar-colored fibres 
(F) are marked in the M0 axial strain images Fig.3B. The M0 axial strain excellently 
detects the upper and lower boundaries of the tumour, while the weighted root mean 
square (wRMS) sum of M0 and Mθ  axial strains (Fig.3C) supplies more left and 
right boundary information, and the final strain map in Fig.3D, using weighted sum of 
all strains from both M0 and Mθ orientations, separates the tumour from adjacent 
fibres (weights used are in the range of 0~1.8). Pathological scans (Fig.3E) made after 
surgery by cellular pathologists were used for evaluation.   
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Clinical sensitivity and specificity were used as the common evaluation methods 
for diagnostic tests. The ratio of desmoplastic fibre in the detected tumour area (FIT) 
was checked to compare methods’ capabilities in distinguishing fibres from malignant 
tissue, where the desmoplastic fibres were defined as the areas wrongly considered as 
being tumourous by M0 axial strain.  Symmetric boundary Euclidean distance root 
mean square (SBDRMS) error was employed to evaluate cancer size assessment accu-
racy. Normalized cross-correlation (NCC) was utilized to relate strain pattern inside 
the detected tumour to reference texture. Table 1 summarizes the averaged values 
from these analyses. Sensitivity and signed SBDRMS values echo the consensus that 
the object size determined using the conventional method is normally greater than the 
reference size, while our proposed multi-orientation method supplies a more accurate 
boundary, which can be slightly smaller than the reference, evidenced by specificity, 
NCC, SBDRMS, and signed SBDRMS. Fig.4 draws the polynomial of FIT ratios 
from the results using only M0 axial strain, M0 strains (including lateral and shear 

strains), and our proposed Mθ (here, θ =30 to build an actual approximate 45⁰ rota-
tion) strains assisted method. In comparison to the conventional spatial cross-
correlation axial elastography, our proposed method demonstrates better performance. 

4   Discussion on Comparison with Real-Time Phase-Shift Method 

Phase shift is the other mainstream technique of elastography, mainly applied to real-
time applications. It is fast due to using only phase spectrum correlation instead of full 
RF signal spatial cross-correlation. The accuracy of the conventional phase shift 
method is limited because of few variances among phase spectrums, and aliasing will 
cause errors in long displacement distance greater than a half wavelength. Both of 
them mean large motion will easily cause mismatching. Later versions with certain 
fast correction approaches can be reasonably reliable. For comparison, we applied a 
real-time method prepared by Shiina et al [10]. It is based on classic Doppler blood 
flowmetry, enhanced by selecting only nonalias zones for correlation and the esti-
mated distance double confirmed using a smoothed envelope autocorrection. During 
comparison, we observed that although large displacement will cause blurry bounda-
ries, it is reliable in obtaining global volume representation. However, too strong 
smoothing degrades its accuracy. Fig.2 demonstrates a comparison example of this 
methods (Fig.2I) with our proposed method (Fig.2H) on a complex-shape phantom 

case using a soft-plastic dinosaur which has 30⁰~45⁰ wings as the gelatin inclusion. 
 

 

Fig. 2. M0 and M45 multi-mode strains (C~H), compared to a phase-shift method (I) 
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Fig. 3. Four patient case (PC1~4) examples illustrate the capability of our proposed method in 
isolating tumours (areas in red marked T in B&E) from desmoplastic fibres (similar-colored 
parts marked F), evaluated using pathological scans (E) from cellular pathologists 

 

 

 
 
The shape of this inclusion composes of sharp corners and segments with various 
curvatures, simulating possible malignant tumour shapes. Fig.2C~H illustrates strain 
types along different orientations. For those θ ≠0, the strain extraction process can 
also be rotated like in motion estimation stage for slightly more harmonized result 
signals. However, the tradeoff will be too focusing on Mθ  and losing consideration 
to M0 direction factors, rendering the similar problem that M0 axial strain has. 

5   Conclusion and Future Work 

This paper presented the second stage of a clinical pilot study, which analyzes malignant 
cancer ultrasound scans from extended rotational dimensions using multi-orientation and 

Table 1. Statistic summary on clinical and phantom results. As 
the result of the phase shift method on dinosaur phantom has 
lower specificity value than M0 axial strain, its FIT ratio must 
be larger than that of M0 axial strain, and thus the computation 
is waived 

Fig. 4. Polynomial of 
FIT ratio in clinical 
study, with the averaged 
value shown in Table 1 
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multi-model elastography. Distinguishing the desmoplastic fibre from the tumour is no 
longer impossible.     

To continue this study, circumference strain pattern and resolution analysis are cur-
rently being investigated. Stitching 3D context is also crucial to a better 2D-
elastography pattern understanding, especially when the target object is larger than 
the 2D transducer capture range. Many traditional feature-extraction based registra-
tion methods can fail from mistakes in choosing proper matching or aligning features 
amongst all image properties. Full intensity based 3D NCC volume registration is also 
under testing, from different angles and detecting locations, to assist elastographic 
studies. The registration methods currently under scrutiny include pairwise registra-
tion, global registration, narrow-volume registration, all the way towards tissue stitch-
ing or mosaicing. This registration study can be a safe stepping stone where the re-
search progress can be pushed from 2D to 3D and 4D. 
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Abstract. Magnetic resonance elastography (MRE) is an emerging technique 
for noninvasive imaging of tissue elasticity. Proprietary algorithms are used to 
reconstruct tissue elasticity from the images of wave propagation within soft 
tissue. Elasticity reconstruction suffers from interfering noise and outliers. The 
interference causes biased elasticity and undesired artifacts in the reconstructed 
elasticity map. Anisotropic geometric diffusion is able to suppress image noise 
while enhance inherent features. Therefore we integrate anisotropic diffusion 
with level set methods for numerical enhancement of MRE wave images. Per-
formance evaluation of the proposed level set diffusion (LSD) approach was 
conducted on both synthetic and real MRE datasets. Experimental results con-
firm the effectiveness of LSD for MRE image enhancement and direct  
inversion. 

Keywords: Anisotropic diffusion, image enhancement, level set methods, mag-
netic resonance elastography (MRE), noise suppression. 

1   Introduction 

Magnetic resonance elastography (MRE) is an emerging technology for noninvasive 
imaging of tissue elasticity [1,2]. It has been evaluated for liver fibrosis, brain degene-
ration, muscular activity, and others [1-3]. MRE does not characterize tissue elasticity 
directly. Mechanical properties have to be estimated from the phase images of  
wave propagation. Several reconstruction algorithms, including local frequency esti-
mation [4] and algebraic inversion of Helmholtz equation [5,6], have been proposed 
to analyze MRE wave images. Their performance against synthetic Gaussian white 
noise was examined in [2,6]. The authors claim that most reconstruction algorithms 
are robust to moderate noise, but incur biased elasticity and undesired artifacts.  
It is noteworthy that the study in [2,6] is relevant to Gaussian white noise only.  
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Nevertheless, we find that MRE noise cannot be simply characterized with a Gaussian 
distribution. Other investigators also pointed out that the noise in magnetic resonance 
imaging (MRI) is often subjected to speckle or Rician distributions [7,8]. A simple 
median filter has been evaluated for noise suppression in [2,6]. However, median 
filters are optimal for isolated outliers only [8,9]. 

Both Gaussian and median filters are based on statistical analysis of image pixels. 
In contrast, anisotropic diffusion carries out noise suppression according to inherent 
geometric features. There are many studies motivated by the seminal works of Perona 
and Malik in [10]. Malladi and Sethian put geometric curvature flows in a level set 
framework for unified noise suppression and image enhancement [11]. Weickert in-
troduced the concept of structural tensor into anisotropic diffusion in order to enhance 
flow-type features [12]. Gilboa extended this framework to complex diffusion [13]. A 
distinct advantage of anisotropic geometric diffusion lies in feature preservation dur-
ing noise suppression. Its potentials in medical image processing were demonstrated 
in several papers [11,12,14,15]. 

It is not easy to obtain ideal wave patterns with sufficiently good signal-to-noise 
ratio (SNR) by means of MRE [6,16]. There are always uncontrollable noise and 
outliers from mechanical actuators and/or MRI that cannot be suppressed by phase 
difference. Furthermore, we find that both Gaussian and median filters, which are 
widely employed in MRE analysis [2,4,6,20], are not efficient to suppress those re-
fractory noise and outliers. In this paper we consider nonlinear geometric diffusion 
and integrate it into a level set framework for MRE image enhancement. Other than 
classical anisotropic diffusion, we also investigate the complex model of level set 
diffusion (LSD) that is particularly suitable for MRE wave field. Its contributions to 
elasticity reconstruction will be verified qualitatively and quantitatively on synthetic 
and real MRE datasets. 

2   Methods 

The propagation of elastic waves in soft tissue is complicated. Multi-variant, multi-
dimensional dynamical equations have been proposed to model this phenomenon 
[17]. Nevertheless, in order to simplify the inversion process, it is reasonable to as-
sume that soft tissues are isotropic, incompressible and possess local homogeneity. 
The complicated equations then could be decomposed into independent Helmholtz 
equations governing the harmonic elastic planar waves in different orientations: 

.3,2,1,))(( 2 =−=∇+⋅∇ iuui ii ρωωζμ  (1)

The orthogonal u1, u2 and u3 characterize the displacement or wave field; μ (shear 
modulus) and ζ (shear viscosity) describe the mechanical properties of soft tissue 
against shear planar wave; ρ is tissue density; and ω is the steady exciting frequency. 
With Eq. (1), shear modulus of soft tissue can be estimated by a 2D planar strain 
wave. In addition to a reduction in the time of MRE imaging, the reconstruction of 
tissue elasticity is simplified [2,6,16].  

The 2D Helmholtz equation in Eq. (1) may be directly approximated by algebraic 
inversion [2,5,6]: 
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where u is the planar shear wave in a specific direction, and ∇2 denotes the geometric 
Laplacian. MRE imaging attempts to snapshoot the temporal propagation of shear 
wave with different phase offsets. It is possible to derive the complex wave field in 
the specific harmonic frequency from the temporal phase images [2,18]. The solution 
of Eq. (2) is thus a complex distribution. Shear modulus μ and viscosity ζ can be re-
covered independently from the real and imaginary components. This paper focuses 
on the shear modulus only.  

For discrete wave field, the spatial Laplacian ∇2 can be approximated conveniently 
by central difference [19]. However, solving Eq. (2) is often confounded by noisy 
wave fields [5,6,16]. Matched filters [18] and Savitsky-Golay filters [5] have been 
proposed as a remedy in this regard. Both of them, nonetheless, are effective for mod-
erate Gaussian white noise only.  

2.1   Level Set Diffusion 

The conventional low-pass smoothing is not efficient for non-white noise. More ad-
vanced methods, such as multispectral analysis and anisotropic diffusion, are neces-
sary in the cases of Rician and/or speckle noise [9,15]. We are particularly interested 
in nonlinear geometric diffusion because it directly relates to the divergence or Lapla-
cian operator in MRE inversion.  

A wave field u0 may be integrated into a level set framework for geometric  
diffusion: 

,, 00 uuucu tt =⋅= =ϑ  (3)

where t is the temporal index of evolution, c is a small coefficient for stable evolution, 
and ϑ denotes the specific geometric operator, such as divergence [10] or mean curva-
ture [11], on u. In essence, Eq. (3) considers the wave field u0 as a collection of iso-
contours with different amplitudes, and evolves them according to their inherent 
geometries. Such implicit representation facilitates the numerical approximation of 
involved geometries [19]. For MRE image enhancement, the Laplacian ∇2 for geome-
tric diffusion is considered.  

Although isolated noise and variational boundaries evolve faster, the isotropic dif-
fusion in Eq. (3) removes noise, outliers as well as important patterns away. Eventual-
ly it will maintain at a constant amplitude. Therefore it is necessary to control the 
above geometric diffusion. Perona and Malik proposed a decreasing function of im-
age gradients in order to suppress image noise but preserve strong boundaries: 

,))/(1( 12 −∇+= τuf  (4)

where τ is a gradient threshold. The geometric diffusion that follows is described by 

.),)(( 00 uuuufcu tt =∇∇⋅∇= =  (5)

Such a diffusion model is able to suppress random noise quickly but preserve strong 
variations for a long time. It is known as the anisotropic diffusion. 
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Intensity gradients are not robust against noise and artifacts [9,13-15]. A common 
remedy is to convolve the original image with a low-pass Gaussian kernel [14,15]. By 
solving a time-dependent Schrodinger equation, Gilboa found that the imaginary 
field, complementary to the image of interest, is a more reliable approach to control 
geometric diffusion [13]. His diffusion model relies on the controlling function: 

,))
)Im(

(1())(Im( 2

τθ
θ u

euf i +=  (6)

where ‘Im’ denotes the imaginary part of the complex field, θ is a phase angle that is 
necessary to normalize the imaginary field, and τ is a threshold similar to the one in 
Eq. (4). The complex diffusion model is particularly suitable for MRE image en-
hancement in that the extracted displacement has been a complex wave field.  

Direct inversion of tissue elasticity suffers from noise and outliers in wave fields. It 
is therefore attractive to investigate the level set-based geometric diffusion for MRE 
image enhancement. Both complex anisotropic diffusion (CAD) and the classical 
paradigm by Perona and Malik (PMD) are implemented and evaluated against con-
ventional Gaussian and median filters in this paper.  

3   Experiments 

We developed a numerical simulator for MRE in Matlab® (MathWorks, USA) using 
its Partial Differential Equation (PDE) toolbox. A two-dimensional 20cm×20cm 
phantom (Fig. 1(a)) was generated with the simulator. The boundary condition was 
configured for full wave reflection. There were two embedded objects with elasticities 
(green: 2kPa; orange: 4kPa) different from that (1kPa) of the background phantom. 
The vibrator, exerting a 200Hz planar shear wave, was positioned at the bottom. With 
a spatial resolution of 256×256, the simulated wave field u was illustrated in Fig. 1(b). 
The shear modulus of direct inversion by Eq. (2) is shown in Figs. 1(c) & (d).  

The experiment was also conducted on a publicly available MRE dataset of aga-
rose gel phantom [20]. The background phantom was 1.5% agarose gel, and the em-
bedded objects were four cylinders, comprised of 10% bovince gel, with different 
diameters (5~25mm). The excitation frequency was 100Hz. Over a complete wave 
period, there were 8 snapshots of 256×256 images with different phase offsets. Fig. 2 
shows the magnitude image (a), the real part of the extracted wave field (b), as well as 
the reconstructed shear modulus (c) & (d) using direct inversion.  

 

Fig. 1. MRE simulation. (a) Simulation setup; (b) Real part of simulated wave field; (c) Recon-
structed shear modulus; (d) Surface rendering of (c). 
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The impact of Gaussian noise has been examined carefully in [2]. However, as 
pointed out in [7], it is a common misconception to assume that noise is a zero-mean, 
constant-variance Gaussian distribution in medical imaging. In fact, the noise is often 
speckle and dependent on its residence [15]. We synthesized the speckle and Rician 
noise respectively in order to examine LSD for refractory noise suppression. Given a 
complex wave image u, the degenerated version with speckle noise was scaled as: 

)(
sp )( uj

s eunuu ∠+= , (7)

where j is the square root of -1, |·| denotes the magnitude, ∠ refers to the phase, and ns 
is independent Gaussian white noise. The wave image contaminated by Rician noise 
is given by [8]: 
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where ns and nt are independent Gaussian white noise.  

 

Fig. 2. Real MRE dataset of an agarose gel phantom. (a) Magnitude image; (b) Real part of 
wave field; (c) Reconstructed shear modulus; (d) Surface rendering of (c). 

4   Results and Discussion 

The authors in [2], by evaluating synthetic Gaussian noise, drew the conclusion that 
direct inversion is sensitive to noise. The non-white speckle and Rician noise is even 
more refractory than Gaussian white noise. Fig. 3 illustrates the adverse impacts of 
noise on direct inversion. The first row is on the simulated elastic wave, while the 
second row is on the real MRE dataset. The columns (a) and (c) depict the wave fields 
with speckle and Rician noise; the columns (b) and (d) show the reconstructed elastic-
ity maps respectively. Although speckle and Rician noise has not degraded the wave 
fields too much, the shear moduli by direct inversion turn out to be too noisy to be 
understood. It is thus necessary to enhance MRE images before direct inversion. 

We implemented the classical Gaussian and median filters for MRE image en-
hancement. Both filters adopted a 3×3 scoping window, and the Gaussian filter had an 
additional smoothing coefficient of 2. Fig. 4 illustrates the reconstructed shear moduli 
after noise suppression. The Gaussian filter led to the results in the first row, while the 
median filter led to those in the second row. Intuitively, both Gaussian and median 
filters are not sufficiently robust to suppress non-white speckle and Rician noise. 
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Fig. 3. The impacts of noise on MRE inversion. (a) Wave fields contaminated by speckle noise; 
(b) Shear modulus by direct inversion on (a); (c) Wave fields contaminated by Rician noise; (d) 
Shear modulus by direct inversion on (c). 

LSD is able to suppress noise while preserving important features. Nevertheless, its 
performance is subject to appropriate controlling parameters [9,14,15]. For instance, 
PMD is controlled by the gradient threshold τ and the iteration of diffusion T, and 
CAD has an additional phase angle θ. The authors in [13,15] have confirmed that θ is 
necessary for imaginary field normalization, but not critical for diffusion as long as it 
is kept small. Therefore we fixed θ as an empirical value of π/30 (≈0.105) in all expe-
riments. The effectiveness of LSD was measured on the wave field itself as well as 
the estimated shear moduli. The signal-to-mean square error (SMSE) ratio [21] was 
chosen as the quantitative index for wave fields: 
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where ω denotes the original clean image, and ϖ is the noisy image after enhance-
ment. The larger the value of SMSE is, the better the image enhancement is. We 
found that, in most cases, a conservative configuration (i.e., τ=0.1 and T=10) has been 
able to enhance MRE images well. 

Fig. 5 shows the results of LSD for MRE image enhancement and direct inversion. 
The results in the first row were due to PMD, while those in the second row  
were enhanced by CAD. Although the elastograms in Fig. 3 are nearly illegible, the 
resultant images after LSD enhancement are clean and visually close to the genuine 
elastograms. By comparing the results in Figs. 4 and 5, LSD obviously outperforms 
Gaussian and median filters for MRE image enhancement and direct inversion. Fur-
thermore, CAD performs better than PMD for MRE image enhancement and direct 
inversion, which is obvious in Figs. 5(a) and 5(b). 
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Fig. 4. MRE image enhancement by Gaussian and median filters. The first row is on Gaussian 
smoothing, while the second row is on median filtering. (a) & (c) Direct inversion after sup-
pressing speckle noise; (b) & (d) Direct inversion after suppressing Rician noise.  

 

Fig. 5. LSD for MRE image enhancement. The first row is on PMD while the second row is on 
CAD. (a) & (c) Direct inversion after suppressing speckle noise; (b) & (d) Direct inversion after 
suppressing Rician noise. 

Both intensity consistency and structural similarity are important in medical image 
processing [21]. Eq. (9) is an index oriented to intensity consistency. We propose the 
following index for structural similarity (SIM):  
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where ⊕ denotes logical exclusive-OR, � means logical OR, and the subscript ‘b’ 
denotes image thresholding. In other words, merely the regions with distinct shear 
modulus are preserved in the binary images. SIM approaches to the value 1 if two 
binary patterns are sufficiently close to each other.  

As shown in Table 1, all filters are helpful for MRE image enhancement and noise 
suppression. Both PMD and CAD are robust to suppress refractory noise and enhance 
direct inversion. Nevertheless, the effectiveness of Gaussian and median filters varies 
from case to case. The results in Fig. 5 are obviously more legible than those of Fig. 
4, whereas their quantitative indices are close. When there is a need for compromise 
between intensity consistency and structural similarity, the latter is often preferred in 
medical image analysis [21].  

Table 1. Intensity consistency and structural similarity of the reconstructed elastograms 

MRE Noise SMSE SIM 
Noisy Gauss Med PMD CAD Noisy Gauss Med PMD CAD 

Simulation  Speckle 1.25 2.73 2.02 2.04 2.13 0.37 0.81 0.42 0.76 0.82 
Rician 1.32 2.28 1.87 2.57 2.39 0.39 0.55 0.42 0.77 0.78 

Real Speckle 2.73 4.35 3.30 3.58 3.67 0.37 0.62 0.42 0.61 0.59 
Rician 2.06 3.27 2.74 3.54 3.30 0.37 0.46 0.40 0.55 0.55 

5   Conclusion 

Direct algebraic inversion of Helmholtz equations is an attractive method for elastici-
ty reconstruction from MRE wave images. It is efficient for numerical approximation 
and robust to moderate noise. However, we find that the real MRE noise is more re-
fractory than Gaussian white noise. The noise is often speckle and close to Rician 
distribution. It is then difficult to employ direct inversion to reconstruct shear mod-
ulus. Noise suppression is necessary for MRE image analysis. 

Conventional Gaussian and median filters are not efficient to suppress the refrac-
tory speckle and Rician noise. We proposed to use anisotropic geometric diffusion 
integrated into a level set framework for MRE image enhancement. In the level set 
framework, we conducted the classic anisotropic diffusion as well as the state-of-the-
art paradigm of complex diffusion. Both qualitative and quantitative evaluations con-
firmed them to be effective for noise suppression. In summary, LSD is a promising 
approach to suppress MRE noise and enhance direct inversion. Currently we are car-
rying out MRE imaging on agarose phantoms and animal organs as well. LSD will be 
further examined and improved for those MRE images. 
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Abstract. Succinct content-based representation of minimally invasive
surgery (MIS) video is important for efficient surgical workflow analy-
sis and modeling of instrument-tissue interaction. Current approaches
to video representation are not well suited to MIS as they do not fully
capture the underlying tissue deformation nor provide reliable feature
tracking. The aim of this paper is to propose a novel framework for
content-based surgical scene representation, which simultaneously iden-
tifies key surgical episodes and encodes motion of tracked salient features.
The proposed method does not require pre-segmentation of the scene and
can be easily combined with 3D scene reconstruction techniques to pro-
vide further scene representation without the need of going back to the
raw data.

Keywords: surgical workflow analysis, motion modeling.

1 Introduction

Assessment of surgical workflow for Minimally Invasive Surgery (MIS) is valuable
for evaluating surgical skills and designing context-sensitive surgical assistance
systems. In this regard, direct use of MIS video has many practical advantages
as it does not complicate the existing operating room settings. However, the
challenges associated with this approach are also evident. MIS video data are
associated with high temporal redundancy making off-line analysis of surgical
workflow difficult. Being extremely voluminous, they require significant time for
visualization. Also, information of interest can be accessed by sequential video
scanning and data manipulation and editing is achieved by frame-by-frame video
processing. Extensive research has already been conducted for surgical scene
segmentation, instrument tracking, tissue deformation recovery and modeling [1].

In practice, the large volume of video data involved raises a significant in-
formation management challenge and a succinct content-based representation
is required to facilitate efficient indexing, browsing, retrieval and comparison
of relevant information for faster and more comprehensive analysis and under-
standing of the surgical workflow with minimal information loss. This requires a
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high-level representation of visual information which reflects not only the scene
structure but also the underlying semantic and context of the in vivo environ-
ment. Common approaches to video representation follow the framework of the
MPEG-7 standardization [2]. The identification of representative frames, the so
called “keyframes”, has been used extensively to convey the content of videos
[3]. Although useful for broadcasting and general use, such a representation is
of limited use for MIS workflow analysis as it does not adequately represent the
underlying information and instrument-tissue interaction.

One prerequisite of content-based representation of surgical workflow is the
identification of surgical episodes that portray different events within the se-
quence. Existing work for surgical workflow segmentation has focused on the
analysis of surgical actions. Probabilistic frameworks have been used to classify
surgical actions based on detecting instrument-tissue interaction by tracking sur-
gical tools and incorporating multiple visual cues [4]. Special MIS tools have also
been designed, equipped with force and torque sensors to facilitate the classi-
fication of surgical actions by considering instrument kinematics [5]. Dynamic
Time Warping (DTW) and Hidden Markov Model (HMM) based approaches
have been proposed to classify the overall surgical procedures [6]. Additional
information such as eye-gaze and hand/limb movement has also been included
to improve the overall sensitivity and specificity of the analysis framework [7].

The purpose of this paper is to propose a new content-based surgical work-
flow representation scheme that is suitable for both surgical episode identification
and instrument-tissue motion modeling. The aim is to transform the MIS data
from an implicit and redundant frame-based representation to an explicit, ab-
stracted, high-level surgical episode description. The proposed approach does
not require pre-segmentation and the motion characteristics of salient features
are used to identify tissue deformation in response to instrument interaction.
Surgical episodes can be naturally derived from this framework and further rep-
resentation of the scene with 3D reconstruction using motion or simultaneous
localization and mapping (SLAM) can be readily built on top of this represen-
tation without the need of going back to the raw data.

2 Methods

2.1 Episode Segmentation

In this work, surgical episodes describe distinct surgical actions and consecu-
tive episodes represent surgical steps. The visual content information of MIS
data is expressed by the action events of salient features. Episode borders occur
when feature tracking fails as this is due to the contrastingly different visual
appearance of the changing surgical environment.

The affine-invariant anisotropic region detector [8] is employed for reliable and
persistent feature tracking where salient features are identified as points that
have strong gradients and are anisotropic along several directions. Scale adap-
tation is based on the strength of the anisotropic pattern whereas affine adap-
tation relies on the pattern’s intrinsic Fourier properties. An Extended Kalman
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Filter (EKF) parameterization scheme is used to adaptively adjust the optimal
templates of the detected affine-invariant anisotropic regions, enabling accurate
identification and matching of a set of tracked features over a series of frames.
The information provided to the EKF is the location of a salient point in each
frame and the parameters of the ellipse that represent its region. The state of the
EKF consists of the coordinates of the ellipse center (x, y), the velocities along
the horizontal and vertical axes (u, v), the coordinates of the tip of the major
axis (rx, ry), the angle between the horizontal and the major axis of the ellipse
θ, the angular velocity ω, and the ratio between the major and the minor axes
k of the ellipse. The state of a salient point at time t is defined as:
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The aim of tracking is to establish frame correspondence between region ŝ−t
predicted by the EKF and the detected regions in the search window at the ex-
amined frame. In this work, we use the relative amount of overlap O in the image
area covered by the compared regions and the dissimilarity C in the anisotropic
measure of the compared features as an indication of region correspondence,
defined as:

OA,B = 1 − A∩B
A∪B , CA,B = |cA−cB |

max
n∈S

|cA − cn| (3)

where A ∩ B and A ∪ B are the intersection and the union, respectively of
regions A, B, cA represents the anisotropic measure of feature A and S denotes
the search area.

The EKF corrected state ŝ+
t is verified using spatial context and regional

similarity. The context of a feature is represented by a set of auxiliary features
that exhibit strong motion correlation to the feature and is used to estimate an
approximate location {x̃t, ỹt} of the feature. The region similarity is estimated
based on the Bhattacharyya distance between their RGB histograms. The spatial
context information is also used to boost the prediction of the EKF and recover
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potential tracking failure. When ŝ−t is not able to be matched to any of the
detected features or ŝ+

t is not a valid correspondence, the location {x̃t, ỹt} is
used to generate a “hypothetical” predicted state, defined as:

ŝh
t = [x̃t, ỹt, x̃t − x̂+

t−1, ỹt − ŷ+
t−1, θ̂t−1, ω̂t−1,

r̂x
t−1 + (x̃t − x̂+

t−1), r̂
y
t−1 + (ỹt − ŷ+

t−1), k̂t−1]T
(4)

which is compared to the detected features in the examined frame to estimate
the final state of the feature.

A feature is declared lost if the verification of ŝh
t has failed for 5 consecutive

frames in order to eliminate false positives during tracking as they would provide
inaccurate information about the underlying tissue motion. Failure of the tracking
process is determined when 35% of the features have been lost. A low threshold for
signalling tracking failure might lead to over-segmentation of the video. However,
in the proposed framework it is desirable to acquire motion information from the
entire scene without neglecting areas where features might have been lost.

A new episode is defined by re-initializing tracking and automatically selecting
a subset of the detected features to track. Non-maximal suppression is applied
to select the most salient ones to enable long tracks along time. Salient points
that correspond to specular highlights are excluded. In order to represent every
area of the examined environment, it is desirable that the tracked features span
the whole field of view. The selected features are compared in terms of the
difference in the surrounding image area and the most dissimilar ones are selected
to initialize tissue tracking as they correspond to different areas of the scene.

2.2 Episode Representation

In the proposed surgical episode representation, probabilistic motion modeling
is used to represent the motion of tracked features. In the ideal case, the dis-
tribution of a feature’s velocity within an episode should be represented by a
Gaussian-like distribution around some point. In practice, the motion of a fea-
ture can change dramatically over a period of a few frames due to periodic tissue
motion or tool-tissue interaction causing free-form tissue deformation. In order
to account for such multiple movements, the motion of each feature is modeled
as a mixture of K bivariate Gaussian distributions.

Given the motion vectors Uk = (uk, vk), k = 1 . . . te of a tracked feature
within an episode te frames long, the probability of observing the motion vector
U t is given by:

P (U t) =
K∑

p=1

ωp · g(U t, μp, Σp) (5)

where ωp is an estimate of the weight of the pth Gaussian in the mixture, μp,
Σp are the mean and the covariance matrix and g(·, μp, Σp) is the density of the
pth component, given by:

g(U, μp, Σp) =
1

2πΣp
1
2

exp{−1
2
(U − μp)T Σp

−1(U − μp)} (6)
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(a)

(b)

Fig. 1. (a) PME sequence with blue vertical lines indicating episode borders and the
first frame of each episode shown. (b) Surgical episode content representation maps.

The number of mixture components is empirically determined by the desired
computational complexity and usually ranges from 3 to 5 [9]. In this work, five
components have been used. The parameters (μp, Σp) of the distributions as
well as the weights ωp are learned using the Expectation Maximization (EM)
algorithm [10]. For a compact motion model representation, the mean and the
covariance matrix of the Gaussian mixture are used and they are estimated as:

M =
∑K

p=1(ωpμp)
Σ =

∑K
p=1 ωp(Σp + μpμ

T
p ) − (

∑K
p=1 ωpμp))(

∑K
p=1 ωpμp))T

(7)

To this end, the motion models of tracked features are blended to estimate
the motion at every point in the scene. Considering a set of N neighboring
tracked features, the motion model at a scene point i is estimated as in Eq.
(7). The weight of the jth neighbor in the motion blend is estimated as ωj =
d−1

i,j /
∑N

j=1 d−1
i,j , where di,j is the Euclidean distance between the scene point and

its jth neighbor.

3 Results

In order to assess the practical value of the proposed framework, quantitative
evaluation has been performed on four in vivo data sets from robotically assisted
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(a)

(b)

(c)

Fig. 2. Motion vectors superimposed on surgical episode content representation maps
for MIS sequences with (a) varying camera motions (b) instrument-tissue interaction
(c) respiratory motion

MIS procedures involving a variety of representative surgical scenarios such as
varying camera motions, occlusion due to the presence of tools and significant
tissue deformation. The images are of resolution 360×288 pixels, in line with the
output resolution of the available endoscopic tools used in MIS. Visual content
information is provided by motion patterns generated by tracking 100 affine-
invariant anisotropic regions.

Due to a lack of accepted benchmarking or ground truth for episode segmenta-
tion algorithms, it is not possible to perform objective evaluation of the proposed
episode segmentation approach, particularly for in vivo patient studies. Hence
subjectively defined feature tracking is used for performance evaluation. The
Perceived Motion Energy (PME) model [11] has been widely used in video seg-
mentation and it is used here to demonstrate the motion activity along surgical
episodes and verify that each extracted episode describes a distinct surgical ac-
tion. The PME model combines the motion intensity and the motion direction of
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(a) (b) (c)

Fig. 3. Motion model similarity assessment results for (a)K = 5, N = 5 (b)K = 5,
N = 3 (c)K = 3, N = 5. The horizontal axis corresponds to the motion model similarity
and the vertical axis to the percentage of examined features on the ground truth.

the tracked features. The PME at frame t of a surgical episode is mathematically
defined as:

PME(t) =

(
1

F (2T + 1)

F∑
i=1

t+T∑
k=t−T

√
(uk

i )2 + (vk
i )2
)

·
(

maxb(H(t, b))∑n
b=1 H(t, b)

)
(8)

The first term in Eq. (8) corresponds to the average velocity of tracked features
within the frame interval [t−T, t+T ] of the episode. The second term expresses
the percentage of dominant motion direction within the episode and H(t, b) is
the n-bin histogram of the motion vector angles of the tracked features for the
interval [t, t + T ]. The parameter T determines the amount of activity detail
captured in the PME and in this work is set to 25% of the episode length.

To validate the proposed episode content representation approach, ground
truth data is estimated by manually identifying corresponding features between
the first sequence frame and subsequent frames. In order to estimate feature
velocities within a surgical episode the ground truth is obtained at equally spaced
pairs of consecutive frames that correspond to 20% of the episode length and to a
minimum number of 20 frames. In order to reduce the computational complexity
of the performance evaluation, 20 of the initially detected features are manually
tracked along time to obtain their ground truth motion model which is compared
to the one estimated by the proposed approach. The similarity between two
motion models i, j is estimated using Matusita’s measure [12] which expresses
the difference between the covariance matrices and the distance between the
means of multivariate distributions, defined in the bivariate case as:

Si,j =
2|Σi|

1
4 |Σj|

1
4

|Σi + Σj |
1
4

exp {−1
4
(μi − μj)T (Σi + Σj)−1(μi − μj)} (9)

Detailed workflow analysis of an in vivo sequence with tissue motion due to res-
piration and significant instrument-tissue interaction is presented in Fig. 1. The
PME pattern in Fig. 1(a) verifies that the extracted surgical episodes describe
distinct tool actions within the workflow. Also, the PME level is proportional
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(a) (b)

(c) (d)

Fig. 4. Statistical significance results for MIS sequences shown in (a) Fig.1 (b) Fig. 2a
(c) Fig. 2b (d) Fig. 2c

to the degree of deformation and episodes with no instrument-tissue interaction
are characterized by low PME which is mainly due to respiration motion. Ob-
serving the PME pattern around the borders of the episodes extracted by the
proposed method, it becomes clear that video segmentation based on the PME
model (episode borders identified at the peaks of the PME pattern) has missed
surgical actions occurring at a small part of the scene (for instance the 3th and
the 6th episode borders). This demonstrates the success of the proposed method
and suggests that PME is a useful measure for representing overall scene changes
but not sufficient enough to detail fine granularity of the movement patterns.

The inherent surgical episodes of the above video sequence are represented
in Fig. 1(b). Areas of coherent motion within the episode are graphically classi-
fied using a colormap to demonstrate the similarity between the motion of scene
points and a reference point (e.g the upper left corner of the scene) estimated us-
ing Eq. (9). The colormap representations clearly illustrate instrument induced
tissue deformation. The content of a sample of surgical episodes extracted from
the rest of the examined MIS data sets is presented in Fig. 2. Arrows have
been used to illustrate the motion of discrete scene areas within the episode,
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demonstrating global camera motion (a), instrument interaction (b) and respi-
ratory motion (c).

Fig. 3 demonstrates the accuracy of the estimated motion model for each
surgical episode of the sequence in Fig. 1 when compared to the ground truth.
Each curve point (a, b) corresponds to the percentage b of the examined features
on the ground truth with similarity between the ground truth and the estimated
motion model higher than a. Fig. 3(a) shows the motion model accuracy when
using K = 5 mixture components and blending N = 5 features. The similarity
curves show that the motion of a significant percentage of the scene conforms
to the manually defined ground truth. The effect of the number N of neighbors
used in the blending process is investigated in Fig. 3(b) by setting N = 3. The
similarity curves in Fig. 3(c) show the accuracy of motion modeling when 3
mixture components are used.

The ideal similarity curve would be a straight horizontal line at 100%. How-
ever, this is not always achievable and the slope of the curve is an indication
of the robustness of the proposed episode representation. Since the difference in
the performance of the above three parameterization schemes is not distinctive
enough, statistical analysis of the similarity scores is performed. The statistical
significance of the different parameterizations is evaluated as:

mean(SEi
norm) + std(SEi

norm) (10)

where, SEi
norm = mean(SEi

t − 1
M

∑M
j=1 S

Ej

t ) stands for the normalized similarity
scores using parameterization Ei, SEi

t denotes the similarity score at episode t
when using parameterization Ei and M is the total number of compared pa-
rameterizations. As shown in Fig. 4, the selected parameterization with K = 5
and N = 5 gives the highest statistical significance in the majority of episodes
for all of the examined sequences. The number of mixture components does
not affect the accuracy of the proposed representation significantly, while the
distance of the estimated representation from the ground truth increases when
fewer neighbors are blended.

4 Conclusions

In this paper, we have proposed a novel framework for the succinct representa-
tion of the content of MIS data. Probabilistic tissue tracking is used to generate
motion patterns that represent visual content complexity and guide the identi-
fication of surgical episodes. Surgical episodes are represented by modeling the
tissue motion using probabilistic models and blending the models together to ac-
quire information about the motion of the entire scene. The proposed compact,
content-based data representation will facilitate surgical workflow analysis and
understanding. It identifies episodes of distinct surgical actions providing the re-
quired information for their fast and robust reconstruction with techniques such
as SLAM or structure from motion. The proposed framework also simplifies the
problem of scene reconstruction as the information for feature extraction and
data association is already conveyed in the proposed data representation.
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Abstract. Reducing measurement variability in MRI-based morphometric 
analysis of human brain structures will increase statistical power to detect 
changes between groups and longitudinally over time in individual subjects. 
One source of measurement error in anatomical MR is magnetic field gradient-
induced geometric distortion. This work proposes a method to characterize and 
compensate for these distortions using a novel image processing technique rely-
ing on the image acquisition of a phantom with known geometrical dimensions, 
without the need to acquire the magnetic field mapping. The method is not  
specific to any particular shape of the phantom, as long as it provides enough 
coverage of the volume of interest and enough structure to densely sample the 
distortion field. The distortions are expressed in terms of spherical harmonic 
functions, which are then used to define the distortion correction field for the 
volume of interest. Accuracy of the distortion measurement was evaluated using 
numerical simulation and reproducibility was estimated using multiple scans of 
the phantom in the same scanner. Finally, scan-rescan experiments with nine 
healthy subjects demonstrated that 90% of the distortion (in terms of local  
volume change) can be corrected with this technique. 

Keywords: Geometric distortion, phantom, spherical harmonics, MRI, mor-
phometric analysis. 

1   Introduction 

Magnetic resonance imaging (MRI) is widely used in many longitudinal studies of 
normal brain development and aging as well as the evaluation of neurological disease. 



 Improved Precision in the Measurement of Longitudinal Global 325 

 

Quantitative measurement of regional anatomical volumes is often used in these stud-
ies. Magnetic field gradient nonlinearities result in geometric distortion of the images 
and this can have a significant impact on the accuracy of volume measures and esti-
mation of volume change between scans [1]. To correct for these distortions, two 
classes of methods have been described:   

1. indirect mapping of the deformation field using a physical phantom with easily 
identifiable, known structures [2], [3].  MR images of the phantom are used to es-
timate the deformation field and   

2. direct measurement of each magnetic field gradient using specialized hardware.  
The measurements are then fit to a mathematical model of the gradients, and the 
inverse problem is solved to estimate a distortion correction field [1], [4].  

While the latter direct method is attractive on theoretical grounds, it requires spherical 
harmonic information specific to each scanner and gradient set to which it will be 
applied, which in turn requires explicit mapping of the magnetic field strength within 
the bore of the MRI magnet. Given that these measurements are complex and require 
specialized equipment, this method generally is only feasible if the spherical harmon-
ics information can be obtained from the scanner manufacturer. In practice, this in-
formation is difficult to obtain as it depends on sensitive measurements acquired by 
medical physicists or engineers. 

In the present study, we propose a procedure for measuring and correcting gradi-
ent-induced distortions from the first class of indirect methods that uses a simple 
geometric phantom that is both inexpensive and easy to reproduce.  It does not require 
changing the acquisition protocol; in fact the protocol used for subject data acquisi-
tion should be used to acquire the necessary data of the phantom for distortion correc-
tion.  Furthermore, accurate positioning of the phantom at the magnetic center of the 
scanner is not needed – the phantom simply has to cover the field of view where sub-
ject data will be acquired. The distortion correction field is expressed using a spheri-
cal harmonic expansion and is based on a mathematical model of the magnetic field 
gradient [5]. However, unlike the second class of methods described in [4] and in [1], 
the proposed method does not require mapping of the magnetic field.  

We have already reported the effect of the gradient-induced distortions on the lon-
gitudinal measurements of whole-brain atrophy [6]. In the current work we expand 
the proposed technique to compensate for the gradient-induced distortions and dem-
onstrate its effect on the precision of the longitudinal volumetric analysis.  

2   Methods 

2.1   Distortion Model 

Our approach is based on the idea that the geometric distortion field within the scan-
ner may be expressed using a spherical harmonic expansion (SPH).  However, in our 
method we do not try to measure the strength of the magnetic field explicitly to model 
the distortion. Instead, we use apparent displacements of corresponding points to 
calculate the coefficients of the coordinate mapping functions (Eq. 1,2):  

( ) ( ) ( )[ ] ( )( )θφφφθ cossincos,, ,,,,,,, mnmnVmnV
n

mnV PmbmarrF +=  (1) 
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where V= x,y,z are Cartesian coordinates; r, θ, φ  are spherical coordinates in an 
“ideal”’ coordinate system, and P(n,m) are the associated Legendre polynomials, and 

( )∑=
mn

mnVV rFX
,

,,
* ,, φθ

 
(2) 

where XV* are coordinates in the scanner specific coordinate system.  
We use least squares approximation to calculate the SPH coefficients based on the 

dense field of displacements that is obtained by matching the “ideal” representation of 
the phantom to the acquired MRI scan using iterative nonlinear image registration 
technique described below. Because we are using a relatively small number of coeffi-
cients (105 for the 5th order spherical components expansion), this method is quite 
robust to random noise or partially missing information. Additionally, for some acqui-
sition protocols it is possible to assume cylindrical symmetry around the Z axis, 
which decreases the number of coefficients for the 5th order expansion from 105 to 40 
yielding an even more robust solution.  

2.2   Geometric Phantom 

The proposed method does not require any particular phantom to be used in the imag-
ing, as long as it covers the volume of interest (VOI), and contains enough structural 
features to densely sample the distortion field. It is possible, for example, to use the 
ADNI phantom [7] for this analysis, or any other phantom with known geometrical 
information.  

For this study we have constructed a phantom consisting of 125 Lego DUPLO® 
bricks made of ABS plastic (Billund, Denmark) assembled inside a polycarbonate 
Nalgene® 8L container and filled with a water solution of 0.15mM/L MnCL2 and 
2.8g/L NaCL, according to [8] (see  Fig. 1). Lego DUPLO® 2x4 bricks were chosen 
for the construction in order to have a phantom that can easily be reproduced across 
multiple sites with minimal cost and with high degree of accuracy, as manufacturing 
tolerances for LEGO bricks are 2μm [9].  

2.3   Data Processing  

As a preprocessing step, the “ideal” phantom volume is created numerically using the 
knowledge of the location of the Lego® DUPLO bricks and their geometric proper-
ties. A similar procedure is employed for the ADNI phantom. 

As a first step of data processing, we invert the intensities of the MRI scan and re-
move the background using the morphological operators. A rigid body registration is 
then used to align the “ideal” phantom volume to the acquired scan data (see Fig. 2 A, 
B, C). Next, the hierarchical iterative process of estimating the coefficients for the 
geometric distortion correction is run: 

1.    Start with coefficients describing the identity transformation.  
2.    For each pair of scanned and “ideal” phantom volumes, calculate a nonlinear 

mapping [10]. The algorithm parameters (level of blurring and node spacing) are 
reduced at each iteration in hierarchical fashion, starting with 8mm steps between 
nodes and 4mm full-width half-max (FWHM) Gaussian blurring and ending with 
2mm steps and 1mm FWHM Gaussian blurring. 
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3.    From the dense field of deformation vectors that defines the non-linear mapping 
recovered in step 2, calculate the coefficients of the SPH using least squares ap-
proximation. Note that data from multiple acquisitions of the phantom can be 
combined to improve the accuracy or enlarge the coverage  

4.   Calculate a dense vector field for the next iteration using SPH expansion.  
5.   Repeat the process, starting from step 2 until the last step in the hierarchical 

schedule. 

 

  
A B 

Fig. 1. LEGO DUPLO® phantom, (A) photo of the exterior of the phantom, (B) sagittal slice of 
the T1w FLASH acquisition (Siemens Sonata 1.5T scanner) 

 
Fig. 2. Overlay of the (A, B) intensity-inverted Lego® phantom scan (red) and ADNI phantom 
scan (C) and the “ideal” reconstruction (green), before distortion correction and  (D,E,F) after 
distortion correction. Note that where red and green lines are visible, the data from the scanned 
and ideal phantoms do not align.  Yellow structures are well aligned (yellow = red + green). 
The transverse slice in B and E corresponds to the second row of bricks from the top of the 
phantom, as seen in the sagittal images in A and D. 
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Once the process is finished, a distortion correction field is produced that can be 
applied directly to unwarp scans to compensate for gradient-induced distortions, See 
Fig. 2-D & E for the result of applying the distortion correction field to the Lego® 
phantom itself and Fig. 2-F for the results of application of the method to the ADNI 
phantom scans. 

3   Experiments 

Three sets of experiments were conducted to validate the algorithm. All were per-
formed with the Lego® phantom. The first used numerical simulations to test the 
algorithm in a fully controlled environment.  The second used two sets of MRI ex-
periments with multiple scans of the phantom to evaluate the precision of the  
algorithm using multiple acquisitions in the same scanner.  Finally, the third set of 
experiments evaluated how the distortion correction procedure affects volumetric 
measurements using MRI of human subjects. 

3.1   Numerical Simulations 

The performance of the algorithm was first characterized with numerical simulations 
to recover a realistic known geometric distortion (which were recovered from the real 
experiment). One thousand two hundred numerical simulations were performed. For 
each simulation, the same receive coil inhomogeneity was applied to the “ideal” re-
construction of the phantom together with small random rotations ( -5° - 5° around x, 
y and z axis), shifts (-5mm - +5 mm in x, y and z directions) and known distortion 
field. Also, independent instantiations of Rician noise at a SNR of 20 (300 simula-
tions) and 40 (300 simulations) were applied. For each level of SNR, both cylindri-
cally-symmetric and non-symmetric models were applied using a 5th order approxi-
mation yielding a total of 1200 simulations. RMS differences between simulated and 
estimated distortions were computed within a 200 mm diameter sphere centered at the 
isocenter of the gradients.  

3.2   Precision of Distortion Measurements 

Precision of the distortion-correction field was estimated by scanning the phantom 
with a T1-weighted FLASH sequence on a Siemens Sonata 1.5T scanner at different 
positions (at the isocenter of the magnet, ±10-mm displacement along the X- and Y-
axes, and ±50-mm displacement along the Z-axis). Two data processing scenarios 
were used, both using a 5th-order symmetric model. 

In the first scenario, each scan was processed independently and RMS differences 
between distortion fields recovered from these seven scans were measured within a 
200 mm diameter sphere centered at the magnet’s isocenter.  

In the second scenario, a leave-one-out approach was used. RMS differences be-
tween recovered distortion fields (estimated on the remaining 6 scans) were measured 
within a 200 mm diameter sphere centered at the magnet’s isocenter.  
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3.3   Human Experiments 

Nine healthy subjects were scanned three times on the same day on a Siemens So-
nata 1.5T scanner using the same sequence (sagittal T1w 3D FLASH, TE=10 ms, 
TR=22 ms, Flip angle=30°, voxel size 1x1x1.5mm, matrix size 256x256x144). The 
study was approved by the Research Ethics Board of the Montreal Neurological 
Institute, and informed consent was obtained from all participants. Each subject was 
first scanned at the isocenter of the gradients (termed baseline scan, S).  Then, the 
scanner bed was shifted forward 50-mm and the scan repeated (Z-shifted scan, Z).  
The subject was then taken out of the scanner, repositioned at the isocenter  
and scanned again (reposition scan, R).  The distortion correction field was estimated 
using three phantom scans acquired with the same sequence and parameters: one  
at the magnet isocenter, one shifted by +50 mm in the bore (Z) direction and the 
third, -50 mm in the bore direction.   

Each of the subject images were corrected for intensity non-uniformity using the 
N3 algorithm [11]. The image pairs (S-R and S-Z) were co-registered in native 
space using a rigid-body transformation using a cross-correlation objective func-
tion; both pairs of scans were resampled in a half-way space. Non-linear registra-
tion [10] was used to estimate the residual anatomical misalignment due to  
the geometric distortion inside the brain. Local volume differences due to geomet-
ric distortion were estimated by computing the Jacobian-determinant of the  
non-linear deformation field. Finally, the Jacobian determinant field was resam-
pled into stereotactic space using linear registration of the scan into MNI152  
space [12]. 

The procedure described above was applied to the subject data with and without 
distortion correction to evaluate the improvement due to the distortion-correction 
method. This was evaluated by performing statistical analysis on smoothed  
(Gaussian kernel with FWHM of 10-mm) Jacobian-determinant fields in a similar 
manner to that described in [13]. Absolute Jacobian-determinants were averaged 
between subjects in a voxel-wise manner and two-sided t-tests were performed to 
identify voxels where absolute distortion was significantly smaller (or greater) after 
distortion correction.  

4   Results 

4.1   Numerical Simulations 

The numerical simulations demonstrated that, without the assumption of cylindrical 
symmetry, the RMS difference between known and recovered distortion correction 
fields was ~0.6 mm for SNRs of 20 and 40; with the assumption of cylindrical  
symmetry, this difference decreased to ~0.3 mm (see Fig. 3). The difference  
between cylindrical and non-cylindrical models is statistically significant with 
p<0.001. 
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Fig. 3. Numerical simulation, RMS difference between known and recovered distortion for 
SNR of 20 and 40. Cylindrically symmetric (top) and non symmetric (bottom) model of distor-
tion field. 

4.2   Reproducibility of Distortion Measurements 

The repeated acquisitions of the Lego® phantom demonstrated that the distortion 
field could be reproduced between phantom acquisitions with an RMS difference of 
0.4 mm across the seven trials in the case where a single acquisition was used to esti-
mate the distortion.  When 6 of 7 acquisitions were used to estimate the distortion 
field, the RMS difference between the 7 estimates was 0.04 mm. 

4.3   Human Data  

Fig. 4 shows intensity difference maps between baseline and Z-shifted scan of one 
subject. Qualitatively it is visible that uncorrected data shows much greater variability 
in the cortex. Over all subjects, voxel-wise analysis shows that volumetric distortions 
within more than 86% of the brain volume were reduced in a statistically significant 
fashion. Fig. 5 shows the average Jacobian-determinant map of the distortions before 
correction and Fig. 6 - after correction (i.e the residual error), where a value of 0.1  
 

   
A B  

Fig. 4. Intensity difference images (scans S - Z) before (A) and after (B) distortion correction. 
Note the reduced intensity difference after correction, especially near the edges of sulci. 
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Fig. 5. Average Jacobian-determinant map, uncorrected images, comparing  scans S & Z.  
Shifting the subject by 50mm along the bore of the magnet results in an apparent increase  
in volume of 7-8% at the vertex and a decrease of approximately 10% in the region of the 
cerebellum. 

  

Fig. 6. Average Jacobian determinant map comparing S & Z images, after applying the distor-
tion correction (residual error). Note almost perfect correction throughout the field of view. 

  

Fig.7. Statistical t-map of the improvement (positive t means that absolute local-volume-
variation is smaller after distortion correction).  Note that the large white region corresponds 
significant improvement, ie. t>10. 

corresponds to a 10% change in local volume. Fig. 7 shows the t-map of the statistical 
significance of the reduction of average absolute Jacobian-determinants after distor-
tion-correction: with the t-threshold set at 3.0 (for a false-discovery rate of 0.01), (i) 
86% of the brain volume showed significantly decreased distortions (i.e., was associ-
ated with a t-value > 3.0); but (ii) only 0.1% of the brain volume showed increased 
distortions (i.e., was associated with a t-value < -3.0). On average, the mean (be-
tween-subjects) absolute Jacobian-determinant within the brain was reduced by 90%.  
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5   Discussion and Conclusions 

Gradient-induced geometric distortion can be an important component of the variance 
of estimated structure volumes.  Indeed, the results shown in Fig. 5 demonstrate that a 
5cm shift in along the bore of the magnet can result in large apparent changes in vol-
ume: regions near the top of the brain increase in volume by 7-8% while structures 
near the cerebellum shrink by approximately 10%. While a 5cm shift might appear 
extraordinarily large, a previous study of clinical trial data [6] has shown that the 
repositioning error in the z direction can be quite large and sometimes larger that 
10cm.  Even though most data is acquired within 35mm, the subjects’ brains will be 
submitted to different parts of the geometric distortion field and this will result in 
unwanted variability in volume estimation.  Given that many studies aim to detect 
(very) small changes, for example 1%/year change in hippocampal volume in patients 
with mild cognitive impairment, any geometric distortion will result in added meas-
urement variance and in a reduced power to detect change. 

This paper has demonstrated a phantom-based technique for distortion correction 
that is both simple and inexpensive to use.  In our scanner, this procedure reduces the 
distortions significantly for 86% of the volume covered by the brain, reducing the 
magnitude of the distortions by 90% (in terms of local volume change). In the remain-
ing 14% of the brain, geometric distortion was negligible before correction.  The 
practical consequence of application of such a procedure will be reduced measure-
ment variability and improved power to detect change. 

The distortion correction method presented here is shown to be reproducible to 
within 0.4 mm in terms of the distortion recovery in the case of one phantom acquisi-
tion, and as good as 0.04 mm when multiple phantom acquisitions are combined. This 
is partly due to the fact that, by combining multiple acquisitions we are simply in-
creasing number of averages, thus increasing SNR.  In addition, by combining scans 
collected at different locations within the scanner we are increasing the volume within 
which our method works as interpolation rather then extrapolation, thus reducing 
uncertainty in defining the parameters of the distortion field.  Restricting the model of 
the distortion field to be cylindrically symmetric also improves the reproducibility by 
reducing the number of unknowns, but special care should be taken in ensuring that 
this assumption is applicable to the particular acquisition protocol: for example if a 
read out direction other than the z-direction is used this assumption becomes invalid 
and the full 3D model should be used to model the deformation field. 

Finally, it is important to note that the actual magnitude of the distortions estimated 
here are specific to the scanner used in this study (Siemens Sonata 1.5 T). Neverthe-
less, whereas the degree and pattern of distortion will vary between scanner manufac-
turer and model, the procedure is applicable to all scanners. While a few of the  
latest-generation scanners have manufacturer-supplied 3D distortion-correction capa-
bilities, the majority of scanners currently in use do not, or have limited 2D distortion 
correction capabilities.  

It also is worth noting that this method may be applied retrospectively to the stud-
ies in which a geometrical phantom (for example, the ADNI phantom) was acquired, 
provided that the geometrical description of the phantom used is available or may be 
measured.  
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Instructions for the Lego® phantom creation and the analysis software are avail-
able at http://en.wikibooks.org/wiki/MINC/Tools/DistortionCorrection .  Application 
of this method improves volumetric scan-to-scan reproducibility, and could be 
adapted to the requirements of a specific study and available geometrical phantom, 
and thus will have a positive effect on the power of longitudinal and cross sectional 
studies 
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Abstract. We introduce the DVV taxonomy (Data, Visualization pro-
cessing, View) which defines each of the major components of a mixed
reality image-guided surgery (IGS) system. We propose that these com-
ponents should be considered and in turn validated for acceptance of a
system into the operating room. A taxonomy of IGS visualization sys-
tems is a step towards developing a common language that will help
developers and end-users discuss and understand the constituents of a
visualization system. We demonstrate the usefulness of the taxonomy by
classifying fifteen state-of-the-art research papers in the domain of mixed
reality visualization IGS systems.

1 Introduction

In image-guided surgery (IGS), preoperative plans, patient models and graphical
representations of surgical tools are displayed to guide surgeons in their tasks.
The tools and data sets are fused into a mixed reality providing the surgeon with
a view beyond the visible anatomical surface of the patient, thereby reducing
patient trauma, and potentially improving clinical outcomes.

Mixed reality is the area on the reality–virtuality continuum [11] between re-
ality, the unmodelled real environment, and virtual reality (VR), a purely virtual
and modelled environment. The point on the continuum at which an environ-
ment lies will correspond to the extent to which the environment is modelled
and whether real or virtual objects are introduced into this environment. Upon
this continuum lie augmented reality (AR) and augmented virtuality (AV).

In AR the environment is real; it is a physical location in four dimensions
and virtual objects, which are digital representations and models of real objects,
are added to this real environment. In AV, real objects, which are unmodelled
physical objects, are introduced into a virtual or digital environment.

The objective of this paper is to define a taxonomy of mixed reality visualiza-
tion systems for IGS in order to (1) introduce a syntax and framework within
which mixed reality IGS systems may be discussed, analyzed, and evaluated and
(2) allow a better understanding of the most relevant and important components
of a mixed reality visualization system. When developing a common language
with which to discuss mixed reality IGS systems, past and current systems can
more easily be compared and analyzed. Proper analysis and validation of the

H. Liao et al. (Eds.): MIAR 2010, LNCS 6326, pp. 334–343, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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major constituents of current systems will allow future developers to more easily
recognize which components can be reused and which need improvement or new
solutions. Such an analysis and evaluation should facilitate a greater presence of
future systems in the OR.

In this paper, we first describe the taxonomy in Section 2, then give an exam-
ple of how the taxonomy was used to analyze 15 state-of-the-art mixed reality
IGS visualization systems in Section 3. Conclusions are given in Section 4.

2 Taxonomy for Mixed Visualization in IGS

In order to provide surgeons with a tool to effectively plan out surgeries three
main points should be considered: (1) which of the abundance of available data
should be used, (2) how it can be effectively merged and visualized, and (3) how
it should best be displayed and interacted with. We therefore, classify a mixed
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Fig. 1. The three factors of the DVV taxonomy (data, visualization processing and
view) are shown in rounded boxes. Subclasses (solid-line arrows) and the relationships
between them (dashed-line arrows) are also shown. Diamond arrow heads represent
aggregation. The surgical scenario is associated with both visually processed data and
view classes.
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reality IGS system based on three factors: data, visualization processing, and
view (see Fig. 1).

In addition to these three factors, we use the notion of a surgical scenario,
which is associated with both data and view classes, to allow us to describe dy-
namic systems that change based on the end-users’ needs during a given task.
The surgical scenario allows us to determine (1) what type of visualization data
should be shown at a particular point in time of the surgery, (2) where it should
be viewed (perception location/display) and (3) how the data may be interacted
with at that step in the surgery (interaction tools). The surgical scenario de-
scribes the type of surgery and in particular the number of surgical steps that
are executed to perform the surgery. Each surgical step describes the action to
be done, its associate precision and its completion time.

In the remainder of this section we define the three DVV factors: Data,
Visualization Processing, and View and give justification for the use of each
factor for classification.

2.1 Data

Two main superclasses of data are considered: patient specific data and visu-
ally processed data (with analyzed, derived and prior knowledge subclasses). In
general, the different subclasses of data may be directly viewed or may undergo
one or more transformations to become visually processed data. Detailed data
classes and subclasses are used within the taxonomy for easy specification of all
types of data that may be presented to the end-user.

The purpose of using data as part of our classification is to highlight the
importance of deciding which of the available data should be shown to the end-
user. As the number of possible datasets that can be acquired increases, there
is a stronger demand for integration of the different modalities and numerous
visually processed data sets into a coherent visualization. It is important that
careful consideration be given as to what type of data should be visualized and
at what point during the surgery it is useful. The latter is taken care of by
considering the surgical scenario.

Patient Specific Data. Patient specific data is particular to the patient; it may
include demographics, clinical scores or raw imaging data. Raw imaging data
is the direct output of the acquisition system. It is transformed into analyzed
imaging data and only then visualized.

Visually Processed Data. Visually processed data is presented to the end-
user by means of the view. It may be analyzed data, derived data or prior knowl-
edge data. It is shown within a particular surgical scenario and more specifically
for a specific surgical step. Different surgical steps may use a different represen-
tation of a given instance of visualization data or a different view. The visually
processed data therefore, should show the end-user the most relevant data in its
most informative pictorial representation at each point within the surgery.
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Analyzed Imaging Data is raw imaging data that has undergone a transfor-
mation to become an object. Instances of the analyzed imaging data in IGS
are: point, line, plane, contour, surface, wireframe, and volume. As an example,
whereas raw imaging data would be the direct output of the magnetic resonance
scanner, the corresponding analyzed imaging data could be the slices rendered
as a volume.

Prior Knowledge Data is derived from generic models and is available pre-
ceding a surgery. Instances of prior knowledge data include: atlases, uncertainty
information about the IGS system, surgery road maps, prior measurements, and
tool models.

Derived Data is obtained from processing either only patient specific data, for
example, uncertainty due to the calibration, registration, and/or segmentation
process, or patient specific data and prior knowledge. For example, brain regions
may be segmented using an atlas. Instances of derived data include: labels, un-
certainty information specific to the patient/type of surgery, and measurements
such as tumour volume and distances between regions of interest.

2.2 Visualization Processing

The visualization processing component of the taxonomy represents the specific
visualization techniques or transformations on the data that are used to pro-
vide the best pictorial representation of the data for a particular task at a given
surgical step. Numerous techniques have been developed for visualizing medical
data: non-photorealistic rendering, illustrative techniques, photorealistic render-
ing, colour coding, using transparency, adding depth cues, and using saliency
methods (such as highlighting regions of interest).

By choosing an appropriate visualization technique it is possible to increase
the diagnostic value of the original data. For this reason we use visualization
processing as the second component for classification in the DVV taxonomy.

2.3 View

The view of the system is the end-product of the visualization process, and
therefore the part of the system with which the user interacts. It has three major
components: the display, the perception location and the interaction tools. The
view is used to classify mixed reality IGS systems as it is perhaps the most
relevant component to the end-user. It enables a system description in terms of
where and how information is presented to the end-user and how the end-user
can interact with the system.

Perception Location. The perception location is the area or part of the en-
vironment where we focus our attention in order to benefit from the mixed
visualization. The perception location may be the patient, a digital display, a
surgical tool, or the real environment. Depending on where the visualization
system lies on the reality-virtuality continuum, the perception location may be
either a real of virtual environment.
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Display. The display is the particular technology that is used to present data
to the end-user. Displays fall into one of two classes, those in which images
are projected onto a 2-D technology, for example a computer monitor, or those
which provide a three-dimensional impression of the scene or object. Those that
provide 3-D impressions fall into one of two categories: (1) binocular stereoscopic,
systems which require the user to use special head gear or glasses (e.g. stereo
glasses and HMDs) and (2) autostereoscopic displays, which do not such as multi-
view lenticular displays, videography and holography. The surgical microscope,
which allows for both 2-D and 3-D data representation, has also been used to
fuse virtual objects with the real scene in IGS.

Interaction tools. Interaction tools are part of the user interface. We suggest
two major subclasses: hardware interaction tools which are the physical devices
that a user employs in order to manipulate data and virtual interaction tools
which allow the user to manipulate the pose, and view of the data as well as
the visualization parameters of the data. Examples of hardware devices for in-
teraction used in IGS include a mouse, a keyboard, a representative tangible
object (e.g. surgical tool), a haptic device, or a data-glove. Instances of virtual
interaction tools include transfer functions, volume cutting, voxel peeling, clip-
ping planes, turning data visibility on and off, and in general adjusting data and
viewing parameters such as colour, brightness, contrast, and transparency.

3 Using the DVV Taxonomy for IGS System
Classification: An Example

In order to validate our taxonomy we studied 15 publications chosen at ran-
dom from a database of 84 publications. Only publications in the area of mixed
reality visualization systems for IGS with a well-defined aim of study and pre-
cise description of an entire visualization system were chosen. The publications
described a system for use in the OR rather than a simulator for diagnosis, plan-
ning, or training. A summary table of the 15 randomly chosen articles using the
taxonomy components as columns is given in Table 1.

3.1 Data

All of the papers specified the sensor by which the data was acquired (i.e., raw
imaging data) and all but one paper and all but one paper ([4]) described the
analyzed imaging data and how the analyzed imaging data was visualized. Very
few papers, however, mentioned the use of derived or prior knowledge data.

Raw and Analyzed Imaging Data. In the majority of papers, either a sur-
face or a wireframe representation of the analyzed data was used. In the case
of systems which used ultrasound data [10,15,16] 2–D slices were used. The
use of simple representations such as planes, surfaces, contours and wireframe,
allows for real-time refresh rates. Although the use of volume data may be desir-
able, this is often not feasible due to the requirement of real-time rendering for
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Table 1. In the above table we use the DVV taxonomy to classify 15 publications in
the domain of mixed reality IGS systems. N/S (not specified) was used when particular
components or classes were not discussed within the paper. Symbols used: A=Analyzed
visually processed data, D=Derived visually processed data, PK=Prior Knowledge
visually processed data.

AR REF DAATA VISUALIZATION VIEWW
/AV RAW ANALYZED VISUALIZABLE PROCESSING PERCEPTION 

LOCATION
DISPLAY INTERACTION

Archip [1] MRI, fMRI, 
DTI, intra-op 
MRI

Plane, surface A: Colour coded transparent 
surfaces, cross-sectional slices, 
triangle models illustrate 3D region 
of activation
D: N/S
PK: N/S

Colour coding (ROIs), 
transparency (to merge different 
modalities)

Patient N/S N/S

Bichlmeier [2] CT or MRI + 
real-time video

Surface A: Transparent video & 
surfaces
D: N/S
PK: N/S

Video transparency according to 
skin curvature & observer line of 
sight, lighting (Phong shading, 
virtual shadow), adding emphasis 
(red border around ROI)

Patient HMD Red border thickness user 
specified, observer changes 
vision channel into patient by 
moving head

Birkfellner
(Varioscope 
AR) [3]

CT Surface or 
wireframe

A: Surface mesh rendered in 
mono or stereo
D: N/S
PK: N/S

Depth cue (stereo rendering 
used), state visualized (surface 
changed to wireframe based on 
proximity to structure to be 
localized)

Patient HMD Rotations used to get new 
view

Blackwell [4] CT
MRI

N/S N/S N/S Patient Half-silvered 
mirror

N/S

AR

Das [5] CT, US, MRI Plane, 
wireframe

A: Yellow wireframe cylinder 
for target lesion overlaid on 
CT cross-section
D: N/S
PK: Needle = blue cylinder 
with small sphere for tip

Saliency (white perimeter around 
plane), state visualized (needle 
trajectory green where 
extrapolated)

Patient HMD N/S

AR
Edwards00 
(MAGI) [6]

MRI Surface A: Vessels + tumour rendered 
as wireframe
D: N/S
PK: N/S

Colour coding (blue filter for 
better colour separation between 
MRI overlay and real image)

Patient Microscope N/S

Glossop [8] CT Points, lines N/A N/A, laser displays only vector 
objects

Patient Laser 
Projection

N/S

Hansen [9] Angiography Contour A: Silhouette of vessels and 
tumours
D: N/S
PK: N/S

Illustrative rendering (distance 
encoded silhouettes, varying 
stroke texture, and silhouette 
thickness, contour lines)

Patient N/S N/S

Sielhorst [14] CT or MRI Surface or 
volume or 
wireframe

A: Bone mesh/surface/ volume 
and transparent/opaque window 
with glass/highlighted skin
D: N/S
PK: N/S

Compared visualizable data: 
mesh, surface vs. volume and 
transparent vs. opaque window 
and glass/highlighted skin

Patient HMD Track head movement which 
moves virtual window

Stetten [15] Intra-op US Plane A: US slice
D: N/S
PK: N/S

N/S Patient Half-silvered 
mirror (stand 
alone or fixed 
to US probe)

N/S

Wacker [16] MRI Plane, contour A: Lesions represented as discs 
+ MRI slice
D: N/S
PK: needle = blue cylinder, 
with red  sphere tip

State visualized (needle yellow 
where extrapolated)

Patient HMD N/S

AR 

Linte [10] MR, intra-op 
US

Plane, 
surfaces

A: Colour coded surface model
D: N/S
PK: Coloured surgical 
instruments, mitral valve and 
valve-insertion tool.

Colour coding (ROIs), 
transparency (to overlay US on 
cardiac model)

Patient or 
Monitor

HMD or 
Monitor

N/S

& 
AV

Paul [13] MRI, fMRI/
MEG, camera 
image from 
each 
microscope 
ocular

Surface, 
wireframe

A: 3D Colour coded surfaces, 
3D textured smooth surface 
mesh
D: N/S
PK: N/S

Colour coding (pre-op surfaces), 
transparency (to overlay texture 
mapped intro-op images and pre-
op surfaces)

Monitor/Patient Monitor/
Microscope

Toggle each component of 
the scene on and off change 
opacity or colour, change 
pose of the overall scene

AV

Gering [7] MRI (intra-op 
+ pre-op), MR 
angiography, 
fMRI PET, 
&SPECT

Plane, surface A: Colour coded structures of 
interest
D: Label layer/segmented 
objects shown as boundary 
around key structures
PK: Needle = orange cylinder

Colour coding (structures, 
boundary around key structures, 
biopsy target), transparency 
(volume overlays of intra-op data)

Monitor Monitor Change transparency of 
structures, change pose, use 
slider to move through 
volume slices

AV
Nicolau [12] CT + intra-op 

video
Surface A: Colour coded structures of 

interest, target 2m green sphere
D: Distance to target shown 
numerically, crosshairs show 
optimal trajectory
PK: N/S

Colour coding (structures), 
adding emphasis (ROI outlined 
with dotted line on live video)

Monitor Monitor Change transparency, 
visibility and colour of 
objects, rotate, translate zoom 
and change point of view of 
virtual camera

intra-operative surgical decision making and image guidance. The publication by
Sielhorst et al. [14] which compared volume rendering to surface and wireframe
rendering, showed that volume rendered data currently does not allow for as
fast and precise interaction as that of surface or wireframe data. As processor
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speeds increase allowing for interactive refresh rates, the use of volume data may
become more common.

Visually Processed Data. With the exception of three publications which
focused on novel visualization techniques [2,9,14], little attention was given to
how data should be presented to the user in order to provide the most informative
representation and enable a good spatial and structural understanding of the
data. The majority of the visually processed data described in the publications
were colour coded regions of interest [1,5,7,10,13], transparent data [2,7,14] or
wireframe meshes [3,5,6,13].

Four papers ( [2,5,7,16]) described prior knowledge data in terms of how tools
were visualized. The others did not specify whether or not prior knowledge data
was used and how it was visualized. In three of the systems which described
onscreen tool depiction [5,7,16], a biopsy needle was represented as a cylinder.
In Bichlmeier et al.’s AR surgical system [2], surgical tools which are virtually
extended into the patient cast a realistic shadow providing appropriate visual
feedback for improved navigation.

Only two of the systems in the 15 publications described the visualization
of derived data. Nicolau et al. [12] numerically displayed the distance from the
tool held by the end-user to the target anatomy and represented the computed
optimized trajectory for the surgical tool as a cross-hair. Gering et al. [7], used
segmented objects derived from a “label layer” to compute the boundaries that
were depicted around key structures on the slices of an MR image.

3.2 Visualization Processing

In the selected publications, visualization processing was limited to colour cod-
ing structures [1,7,6,10,12], adding emphasis by outlining regions of interest [2,5]
and using transparency to combine modality data [1,2,7,10,13,14]. The use of
simple visualization techniques such as colour coding and transparency do not
always support understanding of the structure and spatial relationships of the
data. The use of transparency alone to merge modality data can complicate
the perception of relative depth distances and spatial relationships between sur-
faces. More sophisticated techniques are needed for better understanding and
interaction of the visually processed data.

3.3 View

In all but two papers [1,9] the perception location and display were specified.
The interaction component however, was rarely mentioned and in the few pub-
lications where it was mentioned the discussion was limited.

Perception Location. In the majority of the papers, the perception location
was the patient. This suggests that current research is focusing on developing
systems where the surgeon or resident does not have to look away from the
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surgical field of view and the surgeon or resident benefits most from the visual-
ization. The use of patient as perception location limits the display device to be
either laser projection [8], half-silvered mirrors [4,15] or HMDs [2,5,10,14,16]. In
the selected publications only Nicolau et al. [12] and Gering et al. [7] used an
external digital monitor as the sole perception location.

Display. In half of the selected publications HMDs were used as display device.
HMDs can be either optical see-through, where half-transparent mirrors are used
to reflect computer-generated images on top of the real world to the user, or video
see-through, where video images of the real world are captured using two video
cameras attached to the head gear and are combined with computer generated
images and then viewed by the user. With the exception of Birkfellner et al.’s
head-mounted optical see-through microscope (Variscope AR) [3], the remainder
of the selected publications used video see-through HMDs [2,14,16].

Half-silvered mirrors or tomographic reflection were used in two of the selected
publications [4,15]. With this method, a computer generated image is reflected
through a semi-transparent or half-silvered mirror such that the generated im-
ages are projected onto the patient. In Blackwell et al.’s work [4], shutter glasses
were used and tracked so that the virtual objects could be seen in the correct
position and in stereo. Stetten et al. [15] developed a traditional mirror overlay
system, and a portable system where a mirror and a mini flat panel display
were attached to an ultrasound probe. Their system allowed for image overlay
onto the patient without tracking and arbitrary slice views because of the free
movement of the ultrasound probe.

HMDs and tomographic reflection, unlike monitors, allow for in situ visu-
alization. Computer monitors, however, are also used in state of the art sys-
tems [10,13,12]. Advantages of monitors include the ability for multiple users to
benefit from the visualization, and the fact that monitors are already available
in the OR. The latter implies that there is no need to introduce a new display
device making the use of a digital monitor both cost efficient and non-intrusive.

In two of the chosen publications [3,6], a surgical microscope or variation there
of were used. The use of a device that is already present and used in the OR envi-
ronment seems a logical solution for a visualization system as it may reduce the
amount of disruption of the workflow of the surgeon and seamlessly fit into the
infrastructure of a surgical navigation system. In the selected publications, both
the MAGI (microscope-assisted guided interventions) [6] system and the Vario-
scope AR [3] allow for correct stereoscopic visualization of the virtual features
presented in the optical path of the microscope. In the former, this is achieved
by displaying an offset stereogram image of the virtual information into each
of the microscope oculars, and in the latter by means of two miniature VGA
displays, one meant for each eye.

Interaction. The discussion of the virtual interaction component in the selected
papers with few exceptions was limited to: allowing the user to rotate to get a
new view of the data [3,12], allowing the user to toggle components on and off,
change opacity or colour or objects [7,12,13], navigate through the scene, and
change the position of the virtual camera [12,13].
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The portable tomographic reflection system fixed to an US probe developed
by Stetten et al. [15] may also be considered as a hardware interaction tool. The
probe is operated by the end-user to view an ultrasound slice within the patient,
and in order to get different slice views the user simply changes the orientation
of the ultrasound probe.

4 Conclusions

In this work, we have described the DVV taxonomy based on Data type, Visual-
ization Processing and View. Using these three factors, we can describe a system
based on what type of data should be visualized, how it should be visualized, at
what point in the surgery it should be visualized and how the user can interact
with the data both in terms of manipulation on screen and hardware devices for
interaction. Differences between the DVV taxonomy and other visualization tax-
onomies lie in its specificity to mixed reality visualization in IGS and its ability
to account for the constraints of the OR and of the user.

The DVV taxonomy facilitated a complete analysis of 15 state-of-the-art
mixed reality IGS systems. The analysis of the publications brought to light
particular patterns, for example, the focus on in-situ visualization and the lack
of focus in IGS on visualization processing and the interaction component of the
view. In doing so, the DVV taxonomy was shown to be useful for finding holes
in current research. It therefore, serves both as guide to structure the work that
has been done to date in this domain and as a tool for suggesting avenues of
future study in the field. The DVV taxonomy was shown to be useful for com-
paring, analyzing and evaluating systems in a consistent manner and therefore,
may help bring us a step toward ensuring the successful introduction of more
mixed reality IGS systems in the OR.

The next step of our work will be to evaluate the DVV taxonomy and use it
to organize a literature review of mixed-reality IGS systems. By doing so it will
become more evident what components of current systems have been shown to
improve surgery and can be re-used and which elements need further research
and novel solutions.
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Abstract. Registration and fusion of real-time trans-esophageal (TEE)
and live fluoroscopy images have potential to provide improved visualiza-
tion during minimally invasive aortic valve replacement and other cardiac
interventions. We present an approach for achieving this registration us-
ing 3D TEE pose estimation from single-perspective x-ray images, and
assess the performance of both point-based and intensity-based tracking
techniques. Simulated and experimental accuracy studies demonstrated
tracking errors of under 0.58mm and 0.32◦, and phantom trials resulted
in a 3D US-to-fluoroscopy RMS registration error of 3.5mm.

1 Introduction

Aortic valve replacement is a common procedure that has been performed for
decades with good results [1]. Minimally invasive valve implantation techniques
have been developed to treat patients previously deemed inoperable. In these
procedures, a valve is mounted onto a catheter and guided to position primarily
using intra-operative fluoroscopy and transesophageal (TEE) ultrasound. While
the fluoroscopy image provides clear visualization of the stent, anatomic struc-
tures are visible only on ultrasound. Poor visualization of the coronary ostia in
fluoroscopy can lead to the rare but serious complication of coronary obstruc-
tion [2]. Fluoroscopy-to-ultrasound registration would enhance guidance by pro-
viding a common coordinate frame within which both modalities can be viewed.
Initial clinical experience suggests that a 3D localization accuracy of 2 to 3 mm
is required.

Previous work has focused on registering the images using magnetic tracking
systems [3]. However, magnetic tracking systems are susceptible to field dis-
tortions by the presence of metallic materials and electronics, which negatively
affects their reliability and tracking accuracy [3][4].

Since the workflow in the operating room precludes the use of biplane fluo-
roscopy to localize the probe by triangulation, we propose a fluoroscopy-to-US
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registration using 2D-to-3D image-to-model registration techniques to determine
the 3D pose of the TEE probe from single-perspective fluoroscopy images. Ac-
curacy of an ultrasound-to-fluoroscopy registration depends on the accuracy of
both probe tracking in 3D space and ultrasound calibration. In this paper we
characterize the accuracy of two fluoroscopy-based tracking techniques when ap-
plied to a TEE probe, and present a flouroscopy-US registration based on this
technique.

2 2D-to-3D Registration Techniques

Two fluoroscopy-based tracking techniques are employed in this study to local-
ize a TEE probe from a single-perspective x-ray image: a “point-based” and
“intensity-based” technique.

Point-based Tracking. Point-based 2D-to-3D registration aligns a rigid-body
with radio-opaque markers with corresponding projections within a 2D fluoro-
scopic image, in a least-squares sense. Details regarding the implementation of
this registration are described by Habets et al [5], and Hoffman et al [6]. This
technique requires adding radio-opaque markers to the probe, which can be em-
bedded within the outer plastic casing. Alternatively, an extension at the end of
the probe may be tracked. Our clinical experience suggests that an attachment
up to 4 cm in length can be safely used without damaging the esophagus during
manipulation of the probe.

Intensity-based Tracking. Intensity-based 2D-to-3D registrations align a CT
volume with corresponding fluoroscopic images by optimizing an image-similarity
metric. Ray-casting is used to project through the CT volume, and create a dig-
itally reconstructed radiograph (DRR). This DRR, or simulated x-ray image, is
compared to the actual fluoroscopic image using the gradient difference similarity
metric. Details are described by Penny et al [7].

3 Simulation Study

Performance of the intensity-based algorithm depends highly on the tracked
object’s geometry. In this section we describe a method to estimate tracking
performance of a given geometry using autocorrelation graphs. This allows opti-
mization of tools for image-based tracking. We apply this technique to the native
TEE probe geometry, and to a potential tracking attachment geometry designed
to enhance tracking performance.

3.1 Methods

Autocorrelation graphs for each geometry are created by translating the geom-
etry along, or rotating around each axis. The similarity is calculated between
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the projected image at each point and a reference projection taken at the refer-
ence position (Figure 1a). The peak of this graph represents a correct alignment.
As misalignment increases, the similarity metric decreases. The performance of
different geometries can be assessed by comparing the shape of the autocorrela-
tion graphs. Narrow-peaked graphs are preferable to wide graphs. The distance
between peaks on the autocorrelation graph represents the region in which the
tracking algorithm must be initialized for convergence to the correct solution.
The shape of the autocorrelation graph varies depending on the noise level.

Ideally, the tracking algorithm will optimize results until the peak of the
graph is reached. Actual convergence is determined by the search pattern of the
optimization algorithm, the step size, the resolution of the model and images,
the geometry of the tracked object, and the presence of noise and calibration
errors. The tracking precision in each direction is determined by the position of
the model at convergence (Figure 1a).

To determine maximum tracking precision for a given geometry, we register
our CT volume to ideal DRR images generated from the same CT. The simi-
larity metric value at convergence is then used to determine tracking precision
for each direction from the autocorrelation graph (Figure 1a). The algorithm is
initialized to a random position within 2mm and 2 degrees of the actual pose
to ensure convergence to the proper peak. We used the Insight-Toolkit (itk) im-
plementation of the gradient descent optimizer, with a step size of 0.001mm [8].
Image and model resolutions are described below.

Fig. 1. a) Sample autocorrelation graph demonstrating how tracking error is deter-
mined. Actual results are reported in Table 1. b) CAD model of tracking pattern c)
TEE Probe with reference coordinate system: In-plane directions = x and y translation,
z rotation, out-of-plane directions = z translation, x and y rotations.

Probe Geometry. A micro-CT (eXplore Locus Ultra, GE Healthcare) scan
of the US transducer was acquired (0.150mm isotropic voxel spacing, 120kVp,
20mA) from which DRRs were generated. Autocorrelation graphs using a CT of
the TEE probe were generated for all 6 degrees of freedom (Figure 1c), for both
ideal and noisy images. A Gaussian noise level of 2.5%, representative of clinical
images collected on our system, was used.
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Tracking Attachment Geometry. Autocorrelation graphs were also gener-
ated to assess the performance of a custom-designed tracking attachment pat-
tern. This pattern consists of flat stripes (0.45mm x 8.6mm x 0.151 mm) ar-
ranged in two layers offset by 90◦ (Figure 1b). This pattern is designed to
maximize information provided by edges and intensity differences when rotated
and translated in the out-of-plane directions. A 3D model was generated using
SolidworksTMCAD software ( Dassault Systèmes Solidworks Corp). The surface
model was converted into a representative CT volume. DRRs created from this
volume were used to generate the autocorrelation graphs.

3.2 Results and Discussion

The similarity metric at convergence for both patterns was 0.99 and 0.84 when
registering to ideal DRRs, and noisy DRRs, respectively. The tracking errors
are reported as displacement error of the probe (mm or degrees), and as the
equivalent displacement error of a point on an US plane imaged with the probe
(Table 1). For this analysis, we have chosen a representative point: offset 7cm
vertically and 3cm horizontally from the image midline. This point approximates
common locations of relevant anatomy on clinical images.

In-plane translations and rotations demonstrated high tracking accuracy, with
narrow peaks for both ideal and noisy cases, and expected tracking accuracies of
less than 0.01mm and 0.1◦. Out-of-plane translations and rotations performed
well in the ideal case, but were significantly affected by the addition of noise
(Table 1). Ideal and 2.5% noise images resulted in maximum US displacement
errors of 0.16mm and 6.45mm respectively, significantly higher than clinically
acceptable values. This suggests native probe geometry can be used to estimate
target location, but not in applications requiring high accuracy.

Tracking attachment geometry performed better than the native probe geom-
etry. Displacement error was reduced nearly tenfold to 0.60mm in noisy images
when rotating around the x and y axes, without adversely affecting the other
degrees of freedom (Table 1).

Table 1. Expected displacement error in each direction. Translations are given in mm
and rotations are given in degrees.

X Trans Y Trans Z Trans X Rot Y Rot Z Rot Max.US Displacement
Probe – Ideal 0.0025 0.0047 0.0093 0.064 0.063 0.016 0.16
Probe –Noisy 0.49 0.49 2.04 2.64 2.26 0.34 6.45

Pattern –Noisy 0.10 0.12 1.16 0.25 0.71 0.33 0.60

4 Experimental Tracking Study

4.1 Methods

In vitro experiments were performed to assess the accuracy of the point-based
and intensity-based tracking techniques. Known displacements (translations or
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rotations) were applied to the TEE probe, and compared to the displacement
measured from fluoroscopic images. Accuracy was quantified using the root-
mean-square (RMS) difference between the measured and applied displacements.

For point-based tracking, a 15mm x 15mm x 20mm rigid-body attachment
containing seven spherical tantalum (radius 0.5mm) markers was attached to the
end of a Philips X7-2t TEE ultrasound transducer. A micro-CT (eXplore spec-
CZT, GE Healthcare) scan of the transducer, with the rigid-body attachment,
was acquired (0.050mm isotropic voxel spacing, 110kVp, 32mA ) to establish the
rigid-body model. Marker locations within the CT volume were measured using
region growing and centroiding operations available on micro-CT analysis soft-
ware (MicroView, GEHealthcare). For intensity-based tracking, the previously
acquired microCT was again used (Section 3).

The in vitro experiment was performed in a clinical setting using a floor-
mounted C-arm radiography system equipped with an X-ray Image Intensifier
(Axiom Artis, Siemens Medical). A de-warping grid was employed to correct
distortions [9]. Perspective geometry of the radiography system was determined
using radiostereometric analysis techniques, consisting of imaging a calibration
cage, from which a perspective transform and the focal point are calculated [10].

Using custom-built attachments, the probe was mounted onto both a linear
translation table (J. A. Noll Co,TMprecision ± 0.003mm) and a rotational table
(Aerotech IncTMModel MR100, precision ± 5E-4◦), which provided gold stan-
dard displacement measurements (Figure 2a). Each of the 6 degrees of freedom
(x, y, z translation and rotation) were assessed independently. 16-24 displace-
ments were applied in each direction, with steps sizes ranging from 0.635mm to
5.08mm and 1 to 10◦. A fluoroscopy image (isotropic pixel spacing 0.19mm, 58
kVp, 23 mA, 4ms) was acquired both prior and subsequent to each displace-
ment(Figure 2b). Both the native geometry of the US probe and the tracking
attachment are visible in all the fluoroscopy images, allowing the same images
to be used for both the point-based and intensity-based accuracy assessment
(the point-based markers were excluded from the intensity-based ROI). The
acquired images were processed offline on a personal computer with a 2.6GHz

Fig. 2. a) Experimental setup b) Fluoroscopy image showing probe and markers c)
Co-registered DRR (red) and fluoroscopic image from intensity-based tracking
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quad core CPU and 4GB of memory. The point-based algorithm requires manual
initialization to establish correspondence between the rigid-body points and their
projections within the fluoroscopy image. The intensity-based algorithm is ini-
tialized by defining a region of interest (excluding the radio-opaque markers),
and manually estimating the initial registration parameters to provide the algo-
rithm with a starting point. Since the position of the probe is constrained within
the esophagus, it will be relatively easy to automate this initialization process.

4.2 Results and Discussion

Maximum tracking errors associated with the point-based and intensity-based
tracking were 0.58mm, 0.32◦ and 2.29mm, 3.76◦, respectively (Table 2, Fig-
ure 2c). Both techniques demonstrated a higher accuracy tracking in-plane
movements compared to out-of-plane movements. This decreased accuracy is
explained by the limited sensitivity of information available out-of-plane (the
geometric magnification). The point-based technique demonstrated greater ac-
curacy than a 2D TEE probe mounted with an external magnetic sensor as
described by Moore et al [4]. The results of the intensity-based tracking are
consistent with simulation results presented in Section 1, where tracking using
only the native probe geometry demonstrated limited accuracy. This suggests
that accurate fluoroscopy-US registration requires the use of a custom geometry
tracking attachment. Although our results from Section 1 suggest that opti-
mized geometries may improve performance of the intensity-based registration,
we found that the point-based was more accurate, easier to implement, and has
significantly faster registration times.

Table 2. Root mean square error in each direction. Translations are given in mm and
rotations are given in degrees.

X Trans Y Trans Z Trans X Rot Y Rot Z Rot
Point-based 0.21 0.21 0.58 0.32 0.13 0.16

Intensity-based 0.52 0.30 2.29 3.47 3.76 1.05
(native probe geometry)

5 Fluoroscopy-US Registration

5.1 Methods

Fluoroscopy and US images (iE33, Philips Healthcare) were collected simulta-
neously, using the US probe and C-arm systems described in Section 3. The US
probe was visible in all acquired fluoroscopy images; allowing the location of
the probe in world space to be determined using the point-based registration
technique described in Section 2. The 3D world location of points within the 2D
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US image are given by Equation 1, where the points and transformations are
defined as follows:

PUS , PWorld = Point locations in 2D US image space and 3D world space
TUS→Probe = Transformation from 2D US image space to probe space
TProbe→World = Transformation from probe space to 3D world space

Pworld = TProbe→World • TUS→Probe • PUS (1)

US probe calibration was performed using the Z-bar technique described by
Gobbi et al [11] to determine TUS→Probe. Radio-opaque markers were attached
to the Z-bar phantom, and their relative locations characterized, enabling it to be
registered to world space; this allows all measurements to be made in a common
frame of reference. The phantom was immersed in 10.5% glycerol at 21◦ Celsius.

Fluoroscopy-US registration error was assessed using a target phantom con-
sisting of a table-tennis ball mounted on a frame (Figure 3a). Radio-opaque
markers were added to the frame, allowing the “ground truth” cross section to
be defined using microCT data (eXplore Locus Ultra), and point-based pose es-
timation (Section 2). Six cross-sectional US images of the ball were acquired at
varying angles and locations used in clinical practice. The centroid of the cross-
section was identified using a least squares best fit ellipse to manually identified
points (Figure 3b). Both 3D (world space) and 2D (fluoroscopy image) target
registration errors were calculated.

Fig. 3. a) Target phantom b) Centroided US Image c) Gold standard (red), Measured
(yellow) targets

5.2 Results and Discussion

Z-bar calibration was achieved with a RMS error of 1.6 mm, consistent with
calibration errors reported in similar studies [3]. An RMS target registration er-
ror of 3.5mm was achieved when localizing US points in 3D world space, which
reduces to 2.9mm when reprojected onto the fluoroscopy image (Table 3, Fig-
ure 3c). These results are similar to those obtained with magnetic tracking [3][4],
and consistent with expected results based on the inherent probe tracking error
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Table 3. Target registration errors, given in mm.

RMS Mean Std Dev
World Space 3.47 3.42 0.62

Fluoroscopy Image 2.91 2.77 0.98

described in Section 4. Target registration error could be significantly reduced
with a more accurate and robust US probe calibration. Alternative calibration
techniques can be adapted from magnetic to fluoroscopy tracking [3][12].

6 Conclusions

Registration and fusion of real-time TEE and live fluoroscopy images have the
potential to provide improved visualization during minimally invasive off-pump
aortic valve replacement and other interventional cardiac procedures. We present
an approach for achieving this registration using 3D TEE pose estimation from
single-perspective x-ray images. This tracking technique provides improved ac-
curacy in probe localization over magnetic tracking, and does not significantly
change the workflow of the operating room. Experimental assessment of track-
ing accuracy demonstrated maximum RMS displacement and rotation errors of
0.58mm, 0.32◦ and 2.29mm, 3.76◦ for point-based and intensity-based tracking
techniques, respectively. These results are consistent with our simulation study,
which estimated a maximum tracking accuracy of 2.04mm and 2.64◦ for ideal
images with similar noise levels. The point-based method is most appropriate for
situations requiring high accuracy, while the intensity-based method provides the
advantage of using native probe geometry. Combined with Z-bar US calibration,
a 3D RMS registration accuracy of 3.5mm was achieved. Future work will focus
on improving the US calibration procedure, and evaluating clinical feasibility
through in vivo animal trials.
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Abstract. This paper presents a method for automated nomenclature
of abdominal arteries that are extracted from 3D CT images based on the
combination optimization approach for the displaying anatomical names
on virtual laparoscopic images. It is important to understand the blood
vessel network of a patient. Our proposed method recognizes the anatom-
ical names of each arterial branch extracted from contrasted 3D images
based on geometric features. We employ a combination optimization ap-
proach for treating the variations of branching patterns and overlay rec-
ognized anatomical names on virtual laparoscopic views for assisting the
recognition of patient anatomy for surgeons. Experimental results using
89 cases of 3D CT images showed that the nomenclature accuracy for
uncorrected blood vessel tree and corrected blood vessel tree were about
84.2% and 88.8% in average respectively and demonstrated anatomical
name overlay on virtual laparoscopic images.

1 Introduction

In laparoscopic surgery, surgeons must understand the patient anatomy, espe-
cially the blood vessels. Abdominal vasculature is quite complex, and there are
several variations, such as branching orders, locations or the existence of missing
or additional branches. Such complexities in abdominal vasculature may increase
surgeons’ loads or affect the safety of the surgery.

To overcome such problems, CT images are taken for understanding the pa-
tient anatomy prior to laparoscopic surgery. Surgeons make surgical plans by
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the Ministry of Health and Welfare.
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reading or visualizing these CT images. However, since the abdominal vascula-
ture has a complex network, it is hard to understand the vasculatures by CT
images. Assistance systems for grasping abdominal blood vessels are expected
to be developed.

This paper presents a method for automated nomenclature (automated
anatomical labeling) of abdominal arteries that are extracted from 3D CT images
based on a combination optimization approach for displaying anatomical names
on virtual laparoscopic (VL) images. Automated nomenclature is partially imple-
mented using a machine learning approach.

There are several researches on automated nomenclature. Mori et al. pre-
sented a method for automated nomenclature of bronchial branches extracted
from CT images [1,2]. Tschirren et al. also presented such a method for human
airway tree based on the branchpoint matching algorithm [3]. The most dif-
ference between bronchi and artery nomenclature is that the abdominal artery
nomenclature process needs to consider that arteries are branching from thick
arteries. On the other hand, the bronchus shows equal branching at every branch-
ing point (one branch bifurcates into two branches of the same size.) Since the
existing automated nomenclature algorithms for the bronchus do not work well
for artery nomenclature, special procedures for automated artery nomenclature
need to be developed. Hence, direct comparison with other methods including
Mori’s latest is difficult. Chalopin et al. introduced 3D models of coronary arter-
ies for automated nomenclature and tried nomenclature of coronary arteries on
2D X-ray images [4]. Won et al. presented an interesting method for the unclut-
tered single-image generation of abdominal arteries[5]. Although they analyzed
the branching structures of abdominal arteries, automated nomenclature was
not performed. To our knowledge, there is no research on the anatomical name
display of abdominal arteries on VL views based on automated nomenclature.

2 Target Arteries and Problem Formulation

(a) Target arteries. In this paper, we selected eleven upper abdominal ar-
teries as the target arteries of automated nomenclature and the anatomical
name display on the VL views (Fig. 1.) Upper abdominal arteries are crucial
for surgery of the stomach, the liver, the pancreas, and the gallbladder. The
target arteries are: (a) the abdominal aorta (Ao), (b) the celiac artery (CA),
(c) the common hepatic artery (CHA), (d) the splenic artery (SA), (e) the
proper hepatic artery (PHA), (f) the gastroduodenal artery (GDA), (g) the
right gastroepiploic artery (RGEA), (h) the left gastric artery (LGA), (i) the
superior mesenteric artery (SMA), (j) the left renal artery (LRA), and (k) the
right renal artery (RRA). Abbreviations of these words, which are commonly
used in the medical field, are shown in the brackets.

(b) Problem formulation. In the proposed method, the abdominal artery
network is represented by a graph. The branches and the branching points of the
blood vessels are represented as edges and nodes, respectively. Here, we consider
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(a) (b)

Fig. 1. Illustration of abdominal arteries for automated nomenclature: (a) 3D views
of abdominal arteries and (b) branching structure. See Section 2 for abbreviations of
anatomical names.

the automated nomenclature process an optimization problem that selects the
most appropriate combination of pairs of branches and anatomical names. This
process can be expressed as

c∗ = argmax
ck∈S

h(ck), (1)

where ck means a combination list that enumerates all possible pairs of blood
vessel branches and their associated anatomical names. S is a set of all possible
combination lists. h(ck) is a function that evaluates ck. k-th combination list ck

can be expressed as

ck = {(bi, j) | bi ∈ B, j ∈ L}, (2)

where B shows a set of blood vessel branches (edges in graph structure; concate-
nated branches are also considered) and L represents a set of anatomical names.
For example, ck becomes c1 = {(b1,Ao), (b2,CA), (b3,SA), · · · }.

To maximize the automated nomenclature performance and to reduce the
computation time, we divide the abdominal arteries into four parts and sequen-
tially perform specific nomenclature procedures (specific evaluation functions)
for each part. The four parts consist of: (a) {Ao}, (b) {CA, CHA, SA, PHA,
GDA+RGEA, LGA}, (c) {SMA}, and (d) {LRA, RRA}. The nomencla-
ture process is executed in this group order. In other words, first we assign Ao
and then assign {CA, CHA, SA, PHA, GDA+RGEA, LGA}. The nomen-
clature of {SMA} and {LRA, RRA} is then executed. A minimization process
is executed for each group. Anatomical (i.e. parent-and-child relationship) and
shape constraints are also considered for reducing the number of combinations.

(c) Features of abdominal artery branch. The proposed method assigns
anatomical names based on the features calculated for each vessel branch. Blood
vessel branch bi possesses the following features: (a) running direction di, (b)
norm ni of di, (c) length li, and (d) diameter ti. Running direction di can be
computed as di = pe

i − ps
i , where ps

i and pe
i mean the start and end points
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of branch bi, respectively. Norm ni is calculated as ni = ‖di‖. Length li can
be computed along branch bi by a 6-neighborhood distance measure along the
branch. Diameter ti can be obtained by referring to the result of the Euclidean
distance transformation of the abdominal artery region.

3 Methods

3.1 Overview

The basic idea of the proposed method is to assign anatomical names to each
branch based on features defined in the previous section. We enumerate the pos-
sible combination list of holding pairs of branches and the associated anatomical
names and select the best combination list based on the features.

3.2 Preprocessing

We extracted the artery regions from the contrasted CT images by utilizing a
method presented by Nakamura et al. [7] that basically enhances the blood ves-
sels by utilizing the eigenvalues of a Hessian matrix [6] and then extracts the
blood vessel regions by thresholding followed by connected component analy-
sis. The thinning algorithm was applied to the extracted regions to obtain the
centerlines of the abdominal arteries. A graph representation is obtained by the
method shown in [1].

3.3 Automated Nomenclature

(a) Labeling of Ao: Since the abdominal aorta is the thickest blood vessel
inside the human body, it is possible to find it by considering its diameter.
For abdominal aorta nomenclature, we define function h as the function that
finds combination ck, where (a) the diameters of all branches bi are bigger than
threshold TAo mm, (b) all candidate labels are Ao, and (c) all branches are
connected.

(b) Nomenclature of CA, CHA, SA, PHA, GDA+RGEA, and LGA:
For this part, we utilize a machine learning approach for nomenclature. In the
learning step, we compute feature vectors xi = {d̂x

i , d̂y
i , d̂z

i , ni, li} and manually
assign anatomical names for all branches bi, where d̂x

i , d̂y
i , and d̂z

i are the x,
y, and z components of normalized vector d̂i of running direction di of branch
bi, and ni norm of di, respectively. For each anatomical label aj , we compute
mean mj and covariance matrix Σj from features vector xi of the branch whose
anatomical name is j.

In the testing step, we compute an evaluation value for combination list ck by

h(ck) =
N∑
i

Pi,j(i), (3)
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where j(i) is the candidate label for branch i in ck and N is the number of
branches in the combination list. Pi,j(i) is the likelihood that shows that branch
bi has anatomical name j and is computed by

Pi,j(i) = pj(i)(xi) (4)

=
1

(2π)3|Σj(i)|1/2 exp
[
−1

2
(xj − mj(i))T (Σj(i))−1(xj − mj(i))

]
, (5)

where xi is a feature vector computed for bi. Selected combination list c∗ using
Eq. (1) becomes nomenclature result.

To achieve fast computation and reduce misnomenclature, we introduce the
limitation of the combination lists of the branches and the candidate labels in
two ways: (a) anatomical constraints and (b) feature constraints. In the first con-
straint, we consider the parent-and-child relationship in the enumeration of the
combination lists. For example, there is an anatomical feature in which PHA
only branches off from CHA. From set S, we exclude the combination lists that
do not satisfy the anatomical constraints. The second constraint excludes combi-
nation lists that have low possibilities to be selected as an optimal combination
by checking the features of the branches contained in ck. If bi, which will be
assigned to anatomical name j, fails to satisfy one of the following conditions∣∣∣∣∣ li − μl

j

σl
j

∣∣∣∣∣ < α,

∣∣∣∣∣ni − μn
j

σn
j

∣∣∣∣∣ < β,

√
(d̂i − md̂

j )t(Σd̂
j )−1(d̂i − md̂

j ) < γ,

∣∣∣∣∣ ti − μt
j

σt
j

∣∣∣∣∣ < δ, (6)

then we exclude ck, which includes bi, from S. Here, μl
j , μn

j , md̂
j , and μt

j show
the means or the mean vector of lj , nj , d̂j , and tj of branches with anatomical
name j. σl

j , σn
j , Σd̂

j , and σt
j are the standard deviations or the covariance matrix.

α, β, and γ are the parameters for branch selection.

(c) Nomenclature of SMA: SMA branches off from Ao and runs to the foot
side. Its starting branch can be easily identified as the branch that branches off
from Ao and runs to the anterior direction. SMA has an anatomical feature
where its diameter does not change so much, although many thinner branches
are branching from it. We define evaluation function h as

h(ck) =
N∑
i

1
| ti − tstart |

(7)

where tstart and ti show the thickness of the starting branch of SMA and branch
bi. N is the number of branches in ck. In the above evaluation, we only con-
sider combinations with candidate label SMA and child branches of its starting
branch (for example, ck = {(b1,SMA), (b3,SMA), (b4,SMA), · · · } and bi are
the child branches of the starting branch of SMA) in many candidate lists. We
select the combination list having the highest evaluation value.
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(a)

CA SA CHA PHA GDA+RGEA LGA
C.B. L. C.B. L. C.B. K. C.B. L. C.B. L. C.B. L.

c1 b1+3 P1+3,1 b4 P4,2 b5 P5,3 b8 P8,4 b9 P9,5 b2 P2,6

c2 b1+3 P1+3,1 b4 P4,2 b5 P5,3 b9 P9,4 b8 P8,5 b2 P2,6

c3 b1+3 P1+3,1 b4 P4,2 b5 P5,3 b9 P9,4 b8+10 P8+10,5 b2 P2,6

c4 b1+3+5 P1+3+5,1 b8 P8,2 b9 P9,3 b12 P12,4 b13 P13,5 b2 P2,6

c5 b1+3+5 P1+3+5,1 b8 P8,2 b9 P9,3 b12 P12,4 b13 P13,5 b4 P4,6

c6 b1+3+5 P1+3+5,1 b8 P8,2 b9 P9,3 b12 P12,4 b13 P13,5 b4+7 P4+7,6

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
(b)

Fig. 2. Example of input graph structure and associated combination lists. (a) graph
structure of abdominal artery and (b) combination lists for (a). “C.B.” and “L.” mean
“candidate branch” and “likelihood”, respectively. Representation such as “1+3” means
concatenated branches. For example, c1 shows a combination list that assigned CA to
b1+2, SA to b4, CHA to b5, and so on.

(d) Nomenclature of LRA and RRA: LRA and RRA branch off from
Ao. Their roots are very close to the branching point of Ao and CA. Hence, we
make set of combination lists S by selecting the combination lists that include
the branches that branch off from the Ao obtained in Sec. 3.3(a). We define the
condition to determine whether branch bi branches off at a point close to CA
(obtained in Sec. 3.3(b)) or not as∣∣∣∣ ti − μt

σt

∣∣∣∣ < ε, (8)

where tiCμtCand σt are the Euclidean distances between the starting points of
branch bi and CA, the mean and the standard deviation of ti computed from the
learning datasets. ε is a parameter that controls the assignment. Since there are
individual variations on the number of LRAs and RRAs, we define evaluation
function h as

h(ck) =
{

1 if all conditions of Eqs. (6) and (8) are satisfied
0 otherwise.

(9)
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We select all the combination lists that satisfy h(ck) = 1. If the branches run to
the left direction, they are assigned as LRA. If they run to the right direction,
they are assigned as RRA.

3.4 Anatomical Name Display on VL Images

By using the results of automated nomenclature, we overlay the anatomical
names of the abdominal arteries on the VL views. Since the centerlines and the
branching structures are computed in the automated nomenclature process, we
can find the location of each artery on a VL view by projecting their centers
of locations on a projection screen. We display the anatomical names at the
projected locations on the VL views and change the sizes and the colors based
on to the distance from the viewpoint.

4 Experiments

We applied our proposed method to 89 cases of contrasted abdominal CT im-
ages. Image acquisition parameters were 512x512 pixels in the slice planes, 301
to 1061 slices, 0.430 to 0.782 mm pixel spacing, 0.5 mm to 1.0 mm X-ray colli-
mation, and 0.4 to 0.5 mm reconstruction pitch. Although the CT images were
taken for surgical planning for gastric cancer resection, no patients had any
abnormalities (such as no stenosis) in their abdominal artery structure. We con-
ducted the experiments by the leave-one-out scheme and utilized the following
parameters: TAo = 5.0, α = 4.5, β = 10.0, γ = 4.5, and δ = 6.0 for Section 2.3
(b), and α = 3.0, β = 6.0, γ = 3.0, and ε = 3.0 for Section 2.3 (d). The averages
of the automated nomenclature accuracy for all anatomical names were com-
puted. The artery regions extracted from the CT images contain false negative
branches, false positive branches or holes caused by noise. For only evaluation
purposes, we manually corrected the artery regions and measured the nomen-
clature accuracy. The ground truth data of the anatomical labels was created
under the support of a medical doctor who is also a co-author of this paper.
The results of nomenclature are shown in Table 1 and Fig. 3. The computation
time for nomenclature for one case takes 10 seconds to 10 minutes; depends on
the number of branches. We utilized the automated nomenclature results for the
augmentation of the VL views. The results are shown in Fig. 4 and in the sup-
plementary videos. In these figures or videos, we generated VL views by volume
rendering and overlaid the anatomical names on the VL images.

5 Discussion

This paper presented a method for nomenclature of abdominal arteries based
on features and combination optimization. As shown in Table 1, we performed
automated nomenclature with 84.2% accuracy for the non-corrected data and
88.8% for the corrected data by using only features computed on each arterial



360 K. Mori et al.

Table 1. Accuracy of automated nomenclature for artery regions that were manu-
ally corrected and not corrected. Manual correction was performed to delete spurious
branches and holes caused by the thinning algorithm

Arteries Accuracy
w/o manual correction w/ manual correction

Ao 92.1% 100%
CA 87.6% 94.4%

CHA 84.2% 91.0%
SA 88.8% 93.3%

PHA 84.3% 91.0%
GDA + RGEA 84.1% 89.8%

LGA 75.0% 83.0%
SMA 82.0% 87.6%
LRA 74.5% 77.5%
RRA 79.8% 80.9%

Average 84.2% 88.8%

branch. In Fig. 3, several branches, which are considered as branching variations,
are branching off from CA and SA. However, the proposed method was able to
assign correct anatomical names to CA and SA. These are good examples show-
ing advantages of the proposed method utilizing the combination optimization
approach.

On the other hand, nomenclature accuracy of LRA and RRA is obviously
lower than other arteries. This could be improved by finding other features that
can distinguish the renal and other arteries. The combination lists were elim-
inated by using anatomical constrains for fast processing. This is because the
number of combination lists becomes huge. Although anatomical constrain can
greatly reduce the number of combination lists, the proposed method failed to
label the branches having minor branching variations. Such misnomenclature
can be prevented by adding such branching patterns to anatomical constraints,
and good features must also be found that can output high likelihood for such
minor branching cases.

This paper extracted artery regions by utilizing the Hessian-based method [6].
However, it caused some holes in artery regions or rough surfaces that generate
many spurious branches in the thinned results. Although the nomenclature accu-
racy for the uncorrected data becomes lower than that of the corrected data, the
nomenclature accuracy still remained at 84.2% The combination optimization
approach prevented worse results.

As we mentioned in the introduction, there are several researches on auto-
mated nomenclature [2,3]. These algorithms were developed only for bronchial
branch nomenclature. The largest difference between bronchi and artery nomen-
clature is that the abdominal artery nomenclature process needs to consider
the situation where many arteries are branching from thick (trunk) arteries.
These thick branches still retain same anatomical names after branching. On
the other hand, the bronchus shows equal branching at every branching point
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(a) (b)

Fig. 3. Examples of automated nomenclature results

(one branch bifurcates into two branches of the same size.). The anatomical
name changes at every branching point. The existing nomenclature algorithms
for the bronchus cannot be directly utilized for artery nomenclature. Although
the proposed method employs the machine learning approach for nomenclature,
as does Mori’s method [2], the whole procedure is different. A new algorithm
that consider the features of abdominal arteries should be developed. This is
the novel part of this paper. This specialty complicates direct comparisons of
the proposed method with the existing methods developed for the bronchus,
including Mori’s latest method [2].

Application of the proposed method to other organs is also challenging. The
nomenclature process based on machine learning and combination optimization
can be applied to nomenclature of liver vasculature that resembles to abdominal
artery branching, if appropriate features and evaluation functions can be defined.

We overlaid anatomical names on VL images. Such anatomical overlay greatly
assists surgeons to understand patient anatomy. If we can synchronize VL view

(a) (b)

Fig. 4. Anatomical name overlay on VL views. (a) and (b) are captured at different
viewpoints
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with real ones and overlay anatomical names on real laparoscopic views, it would
greatly assist laparoscopic surgery.

6 Conclusions

This paper presented a method for automated nomenclature of abdominal arter-
ies that were extracted from 3D CT images based on the combination optimiza-
tion approach for displaying anatomical names on VL images. The experimental
results demonstrated nomenclature with accuracy of about 89% and automated
display of anatomical names on VL views. Future work includes an extension of
the target arteries of nomenclature such as lower abdominal arteries, improve-
ment of the features, and the introduction of a sophisticated machine learning
approach such as AdaBoost.
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Abstract. Clinicians are trained to manipulate a colonoscope while
minimizing the force exerted on the colon walls to reduce the danger of
luminal perforation and discomfort to the patient. Here, we classify the
expertise of the clinician performing colonoscopy using a Hidden Markov
Model. Seven models are trained corresponding to the performance of the
expert in the entire colon, ascending, transverse and descending colon
and three gestures corresponding to roll and two angulations of the distal
end of the scope. Experimental results in a colon model (CM-1, Olym-
pus, Tokyo, Japan) are shown to compare the performance of the four
groups of users - first year, second year and third year GI residents and
expert physicians.

1 Introduction

The performance of gastroenterologists, surgeons, and related practitioners has
historically been assessed subjectively by senior physicians in both training and
operating environments. In recent years concern regarding poor surgical dex-
terity [1] and the broader use of minimally invasive interventions has promoted
efforts to better characterize operator performance [2] and improve the effective-
ness and efficacy of training [3]. Analytical approaches, such as task partitioning
[4], kinematics analysis [5], off-line “data mining” to train hidden Markov models
[6] or support vector machines [7], and many others have been developed. These
techniques may now be used to measure the potential value of new interven-
tional systems, for example determining the value of augmented reality displays
to assist an endoscopist or surgeon in performing procedures [ref withheld] and
to elucidate features which are most “helpful” to guide further development.
� This work has been funded by NIH/NCI under award 2 R42 CA115112-02A2 and
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MA.
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Here, we consider colonoscopy, wherein a highly flexible endoscope (colono-
scope) is inserted into the colon. The colon is elastic and deforms under the force
applied by the colonoscope. Our initial study suggests that using just the loca-
tion and kinematics of the distal dip of the colonoscope is not sufficient to classify
the operator’s performance. In addition, it was also observed that users had sig-
nificantly different performance in each section of the colon. Typically, it is most
difficult to maneuver the scope in the transverse and ascending colon region since
the length of the colonoscope inserted is large, resulting in greater flexing of the
scope. Kinematics based metrics do not identify these differences or highlight
the gestures required to manipulate the scope within the colon. Here we de-
velop and evaluate a probabilistic approach based on the Hidden Markov Model
(HMM) to classify the operator performance. Also, we establish a model of expert
performance to analyze and classify the ability of colonoscopy trainees. Other
investigators, [8], [6], [9], [10], have used HMM techniques to analyze operator
performance. We build on these studies to characterize colonoscopy, including
the use of flexible instruments, identifying the operator’s performance in each
segment of the colon, and specifying the gestures for performing colonoscopy
at the expert level. Characterizing the expertise of a user would be useful in
developing curricula and simulators to train operators to smoothly guide the
colonoscope with minimal discomfort to the patient.

2 Experimental Setup

The experimental setup (Figure 1) consists of a colon model (CM-1, Olympus,
Tokyo, Japan), which closely mimics the human colon and includes the ascend-
ing, descending and transverse colon. The model is loosely tethered to the back
support, allowing it to flex and stretch, as observed in an actual procedure. The
model is draped with a cloth to prevent the user from observing the location of the
scope inside the model. A pediatric colonoscope (PCF-Q180AL, Olympus, Tokyo,
Japan) is equipped with four electromagnetic 6-DOF position sensors (“Micro-
bird” sensors from Ascension Technologies Corp. (ATC), Burlington, VT). The
sensors are placed at 0cm, 10cm, 30cm and 55cm from the distal end. Sensor 1
and sensor 2 are placed to record the angulation of the distal end of the scope in
2-DOF about the y and z -axis. The position of sensors 3 and 4 arechosen such that
these sensors are approximately in the recto-sigmoid junction when the distal end
of the scope is in the traverse colon region, thereby permitting the detection of
flexing and looping of the scope. The ATC electromagnetic system is connected
to an Intel Quad Core 2GHz computer with 4GB RAM. The position readings are
logged at a sampling rate of 67 Hz using MATLAB Simulink.

Four attending endoscopists who have performed more than 2000 colono-
scopies (“Experts”) and 9 gastroenterology fellows (3 first-year, 3 second-year, 3
third-year) who have performed less than 500 colonoscopies were selected to per-
form a colonoscopy. Kinematics data consisting of the position and orientation
of the four sensors, and time were recorded from the instant of insertion of the
scope into the anus to the instant when the terminal ileum was intubated. The
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Fig. 1. (a) Colon model and colonoscope showing the position of sensor 1, 2 and 3.
Sensor 4 is out of the field. (b) Inner view of the model showing a realistic modeling
of the human colon.

trajectories recorded for two expert clinicians were selected to train the expert
HMM model. In addition, an experienced resident with considerable training on
the colon simulator was chosen to perform 5 insertions and retractions of the
colonoscope into each segment of the model. During this experiment, the dis-
tal tip of the colonoscope in the colon model was tracked visually during the
insertion. These trajectories were used to train three models corresponding to
the motion of the scope in the ascending, descending and transverse colon. The
“roll” and the “angulation” of the colonoscope in 2-DOF were computed from
the measurements of the distal two sensors: these were used as features to be
recognized by the HMM.

3 Hidden Markov Model

Our HMM analysis of colonoscopy is based on the approach and notation of
Rabiner [11]. HMM analysis to quantify surgical expertise is suitable when the
measurements obtained from the sensors on the colonoscope are statistically
correlated to the measurements obtained from other subjects with a similar
level of expertise. The parameters of the HMM model are defined as follows:

– The HMM is assumed to have N states. The transition probability between
state i to j is given by

aij = P (qt+1 = Sj |qt = Si) and A = {aij} (1)

– Each state also has M possible observation symbols Ot. The probability of
observing a particular symbol Ot in state j is

bj = P (Ot|qt = Sj) and B = {bj} (2)

– Also a state prior πi is defined, which is initial probability of beginning in Si

In short the HMM can be represented as λ = (A, B, π). Therefore, to completely
define the HMM, we should define the number of states N , the observation
symbols M per state and the probability measure λ. It was observed in our case,
that N = 8 and M = 16 provided the best results. A larger value of N or M led
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to greater complexity of the model and insufficient training while a smaller value
of N and M led to an extremely simple model without capturing the variations
in the surgical gestures. The model λ is trained according to the trajectories
obtained from the expert clinicians.

Short-time Fourier Transform
The observation sequence is created from the trajectory of the four sensors. First,
the time-domain trajectories are converted into the corresponding Fourier trans-
forms to extract the important information from the trajectories. The Fourier
transform is invariant to rotation of the trajectory, preserves the information in
the signals and can be computed efficiently. However, the Fourier transforms lack
the temporal localization of the frequencies. Therefore, we use the Short-Time
Fourier Transform (STFT) in short time periods and obtain a feature vector
corresponding to each time window [6],[12]. The STFT is computed as,

STFT γ
x =

∫
τ

[x(τ)γ(τ − t′)]e−j2πτ dτ (3)

where γ(τ − t′) is the sampling window of the trajectory. The Fourier transform
in each sampling window is computed by the Fast Fourier Transform (FFT)
algorithm. Information loss is minimized by overlapping the STFT windows.

The trajectories to be recognized by the HMM are the position of the four
sensors in 3-DOF Cartesian space. In each sampling window, the STFT for a
single DOF trajectory of a sensor consists of the magnitude of N discrete fre-
quency contributions. Therefore, the entire feature space corresponding to the
four sensors in 3-DOF is a 12 N-tuple. In addition, we have also independently
trained three HMMs corresponding to the roll of the colonoscope and 2 angula-
tions of the distal end of the colonoscope. For training each of these HMMs, the
feature map is a 1 N-tuple.

Vector Quantization
Since the HMM structure considered in this paper is discrete, we convert the 12N
or N tuple vector into a single discrete observation symbol using the k-means
clustering algorithm [13]. Consider that there are p 12N tuples over the entire
duration of the trajectory for training the expert model. The k-means algorithm
partitions the p vectors into L sets so as to minimize the within-cluster sum
of squares. Here L is the size of the codebook and has been chosen as 16. The
discrete observation symbol is the index of the codebook vector closest to the
given 12N tuple vector, i.e., the cluster in which the vector belongs.

HMM training
Having generated the discrete observation symbols corresponding to the trajec-
tory of the expert clinicians, the observation sequence is provided to the HMM
network to obtain the updated model λ̂. The parameters of the models are esti-
mated by maximizing the auxiliary function

Q(λ, λ̄) =
∑
Q

P (Q|O, λ) log[P (O, Q|λ̄)] (4)
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This optimization problem is solved iteratively by the Baum-Welch method [11].
Seven different HMM models were trained corresponding to the Expert, Ascend-
ing Colon, Transverse Colon, Descending Colon, Roll, Angulation about y-axis
and Angulation about z-axis. The Expert model was trained for the trajectories
of two expert clinicians while the Ascending Colon, Transverse Colon, Descend-
ing Colon HMM models were trained on the trajectories executed by a highly
experienced third year resident with several hours of practice on the colon model.
The “Roll” and two “Angulation” models have been trained on the roll and an-
gulation trajectories computed from the clinician’s orientation trajectories of the
distal sensors.

HMM Prediction
Once the HMMs have been trained, the next step is to measure whether the
HMM classifies the expertise of the operators. That is, we evaluate the likelihood
that a particular HMM describes the observation sequence. Input data includes
the position trajectories of the four sensors, and the roll and 2-DOF angulation
of the distal end of the scope. The probability of predicting the observation
sequence given the HMM model is computed inductively using the forward-
backward algorithm:

P (O|λ) =
N∑

i=1

αT (i) (5)

where αT (i) = P (O1O2...OT , qt = Si|λ) is the forward variable. The reader is
referred to [11] for greater details.

4 Experimental Results

Thirteen GI endoscopists performed colonoscopy in the colon model. The time
taken to reach the terminal ileum from the anus ranged from 82 seconds to 1065
seconds. The position measurements from the four electromagnetic sensors were
logged continuously, as shown in Figure 2. Note that the orientations of the four
sensors vary considerably as the colonoscope moves through the different regions
of the colon (Figure 3 (a)). A number of kinematic metrics were computed and
are shown in Table 1. The position trajectories of the four sensors were provided
as input to the trained Expert HMM model. In addition, the orientation of the
four sensors with respect to the electromagnetic transmitter were also logged.
Based on the orientation of sensor 2, the position and orientation trajectories
were segmented into descending, transverse and ascending colon. These trajec-
tories were provided as input to the trained HMM models corresponding to the
Descending, Transverse and Ascending colon. The distal end of the colonoscope
is capable of bending in 2-DOF about the y and z axis. From the orientation
of sensor 1 and sensor 2, the angulation of the colonoscope in 2-DOF was com-
puted and is shown in Figure 4(a). In addition, the roll of the colonoscope was
calculated by measuring the roll of the local frame of the sensor at any time
point with respect to the initial frame of reference, as shown in Figure 4 (b).
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Fig. 2. Trajectory of the four electromagnetic sensors

Fig. 3. (a) Variation in orientation of the sensor 2 in the descending, transverse and
ascending colon. (b) Log-likehood as a function of iteration during training.

Fig. 4. (a) Graph showing the angulation of the distal end of the scope (b) Graph
showing the roll of the four sensors
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Fig. 5. (a) Spectral distribution of the motion of the colonoscope manipulated by a
novice (b) Spectral distribution of the motion of the colonoscope manipulated by an
expert

The spectral analysis of the position trajectory of a novice and expert are
shown in Figure 5. The STFT of the position trajectory were converted to dis-
crete observation symbols and provided to the different HMM models to first
train and then predict the performance of the user. During training, only 2 ex-
pert trajectories were utilized to update the model parameters corresponding to
the Expert HMM. The number of iterations required for complete training of
the HMM was 18 and the log-likehood of observing the training sequence as a
function of the iteration is shown in Figure 3 (b). The trained HMM classifies
the performance of an operator based on the manipulation of the colonoscope by
the user. The result of the prediction from the Expert model is shown in Figure
6 (a). In addition, the segmented descending, ascending and transverse colon
position trajectories were provided to the corresponding trained HMM models.
These models provide insight into the expertise of the user in manipulating the
colonoscope in the corresponding regions of the colon. The result of the predic-
tion of the user’s performance in the three segments of the colon is shown in
Figure 6 (a). In addition, the roll and angulation trajectories were provided as

Fig. 6. (a) Evaluation of surgical performance of the users in manipulating the colono-
scope compared to the expert model. The bar graph also show the performance of the
users in different region of the colon. (b) Evaluation of the roll and angulation gestures
compared to the expert model.
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input to the HMM trained for identifying the gestures corresponding to the rota-
tion and bending of the distal end of the colonoscope. The results corresponding
to the HMM prediction of these gestures are shown in Figure 6(b).

5 Discussion

We conclude from Table 1 that the time taken for completion of the procedure
is far less for an expert clinician than for the fellows. In addition, the average
path length of the four sensors for the expert group is less compared with that of
the first, second and third year fellows. However, none of the simple kinematics
parameters shows a significant difference among the four groups of users. Further,
path length and time are not ideal kinematics parameters since in an actual
colonoscopy procedure, the operator could take time or move the scope locally
to study a particular feature or lesion. That is, path length and time are not
only a function of the expertise of the clinician but also of the complexity of the
procedure. In addition, the kinematics metrics provide a single global metric to
quantify the performance of the clinician, which is not sufficient to analyze the
trajectories in detail. For example, it would be useful to analyze the performance
of the user in various regions. Typically, in conventional surgical training, the
expert surgeon is considered as the gold standard of performance and the novices
are trained to follow the expert’s movements. This method of training may be
captured by the HMM by comparing the novice’s performance to the expert.

It is observed in Figure 5 that the experts have a larger frequency component
compared to novices during the entire duration of the procedure. This is con-
tradictory to the findings in [6] wherein it is observed that the novices have a
larger frequency component in manipulating a laparoscope (rigid surgical tool)
compared to the experts. It is our hypothesis that due to the flexibility of the
colonoscope and the elastic nature of the colon, the high frequency component
of the motion of the colonoscope is dampened. In addition, the experts are ob-
served to manipulate the distal end of the colonoscope with higher velocities (as
suggested by Table 1), resulting in higher frequency components in the STFT.
This may indicate that the approach adopted for training clinicians to perform
laparoscopic surgery cannot be applied for endoscopy-based procedures.

From Figure 6 (a), it can be seen that the performance of the 13 subjects can
be clearly classified by the Expert trained HMM model based on their known
expertise. The figure shows that the first year novices are less likely to achieve

Table 1. Metrics for evaluating clinician’s performance

Time Pathlength Flexing Av.Vel. Av.Accel. Angulation Y Angulation Z Roll
sec m m mm/sec mm/sec2 degrees degrees rev.

1st Yr 715.4 10.92 5.33 0.83 0.65 39.7 95.7 0.21
2nd Yr 288.2 7.56 3.17 0.98 0.91 44.4 105.8 0.26
3rd Yr 274.9 5.16 1.53 1.15 0.63 40.5 96.8 0.16
Expert 150.1 3.31 1.75 1.29 0.99 42.0 95.3 0.22
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the “Expert” performance compared to other groups of users. It can also be
seen that the performance of the first and second year residents is significantly
less probable to match the expert performance in all three regions of the colon.
However, the third year residents show comparable performance to the experts
in the descending colon region. A likely explanation is that the descending colon
is closest to the anus and therefore, the length of the colonoscope inserted into
the model is small, resulting in less flexing in the colonoscope and easier ma-
nipulation. However, once the colonoscope enters the ascending and descending
regions of the colon, the insertion becomes more difficult due to flexing and ex-
cessive curvature in the scope. This can be noticed in the performance of the
residents compared to that of the experts (Figure 6 (a)). Figure 6 (b) shows the
comparison of the gestures (roll and angulation of the distal end of the colono-
scope) among the four groups of users. It is observed that the gestures performed
by the residents are less likely to match “Expert” performance.

6 Conclusion

We have developed a Hidden Markov Model (HMM) to quantify the performance
of a clinician performing colonoscopy using a realistic physical colon model.
In addition, we have also analyzed the motion of the scope in each segment
of the colon to identify the degree of expertise of manipulating the scope in
the ascending, descending and transverse colon. We have shown that the HMM
approach robustly classifies the expertise of the users based on their experience.
In addition, the roll and angulation gestures are significantly different for the four
groups of users and are clustered based on the expertise of the clinicians. This
may provide a useful training tool to characterize the expertise of a physician
in training. Further work is underway in validating the results of this work in
human subjects.
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Abstract. Constructing a mosaicing image with a broader field-of-view has 
become an important topic in image guided diagnosis and treatment. In this pa-
per, we present a robust feature-based method for video mosaicing with su-
per-resolution for optical medical images. Firstly, outliers involved in the feature 
dataset are removed using trilinear constraints and iterative bundle adjustment, 
then a minimal cost graph path is built for mosaicing using topology inference. 
Finally, a mosaicing image with super-resolution is created by way of maximum 
a posterior (MAP) estimation and selective initialization. The proposed method 
has been tested with both endoscopic images from totally endoscopic coronary 
artery bypass surgery and fibered confocal microscopy images. The results 
showed our method performs better than previously reported methods in terms of 
accuracy and robustness to deformation and artefacts. 

1   Introduction 

Today optical medical images from endoscopy and microscopy have been widely used 
in diagnosis, screening and treatment in a large variety of medical applications. For 
example, video endoscopic system is used to detect, localize or target the biopsy sites or 
some visible lesions of the interior surface of an organ. Fibered confocal microscopy 
(FCM) system on the other hand can provide cellular structure information of the  
observed tissue, which make the in-vivo and in-situ exploration of the living organs 
possible. By combining with other preoperative medical information, e.g., MRI or CT 
scan data, the combination of endoscopy with microscopy will become a very powerful 
tool for image guided intervention for diagnosis and surgery. However, both images 
acquired from endoscopes and microscopes suffer from a fundamental problem – a 
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narrow field-of-view. As a result, the limited vision causes great difficulty for the 
clinician to collect the visual information and be aware of the peripheral sites.  

A common solution to this problem is to build a 2D mosaicing image and a lot of 
research work has been done in the medical imaging community [1-8]. These methods 
can be roughly divided into two categories: (1) Similarity-based methods. These com-
pute the transformation and register the images together by optimizing the similarity 
measure. For example, Vercauteren et al. proposed a mosaicing method for confocal 
microscopic images [1]. Pairwise registration between images was carried out using 
similarity-based registration and then a globally consistent result was achieved by ap-
plying statistics for Riemannian manifolds. Miranda-Luna et al. also used the mutual 
information-based similarity measure in the registration process but a stochastic gradient 
optimization was implemented and the correction of the endoscopic distortion was also 
considered in the whole framework [2]. However, similarity-based methods usually 
require large overlaps to deliver a reliable result. (2) Feature-based methods. These use 
the geometric constraints to align the images using a sparse set of image correspon-
dences. For example, in [3], the branching and crossover points of the blood vessel were 
used as the features in retinal images, and a 12-parameter, quadratic transformation 
model was created, followed by a hierarchical estimation to register pairs of images. 
Cattin et al. also proposed a retina mosaicing method but used SURF descriptors [4] to 
obtain good image correspondences and presented a scheme to determine the blending 
masks of arbitrarily overlapping images for multi-band blending [5]. More recently, 
Atasoy et al. proposed an automatic fibroscopic video mosaicing method [6], which is 
similar to the algorithm developed by Brown and Lowe [9]. They considered the char-
acteristic of fibroscope such as lens distortion and high-frequency fibered optic facet 
pattern. However, a common problem for feature-based methods is the outlier, which is 
caused by bad localization or false matching. Outliers can distort the estimation to such a 
great extent that the fitted parameters may become essentially random. 

In this paper, we propose a robust feature-based mosaicing method with su-
per-resolution for optical medical images. Our contributions are as follows: (1) The 
proposed method is robust to outlier and even to artefact at a certain level. Trilinear 
constraints among three images are used to remove the potential outliers from the 
image feature dataset. Then iterative bundle adjustment is applied to detect the re-
maining outliers involved in the mosaicing refinement based on a Maximum Likeli-
hood Estimate (MLE). (2) The proposed method can deliver a final mosaicing image 
with super-resolution. Maximum a posterior (MAP) estimation was applied to generate 
the super-resolution image with a good initialization from a selective averaging result. 
(3) The proposed method can be applied to build mosaicing image not only for endo-
scopic video but also for microscopic (e.g., fibered confocal microscopy) image se-
quence. The mosaicing image with wider field-of-view will provide more useful 2D 
information for image guided diagnosis and surgery.  

2   Method 

2.1   Outlier Removal with Trilinear Constraints 

In this paper, a Lucas-Kanade (LK) tracker based on optical flow was applied to detect 
and track some features from the image sequence [10]. Readers can refer to [11] for 
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more details. However, outliers are likely o be involved in the feature dataset and they 
can be in gross disagreement with a specific postulated model. So we use trilinear 
constraints to detect and remove the outliers. 

The trilinear constraints across the three views, with correspondences ( )Tyx 1 , ,=x , 

( )Tyx 1 , , ′′=′x , ( )Tyx 1 , , ′′′′=′′x , can be compactly expressed in terms of the trifocal ten-

sor, jk
iT , which is a 333 ××  matrix [12] 

j
i

kk
i

jjk
i avbvT ′′−′= ,    3  ,2  ,1  ,  , =kji                               (1) 

where a , b , v′  and v ′′  are from projective matrices of the three views, [ ]0IP = , 
[ ]vAP ′=′  and [ ]vBP ′′=′′ . It has been shown that the minimal number of independent 
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Since seven point correspondences uniquely determine (up to scale) the tensor jk
iT  

[12], we use the seven-point method to compute a possible solution and employ the 
RANSAC strategy [13] to detect the outliers based on the geometric error.  
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This error measures the sum-of-squares of the geometric distances between the cor-
respondences lll xxx ′′′↔′′↔′  and the corrected points lll xxx ˆˆˆ ′′′↔′′↔′ , with the latter 
obeying the trilinear constraint for the estimated tensor jk

iT . Thus, given three images 
with overlap, we can estimate the trifocal tensor and use the above error measure to 
detect outliers accordingly. In order to process an entire image sequence, we compute 
the tensor among nearby images, ( )2 ,1 , ++ iii  and ( )3 ,1 , ++ iii . A feature point is re-
moved only if it is determined as an outlier more than 50% of the times of some in-
dependent trilinear constraint testing. 

2.2   Graph-Based Registration 

After the outlier removal, the homography between consecutive images can be com-
puted to align the two images. Ideally, after the alignment of all consecutive images, we 
can chain all the images together and warp them onto a reference plane. However, the 
misalignment error usually accumulates by concatenating homographies. This is es-
pecially evident when the camera goes back to the scene previously seen in a long 
image sequence.  

So in our method, we build a graph path to align all the images based on the topology 
inference [14, 15]. The graph is composed of vertices (the image frames) and arcs (the 
mapping between two overlapping images). Firstly the arcs connecting the consecutive 
images are added to the graph. Then more arcs will be added incrementally, if they 
satisfy the following constraints: 
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(1) Having a sufficient overlap ji  ,α , the normalized distance between centroids  

( ) ( )jijij
c

i
c

ji dddd  ,min2 ,0max, −−−= xxα  

where i
cx , j

cx , id , jd  are the centroids and diameters of the projection onto the mo-
saicing image of frame iI  and jI , respectively.  

(2) Having sufficient image correspondences, _matching
ji

inliern min
 , δ≥  

In contrast to [14, 15], we also make sure there are enough inliers between images to 
deliver a reliable homography since the features usually do not spread evenly around 
the images and some of them have been removed as outliers using the strict trilinear 
constraints. 

(3) Creating a material shortest path between two vertices: jijiji  , , , Δ=αβ . 
ji ,Δ  is the cost of the shortest path between image i  and j  [14], in the graph with 

weights ji  ,α  on the edges. The higher ji  ,β  is, the less influence it is likely to have a 
pair ( )ji  ,  on the alignment. 

Here a simple greedy algorithm is used to select good arcs that need to be added to 
the graph. The complete algorithm is shown in Fig. 2. Finally the frame-reference 
transformation ri  ,H  ( r  is the reference frame), for each frame i , is computed by using 
the graph to chain homographies along the minimal cost path.  

2.3   Iterative Refinement 

The bundle adjustment (BA) we used is different from the ones addressed in [11, 16], in 
which focal length and motion parameters were also estimated in the minimization. In 
this paper, BA was performed to find the best homography set { }ri ,H , mi  , ,1 L= , that 
minimize the misalignment error. 
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In each iteration, when BA refinement is finished, we compute the average projection 
error of each feature 
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Fig. 1. The complete algorithm for graph-based registration for image mosaicing 
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where s  is the number of image pair ( )ji  ,  in which feature kx  is used to calculate the 

homography. The potential outlier is detected if the reprojection error is larger than the 
threshold σγ 96.1= . The standard deviation σ  can be found as a maximum likelihood 

estimate using the median ( ) ii Dmedn )8(514828.1 −+=σ . The iterative BA will con-

tinue until no outlier can be detected from the feature dataset. 

2.4   Super-Resolution Mosaicing 

In order to generate a mosaicing image with super-resolution, information from 
images of different viewpoints is combined together based on Maximum a Posterior 
(MAP) technique [17]. The geometric mapping between the original image and su-
per-resolution image can be expressed as SGI ˆˆ ii = . iÎ  denotes the predicted intensi-
ties of the original image iI  and Ŝ  denotes the intensities of the super-resolution 
image. The geometric matrix iG  is computed from homographies and interpolation 
via area-sampling [17]. If we stack all these images into one matrix, we have  

SGI ˆˆ = . Î  and G  are the stacks of predicted original image iI  and geometric ma-
trices iG , respectively. Usually this problem can be solved by maximum likelihood 
estimation to minimize the residual between the original image I  and the predicted 
image Î  

2
ˆ ISG −=R  

However, this solution is very sensitive to image noise and misregistration caused by 
the homography estimation. So MAP estimation can be used to improve the robustness 
by bringing in a regularizing term to penalty high gradients in the estimated su-
per-resolution image. So the objective aims to find a value of S  which maximizes 

( ) ( ) ( )SSIIS PrPrPr =  and the cost function turns into 

( ) 22
ˆˆ SSISG −Λ+−= λR  

where S  is the initial estimate of the super-resolution image S  and ( ) 1−
∇=Λ Sdiag , 

the reciprocal of the image gradient. Scale λ  usually ranges from 1.0  to 0.1  and in our 

experiments it is set to 5.0 . Since a good initial estimate S  is very important to the 
success of MAP estimation, the original images are first projected to the reference 
image plane via the minimal cost graph path and then the selective averaging process is 
used to combine the information from different images together. That is, for each pixel, 
intensities around the pixel ( 33×  or 55× ) are also taken into account to remove out-
lier-pixels from some image with very different similarities. This can help us deal with 
the deformation caused by the internal organ or soft tissue.  
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3   Experimental Results 

3.1   Experiment with Endoscopic Images from TECAB Surgery 

The da VinciTM robotic surgical system (Intuitive Surgical, Inc., Sunnyvale, CA, USA) 
was used to obtain images of the heart surface. The endoscopic images were digitized at 
25 frames per second (fps) using a frame grabber (LFG4 PCI64, Active Silicon, Ux-
bridge, U.K.). 150 images were captured from the left camera but we used only 30 
frames (every 5 frames from the sequence) for the mosaicing. Our aim is to create a  
 

   
(a)                                         (b)                                            (c) 

 
(d) 

 

(e) 
Fig. 2. The experimental results using the endoscopic images from TECAB surgery. (a), (b) and 
(c) show the first, middle and last images of the sequence, respectively. (d) and (e) display the 
mosaicing results of Brown’s and the proposed methods, respectively. 
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mosaicing image which includes the majority of the structure of the targeted vessel. 
The main challenge is the large complicated non-rigid motion introduced by the beating 
heart surface, which is shown in the right bottom of Fig. 2 (b) and (c). 

Fig. 2 (e) displays the mosaicing result of the proposed method. It can be seen that 
the whole vessel structure has been built correctly. From Table 1, we can also notice 
that a number of outliers was detected and removed by way of trilinear constraints (52 
points), and iterative refinement (9 points), and the reprojection error was reduced 
from 2.36 pixels after consecutive registration to 2.12 pixels after graph-based  
registration, further to 1.65 pixels after iterative refinement. So the surgeon can  
realize the environment outside the current scene when he views a part of the  
vessel. More importantly, the mosaicing image can provide more information to help 
him to link the endoscopic video with the preoperative data from CT/MRI scan. 
Brown’s method [11] was also tested using this image sequence and the mosaicing 
result was displayed in Fig. 2 (d). Note that only part of the whole vessel was  
constructed and the images affected seriously by the beating heart surface could not 
be used for Brown’s method. The most probable reason for this is that the SIFT 
descriptor could not find enough reliable features from the images with severe  
deformation. 

3.2   Experiment with FCM Images 

A FCM sequence was acquired from Cellvizo System (Mauna Kea Technologies, 
Paris, France) when the probe moved along a sponge phantom. There were 100 frames 
in the sequence and we used only half of them (every other frame) for the mosaicing. 
The main challenges of this sequence lie in: (1) The deformation of the mi-
cro-structure in the image, as shown in Fig. 3 (b), (c) and (d) within the red circle. (2) 
The artefact in the image, as shown in Fig. 3 (b), (c) and (d) within the blue circle. This 
is caused by a very small piece of tissue attached to the probe lens, which is common 
in FCM biopsy. 

Fig. 3 (e), (f) and (g) show the experimental results of Brown’s [9], Vercauteren’s 
[1], and the proposed method, respectively. Table 1 also displayed the number of fea-
tures and reprojection error after different stages for the FCM sequence. It can be seen 
that our method performs best in the testing. Brown’s method was misled by the SIFT 
features detected on the artefact, which led to the failure of whole process. Vercau-
teren’s method yields a mosaicing result but it contained several small mosaicing 
pieces. Each of them covered a small part of the scene and Fig. 3 (f) showed one of 
them. The possible reason is that the fast probe motion and large deformation caused 
insufficient reliable overlap for this method to process the similarity-based registration. 
Our method aligned all the images correctly and covered most part of the biopsy scene, 
as displayed in Fig. 3 (g). The mosaicing image will help the clinician to interpret the 
acquired data and make quantitative and statistical analysis possible by providing a 
broader field-of-view. 
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               (a)                                   (b)                                (c)                                (d) 

 

(e) 

  
(f)                                                                          (g) 

Fig. 3. The experimental results using images from fibered confocal microscopy. (a), (b), (c) and 
(d) show the some images from the sequence. Deformation is marked with red circle and artefact 
is marked with blue circle. (e), (f) and (g) display the mosaicing results of Brown’s Vercauteren’s 
and the proposed methods, respectively. 

 
Table 1. Number of features and reprojection error  after different stages of image mosaicing 

 

Number of features  Average reprojection error  

Original 
Removed in 

trilinear 

constraint 

Removed 
in iterative 
refinement 

 
Consecutive 
registration 

Graph-based 
registration 

Iterative 
refinement 

TECAB 329 52 9  2.36 2.12 1.65 

FCM 433 87 3  0.756 0.739 0.673 
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4   Discussion and Conclusions 

In this paper, we proposed a robust video mosaicing method for optical medical im-
ages. The mosaicing image displays a much wider field-of-view of the scene and helps 
the clinicians realize the surrounding environment outside the current view. Experi-
ments with TECAB endoscopic images and FCM images show that the proposed 
method performs better than other typical methods. It is robust to deformation in organs 
and soft tissues and can even deal with artefacts resulting from extraneous structure in 
the image.  

Effort in the near future will focus on improvement of robustness to deformation and 
artefacts. Our long term goal is to automatically construct mosaicing image of the 
surgical scene, reconstruct the internal organ surfaces and register these with the pre-
operative data to provide more information for image guided diagnosis and treatment.  
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Abstract. In this paper, an image segmentation framework is proposed by uni-
fying the techniques of spectral clustering and graph-cutting to address the dif-
ficult problem of breast lesion demarcation in sonography. In order to alleviate 
the effect of speckle noise and posterior acoustic shadows, the ROI of a sono-
gram is mapped to a specific eigen-space as an eigenmap by a constrained spec-
tral clustering scheme. The eigen-mapping is boosted with the incorporation of 
partial grouping setting and then provide a useful preliminary aggregation based 
on intensity affinity. Following that, an iterative graph cut framework is carried 
out to identify the object of interest in the projected eigenmap. The proposed 
segmentation algorithm is evaluated with four sets of manual delineations on 
110 breast ultrasound images. The experiment results corroborates that the 
boundaries derived by the proposed algorithm are comparable to manual de-
lineations and hence can potentially provide reliable morphological information 
of a breast lesion.  

Keywords: Breast ultrasound images, Lesion segmentation, Spectral clustering, 
Graph cut, Gaussian Mixture Models.  

1   Introduction 

Breast cancer has been reported as the second leading cause of cancer deaths for fe-
males in the world. To increase the survival rate, early detection deems to be very 
crucial in the war of fighting with breast cancer. In recent years, sonographic screen-
ing has been commonly adopted for the purpose of early detection and differential 
diagnosis of breast cancer, especially in many Asian countries. However, the interpre-
tation of sonography is relatively difficult, and hence the identification of a breast 
lesion in sonography heavily depends on physician’s experience. To improve this 
drawback, computer-aided diagnosis (CADx) schemes have recently been widely and 
intensively investigated for boosting the identification performance of breast lesion in 
sonography. In general, CADx systems involve the process of retrieving morphologi-
cal and textural features from a suspected lesion for differential diagnosis of tumor 
malignancy [1,2]. Particularly, morphological features are shown to hold robust dif-
ferentiation power for the analysis of sonographically imaged breast lesions [1,2,3]. 
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The extraction of morphological features commonly requires an image segmentation 
procedure to provide quantitative boundary information of a breast lesion. In this 
case, an effective image segmentation algorithm deems to be a critical component to 
in a CADx system. 

Image segmentation problem for the demarcation of breast lesions in sonography is 
intrinsically an arduous task. The difficulty can be summarized into two aspects. First, 
because ultrasound images are reconstructed from signals of acoustic reflection, 
sonograms may be presented with shadows and speckle noise. Hence, processing of 
sonograms may generally encounter tissue inhomogeneous problem [4]. The second 
factor that complicates the task of lesion demarcation is the irregular shapes and 
echogenicity of breast lesions. Since any tumor can develop into any kind of shape 
and degree of solidity inside, rarely effective shape and echogenicity priors can be 
exploited to assist the task of computerized demarcation of breast lesions in sono-
grams. Accordingly, the development of breast lesion demarcation algorithm may 
need to carefully address the two mentioned problems to achieve promising perform-
ance. In the literature, prominent image segmentation methods for ultrasound images 
can be categorized into watershed-based approaches [5,6], deformable models [7], 
level-set methods [8,9], and spectral clustering [10]. Although satisfactory results had 
been reported in each study, the tissue inhomogeneous problem and irregular proper-
ties of sonographically imaged breast lesions were not well addressed. For examples, 
deformable models and level-set methods may be easily trapped into undesired solu-
tions due to the low image quality of sonography. 

To compensate the low image quality of sonography, prior knowledge of the object 
of interest is recommended to be incorporated in the segmentation scheme [4,11]. The 
prior knowledge of the object of interest can be its echogenicity distribution, shape 
and so on. The prior knowledge can be easily incorporated into deformable models 
and level-set methods. However, in the problem of breast lesion demarcation, rarely 
useful priors can be explored from various kinds of breast lesions. Watershed-based 
approaches [5,6] had been shown to be robust to speckle noise by taking the catch-
ment basins as the basic processing units. Nevertheless, over-segmentation problem is 
not guaranteed to be solved by these watershed-based approaches [5,6]. Spectral clus-
tering techniques [10,12,13] aim to segregate the image or Region of Interest (ROI) 
from the projected affinity subspace, which is spanned by a specific eigenvector. The 
spectral clustering technique was further improved to deal with clutter surrounding 
environment by constrained normalized cuts framework [12,13]. The constrained 
normalized cuts framework can map the image/ROI into analytically meaningful 
eigenvector domain as shown in Fig. 2(b), 2(e), and 2(h). Due to the incorporation of 
partial grouping bias, the effect of speckle noise and posterior acoustic shadows can 
be alleviated significantly. Although several issues, i.e. the determination of the cut-
off threshold to delineate foreground and definition of partial grouping bias, may need 
to be addressed, the projected eigenmap offers a good initial partition. Note that the 
eigenmap we mention here is the second largest eigenvector of the constrained group-
ing system. Accordingly, an iterative graph cut framework [14,15] is adopted in this 
paper to automatically demarcate the foreground, i.e. a breast lesion, by seeking the 
best partition on the eigenmap. 

The proposed method is constituted of two major steps. In the first step, constrained 
normalized cut is carried out to map the sonogram/ROI into analytic eigenvector  
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domain. The eigenmap is able to manifest tissues with similar echogenicity. The key 
implementation issues of the constrained normalized cuts [12,13] consist in the defini-
tion of the similarity measurement among pixels and the setting of partial grouping 
bias. The two implementation issues will be elaborated in section 2.1. The second step 
is devised to segregate the eigenmap into foreground (breast lesion) and background 
with an iterative graph cut framework. To assist the partition process, Gaussian Mix-
ture Models (GMMs) are adopted to describe the eigenmap distributions of foreground 
and background. The iterative process will converge when the cost function of the 
graph-cutting reaches to a stable status [14]. The novelty of the proposed algorithm is 
the analytic solution of unifying spectral clustering technique with iterative graph cut 
framework. The efficacy of the proposed image segmentation is evaluated by compar-
ing four sets of manual delineations in 110 ultrasound scans. 

2   Spectral Clustering and Iterative Eigenmap Aggregation 

The proposed image segmentation method is constituted of two major steps. The first 
step maps the sonography/ROI into the projected eigenvector subspace as an eigen-
map. With the initial spectral clustering result, the second step performs an iterative 
graph cut framework on the eigenmap by describing the eigenmap distributions of 
foreground and background with GMMs. The details of each step will be discussed in 
follows. 

2.1   Constrained Normalized Cuts Criterion 

The basic idea of graph-based segmentation methods is to seek the best partition from 
the affinity graph, denoted as G, in which every image pixel is regarded as a graph 
node and every possible pairwise relation of image pixels represents as a graph edge. 
The weight of each graph edge is measured by the mutual similarity of the corre-
sponding pixel pair. Denoting that the set of all graph nodes as V, the set of all graph 
edges as E, and the weighting of all graph edges as W, and image segmentation is 
simply achieved by partitioning the graph G = (V, E, W) of image into a good set of 
connected components. Normalized cuts [16] is a graph theoretic criterion for measur-
ing the goodness of an image partition. The measurement of a graph partitioning can 
be obtained from the set of cutting edges, which represent disjoin node sets. This 
approach reaches the good partitioning by minimizing the total weight between two 
different groups, while maximizing the total weight within each of group. The optimi-
zation of this approach can be viewed as a solution of the generalized eigenvalue 
problem that can be efficiently solved in a close form.  

To group up similar pixels together based on low-level cues from low to high level 
structures is so called bottom-up approach. There are two possible situations, which 
may degrade the performance of graph partitioning. Firstly, object with weak or bro-
ken edge may hinder the differentiation process of point sets. Secondly, the process of 
graph partitioning may also be disturbed by clutter background.  On the other hand, 
those complex background models can be viewed as constraints (or prior knowledge). 
Yu and Shi [12,13] reformulated normalized cuts criterion as a constrained eigenvalue 
problem, which integrate both graph partitioning approaches with partial grouping 
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constraints. There are three types of partial grouping constraints introduced in [12]: 1) 
unitary generative models, 2) partial grouping, and 3) spatial attention. In this paper, 
we employed partial grouping constraint, which makes an assumption that the prior 
expectation of object locations of lesions is located at center position of ROI [17]. 
Moreover, the similarity between two pixels is defined as the maximum magnitude of 
intensity edges between them [18].  

With the definition of similarity measurement and partial grouping setting, con-
strained eigenvalue problem based on the normalized cuts criterion can be formally 
written as: 

maximize ( )1
( ) TCNcut Z tr Z WZ

K
= , (1) 

subject to TZ DZ I= , (2) 

0TU Z = , (3) 

where ( ) 1 2TZ X X DX
−

= is a scaled partition matrix. X is N K× partition matrix, that 

is, 1ijX = if the i-th pixel belongs to j-th cluster component and 0 otherwise. U forms 

a set of partial grouping information. The above system can be solved by applying the 
Rayleigh-Ritz theorem. In order to solve the deficiency caused by sparse cues, Equa-
tion (3) can become: 

0TU PZ = ,
 

(4) 

where 1P D W−= is the normalized weight matrix. Compare with Equation (3), new 
partial grouping information includes the property of smoothness and fairness of the 
local segmentations. Note that it can guide the propagation of biased data points to 
those neighbors with which it has high similarity. More details about the propagating 
constraints can be found in [13].  

2.2   Iterative Eigenmap Aggregation 

The proposed algorithm is composed of two major steps. In first step, we group up 
similar pixels together with the constrained normalized cut, which is performed to 
obtain the eigenmap of the constrained eigenvalue system. The summary of first step 
is as follow. Firstly, the region of interest (e.g. breast lesions) is defined as a rectangle 
by user from breast sonograms. We then set up the partial grouping constraints around 
the ROI with 15 pixels width, which make an assumption that the prior expectation of 
object locations of lesions is located at center position of ROI [17]. Here, affinity 
matrix is established using the maximum magnitude of intensity edges between two 
pixels [18]. Finally, the eigenmap is obtained by solving the constrained normalized 
cuts criterion.  

In second step, a higher level framework modeling the weighting distribution of 
foreground and background is carried out to seek an optimum contour along the le-
sion. In practice, a breast lesion is delineated by an iterative graph cut framework on 
the eigenmap. Recently, Rother et al. [14] improved the efficiency of graph cut algo-
rithm [19] and extended graph cut algorithm to color images. Method [14] can be 
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implemented by following [15], which consists of three steps: initialization, learning 
GMM parameters, and performing the graph cut framework.   

 
Initialization: According to [20], the eigenmap is automatically scaled into the “hot 
colormap” ( λe ). The prior information used in the first step is then marked as known 

background class ( 0α = ) and all unknown pixels are assigned to foreground class 
( 1α = ). By doing so, k Gaussian mixture models (GMMs) is adopted to model  
the foreground and background, respectively (in this paper, K=5). Note that each 
component of GMMs includes four elements: 1) the mean ( μ ); 2) the inverse of the 

covariance matrix ( 1−∑ ); 3) the determinant of the covariance matrix ( det∑ ); 4) a 
component weight (π ). 

 

Learning GMM parameters: The similarity measurement based on Gaussian compo-
nents in the foreground or background GMM is calculated for each pixel in the  
foreground or background class, respectively. Note that each pixel is assigned to the 
nearest Gaussian component according to the largest similarity. Let component index 

CK  be a Gaussian component set which is assigned to each pixel. Hence, the parame-

ters ( ),α CK of GMM for each pixel are created. Accordingly, the new parameters of 

GMM can also be re-estimated.  
 

Performing the graph cut framework: After learning GMM components, each pixel is 
assigned to the pair of values ( ),α CK . According to [14], the graph cut based energy 

function can become: 

( ) ( ) ( ), , , , , , ,E R Bα α αΩ = Ω +C λ C λ λK e K e e , (5) 

where λe is the eigenmap via automatic data scaling. Ω indicates as the fore-

ground/background histogram of eigenvector map given α . The smoothness 

term ( ),B α λe can be defined as [15]: 

( )
2( )

{ , }

( , )
, 50

( , )

p qe e
p q

p q N

e A A
B

dis p q

λ λβ δ
α

− −

∈

⋅
= ⋅ ∑λe , (6) 

and 

1
( , )

0

p q
p q

if A A
A A

otherwise
δ

≠⎧⎪= ⎨
⎪⎩

. (7) 

The smoothness term { },p qB is served as a penalty for measuring the discontinuities 

between two pixels p and q in a specified N-links. The N-link weights are constructed 
by calculating the similarity between the neighboring pixels in the 8-neighborhood. 
Given a graph partitioning, the regional term ( ), , ,R α ΩC λK e  is considered as a 

penalty which is determined by T-links. The foreground T-link weights is constructed 
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by calculating the similarity between each of pixels to the foreground nodes. Simi-
larly, the background T-link weights is constructed by calculating the similarity be-
tween each of pixels to the background nodes. The definition of T-link weights for 
given a pixel p is formulated as follow [15]. 

( )
1

1
, , , log ( , )

det ( , )
p p

pi

R α π α
α=

⎡
⎢Ω = − ×
⎢ Σ⎣

∑
K

C λ C
C

K e K
K

 
 

11
exp [ ( , )] ( , ) [ ( , )]

2
T

p p p p pe eλ λμ α α μ α− ⎤⎛ ⎞− Σ − ⎥⎜ ⎟
⎝ ⎠⎦

C C CK K K , (8) 

where π are mixture weighting coefficients. The summary of T-links is shown in 
Table 1.  

Table 1. The definition of T-link weights for a pixel p 

Pixel Type Background T-link Foreground T-link 

p∈source node 0 ( )max ,p p
p

B eλα  

p∈sink node ( )max ,p p
p

B eλα  0 

p∈unknown ( )pR Foreground  ( )pR Background  

 
After building a graph, a standard minimum cut algorithm [21] is applied to seek 

an optimum segregation of foreground and background nodes. The second stage iter-
ates between learning GMM parameters and performing the graph cut framework 
until the classification converges to a stationary status.  

3   Results and Discussion 

Fig. 1 compares the results of the proposed methods with cell competition algorithm 
[5,6], level set method [9] and constrained normalized cut [12,13] on a benign lesion.  

      

Fig. 1. A comparison of segmentation results from manual drawing, cell competition algorithm, 
level set method, constrained normalized cut and the proposed algorithm. (a) ROI of a breast 
sonogram with a benign lesion. (b) A manual delineation. (c-f) Segmentation results of  
cell competition algorithm, level set method, constrained normalized cut and the proposed 
algorithm. 

(a) (b) (c) (d) (e) (f) 
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It can be observed in Fig. 1(a) that the lower boundary of the benign lesion is rela-
tively difficult to define by comparing to the upper portion. Fig. 1(b) is the manual 
delineation of this benign lesion by an experienced expert. According to Fig. 1(c) and 
Fig. 1(d), cell competition algorithm and level set method only can capture partial 
structure of this lesion. The constrained normalized cut may be able to delineate the 
major parts of this lesion but still cannot do well in the lower left part, see Fig. 1(e). 
Distinctively, the proposed algorithm can demarcate this lesion better, as shown in 
Fig. 1(f). To demonstrate the efficacy of the proposed algorithm, Fig. 2 shows three 
clips of original breast sonograms. Fig. 2(a) illustrates a malignant breast lesion with 
shadowing effect and irregular boundary, while the malignant breast lesion in Fig. 
2(d) is ill-defined and relatively difficult to perceive. Fig. 2(g) shows a benign breast 
lesion with edge portions attenuated by acoustic shadows. The derived boundaries of 
the three cases are depicted in Fig. 2(c), 2(f), and 2(i), respectively. According to Fig. 
2, the proposed algorithm seems to be able to effectively identify the breast lesion 
with complicated shapes. Given the 110 × 110 image/ROI, the proposed algorithm 
takes around 20 seconds in average to demarcate the boundaries of breast lesions in 
Intel® Core™2 Quad Processor Q9300.  

To evaluate the performance of the proposed algorithm, 110 breast US scans, in-
cluding 60 benign lesions and 50 malignant lesions, were retrospectively selected as 
testing data set from the database of Taipei Veterans General Hospital (Taipei, Tai-
wan). The derived boundaries by the proposed algorithm are compared to four sets of  
 

   

   

   

Fig. 2. Illustration of three segmentation results of the proposed algorithm. (a), (d), and (g) are 
ROIs cropped from three different breast sonograms with partial grouping at image boundaries. 
(b), (e), and (h) illustrate the projected eigenmap. (c), (f), and (i) are the corresponding segmen-

(a) 

(b) 

(c) 

(d) 

(e) 

(f) 

(g) 

(h) 

(i) 
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tation results of (a), (d), and (g), respectively. 

Table 2. Performance of the proposed algorithm over 110 breast sonograms by comparing four 
sets of manual delineations A, B, C, and D. Column COD is mean computer-to-observer 
distance (COD) and Column IOD is mean maximum interobserver distance (IOD). The COD-
IOD suggests if the averaged COD is smaller than IOD. The 95% confidence intervals (CI) of 
COD-IOD are reported in the fourth column. P is percentages of cases within the interobserver 
range.  

Observer CO IO CO-IO 95% CI P (%) 
A 2.885 4.306 -1.421 (-1.836,-1.006) 87.27% 
B 2.969 4.479 -1.510 (-2.062,-0.958) 83.64% 
C 4.124 4.613 -0.489 (-0.832,-0.146) 75.45% 
D 3.015 4.292 -1.277 (-1.764,-0.789) 86.36% 

 
manual delineations from four experienced experts. The manual delineations were 
prepared independently without any cross reference. Table 2 reports the comparison 
with the four sets of manual delineations. It can be found that the variation between 
algorithm-generated boundaries with manual delineations is less than variation be-
tween manual delineations in Table 2. Furthermore, three assessment metrics devel-
oped in [22,23] are also involved in the quantitative performance evaluation. The 
three assessment metrics are Williams Index and overlapping and difference ratios 
between the algorithm-derived boundaries and the average manual delineations, re-
spectively. The calculated Williams Index is 1.085, which indicates that the algo-
rithm-derived boundaries are relatively stable than the variation between difference 
experts. The overlapping and difference ratios between the algorithm-derived bounda-
ries and the averaged manual delineations are higher than 0.90 and lower than 0.14, 
respectively. More details of the three assessment metrics can be found in [22,23]. 
Accordingly, the boundaries derived by the proposed algorithm deem to be compara-
ble to manual delineations and the proposed algorithm is robust to the problems of 
weak edges and speckle noise. 

4   Conclusions 

In this paper, we present a robust segmentation algorithm for the demarcation of le-
sions in breast sonograms by techniques of spectral eigen-projection and iterative 
graph-cutting. Firstly, we project the ROI of a breast sonogram onto to a specific 
eigenmap to reduce the effect of speckle noise and posterior acoustic shadows. The 
process of project is boosted by the partial grouping setting with the assumption that 
the object of interest is located at the center of ROI. Following, an iterative graph cut 
framework is performed to identify the object of interest, i.e. the breast lesion, from 
the eigenmap. GMMs are adopted to model the gain distributions of the foreground 
and background on the eigenmap. The proposed method is compared to four sets of 
manual delineations by four experienced experts. The experiment results corroborates 
that the derived boundaries of the proposed algorithm are comparable to manual de-
lineations. 
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Organ Pose Distribution Model and an MAP Framework 
for Automated Abdominal Multi-organ Localization  

Xiaofeng Liu, Marius George Linguraru, Jianhua Yao, and Ronald M. Summers 

Imaging Biomarkers and Computer Aided Diagnosis Laboratory, Radiology and Imaging  
Sciences, Clinical Center, National Institutes of Health, Bethesda, MD 20892 

Abstract. Abdominal organ localization is required as an initialization step for 
most automated abdominal organ analysis tasks, i.e. segmentation, registration, 
and computer aided-diagnosis. Automated abdominal organ localization is dif-
ficult because of the large variability of organ shapes, similar appearances of 
different organs in images, and organs in close proximity to each other. Previ-
ous methods predicted only the organ locations, but not the full organ poses in-
cluding additionally sizes and orientations. Thus they were often not accurate 
enough to initialize other image analysis tasks. In this work we proposed a 
maximum a posteriori (MAP) framework to estimate the poses of multiple ab-
dominal organs from non-contrast CT images. A novel organ pose distribution 
model is proposed to model the organ poses and limit the search space. Addi-
tionally the method uses probabilistic atlases for organ shapes, and Gaussian 
mixture models for organ intensity profile. An MAP problem is then formulated 
and solved for organ poses. The method was applied for the localization of 
liver, left and right kidneys, spleen, and pancreas, and showed promising re-
sults, especially on liver and spleen (with mean location and orientation errors 
under 5.3 mm and 7 degrees respectively).  

Keywords: Organ localization, maximum a posteriori, probabilistic atlas, pose 
distribution model.  

1   Introduction 

The volumes and shapes of abdominal organs can be indicators of disorders, and 
computed tomography (CT) is commonly adopted for abdominal diagnosis and pre-
operative planning and guidance. In computer-aided diagnosis (CAD), the identifica-
tion and segmentation of abdominal organs are essential for further assessment. As in 
clinical practice, there is a strong CAD incentive for the automated simultaneous 
detection and analysis of multiple organs, which benefits from inter-organ spatial 
relationship and interaction, for comprehensive diagnosis.  

Many methods have been proposed for the segmentation of individual abdominal 
organs from contrast-enhanced CT images especially for the liver [1,2,3,4], and re-
cently the simultaneous segmentation of multiple organs [5,6,7]. Most of these meth-
ods relied on prior knowledge of the organs, for example probabilistic atlases [8,9], 
which are sensitive to initialization/registration, and active shape models [1,4]. The 
knowledge was utilized to provide an initial segmentation and then refined by fitting 
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the shape model and/or using geodesic or parametric deformable models [4]. In addi-
tion, multi-dimensional contrast-enhanced CT data were also employed in appear-
ance-based segmentation using component analysis in a Bayesian framework [10], or 
using a 4D convolution constrained by a historic model of abdominal soft tissue en-
hancement [6].  

Abdominal multi-organ segmentation remains a challenging task because the sizes, 
shapes and locations of the organs vary significantly in different subjects. Moreover, 
these organs have similar appearance in CT images, especially non-contrast data, and 
are in close proximity to each other. Thus the successful segmentation requires a good 
initial identification and localization of individual organs, generally performed inter-
actively [5,7,8]. Correct organ localization can also benefit other image processing 
tasks, including registration and computer-aided detection.  

Among the most notable automated localization techniques for abdominal organs, 
Okada et al. [1] initialized the liver segmentation by estimating the abdominal cavity, 
but it is not certain how well this approach works for smaller organs, e.g., kidneys and 
pancreas. Yao and Summers [12] used a statistical location model, but the method was 
limited to estimating only the organ locations without considering the orientations and 
sizes. Yao et al. [13] simultaneously detected multi-organ locations by finding bounding 
boxes using principal component analysis and a probabilistic atlas. Due to the large 
variability of abdominal organ sizes and orientations, however, the location alone can-
not completely localize the organs in the abdomen, and thus is not sufficient to accu-
rately initialize other image analysis tasks.  Seifert et al. [11] estimated the organ loca-
tion, orientation, and size using automatically detected anatomical landmarks, semantics 
and machine learning techniques, but the technical details of the method are not clear.  

In this paper, we propose a maximum a posterior (MAP) framework for automated 
abdominal multi-organ localization. Our method finds the poses of multiple abdomi-
nal organs, which include not only the locations, but also the orientations and sizes. 
The paper first introduces a new abdominal cavity normalization to reduce the vari-
ability of organ pose caused by different abdominal sizes across subjects. Next, from 
a training data set we compute a novel pose distribution model that estimates the 
probability density functions of organ poses using Parzen windows. The method also 
uses a probabilistic atlas to model the organ shapes, and a Gaussian mixture model to 
compute the organ intensity profiles. Last, we formulate an MAP problem and solve it 
for multi-organ poses from abdominal CT images. The method was applied to 12 data 
sets (5 organs/set) with promising results.  

2   Method 

Our method estimates the poses of abdominal organs from non-contrast CT images 
using a maximum a posteriori (MAP) framework. In this work we focus on five or-
gans, i.e., liver, spleen, left and right kidneys, and pancreas. From a group of N train-
ing images {In }n=1

N , these organs are manually segmented and statistically modeled by 

building a pose distribution model (OPDM), a probabilistic atlas (PA), and a probabil-
istic intensity profile (IP). For a given subject image, these abdominal organs are then 
localized using an MAP framework based on these pre-computed statistical models. 
The method is detailed as follows.  
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2.1   The MAP Framework 

For a given abdominal subject CT image S , the organs are localized by finding the 
pose parameters that maximize the a posteriori probability, i.e.,  
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where )( jO  is the jth organ, and )( jΘ is the pose of )( jO in the given image. The organ 

pose )( jΘ is defined using 9 parameters, which include the location ],,[ zyx ccc=c , 

orientation ],,[ zyx vvv=v , and scaling ],,[ zyx sss=s .Using Bayes’ theorem, the a 

posteriori probability is re-written as  
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The denominator in (3) is not related to )( jΘ  and thus can be ignored. The modeling 

of the prior )|( )()( jj Op Θ  and the conditional probability ),|( )()( jj Op ΘS  is explained 
as follows.  

2.2   Abdomen Normalization 

To reduce the organ pose vari-
ances, the abdomens of different 
subjects are normalized to account 
for the shape and size differences. 
For this, the vertebrae and the ribs 
are automatically segmented and 
identified from the CT scans using 
the method in [12]. Here we con-
sider four vertebrae, T11, T12, L1, 
and L2, because they span over the 
location of the majority of the 
abdominal organs. An abdominal 
bounding box defines the abdomi-
nal cavity and is determined as 
such: one edge is parallel to the 
vertebrae line defined by the cen-
ters of the four vertebrae and has a 
length that covers exactly the four vertebrae, and the other edges are defined by 
finding the minimum bounding box that contains the ribs. The segmented vertebrae 
and ribs, and the bounding box are illustrated in Fig 1. For normalization, one stan-
dard image (denoted as J0 ) is chosen from the training images, and its abdominal 
cavity is considered as the normalized space. All the other images are then normal-
ized to J0 by aligning the abdominal bounding boxes and are denoted as Jn  for 

n = 1,..., N − 1 . 

Fig. 1. Illustration of segmented vertebras and ribs, 
and the abdominal cavity bounding box 



396 X. Liu et al.   

 

2.3   The Prior: Organ Pose Distribution Model 

The prior )|( )()( jj Op Θ  is modeled using Parzen window [14] technique from the 
training data sets, and we call it organ pose distribution model (OPDM). The OPDM 
for each abdominal organ describes the statistical variability of the organ pose, and is 
built independently.  

The pose of organ )( jO  in the standard image J0 is defined as the reference pose, 

i.e., ],,[ )(
0

)(
0

)(
0

)(
0

jjjj svc=Θ  with c0
( j )

 being the center of gravity, the organ orientations 

in the three dimensions being ]0,0,0[)(
0 =jv , and scales being ]1,1,1[)(

0 =js . The organ 

poses in the other training images relative to the reference pose are computed using a 
9-parameter linear registration on the manual segmentations. For each training image 

nJ  the manually segmented organ is registered to the manual segmentation in J0  to 

find the transformation )()( ⋅jT  with parameters [u, r, t], where u, r, and t are the 
scaling factors, rotation angles, and translation vector respectively. Different organs 

are registered separately. The organ pose )( j
nθ in Jn  is then calculated as: 
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The 9 pose parameters are assumed independently distributed. Though these pa-
rameters may be weakly related, this assumption greatly simplifies the model and 
reduces the dimensionality of the OPDM. The probability density function of each 
pose parameter is estimated using Parzen window method.  Let θk be any of the 9 

pose parameters, and )(
,
j
nkθ be its value in the nth image for organ )( jO , then 
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where h is the bandwidth and is estimated using the standard deviation of the data. 
The OPDM is then constructed as 
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2.4   Probabilistic Atlas (PA) and Intensity Profile (IP) 

To model the conditional probability ),|( )()( jj Op ΘS , a probabilistic atlas (PA) and an 

intensity profile (IP) are built for each organ. For organ )( jO , the PA is constructed 
using the  linear registration results (see Section 2.2) on the manually segmented 
training images. The probabilistic value on each voxel x i in the image volume is 

computed as the number of training images that x i  is labeled as part of )( jO  divided 

by the total number of training sets N. We denote the PA of Oj  as )|( )( j
i Op x .  

The organ intensity profile (IP), denoted as )|( )( jOup , describes the probability 

that a voxel in the organ )( jO  takes an intensity value of u. It is constructed from the 
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histogram of the Hounsfield unit (HU) value inside the manually segmented organ, 
and is fitted with a Gaussian mixture model. In the method we use 3 Gaussian com-
ponents because it produces sufficiently good histogram fitting with low computation.  

2.5   The Conditional Probability and Cross Entropy 

For simplification, it is assumed that the HU values of voxels inside organs are inde-

pendent and identically distributed with a known pdf defined as )|( )( jOup . Thus, the 

conditional probability in Eqn. (2) can be written as 

∏
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where V is the set of voxels in the image volume, and )( iu x is the HU value at ix for 

given pose )( jΘ  ( ),|)(( )()( jj
i Oup Θx  is not dependent on )( jΘ ). Let the range of HU 

values that a voxel can take be ],...,,[ 21 Muuu . For a given pose )( jΘ , we define the 

conditional histogram ),|( )()( jj
m Ouh Θ  as the summation of the probability that a 

voxel belongs to )( jΘ over all voxels that take an image value of mu , i.e.,   
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Thus, Eqn. (5) can be re-written as  
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The exponent in Eqn. (7) is the negative cross entropy between the two probability 

functions ),|( )()( jj
m Ouh Θ  and )|( )( j

m Oup .  

2.6   Pose Estimation Using the MAP  

The MAP problem in (1) and (2) can be simplified using Eqns. (4) and (7). As the 

denominator in Eqn. (2) is not related to )( jΘ , it can be ignored from the MAP estima-
tion. In addition, the maximization of Eqn. (1) is equivalent to maximizing the loga-
rithm of the a posteriori probability (see Eqn. (2)). Thus the MAP problem in Eqn. (1) 
is equivalent to solving  
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with ) , ( ⋅⋅H  being the cross entropy.   

Eqn. (8) can be solved for the organ pose *)( jΘ  using any gradient-based optimiza-
tion method. Here we used the steepest descent method [15]. Different organs  
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are localized independently. A multi-resolution strategy is adopted to reduce the  
computation.  In addition, the organ center, orientation, and scaling factor are opti-
mized sequentially for faster convergence and to avoid local optima.  

3   Results 

The method was applied to abdominal non-contrast CT scans of 12 (6 males and 6 
females) patients. Data were collected with a LightSpeed Ultra scanner (GE Health-
care). The slice thickness was 1 mm and the in-slice resolution varied from 0.54 mm 
to 0.77 mm. In all the 12 images, the five organs (liver, left and right kidneys, spleen, 
and pancreas) were manually segmented by a medical student and supervised by a 
radiologist. For validation, 12 experiments were performed with a leave-one-out strat-
egy. In each experiment, one dataset was picked as the subject image, and the remain-
ing 11 datasets served as the training data and were used to build the OPDM and PA. 
After the organ pose was estimated, the probability atlas was transformed to the sub-
ject image using the estimated pose. For quantitative evaluation, the pose errors were 
calculated by comparing the localized poses with true poses, which were computed 
from the linear registration as described in Sec. 2.2. The Dice’s coefficient [16] was 
used to measure the symmetric volume overlap between the estimated organs and 
manual segmentations. 

Fig. 2 shows the pose distribution functions, exemplified for the liver, computed 
using all 12 data sets. Note the large variance of the distributions especially for the y- 
and z-positions and z-scaling. Fig.  exemplifies the organ localization results on one 
dataset using selected axial slices. Error! Reference source not found. presents the 
organ pose errors between the organ localization results and the true poses computed 
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Fig. 2. The pose distribution functions of liver. From top to bottom are the centroid, orienta-
tion, and scaling respectively; the x, y, and z components are shown from left to right. 
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according to Section 2.2. Over all, the method performed well for the liver, spleen, 
left and right kidneys, but less adequate for the pancreas, an organ with higher  
variability across subjects. In particular for the liver and spleen, the method worked 
consistently well on all the 12 experiments with small variations. There is a visible 
correlation between the magnitude of the liver pose errors and the variance of the 
distributions in Fig. 2. For the left kidney, there were two cases where the kidneys 
partly overlapped with the nearby spleen (outliers). This was caused by the very simi-
lar HU value profiles of spleen and kidneys in non-contrast CT, and their spatial prox-
imity. Left kidneys were well localized in the other 10 cases. For the right kidney, 
there was one outlier where the method partly converged to the liver for similar rea-
sons. These outlier cases suffered from high location errors in the z-direction of the 
centroid estimation.  

Table 1 also shows that the scale estimation has a larger error than the centroid and 
orientation especially for the liver and the spleen. This is mainly because the scales of 
these organs present a large variability in the training dataset, as exemplified for the 
liver scale in z-axis for liver (Fig. 2). We expect these errors to be reduced with a 
larger training data set.  

Fig. 3. The localization results of five organs on one data set. Images are axial slices from the 
image volume with the organs identified using different colors. 

Table 1. The pose estimation errors between the automated localization results and the true 
poses. In brackets we present the kidney pose errors without considering the outlier cases.  

 
Centroid (mm) Orientation (degree) Scale (%)              Pose 

  Organ x y z x y z x y z 
mean 2.42 2.23 4.61 4.09 2.16 3.50 4.19 5.94 18.8 Liver 
std 2.38 1.66 2.86 3.09 1.89 2.61 3.70 4.98 6.83 

mean 5.28 4.62 3.70 6.89 5.94 4.93 8.31 18.8 24.2 Spleen 
std 5.63 4.11 3.35 6.05 4.56 3.72 6.60 8.85 17.2 

mean 1.06 
(0.73) 

1.78 
(1.34) 

9.63 
(2.17)

3.77 
(3.98)

4.01 
(2.91)

3.90 
(3.48)

6.81 
(6.27)

7.18 
(7.62) 

4.29 
(4.72) Left 

Kidney 
std 1.00 

(0.56) 
1.50 

(0.98) 
17.7 

(1.73)
4.35 

(4.74)
3.72 

(2.92)
4.45 

(4.20)
4.41 

(4.66)
5.80 

(6.13) 
3.27 

(3.31) 

mean 1.31 
(1.08) 

2.69 
(1.99) 

8.69 
(6.40)

3.13 
(2.40)

4.42 
(4.20)

3.45 
3.63) 

7.35 
(7.00)

10.04 
(9.93) 

4.58 
(4.41) Right 

Kidney 
std 1.31 

(1.07) 
3.24 

(2.23) 
10.47 
(7.16)

3.26 
(2.17)

3.88 
(3.99)

3.92 
(4.06)

3.61 
(3.58)

7.69 
(8.06) 

3.84 
(3.99) 

mean 5.64 6.39 4.17 6.23 5.05 6.09 9.20 10.89 7.79 Pancreas 
std 4.78 7.38 3.68 6.74 4.62 4.41 7.45 12.71 7.64 
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Shows the Dice’s coefficient results for the five organs from the leave-one-out ex-
periments. Dice’s coefficient is a common measure of segmentation accuracy with a 
value of 1.0 meaning that the localized organ completely overlaps with the manual 
segmentation. Please note that our method localizes abdominal organs and does not 
address segmentation, hence the inherent inter-patient organ shape variability affects 
the percentage of overlap. For the left kidney, the two outlier resulted in very low 
Dice values (0.21 and 0.33), while the other 10 cases had a Dice’s coefficient of 
0.82±0.03. The pancreas had a low Dice value in general because of its thin and vari-
able shape. Moreover, the manual segmentation of pancreases was less reliable as it is 
often difficult to differentiate the pancreas from surrounding tissues in CT data with-
out contrast.  

Our method was implemented in C++ and run on a computer with 2GB RAM and 
3GHz CPU. In our implementation, the localization of liver took about 1 minute, and 
the localization of each of the other four organs took about 20 seconds. The liver 
localization takes longer because it has a larger size and thus requires more computa-
tion (see Eqn. (6)).  

4   Discussion 

The proposed organ localization method employed a pose distribution model to limit 
the searching space, and an MAP framework to estimates the locations, orientations 
and scales of abdominal organs. The organ localization can be used as an initialization 
of other medical image analysis tasks in abdominal CAD, e.g., segmentation and 
registration. The results showed a reasonably good overlap with manual segmenta-
tions on liver, spleen, and kidneys, and suggested it can work as an accurate initializa-
tion of segmentation or registration tasks.  

Comparing with other organ localization methods [1,12,13], the proposed method 
estimates the organ orientations and scales in addition to the locations and thus pro-
duces more accurate results. For example, although Yao and Summers’ method [12] 
estimated organ locations with similar accuracy as the proposed method, their method 
resulted a much poorer organ localization results because of the lack of knowledge in 
organ orientations and scales (by visually checking the volume overlaps from Fig. 4 
in [12]).  

The method performed consistently well on the liver and the spleen because they 
have larger sizes, which helps the MAP optimization to converge correctly. The failed 
cases of kidneys were mainly due to their smaller sizes and proximity to organs with 
similar intensity profiles. In addition, the localization of pancreas was more challeng-
ing because of its irregular shape and large pose variance across subjects. In this 
work, different organs were localized independently. In future work, we will further 

Table 2. The symmetric volume overlap (Dice’s coefficient) after organ localization 
 
 

 Liver Spleen Left Kidney Right Kidney Pancreas 
mean 0.77 0.69 0.73 0.74 0.43 
std 0.03 0.06 0.21 0.14 0.15 
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improve the method through modeling inter-organ relations and interactions so that 
smaller organ localizations can benefit from the localization results of their neighbors. 

In the future we will use more data to build the models and expect to achieve a 
more precise pose distribution function and more accurate results. In addition, in non-
contrast CT images, the HU values of abdominal soft tissues are similar, which makes 
it difficult to correct the localization and differentiate organs based on HU values. 
Better localization results are expected when applying the method to contrast-
enhanced CT images, and it is our future work. In addition, we will incorporate the 
proposed method with atlas-based segmentation methods for fully automatic organ 
segmentation.  

In conclusion, we developed a novel abdominal multi-organ localization method 
from non-contrast CT images using an MAP framework. The method computes the 
organ pose distributions, organ probabilistic atlases, and organ intensity profiles from 
training data after the abdominal cavity is normalized. It then formulates an MAP 
problem and solves it for organ poses in given CT images. The method was applied to 
five organs (liver, left and right kidneys, spleen, and pancreas) with promising results.  
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Abstract. Radiation therapy planning requires accurate delineation of
target volumes and organs at risk. Traditional manual delineation is te-
dious, and can require hours of clinician’s time. The majority of the
published automated methods belong to model-based, atlas-based or hy-
brid segmentation approaches. One substantial limitation of model-based
segmentation is that its accuracy may be restricted either by the uncer-
tainties in image content or by the intrinsic properties of the model itself,
such as prior shape constraints. In this paper, we propose a novel ap-
proach aimed at probabilistic refinement of segmentations obtained using
3D deformable models. The method is applied as the last step of a fully
automated segmentation framework consisting of automatic initialization
of the models in the patient image and their adaptation to the anatomi-
cal structures of interest. Performance of the method is compared to the
conventional model-based scheme by segmentation of three important
organs at risk in the head and neck region: mandible, brainstem, and
parotid glands. The resulting segmentations are validated by comparing
them to manual expert delineations. We demonstrate that the proposed
refinement method leads to a significant improvement of segmentation
accuracy, resulting in up to 13% overlap increase.

1 Introduction

With recent advances in Intensity Modulated Radiation Therapy (IMRT), it is
possible to deliver a precise dose to the tumor while minimizing the damage
to the surrounding healthy tissue [1]. This requires accurate contouring of all
the structures to be treated as well as the organs that are at risk of receiving
harmful radiation on planning computed tomography (CT) images. Convention-
ally applied manual slice-wise contouring is often tedious and time consuming.
Treatment planning in the head and neck area is especially complex and can
require hours of contouring work.

Auto-segmentation methods in radiation therapy planning (RTP) mostly fall
into the categories of i) deformable or model-based approaches, ii) atlas-based
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methods, and iii) hybrid approaches. Methods based on classical deformable
models [2,3] rely on local image features, such as edges and make use of the
assumption that object boundaries are distinct. In the areas where this assump-
tion does not hold, e.g. soft tissue in CT images, these methods may fail. Prior
information about shape, gray appearance, etc. can be included to improve ro-
bustness [4,5]; however, finding an appropriate balance between the influence of
image content and prior information is generally not easy and may limit the seg-
mentation accuracy. Model initialization is typically done manually by defining
seed points or by a drag-and-drop operation.

Recently, atlas-based auto-segmentation methods have gained popularity in
RTP [6,7]. Such methods rely on one or several atlas images, which contain con-
tours labeled by an expert. To segment a new clinical case, the atlas is registered
to the image and the structures of interest are then transformed using the map-
ping determined by the registration. The advantage of this approach lies in its
universality which allows handling of a wide variety of segmentation problems.
On the other hand, the resulting segmentation is directly linked to the accuracy
of image registration, which is often very challenging due to high variability of
the patient anatomy, organ motion, and image artifacts.

Hybrid approaches combine registration and segmentation into a common
framework [8,9], where, for example, evolution of deformable models can serve
as a registration constraint or used to compensate for the residual differences
after the registration step.

In this paper, we apply a hybrid approach which uses a combination of point-
based registration and model-based segmentation (MBS), and introduce a novel
refinement step to improve the results of MBS. It assumes that an uncertainty
area exists around the boundary defined by the deformable model and that sub-
sequent classification of this region into object / non-object classes will improve
the segmentation accuracy. This concept is implemented by the following steps.
First, a probabilistic mask is created by averaging the registered expert segmen-
tations. This mask is next registered with the result of MBS in a new patient,
and the uncertainty area is refined using voxel classification based on a plurality
of low-level image features. The proposed refinement approach is generic and
can be applied in combination with other model-based segmentation methods.

2 Method

2.1 Probabilistic Mask Construction

Head and neck CT images of 25 patients were acquired using a standard field
of view, and did not contain large neck deformations due to disease (N0 necks).
Scan resolution for all datasets was approximately 1×1×2 mm3. For probabilistic
mask construction and voxel classification training, 15 datasets were used, and
the remaining 10 datasets were used to validate the method.

In order to construct the probabilistic masks, manual expert delineations of
three important organs at risk in the head and neck region: mandible, brain-
stem, and parotid glands were used. The expert delineations were available in
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Fig. 1. Axial slices of the probabilistic masks for the mandible (left), brainstem (mid-
dle) and left parotid (right). Brighter areas correspond to higher probabilities.

the form of binary volumes and were subsequently converted to triangular surface
meshes to facilitate the registration process. The first step in mask construction
is point-based affine registration of all surface meshes with an unbiased mean
mesh. Analogously to [6], the unbiased mesh is constructed by registration of
all meshes to an arbitrary reference mesh to create an initial mean mesh and
then iterating the process each time taking the resulting mean mesh from each
iteration as the reference mesh for registration. On convergence, we apply the
resultant transformations to align the binary volumes and average the results
to construct a probabilistic mask. The areas of intersection of all binary vol-
umes are assigned the probability of 1, and the regions with the probabilities
between 0 and 1 represent the areas of uncertainty w.r.t. affine transformations,
see Fig. 1. The probabilistic mask is blurred with the Gaussian kernel (σ =
1mm), which has the effect of simulating organ variability and smoothing the
borders.

2.2 Model-Based Segmentation and Probabilistic Mask Registration

The implemented model-based segmentation approach uses the energy mini-
mization technique adapted from [4]. The organ models, used for adaptation,
are created from manual expert segmentations of a single reference dataset and
are represented as triangular surface meshes with integrated prior information
from both shape and appearance. In contrast to the original approach, where
model placement in the image to segment was performed manually by drag-and-
drop, fully automatic model initialization is used in this work. It is based on the
registration method developed in [10] for automatic retrieval of corresponding
anatomical point landmarks to generate a thin-plate spline transformation be-
tween the reference and target image. To retrieve the landmark correspondences,
an optimization procedure is applied, aimed at minimizing the gray value dif-
ference between image patches around a set of 46 manually selected point land-
marks covering areas of head and neck anatomy with characteristic appearance,
e.g. anterior clinoid processes, mastoid processes, and cervical vertebra tips.

The adaptation of the reference models to the unseen dataset is carried out
by minimizing the sum of external energy attracting the model to the image
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Table 1. Candidate feature list for voxel classification; H(i) denotes the local histogram
and L is the number of gray levels

Feature Formulation
Voxel intensity and position I(x, y, z), x, y, z

Moments of intensity histogram μ =
∑L−1

i=0 iH(i),
√∑L−1

i=0 (i − μ)2H(i),∑L−1
i=0 (i − μ)3H(i),

∑L−1
i=0 (i − μ)4H(i)

Entropy and uniformity −∑L−1
i=0 H(i) log H(i),

∑L−1
i=0 H(i)2

Intensity smoothed Iσ(x, y, z)
1st and 2ndorder derivatives Ix, Iy, Iz, Ixx, Iyy, Izz, Ixy, Ixz, Iyz

Magnitude of Hessian eigenvalues
√

λ2
1 + λ2

2 + λ2
3

Curvature and Laplacian λ1λ2λ3, λ1 + λ2 + λ3

Gradient magnitude
√

I2
x + I2

y + I2
z

edges and internal energy maintaining the consistency of model shape. After
adaptation, the mean meshes of the three organs, constructed as described in
Section 2.1 are registered with the adapted reference meshes using affine trans-
formations. The resulting transformations are then applied to the probabilistic
masks to transfer them to the image.

2.3 Refinement by Voxel Classification

In the refinement step, voxels in the transformed probabilistic masks, with the
probabilities between 0 and 1, representing the uncertainty around the seg-
mented boundary are classified into organ and background class using local low-
level image features. For classification, a fast implementation of a kNN classifier
based on approximate nearest neighbor search was used [11], with k chosen to
be 25.

Features. The performance of the classifier is highly dependent on how well
the features are able to discriminate a certain tissue type from the surrounding
structures. Image features used in our method are discussed below.

Raw image intensity and 3-D position: The motivation for including these
features is that when manually segmenting an organ of interest, a clinician always
looks for the location and the intensity of the organ in the image.

Multi-scale image intensities and derivatives: Three scales (1.7mm, 2.0mm,
and 2.25mm) are chosen to cover the variation in organ size. Each scale repre-
sents the standard deviation of the Gaussian kernel.

Local texture and structure properties: These features are based on the
gray-level distribution, as quantified from the local intensity histogram. The fea-
tures represent the first few moments of the histogram, such as mean, standard
deviation, skewness, and kurtosis. Additionally, local entropy and uniformity



Probabilistic Refinement of Model-Based Segmentation 407

are also included. The features are quantified for each voxel locally, using a
neighborhood size of 5×5×3 pixels (approx. 5×5×6 mm), chosen experimentally.

Shape based features: The magnitude of the Hessian eigenvalues as a measure
of object contrast is included. Rotationally invariant features, such as Laplacian,
Gaussian curvature, and gradient magnitude are also included.
This results in an initial set of 52 candidate features at three scales, see Table 1.
All features are normalized to a zero mean and unit variance to ensure that the
classifier is not sensitive to scaling.

Feature Selection. A high-dimensional feature space not only increases the
computational time but can also degrade the classification performance. We
employ a feature selection step based on sequential forward floating selection
(SFFS) [12] to choose the optimal sub-set of features. This translates to a for-
ward selection (FS) step followed by backward selection (BS). FS starts from an
empty set and adds features sequentially as long as the performance criterion
improves. Subsequently, BS iteratively removes the least significant features ac-
cording to the performance criterion. The outcome of the performance criterion
is evaluated at each iteration and we stop iterating when the dimensionality of
the feature space reaches a point after which the improvement is not signifi-
cant. For the performance criterion, we maximize the area under the receiver
operating characteristic (ROC) curve. The ROC curve is determined by vary-
ing the threshold for the classifier and then plotting the ratio of false positives
vs. the ratio of true positives [13]. The feature selection is carried out by ran-
domly dividing the training data into two sub-sets. The classifier is trained for
a certain combination of features on the first set and the performance is then
evaluated on the second set. After the feature selection, the classifier is con-
structed from all the training data, using the optimally selected features only.
To avoid redundant data and to speed up the computation, 60% of randomly
selected voxels were sampled from each expert segmentation and background to
train the classifier.

Selected features: The Gaussian smoothed intensities at all scales, along with
the raw intensity and the position in the image were selected for all three organs.
Features selected for the brainstem and the parotids were quite similar, and pri-
marily consisted of second order derivatives, Gaussian curvature and Laplacian.
Features selected for the mandible, however, consisted of local textural features,
first order derivatives, and gradient magnitude.

Estimation of Posterior Probability and Classification. For each voxel
v to be classified, we compute the feature vector Fv. The posterior probability
of v belonging to class wi is then computed by p(wi|Fv) = ki/kT , where kT

is the total number of neighbors, and ki, determined by the classifier, is the
number of nearest neighbors belonging to class wi. Computation of posterior
probabilities leads to a “soft” classification of the voxels. In order to obtain a hard
segmentation we define a cutoff point, chosen to be 0.5. The prior probability
from the mask is included into the computation of the final probability to enforce
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Table 2. Segmentation results (in terms of DSC), comparing MBS and the refinement
approach vs. manual expert segmentations. Mean percentage DSC improvement (last
row) achieved through refinement.

Dataset Mandible Mandible Brain- Brain- Left Left Right Right
(MBS) (Refined) stem stem Parotid Parotid Parotid Parotid

(MBS) (Refined) (MBS) (Refined) (MBS) (Refined)
1 0.876 0.914 0.832 0.867 0.643 0.698 0.672 0.747
2 0.867 0.916 0.816 0.860 0.696 0.710 0.597 0.663
3 0.864 0.867 0.876 0.898 0.692 0.753 0.658 0.755
4 0.886 0.893 0.861 0.885 0.754 0.828 0.733 0.829
5 0.873 0.905 0.808 0.820 0.696 0.781 0.700 0.720
6 0.860 0.889 0.848 0.875 0.739 0.795 0.754 0.808
7 0.883 0.910 0.866 0.882 0.691 0.745 0.656 0.727
8 0.888 0.913 0.808 0.856 0.714 0.747 0.667 0.699
9 0.877 0.901 0.851 0.873 0.826 0.866 0.749 0.841
10 0.864 0.911 0.844 0.876 0.723 0.804 0.701 0.805

ΔDSC(%) +4.9 +4.0 +9.9 +13.0

a shape prior, which helps to minimize noise and results in a relatively smooth
segmentation. Thus our decision rule is defined as:

v ∈
{

wo, l1p(wo|Fv) + l2p(m) > 0.5
wb, otherwise,

where wo is the organ class, and wb is background, p(m) is the probability from
the mask, and l1, l2 are the weighting factors, both chosen to be 0.5.

3 Results

To quantitatively evaluate the resultant segmentations, we compared them to
the manual segmentations. Additionally, we also compared the results to the
non-refined MBS approach. The evaluation was carried out by estimating the
volume overlap fraction known as the dice similarity coefficient (DSC) on 10
testing datasets. Table 2 summarizes the results: for each structure, the first
column lists the DSC for MBS, followed by the DSC of our refinement method
in the second column. Fig. 2 shows the segmentation results on a sample dataset,
obtained both by MBS and the refinement method. Note the inaccuracies in MBS
due to the built-in shape constraints which do not allow the model to precisely
follow even sharply defined edges in the image, see e.g. the third row of Fig. 2.

In order to give an estimate of computation time a distinction is made be-
tween “offline” and “online” calculations. The offline calculations, consisting of
probabilistic mask construction and feature selection are performed only once.
Online calculations are carried out for each new patient and include the auto-
matic initialization of the models, their adaptation, and mask refinement. The
entire online calculation for the 3 organs, took about 3 min. on a 2.8GHz dual-
core AMD processor, in which the classification step took approximately 30 sec.
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Fig. 2. From top to bottom: exemplary results of probabilistic refinement (red) com-
pared to model-based segmentation (light blue) and expert delineations (green) for
brainstem, parotid glands, and mandible

4 Discussion

We have introduced a novel approach to refinement of the existing model-based
segmentation. It is implemented by classification of the uncertainty area, quanti-
fied from a probabilistic atlas, using a complex voxel labeling step. The method
incorporates a feature selection step which automatically extracts the optimal
set of features from a pool of textural and geometrical features at different scales.

The approach was quantitatively validated to segment three important or-
gans at risk in the context of radiation therapy planning of the head and neck:
mandible, brainstem and parotid glands. For all structures tested, the refined
method clearly outperforms the standalone MBS approach, both quantitatively
and by visual appreciation of the results. The lower DSC for the parotid glands
compared to other tested structures may be attributed to their high shape vari-
ability and may be improved by increasing the size of the training data.
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Our method is generic and can potentially be applied to any application in-
volving segmentation based on deformable models. Combining the advantages
of both local low-level features and global high-level prior shape information is
a first step towards achieving a more reliable and accurate segmentation. Fu-
ture work will involve evaluating the method on other anatomical structures,
and evaluating its sensitivity to different registration techniques for creation of
the probabilistic masks. We also plan to implement a multi-atlas segmentation
scheme, where multiple models derived from different patients can be used to
better conform to the anatomy of a particular patient.
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Abstract. Diagnosis of benign and malign skin lesions is currently mostly rely-
ing on visual assessment and frequent biopsies performed by dermatologists. As 
the timely and correct diagnosis of these skin lesions is one of the most impor-
tant factors in the therapeutic outcome, leveraging new technologies to assist 
the dermatologist seems natural. Complicating matters is a blood cancer called 
Cutaneous T-Cell Lymphoma, which also exhibits symptoms as skin lesions. 
We propose a framework using optical spectroscopy and a multi-spectral classi-
fication scheme using support vector machines to assist dermatologists in diag-
nosis of normal, benign and malign skin lesions. As a first step we show suc-
cessful classification (94.9%) of skin lesions from regular skin in 48 patients 
based on 436 measurements. This forms the basis for future automated classifi-
cation of different skin lesions in diseased patients. 

Keywords: Skin cancer, Optical spectroscopy, Classification.  

1   Introduction 

Skin cancer is one of the most common cancer types in humans and its incidence is on 
the rise, especially in countries where the ozone layer is thinning. The correct and 
timely diagnosis of suspicious skin lesions is one of the most important factors in the 
therapeutical outcome. 

At present most dermatologists rely on their experience of visual assessment to dis-
tinguish benign and malign skin lesions [1] like pigmented nevi, seborrhoeic keratosis 
or basal cell carcinoma and malignant melanoma, as well as requiring biopsies of the 
affected skin. 

To complicate matters, Cutaneous T-Cell Lymphoma (CTCL) is a blood cancer 
type with symptoms that are exhibited as skin lesions as well. Again a timely diagno-
sis and staging is very crucial for a successful treatment [2]. 

New technologies to assist in identifying and diagnosing skin lesion and to mini-
mize invasive biopsies have been developed, like hand-held magnification devices 
and computer-aided image analysis. Colourd image processing methods were intro-
duced for melanoma [3] which focused on non-constant visual information of skin 
lesions. Neural network diagnosis of skin lesion has previously been applied by clas-
sifying extracted features from digitized dermoscopy images of lesions [4][5].  
The extracted features are based on geometry, colors, and texture of the lesions, in-
volving complex image processing techniques. Recently with Raman spectroscopy 
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the molecular structure of skin lesions are exploited [6], but due to harmful effect of 
laser beam on sensitive skin surface, is least in practice for dermatologist. Optical 
spectroscopy is another technology that is being established to aid in skin lesion diag-
nosis [7], as the multi-spectral nature of this imaging method allows to detect and 
classify multiple physiological changes like those associated with increased vascula-
ture, cellular structure, oxygen consumption or edema in tumors [8]. 

We propose a computer-aided system using optical spectroscopy that keeps track 
of the progression of skin lesions and assists in quantification and classification of 
skin diseases in order to assist dermatologists in the decision making process. In this 
paper we present a framework for acquiring spectroscopic data of skin lesions  
and classifying them using support vector machines (SVM). We report on the classifi-
cation results obtained from optical spectroscopy using various skin lesions of 48 
patients.  

In the following section we describe the materials and methods used in this study 
and the last section explains experiments and their results.  

2   Materials and Methods 

Here we describe the employed algorithms and the instrument used for data acquisition.  

2.1   System Setup 

The system contains a hand–held reflectance spectroscopy probe (StellarNet Inc., 
Oldsmar, FL, USA), consisting of 6×200µm illumination fibers arrayed around one 
600µm acquisition fiber. The probe has an infrared optical tracking target attached in 
order to be able to determine its position and orientation in real–time, see fig. 1(a). 
The tracking system consists of four ARTtrack2 infrared cameras (A.R.T. GmbH, 
Weilheim, Germany) positioned to track within a volume of 2×2×2 [m3].  

A 178−1132 [nm], 2048 [pix], 12bit CCD spectrometer (StellarNet Inc., Oldsmar, 
FL, USA) is connected to the acquisition fiber, and a 12 [W] tungsten lamp connected 
to the illumination fibers as a light source. The spectrometer is controlled by a data 
processing unit to acquire spectra synchronously with the tracking information of the 
probe. The data-processing unit is used to run the application that handles the incom-
ing data (spectral and spatial) and the classification. An overview of the entire setup is 
displayed in fig. 1 (b). 

2.2   Data Processing  

 The spectral data is acquired as a 2048 vector of the floating points values 

niRxi
,...,1,

2048 =∈  where n denotes the number of measurements. Each xi represents the 

discretized reflective spectrum from 178 [nm] to 1132 [nm] (due to limitation of 
hardware )of the ith measurement and is stored normalized as  
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To reduce the dimensions of the input data, principal components analysis (PCA) 

is applied. The resulting spectrum of eigenvalues 2048,...,1)( =j
i
je  is sorted descending 

by magnitude. Since the highest eigenvalues represent the most relevant components, 
a cut-off value CPCA is chosen, such that the final input data yi for the classification 
algorithm from measurement xi (i = 1,…,n) is 

 

The cut-off value CPCA is chosen empirically from the data. Fig. 2 is showing a repre-

sentative example of 2048,...,1)( =j
i
je  from which CPCA was selected as one of {2,3,4,5}. 

     
 

Fig. 1. (a) Schematic of the fiber arrangement in the spectroscopy probe: 6×200µm illumina-
tion fibers arrayed around one 600µm acquisition fiber. (b) System setup: (1) tracking cameras, 
(2) regular camera (for augmented reality visualization), (3) tracked probe, (4) spectrometer, (5) 
light source, and (6) data–processing unit. 

 

Fig. 2. Representative example of the first part of the sorted PCA eigenvalue spectrum        , the 
y-axis shows the values of the component as a percentage of the total in log scale 
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2.3   Classification 

Classification is performed by a support vector machine (SVM), [9]. SVM was se-
lected as the method of choice as it allows to linearly classify data in a high-
dimensional feature space that is non-linearly related to the input space via the use of 
specific kernel functions, such as polynomial functions or radial basis functions 
(RBF). This way we can build complex enough models for skin lesion classification 
while still being able to compute directly in the input space. 

The SVM classifier needs to be trained first before using it, thus we partition our 
(already reduced) input data (yi), i=1,…,n into two partitions, T ⊂ {1,…,n} the train-
ing set and V⊂ {1,…,n} the testing (or validation) set with T ∪V = {1,…,n} and 
T∩V={}. The training data set T is labeled manually into two classes with the 
ground truth, l(yi)=±1. Once the classifier is trained, a simple evaluation of the deci-
sion function d(yi)= ±1 will yield the classification of any data yi. 

In detail, SVM is trying to separate the data φ (yi) mapped by the selected kernel 

function φ  by a hyperplane wTφ (yi)+b=0 with w the normal vector and b the transla-

tion. The decision function then is d(yi) =sgn(wTφ (yi)+b). Maximizing the margin 

and introducing slack variables ξ = (ξ i) for non-separable data, we receive the pri-

mal optimization problem:  

where C is a user-determined penalty parameter. Switching to the dual optimization 
problem allows for easier computation, 
 
 
 
        with constrains 
 

(4) 

where α = (αi) are the so-called support vectors, e = [1,…,1]T and Q is the positive 
semidefinite matrix formed by Qjk= l(yj)l(yk)K(yj,yk), and K(yj,yk) =φ (yj)

T φ (yk) is the 

kernel function built from φ . Once this optimization problem is solved, we  deter-

mine the hyperplane parameters w and b, w directly as w = ∑
∈Ti

αi l(yi) φ (yi) and b 

via one of the Karush-Kuhn-Tucker conditions as b = -l(yi)yi
Tw, for those i with 0< 

αi<C. Thus the decision function of the trained SVM classifier ends up as 
 

d(yi) = sgn(wTφ (yi)+b) = sgn(∑
∈Tj

αj l(yj)K(yj,yi)+b). (5) 
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3   Experiments and Results 

3.1   Experiments 

We collected 436 spectroscopic data points (xi), i=1,…,436 from the skin of 48 pa-
tients, 326 measurements were of skin lesions, 110 measurements were of normal 
skin. Exemplary picture of the lesion imaged is shown in fig. 4. 

All data was manually labeled into the two classes normal skin l(xi)=1 and lesion 
l(xi)=-1. The 436 data points were randomly separated into a training data set T and a 
testing (validation) data set V with |T|=305 and |V|=131, however retaining the  

 

                         
 

Fig. 4. Skin moles 

 

 

 
 

Fig. 5. Graph of all normalized spectra 
ix̂ from the training data set T, color-coded as blue for 

skin moles, red mole cancer and green for normal skin. 
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balance of both sets containing 50% each of the two classes. A color-coded represen-

tation of the normalized skin spectra ix̂ , i∈T, of the training data set T is shown in 

fig. 5. 

Before classification, PCA was applied to the ix̂  for dimension reduction to yield 

our classification input yi. The eigenvalue cut-off CPCA was empirically chosen as one 
of CPCA ∈{2,3,4,5}. 

The SVM classifier (we used C-SVM from LibSVM, [10]) was then trained using 
the training data set T. As there are multiple parameters to be selected, like for exam-
ple the penalty parameter C, we performed a cross-validation of 3 folds via parallel 
grid search. The average accuracy on the prediction of the validation fold is the cross 
validation accuracy. 

3.2.   Results 

The cross-validation of the training data set T determined, among others, the parame-
ters C=-5 and γ=-7. For the further parameters CPCA and the choice of the kernel (lin-
ear, polynomial, radial basis function (RBF) or sigmoid) we performed cross valida-
tion of the training data set T, the results are shown in Table 1. The best results were 
received consistently by using the RBF kernel, while for CPCA the value of 5 turned 
out to be the best choice with an accuracy of 97±8.3.  

Table 1. Results of the cross-validation using the training dataset T 

C-SVC Training   

 Linear Kernel Poly Kernel RBF Kernel Sigmoid Kernel 

CPCA  = 2 95±9.2 96±8.3 95±7.5 95±10.1 

CPCA  = 3 95±8.3 96±6.7 97±9.5 96±10.5 

CPCA  = 4 95±11.5 97±7.2 97±8.7 96±8.6 

CPCA  = 5 96±9.2 97±10.5 97±8.3 97±7.7 

 
With the training of the classifier completed, we studied the accuracy of the test-

ing (validation) data set V. We compared the manual ground truth labeling l(yi) for 
data point yi with the computed decision function d(yi) to compute the accuracy as 
follows 
 

(6) 

The results are shown in Table 2. We achieve the same accuracy of 94.9% for the 
kernels RBF the CPCA values of 4 and 5. This corresponds to fig. 2, where it is clear 
that between CPCA 4 and 5 there is only very little difference. In total we received the 
best results using the RBF kernel and CPCA=5. 
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Table 2. Classification accuracy results using the testing dataset V 

Testing   

 Linear Kernel Poly Kernel RBF Kernel Sigmoid Kernel 

CPCA  = 2 86.8% 90.3% 89.9% 88.8% 

CPCA  = 3 89.3% 92.5% 91.8% 90.3% 

CPCA  = 4 91.9% 92.9% 94.9% 94.1% 

CPCA  = 5 92.1% 93.6% 94.9% 94.6% 

4   Conclusion 

We present a portable, affordable setup for optical spectroscopy and SVM-based 
classification of skin lesions. Our experiments on patient’s data served as a base to 
choose and tune the various parameters in the classification chain. The results of 
94.9% accuracy in distinguishing normal skin from any type of skin lesion are compa-
rable to those of a well-trained dermatologist using visual inspection [11].  

Future work includes considering some factors which have not been addressed yet, 
such as the influence of external light and obstruction by hair (all measurements 
avoided hair) and comparison with other techniques such as neural networks and 
manifold learning. The next step then is to established complete framework for clini-
cal evaluation in dermatology department and its determined parameters to classify 
different skin lesions of diseased patients. These results promise that computer-
assisted multi-spectral imaging and classification is the path into the future for derma-
tological screening. 
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Abstract. Segmentation of vertebrae provides means for reliable measurement 
of vertebral deformations, which is important for the diagnosis and therapy of 
pathological conditions affecting the spine. In this paper we propose a method 
for segmentation of vertebral bodies in three-dimensional (3D) magnetic 
resonance (MR) images that is based on efficient geometrical modeling of the 
vertebral body and evaluation of dissimilarity between the vertebral body and 
the surrounding soft tissue in MR images. The results show that the proposed 
geometrical model of the vertebral body can describe a variety of vertebral 
body shapes and therefore the method may be used for quantitative assessment 
of vertebral body deformations or initialization of whole vertebra segmentation. 

Keywords: magnetic resonance (MR), spine, vertebral body, shape, modeling, 
segmentation. 

1   Introduction 

Pathological conditions affecting the spine, such as low back pain, instability, 
osteoporosis, stenosis, spondylolisthesis or herniations, have become acute problems 
of modern society. Among the techniques for analysis of spine images, segmentation 
stands out as a technique that may not only improve visualization of vertebrae, but 
also provide measurements of vertebral deformations that may aid clinical diagnostics 
and therapy. 

Several methods for segmentation of vertebrae and vertebral structures have been 
proposed. Starting from a point in the center of each vertebral body, Mastmeyer et al. 
[1] segmented vertebrae in computer tomography (CT) images by a combination of 
viscous deformable models and evaluated the geometrical shape of the vertebral body. 
Kim et al. [2] automatically segmented vertebrae using a region growing method 
inside a volume limited by a three-dimensional (3D) fence that was obtained by a 
deformable model. By applying statistical models of shape, gradient and appearance 
of the spinal structure in 3D, Klinder et al. [3] detected, identified and segmented the 
vertebrae in CT images. To segment vertebrae in magnetic resonance (MR) images, 
Peng et al. [4] used template-based matching and edge connectivity tracing procedure 
in a manually selected sagittal cross-section. Normalized-cut segmentation algorithm, 
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proposed by Huang et al. [5], was also performed in a single sagittal cross-section. 
Methods for segmentation of vertebrae in a single cross-section usually presume pre-
selection of a plane in which all structures of interest are visible. Pre-selection of such 
plane may be too demanding or even not feasible, as in the case of large vertebral 
deformations. Above all, the main disadvantage of vertebra segmentation in a single 
cross-section is its inability to capture the complexity of the 3D vertebral anatomy. 
Hoad et al. [6] proposed a method for segmentation of vertebral bodies in 3D MR 
images. However, the segmentation was based on fitting an ellipse in a single axial 
cross-section and then connecting the obtained ellipses into a volume. To the best of 
our knowledge, there is no method for segmentation of vertebrae in MR images that is 
performed completely in 3D. 

In this paper we propose a method for segmentation of vertebral bodies in 3D MR 
images that is based on efficient modeling of the vertebral body shape. The 
segmentation is performed by optimizing the parameters of a geometrical model so 
that it is aligned with the vertebral body in the image. To obtain the parameters of the 
geometrical model, we exploit the dissimilarity between the appearance of the bone 
structure and the soft tissues that surround the vertebral body in MR images. The 
preliminary results show that the optimization criterion can be used for segmentation 
of vertebral bodies and the geometrical model can describe various vertebral body 
shapes. The proposed method may be therefore used for initializing whole vertebra 
segmentation or quantitative description of vertebral body deformations. 

2   Method 

2.1   Geometrical Model of the Vertebral Body 

Our initial hypothesis is that the vertebral body can be modeled with an elliptical 
cylinder in 3D. The following nine parameters describe such geometrical model: x0, y0 
and z0 define the location of the center, a, b and h define the semi-major axis, the 
semi-minor axis and the height, and α, β and γ define the inclination of the elliptical 
cylinder in 3D. The elliptical cylinder F(x, y, z) can be presented as an implicit 
function of a superellipsoid [7]: 
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where the parameter ε1 defines the curvature of the superellipsoid edges and, to obtain 
sharp edges, is set to 0.1 (Fig. 1a). The function of the ellipse radius r(θ) in the polar 
coordinate system: 

 
2 2

( ) ,
( cos ) ( sin )

a b
r

a b
θ

θ θ
⋅=

⋅ + ⋅
 (2) 

defines the shape of the basis of the superellipsoid, where θ = arctan(y/x) is the radius 
angle measured from the major axis. 
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To change the elliptical cylinder into a more accurate description of the vertebral 
body, the elliptic shape was modified by superimposing four Gaussian functions, 
centered at angles θi and with standard deviations σi; i = 1, …, 4, to the ellipse radius. 
The resulting changes in the shape of the elliptical cylinder allow modeling of the 
vertebral body at the location of vertebral pedicles and the vertebral foramen 
(Fig. 1b). The function of the ellipse radius r(θ) in Eq. 1 is therefore modified into 
R(θ): 
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where the weight mi; i = 1,..,4 defines the magnitude of the modification caused by ith 
Gaussian function.  

The wall of normal and especially pathological vertebrae is usually curved inward. 
To model the curvature of the vertebral body wall, we use a cosine function with the 
period equal to the height h of the cylinder and amplitude cW. The wall of the 
vertebral foramen may also be curved inward, which we model with another cosine 
function with amplitude cF. The amplitudes cW and cF are considered as parameters of 
the geometrical model (Fig. 1c). 

 

Fig. 1. Geometrical model of the vertebral body generated with (a) an elliptical cylinder, (b) a 
cylinder with modified basis and (c) a cylinder modified with all proposed parameters 

The endplates of normal vertebrae are usually parallel but a variety of conditions 
(such as osteoporosis, severe trauma, congenital deformities, Scheuermann’s disease, 
osteoarthritis or multiple myeloma) may deform their shape. Moreover, endplate 
shape is usually concave. We model such shape variations separately for the superior 
and inferior endplate with two-dimensional (2D) cosine functions with the period 
equal to the radius of the cylinder basis (Eq. 3) and amplitude cS and cI (for superior 
and inferior endplate, respectively) (Fig 1c). The wedge and crush deformity are 
deformations where the endplates are inclined toward the anterior or posterior part of 
the vertebral body [8]. As the inclinations of the superior and inferior endplates are 
independent, we model them separately with magnitudes sS and sI and angles ψS and 
ψI (for superior and inferior endplate, respectively) (Fig. 1c). 

To summarize, the following 29 parameters are used to generate the geometrical 
model of the vertebral body: x0, y0 and z0 (center of the vertebral body); α, β and γ 
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(inclination of the vertebral body); a, b and h (parameters of the elliptical cylinder); 
θi, σi and mi (parameters of the superimposed Gaussian functions to the ellipse in the 
cylinder basis; i = 1, ..., 4); cW and cF (curvature of the vertebral body wall and 
foramen); cS and cI (concavity of the superior and inferior endplate); sS, sI, ψS and ψI 
(magnitude and angle of the inclination of the superior and inferior endplate). 

2.2   Segmentation of the Vertebral Body 

The segmentation of the vertebral body in 3D MR images is performed by optimizing 
the parameters of the geometrical model to achieve the best match of the model to the 
vertebral body in the image. By observing the appearance of the vertebral body and 
surrounding soft tissues in MR images, the following conclusions can be made: 

• image intensities that belong to the vertebral body are different from the 
intensities that belong to the surrounding soft tissues, and  

• the vertebral body as a homogeneous structure has a small standard deviation 
of image intensities, while the image intensity gradients are concentrated 
around the edges of the vertebral body. 

Basing on these conclusions, the matching of the geometrical model to the vertebral 
body is performed by maximizing the dissimilarity between image features within the 
model and features within the area that surrounds the model. The dissimilarity 
measure can be represented by: 
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where gsurr(j) is the gradient magnitude at point j that is within the area that surrounds 

the model, mod
Iσ is the standard deviation of image intensities within the model, and 

mod
Ip  and I

surrp  are the probability distributions of image intensities within the model 

and within the area that surrounds the model, respectively. The width K of the area 
that surrounds the model is initially large in order to capture the global position of the 
vertebral body in the image and is then gradually reduced in order to capture only the 
soft tissues around the edge of the vertebral body. 

3   Experiments 

3.1   Images, Ground Truth and Method Evaluation 

The performance of the proposed method was evaluated on six T2-weighted MR 
images of lumbar spine containing 30 vertebrae from L1 to L5. Three were axial MR 
images with voxel size 0.4 × 0.4 × 3 mm, while three were sagittal MR images with 
voxel size 1.0 × 1.0 × 1.0 mm. For the purpose of quantitative evaluation of the 
proposed method, the ground truth was determined for each vertebra by manually 
identified anatomical points. A single observer determined 16 characteristical points 
in the mid-axial, mid-sagittal and mid-coronal plane of each vertebra (Fig. 2). Based 
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on the identified points, the center and inclination of the vertebral body were 
calculated.  

The performance of the method was measured quantitatively by computing the 
radial Euclidian distance between the ground truth points and the obtained model of 
the vertebral body [7]. The radial Euclidian distance is defined as the distance 
between an arbitrary point and the model along the line that passes through the point 
and the center of the model. Based on the implicit function F(x, y, z) (Eq. 1), the 
radial Euclidean distance of the model from the ground truth point (xG, yG, zG) is: 

 ( )
0.1

21 , , ,G G G Gd d F x y z
−

= ⋅ −  (5) 

where dG is the Euclidian distance of the point from the center of the model. 
To evaluate the performance of the proposed method against different initial 

positions of the geometrical model, we initialized the center (x0, y0 and z0) and 
inclination (α, β and γ) of the geometrical model in randomly generated displacements 
from their ground truth values. The displacements were uniformly distributed and 
ranged up to 10 mm, where the inclination angles were transformed into translations 
so that volume displacement was preserved. For each vertebra, 100 initial 
displacements were applied, resulting in a total of 3000 displacements for all 
vertebrae. The initial shape of each vertebral body was represented by an elliptical 
cylinder with the major axis, minor axis and height set to the width, length and height, 
respectively, of the average lumbar vertebral body [9]. 

3.2   Implementation Details  

For the purpose of vertebral body segmentation in 3D, all images were resampled to 
anisotropic voxel resolution of 1.0 × 1.0 × 1.0 mm using trilinear interpolation. To 
reduce image noise and local inhomogeneity, the images were blurred with a 3D 
Gaussian filter (standard deviation σ = 1 mm). The gradient magnitudes were 
calculated using the 3D Sobel gradient operator (kernel size 3 × 3 × 3 mm) [10].  

Starting from a single, user defined point located near the center of the vertebral 
body, the segmentation was performed by optimizing the parameters of the 
geometrical model of the vertebral body with the simplex algorithm [11]. The initial 
shape of each vertebral body was represented by an elliptical cylinder generated 
basing on the average width (2a = 45 mm), length (2b = 30 mm) and height (2h = 24 
mm) of the lumbar vertebral body [9]. The optimization was carried out in three steps. 
In the first step, nine parameters of the vertebral body model (x0, y0, z0, α, β, γ, a, b 
and h) were obtained by translating, rotating and scaling the original elliptical 
cylinder, with the thickness of the surrounding area of the model set to K = 8 mm. The 
obtained parameters were used to generate the starting model in the second step, 
where 12 new parameters (θi, σi and mi; i = 1,.., 4) were added in optimization and the 
surrounding area was reduced to K = 6 mm. The initial angles of Gaussian functions 
close to the pedicles, foramen and interior part of the vertebral body were equal to 
θ1 = 45°, θ2 = -45°, θ3 = 0° and θ4 = 180°, respectively, from the minor axis of the 
obtained ellipse, while the parameters σi and mi; i = 1, ..., 4; were initialized to π/8 and 
0.3, respectively. In the third step of the optimization, the remaining eight parameters 
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(cW, cF, cT, cB, sT, sB, ψT and ψB) were added to obtain the local characteristics of the 
vertebral body (e.g. curvature of the vertebral body wall, curvature of the foramen, 
concavity and inclination of the endplates) and the surrounding area of the model was 
reduced to K = 4 mm.  

 

Fig. 2. The ground truth points were determined in the mid-axial, mid-sagittal and mid-coronal 
cross-section of each vertebra 

4   Results 

The proposed method for segmentation of vertebral bodies in 3D was successfully 
applied to T2-weighted MR images of lumbar spine. The results of the experiments 
are presented as radial Euclidian distances (Eq. 5) from the ground truth points. For 
each vertebra, we present the mean difference and standard deviation between the 
model and the ground truth points for successful segmentations after each 
optimization step (Table 1). A segmentation was considered successful if the mean 
distance of the obtained model from the ground truth points was less than 5 mm. The 
overall mean difference (± standard deviation) for successful segmentations of all 
vertebrae after the first optimization step (i.e. when nine parameters of the vertebral 
body were optimized) was 2.8 ± 1.9 mm (success rate 77.5%), after the second 
optimization step (i.e. when optimizing 21 parameters) 2.7 ± 1.6 (success rate 81.0%), 
and after the third optimization step (i.e. when optimizing all 29 parameters) 
2.1 ± 1.3 mm (success rate 86.7%). Figure 3 shows the scatter diagrams of the 
displacements of the initial model and the distance between the obtained model and 
the ground truth points. Detailed results for selected vertebra are presented in figure 4. 

5   Discussion and Conclusion 

A method for segmentation of vertebral bodies in 3D MR images based on a 
geometrical model in 3D was proposed. The main advantage of geometrical modeling 
over the widespread statistical modeling is that it is not constrained to the 
deformations included in the training data set. Statistical modeling also requires 
initialization near the final solution, while in the proposed method, initialization was 
represented by a single point near the center of the vertebral body. Moreover, the 
capture range of the proposed method is quite large, since for the initial displacement 
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of up to 10 mm, 86.7% of vertebral bodies were successfully segmented. As the 
method is initialized with a single point and automatic methods for the detection of 
the centers of vertebral bodies already exist [12], we can assume that the proposed 
method for segmentation of vertebral bodies in MR images performs automatically.  

Table 1. Mean difference Δ (± standard deviation σ) between the model and the ground truth 
points for successful segmentations after each optimization step, reported for all lumbar 
vertebrae used in the experiment. The success rate is defined by the number of segmentations 
for which the mean distance between the model and the ground truth points is less than 5 mm. 

Vertebrae Spine 1 Spine 2 Spine 3 Spine 4 Spine 5 Spine 6 

Δ1 ± σ (mm) 3.4±2.4 2.0±1.4 3.6±2.9 3.8±3.4 3.9±3.0 3.3±1.7 

Δ2 ± σ (mm) 3.1±2.1 2.3±1.3 3.3±2.8 3.7±3.7 3.5±3.5 2.8±1.7 

Δ3 ± σ (mm) 2.1±1.3 1.9±1.1 2.1±1.3 2.0±1.4 2.1±1.4 2.4±1.4 
L1 

success rate 92.5% 99.5% 80.6% 78.5% 81.8% 93.5% 

Δ1 ± σ (mm) 2.9±2.4 2.5±1.7 3.6±2.6 3.1±2.5 3.4±3.0 3.2±1.9 

Δ2 ± σ (mm) 2.5±1.8 2.7±1.4 3.2±2.5 3.3±2.4 3.4±3.0 3.0±1.5 

Δ3 ± σ (mm) 2.0±1.4 2.3±1.2 2.3±1.3 2.1±1.5 2.4±1.1 2.4±1.4 
L2 

success rate 97.5% 98.6% 87.5% 83.4% 87.1% 91.1% 

Δ1 ± σ (mm) 3.6±2.8 2.9±2.3 3.7±2.7 3.6±2.5 3.7±2.6 2.8±2.0 

Δ2 ± σ (mm) 3.1±2.3 2.9±2.0 3.1±2.5 3.7±2.4 3.6±2.4 2.8±1.7 

Δ3 ± σ (mm) 1.9±1.4 1.8±1.4 1.9±1.3 2.1±1.4 2.1±1.2 2.1±1.3 
L3 

success rate 85.4% 88.5% 81.9% 77.2% 77.2% 94.8% 

Δ1 ± σ (mm) 3.1±2.6 3.0±2.0 4.6±3.4 3.9±2.5 3.0±3.4 2.5±1.7 

Δ2 ± σ (mm) 3.4±2.3 2.9±1.6 4.1±2.8 3.9±2.1 3.0±3.3 2.3±1.2 

Δ3 ± σ (mm) 2.1±1.5 2.5±1.4 2.0±1.3 2.3±1.4 2.1±1.1 1.6±0.9 
L4 

success rate 89.3% 92.3% 78.3% 81.9% 87.2% 91.7% 

Δ1 ± σ (mm) 2.8±2.9 2.8±1.9 3.7±2.5 3.8±3.0 3.1±2.9 2.1±1.7 

Δ2 ± σ (mm) 3.0±2.7 2.6±2.0 3.4±2.4 3.7±2.8 2.9±2.7 2.0±1.1 

Δ3 ± σ (mm) 2.3±1.3 2.0±1.4 2.1±1.4 2.3±1.3 2.0±1.4 1.7±1.0 
L5 

success rate 83.2% 90.5% 79.3% 77.9% 89.6% 89.1% 

To perform successful segmentation based on the geometrical model, the 
dissimilarity measure that aligns the model to the vertebral body in the image has to 
be carefully selected (Eq. 4). Namely, the dissimilarity measure that was based only 
on the intensity difference proved to be highly sensitive to local intensity 
homogeneity within the vertebral body and caused shrinking of the model toward 
that homogeneity. On the other hand, when the edges of the vertebral body were 
weak, the dissimilarity measure based only on gradient information caused the 
expansion of the model to the surrounding soft tissues. The proposed dissimilarity 
measure is therefore generated as a measure that weights the shrinking and 
expanding of the model. 

Several studies also assessed the performance of vertebra segmentation 
quantitatively by measuring the distance from the ground truth. Klinder et al. [3] 
reported mean distance (± standard deviation) between the obtained surfaces and the  
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Fig. 3. The scatter diagram of the initial displacement of the vertebral body model versus the 
distance of the obtained model from the ground truth points after the first optimization step (Δ1, 
left), second optimization step (Δ2 , middle) and third optimization step (Δ3, right) for (a) all 
lumbar vertebrae and (b) separately for each lumbar vertebra (L1 to L5). 
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ground truth mesh grids of 1.12 ± 1.04 mm for whole vertebra segmentation in CT 
images, while for MR images, Hoad et al. [6] reported 1.12 ± 0.15 mm distance 
between the obtained and manually segmented vertebrae. By applying the proposed 
method for segmentation of vertebral bodies in MR images, the distance between the 
obtained geometrical models and manually identified anatomical points was 
2.1 ± 1.3 mm. The preliminary results from 30 vertebrae are therefore comparable to 
the results reported by other studies. It is also important to note that the ground truth 
points were determined manually by a single observer. The ground truth should be 
therefore considered as a valuable guideline that helped us to develop and evaluated  
 

 

Fig. 4. The segmentation results obtained with (a) 9 parameters, (b) 21 parameters and (c) 29 
parameters model of the vertebral body in an axial (left), a sagittal (middle) and a coronal (left) 
view of the L3 vertebra of the spine 6 (Table 1). 
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the performance of the proposed method. To obtain a more reliable ground truth, 
either a manual segmentation of each vertebra has to be performed or the number of 
manually determined points and observers has to be increased. 

Clinical evaluations of vertebral deformities, such as wedge, concave or crush 
deformity [8], obtained from 2D sagittal or coronal cross-sections do not give a full 
and accurate interpretation of the deformations in 3D. We propose a method that 
performs in 3D and the results indicate that 29 parameters of the 3D geometrical 
model of the vertebral body are sufficient for describing a variety of vertebral body 
shapes. However, to prove the clinical applicability of the proposed geometrical 
model, an extensive evaluation of its capability in accurately describing vertebral 
body deformations has to be performed.  

To conclude, we presented a method for segmentation of vertebral bodies in 3D 
MR images that is based on efficient modeling of the vertebral body shape. The 
results show that the proposed method can be used for segmentation and that the 
parameters of the model can describe the geometrical variety of vertebral body 
shapes. The method may be therefore used for initializing whole vertebra 
segmentation or quantitative assessment of vertebral body deformations.  
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Abstract. Clinical trials are more and more relying on medical imaging
technologies to quantify changes over time during longitudinal studies.
This calls for having an unsupervised batch registration process. How-
ever, even good registration algorithms fail, whether that is because of
a small capture range, local optima, or because the registration finds an
optimum that is not meaningful since the input data contains different
anatomical sites. We propose a new method to evaluate the success or
failure of batch registrations, so that failed or suspicious registrations
can be flagged and manually corrected. The evaluation is based on a
support vector machine that evaluates features representing the “good-
ness” of the registration result. We devise the features to be the distance
measured between optima produced by different similarity measures as
well as optima resulting from registering subsections of the volumes. The
features of 30 volume registrations have been labeled manually and used
for the learning phase. Based on a test on unseen 67 volume pairs of
varying anatomical sites, we are able to classify 90% of the registrations
correctly.

1 Introduction

Longitudinal studies based on modalities like CT (Computed Tomography) re-
veal disease progression or the efficacy of a certain treatment regimen over time.
All these are enabled by an offline registration process. However, even good reg-
istration algorithms fail for various reasons. The initial transformation parame-
ters for the registration might lie too far away from the optimal transformation
parameters, so that the correct solution is outside the capture range of the al-
gorithm. Another scenario is the presence of local optima in the cost function.
Instead of converging to the global optimum, the optimization algorithm might
get stuck in such a local optimum. Finally, the registration cannot return mean-
ingful results if the volumes contain different anatomical sites. Unfortunately, it
is common in real world applications that data is either incorrectly labeled, or
insufficiently labeled, or not labeled at all. For the offline batch registration, it is
desirable to use an algorithm that automatically detects suspicious registration
results, so that erroneous results can be amended by the user.
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Unfortunately, the intensity-based similarity measures do not readily provide
a mechanism to evaluate the result of a registration process. Depending on the
domain, the required accuracy varies. Organ movement or tumor growth between
consecutive volumes in a time series can be different. Intra-subject registrations
have different characteristics than inter-subject registrations. Because of these
factors, successful registration results might have a lower similarity value than
failed ones. Therefore, we have to rely on independent approaches to assess
registration success.

While there has been extensive research on evaluating registration results,
most of the work is performed for benchmarking different registration approaches,
for the comparison of optimization algorithms, or for the comparison of similar-
ity measures, by comparison to a gold standard [1,2,3]. This does not provide a
system to classify the registration outcome of a new pair of datasets. Another
branch of work studies the semi-automatic assessment of registration accuracy.
One example for this approach is the assessment of the accuracy of registrations
between CT images and MR images of the head [4]. The evaluation is performed
by segmenting the bone in both MR and CT image and visualizing the overlap.
But this method is only applicable to a certain anatomical site and requires
some user input. Kybic et al. pursue a more general approach using bootstrap
resampling and performing the optimization N times, in order to evaluate the
potential error [5,6,7]. This comes at the cost of increased computational com-
plexity by a factor between 10 and 100. The focus is to quantify how accurate
the registration result is, detecting complete failure is not addressed. Another
example of a statistical approach is presented by Wang et al. [8]. The authors
evaluate the accuracy of the registration by statistical confidence intervals based
on model fitting. For group based registration, Schestowitz et al. [9,10] provide
an accuracy assessment based on the quality of a statistical model of appearance.
Ceylan et al. [11] evaluate the consistency of a rigid registration by performing
deformable registrations of different subsections of the skull.

In the following, we concentrate on the problem of detecting suspicious regis-
tration results for CT data sets from longitudinal studies done for clinical trials.
Datasets consist of time points of various CT volumes from different anatomical
regions. For the evaluation of the clinical trial, the data sets have to be rigidly
registered across the different time points. Then the user is able to perform vari-
ous steps for the assessment of the outcome of the trial, whether it is segmenting
tumors, or performing measurements to assess and quantify changes in organ or
tumor. To prevent the registration time from adversely affecting the workflow,
the data is preregistered in an offline batch registration step. We want to assess
the “goodness” of the pair wise registration. For example, consider a dataset
with two time points. Time point 1 contains dataset A (head) and data set B
(abdomen+ pelvis), while time point 2 contains data set Y (thorax+abdomen)
and dataset Z (pelvis). Registering B to Y and Z results in a meaningful regis-
tration, but A cannot be registered to Z (see figure 1). Gross misregistrations
like these have to be flagged. A totally accurate registration, however, is neither
needed nor possible with rigid registration alone. The higher the accuracy of the
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assessment, the less registrations the user has to perform manually, which accel-
erates the workflow. But even if some misregistrations are not caught, or good
registration results are erroneously flagged, the user can correct these mistakes
interactively. Since the depicted anatomical sections are not consistent between
time points or different trials and we cannot expect accurate labeling of the data
content, a novel approach is required to detect gross misregistrations between
disparate anatomical sections.

Fig. 1. In this figure, we show examples for typical datasets encountered in our use
case. The time point on the left contains head data as well as a scan of pelvis and
abdomen, the time point on the right a scan of the thorax and the abdomen as well as
a scan of the pelvis.

2 Methods

The evaluation of registrations in this paper is based on the idea of consistency
in meaningful registration results. We expect that for a meaningful result, dif-
ferent similarity measures agree closely on the optimum registration parameters,
especially in the case of CT registration in which a wide variety of different simi-
larity measures have been employed successfully. However, for registrations that
are stuck in some local optimum or have registered disparate parts of the body,
the different similarity measures are expected to diverge to different optima that
are farther apart. Figure 2 illustrates this concept. Different similarity measures
have been used before, in order to achieve a more accurate registration [12], but
not specifically for the assessment of success.

A different aspect of the consistency property is spatial consistency of a mean-
ingful registration result (please refer to figure 3). If we consider different regions
of the moving volume, all these subdivisions need to have very similar transfor-
mation parameters when registered independently, whereas after failed registra-
tions, different subdivisions of the moving volume could end up with different
transformation parameters, in the case that they are registered independently
of each other. This approach is applicable even if there are not many read-
ily available similarity measures for the problem at hand. Overall, the idea is to
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Similarity measure

Value of the cost function at different transformation parameters

Similarity measure

Fig. 2. This figure illustrates the idea of consistency-based evaluation. For a good
registration result we expect the optima to be relatively close (left), for a bad regis-
tration outcome, we expect the optima further apart (right). The similarity measure is
dimensionless, since we are only interested in the optima.

identify consistency properties of a good registration result, and then perform
independent registrations and compare the resulting parameters with those of the
original registration, expecting a good match for good results and a bad match
for bad registration outcomes. A learning algorithm is then used to automatically
learn the optimal weights for each feature.

X

Y Z

W X

Y

Z

WY Z

W X

Fig. 3. This figure illustrates the idea of consistency-based evaluation for different
subsections. The fixed image is black, the subsections of the moving image are red.
The original registration (left) naturally returns identical transformation parameters
for all subsections. When registering every subsection independently, we expect little
difference to the result of the first registration if the registration is good (middle),
whereas the independent registrations might return more divergent results for a bad
registration (right). Notice how the spatial relationship between the subsection has not
been preserved in the rightmost example.

With these ideas in mind, the workflow of the algorithm is the following. First,
a pair of volume data is registered with the registration method of choice. Then
a series of independent registrations is performed with a number of different
similarity measures and different subsections of the volumes. These independent
registrations are initialized with the transformation parameters of the original
registration. This allows even similarity measures with smaller capture ranges to
converge to the same optimum for a good registration. The differences between
the independent registrations to the original registration result are then used as
features. In a training step, the features of registrations that have been labeled
by a human observer are fed into a learning algorithm. After this training phase,
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the same features are then evaluated in order to classify new registration results
as failed or successful.

2.1 Features for Registration Quality

For the features based on similarity measures, we use 5 different similarity
measures, the sum of squared distances, the sum of absolute distances, cross
correlation, correlation ratio, and normalized mutual information [13], as these
similarity measures are appropriate for CT-CT registration. For different modal-
ities, a different set of similarity measures has to be chosen. For each of these
similarity measures, a coarse registration is performed. The distances between
the resulting transformation parameters and the transformation parameters of
the original registration for each of the similarity measures are then taken as
features. Furthermore, the distance between the two results that are the farthest
away from each other is taken as another feature. (In order to not introduce
any bias and to remove the likelihood of getting stuck in a local optimum we
introduce some jitter to the initialized starting position for the registration and
use a different optimization algorithm as well.)

For the subsection-based evaluation, we use the normalized mutual informa-
tion as similarity measure and divide the moving volume into 8 corners (octants),
or divide the moving volume into 4 sections, essentially dividing the volume into
stacks of slices. The features that are computed in this case are the minimum
distance between the optima of the given registration result and the new regis-
tration results for each subsection, the maximum distance, the average distance
and the standard deviation of the difference. For consistent registration results,
these values can be expected to be small.

Since we are interested in catching gross misregistration, the optimization
in the evaluation phase (both for different similarity measures as well as for
different subsections) do not need to be as accurate as in the case of the original
registration. We use several strategies in order to speed up the computation. The
optimization does not need to use the finest level of the multi-resolution pyramid,
since the finest level does not lead to larger deviations of the optimum anymore
according to our experiments. The threshold that stops the optimization can be
chosen larger for the computation of the feature as well.

2.2 Learning Phase

In order to train the learning algorithm, a human observer classifies the
performed registrations as successful or failed. We refrained from using sev-
eral observers, since the inter-observer difference is small in the case of gross
misregistration as in our application. The features of the successful and failed
registrations are then used as input for a support vector machine (SVM) [14].
Before SVM training, the features are fed into the SVM and first normalized by
conversion into Z-scores in order to obtain fewer support vectors during training.
A Gaussian radial basis function is used as the kernel of our SVM, which deter-
mines the nonlinear mapping from the n-dimensional input feature space into
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a higher-dimensional feature space. The SVM is designed to find a max-margin
linear classifier separating the two classes (failed registrations versus successful
registrations) in the higher-dimensional feature space. The separating hyper-
plane in the higher-dimensional space is parameterized via support vectors. The
SVM classification label for an input feature x can be obtained by considering
the sign of

f(x) =
Ns∑
i=1

αiγiK(si, x) + b (1)

where si represents the support vectors selected during training and γi the cor-
responding labels (+1/-1), K(si, x) denotes the kernel and αi and b denote
the loadings and threshold determined during training. The optimal kernel pa-
rameters and the SVM slackness parameter are determined via leave-one-out
cross-validation.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False positives rate

T
ru

e 
po

si
tiv

es
 r

at
e

AUC=0.9299

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False positives rate

T
ru

e 
po

si
tiv

es
 r

at
e

AUC=0.9359

Fig. 4. This figure plots the true positive rate against the false positive rate (equal to
1-false negative rate) for the 5-sim feature set (left) and the corner feature set (right)

3 Experiments and Results

The described method was evaluated for the registration of multiple CT data
sets. The test data sets used for the experiments are CT scans showing the
head, thorax, abdomen and pelvis, and combinations of these anatomical sec-
tions. The volumes overlap completely, partially or not at all. The CT data has
different modes of inspiration and different time spans between scans. Since the
datasets have a consistent orientation, we perform a rigid registration with the
translational component as the free parameters. The optimization algorithm is a
standard best-neighbor procedure with normalized mutual information as sim-
ilarity measure (We still use mutual information for the feature computation,
since a deviation by the same measure is a strong indicator for a wrong regis-
tration result). The initial parameters of the registration are chosen so that the
centers of gravity of both volumes correspond. The optimization starts at the
coarsest level of a multiresolution pyramid and proceeds to the next-finer level,
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until the improvement in the cost falls below a predetermined threshold. Since
we use best-neighbor optimization in the original registration, we use simplex op-
timization for the evaluation, but we could have used for example a Powell-Brent
scheme as well.

From 23 data sets, containing each between 2 and 6 time points with up to
6 CT volumes, we have selected 97 volume pairs and computed their features.
We have randomly selected 15 each of the failed and successful registrations
and used these as training dataset. The remaining unseen 67 volume pairs have
been used for the evaluation of the classifier. The learning has been performed
for the features from different similarity measures (5-sim), the features from
the subdivisions into corner volumes (corner), the features from the slice-based
subdivisions (slices), as well as the combined features from both subdivision
methods (combined). The results in the table 1 display the classification results.
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Fig. 5. This figure plots the true positive rate against the false positive rate for the
slices feature set (left) and the combined subdivision feature set (right)

Contrary to our expectations, using the 5 different similarity measures has
a recognition rate of only 80%, whereas using a subdivision-based approach
dividing the moving volume into 8 corners reaches 90%. Adding the feature of
the second subdivision approach (slices) improves the result only insignificantly,
especially considering the additional computational cost.

Table 1. This table shows the total classification error, the false positive (FP) error,
the false negative (FN) error, and the area under the ROC curve (AUC). Note that
the AUC ∈ [0, 1] is invariant to the classifier trade-off between FP and FN errors.

5-sim corner slices combined
errors 18% 10% 13% 9%
false positives 16% 7% 9% 6%
false negatives 2% 3% 4% 3%
AUC 0.9299 0.9359 8.8864 0.9185
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4 Discussion and Future Work

In this work, we have presented a novel method to detect misregistration or sus-
picious registrations with a 90% success rate for our best feature set. This allows
a smoother workflow for offline batch registration and is potentially applicable
to many other areas where the misregistration of disparate body parts needs to
be detected. The algorithm is straightforward to implement, and we can reduce
the cost of the additional registration steps for the evaluation, since the accuracy
is less critical for the detection step. The time for the classification is negligible,
the learning phase is performed offline and in this case the feature generation
(registration) is the expensive step.

With our current set of similarity measures, only CT-CT registration can
be evaluated, in future work we would like to explore different sets of similarity
measures for different modalities. We expect the subsection-based approach, used
with mutual information as in this paper, to work with different modalities,
though we have not performed experiments with these modalities so far. Since
we have used various anatomical sections (apart from legs), our evaluation is
not tuned to a specific region. A more thorough, clinical evaluation with a larger
number of datasets as well as with different registration modalities, like MR-
MR registration or CT-MR registration is planned for future work as well as
exploring more degrees of freedom in the registration algorithm. With deformable
registration it might even be possible to distinguish between well-registered and
badly-registered regions, and to highlight these.

Another avenue of research is the parallel computation of the different sim-
ilarity measures. While this is done by Kubias et al. [12] in order to compute
a more accurate registration result, the same parallel computation of the sim-
ilarity measures could be used to detect a divergence between the similarity
measures while the computation is still in progress, thus avoiding further costly
registration steps.
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Abstract. Automatic parcellation of cortical surfaces into sulci or gyri based 
regions is of great importance in studying the structure and function of the 
human brain. This paper presents a novel method for automatic parcellation of 
cortical surfaces into gyri based regions. The method is composed of two major 
steps: data-driven gyral patch segmentation and model-driven gyral patch 
labeling. The gyral patch segmentation is achieved by several steps, including 
sulcal region segmentation, sulcal basin parcellation, gyral crest segments 
extraction and gyral patch segmentation. The gyral patch labeling is formulated 
as an energy minimization problem, in which a cortical probabilistic atlas and 
the curvature information on surfaces are used to define the energy function. 
The energy function is efficiently solved by the graph cuts method. A unique 
feature of the proposed method is that it does not require high dimensional 
spatial normalization on images or surfaces. The method has been successfully 
applied to cortical surfaces of 15 young healthy brain MR images. Quantitative 
and qualitative evaluation results demonstrate the validity of the proposed 
method.  

Keywords: gyral parcellation, gyral basin, probabilistic atlas, graph cuts. 

1   Introduction 

Automatic parcellation of convoluted cortical surfaces into sulci or gyri based regions 
is of great importance in studying the structure and function of the human brain. 
Considerable work has been done for automatic sulcal parcellation of cortical 
surfaces, since sulci are bounded by gyral crests and can be inferred by using 
geometric features, such as curvature and sulcal depth. However, gyral parcellation is 
a much more complicated task due to the fact that most of the gyri are connected 
together on cortical surfaces and there is no clear boundary between connected gyri 
[1]. For illustration, Fig 1(b) shows the distinguished gyri and sulci of a cortical 
surface where red colors indicate sulci and green colors indicate gyri. A few methods 
have been proposed for cortical gyral parcellation, including atlas based warping 
methods, where correspondences are established between an expert manually labeled 
brain atlas and an individual brain image using high dimensional spatial normalization 
method [2], sulci assisted Voronoi diagram method on cortical surfaces [1], and 
Bayesian probabilistic labeling method on the spherical coordinate of cortical surfaces 
[3, 4].  
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Fig. 1. An example of the proposed method for gyral parcellation on a cortical surface. (a) A 
cortical surface with the maximum principal curvature map. (b) The distinguished sulcal (red) 
and gyral (green) regions. (c) The sulcal region segmentation result. (d) The sulcal basin 
segmentation result. (e) The extracted gyral crest segments. (f) The dilated gyral crest 
segments. (g) The gyral patch segmentation result. (h) The final gyral patch labeling result. (i) 
The “ground truth” manually labeled by UCLA LONI experts. 

In the paper, a novel method is proposed for parcellation of cortical surfaces into 
gyral basins [5], which are cortical regions bounded by adjacent sulcal fundi on 
cortical surfaces. To make the paper more self-contained and easy to understand, 
before introducing the method, some concepts which will be used in the paper are 
defined as follows. Sulcal fundi are the curves along the bottoms of sulci on cortical 
surfaces. Sulcal regions are the buried regions surrounding sulcal space on cortical 
surfaces. Sulcal basin are the regions bounded by gyral crest lines on cortical surfaces 
[6]. Gyral crest lines are the curves along the crests of gyri on cortical surfaces. Gyral 
patches are defined as cortical regions bounded by adjacent sulcal fundi and 
interrupted at junctions of gyral basins. In general, given a reconstructed cortical 
surface (herein, the white matter and gray matter interface is adopted), the gyral 
parcellation method is composed of two major steps: data-driven gyral patch 
segmentation and model-driven gyral patch labeling. The gyral patch segmentation is 
achieved by several procedures, including sulcal region segmentation (Fig. 1(c)), 
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sulcal basin parcellation (Fig. 1(d)), gyral crest segments extraction (Fig. 1(e) and 
1(f)) and gyral patch segmentation (Fig. 1(g)), which will be detailed in Section 2. 
The gyral patch labeling procedure is formulated as an energy minimization problem, 
in which the spatial prior information from a cortical probabilistic atlas and the 
curvature information from individual cortical surfaces are used to define the energy 
function. The energy function is efficiently minimized by the graph cuts method [5], 
which can guarantee to achieve a strong local minimum for certain energy functions.    

Our rationale behind this method is that it combines advantages of both data-driven 
and model-driven methods. The data-driven method is adopted to effectively partition 
cortical surfaces into gyral patches. Then the cortical gyral parcellation problem is 
converted to a gyral patch labeling problem: assigning a gyral basin label for each 
gyral patch on cortical surfaces. Since a gyral patch can capture more geometric and 
prior information than a surface point, patch based labeling of cortical surfaces could 
potentially be more reliable than point based labeling of cortical surfaces. The method 
is applied to 15 cortical surfaces of young normal subjects and reasonable results have 
been achieved.     

2   Methods 

2.1   Gyral Patch Segmentation 

Given a reconstructed cortical surface, the proposed gyral parcellation method is 
composed of two major steps: data-driven gyral patch segmentation and model-driven 
gyral patch labeling. The gyral patch segmentation is accomplished as follows. First, 
the cortical surface is segmented into a set of sulcal regions using the hidden Markov 
random field and Expectation Maximization (HMRF-EM) framework [6] and further 
parcellated into a set of sulcal basins using the principal direction flow field tracking 
method [6]. Fig 1(c) and 1(d) show the sulcal region and sulcal basin segmentation 
results, respectively. Second, the boundaries between parcellated sulcal basins are 
extracted and all of the boundary vertices linking the same two sulcal basins will be 
grouped as a gyral crest segment. A morphological dilation, which is constrained  
in the segmented gyral regions, is further performed on these gyral crest segments. 
Fig 1(e) and 1(f) show the extracted and dilated gyral crest segments on the cortical 
surface, respectively. Finally, a principal direction flow field tracking towards gyral 
crests, based on the flow field inverted from the one used for sulcal parcellation, is 
performed to partition the cortical surface as gyral patches. In the standard flow field 
tracking method, every vertex follows the flow field until stopping at a vertex where 
two successive flow directions pointing to each other. Herein, when performing the 
flow field tracking, if a vertex on a flow trajectory is in a dilated gyral crest segment, 
the flow field tracking procedure will be stopped and all the vertices flowing into the 
same dilated gyral crest segment will be grouped as a gyral patch. This scheme makes 
the flow field tracking algorithm more robust and less time consuming than the 
method in [6]. More details of the gyral patch segmentation method is referred to [7]. 
Fig 1(g) shows the gyral patch segmentation results on the cortical surface. 



 Automatic Cortical Gyral Parcellation Using Probabilistic Atlas and Graph Cuts 441 

 

2.2   Formulation as an Energy Minimization Problem  

Since a gyral patch is bounded by adjacent sulcal fundi and interrupted at junctions of 
gyral basins, a gyral patch typically belongs to only one gyral basin on the cortical 
surface and each gyral basin is composed of one or multiple gyral patches. Extensive 
evaluations by experts’ visual inspection already confirmed this point (only one 
example is shown in Fig. 1). Therefore, the cortical gyral parcellation can be 
considered as a gyral patch labeling problem: assign a label 

pl  corresponding to a 

gyral basin to each gyral patch p  and meanwhile take into account the contextual 

information of adjacent gyral patches. This labeling problem can be represented as an 
energy function, including a data term 

dE  and a smoothness term 
sE : 

sd EEE λ+=                                                            (1) 

The data term represents the sum of a set of data costs )( pp lD  per patch:  

∑=
p

ppd lDE )(                                                 (2) 

where )( pp lD  indicates the cost of labeling gyral patch p  as gyral basin pl . In 

principle, when labeling a gyral patch as the gyral basin to which it belongs, the cost 
)( pp lD  should be small. The smoothness term, which represents the sum of the cost of 

labeling a pair of gyral patches qp,  as gyral basins 
qp ll , , is used to impose spatial 

smoothness. The smoothness term is defined as: 

∑
∈

=
Nqp

qppqs llVE
},{

),(                                                (3) 

where N  represents the set of neighboring gyral patch pairs. In principle, when labeling 
two adjacent gyral patches that belong to the same gyral basin as two different gyral 
basins, ),( qppq llV  should be a large value. Otherwise, when labeling two adjacent gyral 

patches which inherently belong to two different basins as two different gyral basins, 
),( qppq llV  should be a small value. The parameter λ  determines the relative 

contribution between the first data term and the second smoothness term. When λ  is set 
as 0, the data term determines the energy function alone. The optimal labeling of gyral 
patches is the one which minimizes the above energy function.  

2.2.1   Data Term 
Because the local geometries of different gyri might be similar, using the information 
from an individual’s cortical surface alone is quite hard to define the data term. 
Therefore, in our method, the data term is mainly determined by the prior anatomic 
information of gyri from a cortical probabilistic atlas, which is a powerful tool for 
segmentation [8]. The probabilistic atlas is constructed from experts manually labeled 
brain MR images using the method in [9]. Each brain MR image is labeled as a set of 
gyral structures, and then the labeled images are normalized to the same subject space 
via affine transform to construct the cortical probabilistic atlas. Herein, the maximum 
likelihood atlas [9], in which each voxel is labeled as the gyral structure with the 
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maximum probability, is adopted to define the data term. Using probabilistic atlas 
instead of the maximum likelihood atlas may further improve the performance of the 
data term. Note that the subject cortical surface should be transformed into the atlas 
space. Currently, the affine transformation for normalization of subject images is 
adopted, and it’s found that relatively good results have been achieved. Considering 
the large inter-subject variations, nonlinear registration might further improve the 
results, and it will be investigated in the future. However, the gyral patches are 
segmented on cortical surfaces, while the cortical probabilistic atlas is a volumetric 
atlas. In order to make use of the atlas, we partition the volumetric image that 
corresponds to the cortical surface into a set of regions based on the gyral patch 
segmentation results. As a result, each volumetric region corresponding to a gyral 
patch is a set of voxels closest to the gyral patch. Fig. 2 shows an example of image 
partition based on the segmented gyral patches on a cortical surface. Then, we 
construct a histogram for each volumetric region, corresponding to a gyral patch in 
the partitioned volumetric image, to represent the likelihood of a gyral patch 
belonging to the gyral structures in the atlas. Assuming that we have n  gyral patches 
on a cortical surface, the volumetric image will be divided into n  corresponding 
regions, and each region p  has a histogram 

ph . Then, )(khp
, which indicates  

the likelihood of gyral patch p  belonging to gyral structure k , is calculated as 

)())()(()( pRkRpRkhp ∩= , where )( pR  is the partitioned region p and )(kR  is the 

region of gyral structure k  in the maximum likelihood atlas, and ∩  takes the 
intersection of the two regions. Then, each 

ph  is normalized such that 1)(0 ≤≤ khp
. 

The larger )(khp  is, the more likely the gyral patch p  belongs to gyral structure k . 

Therefore, the data term is defined as: 

∑∑∑ −==
p k

p
p

ppd khlDE ))(ln()(                                        (4) 

 

Fig. 2. An example of the volumetric image partition based on gyral patches. (a) The gyral 
patch segmentation results projected into an image slice. The color curves represent gyral 
patches. (b) The image partition based on gyral patches. Each region is represented by a color.   
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Fig. 3. An example of smoothness term that helps improve the gyral parcellation result. Please 
see the highlighted areas by red arrows. (a) The maximum principal curvature. (b) The gyral 
parcellation results with 0=λ . (c) The gyral parcellation results with 3.0=λ . 

2.2.2   Smoothness Term 
To define the smoothness term, we utilize the maximum principal curvatures on 
cortical surfaces. The maximum principal curvature at each vertex is the principal 
curvature with largest magnitude in two principal curvatures at the vertex. The gyral 
crests have large positive maximum principal curvatures, while the sulcal bottoms 
have large negative maximum principal curvatures [6] as shown in Fig 1(a). Our basic 
idea is: if two neighboring gyral patches belong to two different gyral basins, they 
usually meet at sulcal bottoms. Therefore, the average maximum principal curvatures 
on the boundaries between the two neighboring gyral patches is a large negative 
value, and the cost of labeling two gyral patches as two different gyri ),( qppq llV  should 

be a small value. Otherwise, if two neighboring gyral patches belong to the same 
gyral basin, they will not meet along the sulcal bottom but across the gyral crest, thus 
the average maximum principal curvatures on the boundaries between the two 
neighboring gyral patches is close to or larger than zero, and the cost of labeling two 
gyral patches as two different gyri ),( qppq llV  should be a large value. Therefore, the 

smoothness term is defined as: 

)(1)(,(),( qpqppq llqpwllV −−= δ                                       (5) 

)12/))()((exp(),(
},{},{

∑∑
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where ),( qpw  represents the weight between two neighboring gyral patches. δ  is 

defined as: if 0=Δl , 1)( =Δlδ ; otherwise, 0)( =Δlδ . ε  represents the set of all 

neighboring vertices between two neighboring gyral patches. )( ipc  is the maximum 

principal curvature at vertex i  in gyral patch p . The smoothness term helps improve 

the gyral labeling results. Fig. 3 shows such an example of comparison between with 
( 3.0=λ ) and without smoothness term ( 0=λ ).   

2.3   Graph Cuts for Energy Minimization  

Finding a global minimum of the above energy function requires an exhaustive search 
over the discrete space of all possible labelings. However, several iterative methods 
can be used to find a strong local minimum of such an energy function, such as the 
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message passing algorithm [10] and graph cuts [5, 11]. Herein, the graph cuts method 
is adopted to solve the energy minimization problem. In the graph cuts method, the 
cortical surface is represented as an undirected weighed graph ),( EVG = , where V  

is the set of nodes, including all gyral patches and the terminals represented by the set 
of gyral structures in the maximum likelihood atlas. 

TN EEE ∪=  is the collection of 

edges, and NE  are the edges formed by neighboring gyral patches, called n-links, and 

TE  are the edges formed by gyral patches to terminals, called t-links. In above 

constructed graph, )(⋅pD  describes the edge weight of t-links, and )(, ⋅qpV  describe the 

edge weight of n-links. A cut EC∈  is a set of edges by removing which the linked 
nodes are divided as disjoint sets, in which each node connects to only one terminals 
corresponding to its gyral basin label. The cost of a cut is the sum of weights on the 
edge set. Although searching the global optimum of multiple label energy function is 
NP-hard, graph cuts can guarantee to achieve a strong local minimum efficiently for 
certain energy functions. More details of graph cuts are referred to [5, 11].  

3   Results 

To validate the proposed cortical gyral parcellation method, we randomly select 15 
subjects which have been manually labeled by UCLA LONI experts from the LONI 
LPBA atlas [9], which contains 40 labeled subjects. All of the topologically correct 
and geometrically accurate cortical surfaces used in this section are reconstructed via 
the method in [12]. For each testing subject, we use the other 39 experts manually 
labeled subjects to construct a cortical probabilistic atlas, thus leaving out the testing 
subject. Each probabilistic atlas is reconstructed from the method in [9]. Since 
manually labeling is performed in volumetric images, the “ground truth” of the gyral 
parcellation results on cortical surfaces is obtained by assigning the label of the 
closest voxel in the constructed volumetric maximum likelihood atlas to each vertex. 
It is noted that the “ground truth” might not be as accurate as directly performing 
labeling on cortical surfaces. We have tried several different settings for parameter λ , 
and we found that 3.0=λ  has achieved relatively good results. Therefore, in all 
experiments, the parameter λ  is set as 0.3. Fig 1(h) and 1(i) show a comparison 
between an automatically parcellated cortical surface and the “ground truth” on 
cortical surfaces. Fig. 4 shows the gyral basin segmentation results by our method on 
the 15 cortical surfaces, where all the gyral basins with identical names are labeled by 
the same colors. As we can see, almost all the gyral basins have been reasonably 
parcellated. To quantitatively evaluate the gyral basin segmentation results, we 
applied the Dice coefficient between the automatically extracted gyral basins and the 
“ground truth” on cortical surfaces to validate the proposed method. Several major 
gyri, including precentral gyri, postcentral gyri, superior frontal gyri, middle frontal 
gyri, inferior frontal gyri, superior parietal gyri, angular gyri, superior temporal gyri, 
middle temporal gyri, inferior temporal gyri on both left and right hemispheres are 
used to validate the method. Fig. 5 shows the average Dice coefficients of several 
major gyral basins on both hemispheres of the 15 subjects, in comparison with the 
“ground truth” on cortical surfaces. The standard deviation is also shown as error-bar 
for each gyrus. For example, the average Dice coefficient of left and right precentral 
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Fig. 4. The gyral basin segmentation results by our method on the 15 cortical surfaces. All the 
gyral basins with identical names are labeled by the same colors. As we can see, almost all the 
gyral basins have been visually reasonably parcellated. 
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Fig. 5. The average Dice coefficients between the automatically extracted major gyral basins 
and the “ground truth” by LONI experts on 15 cortical surfaces. The standard deviation is also 
shown as error-bar for each gyrus. 

gyral basins are 0.81 and 0.79 respectively. And the average Dice coefficients of left 
and right postcentral gyral basins are 0.78 and 0.80 respectively. These results 
indicate the relatively accurate performance of our gyral basin segmentation method.   

4   Conclusion 

The paper presents a novel hybrid method for cortical gyral parcellation. In the method, 
the cortical gyral parcellation is treated as two procedures: data-driven gyral patch 
segmentation and model-driven gyral patch labeling. The gyral patch labeling is 
formulated as energy minimization problem. The energy function is defined based on the 
prior anatomic information from a cortical probabilistic atlas and curvature information. 
The graph cuts method is adopted to efficiently find a strong local minimum of the 
energy function. The method has been applied to 15 normal cortical surfaces and 
validated using the “ground truth” labeled by LONI experts. Our future work includes 
further improvement and validation of the method using more cortical surfaces. 
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Abstract. DTI fiber tractography inspires unprecedented understanding of brain 
neural connectivity by allowing in vivo probing of the brain white-matter  
microstructures. However, tractography algorithms often output hundreds of 
thousands of fibers and thus render the fiber analysis a challenging task. By  
partitioning a huge number of fibers into dozens of bundles, fiber clustering al-
gorithms make the task of analyzing fiber pathways relatively much easier. 
However, most contemporary fiber clustering methods rely on fiber geometrical 
information only, ignoring the more important anatomical aspects of fibers. We 
propose in this paper a hierarchical atlas-based fiber clustering method which 
utilizes multi-scale fiber neuroanatomical features to guide the clustering. In 
particular, for each level of the hierarchical clustering, specific scaled ROIs at 
the atlas are first diffused along the fiber directions, with the spatial confidence 
of diffused ROIs gradually decreasing from 1 to 0. For each fiber, a fuzzy asso-
ciativity vector is defined to keep track of the maximal spatial confidences that 
the fiber can have over all diffused ROIs, thus giving the anatomical signature 
of the fiber. Based on the associativity vectors and the ROI covariance matrix, 
the Mahalanobis distance between two fibers is then calculated for fiber cluster-
ing using spectral graph theory. The same procedure is iterated over coarse-to-
fine ROI scales, leading to a hierarchical clustering of the fibers. Experimental 
results indicate that reasonable fiber clustering results can be achieved by the 
proposed method. 

1   Introduction 

Diffusion Tensor Imaging (DTI) is well-established for characterizing neural path-
ways in the brain. It allows microstructural delineation of tissue water diffusion  
pattern, where water molecules diffuse with more freedom along neurons but not in 
directions perpendicular to them. Each diffusion tensor captures a part of this diffu-
sion pattern and the tractography algorithms allow a streamline tracing of this pattern 
along the tensor eigenvectors, resulting in a significant number of fibers. These fibers 
carry with them abundant brain water diffusivity information and thus provide a 
unique perspective of neural connectivity as well as the evidence of linkage between 
brain regions. This has enriched researchers’ understanding of the internal working 
mechanism of the brain, both structurally and functionally. 
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A tractography algorithm can usually yield a very huge number of fibers, typically 
in the order of 103-106. Such massive amount of fibers often renders subsequent anal-
ysis difficult, and makes information provided by the fibers not immediately deci-
pherable. One approach to remedy this is to parcellate tractography results so that the 
fibers are grouped into the related bundles. For example, fiber clustering can partition 
the whole tractography results into dozens of bundles, each of which contains fibers 
behaving similarly in structure as well as in function. 

In general, regardless of the clustering method employed, fiber clustering needs the 
definition of a pairwise similarity/distance measure between two fibers. And most 
fiber clustering methods up to date rely on fiber geometric features only. In [1] for 
example, after point-to-point correspondence is detected along two fibers, the ratio 
measuring the length of the corresponding segment against the overall fiber length is 
calculated as the similarity measure. The correspondence ratio is highest if the two 
fibers are identical, and approaches zero if the pairwise correspondence is minimal. In 
[2], a fiber is regarded as a discrete point set in the Euclidean space, and can be de-
scribed by the mean of the point set as well as the covariance. Kernel methods are 
then used to evaluate the fiber similarity based on their individual feature descriptors. 
In [3][4][5], the generic Hausdorff distance and its variations are applied. The Haus-
dorff distance in general computes the upper bound of the minimal point-to-point dis-
tance between two fibers. Similarity in [6] is estimated by counting the number of 
voxels through which both fibers are passing, while in [7] the contributions of two 
fibers are weighted and integrated along the shared pathway. Though no explicit 
pairwise similarity of fibers is defined, the methods in [8][9][10] adopt a similar strat-
egy when determining the relationship between the fiber under consideration and oth-
er fibers (or bundles). 

All methods above have in common the shortcoming of not taking into account the 
neuroanatomical information of fibers, which can be provided by the atlas containing 
specifications of manual labels. In [11][12][13] for example, information from the 
atlas is used to help identify detected fiber bundles, though the similarity between 
fibers is still defined from the geometric perspective, by viewing each fiber as a 3D 
trajectory only. Recently, some researchers begin introducing the more important ana-
tomical features into fiber clustering. In [14], fibers connecting identical anatomical 
regions are grouped into a common bundle to reduce the workload of subsequent 
geometric feature based clustering. However, even though the ROIs are manually 
delineated by experts, the consistency of the parcellation remains in question due to 
inevitable bias in labeling. Furthermore, the vector pertaining to the associativity of 
the fiber with respect to all ROIs is sparse in that a single fiber usually relates to a 
very limited number of anatomical regions. Great challenges are thus brought into the 
estimation of pairwise fiber distances based on the anatomical features of fibers. 

To solve these problems, we propose a hierarchical atlas-based fiber clustering me-
thod which utilizes multi-scale neuroanatomical fiber associativity features. In each 
level of the hierarchical clustering, a specific scaled ROI from the atlas is diffused 
along the fiber directions. A fuzzy associativity vector of each fiber is then acquired 
from the set of diffused ROIs. The Mahalanobis distance between fibers is calculated 
from their associativity vectors and further employed by spectral clustering. Per-
formed iteratively in a hierarchy of scales, this procedure will eventually lead to a 
pyramidal clustering of the fibers.  
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2 Method 

The proposed top-down hierarchical fiber clustering scheme relies on multi-scale neu-
roanatomical fiber features, which will be detailed in Section 2.1. We will define in 
Section 2.2 the fiber similarity measure in the Mahalanobis distance, and introduce in 
Section 2.3 the hierarchy of the clustering algorithm. 

2.1 Neuroanatomical Features of Fibers 

Suppose that there are  ROIs, and the i-th entry ℓ  in the associativity vector ℓ , ℓ , , ℓ  of fiber  indicates the spatial relationship of the fiber with the 
i-th ROI. Vector element ℓ  can be set to 1 if any segment of the fiber lies within the 
i-th ROI, and set to 0 otherwise. However, the binary formulation as such will result 
in sparse associativity vectors, pose challenges in estimating fiber distances, and in-
crease the tendency of clustering algorithms to end in local minima.  

Here, we propose a fuzzy associativity vector, which takes into account the diffu-
sivity information provided by DTI. Recalling that a typical tractography algorithm 
traces fibers along the tensor eigenvectors corresponding to the largest eigenvalues, 
we mimic this process by diffusing each ROI along the fiber directions. Assume that a 
specific manually delineated ROI covers the domain  with a constant mass concen-
tration . The ROI would then automatically diffuse to the outside of  due 
to the imbalance of concentration. We use a generic transport equation to characterize 
the diffusion of the ROI from  to the image domain Ω: ∇ , , , ∇ , , , Ω . (1)

In general, the temporal changing rate of the concentration ∇  is coupled with the 
concentration field  and its spatial changing rate ∇ . The flux term  in Eq. 1 
regulates the diffusion velocity by projecting the level-set norms of  onto the space 
formed by the local tensor : , , , ∇ ∇∇ ∇∇  (2)

According to Eq. 2, the ROI diffuses rapidly where the norm of its surface is parallel 
to the eigenvector corresponding to the largest eigenvalue of the local tensor, i.e., 
coinciding with the fiber pathways. On the contrary, the diffusion would hardly hap-
pen if the surface norm of the ROI is nearly perpendicular to the fiber pathways. 
Meanwhile, the source term  in Eq. 1 enforces the boundary condition | , 
preserving the surface ( ) of the manually delineated part ( ) of the ROI. Further, as 
in tractography, only voxels whose FA values are sufficiently high (e.g. ≥0.2) are 
considered as possible fiber pathways. We have therefore introduced in Eq. 1 a win-
dow function  to exclude unrealistic ROI diffusion into low FA areas:  1  (3)

The parameter , which controls the transition steepness of , is set to 100 in our 
case. The center-of-transition cut-off FA value  is set lower than the minimal FA 
threshold in tractography (e.g. 0.15). The profile of  is dependent on the FA value. 
Fig. 1(b) gives a plot of  with 100 and 0.15 and another with 40. 
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An illustration of the ROI diffusion is given in Fig. 1(a), where the underlying ten-
sor principal directions are displayed in green arrows. The zero level-set of the initial 

 (the dark blue circle) corresponds to the surface of the manually delineated ROI, 
and is designated as the start time . The anisotropic diffusion is guided by the ten-
sors. The boundary of the ROI surface gradually enlarges and finally deforms to the 
brown contour at the end time . Also, for each voxel  in the diffused ROI, we de-
fine its spatial confidence as 1 , based on the time  when the voxel  is tra-
versed by the zero level-set of . In Fig. 1(a) for example, voxels inside the dark-blue 
circle ( ) have a spatial confidence of 1, while the confidence gradually decreases to 
0 at the brown contour ( ). 

 

Fig. 1. An example of ROI diffusion is shown in (a), where the ROI surface gradually deforms 
from the dark-blue circle to the brown contour, guided by the underlying tensor principal direc-
tions indicated by green arrows. Panel (b) shows typical profiles of the window function  in 
Eq. 3. Panel (c) provides the importance distribution along the arc-length of the fiber, according 
to Eq. 4. 

Given any fiber , its associativity to the ROI under consideration is given by the 
maximal spatial confidence of the diffused ROI along the fiber. A fuzzy associativity 
vector  can thus be constructed with respect to all  ROIs, and is much less sparse 
compared to the binary formulation. 

The end segments of a fiber are more important than the middle segments in fiber 
clustering [7]. By normalizing the fiber arc-length  to 0,1 , we can specify an im-
portance weighting, in the range of , 1 , to different points on the fiber: 1 1 cos 2  cos sin  

(4)

A typical profile of  is shown in Fig. 1(c), where the minimal importance  
is set to 0.5. It is worth noting that other forms of importance weighting (e.g., in [7]) 
are applicable here, since these weighting functions behave similarly by gaining high-
er importance for the end segments and lower in the middle.  

 

(a) 

(b) 

(c) 
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With definition given in Eq. 4, the importance value of each ROI with respect to a 
fiber  can be acquired at the location where the corresponding associativity of the 
fiber  is picked. By considering all M ROIs, an importance vector  can be pro-
duced for each fiber . Therefore, each fiber is characterized by two vectors – (i) the 
associativity vector carrying neuroanatomical features, and (ii) the importance vector 
weighting the respective neuroanatomical information. 

2.2   The Mahalanobis Distance between Fibers 

Good fiber clustering result is dependent on a good definition of fiber pairwise dis-
tance (or similarity). Pairwise distance between fibers can be computed based on the 
anatomical feature descriptors. A simple way is to view the associativity vectors as 
samples in the Euclidean space, where the norm and the inner-product are naturally 
defined. A better approach, however, is by taking into account the correlation of the 
ROIs in computing the fiber distance, since ROIs vary significantly in shape and size. 
By regarding the associativity vector of each fiber as an observation from a multiva-
riate space [15], we can define a covariance matrix which relates the ROIs. Suppose 

 is the associativity vector for the fiber  (1 ) and  is the transpose op-
erator, the covariance matrix is: 1 1

 (5)

 

Fig. 2. Example covariance matrices on 90 ROIs are shown, using (a) binary and (b) fuzzy 
formulation of the associativity measures, respectively. Panel (c) is a close-up of the sub-
cortical region in (b), where we can observe higher inside-hemisphere correlation than be-
tween-hemisphere. And (d) highlights the significant correlation between sub-cortical areas and 
other brain regions. 

Fig. 2(a-b) give an example of the covariance matrices formed using 90 anatomical 
ROIs, based on the binary and the fuzzy associativity definitions, respectively. It is 
obvious that, with fuzzy associativity, the covariance matrix is denser, greatly reduc-
ing the sparseness of the associativity vectors. Zooming into the sub-cortical areas in 
Fig. 2(b), we could observe significant correlation within each hemisphere (Fig. 2(c)), 
as well as between sub-cortex and other anatomical regions (Fig. 2(d)), as suggested 
by [16]. 

Based on the covariance matrix of all ROIs defined in Eq. 5, the Mahalanobis dis-
tance between the fiber  and the fiber  can be calculated as follows: 

 

0 

1.0 L-Caudate 
R-Caudate 
L-Putamen 
R-Putamen 
L-Pallidum 
R-Pallidum 
L-Thalamus 
R-Thalamus

(a) (b) (c) (d) 
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, diag diag  (6)

Then, a corresponding similarity measure, which is to some extent more commonly 
used in clustering, can be define as , exp , 2⁄ , where  is a 
predefined value. 

2.3   Multi-scale ROI and Hierarchical Clustering Framework 

We have adopted a top-down hierarchical mechanism for more principled fiber clus-
tering. In particular, an atlas with three sets of ROIs is registered and aligned to the 
image space of the DTI dataset. The three multi-scale sets of ROIs consist of 2 ROIs 
from the two hemispheres, 18 ROIs from various lobes, and finally 90 ROIs delineat-
ing different gyri and sulci of the brain [17]. In panel (a) of Fig. 3, we show the three 
sets of ROIs overlaid on the same typical cortical slice. The different sets of ROIs, 
therefore, provide information at different scales from the neuroanatomical perspec-
tive, giving multi-scale features which can be used to perform a 3-level hierarchical 
fiber clustering.  

In the first level, based on the information given by the 2-ROI set, the tractography 
results can be easily grouped into 3 classes – fibers in two individual hemispheres and 
fibers bridging the two hemispheres. In the following two levels of the hierarchy, each 
class generated in the previous level is further divided into more subclasses, based on 
the anatomical information of fibers given by the corresponding set of diffused ROIs. 
As the neuroanatomical features relate to 18 and 90 ROIs in the last two levels, re-
spectively, spectral clustering [18] is recursively called to further cluster fibers based 
on the similarity matrices of fibers. 

Spectral clustering has been widely applied in fiber clustering [2][5], due to its 
high robustness and efficiency. And in spectral clustering, the number of classes is 
critical and has to be specified manually. For the convenience to demonstrate the pro-
posed hierarchical fiber clustering method, we simply set the number of classes to 2 in 
each spectral clustering callback. There are reports in the literature designated to ad-
dress the issue of optimal class number in spectral clustering [19]. However, the prob-
lem indeed exceeds the scope of our work in this paper, though methods to automati-
cally determine the optimal number of classes can be easily integrated into the pro-
posed hierarchical clustering framework.  

3   Experimental Results 

Fig. 3 shows the results given by the proposed method on approximately 12,000 fibers 
tracked using ExploreDTI [20] on an adult brain. As can be seen from the top of the 
figure, the fibers are first categorized at the first level of the hierarchical clustering 
into 3 classes – fibers in the left/right hemispheres and fibers connecting both hemis-
pheres. In the second and third levels, these classes are further subdivided. We use the 
same color coding for hemispheric-symmetric fiber bundles. In the third level, the 
hierarchical clustering strategy yields a total of 12 bundles. And in all three levels, the 
intra-subject left-right-hemisphere symmetry is well preserved. 
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Fig. 3. Hierarchical fiber clustering is performed with the three sets of multi-scale ROIs shown 
in panel (a). With increasing levels of clustering, more subdivisions of the fibers are obtained, 
as shown in (b). To highlight the hemispheric symmetry, fiber clustering results in the two he-
mispheres are displayed in the same color coding. 

 

Fig. 4. Consistent fiber clustering across three adult subjects (2 males, 1 female). Here, for 
better visual inspection, only the fibers connecting the left and the right hemispheres are shown, 
with same color representing the corresponding bundles in different subjects. 

We have further performed the proposed fiber clustering method on three adult 
brains. For better visualization, only the clustering results of fibers connecting two 
hemispheres are shown in Fig. 4. The first two subjects are male (~12,000 fibers), 
while the third one is female and has only ~6,000 fibers yielded by the same tracto-
graphy algorithm with identical parameters. As we can observe, the inter-subject con-
sistency of clustering is still achieved, due to the use of neuroanatomical information 
in guiding fiber clustering. 
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4   Conclusion 

We have presented in this paper a hierarchical fiber clustering method. In each level 
of the hierarchical clustering, our method leverages atlas-based information provided 
by ROI set of the specific scale. In particular, fuzzy anatomical associativity for each 
fiber is acquired from the set of diffused ROIs, together with the fiber geometry re-
lated importance weighting. The Mahalanobis pairwise distance between fibers is then 
computed and fed into a spectral clustering algorithm in pyramidal fashion, for per-
forming fiber clustering. Experimental results show that the proposed method obtains 
good intra-subject symmetry and inter-subject consistency. 
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Abstract. The neural mass models have been widely used for simulating the
highly complex Electroencephalogram (EEG) rhythmic activity, when the extrin-
sic input p(t) passes through the model, similar oscillatory signals are produced.
In this paper, we present an empirical exploration to the theoretical prediction of
such a model by fitting the actual EEG signal to the Jansen’s neural mass model.
The results suggest that the model can produce good approximation to the actual
EEG signal. The extrinsic input used formerly has a relatively big SD (standard
deviation), which may produce unreliable synthetic data, even bias the analysis
results. In our study, the mean values of estimated p(t) fall well within the interval
for the simulate study recommended by previous reports, but the SD of p(t) is far
less than the experience value used before.

Keywords: EEG, Neural mass model, Extrinsic input, Square-root unscented
Kalman filter, Nonlinear joint estimation.

1 Introduction

As an integrated biological neural system, which transfers and processes information by
way of bioelectricity, the brain comprises local neuronal networks which interconnected
with each others by long range pathways. The brain has a hierarchical structure, and
one of the most complex parts is the cerebral cortex in the outermost layer of the brain.
Electroencephalography (EEG), recording from electrodes placed on the scalp, is the
neurophysiologic measurement of the electrical activity of the brain. It derives from the
massively summed postsynaptic currents of conglomerated cortical neurons, reflecting
the electrical behavior of neuronal interactions. These signals are typically extremely
inhomogeneous and non-stationary fluctuations in an irregular and complex manner.

The EEG kinetics could be modeled in a neurophysiological parsimonious scheme of
key neuronal mechanism. Neural mass models, one type of nonlinear dynamic systems
comprising huge number of neurons, are based upon this knowledge. These models
describe populations of neurons interacted through excitation and inhibition and are
capable of producing various morphologic EEG-like waveforms and rhythmic activity
for the given set of model parameters. There are many attempts involving neural mass
models to emulate realistic signals and to evaluate their dynamic properties. Wendling
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et al. used such a model to synthesize activities very similar to those observed in epilep-
tic patients[1]. Niranjan et al. adopted a modified method of David and Friston’s neural
mass model, in order to control epileptic seizures in the model by means of incorpo-
rating an internal feedback to maintain synchronous[2]. Roberto et al. described a gen-
erative model of EEG rhythms based on anatomically constrained coupling of neural
mass models[3]. Babajani et al. constructed a large-scale biologically realistic neural
model for meaningful data fusion of simultaneous EEG and fMRI (functional magnetic
resonance imaging) simulated observations[4]. Zavaglia et al. ameliorated the neural
mass model to simulate EEG power spectral density (PSD) in some regions of interest
(ROIs) during simple task[5].

Most existing studies have shown that the output signals produced by the neural
mass models are comparable to realistic EEG oscillatory activities, but the chain of
the endeavors for analyzing and understanding the bioelectromagnetic signals seems
to lack one indispensable part that links the sparing model to actual EEG signal. The
neural mass models have been designed to model EEG rhythmic activities, and adjust-
ing parameters in the model can produce various oscillatory signals. Previous studies
were concerned over the influence of the variation of model parameters on the oscilla-
tory behavior of the signals generated, but the physiologic significance of some model
variables represented respectively were ignored. The extrinsic model input has been
arbitrarily modeled as random noise for nonspecific background activity or determinis-
tic function for some specific stimulus activities. However, determining the property of
this input signal is extremely important, because, in essence, the neural mass model can
be considered as a nonlinear system where a excitatory input signal passing through it
will produce the rhythmic activity similar to the EEG signal. In this study, we estimate
the extrinsic input by means of the nonlinear joint estimation, the statistic values of the
extrinsic input have some di�erence.

2 Jansen’s Neural Mass Model

By the massively synchronous dendritic activity of pyramidal cells, EEG signals are
generated to characterize the extremely complex neural networks of brain. The neural
mass models of cortical neurons, which o�er valuable insight into the generation of the
EEG, using a relatively simple nonlinear process to describe the complex neural net-
work. With a small amount of state variables, neural mass models describe the average
activity of interaction within and between populations of neurons, these states sum up
the behavior of millions of interacting populations.

As with the general models, Jansen’s neural mass model also formed by two
subsystems[6]. The first subsystem is a wave-to-pulse operator at the soma of neural
cells, which can be described by the static sigmoid function[7]:

Sigmk(�) �
c1

ke0

1 � exp(r(�0 � c2
k�))

(1)

for the k th subpopulation. c1�2
k , e0, r and �0 are parameters that determine its shape.

The second subsystem is a linear pulse-to-wave transform at a synaptic level. The for-
mer transforms the average pulse density of action potentials coming to the population
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of neurons into an average postsynaptic potential (PSP) which can either be excita-
tory or inhibitory, this is assumed to be instantaneous. The later transforms the average
membrane potential of a population of neurons into an average pulse density of action
potentials fired by the neurons, which depends on synaptic kinetics and models the av-
erage postsynaptic response as a linear convolution of incoming spike rate. Between
two subsystems, there are also some connectivity constants C1� � � � �C4 which account
for the number of synapses that established between two neurons populations.

These relations are formulated as:
�������������

ẍ0(t) � He
�e

Sigm[x1(t) � x2(t)] � 2
�e

ẋ0(t) � 1
�

2
e
x0(t)

ẍ1(t) � He
�e
�p(t) �C2Sigm[C1 x0(t)]� � 2

�e
ẋ1(t) � 1

�
2
e
x1(t)

ẍ2(t) � Hi
�i
�C4Sigm[C3x0(t)]� � 2

�i
ẋ2(t) � 1

�
2
i
x2(t)

(2)

where x0, x1 and x2 are respectively the output of the three PSP blocks, p(t) is the
excitatory input that represents an average firing rate, which can be random (accounting
for a nonspecific background activity) or deterministic, accounting for some specific
activities in other cortical units. The typical value of model parameters for simulation
experiments are shown in Table ?? [8]. There are three second-order time derivatives
variables x0, x1 and x2 in this system, the general way to reveal the relationship between
these parameters is by means of the Laplace transform, but the Laplace transform is
powerless when the system is nonlinear and time-variant.

The state space model, which was generally applied in control engineering, repre-
sents a physical system as n first order coupled di�erential equations, i.e., for an nth
order di�erential education would be transformed to n first order ordinary di�erential
equations(ODEs). Thus we rewrite the system mentioned above as a set of six first order
ODEs by introducing three new variables ẋ0(t) � x3(t), ẋ1(t) � x4(t) and ẋ2(t) � x5(t).

In Jansen’s neural mass model, a cortical area is composed of three di�erent pop-
ulations of neurons (excitatory pyramidal cells, excitatory stellate cells, and inhibitory
interneurons). For the two basic reasons: (1) the excitatory and inhibitory synaptic in-
puts on the pyramidal neurons lead to generate the potential field; (2) pyramidal neurons
in the form of a palisade oriented perpendicular to the cortex, thus the EEG signal is
considered as the membrane potential of pyramidal neurons. For the sake of simplicity,
we do not take into account the e�ect of the amplifiers that are used to record the EEG
nor the distributions produced by the di�erent tissue layers between the neural mass and
the recording electrode [6,7]. As mentioned above, x1 and x2 are the result of excitatory
and inhibitory synapses acting on the pyramidal neurons, hence, the EEG observation
is taken as: y(t) � x1(t) � x2(t). Di�erent from Laplace transforms which deals the
system with the frequency-domain approach, time-domain approach was introduced to
model and analyze systems in the state space model. At the same time, the limitations
of ‘linear system’ and ‘zero initial conditions’ was broken.

For the actual EEG signal acquisition equipment, the faint electrical activity (In fact,
EEG activity reflects the summation of the synchronous activity of thousands or mil-
lions of neurons which are radial to the scalp.) is measured by putting electrodes on
di�erent positions of the scalp. EEG is caused by correlated post-synaptic potentials of
cortical neurons (As voltage fields decrease with the fourth power of the radius, it is
more diÆcult to detect action potentials from the deep sources than the cortex.), that
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Table 1. Physiological interpretation and standard values of model parameters

Parameter Physiological interpretation Standard value

He,i Average synaptic gain
He = 3.25mV
Hi = 22mV

τe,i
Membrane average time constant and τe = 10ms

dendritic tree average time delays τi = 20ms

c1,2
1

Average number of synaptic contacts c1
1 = c,

in the excitatory feedback loop c2
1 = 0.8c, c = 135

c1,2
2

Average number of synaptic contacts c1
2 = 0.25c

in the inhibitory feedback loop c2
2 = 0.25c

c1,2
3 c1

3 = c2
3 = 1

ν0, e0, r
Parameters of the nonlinear sigmoid ν0 = 6mV, e0 = 5s−1

function r = 0.56 mV−1

means there are some minor di�erences to generate the action potentials between dif-
ferent correlated pyramidal neurons, from a macro perspective, EEG shows oscillations
at a variety of frequencies in the same channel while they are similar between di�erent
channels. In our model, we consider that all of the activities of the di�erent neuronal
populations are modulated by the same specific stimulus-dependent input p(t) which
represents the basal stochastic activity, thus, the y(t) of di�erent channels would be in-
tegrated into a vector y(t) which contains n elements, where n related to the numbers of
channels:

y(t) � C[x1(t) � x2(t)] (3)

where C, which is also a vector contains n elements, relates to the weights of linear
relationship between voltage signal detected from the scalp and post-synaptic potentials
of pyramidal neurons. There should be some small di�erences between the elements of
C, for the sake of simplicity, here we assume that the value of all elements equal to
constant 1.

We model the EEG process as a deterministic function, which capture the underline
pattern, plus the error term. The processes x and observations y are composed of the
fixed e�ects and a stochastic part. Thus the corresponding state space model of the
system as mentioned above would be a two-layer model. The internal layer is a non-
linear stochastic di�erence equation:

ẋk � f (xk� pk) � � � � N(0�Q) (4)

The external layer is assumed to the measurement equation:

yk � h(xk) � � � � N(0�R) (5)

where f and h are process and observation equations, respectively, xk � [x0� x1� � � � � x5]T

is the state of the system, the extrinsic inputs pk represents system input, � is the noise
process caused by disturbances and modeling errors, yk is the observation vector, and �

is measurement noise.
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3 Nonlinear Joint Estimation

As a recursive data processing algorithm, the Kalman filter (KF) is the most general
approach for analyzing and making inference for such a state space model. The KF
is an optimal estimator for linear systems that are driven by Gaussian noise, and are
observed through linear means which may also incorporate with Gaussian errors. It
consists of essentially two stages: the prediction stage, which uses the system model to
predict the state posterior density (pdf) forward from one measurement time to the next,
and the update stage, which uses the latest measurement to modify the prediction pdf.
But the inherent flaws of KF is that it can only solve the discrete-data linear filtering
problem.

For nonlinear state-space estimation, we use a square-root unscented Kalman filter
(SR-UKF), which is a derivative-free alternative to the extend Kalman filter in nonlinear
case, to maintain the nonlinearities present in the biophysical models. SR-UKF prop-
agates variables mean and covariance through the unscented transformation (UT), and
possesses high accuracy and robustness for nonlinear model estimations. The frame-
work of the state-estimation algorithm by using SR-UKF is given as follows[9]:

Step 1. By calculating the matrix square-root of the state covariance once through a
Cholesky factorization, SR-UKF is initialized:

x̂0 � �[x0] S0 � chol�E[(x0 � x̂0)(x0 � x̂0)T ]� (6)

Step 2. For k � �1� � � � ���, Sigma points is calculated as:

�k�1 � [x̂k�1 x̂k�1 � �Sk x̂k�1 � �Sk] (7)

Step 3. Time updates:
(1) The converted set is given by transforming each point through the process equation:

�k�k�1 � F[�k�1� uk�1] (8)

(2) The predicted mean is calculated as:

x̂�
k �

2L�
i�0

W (m)
i �i�k�k�1 (9)

(3) With a QR decomposition, the time-update of the Cholesky factor S�
k is calculated:

S�
k � qr�[

�
W (c)

1 (�1:2L�k�k�1 � x̂�
k )

	
Rv]� (10)

(4) It is essential to do Cholesky update because the W(c)
0 may be negative:

S�
k � cholupdate�S�

k ��0�k � x̂�
k �W

(c)
0 � (11)

(5) Instantiate each of the prediction points through the observation equation:


k�k�1 � H[�k�k�1] (12)
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(6) The predicted observation is calculated as:

ŷ�
k �

2L�
i�0

W (m)
i 
i�k�k�1 (13)

Step 4. Measurement update:
(1) The innovation Cholesky factor is computed as:

Sỹk � qr�[
�

W (c)
1 (
1:2L�k�k�1 � ŷ�

k )
�

Rn
k]� (14)

(2) Cholesky update because the W(c)
0 may be negative:

S�
k � cholupdate�Sỹk �
0�k � ŷk�W

(c)
0 � (15)

(3) The cross-covariance matrix of x and y is determined by:

Pxkyk �

2L�
i�0

W (c)
i [�i�k�k�1 � x̂�

k ][
i�k�k�1 � ŷ�
k ]T (16)

(4) The Kalman gain matrix can be found according to

�k � (Pxkyk�ST
ỹk

)�Sỹk (17)

(5) The update mean is calculated as:

x̂k � x̂�
k ��k(yk � ŷ�

k ) (18)

(6) The posterior measurement update of the Cholesky factor of the state covariance is
calculated (the downdate vectors are the columns of U) by:

U � �kSỹk (19)

Sk � cholupdate�S�
k �U� -1� (20)

where Rv
�process noise cov., Rn

�measurement noise cov..
In our case, both the system state xk and the input variable p(t) for the dynamic

system must be simultaneously estimated from only the observed noisy signal yk.the
joint state vector is x̃ � [p� x0� x1� x2� x3� x4� x5]T here.

The initial extrinsic input p(t) was set as p0 � 200 in the range reported by Jansen et
al. [6]. Thus, the initial condition was set as x̃0 � [200� 0� 0� 0� 0� 0� 0]T.

4 Result and Discussion

In this experiment, 10-channel EEG time series were recorded for 18 experiment sub-
jects, and all with eyes closed. For each subject, the measurement was performed for
an average recording time of 130 seconds, at a frequency of 250 Hz[10]. The Jansen’s
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Table 2. The statistic values of estimated p(t). 18 subjects were selected to collect EEG signal
at resting status (eyes closed and relax), the statistic mean values were around 200 while the
standard deviation values were small (with the order of magnitude from 0.01 - 1).

Experiment Statistic Values of p(t) Experiment Statistic Values of p(t)
Subjects Mean S.D. Subjects Mean S.D.

Sub01 199.79 0.070 Sub10 198.32 1.224
Sub02 198.26 1.110 Sub11 200.16 0.034
Sub03 194.20 0.780 Sub12 202.46 0.344
Sub04 198.36 0.239 Sub13 195.46 2.408
Sub05 200.07 0.014 Sub14 197.08 2.702
Sub06 200.02 0.042 Sub15 199.90 0.071
Sub07 199.84 0.250 Sub16 199.61 0.269
Sub08 201.03 0.245 Sub17 199.63 0.431
Sub09 200.13 0.043 Sub18 200.00 0.015

neural mass model was fitted to each recording using the SR-UKF algorithm described
above. Before the iteration process, ODE45, which implemented the Runge-Kutta-
Fehlberg method with a variable time step for eÆcient computation, was used to trans-
late the continuous equations of the model into discrete time series model.

The traditional Jansen’s neural mass model, for example, the Jansen’s double-column
model, which was explored using two coupled model columns, considered that the ex-
ternal input should be di�erent for each column. Although the proportions of cortical
cells (e.g., the visual cortex and the prefrontal cortex) di�er from each others, di�erent
model parameter values could be used to express those di�erences. In our study, all
outputs collected from di�erent columns were considered to be stimulated by the same
external input, i.e., with a 10-channel EEG collection equipment, we need a vector con-
tains 10 elements to describe the di�erent relationship between the respective output
and external input. In fact, the basic neuronal architecture of the cortex is similar, so the
di�erence is slight. For the consideration of simplicity, we assume that the value of all
vector elements equal to 1.

Although Jansen’s neural mass model is a simplified nonlinear dynamic system, anal-
ogous oscillatory behavior compared with the real EEG signal was produced. In Figure
2 we show an episode of the real EEG time series (red) of channel o1 and the estimated
rhythmic activity (blue) , the corresponding power spectral density distribution reflects
the amount of similarity with respective frequency components. The results suggest that
EEG oscillatory activity can be described by a neurophysiological neural mass model.
At the same time, it also provides some support for the hypothesis that the spontaneous
EEG activity is generated by some of the same neural structures. We collected the EEG
signal at resting status, three types frequency band of EEG were observed obviously: (1)
Æ (0.1-3 Hz), which represents deep sleep and unconscious; (2) � (4-8 Hz), which de-
notes the situations of drowsiness, arousal and idling; (3) � (8-12 Hz), which indicates
the status of relaxed and reflecting, and this three bands EEG signal could be clearly
seen at the bottom of Figure 2.

Table 2 shows the statistic values of the estimated extrinsic input p(t). There are sev-
eral previous reports proposed that the mean values of extrinsic input p̄ � 220. Jansen et
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Fig. 1. The distribution of mean values of the extrinsic input p(t). �
�
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estimated by fitting the actual EEG signal to model, �
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� denotes the mean value of all estimated

values.

al. estimated the model parameters by using the p(t) with a big standard deviation �p �

57.7. Although the signal produced by the estimated models resembled the signals gen-
erated by the reference models, significant di�erence was found between the estimated
parameters and the actual values[11]. Valdes et al. used the nonlinear Kalman filter and
the maximum likelihood procedure to estimate the variance of p(t) by fitting and vali-
dating theoretical models for actual EEG data, much smaller standard deviation of p(t)
(�p � 4.5) was estimated[12]. Recently, Ponten et al. analyzed the relationship between
structural and functional connectivity, the extrinsic input they used was Gaussian white
noise with standard deviation of 0.1 potentials per second[13].

In our study, for all 18 experiment subjects, p̄ � 200, is well within the value interval.
But the standard deviation shows a noticeable di�erence from the previous researches.
Actually, excepting 4 subjects (S ub2, S ub10, S ub13, S ub14), the standard deviation of
p(t) for all other subjects is less than 0	8 (even most of them less than 0.3). So there
are very small fluctuations of the extrinsic input we estimated, and it could be observed
intuitively in Figure 1.

It is recognized that the values of model parameters play a more important role in
simulating EEG rhythmic activity than extrinsic input. For models of multiple areas, we
need adjust the relative proportion of each population in the cortical area. The param-
eters wn, n�[1, . . . , N], bounded between 0 and 1, was used to implement this. David
have detected that oscillations were produced even without extrinsic input (�p � 0)
when w � 0 or w � 1[7]. But a too big p variance still may produce unreliable synthetic
data, thus could bias the analysis results. For the bigger p standard deviation, since the
model input p(t) represents the activity of multi-cortical columns, a high variance value
may be contributed to recruit a larger number of coupled neuron for complex process
that causes complex input signal dynamics. In other words, di�erence variance may
indicate the activity extent in specific neuron area.
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Fig. 2. Left: the real EEG time series (red, solid line) and estimated signal (blue, dotted line)
based on neural mass model. Right: the corresponding power spectral density distribution of real
signals (red, solid line) and estimated signal (blue, dotted line). Top: channel o1 placed on S ub02;
Middle: channel o1 placed on S ub03; Bottom: channel o1 placed on S ub06.



466 X. Fang et al.

In conclusion, by fitting and validating the Jansen’s neural mass model for real EEG
data, extrinsic input p(t) is estimated. Unlike the p(t) used to produce the similar EEG
signal, which su�ered big variance, the p(t) estimated here have a much smaller stan-
dard deviation, this will be a basis for us to improve the traditional neural mass model.
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Abstract. We present a method to detect and classify the dermoscopic
structure pigment network which may indicate early melanoma in skin
lesions. We locate the network as darker areas constituting a mesh, as
well as lighter areas representing the ‘holes’ which the mesh surrounds.
After identifying the lines and holes, 69 features inspired by the clinical
definition are derived and used to classify the network into one of two
classes: Typical or Atypical. We validate our method over a large, inclu-
sive, real-world dataset consisting of 436 images and achieve an accuracy
of 82% discriminating between three classes (Absent, Typical or Atypi-
cal) and an accuracy of 93% discriminating between two classes (Absent
or Present).

1 Introduction

Melanoma, a cancerous lesion in the pigment-bearing basal layers of the epi-
dermis, is the most deadly form of skin cancer, yet treatable via excision if
detected early. The cure rate for early-stage melanoma is nearly 100%. A re-
cent study [1] has concluded that dermoscopy increases the early detection of
melanoma, only if the practitioner is sufficiently trained. In fact, dermoscopy
decreases accuracy if training is insufficient. There is, therefore, a demand to
develop computer-aided diagnostic systems to facilitate the early detection of
melanoma. This paper follows a relatively new trend in clinical dermatology:
to identify specific ‘dermoscopic structures’ in the lesions such as the pigment
network which is then used to arrive at a diagnosis [2]. A pigment network can
be classified as either Typical or Atypical, where a working definition of a typical
pigment network (TPN) is “a light-to-dark-brown network with small, uniformly
spaced network holes and thin network lines distributed more or less regularly
throughout the lesion and usually thinning out at the periphery” [3]. For an
atypical pigment network (APN) we use the working definition “a black, brown
or gray network with irregular holes and thick lines” [3]. The goal is to automat-
ically classify a given image to one of three classes: Absent, Typical, or Atypical.
Figure 1 exemplifies these 3 classes.

H. Liao et al. (Eds.): MIAR 2010, LNCS 6326, pp. 467–474, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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(a) (b) (c) (d) (e) (f)

Fig. 1. The 3 classes of the dermoscopic structure pigment network: a-b) Absent ; c-d)
Typical ; and e-f) Atypical. b),d),f) are magnifications of a),c),e) respectively.

We use these definitions to subdivide the structure into the darker mesh of
the pigment network (which we refer to as the ‘net’) and the lighter colored
areas the net surrounds (which we refer to as the ‘holes’). After identifying
these substructures we use the definitions above to derive a several structural,
geometric, chromatic and textual features suitable for classification. The result is
a robust, reliable, automated method for identifying and classifying the structure
pigment network.

2 Previous Work

The automated detection of pigment network has received some recent atten-
tion [4,5,6,7,8,9,10]. Fleming et al. [4] report techniques for extracting and vi-
sualizing pigment network via morphological operators. Fischer et al. [5] use
local histogram equalization and gray level morphological operations to enhance
the pigment network. Anantha et al. [6] propose two algorithms for detecting
pigment networks in skin lesions. They are most successful when employing a
weighted average of two Laws’ energy masks whose weights are determined em-
pirically and report a classification accuracy of approximately 80%. Betta et
al. [7] begin by taking the difference of an image and its response to a median
filter. This difference image is thresholded to create a binary mask which under-
goes a morphological closing operation to remove any local discontinuities. This
mask is then combined with a mask created from a high-pass filter applied in
the Fourier domain to exclude any slowly modulating frequencies. Results are
reported graphically, but appear to achieve a sensitivity of 50% with a specificity
of 100%. Di Leo et. al. [8] extend this method and compute features over the
‘holes’ of the pigment network. A decision tree is learnt in order to classify future
images and an accuracy of 71.9% is achieved. Shrestha et. al. [9] begin with a set
of 106 images where the location of the APN has been manually segmented. If
no APN is present, then the location of the most ‘irregular texture’ is manually
selected. They then compute several texture metrics over these areas (energy,
entropy, etc.) and employ various classifiers to label unseen images. They re-
port accuracies of approximately 95%. Recently, Sadeghi et al. [10] presented an
approach whereby ‘holes’ of the network are detected using a graph-based loop
search on the result of an edge detection algorithm. They then create a graph
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based on the distance of these ‘holes’ which they use to propose a new spatial
feature called ‘density ratio’ for detecting a pigment network in a given image.

Although these studies have certainly made significant contributions, there
has yet to be a comprehensive analysis of pigment network detection on a large
number of dermoscopic images under ‘real-world’ conditions. All work to date
has either: 1) not reported quantitative validation [4,5]; 2) validated against a
small (n < 100) number of images[7]; 3) only considered or reported results for
the 2-class problem (e.g. Absent/Present rather than Absent/Typical/Atypical)
[6,7,8,9,10]; 4) not explicitly identified the location of the network [6]; or 5) has
made use of unrealistic exclusion criteria and other manual interventions [9].

This paper presents an effective method for pigment network segmentation
and classification, which is validated on a large (n = 436) ‘real-world’ dataset.

3 Method

An overview of our method for the identification and classification of pigment
network is given in Fig. 2. After pre-processing, Sadeghi et al.’s [10] ‘hole de-
tector’ is employed to generate a ‘hole mask’ indicating the pixels belonging to
the holes of the pigment network. Next, a ‘net mask’ is created, indicating the
pixels belonging to the net of the pigment network. We then use these masks
to compute a varity of features including structural (which characterizes shape),
geometric (which characterizes distribution and uniformity), chromatic and tex-
tural features. These features are fed into a classifier to classify unseen images.

Fig. 2. Overview of construction of our classification model

3.1 Pre-Processing

Image Enhancement: The image is first enhanced so that the pigment network
is more visible using manner similar to [5]. A contrast-limited adaptive histogram
equalization is used [11]. Images are then further sharpened by subtracting a
blurred version of the image from itself.
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Lesion Segmentation: Next, in order to prevent unnecessary analysis of the
pixels belonging to the skin, lesions are segmented using Wighton et. al.’s method
[12] which employs supervised learning and the random walker algorithm. The
output of the segmentation is a ‘lesion mask’ which indicates which pixels belong
to the lesion (as opposed to the surrounding healthy skin).

3.2 Pigment Network Detection

Hole Detection: To find the holes of the pigment network, we used Sadeghi
et al.’s method [10] which employs a Laplacian of Gaussian edge detector to
create a graph-based structure which is used to identify holes of the pigment
network. They demonstrate that globules (another dermoscopic structure which
is difficult to discriminate from pigment netowrk) are separable from the holes
of the pigment network according to the difference between the average intensity
of inner pixels and the average intensity of the border [10]. The result of this
process is a ‘hole mask’ which indicates which pixels belong to the holes of the
pigment network.

Net Detection: In order to identify the net of a pigment network, we apply
the Laplacian of Gaussian (LoG) filter to the green channel of the image. The
LoG filter identifies high frequency components of an image and therefore makes
an ideal net detector. The major issue with applying this operator is that its re-
sponse is strongly dependent on the relationship between the frequency of the
structures and the size of the Gaussian kernel used. We used σ = 0.15, which is
an appropriate value for images of the two atlases used in our experiment [13,14],
however it can be tuned for a given imageset according to scale and magnifica-
tion. In our experiment, we observed that the average thickness of the pigment
network is proportional to the average size of holes of the network. We therefore
set the size of the LoG window size to half of the average hole size in the image.
The average window size over all images of our data set is 11 pixels. We then
threshold the filter response, resulting in a ’net mask’ which indicates which pix-
els belong to the net of the the pigment network. Furthermore, we skeletonize
this mask, resulting in a ’skeleton mask’. Figure 3 illustrates the net extraction
process.

(a) (b) (c) (d)

Fig. 3. Net detection. a) A dermoscopic image, b) response of the LoG filter, c) the
resulting ‘net mask’, and d) the extracted net of the pigment network overlaid on the
original image
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3.3 Feature Extraction

Based on our working definitions of TPN and APN, we use the resulting masks
of sections 3.2 and 3.1 (namely the lesion, hole, net and skeleton masks) to
propose a set of features capable of discriminating between the 3 classes (Absent,
Typical and Atypical). We propose a set of structural (shape), geometric (spatial)
chromatic and textural features.

Structural Features (20): Diagnostically important characteristics of an
Atypical network include the thickness and variation in thickness of net as well
as the size and variation in size of network holes.

For each spatially disjoint section of the net mask, we compute its size (number
of pixels in the net mask) and length (number of pixels in the skeleton mask).
Our features are then the mean, standard deviation and ratio (mean/std) of
the sizes and lengths of net sections. Thickness is also computed by measuring
the distance from each pixel in the net mask to the closest pixel in the skeleton
mask. The mean, standard deviation and ratio of thickness as well as a 6-bin
thickness histogram are also included as features.

For each spatially disjoint section of the hole mask, we compute the size
(number of pixels) and include as features the mean, standard deviation and
ratio (mean/std) of hole size as well as the total number of holes.

We also include the ratio of the network size (number of pixels in the net and
hole masks) to the lesion size (number of pixels in the segmentation mask).

Geometric Features (2): Clinically, there is an emphasis on the ‘uniformity’
of the network in order to differentiate between TPN and APN. Sadeghi et.
al. [10] have proposed the feature ‘density ratio’ of holes which, while useful in
discriminating between the absence and presence of a pigment network, does not
reliably discriminate between the TPN and APN. We include ’density ratio’ of
holes as a feature, as well as a new feature, ’hole irregularity’. This feature is
computed by constructing a graph as in [10] where 2 holes are connected if they
are less than 3 times the average diameter of the holes. ’Hole irregularity’ is then
the number of edges in this graph.

Chromatic Features (37): Color also plays a crucial role in clinical diagnosis.
We therefore convert the image to HSV colourspace and compute features over
each channel as well as the original green channel of the image. In each channel,
for the hole, net and lesion masks respectively we compute the mean, standard
deviation and ratio (mean/std) of the intensity values. Additionally, we also
propose a new chromatic feature called the ‘atypicality measure’ which is the
sum of the intensity values over the green channel of the pixels in the net mask.

Textural Features (10): We use five of the classical statistical texture mea-
sures of Haralick et al. [15]: entropy, energy, contrast, correlation and homo-
geneity which are derived from a grey level co-occurrence matrix (GLCM). The
GLCM is a tabulation of how often different combinations of pixel brightness
values (gray levels) occur in a specific pixel pairing of an image. We construct
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2 GLCMs and extract the 5 texture metrics from each. The first GLCM is con-
structed over the entire lesion (using the pixels in the lesion mask) and the
second is constructed over the pigment network (using the pixels in the net and
hole masks).

3.4 Classification

Finally, these 69 features are fed into a classifier so that new images can be clas-
sified. We employ the WEKA’s [16] implementation SimpleLogistic which uses
a powerful boosting algorithm LogitBoost. Boosting is a method for combining
the performance of many features to produce a powerful classifier. SimpleLogis-
tic fits logistic models by applying LogitBoost with simple regression functions
as base learners.

4 Evaluation and Results

We applied the method described above to a set of dermoscopic images taken
from two atlases of dermoscopy [13,14]. In [13] each image is labeled as Absent,
Typical or Atypical, representing the presence and regularity of the dermoscopic
structure pigment network. However the images in [14] have been labeled by 40
experts, each one assigning a label of either Absent, Typical or Atypical to each
image. Overall labels for these images are generated by majority voting. In total,
our dataset consists of 436 images (161 Absent, 154 Typical, 121 Atypical). We
compute results for both the 3-class (Absent, Typical or Atypical) and 2-class
problems (Absent, Present). Ten-fold cross validation was used to generate all
results. For comparison, the feature set described in [8] was also implemented
and results over our imagesets computed. Table 1 summarizes these results.

Table 1. Comparing accuracy, precision, recall and f-measure of our proposed features
with Di Leo et al.’s features using the same set of 436 images. The last three rows
summarize the results from previous work on different image sets.

Absent-Typical-Atypical Classification

Precision Recall F-measure Accuracy N

Absent 0.905 0.950 0.927 - 161
Typical 0.787 0.792 0.790 - 154
Atypical 0.750 0.694 0.721 - 121

Weighted Avg 0.820 0.823 0.821 0.823 436
Di Leo et al. [8] 0.709 0.711 0.709 0.719 436

Absent-Present Classification

Absent 0.893 0.932 0.912 - 161
Present 0.959 0.935 0.947 - 275

Weighted Avg 0.935 0.933 0.934 0.933 436
Di Leo et al. [8] 0.875 0.876 0.875 0.876 436

Absent-Present Classification on Different Image Sets

Anantha et al. [6] - - - 0.80 155
Betta et al. [7] - - - 0.66 30
Sadeghi et al. [10] - - - 0.926 500
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(a) (b) (c)

(d) (e) (f)

Fig. 4. Three images of the image set: the top row shows the original images of a APN,
APN, and TPN. The bottom row shows their corresponding pigment networks.

Comparing these results with the results generated by the others using different
datasets may be tenuous, nevertheless these reported values are also summarized
in Table 1. As can be seen, this work outperforms other previous work on the
2-class problem and is the only one to report quantitative results of the 3-class
problem. Additionally, qualitative results of detecting pigment network ‘net’ and
‘holes’ is illustrated in Figure 4.

5 Conclusion and Future Work

We have described techniques to identify the sub-structures of the dermoscopic
structure pigment network. Furthermore, we have proposed and validated a set of
clinically motivated features over these sub-structures suitable for classification.
Our feature set has proven to be extremely robust, outperforming previous work
on a more inclusive ‘real-world’ dataset consisting of 436 images, which is the
largest validation to date on the 3-class problem.

This feature set can be used to aid in the automation of clinical dermoscopic
algorithms [2]. Future work will be motivated by the notion of a fully automatic,
robust automation of clinical dermoscopic algorithms and will therefore focus
on reliably identifying and classifying other dermoscopic structures in a similar
fashion.
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Abstract. This paper compares Kanade-Lucas-Tomasi (KLT), speeded
up robust feature (SURF), and scale invariant feature transformation
(SIFT) features applied to bronchoscope tracking. In our study, we first
use KLT, SURF, or SIFT features and epipolar constraints to obtaininter-
frame translation (up to scale) and orientation displacements and Kalman
filtering to recover an estimate for the magnitude of the motion (scale
factor determination), and then multiply inter-frame motion parame-
ters onto the previous pose of the bronchoscope camera to achieve the
predicted pose, which is used to initialize intensity-based image registra-
tion to refine the current pose of the bronchoscope camera. We evaluate
the KLT-, SURF-, and SIFT-based bronchoscope camera motion track-
ing methods on patient datasets. According to experimental results, we
may conclude that SIFT features are more robust than KLT and SURF
features at predicting the bronchoscope motion, and all methods for pre-
dicting the bronchoscope camera motion show a significant performance
boost compared to sole intensity-based image registration without an
additional position sensor.

Keywords: Bronchoscope Tracking, Camera Motion Estimation, KLT,
SURF, SIFT, Image Registration, Navigated Bronchoscopy.

1 Introduction

In minimally invasive diagnosis and surgery of lung and bronchus cancer, a physi-
cian usually performs transbronchial needle aspiration (TBNA) to obtain tissue
samples to assess suspicious tumors as well as to treat or remove precancerous
tissue. However, it is difficult to properly navigate the biopsy needle to the region
of interest (ROI) for sampling tissue inside the airway tree, because the TBNA
procedure is usually guided by conventional bronchoscopy, which only provides
2-D information (bronchoscopic video images), and because of the complexity of
the structure of the bronchial tree. Recently, bronchoscopic navigation systems
have been developed to guide the TBNA procedure by fusing pre-operative and
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intra-operative information such as 3-D multi-detector computed-tomography
(CT) image data and real-time bronchoscopic video. This helps a physician to
properly localize the biopsy needle during navigated bronchoscopy.

For navigated bronchoscopy the exact pose of the bronchoscope camera must
be tracked inside the airway tree. Unfortunately it is really challenging to accu-
rately track the position and orientation of the bronchoscope camera inside the
patient’s airway tree in real time during bronchoscopic navigation. So far, two
main approaches (or their combination) for bronchoscope tracking have been
proposed in the literature: (a) sensor-based and (b) vision-based tracking. The
former uses an electromagnetic (EM) tracking system (e.g., the superDimen-
sion navigation system [12]) to locate an electromagnetic sensor that is usually
fastened at the bronchoscope tip to directly measure the bronchoscope camera
position and orientation. The latter analyzes the bronchoscopic video images
obtained from the bronchoscope camera to continuously track the bronchoscope
tip on the basis of image registration methods [10,6]. This is a widely discussed
topic in the field of bronchoscope tracking and also the topic of our paper.

Usually, vision-based methods use image registration techniques to align a
real bronchoscope camera pose to a virtual camera pose generated by placing
a virtual camera inside the 3-D CT data. However, a major drawback is that
image registration techniques heavily depend on characteristic information of
bronchial trees (e.g., bifurcations or folds), so they can fail easily to track the
bronchoscope camera in the case of the shortage of such information [5]. Feature-
based bronchoscope motion estimation is a promising means for dealing with
this problem during bronchoscope tracking [10,4]. Without any characteristic
information, other texture feature information of real bronchoscopic video frames
can be extracted and used to compensate the performance of image registration.

Basically, a feature-based approach for motion estimation and recovery first
needs to extract features from camera images, which can be utilized to compute
the relative camera motion, for example by epipolar geometry (up to scale).
Currently, two well-known methods for extracting features are the SURF and
SIFT algorithm [2,8]. Both return distinctive features from keypoints that are
invariant to image scale and rotation. Also, the KLT tracker first detects good
features by calculating the minimum eigenvalue of each 2×2 gradient matrix
and selects features to be tracked using an optimization (e.g. Newton-Raphson)
method for minimizing the difference between two feature windows from two
consecutive images [11].

However, little work can be found that evaluates the effectiveness of these
different feature extraction algorithms that are used for bronchoscope tracking
during bronchoscopic navigation. This study utilizes these feature-based camera
motion tracking methods to improve the performance of image registration-based
bronchoscope tracking. We use the KTL, SURF, and SIFT features to estimate
inter-frame pose displacements (up to scale) on the basis of epipolar constraints
and Kalman filtering to get position estimates before performing image registra-
tion. We compare and evaluate the respective performances of KLT, SURF, and
SIFT features used for bronchoscope tracking.
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2 Method

Feature-based camera motion estimation algorithms are widely used in the field
of structure from motion (SFM) or stereo vision. These approaches basically
consist of two main steps: (1) feature extraction and (2) feature tracking. The
first step usually characterizes some points or regions in each video image as in-
terest features that carry motion information among video images. Sequentially,
inter-frame motion parameters (up to scale) can be estimated in the second step
by recognizing corresponding features between consecutive video frames. In our
work, we detect interest features for each real bronchoscopic (RB) video image
using a KLT-, SURF-, or SIFT-based method, respectively. We address the dif-
ficulty of determining the magnitude of motion (here referred to as scale factor)
by Kalman filtering during feature-based motion estimation.

Our proposed bronchoscope tracking method has two major stages: rough
camera motion estimation and intensity-based image registration. Figure 1 dis-
plays a flow-process diagram of our tracking method. First, KLT, SURF, or
SIFT features are respectively detected from the current bronchoscopic video
image and feature correspondences are identified in the previous frame. During
epipolar geometry analysis, inter-frame camera motion up to scale is predicted
on the basis of these feature correspondences. Kalman filtering is then applied to
estimate the uncertain scale factor, or in other words, the magnitude of the rela-
tive motion. Finally, after combining the estimates of epipolar geometry analysis
and Kalman filtering to a full Euclidean transformation matrix that moves the

Fig. 1. Processing flowchart of our motion tracking method
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camera from the previous to the current pose, we can perform image registration
initialized with this matrix.

Specifically, the feature-based bronchoscope camera motion tracking process
is performed by the following five steps:

[Step 1] Feature detection. We extract 2-D feature points by using the KLT,
SURF, or SIFT algorithm [11,2,8]. The KLT tracker is sometimes referred to
as corner detector while the other two approaches, which are considered as
scale invariant feature detectors, try to find characteristic blob-like structures
in an image independent of its actual size. The SURF or SIFT detector can be
constructed using a scale space representation of an original image at different
resolutions. After detecting feature points, SIFT usually describes each feature
point using a 128-dimensional vector while SURF does so with a 64-dimensional
vector. All these vectors include the local gradient direction and magnitude in-
formation in a certain square neighborhood centered at the feature point. More
details about these feature detection algorithms can be found in the original
publications [11,2,8]. We note that the normal SURF algorithm is implemented
by doubling the initial image resolution in our case, and hence we can obtain
good performance, as shown in the work of Bauer et al. [1].

[Step 2] Feature correspondences. After feature point detection from bron-
choscopic video sequences, we must determine feature correspondences that can
be used to find the relative motion relation between two successive RB images.
The KLT method extracts adequate feature points of an RB image and uses nor-
malized cross correlation (NCC) to track (or match) them. However, for SURF
or SIFT feature points, we recognize corresponding 2-D point pairs using the
third matching strategy from the work of Mikolajczyk and Schmid [9]. Addi-
tionally, a simple outlier detection mechanism was performed on the basis of
the standard deviation of the distances between corresponding points to remove
unsuitable point pairs.

[Step 3] Epipolar geometry analysis. Inter-frame motion parameters ΔQ̃(i)

between the (i-1)-th and (i)-th RB image contain a translation unit vector Δt̃
(i)

and rotation matrix ΔR̃(i) that can be predicted with epipolar geometry analysis
by solving the following equations sequentially:

ET Δt̃
(i)

= 0, (1)

ΔR̃(i)ET =
[
Δt̃

(i)
]T
×

(2)

where E is the essential matrix described epipolar constraints [7] that our cor-
responding points must satisfy. It needs to be clarified that the essential matrix
E involves an arbitrary scale factor. Hence the absolute translation vector Δt̂

(i)

depends on an arbitrary scale factor α̃(i) = |Δt̃
(i)| that depicts the real magni-

tude of the translational motion. An effective method to predict this scale that
is based on Kalman filtering is proposed in the next step.
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[Step 4] Kalman filtering-based scale factor estimation. Kalman filtering
is widely developed in the community for target position tracking on the basis of
a state-space model [3]. In our work, Kalman-based motion filtering is employed
to determine the magnitude of the bronchoscope translational motion. Basically,
the scale factor α̂(i) can be determined by

α̂(i) = |Δt̂
(i)| = |̂t(i) − t̂

(i−1)|, (3)

where the camera absolute translation vector t̂
(i−1)

and t̂
(i)

are calculated by
Kalman filtering.

We can now retrieve the absolute translation vector Δt̃
(i)
∗ between frames

(i − 1) and i from the unit transaltion vector Δt̃
(i)

(determined in the rough
camera motion estimation stage) with respect to α̂(i)

Δt̃
(i)
∗ = α̂(i) Δt̃

(i)

|Δt̃
(i)|

. (4)

Next, the estimated motion ΔQ̃(i)
∗ of the bronchoscope camera between frames

(i − 1) and i can be computed by

ΔQ̃(i)
∗ =

(
ΔR̃(i) Δt̃

(i)
∗

0T 1

)
, (5)

where ΔR̃(i) is calculated by Eq. 2. Finally, the estimate ΔQ̃(i)
∗ is utilized as

initialization of image registration, as described in the next step.

[Step 5] Intensity-based image registration. Intensity-based registration
commonly defines a similarity measure and maximizes the similarities or mini-
mizes the dissimilarities between an RB image I(i)

R and a virtual bronchoscopic
(VB) image IV . We here use a modified mean squared error (MoMSE ) [5] simi-
larity measure. Let IV (Q(i)) be a VB image generated from the predicted pose
Q(i) = Q(i−1)ΔQ(i) of the current frame using volume rendering techniques,
where Q(i−1) denotes the previous camera pose and ΔQ(i) the inter-frame mo-
tion information between successive frames. By updating ΔQ(i), a series of VB
images IV (Q(i−1)ΔQ(i)) is generated and the most similar one corresponding to
the RB image I(i)

R is searched for. In summary, the intensity-based registration
process optimizing ΔQ(i) can be formulated as

ΔQ(i) = arg min
ΔQ

MoMSE(I(i)
R , IV (Q(i−1)ΔQ)). (6)

For this optimization, the initialization of ΔQ in Eq. 6 is one of the key compo-
nents affecting tracking robustness and accuracy. ΔQ is initialized as an identity
matrix in previous work [5]. However, in our new method, we use our estimate
ΔQ̃(i)

∗ (see Eq. 5) instead. Since we got this estimate by matching stable image
features, it can overcome certain limitations of sole image registration such as
dependencies on airway folds or bifurcations and hence enhances the tracking
performance.
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(a) (b) (c)

Fig. 2. Example of the tracking results from the two stages. (a) shows the real pose of
the bronchoscope camera. (b) displays the predicted pose from rough camera motion
estimation by using feature-based tracking. (c) shows the refined pose by performing
image registration initialized by (b).

3 Experimental Results and Discussion

We evaluated sole intensity-based registration (M1) and our proposed tracking
methods (M2: KLT-based method, M3: SURF-based method, M4: SIFT-based
method) on patient datasets, each consisting of an RB video sequence and a
preinterventional 3-D chest CT. In-vivo patient data was acquired in accordance
with a standard clinical protocol. The acquisition parameters of the CT images
are 512×512 pixels, 72-209 slices, 2.0-5.0 mm slice thickness, and 1.0-2.0 mm
reconstruction pitch. The image sizes of the bronchoscopic video frames are
362×370 and 256×263 pixels. We have done all implementations on a Microsoft

Table 1. Comparison of the tracking results for our patient studies, in terms of the
number and percentage of successfully tracked frames and average processing time
(seconds) per frame

Cases Num. of Number (Percentage) of frames successfully tracked
ID Frames M1 M2 (KLT) M3 (SIFT) M4 (SURF)

Case 1 1200 450 (37.5%) 560 (46.7%) 683 (56.9%) 1120 (93.3%)
Case 2 200 116 (58.0%) 120 (60.0%) 70 (35.0%) 130 (65.0%)
Case 3 800 433 (54.1%) 618 (77.2%) 694 (86.8%) 774 (96.7%)
Case 4 800 437 (54.6%) 340 (42.5%) 605 (75.6%) 780 (97.5%)
Case 5 1000 431 (43.1%) 506 (50.6%) 575 (57.5%) 557 (55.7%)
Case 6 279 279 (100%) 279 (100%) 279 (100%) 279 (100%)
Case 7 400 240 (60.0%) 190 (32.5%) 210 (52.5%) 260 (65.0%)
Case 8 450 246 (54.7%) 217 (48.2%) 10 (2.22%) 10 (2.22%)

Total 5120 2632 (51.4%) 2830 (55.3%) 3126 (61.1%) 3910 (76.4%)

Average Times 0.92 s 0.96 s 0.57 s 1.83 s
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Visual C++ platform and ran it on a conventional PC (CPU: Intel XEON 3.80
GHz×2 processors, 4-GByte memory).

A criterion for determining whether a method is more robust than another
can be described by visual inspection and sum of the number of successfully
tracked frames. If a VB image generated from the estimated camera parameters
is greatly similar to the corresponding RB image, we consider it successfully
tracked.

Table 1 gives quantitative results on the performance of all methods. Compared
to M1, M2, and M3, in most cases the tracking performance has been improved sig-
nificantly by using the proposed tracking algorithm M4. Figure 4 shows examples
of RB images and the corresponding virtual images generated by volume rendering
using the camera pose, calculated by the respective methods. The virtual images
generated from the estimates of M4 are more similar than those of M1, M2, and
M3, which means M4 more accurately predicts the real pose.

For the KLT method, we detect corner features and select 430 good features
to be tracked from the previous frame [11]. The KLT tracker can usually track

(a) (b)

(c) (d)

Fig. 3. Examples of detected feature numbers and computation times of Case 4. (a)
shows the number of detected feature points, (b) gives the matching ratios calculated
between the numbers of matching and detected points when using SURF and SIFT
for each frame. (c) displays the time required for detecting SURF and SIFT features,
and (d) illustrates the time needed to track the bronchoscope pose of each frame when
using M1, M2, M3, and M4. It clearly shows that for M4 the average processing time
with at least 1.5 seconds per frame is three times higher than that for M3, because it
includes SIFT feature detection.
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No. RB M1 M2 M3 M4

2065

2146

2210

2286

2390

2425

2479

2518

2579

2675

2700

2734

Fig. 4. Results of camera motion tracking for the patient assessment. The second col-
umn shows selected frames from a sequence of patient RB images and the first column
their corresponding frame numbers. The other columns show tracking results for meth-
ods M1∼M4, all generated by volume rendering of the airways from the estimated
viewpoints.
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around 200 points per frame in our case. Because of the quality of KLT features,
M2 has worse tracking results than M3 and M4, but is still better than M1. The
tracking results of M3 are worse than those of M4, although SURF detected
many more features and correspondences (around 587 detected points and 56
matching points per frame, matching ratios: 9.2%, as shown in Figure 3 (a) and
(b)) than that of SIFT (around 103 detected points and 38 matching points per
frame, matching ratios: 35.7%, as shown in Figure 3(a) and (b)). We believe
that the SURF features-based method gives worse estimates to initialize the
registration step than the SIFT features-based method, and hence fails to track
the bronchoscope motion more often. This also demonstrates that the feature
point quality from SURF is not as good as that of SIFT, as the authors already
concluded in the work of Bay et al. [2]. Additionally, we note that all other
approaches (M2-M4) show better tracking results than sole intensity-based image
registration (M1). This can be explained by the usage of image texture features
that depend less on airway folds or bifurcations.

Regarding computational efficiency, according to Table 1, M1 requires approx-
imately 0.92 seconds to process a frame and the run-time of M2 is about 0.96
seconds per frame while that of M3 comes to 0.57 seconds per frame and M4
computes each frame in around 1.83 seconds. Compared to M1, M3 can improve
the computational efficiency while M4 increases the processing time for each
frame. From the work of Bay et al. [2] we know that SURF is faster than SIFT
at detecting features, since the SURF method uses a fast-Hessian detector on the
basis of an integral image. However, all methods cannot track the bronchoscope
motion in real time (real time means 30 frames per second need to be processed
in our case). This is because feature-based motion recovery methods are time-
consuming in terms of detecting points and finding their correspondences, and
so is the registration stage of bronchoscope tracking. However, we can utilize the
GPU (graphics processing unit) to accelerate our implementations and make it
(almost) real time.

Finally, in our patient study all methods failed to track the motion of the
bronchoscope in some cases. This is because the estimation failed in the intensity-
based registration process, which is usually caused by problematic bronchoscopic
video frames such as RB images, on which bubbles appeared. Additionally, track-
ing failure also resulted from airways deformation, which was caused by patient
movement, breathing, and coughing, and is also one particular challenge in nav-
igated bronchoscopy. Currently, we do not explicitly address the problem of res-
piratory motion in our tracking method. Therefore, our future work will focus on
improving intensity-based image registration for bronchoscope tracking during
bronchoscopic navigation, as well as constructing a breathing motion model to
compensate for respiratory motion.

4 Conclusion

This paper compared KLT, SURF, and SIFT features applied to bronchoscope
tracking. We utilized the KLT-, SURF-, and SIFT-feature-based camera mo-
tion tracking method to improve the performance of image registration-based
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bronchoscope tracking without an additional position sensor. Furthermore, from
experimental results, we may conclude that SIFT features are more robust than
the other two features when applied to predict bronchoscope motion, since the
SIFT-based method successfully tracked 76.4% frames, compared to the KLT-
based and the SURF-based methods with 55.3% and 61.1%, respectively. How-
ever, with about half to a third the processing time of the other methods, the
SURF-based method seems to be a good compromise between tracking accuracy
and computational efficiency.
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Abstract. Maneuvering mobile C-arms to a desired position and orien-
tation during surgery is not only a routine surgical task, e.g. for C-arm
repositioning, but also an indispensable step for advanced X-ray imag-
ing techniques, e.g. parallax-free X-ray image stitching. Standard mobile
C-arms have only five degrees of freedom (DOF), which definitely re-
stricts their motions that have six DOF in 3D Cartesian space. In this
paper, we enable the mobile C-arm to have six DOF relative to the pa-
tient’s table by integrating a translational movement of the patient’s
table into the mobile C-arm kinematics. We present a novel method to
model the kinematics of the mobile C-arm and operating table as an
integrated 6DOF C-arm X-ray imaging system. Kinematic singularities
of the 6DOF C-arm model are determined by analyzing its manipula-
tor Jacobian matrix. Inverse kinematic analysis is employed in order to
find the required joint values to move the C-arm into the desired po-
sition and orientation. Our proposed 6DOF C-arm modeling paves the
way for advanced applications in the fields of surgical navigation and
advanced X-ray imaging that require C-arms to be precisely positioned
or repositioned relative to the patient’s table with six DOF. In our im-
plementation, we employ a visual planar marker pattern and a standard
mobile C-arm augmented by a video camera in order to obtain a relation-
ship between the C-arm system and the patient’s table. C-arm reposi-
tioning experiments on phantom study demonstrate the practicality and
accuracy of our developed 6DOF C-arm system, and show the improved
accuracy of C-arm repositioning by using the 6DOF C-arm model over
the 5DOF C-arm model.

1 Introduction and Related Work

Modern trauma and orthopedic surgical procedures use X-ray images taken by
mobile C-arms during surgery as intervention guidance, especially in minimally
invasive surgery. Moving the mobile C-arm into the best viewing position in
regard to the anatomy is a common surgical task, which requires experiences,
time, and sometimes many X-ray shots until the desired image is obtained. More-
over, it is also an indispensable step for advanced X-ray imaging techniques,
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e.g. parallax-free X-ray image stitching [1] and intra-operative cone-beam CT
[2]. However, positioning the mobile C-arm is mostly difficult and impractical to
accomplish, since the X-ray source of the standard mobile C-arm is controlled by
a complex kinematic chain of the five joints. Several methods were proposed to
position a C-arm system without radiation, e.g. the visual serving based method
in [3], the robotized mobile C-arm [2] and the inverse C-arm positioning using
real-time body part detection [4].

Standard mobile C-arms only have five joints (five DOF), three of which are
rotation joints and two are translation joints. As in 3D Cartesian space six DOF
are required, the C-arm end-effector, i.e. the X-ray source, is certainly restricted
in terms of reaching an arbitrary position and orientation. Matthaeus et al.
presented the inverse kinematics of a general mobile C-arm, proving the existence
of necessary joint parameters for imaging a given point from a given direction [2].
They reduced the 3D Cartesian space to five DOF by only considering a 2DOF
direction instead of a 3DOF orientation. In their work about parallax-free X-ray
image stitching [1], Wang et al. proposed a method of enabling the X-ray source
to have a relative pure rotation to the patient’s table, by moving the table as
an additional DOF in order to compensate for the translational motion of the
X-ray source. However, they did not include this DOF into the formulation.

In this work, we propose to integrate a translational movement of the pa-
tient’s table into the mobile C-arm’s kinematics, thus enabling the X-ray source
to have six DOF with respect to the patient’s table. We present a method to
model the kinematics of the mobile C-arm and operating table as an integrated
6DOF C-arm X-ray imaging system. A forward kinematic analysis is performed
in order to build a kinematic chain model for the 6DOF C-arm model. Kinematic
singular configurations of the 6DOF C-arm model are determined by analyzing
the manipulator Jacobian matrix. The inverse kinematics is solved to position
the X-ray source at an arbitrary position and orientation relative to the patient’s
table. In our implementation, we employ a visual planar marker pattern and a
Camera Augmented Mobile C-arm (CamC) system, which is a standard mobile
C-arm augmented by a video camera and mirror construction, in order to ob-
tain a relationship between the C-arm system and the patient’s table . However,
this can also be accomplished by using the X-ray marker based C-arm pose es-
timation method of [5] or external tracking systems. Being able to position the
C-arm relative to the patient with full 6DOF using C-arms which have 5DOF
paves the way for many computer assisted clinical applications. For example,
precisely repositioning the C-arm during surgery as shown in our experiment. In
particular, this 6DOF C-arm model can allow automatic C-arm positioning for
parallax-free X-ray image stitching proposed in [1]. In their work, the authors
move the table as an additional DOF in order to enable the X-ray source to
have a relative pure rotation for generating parallax-free panoramic X-ray im-
ages. However, they did not include this DOF into the formulation. Moreover,
having a 6DOF C-arm kinematic model would in general enable the smooth
transform of the CT-based pre-operative planning into the operating room, by
accurately positioning the patient with regard to the X-ray C-arm.
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2 Method

The standard mobile C-arm has five joint parameters: the vertical, which trans-
lates the C-arm up and down along the axis Z1; the wigwag (or swivel), which
rotates the ”C” around the axis Z2; the horizontal, which changes the arm length
along the axis Z3; the angular, which rotates the ”C” around its center axis Z4;
the orbital, which rotates the ”C” in its own plane around the axis Z5 (see
figure 2). Defining a unique pose in 3D Cartesian space requires six independent
parameters, i.e. three rotation parameters for the orientation and three transla-
tion parameters for the position. It is impossible for mobile C-arms that have
only five DOF to satisfy an arbitrary X-ray source pose. Therefore, we propose
to integrate a translational movement of the patient’s table into the C-arm kine-
matics in order to enable the X-ray source to be positioned at an arbitrary pose
relative to the operating table. Note that, this does not take into account the
limited mechanical range of each joint.

2.1 System Components

Our system is composed of a translatable operating table, a visual planar square
marker pattern and a CamC system built by attaching a video camera and mirror
construction to a mobile C-arm, Siremobile Iso-C 3D C-arm (see figure 1). The
CamC system is calibrated by using the proposed method of [6] to enable that
the X-ray source and the video camera have the same projection geometry. We
designed a visual planar marker pattern, in which all the square markers can be
uniquely distinguished [7]. The marker pattern is printed in A2 size paper by
a high definition printer, and is rigidly and flatly attached under the operating
table.

Fig. 1. System components for the implementation of the 6DOF C-arm system. The
right top image shows the attachment of the visual marker pattern under the table.
The right bottom image shows our custom made camera and mirror construction.
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2.2 Integrated 6DOF C-Arm System Kinematic Modeling

The forward kinematic analysis of the 5DOF C-arm is performed to build a
direct relation from the five C-arm joint values to the pose of the X-ray source.
We assign a coordinate frame to each link according to Denavit-Hartenberg
(DH) rules [8]. The origin of the coordinate frame 1 is chosen at the C-arm
base. The origin of the coordinate frame 6 is chosen at the X-ray source center,
which is the end-effector. Figure 2 shows the assigned coordinate frames marked
by black color for the 5DOF C-arm kinematic model. Note that this kinematic
model is based on isocentric C-arms, but with a minor modification it can also
be applied to non-isocentric C-arms. Similar forward kinematic analysis of the
C-arm has been studied in [2,3]. From the assignment of the coordinate frames,
the transformation matrix 1T6 ∈ R

4×4 from the X-ray source to the C-arm base
coordinate frame can be established according to the method of [9]. 1T6 is the
forward kinematic function of the five joint variables for the 5DOF C-arm model.

We integrate the forward-backward translation of the table into the 5DOF C-
arm kinematics in order to build a 6DOF C-arm X-ray imaging model. Translat-
ing the table forward-backward is equivalent to moving the whole C-arm system
in an opposite direction. Thus, the table translation must be the first joint in
the 6DOF C-arm kinematic model. The coordinate frame 0 assigned to the table
is defined as, the Z0-axis parallel to the direction of the table forward-backward
translation, the X0-axis chosen such that the X0-Z0 plane is parallel to the table
surface, and the Y0-axis following the right hand rule (see figure 2). C-arm pose
estimation is performed to get a transformation 6H0 ∈ R

4×4 from the patient’s
table to the C-arm X-ray source. We employ the attached video camera of the
CamC system and the visual marker pattern for C-arm pose estimation without
radiation. The corners of each square marker in the marker pattern can be ex-
tracted with subpixel accuracy and used as feature points. Having the marker
pattern with known geometry, we are able to establish point correspondences
between the 2D image points and 3D space points. Based on these point corre-
spondences, the pose of the camera (X-ray source) relative to the marker pattern
(patient’s table) is computed by using a standard camera calibration method of
[10]. Thus, we can compute a transformation from the table to the C-arm base,
1H0 =1 T6 ·6 H0.

We develop a forward kinematic chain for the 6DOF C-arm model by defining
the table coordinate frame as the base coordinate frame and coupling it to the
5DOF C-arm kinematic chain model. In order to satisfy the DH rules, we only
need to re-assign the coordinate frame 1 of the 5DOF C-arm model. The vertical
movement axis Z1 remains the same as in the 5DOF model. According to the
DH rules, the axis X1 should be re-assigned such that it is orthogonal to and
intersects with both axes Z0 and Z1. With the known transformation between the
axes Z0 and Z1, we look for two points on both axes, which define a minimum
distance between these two axes. The axis X1 is defined by these two points.
Figure 2 shows the coordinate frames of the 6DOF C-arm kinematic model, in
which coordinate frames 0 and 1 are marked by red, and coordinate frames 2-6
are marked by black. After establishing all the six coordinate frames, required
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(a) Coordinate frames assignment (b) Link parameters table(*variable)

Fig. 2. (a) Coordinate frames assigned for the 5DOF C-arm and the integrated 6DOF
C-arm model according to the Denavit-Hartenberg rules; (b) the link parameters table
of the 6DOF C-arm model. Ang(A,B)(or Dist(A, B)) represents the angle(or distance)
between axes A and B.

link parameters for building the forward kinematic function are obtained and
shown in Figure 2. Let q6dof = [d0; d1; θ2; d3; θ4; θ5]T be a vector containing the
six joint variables. A transformation matrix iAi+1 ∈ R

4×4 from the coordinate
frame i+1 to i can be derived from the link parameters [9]. A forward kinematic
function 0T6(q6dof ) for the 6DOF C-arm model is established by: 0T6(q6dof ) =0

A1 ·1 A2 ·2 A3 ·3 A4 ·4 A5 ·5 A6, which represents the pose of the X-ray source with
respect to the patient’s table.

2.3 Kinematic Singularity

Kinematic singularity is a kinematic configuration, at which the mobility of the
end-effector is reduced, i.e. losing one or more DOF of motion. A kinematic sys-
tem has a kinematic singularity for a specific joint configuration when the rank
of its manipulator Jacobian matrix is less than the number of the required DOF.
We derive the manipulator Jacobian matrix J6dof for the 6DOF C-arm model
from its forward kinematic chain model according to the method proposed in
[9]. J6dof is a function of variable q6dof and relates differential changes in the
six joint positions to the X-ray source linear and angular velocity. The 6DOF
C-arm model consists of six joints, and thus J6dof is a 6x6 square matrix. There-
fore, when the determinant of J6dof is zero, the rank of J6dof becomes less than
six. We compute the determinant of J6dof ,

det(J6dof ) = (sin(Ang(X1, X2))cos(θ2) + cos(Ang(X1, X2))sin(θ2)) ·
sin(Ang(Z0, Z1)) · cos(θ4) (1)

det(J6dof ) = 0, when
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a) sin(Ang(Z0, Z1)) = 0, the direction of the table translation is parallel to the
C-arm vertical movement direction. This situation does not physically exist.

b) cos(θ4) = 0, the orbital rotation axis Z5 is parallel to the wigwag rotation
axis Z2. Consequently, one DOF is missing.

c) sin(Ang(X1, X2))cos(θ2) + cos(Ang(X1, X2))sin(θ2) = 0 ⇒ θ2 =
−Ang(X1, X2), the direction of the table translation is parallel to the C-
arm horizontal movement direction. Therefore, this configuration leads to
losing one DOF.

(a) (b) (c)

Fig. 3. Example positions for the kinematic singularities of the 6DOF C-arm model.
(a) sin(Ang(Z0, Z1)) = 0; (b) cos(θ4) = 0; (c) θ2 = −Ang(X1, X2).

2.4 Controlling of C-Arm X-Ray Source

Controlling of the C-arm requires finding the required joint values q to position
the C-arm X-ray source to a desired pose T , which is an inverse kinematic prob-
lem. Currently, we employ Newton iterative method of using pseudo-inverse Ja-
cobian [11] to solve the inverse kinematic problem for both our developed 6DOF
C-arm model and standard 5DOF C-arm model. Let J+ be the pseudo-inverse
Jacobian, F be the forward kinematic function, and Δ(F (qn)−T ) represent the
difference between two rigid transformations as a six-vector of displacements and
rotations. The calculation is repeated as equation 2 until ‖ J+(qn)Δ(F (qn) −
T ) ‖ reaches a pre-defined minimun value or a maximum iteration number is
reached.

qn+1 = qn + J+(qn)Δ(F (qn) − T ) (2)

Using pseudo-inverse Jacobian allows us to obtain a solution for the 5DOF C-
arm model and for kinematic singularities of the 6DOF C-arm model. However,
we cannot get a converged solution when unfeasible movement directions are
involved.

3 Experiment

Intra-operative repositioning of mobile C-arms is a common surgical task. During
the intervention, the C-arm often has to be moved back to acquire the second
X-ray image from the same viewing point as the first one, e.g. for the confirmation
of surgical outcome. We evaluated the practicality and accuracy of our developed
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6DOF C-arm system by performing C-arm repositioning tasks. Moreover, the
experiments also show the improved accuracy of C-arm repositioning by using
the 6DOF C-arm model over the 5DOF C-arm model.

For one repositioning experiment, the C-arm was first positioned to a reference
position, at which the first X-ray image was acquired. Then, the operating table
was translated and the C-arm was moved to a starting position, which is a C-arm
zero-joint configuration, i.e. all the five C-arm joints are set to zero. The moved
joints are shown in the column ”actual moved joints” in table 1. At the starting
position, the 6DOF C-arm kinematic model was built by using our proposed
modeling method. After this, the required joint movements for repositioning were
computed. Thanks to the visual marker based C-arm pose estimation, we are able
to compute the current joint values for each estimated C-arm pose by solving the
inverse kinematics. Therefore, our system provides a continuous guidance for the
operator of the device how to move each joint (including the table translation)
in order to move the C-arm to the pre-defined reference position. Then, the
second X-ray image was acquired after the C-arm was repositioned. The C-arm
was considered to be repositioned if further required movements are below 1mm
for translational joints and 0.5o for rotational joints. We evaluate the quality of
C-arm repositioning by analyzing the image difference between the first and the
second X-ray images. Four X-ray visible square markers that can be uniquely
detected in X-ray images are placed on the operating table. The corners of
each marker are extracted in X-ray images with subpixel accuracy and used to
compute the image difference, which is defined as the pixel-distance between
corresponding corners.

We conducted five pairs of C-arm repositioning. Each pair, which had the same
starting and reference positions, consisted of two repositioning procedures using
our developed 6DOF C-arm model and the 5DOF C-arm model respectively.
The pixel differences between the image acquired at the pre-defined position and
the image acquired after repositioning are defined as errors. The error has two
components: inverse kinematics error and system dependent errors (including
the calibration of the CamC system, pose estimation and manual movement
of C-arm). The inverse kinematics for 5DOF C-arm obtains an approximate
solution and thus introduces errors, when an unfeasible movement of the X-
ray source would be required. System dependent errors have a similar influence
in the results of the repositioning tests using both 6DOF and 5DOF C-arm
models. Experimental results (see table 1) show that all the tests using 6DOF
C-arm have relatively small and constant errors. The mean error of the five
repositioning experiments using the 6DOF C-arm model is 5.42 ± 2.46 pixels.
This demonstrates the accuracy of our developed 6DOF C-arm system. The error
analysis for each test pair shows the improved accuracy of C-arm repositioning
using the 6DOF C-arm over the 5DOF C-arm. Each test pair was performed
once, since the joint motions for each test pair were randomized and could not
be exactly reproduced. However, five test pairs were conducted to ensure the
repeatability of the experiments.



492 L. Wang et al.

Table 1. Results of C-arm repositioning experiments

Actual moved
joints

Kinematic
model

Computed joint movement values for repositioning: trans-
lation(mm), rotation(degree)

Image
difference:
Mean(pixels)

table vertical wigwag horizontal angular orbital

table, angular 6DOF 102.15 -1.01 -0.13 0.81 5.52 0.32 7.35
5DOF non -1.53 3.45 -1.38 3.89 0.03 70.16

table, wigwag 6DOF 62.07 -0.39 -6.48 -1.00 -0.16 -0.07 5.78
5DOF non -0.45 -4.31 -5.10 -1.16 -0.5 64.40

table, orbital 6DOF -73.22 -0.49 -0.001 -2.59 -0.06 -9.69 1.38
5DOF non -0.64 -2.70 1.63 1.27 -9.60 59.99

table, horizontal,
vertical, angular,
orbital, wigwag

6DOF 31.04 43.15 -7.34 39.89 15.40 -16.05 5.18
5DOF non 41.70 -6.17 38.58 14.69 -15.41 56.43

vertical, angular,
horizontal,
orbital, wigwag

6DOF 8.61 42.13 -6.10 67.97 15.12 -7.25 7.41
5DOF non 41.84 -5.79 67.98 14.99 -7.33 8.21

4 Discussion and Conclusion

Standard mobile C-arms have only five DOF, which definitely restricts their
motions that have six DOF in 3D Cartesian space. In this paper, we proposed
to build a 6DOF C-arm X-ray imaging model by integrating a translational
movement of the patient’s table to the 5DOF C-arm kinematics. We presented
a method to develop a forward kinematic chain for the 6DOF C-arm model
without constraints on the initial setup of the table position, whose kinematic
singularities were shown by analyzing the manipulator Jacobian. An iterative
method of using pseudo-inverse Jacobian was applied to solve the inverse kine-
matics in order to position the X-ray source at an arbitrary pose relative to
the patient’s table. In our implementation, we employed the CamC system and
the visual planar marker pattern in order to register the table translation into
the mobile C-arm kinematics with no radiation. However, this can also be accom-
plished by using the X-ray marker based C-arm pose estimation method of [5] or
external tracking systems. The C-arm repositioning task was chosen to evaluate
the practicability and accuracy of our developed 6DOF C-arm system, and to
show the advantages of using the 6DOF C-arm model over the 5DOF C-arm
model. Our medical partners confirmed that, with the continuous instruction of
how much to move each joint, the C-arm can be moved back to a pre-defined po-
sition within an acceptable accuracy and time. Currently, surgeons need to put
additional efforts into manually moving the table and C-arm joints. However,
motorized C-arms and operating tables are available in many clinical sites, which
could automate the control of the 6DOF C-arm system. In their valuable work
on inverse kinematics for a general 5DOF mobile C-arm, Matthaeus et al. [2]
reduced 3D Cartesian space to five DOF by only considering a 2DOF direction
instead of a 3DOF orientation. They rotate X-ray images around the principle
point in order to compensate for the missing degree of freedom. However, in
spite of its extreme usefulness in practice, the limited DOF could impose some
functional constraints, e.g. obstacle avoidance, physical limited joint range, and
singularity avoidance. Integrating a patient’s table translation into the 5DOF
C-arm to build a 6DOF C-arm model can definitely reduce the problems of the
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functional constraints. Our proposed 6DOF C-arm modeling paves the way for
advanced applications in the fields of surgical navigation and advanced X-ray
imaging that require C-arms to be precisely positioned or repositioned relative
to the patient’s table with six DOF.
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Abstract. We designed and evaluated a real time 3D CT Image Guided 
Intervention system that integrates in-vivo microendoscopic imaging for on-the-
spot visualization of ICG contrast uptake by tumor vessel in peripheral lung 
tumors.  The performance of the system was evaluated in seven rabbits where 
VX2 cells were implanted in the chest to create peripheral lung tumors.  Two 
weeks later the animal underwent a chest CT scan which was used for creating 
a real time 3D vision and navigation tracking. ICG was injected fifteen minutes 
prior to the needle puncture to allow adequate contrast leakage inside the tumor 
and plasma clearance. After the needle puncture, the microendoscope was 
introduced inside the tumor for imaging. Visualization of tumor leaky 
vasculature was possible in all the tumors. The experiment demonstrated that 
real-time microendoscopy of deep solid organs under a 3D CT image-guided 
system is possible while providing enough accuracy in reaching tumors without 
complications. 

Keywords: Microendoscopy, Real Time 3D CT Image Guided Intervention, 
Indocyanine Green (ICG), Tumor Leaky Vasculature, Lung Cancer Detection. 

1   Introduction 

Currently lung cancer has one of the highest mortality and morbidity rates, despite the 
efforts and investments made in new detection and treatment methods the long-term 
survival rate of lung cancer does not improve. The key to improve the long-term 
survival rate relies in early diagnosis, accurate localization and novel targeted 
therapies [1] for which new imaging techniques are expected to play a significant 
role.  Among the news imaging techniques microendoscopy seems very promising as 
it allows direct observation of pathologic changes at the microscopic level, moreover 
fibered microscoendoscopy provides a clear, in-focus image of a thin section within a 
biological sample, [2] and it is capable of imaging fluorescent labeled biological 
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structures in vivo at exceptionally high spatial resolutions. These technologies can be 
translated to the thoracic oncology field by assisting in early detection of 
precancerous and cancer conditions through improved biopsy selection. Considering 
that microendoscopic probes are able to image tissue with unprecedented spatial (less 
than 1 micron lateral resolution) and high temporal resolution (usually video rate) 
using low-cost, portable devices, this technology has the potential to decrease 
mortality and morbidity by optimizing lung tumor detection. 

A major limitation of microendoscopy is the capacity to reach deep seated targets 
such as the lung [3]. To that end our group has developed an image guided 
intervention based on real time 3D CT images [4] and coupled with electromagnetic 
tracking system to enable microendoscopic probes to reach deep seated-targets.  The 
integration of microscopic imaging with macroscopic image navigation will allow a 
closer look to small targets [3, 4], and may improve the accuracy of biopsies. Here we 
report the results of a study where we coupled microendoscopic imaging with the 
image guided intervention system we created for peripheral lung cancer detection. We 
evaluated its utility in small peripheral lung tumor diagnosis by validating the 
insertion accuracy of the 3D CT image guided intervention system in thoracic 
percutaneous punctures by using in vivo fibered microendoscopy for tumor detection 
using vascular labeling with Indocyanine Green contrast. 

2   Materials and Methods 

2.1   Microendoscopy Probes 

A CellVizio Lung microendoscopic imaging system was used in the study.  The 
CellVizio Lung system is a commercial system approved by the FDA for human lung 
application. This system offers a depth of observation between 0-50 µm, a lateral 
resolution of 3.5 µm, and excitation wavelength between 488 to 600 µm. The field of 
view ranges from 500 µm to 600 µm, covering a relatively large area of tissue and 
capturing optical image sequence of the fine tumor vasculature [5]. The video images 
were obtained at a rate of 12 frames per second. The manufacturer of the CellVizio 
system, Mauna Kea Technologies, provides us with a 1 mm diameter probe that 
allows using a smaller needle size for a percutaneous thoracic puncture, this probe 
will pass through the needle cover after the puncture is successfully achieved and the 
needle is inside the tumor. 

2.2   Contrast Agents 

Among the various contrast agents available Indocyanine Green (ICG) was selected 
because it is the only contrast agent approved by FDA for vasculature imaging; 
therefore a positive result can be translatable to the patient bedside faster. ICG is a 
sterile solution of a nontoxic tricarbocyanine dye with a peak spectral absorption of 
790 nm, [6]. Experiments using near infra-red (NIR) reflected light have showed that 
it is possible to image sub-cellular features in the epithelial tissue with depth 
exceeding 400 µm. [7] NIR provides quantitative functional information that cannot 
be obtained by conventional radiological methods and also can provide in vivo 
measurements of the oxygenation and vascularization states. ICG is also a blood 
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pooling agent and has different delivery behavior between normal and cancer 
vasculature. In normal tissue, ICG acts as a blood flow indicator in tight capillaries of 
normal vessels. In tumors, ICG acts as a diffusible (extravascular) flow in leaky 
capillary of vessels.  

2.3   3D CT Real-Time-Image Guided Intervention 

Our image-guided intervention system consists of the following components (see 
Figure 1): An electromagnetic (EM) tracking device for real-time tracking of the 
needle introducer (Aurora Electromagnetic Measurement System); coherent software 
for real-time localization and visualization of multiple devices being tracked on the 
intra-procedural CT images and one fine needle (Traxtal Percunav, Biopsy Introducer 
18G) for percutaneous lung puncture. The workflow of the system was implemented 
by using a modular multimodality image guidance platform (MIMIG) [8]. Diagnosis 
of the tumor mass inside the chest was accomplished based on morphologic and 
molecular imaging information obtained from different imaging modalities. Novel 
image computing tools including segmentation, registration, and microendoscopy 
image sequence processing were developed for MIMIG. The pre-procedural images 
were segmented for better visualization during surgical planning, and since fast 
segmentation is needed for intra-procedural images, the segmentation results were 
transformed onto the intra-procedural images for visualization during the intervention. 
Using these tools fast and accurate image segmentation and registration algorithms 
were developed for better visualization during surgical planning, intervention, and 
alignment of pre-procedural and intra-procedural images. 

2.4   Animal Model 

The animal protocol was revised and approved by the Comparative Medicine Program 
and IACUC committee at our institution. Solitary lung tumors in seven White New  

 

 

Fig. 1. Pictures showing various components of the real time 3D CT Image Guided Navigation 
System developed by our group: the upper left picture displays the connection trackers for EM 
tracking, the upper right picture shows the field generator that tracks the needle (white arrow). 
The bottom left picture shows the 3D image display available for the physician to design a pre-
operative path planning in order to guide the needle to the tumor, and the bottom right picture 
shows the needle insertion inside the animal chest. 
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Zealand rabbits (2.0-2.2 kg) using VX2 carcinoma cells were created for the study. 
The first cell line was obtained from our cancer research center partner and injected 
directly on the limbs of one rabbit. The tumors first grew in the hind legs of a carrier 
rabbit for two weeks. This animal was sacrificed and the VX2 tumors were harvested 
from the legs to create a cell suspension at a density of 8x106 cells/mL. 

From two VX2 tumors three needles with 0, 5 ml cell suspension were created, two 
needles were injected into the limbs of another rabbit for tumor line preservation and 
the third one was administered in one animal tumor recipient. The cell suspension was 
administered in the right lower lung of the recipient rabbits using a 22-gauge Chiba 
needle percutaneously inserted using fluoroscopy. [9, 10] After the fifth day from the 
lung inoculation a CT scanning was performed weekly to follow the growth of the 
VX2 tumor. Tumors of ≤15 mm in diameter were confirmed at days 12-14 after 
inoculation in all the animals’ models. 

2.5   Experiments 

Once the animal model has the desired tumor size it was anesthetized and transported 
to the CT room for the image-guided procedure. First, a pre-procedural CT scan of the 
thorax was obtained using a SPECT/CT (Symbia TruePoint from Siemens) with the 
following parameters: 1.25mm helical acquisition, pitch of 1.55 and a reconstruction 
of 1.2mm. The chest scan information was transferred from the CT scanner to the 
Image Guided Intervention system where the physician chooses a path planning for 
the percutaneous needle puncture according to the tumor location. The real time 3D 
vision and tool tracking was possible superimposing the electromagnetic tracking data 
(information about the instruments location)  to the pre-procedural scan in real time, 
thus the display appears modulated by the real-time tracking data. The percutaneous 
accuracy puncture accuracy was later validated by coregistering pre- and post- 
punctures CT images. 

Indocyanine Green (ICG-125 mg) contrast was injected IV 15 minutes before the 
percutaneous thoracic puncture; this period was set as the time necessary for adequate 
contrast leakage inside the tumor and contrast systemic clearance from the plasma. 
Before the puncture the mechanical ventilation was stopped to decrease the 
respiratory movement to the minimum. Once the tumor target was reached the needle 
was fixated and a post-procedural scan was performed to verify the needle location 
inside the tumor. After the image-guided needle puncture, the needle was retracted, 
leaving the needle introducer in place. Then, the 1mm O.D. Cellvizio microendoscope 
was inserted through the needle introducer and video recording from the VX2 tumors 
vessels started (Fig.2). At the end of the video recording a tumor biopsy was taken 
using a Biopsy Needle (Quick-Core, Cook Medical) that pass through the same needle 
introducer used for tumor imaging. After completing the biopsy the animals were 
euthanized, the chest was opened and the tumors were recovered. Samples from the 
needle biopsy and tumor were sent to histological analysis by a research vet tech 
blinded to the tumor source. 

For detecting the ICG expression in the VX2 tumor vessels a pre-defined threshold 
of two-fold specific labeling over background were used. With these thresholds, the in 
situ ICG vessel expression inside the tumor can be visualized in real time. The 
percentage of tumor vessel expressing high uptake of ICG per frame was calculated  
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Fig. 2. In the left picture the animal model is undergoing the pre-procedural scan, the picture in 
the middle shows the introduction of the Cellvizio microendoscope probe inside the VX2 tumor 
and finally the right picture shows the imaging of tumor vessels labeled with Indocyanine 
Green. 

after doing a post-processing with the pre-defined threshold. To increase reliability 
motion correction and scene change detection were applied along the video 
sequences. The ICG fluorescence microendoscopy was validated by semi-quantitative 
data analysis of fluorescence video intensity in normal lung and tumor tissues at 
different regions of the lung. The tumor was sampled 5 times while the normal tissue 
was sampled 2 times due to the low standard deviation of mean fluorescence video 
intensity in normal lung tissue and larger variation in tumor tissues. 

3   Results 

The tumors grew to a size equal or less than 15 mm measured by CT scan (average 13 
mm) in the seven animal models used in the study. Complications related to thoracic 
puncture such as pneumothorax were not seen in the second scan. In the confirmatory 
scan the needle tip reached the VX2 tumors in the seven experiments, therefore it was 
not necessary to adjust the needle once inside the thorax. The needle tip was seen in 
the center of the tumor in the post-procedural CT scan in five animals. In the 
remaining two animals the needle tip was located in a peripheral zone of the tumor. 
Four to six videos were recorded in each animal and each video had a duration period 
between 35 to 55 seconds.  

A higher contrast was expected because the micron-sized resolution and shadow 
reception of the microendoscope removed the depth dependence and partial volume 
effect. Figure 3 shows the fluorescent microendoscopic images recorded during the 
experiments, according to an intensity color map.  In the left side of figure 3 we can 
appreciate frames from a video recorded with the needle tip in the peripheral zone of 
the VX2 tumor while in the right side frames from a centrally located needle tip case 
are showed. The first frame shows the original fluorescent image, and the next one 
corresponds to the segmented fluorescent image. The tumors vessels have a 
heterogeneous and high expression/uptake of ICG compared to areas with less 
vasculature, which had an intensity value between 40-60. This was particularly 
evident in the experiments where the needle tip was in a peripheral location, which is 
a zone less vascular compared to the videos recorded from the tumor center where the 
uptake of ICG was higher, due to the high angiogenesis rate. Also some dark areas 
were seen in the videos corresponding to necrotic areas due to hypoxia.  
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Fig. 3. Images captured from a VX2 rabbit model experiment cases where the needle tip had a 
peripheral location (left) and a case where the needle tip had a central location (right) inside the 
VX2 tumor. Note the stronger vascular labeling and expression obtained from the tumor with a 
central needle tip location (zones labeled with red and yellow colors). 

A more dramatic example about the angiogenesis phenomena can be appreciated in 
figure 4 where the video sequences recorded showed regions with high uptake of 
contrast at the center of the tumor; the contrast intensity decreased gradually when the 
needle and microendoscope were pulled-back to a peripheral zone of the tumor and 
later disappeared when the microendoscope was outside the tumor (needle position 
confirmed with CT scan). 

 

Fig. 4. In vivo microendoscopy images showing ICG-labeled vascular architecture inside the 
VX2 tumor first and later structure of the normal parenchyma when the needle was pulled back 
from the tumor 

The biopsies taken at the end of the procedure had a positive result for VX2 
carcinoma, which was compared to samples of the tumor excised from the lung at the 
end of the procedure (Figure 5).  

 

Fig. 5. The first slide was made from a sample of the recovered tumor after euthanasia, while 
the second slide comes from the sample obtained through the biopsy (both are from the same 
tumor). In both samples cells corresponding to VX2 carcinoma were reported. 
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4   Discussion 

In chest medicine, microendoscopy technology has been applied in bronchoscopic 
procedures previously [11], where it was possible to obtain high-quality images 
through a fiber-optic probe of 1-mm diameter introduced in the working channel of a 
bronchoscope. Even more, image registration for displaying the position of flexible 
bronchoscope on CT scan during transbronchial bronchoscopy needle aspiration has 
been applied successfully [12, 13]. However, despite its effectiveness, the 
bronchoscopic approach is useless as a diagnosis or treatment tool for tumors outside 
the airways, therefore not an option for peripheral lung tumors. For this kind of 
tumors the work-up plan usually includes a diagnosis made through a percutaneous 
biopsy and the treatment is either performed with surgery or ablation. Using the real 
time 3D CT Image Intervention system microendoscopic imaging for tumor diagnosis 
can be performed through a percutanoues biopsy needle as we proved in our study.  

The time necessary to do the thoracic puncture with the help of this system, ICG 
injection and clearance, and microendoscopic imaging does not add a significant 
amount of time to a regular puncture biopsy, the path planning can be performed in a 
couple of minutes, while ICG is been cleared (15 minutes) from the plasma. Besides, 
the radiation from repetitive CT scans is drastically reduced because only two scans 
are needed. The use of this system may help to overcome the current limitations 
microendoscopy imaging must face in order to become clinically translatable: shallow 
penetration and emission signal in deep-seated tissues or organs. This is achieved by 
bringing the imaging tools closer to the target. Accuracy to reach the tumor also may 
increase when using the system, in our series the imaging of the tumor vessel were 
recorded mainly from the tumor center where a later biopsy will have more reliable 
result, this was validated by the presence of VX2 carcinoma cells in all the biopsies. 
The use of ICG takes advantages of the high angiogenesis rate seen in tumors, making 
the leaky vasculature [14] easy to visualize by microendoscopy imaging. Our results 
showed a difference in contrast between lung parenchyma and the region recognized 
as the VX2 tumor in CT scan where the contrast was higher whenever the fibered 
microendoscope was closer to the tumor core. This differentiation based on tumor 
angiogenesis also gives us different contrast level inside the tumor as we showed 
when comparing cases where the needle tip and fibered microendoscope had a 
peripheral location, a zone usually more fibrotic and therefore less vascular. This 
contrast differentiation could give an extra tool to the physician to determine a region 
for biopsy, first to distinguish normal tissue and then a zone more vascular from one 
less vascular.  

Pharmacokinetics of ICG enables the potential to provide new tools for tumor 
detection, through the assessment of the leakiness of large ICG molecules from the 
microvasculature; this permeability is a characteristic of the poorly developed 
vasculature observed in tumor angiogenesis. The increase in local microvasculature 
density is also expected to induce a high perturbation in the optical signal from 
intercapillary vessel inside the tumor. Therefore, considering all the characteristics 
offered by the use of ICG in conjunction with microendoscopic imaging, this 
approach may add functional information to morphology, all in real time. 

The clinical impact of this technology could be extremely relevant considering that 
biopsy is a sine qua non condition for tumor diagnosis. Due to tumors heterogeneity, 
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it can be difficult to establish the optimal site for tissue biopsy and sampling error 
may lead to incorrect diagnoses. The use of microendoscopy probes for tumor 
detection using ICG assisted by real time 3D CT image navigation is a technique that 
could improve the sensitivity of tumor detection, several factors contribute to this end: 
1) Continuous tracking of the needle after it has been introduced to the chest without 
taking more CT scans, 2) noticeable visualization of tumor regions based on their 
vascularity, and 3) easy recognition of necrotic regions, capsule, and lung 
parenchyma from tumor (Fig. 4) as  they represent non-vascular areas and therefore 
ICG cannot exert its diffusible (extravascular) flow in leaky capillaries. In our 
experiments, all the biopsies taken from the tumors were positive; these biopsies were 
taken from the regions were a higher ICG uptake was detected by microendoscopic 
imaging.  

Among the limitations we faced in our study we have a relative small series of 
cases, use of VX2 line rather than an adenocarcinoma line, and lack of sensors 
attached to the microendoscope to extend the electromagnetic tracking capabilities to 
the microendoscope. The VX2 line was chosen based on their easiness of handling, 
survival rate, and time to growth. To address the last limitation our group has been 
working in adding EM-sensors to track the fiberoptic image probe to ease fusion of 
microendoscopy video with 3D lung CT volume, therefore a better correlation and 
localization among needle, microendoscope, and tumor vessel imaging can be 
obtained, all together and in real time. 

A minimally invasive technique that provides in vivo optical expression in real-
time would radically improve clinical diagnosis by offering a better assessment of 
changes in tissues. Microendoscopic imaging can meet this important need by 
delivering real-time, in vivo images with sub-cellular resolution, and the addition of 
optical-specific information to anatomic images may benefit the survival rate of 
patients with peripheral lung tumors by providing an earlier and more specific 
detection of the disease.  

5   Conclusions 

Our research findings indicates that using real-time 3D CT image guided intervention 
to guide a microendoscopic probe inside a tumor is fast and effective. This new 
approach could be extremely relevant in lung cancer detection where repeated rounds 
of CT scans are necessary both for screening, diagnosis and post-treatment follow-up. 
This system allows an accurate position of the needle and the microendoscope inside 
the tumor for in situ microendoscopic imaging. The addition of in situ 
microendoscopic imaging is especially useful during biopsy since it may allow a 
better characterization and guidance. Moreover, the addition of tumor vessels 
information to the tumor images provides by ICG has the potential to provide earlier 
and more specific tumor detection. These same features also can contribute to a more 
selective tumor biopsy or ablation. To prove this concept our group is designing a 
clinical trial in collaboration with interventional radiologists to assess the real time 3D 
CT Image Navigation System and microendoscopic imaging with ICG for peripheral 
lung tumor detection and treatment in selected patients. 
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Abstract. Particle-based method has proven to be a powerful tool in real-time 
surgical simulation for its simplicity and high efficiency. However, it is difficult 
to model the high-resolution surface deformation details with standard particle-
based techniques. In this paper, we propose a novel approach to model the 
elastic behaviors of organs with complex surfaces in surgical environment. The 
basic idea of our approach is to introduce an auxiliary surface mesh into the 
existing particle-based simulation framework, and utilize the pre-computed 
surface data with experimental biomechanics parameters for deformable 
modeling. The high-resolution organ deformations and the low-resolution soft 
tissue deformations are treated in surface-based and particle-based methods 
respectively. Our method provides an efficient and physical valid way to model 
the organ deformation details for particle-based surgery simulation techniques 
without using adaptive particle methods, as shown in our experiment results. 

Keywords: interactive surgical simulation, minimally invasive surgery, 
deformable modeling, point-based simulation, physically-based modeling. 

1   Introduction 

Interactive surgery simulation techniques play an important role in today’s medical 
training program. Modeling the deformable organs and tissues accurately in surgery 
scenes is a hot topic in real-time medical simulation. A variety of models has been 
proposed over the past decades to provide deformation results balancing accuracy and 
efficiency in real-time virtual surgery simulation (e.g. mass-spring model [13][14], 
finite element model [6], boundary element model [4][2] or particle-based model 
[5][7][9][10]).  

Different data representations, such as volume mesh, surface mesh or particle 
systems, are used in different physics models. Because there exists hardly any direct 
correlation between these structures, to couple these models in one system with high 
performance is a challenge to real-time surgical simulations. Particle-based simulation 
methods have been proposed over the past decades to alleviate the simulation problems 
brought by meshes in the area of computation physics and computer graphics. For its 
simplicity in topology and data representation, particle-based methods are suitable for 
simulating the elastic and plastic bodies in real-time applications. And they have been 
introduced into minimally invasive surgery simulation in [8] and [10].  
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However, there also remain several problems in pure particle-based methods. One of 
them is the simulation resolution. Since the objects in the scene are all represented by 
discrete points with the same support field, it is difficult to describe some deformation 
details on the organ surface, which is visually important in surgical training. Although 
some adaptive methods have been proposed in particle-based simulation in [1], they are 
less efficient in real-time simulation since extra data structures (e.g. octree) are required to 
handle the points with different resolutions. To model the deformation details without 
sacrificing the high efficiency, in this paper we propose an alternative method for the 
adaptive particle approach. In our approach, a surface mesh is re-introduced into the 
particle-based simulation framework and serves as a high-resolution elasticity solver with 
pre-computed surface deformation data. Unlike the previous mesh-based methods, the 
surface mesh in our methods is only used for physics computation, and all the other 
aspects of simulation, including collision detection, contact handling and haptic rendering, 
are treated in a particle-based way with the same resolution. A physically-based simulation 
framework with combined particle-based and surface-based physics representations is 
applied in simulating laparoscopic surgery training procedures. Insignificant elements in 
the surgical training scenes, such as small soft tissues and fats, are modeled with a 
standard particle-based method, while the important target pathologic organs are modeled 
with our new deformable model to provide high-resolution visual feedback to the trainees.  

2   Overview 

Our method is encouraged by the previous works of particle-based surgical simulation 
[8][9][10]. It contains three main parts outlined below. 

1. Point and Mesh Construction from Medical Data. In this phase the 
medical data is segmented into different parts representing different organs, bones and 
tissues. A set of physics points is extracted and surface meshes are constructed for 
highly detailed simulation of pathologic organs and tumors. Distance field 
information is constructed based on the particles for fast collision handling. 

2. Surface Data Pre-computing for Pathologic Organ Modeling. For the 
important pathologic organs in surgical training, a deformation surface data is pre-
computed using the boundary element elastic solver. The biological material 
properties measured by biomechanics experiments and the surface geometry 
information are used in the surface data pre-computation.  

3. Real-time Deformable Modeling with Hybrid Methods. In runtime 
simulation, the pre-computed surface data is integrated into the particle-based 
simulation framework and help to guide the high-resolution organ deformation in a 
physically valid way. The high-resolution pathologic organs and other ordinary 
elements in the surgery environment are modeled in different ways.  

3   Physics Point Extraction and Distance Field Construction from 
Medical Data 

In this stage, organs and tissue models in the surgery environment are segmented from the 
CT image data. The discrete physics points are extracted from each segmented organ.  
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Fig. 1. In the data extraction stage, the distance field (left and middle) are constructed and put 
into the unified Eulerian grid for collision handling 

For the low resolution deformable models, these points are directly used in simulation. For 
the high resolution models, an additional surface mesh is used to represent the surface of 
deformable object. The surface meshes are generated from medical data by using 
marching cube algorithm, and the particle surface is generated by sampling the coarse 
triangle mesh.  

All the particles, including the particle surface used for high-resolution models and 
physics particles used for low-resolution models, are mapped onto a global grid for 
collision handling. Additionally, as illustrated in Fig. 1, we construct a local Eulerian 
grid for each immobile or rigid object such as bones and surgical instruments in the 
surgery scene, and pre-compute a distance field in the local Eulerian grid as in [1], [3] 
and [11]. The distance field is used in spatial-hashing based collision detection [15] 
for fast collision detection.  

4   Particle-Based Fast Modeling for Small Soft Tissues 

The target pathologic organs and the small soft tissues in surgical training are 
modeled in different ways in our framework. With the extracted physics points in the 
pre-processing step, we use smoothed particle hydrodynamics (SPH) to simulate the 
unimportant elements such as small soft tissues and fats in the scene. The deformable 
model is assumed as a Hookean material. The strain ε and the stress σ follow the 
following rules: 

σ ε= C  (1)

in which C is a rank four tensor. As for isotropic materials, C can be represented by a 
6x6 matrix determined by Young’s Modulus and Poisson Ratio of elastic materials as 
in [7]. In each time step, the surface force, body force and elastic force on each 
particle are summed up and applied in a common ODE solver to model the 
deformation. As in Fig. 2, different operations can be exerted on the fast point-based 
model to change the shapes of the object in a low resolution. We employ this pure 
particle-based method to model the small and unimportant soft tissues. But for the 
pathologic organs which usually play a central role in surgical training, a model with 
higher resolution is needed to model the organ deformation details in the interactions 
with the surgical instruments.  
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Fig. 2. Low-resolution deformations of the small soft tissues are modeled by using the pure 
particle-based method in our framework 

5   Surface-Guided Modeling for Surgical Organs 

To model the pathologic organs in the surgery scene precisely, surface data is pre-
computed before runtime simulation and is used to provide accurate global 
deformation information for the particles in real-time deformable modeling. The 
surface data is a global deformation matrix calculated from the geometry and the 
material properties of the target surgical organ. It contains the deformation data of all 
the surface elements with higher resolution than the physics particles and can be used 
to guide the deformation of the particles in the runtime simulation. 

The surface data pre-computing is based on the Boundary element method (BEM), but 
different from the previous BEM work [4][2][12], we only utilize the surface data (the 
global deformation matrix) pre-computed by BEM to guide the particle deformation, 
rather than directly computing the deformation with BEM in each timestep. All the 
computations related to BEM happen in the pre-computation stage instead of real-time 
loops. So there’s no need to solve the boundary integration equations in each timestep as 
the standard BEM does. This process is replaced by setting external forces from surgical 
instruments and internal repulse forces from constraint particles into a boundary traction 
vector and calculating the global deformation by simply multiplying this vector with the 
pre-computed deformation matrix. Then the deformation computed from the surface data 
is regarded as a corrected target position for the physics particles. It backwardly corrects 
the displacement of these discrete particles and interacting with other particles in a 
Lagrangian way. The hybrid deformable model consists of two main parts: the surface 
data computation in the pre-computing stage and the surface guided particle deformation 
in real-time simulation.  

5.1   Surface Data Pre-computation 

In the surface data pre-computing stage, material parameters for a surface model are 
determined by biomechanics experiments, and the global deformation matrix of 
surface elements is initialized by using the geometry information of the coarse surface 
mesh and the measured biology material parameters. Three material parameters are 
used in the surface data pre-computing: Young’s Modulus E (100-110kPa), Poisson’s 
ratio σ (0.46-0.50) and density(1.00-1.12gcm-3). The former two parameters are 
used in surface data precomputing and are measured by determining the biomechanics 
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strain-stress relationships of tissues sampled from different parts of porcine kidney 
and liver in INSTRON mechanical testing machine as in [10].  

With the biological material parameters and the surface geometry shape of the 
organ, the deformable surface data is calculated based on the Navier’s equation of 
isotropic elastic material. The Green-Gauss theorem and the Kelvin fundamental 
solutions of linear elastostatic problem is used to set up an integral equation defined 
on the boundary of domain Ω and numerically discretized into a matrix formulation as 

( )* *

1 1

1, ,
j j

N N

i j j
j j

d d i n
= =Γ Γ

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟+ Γ = Γ =
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∑ ∑∫ ∫Cu p u u p  (2)

Take the summary of left and right side as H and G. To compute the integral term in 
Hij and Gij, Gauss integration method is employed on surface element i and j. 
Substituting Kelvin fundamental solutions into Gauss integration formula, we get  

7

1

( , )ij j k ij k
k

S P Qω
=

= ∑H u  (3)

7

1

( , )ij j k ij k
k

S P Qω
=

= ∑G p  (4)

where Sj is the area of element j, kω  are Gauss coefficients and P, Q are sampled 

points on the triangle surface. In our implementation we use the seven point 
integration method for each triangle element. Then we get the linear equation system 

( )
1 1

1, ,
N N

ij j ij j
j j

i N
= =

= =∑ ∑H u G p  (5)

H and G are 3N×3N matrices, each containing N×N sub-matrices Hij and Gij. The 
values in each sub-matrix are calculated based on the material parameters and the 
relative positions of the two triangle elements as in the standard BEM [4][12]. U and 
P are 1× 3N vectors composed of displacement and traction vectors of N surface 
elements. Then the global deformation U is computed as 

1−= =U H GP MP  (6)

where M is the global deformation matrix. Computing M is a time exhausting task 
since it is a non-sparse and asymmetric matrix. But this surface data needs to be 
computed only once in the preprocessing stage and can be used to guide the surface 
deformation in runtime simulation.  

5.2   Runtime Organ Deformation Simulation 

In runtime simulation, the physically accurate global deformations are computed 
based on the global deformation matrix M according to the current boundary 
condition (by multiplying the matrix M with the surface traction vector), and then  
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Fig. 3. Comparison between particle-based deformation (left) and our surface-guiding (right) 
method. High-resolution deformations are modeled with the pre-computed surface data. 

served as target positions for the particles on the surface. As illustrated in  
Fig. 3(right), in each time step, displacements of physics particles are corrected based 
on the well-defined goal positions by virtual springs. They are used to describe the 
organ dynamic temporal deformations such as viscosity and creeping in runtime 
simulation. The values are determined by matching the continuous images taken from 
dynamic deforming organs. 

The interactions between the deformable model and VR environment, including 
collisions, contacts and dynamic simulations, are handled by the particle surface using 
point-based techniques. So there is no interaction between the fine surface elements 
and the coarse physics particles with different support radius. All the computations 
are based on physics particles in the point-based framework, while the precomputed 
matrix M is the only extra data used in real-time simulation. 

With the precomputed deformation matrix M, it is easy to compute the accurate 
deformation position for each physics particle in real-time without employing any 
adaptive particle method. As illustrated in Fig. 4, the local deformation of the 
pathologic liver in response to the surgical operations on it is modeled easily with the 
pre-computed matrix, which cannot be resolved with the low number of physics 
points (less than 1,000 in this case). 

 

Fig. 4. The surface-based deformable model is integrated into our particle-based surgical 
minimally invasive surgical simulator. Deformation details of the liver organ in response to the 
surgical operations are modeled in real-time.  
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6   Experiments and Evaluations 

Our particle-based deformable model with pre-computed surface data is integrated 
into a virtual reality training system for laparoscopic surgery as in Fig. 5. The training 
system is set up based on particle-based simulation techniques. Surgeons are trained 
to perform operations on pathologic organs with different biological parameters and 
acquire specific skills under different conditions. The simulation framework is 
implemented in C++ and rendered using OpenGL. All the experiments were carried 
out on a 2.26GHz Pentium M notebook PC with GeForce 9650M graphics card and 2 
GB of memory. 

  

Fig. 5. Our virtual reality laparoscopic surgery training system employing the particle-based 
techniques and our novel model for pathologic organ deformations.  

To evaluate the time performance of the surface-guided deformable model, the 
simulation method is tested on five models with different surface polygon numbers 
ranging from 600 to 2200. As in Table 1, summing the computation time of surface 
deformation, position correction and surface interpolation for each model, it can be 
seen from the overall time cost of each object that our hybrid model is no more than 5 
ms and is suitable for real-time applications. Comparing with the standard particle-
based method in [10], which can provide 60 fps simulation results, our particle-based 
method utilizing the pre-computed surface data can work within the same time 
restrictions (no less than 50 fps).  

In the second experiment, we compare the accuracy of our method with the 
standard BEM. In our hybrid model, the deformation of the surface is computed by  
 

Table 1. Time performance of the surface-based deformable model 

Model Point 
Number 

Surface 
Computation(ms) 

Position 
Correction(ms) 

Surface 
Interpolation(ms) 

Overall 
(ms) 

1 284 0.63 0.228 0.137 1.00 
2 508 1.13 0.309 0.266 1.67 
3 784 1.75 0.653 0.422 2.83 
4 876 1.94 0.725 0.497 3.162 
5 1144 2.53 1.012 0.634 4.176 
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utilizing a pre-computed surface data, and interpolated back to the discrete particles. 
Compared with traditional surface-method such as BEM, it is unavoidable that some 
deformation details may be lost during interpolation between surface and particle 
models. We measure this accuracy loss by comparing our method with the standard 
BEM method as in Table 2. The accuracy loss ratio R is defined as 
( ) / ( )0 intp 0

i i i−∑ ∑u u u , in which 0
iu is the vertex displacements computed by using 

standard BEM model, and intp
iu is vertex displacements computed using surface 

interpolation.  

Table 2. Relationship between vertex number ratio and accuracy loss ratio 

Vertex 
Number 
(Coarse) 

Vertex 
Number 

(Fine) 

Polygon 
Number 

(Fine) 

Vertex 
Num 

Ratio 

Accuracy 
Loss Ratio 

256   508 0.90 2.1% 
394 784 1.39 3.7% 

284 

574 1144 2.02 5.1% 
506 1008 0.83 1.4% 
1000 1996 1.64 3.3% 

608 

1586 3168 2.61 6.2% 

It is concluded from Table 2 that for most organ models in surgical simulation with 
relatively smooth surface, this accuracy loss can be restricted within an acceptable 
scale if the ratio of coarse surface vertex number to fine vertex polygon number is 
below a threshold. When the vertex number ratio is below 2, the accuracy loss ratio 
can be restricted below 5%-6%, which is not obvious in visualization. Considering 
that the time complexity of pre-computing global deformation matrix is 2( )O n , and 
updating global matrix in real-time is ( )O n , it is worthwhile to accelerate computing 
time 4-5 times in the cost of tiny visualization lost. 

Compared with the pure particle-based method, our hybrid model can produce 
high-resolution local surface details in response to surgical instruments as in Fig. 4, 
and these details cannot be resolved on the physical particle level. There are also 
some limitations of our approach. The temporal elastic behavior based on spring 
parameters is less accurate than those based on continuous mechanics. The main 
purpose of our approach is to simulate the high-resolution organ surface deformation 
as accurately as possible (by using precomputed data) and in other aspects to provide 
trainees visually plausible feedbacks. Future work includes designing more accurate 
biomechanical experiments to measure the real material parameters and applying the 
method to more complex and heterogeneous models. 

7   Conclusion 

In this paper we propose a new method to model high-resolution organ deformations 
within particle-based simulation framework. We utilize the precomputed surface data 
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with experimental biological material parameters to model the deformation details on 
the surface of important organs in a physically-based way. Our method provides a 
new alternative for multi-resolution surgical simulation with particle-based methods. 
Since most of the material deformation details are precomputed and stored, our 
method works well in real-time virtual surgery environment and provides physically 
valid simulation results.  
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Abstract. This paper for the first time presents a fast and practi-
cal approach for the co-calibration of endobronchial ultrasound (EBUS)
and video images from a single image pair. At comparable accuracy, it
achieves a significantly higher precision than a reference method based on
combining electromagnetic tracking with two standard calibration tech-
niques (hand-eye and single-wall calibration). Its resulting calibration
matrix can be utilized in navigated bronchoscopy to allow easier EBUS
manipulation and positioning.

1 Introduction

Endobronchial ultrasound (EBUS) recently became a valuable source of informa-
tion in transbronchial interventions, particularly for verification of lesion position
and ultrasound-guided biopsies that were previously performed blindly or un-
der fluoroscopy exposing both patient and staff to ionizing radiation. However,
smooth insertion and manipulation of the EBUS bronchoscope to obtain clear
images is still difficult due to its forward oblique view [1].

At the same time, navigated bronchoscopy is increasingly used in order to fa-
cilitate instrument manipulation and increase operator confidence by visualizing
the bronchoscope pose in relation to a preinterventional computed tomography
(CT) image [2]. Navigation can be accomplished, if the bronchoscope is localized
e.g. by external electromagnetic tracking [3], by registering bronchoscope images
to virtual images created from CT [4,5], or by hybrid methods combining these
two approaches [6]. However, navigated bronchoscopy and its advantages have
not yet been transferred to EBUS.

This paper provides the first step for achieving this transfer. In order to spa-
tially relate images acquired by the ultrasound transducer and the camera in-
tegrated into the bronchoscope, we propose a fast and practical approach for
computation of the Euclidean transformation between their associated coordi-
nate systems. After the camera is localized by electromagnetic tracking or image
registration, we can automatically determine the position and orientation of both
the camera image and the ultrasound plane in relation to a preinterventional CT
image, enabling navigation and hence easier EBUS insertion and positioning.

H. Liao et al. (Eds.): MIAR 2010, LNCS 6326, pp. 513–520, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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2 Method

We propose a two-step method to compute the spatial relation CT U between
camera image and ultrasound plane of an EBUS system as shown in Fig. 1). The
first calibration step consists of measuring the geometry of a custom calibration
phantom using a calibrated pointer and a tracking system (refer to Fig. 2). The
phantom consists of an optical pattern used to estimate the bronchoscope camera
pose and a Z-fiducial configuration of rubber tubes to estimate the ultrasound
pose. In the second calibration step, the transformation CT U can be computed
from a single pair of camera and ultrasound images.

The measurement of the phantom geometry needs to be performed only once,
and a tracking system is not required for subsequent EBUS calibrations. If the
phantom is precision manufactured, the first calibration step may be omitted
entirely.

The mapping between ultrasound image coordinates (u, v) and camera image
coordinates (x, y) is goverened by the following equation:

λ ·

⎛
⎝x

y
1

⎞
⎠ =

[
K 0

]
· CT U ·

⎛
⎜⎜⎝

sx · u
sy · v

0
1

⎞
⎟⎟⎠ (1)

The ultrasound pixel scaling (sx, sy) and the subsequent transformation CT U

from the ultrasound plane into camera coordinates are followed by the projection

T
C

U

Fig. 1. EBUS system. The ultrasound plane and camera frustum in their approximate
spatial relation.
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Fig. 2. Left: model of the calibration phantom. The cone depicts the camera frustum,
the trapezoid represents the ultrasound plane. Planes mark the positions of Z-fiducial
layers, optical pattern and supporting structure, respectively. Right: phantom during
measurement with a tracked pointer. The tubes of the Z-fiducials have been removed
for easier measurements.

through the camera matrix K and, not shown in Eq. 1, by radial and tangential
distortion. As K and the calibration coefficients are intrinsic to the camera and
hence do not change, they can be precalibrated using a standard camera cali-
bration method with a standard printed pattern in air, e.g. the one proposed
by Wengert et al. [7]. This allows for optimal freedom in camera/pattern po-
sitioning, as opposed to working within the constraints of a custom phantom.
However, during CT U calibration the camera will be placed underwater to allow
for simultaneus acquisition of camera and ultrasound images. The effects of this
submersion need to be accounted for during the computation of the transforma-
tion matrix.

2.1 Underwater Camera

The submersion of the camera during calibration causes a magnification of the
recorded images, affecting both the intrinsic camera parameters and distortion
coefficients modeling the camera system. According to Lavest et al. [8], the fo-
cal length of the camera model needs to be adjusted by the ratio of the optical
indices of the involved media. For an air to water adaptation, this ratio is r = 4

3 .
However, the distortion coefficients cannot be adjusted without a detailed model
of the camera’s lens system. To overcome this, we instead apply the ratio r as a
magnification directly on the image plane, after any projections and distortions
are performed using the camera parameters calibrated in air. Lavest et al. em-
pirically prove this method to be valid [8]. Any point pa on the image plane in
air can thus be mapped to coordinates pw in water with the following equation:

pw = α + (r · (pa − α)) (2)

where α is the camera’s principal point.
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2.2 Phantom Design

To calibrate the transformation CT U from a single pair of camera and ultrasound
images the phantom needs to allow for simultaneous estimation of camera and
ultrasound poses. To estimate the camera pose, a dot pattern is printed on a
decal with an office laser printer. This decal is attached to an acrylic glass plate.
The dot pattern layout used in the automatic calibration toolbox implementing
the method proposed by Wengert et al. [7] is used with a scaled dot spacing of
5 mm.

To estimate the ultrasound pose, a Z-fiducial setup based on the method of
Comeau et al. [9] is used. Four layers of Z-fiducials are used, each containing
one Z-shape comprised of a rubber tube filled with water. The Z-fiducials are
supported by two acryic glass panels, spaced 40 mm apart. The plate containing
the optical pattern is also glued to this supporting structure. Figure 2 shows the
setup of the phantom.

2.3 Calibration

For convenience, the origin of the phantom coordinate system is defined to coin-
cide with the origin of the optical pattern coordinates. During the first calibra-
tion step, the location of the Z-fiducials is computed in phantom coordinates.
For this, the location of the supporting holes as well as the location of the optical
pattern are measured.

During CT U calibration the computed poses P T C , P T U of camera and ultra-
sound are thus within the same coordinate system, and the desired transforma-
tion can be computed trivially as: CT U = P T C

−1 ·P T U .
The user inferface for the calibration process is shown in Fig. 4.

Camera Pose Estimation. The feature detection for the camera image is
based on the algorithm proposed by Wengert [7]. The pattern is used unmodified
(except for scaling) and the feature matching algorithm is analogous to the
originally proposed version. The preprocessing and blob extraction before the
feature matching was adapted to the underwater, real-time environment of the
calibration procedure.

Figure 3 (right) outlines the camera pose estimation algorith. The color video
image from the camera is first converted to grayscale. It is then subjected to a
histogram equalization, followed by an (inverse) adaptive thresholding to pro-
duce a binary image containing the dots and bars of the pattern. The adaptive
threshold allows for a robust extraction of the features even under the usu-
ally very inhomogeneous illumination caused by the bronchoscope’s light source.
Blobs are then extracted from the binary image. Before being processed, the
detected points are scaled as if they were in an air environment, so that the in-
trinsic parameters calibrated in air can be used for the pose estimation. The two
large bars defining the local coordinate system of the pattern can be identified
through their large ellipticity, defined as the ratio of their major and minor axis
length. For the bars, this ratio is greater than two, while the circles have a value
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Fig. 3. Ultrasound pose (left) and camera pose (right) estimation steps

Fig. 4. Screenshot of the user interface during calibration

of roughly one. The two bars are then distinguished by their area. Once the bars
are detected, an iterative search is performed, matching the circles of the pattern
to its local coordinate system. Once the point correspondences are established,
a projective transformation between all points is computed using the OpenCV
library1.

Ultrasound Pose Estimation. Figure 3 (left) shows the ultrasound pose esti-
mation algorithm. The ultrasound image is first converted to grayscale, smoothed
with a median filter and subjected to a binary thresholding. From the resulting
binary image, all contours are extracted using OpenCV. The extracted contours
are then filtered based on an area threshold to eliminate small artifacts. From
the resulting list of candidates, every possible triplet is assembled and associated
with a cost. The cost function is defined as the sum of squared distances of the
points on the y-axis of the image. For any given triplet of y-coordinates c1, c2,
c3, the cost is thus:

C (c1, c2, c3) = (c1 − c2)
2 + (c1 − c3)

2 + (c2 − c3)
2 (3)

where ci are the y-coordinates of the image points in the triplet. Points are then
filtered with a cost threshold. No detected contour can be part of two fiducials,
but all points are part of multiple triplets since all possible permutations are
1 http://sourceforge.net/projects/opencvlibrary/

http://sourceforge.net/projects/opencvlibrary/
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considered. To correct this, the triplets are iterated through, starting from the
lowest cost triplet. Any subsequent triplet containing one of the points of the
current triplet is discarded, ensuring all triplets contain unique points. Finally,
the remaining triplets are sorted by their mean y-position, and the points of the
triplets are sorted by their x-position. The n triplets with the lowest cost now
contain, in order, the points of the n Z-fiducials. Using the method of Comeau et
al. [9], n points in 3D space can be computed from the detected fiducials. These
points are registered to the phantom geometry with a point-based registration,
yielding the desired pose of the ultrasound probe.

3 Experiments

To establish a reference transformation CT U we attached a 6DOF position sen-
sor of an NDI Aurora tracking system to the EBUS system. Using the hand-eye
calibration method proposed by Tsai and Lenz [10], we compute the transforma-
tion ST C between camera image coordinates and the sensor’s local coordinate
system. Additionally, we compute the transformation ST U from the ultrasound
image plane to the sensor using the single-wall method proposed by Prager et
al. [11].

For a series of five hand-eye calibrations and five single-wall calibrations, all
25 possible permutations for a resulting calibration transformation CT U are
compared to a series of 25 transformations obtained with our proposed method.

To provide a quantitative measure of the calibration error, the tip of a probe
tool was moved to intersect the ultrasound plane while at the same time being
visible in the camera image. The resulting small dot in the ultrasound image pro-
vides coordinates (u, v) which can then be mapped into the camera image using
the calibrated transformation and Eq. 1. The distance of this backprojected, dis-
torted and scaled point to the actual tip location in the 320 by 320 pixel image
can then be measured, giving a quantitative indication of the calibration quality.

Table 1. Statistics for the
mean pixel error values for
the 20 backprojected point
pairs using the hand-eye- and
single-wall-based (he+sw) and
phantom-based calibrations

phantom he+sw
rms 6.75 px 32.8 px
std 0.44 px 23.88 px
min 6.11 px 5.97 px
max 7.82 px 83.88 px

Due to the thickness of the ultrasound plane,
errors in positioning the tip on the plane can con-
tribute significantly to the resulting error value.
Since the ultrasound plane is nearly orthogonal to
the camera image plane, effectively forming a ver-
tical line in the camera image, only the difference
in image height is considered for the error. This
ensures that the error introduced by the verifica-
tion method itself is minimal.

This pixel error value was computed for all 50
calibrations with the resulting cumulative error
values for a series of 20 points being shown in
Fig. 5.

Table 1 shows the root mean square (RMS),
standard deviation (STD), minimum, and maximum of the cumulative error
values for both series of calibrations. It is apparent that while the best calibra-
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Fig. 5. Estimated cumulative errors for 20 point pairs for 25 hand-eye and single-wall
(HE+SW) calibrations and 25 phantom-based calibrations. Please note that the y-axis
has exponential scale.

tions of both series (i.e. the ones with the lowest error) are competitive, the
hand-eye- and single-wall-based approach is less precise.

4 Discussion

As we can see from the results of our experiments, our proposed method is signif-
icantly more precise than a combination of electromagnetic tracking, hand-eye
calibration, and single-wall calibration at a comparable maximum accuracy. We
partially attribute this to the use of optical tracking during measurement of the
phantom geometry, which has a higher precision and accuracy than electromag-
netic tracking. Once a phantom is built or measured, our method can also be
performed faster than hand-eye calibration and single-wall calibration, which is
advantageous if several calibrations are required. Furthermore, the actual cali-
bration does not require an external tracking system, which may not be essen-
tial in a laboratory setup, but can be very important for clinical or commercial
applications.

After calibration, the transformation matrix CT U normally does not change
any more. So even if external tracking is applied for navigated bronchoscopy, after
attaching e.g. an electromagnetic tracking sensor, we only need to determine the
transformation from sensor coordinates to camera coordinates without the need
for ultrasound calibration in a water bath.

For further studies we are planning to use a precision machined phantom with
known geometry to achieve an even higher precision and accuracy than with
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optical tracking. This kind of phantom renders a tracking system unnecessary
and can hence further reduce costs and complexity of our procedure. For our
next generation phantom we will also try to improve the material properties of
the Z-phantom tubes for better visibility in ultrasound images. Moreover, we
are about to develop a similar calibration approach for endoscopes with a radial
ultrasound transducer that have non-overlapping fields of view, along with the
investigation of endobronchial 3D ultrasound.

5 Conclusion

This paper for the first time presents a fast and practical method and design for
the co-calibration of endobronchial ultrasound and camera frames, which only
requires a single image pair to perform calibration. At comparable accuracy,
it achieves a significantly higher precision than a reference method based on
electromagnetic tracking, hand-eye calibration, and single-wall calibration.
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Abstract. This paper presents a method to display Epicardial Excita-
tion Time (ECET) map information intuitively to a surgeon. The method
uses Conditional Density Propagation to track the epicardium during the
complete cardiac cycle. Then, combining this algorithm with electrophys-
iological mapping techniques, pre-recorded ECET maps are overlay onto
the surgeons endoscope stream to give direct feedback on cardiac exci-
tation propagation. To the best of our knowledge, this is the first report
of electrophysiologic data being augumented with a surgeons endoscope
stream.

1 Introduction

Arrhythmia is an irregularity in heart rhythm resulting from a defect in the
conduction system of the heart [1]. The most common intermittent arrhythmia
is atrial fibrillation (AF). AF leads to irregular impulses of the ventricles that
generate the heartbeat and therefore results in an irregular heartbeat lasting
from a few minutes to weeks. AF tends to become a chronic condition and
increases the risk of death [2][3].

Cardiac electrophysiologic information is used to locate abnormal conduction
pathways. Typically, spatiotemporal endocardial potential is recorded and used
to generate some cardiac excitation time map. This map must then be commu-
nicated to the electrophysiologist. There are several commercial systems that
perform this step (“Carto System” by Biosence-Webster Inc., “Ensite catheter
System” by St. Jude Medical co. Ltd., etc.). These systems always map the
endocardial excitation via catheter insertion. However, we have been working
with a group of thoracic surgeons who attempt to perform ablation on the epi-
cardium. This is basically a variant of the Maze procedure [4]. To achieve this
they require a system that maps excitation time of the epicardium. This paper
will hereby document our solution to intuitive real-time EpiCardial Excitation
Time (ECET) map visualization.
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c© Springer-Verlag Berlin Heidelberg 2010



522 P. de Lange et al.

We attempt to display ECET map information directly onto the surgeons en-
doscope stream. However, in doing so we must deal with the problem of tracking
the epicardium in real-time. Several groups are working in this area [5][6][7].
In particular, Lau et al. has presented a noncontact method to track the car-
diac surface. But for ECET map overlay there was several acute limitations;
endoscope image must contain coronary artery tree, surgical instruments can
not occlude heart and specular reflections can cause instabilities. We overcome
these technical limitations using the Conditional Density Propagation algorithm
developed in Sec. II 2.1. On the other hand, Ginhoux et al. present a predic-
tive visual servoing system trained with data from optical markers. Attaching
markers is not ideal, but their approach provides greater stability and occlu-
sion resistance. Their adaptive observer requires the use of a 500Hz video cam-
era. This is an expensive and non-standard tool in the operating theatre. We
have overcome this engineering challenge by simplifying the tracking algorithm,
Sec. II 2.2, and using a fast rigid-registration method, Sec. II 2.4.

2 Method

2.1 The Conditional Density Propagation Algorithm

The Condensation algorithm provides a method to estimate a generic state, xt

and is made up of three distinct steps.

Selection Step. In the application described in this paper, the openCV Con-
densation estimator was used. OpenCV internally controls this selection step
based on several initialization parameters. We performed some preliminary test-
ing and found random sampling to within ±25 pixels provided suitable tracking
for our system. Smaller values provided faster processing speed but quick move-
ments then resulted in instability.

Prediction Step. The Prediction step involves the use of a dynamic model
to estimate state, xt. In this publication state will refer to estimated marker
position in frame t. Therefore, xt is a 2D vector, [u, v]T , in image coordinates.
The condensation algorithm’s probability frameworks make assumptions such
that the dynamic model can be represented numerically as,

xt = A · xt−1 + ωt (1)

where ω is some random noise function. For the Cardiac Electrophysiologic Map-
ping Overlay System, we let A equal the unity matrix. This means, our predictive
model assumes marker position, xt, does not change from the position in the pre-
vious frame, xt−1. While it appears this would deadlock the system, the noise
function, ω, accounts for marker movement and enables tracking. This simple
first order model is acceptable as it was for similar work performed by Nummario
et al. [8].
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Measurement Step. Condensation implements factored sampling to perform
the measurement step. For this step, a probability density function, p(zt|xt),
needs to be specified. Normally p(zt|xt) requires either posterior density data,
p(xt|zt), to be defined or, time-consuming iterative calculations in the case of
two-dimensional images [9]. However, we have found a way to avoid this in the
case of the ECET Map Overlay System by reducing the problem to a one-
dimensional tracker.

2.2 Probability Density Function

In the case of a one-dimensional Condensation state estimator, the observations
reduce to a set of scalars [9]. This idea provides an economical alternative to the
two-dimensional case. In the application described in this paper, the probability
density function is transformed first into RGB color space. This is achieved by
realizing a specific observation from the observation set, z

(m)
t , m = 1, 2, . . .M

is equal to a vector in RGB color space. Succinctly, we can use z
(m)
t , a point

in image space, to extract pixel information c
(m)
t , a point in RGB color space,

and observe the probability this pixel is a target color, ctarget. The observation
should result in a scalar, cm. For this we use euclidean distance between the
target color and the sampled pixel. Combining these steps we can derive the
following probability density function.

p(zt|ct) ∝ 1 +
1√

2πσα

∑
M

exp (−cm
2

2σ2 ) (2)

In (2), the parameters σ and α must be chosen after examination of data and
measurement error. σ is the standard deviation of the data set and we found it
to be around 50 during laboratory calibration. α is less well defined but we found
good results setting it to equal one. Notice we are now only tracking color space
and positional accuracy is lost. We have overcome this problem using something
we have called Center of Gravity Compensation

2.3 Center of Gravity Compensation

The condensation algorithm described in Sec. 2.1 & Sec. 2.2 allows us to quickly
track the optical markers in a windowed endoscope stream. But the method
has a weakness. The method is tracking the optical markers as a point in RGB
color space but this transforms to a region in image space. The algorithm does
not allow us to specifically track the center of this region, which is where we
will assume the marker is located. To locate the center of the marker, we are
using the C++ image segmentation library released by Imura Masataka [10]. We
use the result of the condensation algorithm to isolate the marker region in the
labeled image. Then we calcluate the center of gravity of that region and set this
as the real marker position.
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2.4 ECET Map Overlay

Augumented Reality (AR) can be used to provide information to the surgeon
in an intuitive way [11]. We chose a basic multimodal AR overlay method after
balancing speed and simplicity with performance requirements. We overlay epi-
cardiac electrophysiologic data onto the endoscope frame to create a registered
image which is presented to the surgeon via a monitor. The process is a rigid
registration which is described below.

Feature Detection. The key to applying Equation (2) is selecting a color that
is distinguishable from image clutter. In vivo, the system is targeted to function
using surgical images delivered via an endoscope. Obviously, colours such as
black, red and white are abundant in such images. For this reason marker color,
ctarget, was chosen to be blue.

Feature Matching. Feature matching is performed using a Mutual Informa-
tion (MI) method as is common with multimodal registrations [12]. We use a
priori knowledge of the relationship between the electrode array and markers
to calculate the correct position for overlay. We have documented an electrode
array and ECET Map generation in a previous publication [13]. However, in this
new system we are using a global electrode array which has a fixed spatial rela-
tionship between each electrode. We also know the overall height & width. To
register this map with cardiac movement, we placed a marker on the epicardium
at each corner of the electrode array. Each corner marker was then tracked using
the Condensation algorithm. We then use the pose of the four markers as points
to ‘attach’ the corner of the ECET Map to in the endoscope stream. This is
a form of rigid registration based on a first order global polynomial mapping
function.

2.5 System Configuration

System configuration is given in Fig. 1. First the processing PC must collect
electrophysiologic information and process this offline to create an ECET map.
This is performed by using the Polaris Optical Tracking system by NDI to track
optical markers attached to the distal end of a modified 1DOF forcep. Onto
the proximal end of the forcep we attached a custom designed global electrode
array to record electrophysiologic information. ECET map overlay only involves
estimating the current state, registration and then overlay. Registration is easy
because the four blue-markers were located using a Polaris pen tool (8700340) 1.
This allows us to accurately know the relationship between the electrode array
and the four markers. Then, electrophysiologic data segmentation is performed
by thresholding the measured potential with some value, T . If the recorded
potential is above T then we assume it is part of the propagation wave. The
1 In detail, we assumed the position of each marker to be the average of pen tip data

after touching the center of each marker for 10 seconds.
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Fig. 1. System configuration. Blue markers are tracked using endoscope stream while
electrode position is recorded using a 3D tracking system. The two are registered and
then displayed on a monitor.

result is a mask bitmap stream which can be used to decide if output pixel,
G(i, j)t, will come from the endoscope stream, F (i, j)t, or be bit copied from the
ECET map, D(i, j)t. Eq. 3 defines the process mathematically,

G(i, j)t =
{

F (i, j)t if D(i, j)t < T
D(i, j)t if D(i, j)t ≥ T (3)

3 Laboratory Evaluation

3.1 Tracking Accuracy

Evaluation of algorithm accuracy was performed in image space. Two experi-
ments were performed to evaluate two parameters. The first experiment was to
determine tracking accuracy as the target moves increasingly faster, the second
experiment was to determine tracking accuracy as the tracking markers became
smaller. Both experiments used a simulation program to feed the condensation
algorithm with software controlled markers.

Tracking Accuracy vs Target Speed. To obtain quantitative results of al-
gorithm accuracy, four markers were moved in a circular trajectory. The marker
speed was made controllable via keyboard input. In this way, we could know the
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exact position of each marker. The next step was to pass this bitmap into the
condensation algorithm and calculate the estimated position. Now, we could also
know the estimated position of each marker. The results of one such experiment
are given in Fig. 2.

Tracking Accuracy vs Marker Size. In vivo it is desirable that the tracking
algorithm can track the epicardium via endoscopic images. Consequently, marker
size can be deminished through blood contamination, obstruction via surgical
instruments or simply by zooming out. To evaluate robustness, accuracy was

Fig. 2. Example graph showing increasing tracking errors as each marker speed in-
creases. Performed with marker radius fixed at 5pixels.

Fig. 3. Example graph showing decreasing accuracy as marker size decreases. Per-
formed with marker speed fixed at 31pixels/frame.
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measured as marker size was reduced. The simulation software described earlier
was again used, however this time the keyboard input controlled marker radius.
The results of one such experiment are given in Fig. 3.

4 In Vivo Evaluation

4.1 Experiment Environment

The epicardium tracking system was tested in vivo. The subject was a supine
39.5Kg swine, and underwent a median sternotomy with thoracotomy incision.
Electrophysiologic reference potential was measured from a clip secured on the
inner side of the incision site. Both this reference potential and the 20-channel
epicardial electrogram, captured from our custom electrode array, were input
into a multi-channel electrogram recording system (EP-WorkMate, EP Medsys-
tems). Once collected, the data was converted to an ASCII character stream and
processed in Matalab R2009a to create our ECET maps. To track heart move-
ment, four blue markers were attached to a silicon sheet, Fig. 4. This sheet was
then sutured onto the epicardium around the area to be mapped. A standard
640x480 mono-channel endoscope stream was captured using a PCI5531 image
capture board by Interface. The processing PC was an Intel Core 2 Duo 2.66GHz
Processor, running a MSVC2006 Debug build under Windows XP SP2.

Fig. 4. Experiment environment showing global electrode array and condensation
markers sutured to the epicardium.

4.2 Experiment Result

30 seconds worth of electrophysiologic maps were recorded and then processed of-
fline. When processing was complete the maps were overlaid onto the endoscopic
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image using the method described in Section 2.4. One cycle is given (every second
frame) in Fig. 5. It is possible to see how effective the estimator was at picking
up the markers in a dynamic, reflective and cluttered environment. Tracking
took 32.73ms per frame (average over 30 second recording). This equates to a
30.6Hz frame rate. This is fast enough to operate at NTSC video speed and we
consider this result to be real-time capable. Removing debug code and switching
operating system provided a speed enhancement again.

Fig. 5 shows a regular (non-arrhymogenic) wave propagation across the right
ventricle. The wave propagates from the bottom right of the image to the top
left of the image. This makes sense because anatomically ventricle propagation
originates in the apex of the myocardium and moves upwards through the ven-
tricular myocardium [1]. This corresponds to the contraction of the ventricles
pushing blood through the semilunar values; the QRS wave in an ECG record-
ing. We used this quanlitative analysis to conclude correct wave propagation is
being displayed.

Fig. 5. Cardiac Electrophysiologic Mapping Overlay system showing wave propagation
across right ventricle

5 Discussion

Condensation is one example of a Particle Filter. Particle Filters are a family of
model estimation techniques based around simulation of Bayesian models. There
are several alternative estimators that solve a comparable problem. Several are
noted here.

Kalman Filter. Perhaps the most generic approach is to implement a Kalman
filter. Unfortunately, Kalman filtering suffers several chronic impediments in
the case of the Cardiac Electrophysiologic Mapping Overlay System. Firstly,
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the Kalman filter is based on Gaussian densities. Gaussian densities are
unimodal and cannot represent simultaneous alternative hypotheses. So if
background clutter density is temporarily greater than marker density, the
system will start tracking the clutter. Particle filters, can track multiple
markers simultaneously, therefore reducing the chance of losing the marker.
Furthermore, the Kalman filter involves solving a Riccarti Equation of con-
siderable computational complexity. In a real-time application this is of no-
table concern.

Monte Carlo Methods. Monte Carlo Methods [14] [15] also use Factored
Sampling in the Measurement Step. As expected, the result is a state estima-
tor that has similar performance metrics as the Condensation algorithm. The
only noticeable difference is speed of operation. In theory the Condensation
algorithm can achieve comparable accuracy but faster.

6 Conclusion

We have developed a method to display epicardial excitation time maps intu-
itively to the surgeon. This is a new way for thoracic surgeons to locate arrhyth-
mogenic tissue or abnormal conduction pathways to be targeted with catheter
ablation. The clinical application of such a system is minimally invasive surgery
compatible inter-operative and post-operative evaluation. Another contribution
of this research is a method of stable and fast cardiac cycle tracking via the
surgeons endoscopic stream. This is applicable in many guidance based systems
which have or are currently being developed.
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Abstract. The objective of this research is to develop and evaluate a
context-aware Augmented Reality system which filters content based on
the local context of the surgical instrument. We optically track positions
of the patient and the instrument and interpret this data to recognize
the phase of the operation. Depending on the result, an appropriate
visualization is generated and displayed. For the interpretation, we com-
bine a rule-based, deductive approach and a case-based, inductive one.
Both rely on a description-logic based ontology. In phantom experiments
the system was used to support implant positioning in models of the
mandible. It recognized the phase correctly and provided an appropriate
visualization about 85% of the time. The knowledge-based concept for
intraoperative assistance proved capable of generating useful visualiza-
tions in a timely manner. However, further work is necessary to improve
accuracy and reduce the deviation from the actual and planned implant
positions.

1 Introduction

Intraoperative Augmented Reality (AR) has shown great potential in simplify-
ing the performance of surgeries [1]. However, most existing systems only offer
assistance for a single, predefined phase of the operation. Incapable of adjusting
to current events, the visualizations can even cause problems by obstructing the
surgeon’s view during sudden emergency situations. Therefore, there is research
interest in analyzing the workflow to offer assistance depending on the current
context [2,3].

In dental implant surgery, there are times when the surgeon just needs to see
the position of a single dental implant positions. And sometimes he additionally
needs to see the positions of nearby vital structures. The idea is that at any
point in time, just the information currently relevant to the surgeon should be
displayed, while everything else is filtered out. We propose a knowledge-based
method to provide this service.

H. Liao et al. (Eds.): MIAR 2010, LNCS 6326, pp. 531–540, 2010.
� Springer-Verlag Berlin Heidelberg 2010
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For context-aware visualization, situational awareness is required. Commonly,
stochastic classifiers such as HMMs or neuronal networks [4,5,7] are used. Other
systems use knowledge representation techniques to model and analyze the surgi-
cal workflow [6]. In [8] we presented an intraoperative knowledge-based approach
for context-aware systems based on the work of Neumann et al. [9]. Its use of
ontologies allows for formally sound and reusable incorporation of background-
knowledge. All information is stored in a human-readable white-box fashion. It
can easily be checked for soundness, either manually through experts or auto-
matically through formal verification algorithms. In medical applications with
a focus on safety, this is a major advantage compared to stochastic methods.
Their numerical representation of knowledge is rarely accessible to human inter-
pretation and understanding.

The basic idea behind our situation interpretation, as introduced in [8], is to use
the same information sources a surgeon also would: formal knowledge, as found in
literature, and the experience he acquired in his working life. For dental implant
surgery, we improved our methods and developed an AR-based planning tool for
dental implants. The algorithms are implemented in a system for intraoperative
assistance, which has already been used in a clinical study [10]. The methods and
the results of phantom experiments are presented in this paper.

2 Methods

2.1 Preoperative Planning

Precise planning of implant positions is of great importance for dental implant
surgery. For our system, implant positions can be defined with common plan-
ning tools. However, there are few systems that go beyond traditional WIMP-
interfaces (Windows, Icons, Menus and Pointing). To evaluate the benefits of
alternative interfaces, we developed a planning tool based on AR.

The planning tool overlays DICOM-image slices on a 3D polygonal model
of the mandible. User interaction takes place via a 3D pointing device with
integrated buttons. They are used to scroll through the image slices and define
implant positions. Examples are shown in Fig. 1.

Fig. 1. (a) skull model with a CT-image slice, (b) positioning of implant positions
represented with blue cylinders
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Our approach allows for intuitive navigation and planning. The user can phys-
ically place and rotate objects. This is a major benefit in comparison to the often
cumbersome WIMP-based methods for defining positions of implants. The tool
is integrated in the same software framework which also hosts the modules for
intraoperative assistance. This way, migration from planning data to its intra-
operative use is simplified. Further work will focus on improvements of the user
interface to ensure a more streamlined workflow.

2.2 Intraoperative Assistance

Intraoperative assistance is provided in a three-step process: situation modeling,
interpretation and visualization. Each of them is described in the following.

Situation Modeling. The aim of this step is to create a computational model
of the current situation to serve as the basis for the interpretation. It is compro-
mised of preoperative planning data and intraoperatively acquired information
on positions and distances. To account for differing requirements, three different
models of the situation are used: the subsymbolic, symbolic and semantic model.

The subsymbolic model represents the current situation in a quantitative way.
Objects are represented as polygonal meshes and relations between them, e.g.
distance, as numerical values. This is the most detailed model of the situation.
Its purpose is to provide parameters for the visualization and it forms the basis
for the symbolic model. In the current system, we use the NDI Polaris optical
tracking device as the only sensor. It allows for tracking of features like position,
speed and distance in real-time.

The symbolic model represents the current situation in a qualitative way. Ob-
jects are represented with symbolic names, e.g. drill or nervusAlveolarisInferior,
relations with symbolic qualifiers like near or far for the distance relation. This
text-based representation offers a concise view on the current situation. Cur-
rently, we track two low-level features: a measure of distance and a measure of
approaching. Approaching is quantified by a combination of approaching speed
and distance. Object which are already in proximity of each other and whose
distance is decreasing quickly are assigened a high degree of approaching. The
corresponding function was defined using fuzzy logics. It is defined as the con-
junction of the fuzzy predicates proximity and decreasing distance. The T-Norm
min is used as the conjunction operator.

The semantic model represents the current situation with Description Logics
(DLs). Here, knowledge about the current situation is augmented with medical
background information. As common in DL, knowledge about the current situa-
tion is expressed in the Assertional Box (ABox), whereas background knowledge
is modeled in the Terminological Box (TBox). For the problem at hand, we use
a new means of representation in comparison to [8]. The situation is described
by binary relations between the drilling device and all other objects (namely the
drill burs, anatomical structures and implant positions). An example is provided
in Fig. 2. The semantic model is used as the basis for knowledge-driven situa-
tion interpretation. The logic reasoning is performed by RacerPro, a commercial
reasoning system for OWL, on a handcrafted Ontology.
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Fig. 2. Small excerpt of an ABox, showing the relations between the drilling device
and four other objects

Situation Interpretation. The purpose of the situation interpretation process
is to determine the current phase of the operation. We mimic the human ap-
proach to this problem by using formal knowledge from literature and experience-
based knowledge from observed examples. To represent formal knowledge, we use
a rule-based system. Experience is modeled by case based reasoning. Using two
complementing methods, we increase confidence in the classification results. Both
algorithms rely on the semantic model as a common knowledge base and take
advantage of logical inference mechanisms. Currently four phases of the opera-
tion are considered: drilling, picking a new bur, approaching a planned implant
position and endangering the nervus alveolaris.

As introduced in [8], the rule-based approach relies on explicit definitions of
phases with rules of canonical ”if-then”-structure. For technical reasons, we use
nRQL (new Racer Query Language) to express rules in terms of queries. The
queries consist of the conditional part of the rule, the answers to queries of all
objects which satisfy these constraints. If the answer set is empty, we know that
the corresponding phase is not valid, otherwise it is. For instance the rule ”if a
sharp instrument is near a vital structure, then there is a risk situation” can be
expressed as the query ”retrieve all vital structures and sharp instruments that
are near each other”. This way the current situation can be classified.

Building on the idea of Case Retrieval Nets [13], we define situations implic-
itly with a set of labeled training samples. These samples are called cases. A
case consists of a description of the situation and a label indicating its phase.
The basic units of situation descriptions are Information Entities (IEs). They
specify the relation between two objects and are used to express observations.
For instance the observation of a drill in proximity of a planned implant position
is described by the IE (Drill, near, Implantposition). Several cases are collected
in a case base and used to classify new situations (so called targets). New sit-
uations are assigned to the phase of the most similar case from the case base.
In the following, a method to build a case base for situation interpretation is
presented.

Training samples for the case base are acquired intraoperatively by a hu-
man operator or generated synthetically according to probability estimates by
experts. For the interpretation process, a soft measure is computed, which spec-
ifies how much a target and a case have in common. In [11] we examined purely
knowledge-driven object-to-object similarity measures. For the problem at hand,
we have investigated a different method based on machine learning. To incor-
porate contextual knowledge we use a relevance measure derived from training
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samples. It signifies the importance of an IE in regard to a case. For instance, the
IE (drill, near, ImplantDriver4.0) is of low relevance during a drilling phase. But
it is of great importance whenever a particular drilling bur is picked. Basically,
the idea is that if the IE occurs often in cases for a certain phase and seldom in
others, or vice versa, it is of high relevance for that phase. To realize these ideas
we combined methods from information theory and Bayesian estimation.

Formally, we use the training samples to learn a function r(i, p) that assigns
the relevance of the IE i to a phase p. The function is defined as:

r(i, p) = (H(p) − H(p|i))(P (p|i) − P (p)). (1)

The first term is known as the mutual information, with H defined as the Shan-
non entropy. It is a measure of mutual dependence of the phase and the IE.
The higher the value, the greater the connection between them. It is undirected,
giving no information about whether the occurrence is a cue for or against the
phase. This information is added by the second term. If the a priori probability
is greater than the probability after the IE was observed, the occurrence of this
entity hints that the situation does not belong to this phase. In this case, the
function returns negative values. The same lines of thought apply for the other
cases. In literature, this function is known as cue validity.

As is expected and evidenced in empirical trials, there are numerous IEs that
have very small yet non-zero relevance. These low relevances originate from noise
in the training data. Using these IEs in the interpretation process would only
increase run-time and add nothing to the accuracy of interpretation results. In
fact, it might even have negative impact on the recognition rate, since they only
add noise and no additional information. Therefore IEs with low relevance are
filtered out, leading to a more dense and reliable case base.

Given r(i, p), it is possible to compute the degree of commonality between a
case c and a target t. This value is called the case-activation acase(t, c). With
p(c) defined as the phase, c belongs to. It is computed as follows:

acase(t, c) =
∑

i∈t∪c

σ(i, t, c)r(i, p(c)). (2)

The function σ(i, t, c) is given by:

σ(i, t, c) =
{

1 (r(i, p(c)) > 0 ∧ i ∈ t ∧ i ∈ c) ∨ (r(i, p(c)) < 0 ∧ i ∈ t)
−1 r(i, p(c)) > 0 ∧ i /∈ t ∧ i ∈ c

(3)

The difference between the case and target is calculated and weighted with the
corresponding relevance. If an IE indicates that case and target are similar,
the activation is increased. Otherwise it is decreased. The amount of change is
determined by the absolute value of the relevance. If case and target only differ
in irrelevant IEs, the activation is high, otherwise low.

To classify new situations, the phase-activation aphase(t, p) of a target t to a
phase p is determined. It is defined as follows:

aphase(t, p) = max
c∈p

{acase(t, c)}. (4)
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The idea, motivated by the work introduced in [12], is to have activation values
which are as high as possible but not higher than is justified by the given obser-
vations. The max-function satisfies this requirement. If a function is chosen that
yields to higher values, further background knowledge is necessary to justify the
phase activation since it is greater than all individual case activations. Functions
with smaller values are overly conservative because higher case activations were
observed. Finally, the target is assigned to the phase with the greatest activation.

Situation Visualization. In [8] we statically assigned a predefined visualiza-
tion to each phase of the operation. While feasible, this method requires all
phases to be known in advance. Proper visualizations need to be hand-crafted
in foresight. Dealing with situations which overlap in time or only differ in small
details leads to bloated and redundant visualization sets.

To deal with these problems, we developed an automated visualization con-
struction kit. Depending on the current phase, visualization primitives are auto-
matically assigned to each object. The visualization for the whole scene is thus
defined implicitly. The assignment is made using logical inference. Visualizations
are defined in the TBox as sub-concepts of visualization. During run-time, the
most specific concept of each visualization-instance connected to an object is
determined and the corresponding visualization is applied. Similarly to the situ-
ation interpretation, the knowledge-based approach allows for reusable and safe
incorporation of background knowledge. The process is shown in (Fig. 3).

Fig. 3. By computing the most specific concepts of the visualization-instances, visual-
izations for all objects are determined

For the application in dental implant surgery, we designed the visualizations
with regard to psychological theories of visual attention. When a hole is being
drilled the axis of the planned implant and the dental bur is displayed, along
with information about the desired and reached penetration depth. After a first
phantom-experiment we extended the visualization with a view-dependent top-
down display of the scene to make orienting the drill easier. When the nervus
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Fig. 4. The figure shows the initial visualization during idle phases (a), the approaching
of planned implant positions (b), the drilling (c) and a risk situation (d)

alveolaris is endangered by a sharp instrument, it lights up in a green color. To
indicate the severity of the risk situation, the color changes with the distance of
the sharp instrument from the vital structure. Examples are shown in (Fig. 4).

Combing the methods in an agent-based framework. The algorithms are
implemented within agents, organized in a common environment and able to
communicate among each other. Two agents are in charge of determining the
current phase of the operation, one employing the case based approach, and the
other the query based one. A third agent integrates the answers of those agents
into a single classification. It also logs all detected situations with a timestamp
to create a HTML-based protocol of the surgery. A fourth agent determines an
appropriate visualization.

3 Results

To evaluate recognition rate, medical usability and accuracy of the system, we
conducted two phantom experiments as well as several questionnaire-based user
evaluations. The experiments consisted of drilling planned implant positions in
several artificial models of the mandible. The system we used in the second
experiment had several improvements over the first version. The most obvious
change was the use of new AR-goggles. For the first experiment we used a Sony
Glasstron head mounted display (HMD). Its major flaws were low contrast dis-
plays and the severe darkening of the view on the real world. For the second
experiment we used a novel device made by Trivisio. It suffered considerably
less from these problems and had the advantage of a frameless design. This al-
lows for a clear, unobstructed view on the patient, thus improving safety. Both
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Fig. 5. The Sony Glasstron (a) and the new, frameless Trivisio design (b)

goggles are shown in Fig. 5. The results of the experiments are presented in the
following.

Situation Recognition Rate. A recognition rate of over 85% was achieved.
It has to be noted that real-time constraints were considered. Correct but late
visualizations were considered as false recognitions. The majority of false recogni-
tions occured during the approaching of the implant positions. The visualizations
sometimes disappeared during the approach because the drill’s speed dropped
below a certain treshold. The system then assumed that no approaching takes
place. Similarly, the minimal distance between the drill and the implant position
necessary to activate the visualization for drilling was too short. Apart from
maladjusted parameters, run-time characterstics were a source of broken real-
time constraints and thus false recognitions. For instance, the visualization of
implant postition stayed active for a while although the drill was removed from
the area. This was due to the latency of the situation recogntion.

Medical Usablility. To evaluate the medical usability, the surgeons were asked
to answer a questionnaire after each experiment. The feedback we received was
favorable. For the most part, the system fit well in the existing workflow and
provided quick and reliable assistance. Nonetheless, two flaws were found. The
surgeon wanted see the axis of the planned implant and the current axis of
the drill from a different angle. An additional top-down view was later added
and used in the second experiment. It made orienting the drill easier. Secondly,
the method to choose a new bur by touching it with the drill showed to be
impractical. At this point the workflow of the surgeon was interrupted. This
shortcoming needs to be addressed in future works. In summary, the surgeons
confirmed that the system facilitates the performance of the surgery, yet some
practical problems still remain to be solved.

Accuracy. After the experiments, the actual implant positions (three in the
first experiment, four in the second per phantom) were compared to the planned
ones. The average deviations are shown in Tab. 1 and Tab. 2. The results are not
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satisfactory for the problem at hand. Reasons for the deviations include errors in
the registration of the patient and the instrument, calibration of the HMD and
measurement noise. The surgeon in the second experiment had generally better
results for the orientation of the implant. This is due to the additional top-down
view on the scenery which made orienting the drill easier. Yet further work is
still necessary to improve accuracy.

Table 1. Deviations in the first trial

phantom position depth orientation

1 3.59 mm 2.73 mm 6.54�

2 1.61 mm 0.27 mm 5.56�

3 2.26 mm 0.58 mm 3.35�

4 0.82 mm 0.54 mm 1.68�

Table 2. Deviations in the second trial

phantom position depth orientation

1 2.78 mm 3.52 mm 4.36�

2 3.28 mm 3.10 mm 1.52�

3 2.11 mm 2.91 mm 4.28�

4 Conclusion

We presented a knowledge-based approach for a context-aware intraoperative
assistance system. Without user interaction, our system constantly offers the
currently needed assistance. Appropriate AR visualizations are provided during
the entire operation, which is particularly beneficial during unforeseen emergency
situations.

The situational awareness is implemented using an ontology. We merge het-
erogeneous data compromised of medical background knowledge, preoperative
planning data and interoperativ sensor information into a common represen-
tation. Four agents collaboratively interpret the collected data, recognize the
situation and provide an appropriate visualization.

The system was evaluated in two phantom experiments. Recognition rate,
accuracy and medical usability were examined. In summary, the system proved
capable to reliably recognize situations and provide helpful visualizations in real-
time. Problems with an unsatisfactory accuracy however still remain open. Fu-
ture work will focus on improving the recognition rate and accuracy as well as
evaluating the concepts on more complex surgeries.

Acknowledgement. The presented research is supported by the German Re-
search Foundation (Research Grant DI 330/23-1).
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Abstract. In the process of developing an endoscopic surgical robot system that 
adapts to NOTES (Natural Orifice Translumenal Endoscopic Surgery) and SPS 
(Single port surgery), by making the tip a soft tubular structure and adding an 
augmented reality function to the system, we were able to improve the general 
function of the surgical robot system. First, we added a haptic sense function to 
avoid breaking the soft tissue and to avoid the danger of cutting it. These occur 
due to the small size of the touching surface between the tip of the robot arm 
and the soft tissue. We were able to conduct operation by feeding back to the 
surgeon the force applied to the soft tissue by detecting the haptic sense of the 
small forceps at the tip through measuring the tension variation at the base of 
the wire that drives the robot arm. We also mounted various numbers of 
augmented reality function such as grasping the exact location of the surgical 
robot inside the human body and information on how the robot is reaching the 
location of surgery. As a result, we were able to build a system that can conduct 
safe surgery with the system’s two main characteristics - the smallness and the 
high degree of freedom to move. 

Keywords: Endoscopic surgical robot, NOTES, SPS, Augmented reality. 

1   Introduction 

We have been developing a surgical robot under a new concept using 
microfabrication technology and tele-presence technology [1,2]. Up until now, the 
basis of building a surgical robot, such as in Zeus™ and da Vinci™ [3,4], was in 
laparoscope surgery, and their structure was based on the robot arm controlling the 
laparoscope and forceps. But our surgical robot that we started to develop in the year 
2000 has a tip that is small enough to go inside a human body and that part can 
conduct operations. Our surgical robot has an eye at the tip and robot arms on each 
side of the eye. It is like a small robot that can operate like human hands inside 
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minute space. As shown Fig.1, the distal part of the robot resembles scorpion with 
those long two arms and a small head with eyes. For this robot, we aimed to build an 
endoscopic surgical robot system that can adapt to both NOTES (Natural Orifice 
Translumenal Endoscopic Surgery) [5-8] and SPS (Single Port Surgery). NOTES is a 
surgery that goes inside through the esophagus via stomach and stomach wall and 
conducts operation in the abdominal cavity. SPS is a surgery that penetrates through 
the body surface and goes into the abdominal cavity to conduct operation. In 
developing the endoscopic surgical robot system, we found out that it was important 
to develop functions to solve problems that the structure of the robot itself had. The 
problem lay in robot’s smallness and the high degree of freedom to move. These two 
points were also advantages of the robot but we realized that to conduct safe surgery, 
we needed to complement it by other technologies. 

 

Fig. 1. Appearance of the tip of the scorpion shaped endoscopic surgical robot 

First we will explain why the small size of the robot arm is a problem. As we 
will explain later on the method, the tip of a robot arm is 40mm in length and 
6.0mm in width and is shaped like forceps. We found out that as the contact 
surface of the forceps and soft tissue is so small, if the force applied to the forceps 
is too big, it would crush or cut the mucosa layer of the stomach wall or the 
intestinal wall. 

We needed to have the small forceps tip that would detect its haptic sense and have 
the amount of applied force fed back to the surgeon. In this thesis, we report on how 
we are in the process of developing the haptic sense function. 

In addition, this surgical robot can move freely inside a human body during 
conducting laparoscope operation. But due to this characteristic, there were cases 
where the surgeon lost the location of the robot inside the body. Therefore, we found 
out that we highly needed to complement the robot with augmented reality technology 
so that the surgeon can grasp the exact location of the robot and get information on 
how the robot is reaching the location of surgery. Moreover, we found out that as the 
robot is small in size, the surgeon can easily be blinded by small amount of blood. It 
can also be buried in a stump of soft tissue which was not a problem in open surgery 
or laparoscopic surgery. 
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2   Method 

2.1   Structure of the Robot 

Before we report on the haptic sense function and the augment reality technology we 
used, we will explain the structure of the robot we are developing now. 

Fig.2 shows the block diagram of the surgical robot system in whole. Two robot 
arms are mounted on the tip of the endoscopic like shape, which goes inside a human 
body. Each robot arm and the forceps at the tip are driven by wires from the actuator 
unit. The unit comprises of stepping motor assembly located at the based of the robot 
arms and forceps. 

 
Fig. 2. Block diagram of the surgical robot system 

a b 

Fig. 3. Scene of the animal experiment using the endoscopic robot system. a: handling of 
gallbladder, b: clipping oviduct 

This endoscopic surgical robot is controlled by two surgeons working in liaison. 
Surgeon A inserts the robot into the body and moves, rotates and changes direction of 
the robot near the destination site. Surgeon B sits in front of the console and controls 
the robot arms and conducts surgery. Surgeon A inserts and withdraws relocation 
clipping device and surgical needle knife using lumen connecting the tip of the robot 
and the outside of the body. He also cleans and conducts suctioning the lens and the 
location of surgery using lumen. Both Surgeons A and B can use the endoscopic 
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screen reinforced by augmented reality. Fig.3 shows the system during animal 
experiment. Fig.4 shows actuator unit that comprises of stepping motor assembly for 
each ten robot arms (five on each side). The unit drives the robot arms. The stepping 
motors in the actuator unit is positioned in a cone shape with the robot’s base at the 
center so that that wire force will effectively be conveyed to the robot arms. 

 

Fig. 4. Actuator unit of the robot system 

2.2   Structure of Robot Arms 

The robot arms on the left and right have symmetric structures. Each has four wires 
that move the robot arm up and down, right and left and a wire that open and closes 
the tip of the arm. The tip of the forceps is 10mm in length and 2.0mm in width. 
When opened to the limit, it can grab and object of 6mm. The tip of the robot arm can 
bend maximum 12mm up and down, right and left by four wires driving it in liaison. 
A robot arm can work in up to 40mm ground from itself, right and left. We also aimed 
high-efficiency for wire pulling force so that the robot arm can grab soft tissue with a 
force more than 3N and the forceps can open and close with that force. 

Fig.5 shows the structure of the tip of the robot arm. The four wires positioned 
around the forceps enables the robot arm to bend up and down, right and left. 

 

a b 

Fig. 5. Structure of the tip of the robot arm 

2.3   Acquiring Haptic Sense 

We at first tried to acquire haptic sense by positioning a pressure sensor at the 
mechanical section of forceps. But it was difficult to adequately position piezo 
element on the surface of the insides of minute forceps. There was also danger of 
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safety problems such as strength of the coat of the wire parts that would be connected 
to the device was not strong enough and had the danger of electrical leak. 

To solve this problem, this system has a “Wire Traction Control” mechanism which 
monitors the traction of the wires at all times to obtain the best control system anytime. 

Needless to say, the traction of the wires obtained at the base is information that 
includes various disturbance elements such as the change of position, loosening, and 
twists of the wires themselves. This will occur as to bend the endoscopic surgical 
robot, the wires run parallel and other wires are positioned to lead and protect them in 
the pipe. But we tried to distinguished the characteristics of the object the forceps 
grabbed from the characteristic curve of the pressure change against action. We 
conducted a mock experiment where the characteristic was a given phantom. We 
obtained the change of traction according to the change of physicality and succeeded 
in distinguishing the characteristics of the object. Therefore, we were able to acquire 
haptic sense function at the tip of the robot arm. 

2.4   Integrated Display Function 

We separated the monitors in parts and positioned each augmented reality information 
in a part. We positioned the endoscopic image at the center. Then we positioned 
superimposed image of the targeted part in 3D where it is difficult to see in the 
endoscopic image.  

 

Fig. 6. Block diagram of the integrated display function 

In addition, we positioned several kinds of images for navigation surgery. 
Moreover, we positioned display of haptic sense information of the right and left 
robot arms in color and the patient’s vital signs. We positioned these images so that 
the surgeon can instinctively acknowledge and effectively use patient’s information 
while in operation. We verified the above by conducting trial experiment with 
volunteers. To obtain the direction of the position of the tip of the robot arm, we 
mounted Minibird which is 6 DOF magnetic sensor at the lower part of the tip. We 
aimed to minimize the use of metal at the robot’s tip and used titanium alloy so that 
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disturbance factor by magnetic positioning sensor metal will be small.  We show in 
Fig.6 block diagram of the system for integrated display function. 

3   Results 

3.1   Acquisition of Haptic Sense 

We show in Fig.7, change of traction against wire displacement when the forceps 
at the tip of an robot arm grabs metal, plastic eraser (soft poly-vinyl chloride), and 
sponge (expanded polyurethane). 

 

Fig. 7. Traction against wire displacement 

As you can see from the change of traction against displacement of wire when the 
forceps is grabbing a rigid metal object, traction curve shows different characteristics 
from the action grabbing a rigid object in ideal condition. The following can be 
assumed for the reason of change displayed on the graph. When the forceps are 
closed, the wire is not always positioned in a line ideally. The small looseness of wire 
inside the pipe that protect the wires, and change of shape of the pipe itself when 
wires are pulled, all show up as peculiar change. The same can be assumed for an 
elastic body that change shape easily and either way, it looks like it is difficult to 
acknowledge the shape of the object the arm has grabbed. But as can be seen in the 
graph, the characteristics of the object the forceps have grabbed showed as differences 
of change of traction. 

In addition, we found out that if we know the softness of the object when grabbing 
it, we can feedback grabbing power to avoid breaking the object. For example, we 
were able to conduct a mock operation by feeding back to the surgeon, the force 
applied to the soft tissue so that he could operation by not crushing the soft tissue. We 
experimented by creating a mock stomach wall with soft urethane that would break 
easily. We conducted an experiment using these function. We mounted haptic sense 
function on the surgical robot system as following. 
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3.2   Mounting Function of Distinguishing Softness and Feedback of Grabbing 
Force 

Fig.8 shows projected result of the softness of each sample the forceps have grabbed. 
The change of colors of the indicators on the monitor, which is at the back of the tip 
of the robot shows the projected result. The indicator turns green when the forceps 
grabs a very soft object, yellow when the forceps grab a moderately soft object and 
red when the forceps grab a hard object. 

 

Fig. 8. Result of projection of softness as robot grabs an object. The projected result is shown in 
the display at the back of the robot arm. The color of the indicator changes. a: When the arm 
grabbed a sponge, b: When the arm grabbed a metal object. 

Fig.8a shows the indicator green as the forceps are grabbing a sponge, Fig.8b 
shows the indicator is red as the forceps are grabbing a metal object. For functions to 
avoid damaging the soft tissue when the forceps grab it, Fig.9 shows the result of 
when the forceps grabbed silicon rubber (Fig.9a-c) which is close to the softness of 
soft tissues. Fig.9d-f shows the operator trying to lift up the soft tissue adjusting the 
forceps depending on the indicator. As mentioned before, these projected results are 
sent to the integrated information display system via the network and is displayed 
along with other operational information. 

 

Fig. 9. Result of experiment of the robot arm grabbing the sample without damaging it. Using 
silicon rubber that has the same softness as soft tissue (a-c), the operator is controlling the 
opening and closing of the forceps by looking at the change of color or the indicator (d-f) and 
trying not too damage the silicon rubber by grabbing it too hard. 
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3.3   Integrated Display Function 

As the results, the system has the following five functions. All information is updated 
in real-time and displayed on the screen in the cockpit for the operator. 1) function 
that displays the present orientation of the robot by showing patient’s X-ray CT and 
MRI data sets superimposed onto the operation screen, 2) function that displays the 
position of the tip of the robot on a inner structure model reconstructed in 3D from the 
patient’s pre-operation X-ray CT and MRI data sets, 3) function that displays the 
present position of the tip of the robot on patient’s pre-operation X-ray CT and MRI 
data set images, 4) function that displays the softness of an object that the robot’s 
manipulator has grabbed (this is being developed in parallel with the system), 5) 
function that displays patient’s medical information such as heart rate and blood 
pressure. 

For function 1), we use the positioning information of the robot obtained from 
magnetic positioning sensor installed at the tip of the robot. In this way we display in 
multi-layer, patient’s inner structure in real-time on X-ray CT and MRI data sets 
obtained before operation on the operation screen. The RMS error between the 
endoscopic image and the superimposed X-ray CT datasets was 2.4mm. 

For function 2), using the same position information at the tip of the robot as in 1), 
we display the position of the tip of the robot on the patient’s 3D model structured 
before the operation. In this function, we enabled the operator to observe the 3D 
model from any point so that the operator can look over the whole picture to grasp the 
orientation of the robot and by doing so this function complements function 1). 

Function 3) also uses the magnetic positioning sensor information and displays the 
position of the tip of the robot on X-ray CT and MRI images. The width of the 
window screen of the image display can be changed, the level can be changed and 
also the operator can enlarge and minimize the screen so that the operator needs to 
take his/her eyes off the operation as little as possible. Function 4) uses functions to 
calculate the softness of an object that a robot manipulator has grabbed. This is being 
developed by this project also. Function 4) can display in three different colors the 
softness the two manipulators each grabbed. We also created the system so that the 
operator can confirm patient’s various medical information if it is needed during an 
operation in function 5). 

Fig.10 shows what the system’s screen displays in the operator’s cockpit in an 
animal experiment using a pig. In the center of the screen shows function 1) 
mentioned earlier, at the upper left, function 2), at the upper right, function 3), at the 
center left, function 5) and in the lower right and left function 4) which displays the 
softness of the object the 2 robot manipulators grabbed. In the same figure, for 
function 1), the structure of the backbone and costal bones from the volume rendered 
X-ray CT data sets are superimposed onto the endoscope’s image. For function 2), a 
green pointer is displayed on the surface rendered organ model and shows the position 
of the tip of the robot. For function 3), three consecutive images of X-ray CT images 
are displayed and a red cross in the center of the image shows the position of the tip 
of the robot. For function 4), the left is colored green and the right is colored red. This 
shows that the left manipulator is grabbing a soft object and the right manipulator is 
grabbing a hard object. 
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The frame rate in this experiment was 5-15 fps. For example, the frame rate was 5 
fps when we used heavy X-ray CT datasets such as 512x512x512 pixels (when we 
used function 1). 

 

Fig. 10. Integrated information display system screen 

4   Discussion 

We were able to improve the function of the whole system by mounting the following 
function in the process of developing an endoscopic surgical robot system that adapts 
to NOTES and SPS. First we were able to overcome the problems due to the structure 
and shape of the robot system in development. We were able to reinforce the system 
by using augmented reality functions including haptic sense of robot arms and 
overcoming inadequate points such as the smallness of the robot and its freedom of 
movement inside the body. 

As a result, we can say that by developing surgeon’s console with augmented 
reality function including haptic sense function of the minute robot arm, we were able 
to build a system that can conduct safe operation with the two main characteristics of 
this robot system - the small size and the freedom of movement inside the body. In 
addition, the haptic sense device which does not need a haptic sense sensor that 
touches the part of operation can be applied to various other surgical robots. The 
integrated display system which can be display various information of the operation 
part including haptic sense from a various points of view can be applied to existing 
laparoscope type surgical robots, vascular catheter devices and radiotherapy devices. 
The endoscopic surgical robot system that we developed is planned to undergo 
clinical trials after conducting safety trials. 
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Optimisation of Focal Length Using a
Stereoscopic Operating Microscope for
Augmented Reality Surgical Guidance

G. González-Garćıa and R.J. Lapeer

School of Computing Sciences, University of East Anglia, UK.

Abstract. In this paper, a method is proposed that improves the fo-
cal length estimation in an augmented reality surgical guidance system
for procedures involving a stereoscopic surgical microscope. Firstly, we
show the sensitivity of a photogrammetric calibration method towards
the detection of 2D markers in the projected calibration image and the
markers’ positional accuracy on the calibration object, both of them af-
fecting the accuracy of the focal length estimate. Secondly, we propose a
hybrid method using a photogrammetric method for pre-calibration and
a number of self-calibration based methods to further optimise the focal
length estimate. The results of the reported experiment, evaluating the
proposed method, show a significant improvement in the calibration error
of around 0.2 pixels as compared to calibrating each camera separately
using a photogrammetric method only.

1 Introduction

Augmented reality (AR) based surgical guidance systems for minimally inva-
sive surgery aim to combine pre- and intra-operatively acquired images. The
intra-operatively acquired images (‘real’ imagery) are typically obtained from
endoscopes or surgical microscopes, whereas the overlaying images (‘virtual’ im-
agery) are obtained from medical images (e.g. CT or MRI models). The first
procedure in AR based surgical guidance is to determine the real camera system
parameters as to align real and virtual images. This procedure is denominated
calibration and involves estimating six extrinsic and five intrinsic camera param-
eters. The extrinsic parameters comprise six spatial degrees of freedom (DOF)
in 3D, i.e. three for translation and three for rotation. The camera intrinsic
parameters include the focal length, a scale factor, two coordinates of the prin-
cipal point and a radial distortion parameter. A photogrammetric calibration
method, e.g. Tsai’s method [1], is typically used in conjunction with a planar
or non-coplanar calibration object. This method determines the intrinsic and
extrinsic parameters at separate stages during an iterative process, where the
last stage determines the focal length. Tsai’s method works well for estimating
most of the calibration parameters. However, in specific circumstances, the focal
length may present significant variations for small differences in input variables.
The alternative is to use a self-calibrating method which does not strictly need a
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pre-defined calibration object in order to compute the camera parameters [2,3].
Instead, the procedure involves determining a variety of objects’ features found
in the real scene, which may include edges, corners, and regions of interest,
among others.

Previous work in camera calibration for surgical microscopes has been pre-
sented by Edwards et al. [4] and Caversaccio et al. [5], among others. Their
work is similar to ours regarding the estimation of camera parameters using
photogrammetric methods, which requires an independent calibration for each
of the cameras. Recent calibration methods aimed at optical devices with high
distortion factors (i.e. endoscopes) have recently appeared in the literature [6].
Other approaches based on single cameras, like PTAM [7], estimate external
camera parameters over time using scene features and can be used for medi-
cal or general-purpose AR based systems. This method requires initial camera
parameters from a photogrammetric technique.

(a) (b) (c)

Fig. 1. (a) Manufactured 3D non-coplanar calibration object using the Z Corporation
ZPrinter c©450. (b) Top view of calibration object during calibration. (c) Detection of
elliptical centres, numbered for easy identification.

In this paper, we present a hybrid calibration method to calibrate an AR
surgical guidance system for head and neck surgery using a stereoscopic surgi-
cal microscope. The method uses a photogrammetric technique (Tsai) for pre-
calibration and a self-calibrating stereoscopic technique to derive the fundamen-
tal matrix with the aim of optimising the calculated focal length. Self-calibration
could be considered as less stable than photogrammetric methods due to the au-
tomatic selection of points in the scene, which usually generates a significant
number of outliers. However, the use of a calibration object with known fea-
tures provides higher point detection accuracy. In order to perform both pre-
calibration (photogrammetric) and focal length optimisation (self-calibration),
a planar calibration object is inadequate, hence we developed a 3D non-coplanar
calibration object for this purpose - Figure 1(a)(b) - using a 3D printer (Z Corpo-
ration ZPrinter c©450). The marker centres within the object are automatically
detected [8] - Figure 1(c). In some instances projective distortions can affect the
detection of circular markers if the disks are not parallel to the image, caus-
ing that the physical and projected circular/elliptical centres no longer coincide.
Nevertheless, it has been proved that the coordinates of elliptical centres can be
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corrected to correspond to disk circle centres even if the disks are not orthogonal
to the image plane [9]. This correction can be done during the iterative calibra-
tion process. In the remainder of the paper, we first cover the photogrammetric
method and illustrate its sensitivity to small deviations in marker centre detec-
tion and 3D marker position. Next, we introduce the hybrid method and show
how it enables further optimisation of the calculated focal length.

2 Experiment I - Photogrammetric Calibration

The purpose of this section is to evaluate how the accuracy of 2D image marker
detection and 3D marker position affects the camera calibration process using
the manufactured calibration object in a magnified microscopic view. The exper-
iments were carried out using a single camera in order to evaluate the stability
of Tsai’s photogrammetric algorithm [1], which produces the initial camera pa-
rameters to be optimised. These tests also serve to analyse the influence of the
rotational position of the calibration object for the estimation of focal length,
and consequently, the corresponding camera calibration errors. For this exper-
iment a black and white camera was connected to one of the eyepieces of a
stereoscopic surgical microscope, positioned perpendicularly to a flat bench. The
non-coplanar calibration object (Figure 1) was placed on a rotating gauge that
allows measuring the positional orientation at different angles with respect to
the bench surface (which in turn is parallel to the camera image plane). This
rotational instrument was attached to a height gauge to control the translational
distance Tz between the calibration object and the microscope lens. A set of ten
camera calibrations were performed for each slope angle, which varied from 0◦

to 25◦ at 5◦ steps. Inclination angles larger than 25◦ were excluded because at
those orientations calibration markers went out of focus, affecting the localisa-
tion of circular shapes. These experiments extend our previous work [10] using
endoscopic systems, where it was shown that calibration accuracy improves with
increasing angle of inclination (also discussed by Tsai [1] and Zhang [11]). Table
1 shows the estimated focal length, f , translation in z, Tz, and the ratio of the
former with the latter for each inclination angular position.

In addition, the remaining five DOFs were evaluated with the purpose of
determining possible variations in the computed parameters at each inclination

Table 1. Mean and standard deviation (±SD) values for ten trials of focal length f ,
Tz distance and ratio between focal length and Tz at different inclination angles

Angle (degs) Focal length f (mm) Tz f /Tz

0 202.2 (±4.2) 178.5 (±3.4) 1.133 (±0.003)
5 228.2 (±6.1) 199.1 (±5.1) 1.146 (±0.001)
10 265.9 (±10.7) 229.2 (±8.9) 1.160 (±0.001)
15 283.9 (±11.0) 242.6 (±9.3) 1.170 (±0.002)
20 303.6 (±6.4) 258.1 (±5.4) 1.176 (±0.000)
25 317.4 (±5.0) 268.9 (±4.2) 1.180 (±0.000)
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angle. Table 2 demonstrates that the values obtained are consistent among all
slope angles for parameters Tx, Ty, Rx and Rz . In the case of the rotational
parameter Ry, the estimated values correspond to each inclination angle applied
to the calibration object. A comparison between Table 1 and 2 shows that focal
length is the most affected parameter during calibration.

Table 2. Mean and standard deviation (±SD) values for five different DOFs in a single
camera calibration at different inclination angles over ten trials

Angle (degs) Tx Ty Rx Ry Rz

0 -10.25 8.72 173.05 0.84 -0.56
(±0.02) (±0.01) (±0.10) (±0.19) (±0.02)

5 -9.97 8.69 172.90 5.65 -0.70
(±0.05) (±0.02) (±0.17) (±0.50) (±0.04)

10 -10.26 8.96 172.60 10.99 -0.47
(±0.00) (±0.00) (±0.03) (±0.05) (±0.01)

15 -11.14 9.23 172.45 16.31 0.52
(±0.00) (±0.00) (±0.06) (±0.06) (±0.01)

20 -10.72 9.30 172.30 21.13 0.51
(±0.01) (±0.01) (±0.07) (±0.19) (±0.02)

25 -10.75 8.95 172.14 24.68 0.73
(±0.00) (±0.00) (±0.04) (±0.04) (±0.01)

Subsequently, we investigated the influence of 2D marker localisation inac-
curacies on camera calibration errors. The set of projected marker points were
subjected to Gaussian noise with 0 mean and three different standard deviation
levels: 1.0, 0.5 and 0.3 pixels. For each noise level, ten independent calibrations
were carried out at the same inclination angles as the above-mentioned tests.
The results were averaged and compared to a ground truth obtained from an
initial calibration at each orientation. The top row of Figure 2 shows absolute
errors on the focal length for each noise level (left) and the ratio f/Tz (right). It
is clear that the misidentification of marker centres to the level of just half a pixel
in a microscopically-magnified view has a considerable effect on the accuracy of
the focal length, and even when the former is compensated by Tz through the
f/Tz ratio. Heikkilä and Silvén [9] also pointed out the sensitivity of camera
parameters to 2D marker localisation.

Finally, we investigated the effect of positional accuracy of the 3D marker
points - largely dependent on the accuracy by which the calibration object is
manufactured. Gaussian noise with 0 mean and standard deviations of 0.3, 0.1
and 0.05mm were added to the nominal coordinates of the constructed model.
The results are shown in the bottom row of Figure 2. It is clear that the effect on
the focal length and f/Tz is even larger than for 2D marker localisation. Consid-
ering that the 3D printer’s accuracy is of the level of 0.05-0.1mm, either higher
accuracies are needed to manufacture the object or an alternative optimisation
could be employed, which we discuss in the following section.
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Fig. 2. Top row: effect of marker’s 2D localisation inaccuracies - Left: Focal length
absolute error; Right: f/Tz absolute error. Bottom row: effect of 3D marker positional
accuracy - Left: Focal length absolute error; Right: f/Tz absolute error. The abscissa
shows the inclination angle of the calibration object in degrees.

3 Experiment II: Hybrid Calibration

When using a photogrammetric method only, each camera of the stereo pair is
calibrated separately. Here, we will exploit the stereopsis property by calculating
the fundamental matrix [12] and subsequent focal length optimisation for our
real-time stereo camera assembly mounted on the surgical microscope. Initial
focal length estimations for each of the left and right images were obtained by
using the earlier discussed photogrammetric method (Tsai). The setup involved
a stereoscopic surgical microscope placed on a flat work bench and two cameras
connected to the microscope eyepieces, which are initially placed in a parallel
position. It is worth mentioning that this setup would make the self-calibration
method fail because the relative alignment between cameras belongs to a de-
generate configuration [13]. In order to avoid this critical configuration, it was
decided to acquire the left camera image at a still pose while changing both
convergence (angle inclination) and elevation on the right view. The approach is
analogous to other photogrammetric calibration methods that require changing
the orientation of the camera or calibration object between at least two differ-
ent views [11]. Ten independent focal length estimations were executed for each
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convergence and elevation positions, within a range from 0◦ to 30◦ in the case
of convergence and 0◦ to 15◦ for elevation, both at 5◦ steps. Higher inclination
levels affected the detection of elliptical centres and were excluded from the eval-
uation. The overall optimisation procedure involves three steps, each containing
three optional algorithms:

1. The first step is the calculation of the fundamental matrix, F , from at least
seven corresponding points on the calibration object, in the left and right
images. Three different algorithms are considered: linear [14], gradient-based
and the M-estimators [15,16].

2. Next, the focal length, f , is calculated from the previous estimated funda-
mental matrix. Three self-calibration based methods, i.e. Bougnoux [17],
Sturm [13,18] and Newsam [19] are considered. The calculation of f from
Tsai’s photogrammetric method was used as the ground truth.

3. One of the limitations of estimating the focal length through self-calibration
is that, in order to recover a reliable solution, the effects of radial distortion
for each of the cameras must be initially corrected [20]. Subsequently, the
pair of focal lengths computed by any of the methods described in Step 2 can
be refined through an optimisation algorithm. As the initial extrinsic and in-
trinsic camera parameters have already been estimated at the pre-calibrated
stage, such knowledge can be included in a cost function in order to improve
the solution. The cost function that has been selected relies on a metric
known as the Sampson distance [21], which is a first-order approximation to
a geometric, or reprojection, error measured in left and right images. The
cost function is defined as:

∑
i

(p̂T
i Epi)2

(Epi)21 + (Epi)22 + (ET p̂i)21 + (ET p̂i)22
, (1)

where E is the essential matrix obtained from Equation 2:

E = K̂T FK, (2)

with fundamental matrix, F , and the pair of pre-calibrated intrinsic camera
matrices K and K̂ for left and right images, respectively. p and p̂ in Equation
1 represent corresponding image points m and m̂ in normalised coordinates
[21], which are obtained from p = K−1m and p̂ = K̂−1m̂, respectively.
Therefore, the parameters to optimise involve the intrinsic camera matrices
with respect to the pair of focal length values.
The three different optimisation methods include two evolutionary algo-
rithms, Self-adaptive Differential Evolution (SDE) [22] and CODEQ [23],
and the well-established Levenberg-Marquardt algorithm.

Thus, a complete evaluation comprised 27 combinations among the fundamental
matrix and focal length techniques for each optimisation algorithm. Because self-
calibration methods do not provide information about accuracy errors by them-
selves, the refined focal lengths were fed back into the original Tsai’s method and
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a recomputation of camera calibration on both cameras was carried out (main-
taining the other extrinsic and intrinsic pre-calibrated parameters). In other
words, Tsai’s method was performed an additional time in order to calculate
the calibration error given the refined focal lengths. This provided a means to
compare the calibration accuracy with respect to the initial (ground truth) cal-
ibration errors. The parameters used for the optimisation involved a maximum
number of 400 iterations for the Levenberg-Marquardt algorithm, whereas a
maximum of 20 generations with a population size of 20 individuals was selected
for both evolutionary algorithms (SDE, CODEQ). The tolerance threshold in
the cost function (Equation 1) comprised a value of 10−16 for all optimisation
methods based on an initial function value of 1.8−7. In general, the time taken
for the three optimisation algorithms to refine the focal length parameter was
a couple of seconds on a modern PC with dual core processor. The Levenberg-
Marquardt optimisation method produced unstable results as compared to the
genetic algorithm optimisation methods and is therefore not shown in Figure 3,
which shows plots of the calibration error in pixels for the remaining 18 com-
binations at an elevation angle of 15◦. Among the different elevations tested,
an angle of 15◦ was the most favourable case, where the absolute difference be-
tween Tsai’s ground truth and mean image calibration errors is more noticeable.
Therefore, the reported analysis of these experiments is focused at this eleva-
tion for the diverse fundamental matrix, stereo focal length and optimisation
methods.

4 Discussion

The first important observation from Figure 3 is that the calibration error after
applying the hybrid method described in section 3 for all combinations shows sig-
nificant improvement as compared to the initial calibration using Tsai’s method
only (ground truth). It can also be seen that there is little difference between the
SDE and CODEQ methods. Among the three algorithms used to compute the
fundamental matrix, the gradient-based method provided slightly better results
than the linear counterpart and proved to be more stable than the M-estimators
method. The results obtained by the different methods of Bougnoux, Sturm and
Newsam show similar performance when using the gradient method. However,
all of these are statistically insignificant differences as compared to the sub-
stantial improvement of around 0.2 pixels, after using the hybrid method (for
more information, the reader is referred to [8]). Note that there is a break in
the curves representing the methods of Sturm and Newsam at 25◦ of inclination
(convergence) angle, which means that both techniques failed to estimate a fo-
cal length. Although this is not caused by a critical configuration (e.g. parallel
camera setup), it is assumed that this is produced by certain instabilities within
these algorithms.
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Fig. 3. Left column: Self-adaptive Differential Evolution optimisation; Right Column:
CODEQ optimisation. Top row: Linear; Middle row: M-estimator; Bottom row: Gradi-
ent based - fundamental matrix estimation. Each of the three algorithms to calculate
the focal length from the fundamental matrix are shown on each plot with Tsai’s al-
gorithm as the ground truth.

5 Conclusion

This paper focused on the study of camera calibration for the calculation of
intrinsic and extrinsic parameters, which is required as an initial stage to su-
perimpose virtual imagery in an AR based surgical guidance scene. Firstly, an
analysis of Tsai’s photogrammetric calibration in a single camera was performed
using a non-coplanar calibration object. It was demonstrated that the stabil-
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ity of the algorithm is significantly influenced by the precision of the object’s
physical construction and the detection of image markers, especially for magni-
fied imagery acquired by a surgical microscope. Most importantly, it was shown
that focal length is the most affected parameter with respect to external con-
ditions, the orientation of the calibration device being one of them. Secondly,
an evaluation of different methods for the estimation of focal length was carried
out. The purpose was to optimise the focal length and consequently improve the
accuracy of the final calibration error. The results indicate that the use of an evo-
lutionary algorithm can decrease the original calibration errors obtained by the
photogrammetric method when one of the cameras is rotated about 15◦ around
the elevation axis. Specifically, the best combination comprised the use of the
gradient-based method for the fundamental matrix and CODEQ optimisation,
where the three techniques for the computation of focal length (i.e. Bougnoux,
Newsam and Sturm) produced similar results. Although in previous work [10]
we have obtained sub-pixel accuracy using a planar calibration object through
Tsai’s method (0.3 - 0.4 pixels), the presented non-coplanar calibration object
was less accurately manufactured due to limitations of the 3D printer employed.
We expect that by improving the precision of the non-coplanar calibration object
the same level of initial calibration accuracy will be obtained which can be fur-
ther minimised by applying the proposed hybrid method. It should be noted that
the presented technique can be extended to non-stereoscopic devices such as en-
doscopes where the endoscope is placed at different positions to obtain multiple
image acquisitions. Of course, this would require the additional use of a tracking
device which, depending on its accuracy, may affect the final optimisation.

References

1. Tsai, R.: A versatile camera calibration technique for high-accuracy 3D machine vi-
sion metrology using off-the-shelf TV cameras and lenses. IEEE Journal of Robotics
and Automation 3(4), 323–344 (1987)

2. Faugeras, O., Luong, Q.T., Maybank, S.: Camera self-calibration: Theory and ex-
periments. In: Sandini, G. (ed.) ECCV 1992. LNCS, vol. 588, pp. 321–334. Springer,
Heidelberg (1992)

3. Lourakis, M., Deriche, R.: Camera self-calibration using the singular value decom-
position of the fundamental matrix. In: 4th Asian Conference on Computer Vision,
vol. 1, pp. 403–408 (2000)

4. Edwards, P., King, A., Maurer, C., de Cunha, D., Hawkes, D., Hill, D., Gaston,
R., Fenlon, M., Chandra, S., Strong, A., Chandler, C., Richards, A., Gleeson, M.:
Design and evaluation of a system for microscope-assisted guided interventions
(MAGI). IEEE Transactions on Medical Imaging 19, 1082–1093 (2000)

5. Caversaccio, M., Garcia-Giraldez, J., Gonzalez-Ballester, M., Marti, G.: Image-
guided surgical microscope with mounted minitracker. The Journal of Laryngology
& Otology 121, 160–162 (2007)

6. Barreto, J., Roquette, J., Sturm, P., Fonseca, F.: Automatic camera calibration
applied to medical endoscopy. In: British Machine Vision Conference, BMVC 2009
(2009)
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Abstract. 2D/3D registration is in general a challenging task due to
its ill-posed nature. It becomes even more difficult when deformation be-
tween the 3D volume and 2D images needs to be recovered. This paper
presents an automatic, accurate and efficient deformable 2D/3D registra-
tion method that is formulated on a 3D graph and applied for abdominal
aortic aneurysm (AAA) interventions. The proposed method takes the
3D graph generated from a segmentation of the CT volume and the 2D
distance map calculated from the 2D X-ray image as the input. The sim-
ilarity measure consists of a difference measure, a length preservation
term and a smoothness regularization term, all of which are defined and
efficiently calculated on the graph. A hierarchical registration scheme is
further designed specific to the anatomy of abdominal aorta and typical
deformations observed during AAA cases. The method was validated us-
ing both phantom and clinical datasets, and achieved an average error of
< 1mm within 0.1s. The proposed method is of general form and has the
potential to be applied for a wide range of applications requiring efficient
2D/3D registration of vascular structures.

1 Introduction and Background

Abdominal aortic aneurysm (AAA) is the local expansion of the abdominal
aorta. There is a risk of rupture of the aneurysm if the expansion becomes large
enough, and the chances of post-rupture survival for the patients are low. AAA is
currently ranked as the 13th leading cause of death in the U.S. [1]. In recent years,
minimal-invasive interventional repairs are rapidly emerging as an alternative to
open surgeries for the treatment of AAA, especially for patients at an increased
surgical risk due to age or other medical conditions. During the interventional
procedure, X-ray imaging is routinely used for the guidance and navigation of
the catheter and graft within the aorta. Overlay of the pre-operative 3D volu-
metric data onto the intra-operative 2D X-ray images can provide realistic artery
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anatomy and introduce useful information to the physicians for finding the best
path and target position. Due to the deformable nature of the abdominal or-
gans, there typically exists elastic deformations between pre-operative volumes
and intra-operative X-ray images. The insertion of the medical devices into the
artery during AAA procedures can further introduce significant deformations to
the target vessel that needs to be aligned. Although several methods have been
proposed for deformable 2D/3D registration [2,3,4], they are not tailored for
vascular structures. In [5], a deformable method is proposed for registering 3D
vessel structures to a single projection image. However, the method in [5] formu-
lated the registration problem inadequately and ended up with a very inefficient
solution. In particular, 2D and 3D centerlines are generated from the correspond-
ing vessel segmentations, and correspondences are estimated together with the
deformation field via iterative optimization. For Ni points for a given iD center-
line (i = 2, 3), we need to estimate N2×N3 parameters for the correspondence,
and N3 × 3 parameters for the deformation field. This is challenging both in
terms of computational complexity and numerical stability. Thin-plate-splines
(TPS) are used to enforce smoothness, which further increases the computa-
tional complexity. A 5-min run-time is reported in [5] for their registration step,
making the algorithm impractical to use during interventional procedures such
as AAA.

In this paper, we propose to reformulate the registration problem on a 3D
graph, with improvements on all three terms in the similarity measure used
in [5]. We further provide an efficient numerical solution to the graph-based
formulation. In particular, a 3D graph is generated from the abdominal aorta
segmented from the pre-operative CT data, and a 2D distance map is generated
from each of the 2D X-ray images used for registration. A distance map is a
smooth shape encoding of the underlying structures, and has been applied to
various registration problems [6,7]. By utilizing a distance map, explicit estab-
lishment of point correspondences between 2D and 3D graphs can be avoided
during the optimization. This reduces the optimization space to a much lower
dimension of N3 × 3. In addition, smoothness calculation is defined on the 3D
graph, the derivative of which can be calculated efficiently using the well-known
Laplacian matrix of a graph. Specific to the anatomy of abdominal aorta, a hi-
erarchical registration scheme is further deployed. In particular, the 3D graph is
divided into three segments, renal arteries, iliac arteries, and abdominal aorta.
A piecewise rigid-body transformation is first applied individually to the three
segments while their connectivity is maintained. Local deformation is then es-
timated for the complete graph comprising all the three segments. In contrast
to the method in [5], which uses a single projection image for registration, we
further compare the registration accuracy achieved by using one and two views.
We show that even with the incorporation of length-preserving term, a single
projection image alone can only produce accurate registration in the imaging
plane, while two views are required in order to achieve accurate registration
in 3D.
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2 Method

The workflow of our proposed method is depicted in Fig. 1. First, the abdomi-
nal aorta is segmented from CT volumes using a graph-cut based segmentation
method [8]. The centerlines are generated from the segmentation masks by a se-
quential topological thinning processes [9], and 3D graphs are subsequently gen-
erated from the extracted centerlines. Second, vessel system in 2D X-ray images is
segmented and a 2D distance map is generated [10]. A distance map provides an
efficient way of computing the distance between two centerlines, and needs to be
computed only once before the iterative optimization starts. In comparison, the
method in [5] finds the closest point pair iteratively by estimating the correspon-
dences explicitly and that significantly increases the number of parameters to be
optimized. The above steps for preprocessing on both 2D and 3D data have been
previously presented in the literatures and are not within the scope of the paper. In
addition, segmentation in AAA cases is relatively straightforward for a contrasted
3D volume and 2D DSA images with negligible motion compared to cardiac appli-
cations. Using these given inputs, we define our energy functional. Finally, the 3D
graph is registered to the 2D distance map by the following variational approach,
in which all three terms are formulated on a 3D graph.

Fig. 1. The pipeline of deformable 2D/3D registration for AAA interventions. Note
that, in all the illustrations through this paper, 3D graph features green nodes while
ground truth features red edges.

Our 3D graph G is an undirected, acyclic, and single-component graph, with
n nodes xset = {xi| i = 1...n}, and m edges of length lset = {li| i = 1...n}. For
each node xi ∈ x, its first ring neighbor edge is denoted by ei, where ei contains
ti number of edges. The energy function to be minimized is:

E(u) = D(u) + αSL(u) + βSD(u), (1)

where uset = {ui| i = 1...n} represents the node displacement to be estimated
by minimizing the above energy function. The final position of the node xi there-
fore is yi = xi + ui. In the energy functional, D is the image-based difference
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measure, SL is the length preserving term and SD is the smoothness regulariza-
tion term. α and β are the coefficients balancing the corresponding terms in the
energy functional. We adopt a gradient-based optimizer to gain computational
efficiency. For this reason we need to compute the derivative of each term in Eq.
1 with respect to node displacement ui.

Difference Measure. The difference measure D is computed as follows:

D =
1
n

n∑
i=1

M2(d(yi)), (2)

where d(yi) is the 2D projection of ith displaced node yi and M is the 2D
distance map. Let yh

i denote the homogeneous coordinate of the ith node, i.e.,
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where ∗ denotes that only the first three elements of the vector is considered.
It can be seen that the gradient of the distance map (∇M) needs to be calcu-
lated only once and is used for efficient gradient calculation in Eq. 3 by proper
parametrization of the gradient. The distance measure serves as a three dimen-
sional force that moves each node toward the direction, where its projection onto
the distance map image is minimized.

Length Preserving Term. We assume that movement of the nodes are con-
strained in the way the total length of the vessel is preserved. A stronger con-
straint is that length of each edge in the graph is preserved. We formulate the
edge length preserving term SL on the 3D graph as follows:

SL =
1
n

n∑
i=1

ti∑
j=1

(
lpj − lj

lj
)2, (4)

where lj is the original length of an edge, and lpj is the new length of the same
edge after the deformation, i.e., lpj = ‖(xj + uj) − (xi + ui)‖. The derivative of
SL with respect to ui is computed as follows:

∂SL
∂ui

=
1
n

ti∑
j=1

∂(
lpj−lj

lj
)2

∂ui
=

1
n

ti∑
j=1

2(lpj − lj)
(lj)2l

p
j

((xi + ui) − (xj + uj)) . (5)

When lpj < lj , this term forces the node to move away from its jth first-ring
neighbor, and vice versa.
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Smoothness Term. We also assume that neighboring nodes on the graph move
coherently. The smoothness term, SD, is computed as follows:

SD =
1
n

n∑
i=1

ti∑
j=1

‖ui − uj‖2. (6)

The derivative of SD with respect to ui is

∂SD
∂ui

=
1
n

ti∑
j=1

∂‖ui − uj‖2

∂ui
=

1
n

ti∑
j=1

2(ui − uj). (7)

This term forces the node to move toward the barycenter of its first ring neigh-
bors, and can be calculated efficiently using the Laplacian matrix of a graph.

Optimization Scheme. Since this is an unconstrained nonlinear optimization
problem, we considered using BFGS method [11] to minimize the energy func-
tional of Eq. 1. Table 1 outlines the steps of the method, where parenthesized
superscript denotes intermediate results for the kth iteration.

Table 1. Deformable 2D/3D registration algorithm flowchart

Algorithm Flowchart:
repeat

1. Obtain a direction v(k) by solving: v(k) = −B(k)−1∇E(u(k));
2. Perform a line search to find the best step size, λ(k);

then update u(k+1) = u(k) + λ(k)v(k);
3. Let u(k) = λ(k)v(k);
4. Calculate the gradient difference, e(k) = ∇E(u(k+1)) − ∇E(u(k));

5. Calculate the Hessian matrix, B(k+1) = B(k) + e(k)e(k)�

e(k)�u(k)
− B(k)u(k)(B(k)u(k))�

u(k)�B(k)u(k)
;

6. Compute B(k+1)−1 from 5 or use Sherman-Morrison formula [12]:

B(k+1)−1
= B(k)−1

+ (u(k)�e(k)+e(k)�B(k)−1
e(k))(u(k)u(k)�)

(u(k)�e(k))2

– B(k)−1
e(k)u(k)�+u(k)e(k)�B(k)−1

u(k)�e(k)
;

until ‖e(k)‖ < ε;

The registration is performed in a hierarchical manner. We first estimate the
global rigid alignment1 between the two aorta by aligning the two bifurcation
points (the illiac and renal bifurcations). The translation at the two bifurca-
tion points is applied to the respective branches. This step yields us a good
guess of u(0). Following this, we optimize for the displacement at all nodes of
the 3D graph. B(0) is initialized with identity. The first iteration is then equiv-
alent to a gradient descent, but further iterations will be accelerated by B(k),
which is the approximated Hessian matrix. For more details, readers are referred
to [11].

1 This step efficiently excludes the risk of BFGS falling into a local minimum.
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3 Experiments and Results

In order to validate our proposed method, we conducted a series of exper-
iments, which included the 3D volumes before and after deformation to
establish ground truth. Using this data, we quantitatively measured the 3D tar-
get registration error (TRE) based on the 3D Euclidean distance between the
transformed nodes of the graph and the corresponding ground truth, defined as
TRE = 1

n

∑n
i=1 ‖(xi+ui)−gi‖, where gi is the ground truth location of the node

corresponding to xi. The mean value and standard deviation of the registration
error are presented as μ and σ, respectively. In addition, re-projection error is
calculated by the average of distance map lookups based on the projected 3D
points as mentioned in Eq. 2. The calibration for the central projection matrix
are done off-line and once at the beginning of the procedure for a given machine.

3.1 Phantom Data

A AAA phantom (top left of Fig. 1) comprising the simulated abdominal aorta,
renal arteries, and iliac arteries was used for our phantom study. A set of Dy-
naCT rotational run was acquired on a biplane C-arm system (AXIOM Artis,
Siemens Medical Solutions, Erlangen, Germany) about the phantom that is filled
with radio-opaque fluid. Artificial deformation was introduced to the phantom
to simulate the deformation caused by device insertion and/or organ movement.
A total of 9 datasets were acquired, resulting in a total number of 9 × 8 = 72
pairs for phantom validation. For a given pair of datasets, the 3D graph from the
first dataset and the 2D distance map from the second dataset were used as the
input for our registration algorithm, and the 3D centerline from second dataset
was used as the ground truth for TRE calculation. One or two 2D X-ray images
(∼90 degrees apart) were used for each pair. Some examples are shown in Fig.
2 and the quantitative results comparing the offset before and after registration
are summarized in Fig. 3 and Table 2. It can be seen that when two 2D X-ray im-
ages were used, the registration result was highly accurate in 3D physical space
(Fig. 2-(d-e)). In comparison, a single projection image alone can produce accu-
rate registration in the imaging plane, while the estimation in the depth direction

Table 2. Experimental results with two-view setting. Note that, to obtain the ground
truth for the real patient data, synthesized and natural deformation are applied to the
3D graph. The results are presented in “Clinical Data with Synthetic Deformation”
and “Clinical Data with Natural Deformation” respectively. α and β are 200 in these
experiments.

Test
Type

μ
Initial/Registered(mm)

σ
Initial/Registered(mm)

Runtime
(s)

Phantom Data,
All 72 Pairs 8.55/0.76 3.91/0.33 0.075

Clinical Data,
with Synthetic Deformation 15.19/0.95 9.27/0.87 0.092

Clinical Data,
with Natural Deformation 9.72/0.82 5.50/0.73 0.088
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(a) (b) (c) (d) (e)

Fig. 2. Two examples of phantom experiments, one row for each case. (a) The 3D graph
and the ground truth are overlaid to show their initial offset; (b-c) Registration results
using one X-ray image. The overlay is accurate from the imaging plane (b), but not
in the physical space as shown from a secondary angle (c); (d-e) Registration results
using two X-ray images. The overlay is shown from the same angles as those for (b-c).

(a) (b)

Fig. 3. Scatter plot of registration results for 72 pairs of phantom test. The registration
TRE is plotted versus the initial offset. (a) Re-projection error in the 2D imaging plane,
which is small across a wide range of initial offsets when either one- or two- views are
used; (b) TRE in 3D, which is consistently small across a wide range of initial offsets
when two X-ray images are used, demonstrating a relatively large capture range of the
proposed hierarchical registration scheme.

can be largely off (Fig. 2-(b-c)). Compared to the method reported in [5] where
registration took ∼5 mins, our registration algorithm took less than 0.1s with
comparable accuracy. Both methods were implemented in C++ and tested on
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(a) (b) (c) (d) (e)

Fig. 4. (a) An example of patient CT data, with AAA segmented and shown in mesh;
(b) The 3D graph and the ground truth with synthesized deformation for patient one;
(c) Registration results of (b); (d) The 3D graph and the ground truth with natural
deformation for patient two; (e) Registration result of (d).

similar machine configuration. The significantly improved efficiency and satis-
factory accuracy makes the propose algorithm highly suitable for interventional
applications that require efficient update of registration during the procedures.
In addition, by integrating the hierarchical registration scheme, our registration
algorithm performed robustly across a wide range of initial offsets (see Fig. 3).

3.2 Clinical Data

Our proposed method was also applied on clinical data from two patients suffer-
ing from AAA. The ground truth for real patient data is difficult to obtain. In
our experiments, the 3D graph was generated from a CT volume of the patient,
and was deformed by two types of known deformations, one synthesized and one
natural.The synthesized deformationfield was generatedusing a length preserving
deformation function (Fig. 4-(b)). The natural deformation field represented real
clinical scenario and was obtained by registering the CT volume to the DynaCT
volume acquired during the intervention for the respective patient (Fig. 4-(d)). The
introduced offset was estimated to average at 15.19 mm and 9.75 mm for the syn-
thesized and natural deformations respectively (Table 2). The deformed 3D graph
using either synthesized or natural deformation fields was then used as the ground
truth for quantifying the registration performance. A projection matrix computed
from a rigid CTA-to-DSA registration of the respective patient is used to create the
input 2D distance map. The proposed registration was then applied using the orig-
inal 3D graph and the created 2D distance map as the input, and the registration
result was compared to the ground truth. The advantage of using the simulated
instead of real 2D projections is that we have the ground truth and hence can vali-
date our registration accuracy in 3D, which is essential. Some experimental results
are shown in Fig. 4 and quantitative results are summarized in Table 2.
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4 Discussion and Conclusion

In this paper, we presented an accurate and efficient graph-based deformable
2D/3D registration method and applied it on AAA data. A 3D graph is
generated to represent the vascular structure in 3D, and a 2D distance map
is computed to smoothly encode the centerline of the vessel shape. This enables
us to formulate the problem without a need for establishing explicit correspon-
dence on a 3D graph. Two views were used for deriving an accurate registration
in 3D, and a hierarchical registration scheme increased the capture range signif-
icantly. We applied BFGS optimizer by proper implementation of the gradient
of the different terms of the energy functional explicitly on the 3D graph. We
achieved sub-millimeter accuracy on both phantom and clinical data, which is
comparable to that reported in [5]. The speed-up is over 1000 times. Efficiency
is gold in interventional applications. Even though contrast is only administered
from time to time, the physicians can not wait a long time for the registration
result before resuming interventions. From our clinical partners, an acceptable
registration time is <30s for initial registration and <5s for updates. The sub-
stantially improved efficiency further opens the door to potential applications.
For example, the weight for each term in the energy functional is data-dependent.
Our run-time of 0.1s makes it feasible to get the optimal combination of weights
interactively for a given data, even during interventions. The method is not
application specific and has the potential to be applied on a wider set of prob-
lems including cardiology and neuro interventional procedures. This is our future
work.
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