

Lecture Notes in Artificial Intelligence 6341
Edited by R. Goebel, J. Siekmann, and W. Wahlster

Subseries of Lecture Notes in Computer Science

Tomi Janhunen Ilkka Niemelä (Eds.)

Logics in
Artificial Intelligence

12th European Conference, JELIA 2010
Helsinki, Finland, September 13-15, 2010
Proceedings

13

Series Editors

Randy Goebel, University of Alberta, Edmonton, Canada
Jörg Siekmann, University of Saarland, Saarbrücken, Germany
Wolfgang Wahlster, DFKI and University of Saarland, Saarbrücken, Germany

Volume Editors

Tomi Janhunen
Aalto University
Department of Information and Computer Science
PO Box 15400
FI-00076 AALTO, Finland
E-mail: Tomi.Janhunen@tkk.fi

Ilkka Niemelä
Aalto University
Department of Information and Computer Science
PO Box 15400
FI-00076 AALTO, Finland
E-mail: Ilkka.Niemela@tkk.fi

Library of Congress Control Number: 2010933610

CR Subject Classification (1998): I.2, F.4.1, H.3, H.4, F.3, D.1.6

LNCS Sublibrary: SL 7 – Artificial Intelligence

ISSN 0302-9743

ISBN-10 3-642-15674-6 Springer Berlin Heidelberg New York
ISBN-13 978-3-642-15674-8 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

springer.com

© Springer-Verlag Berlin Heidelberg 2010
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper 06/3180

Preface

This volume contains the papers selected for presentation at the 12th European
Conference on Logics in Artificial Intelligence, JELIA 2010, which was held in
Helsinki, Finland, during September 13–15, 2010.

Logics provide a formal basis and key descriptive notation for the study and
development of applications and systems in artificial intelligence (AI). With the
depth and maturity of formalisms, methodologies, and systems today, such log-
ics are increasingly important. The European Conference on Logics in Artificial
Intelligence (or Journées Européennes sur la Logique en Intelligence Artificielle
— JELIA) began back in 1988, as a workshop, in response to the need for a
European forum for the discussion of emerging work in this field. Since then,
JELIA has been organized biennially, with English as the official language, and
with proceedings published in Springer’s Lecture Notes in Artificial Intelligence
series. In 2010 the conference was organized for the first time in Scandinavia, fol-
lowing previous meetings mainly taking place in Central and Southern Europe.
The increasing interest in this forum, its international level with growing par-
ticipation by researchers worldwide, and the overall technical quality has turned
JELIA into a major biennial forum for the discussion of logic-based AI.

The JELIA 2010 Program Committee received a total of 91 submissions com-
prising 78 regular papers and 13 system descriptions with authors from 30 coun-
tries. Each submission was evaluated by at least three expert reviewers followed
by a Program Committee discussion on the merits of the paper. The review
process was very selective and as a result the Program Committee selected 26
regular papers (33% of submissions) and five system descriptions (38% of sub-
missions) for presentation and inclusion in the proceedings. In addition to the
selected papers in the proceedings, the highlights of the JELIA 2010 program
included invited talks by Gerhard Brewka titled “Nonmonotonic Tools for Argu-
mentation,” by Adnan Darwiche titled “Relax, Compensate and then Recover:
A Theory of Anytime, Approximate Inference,” and by Stéphane Demri titled
“Counter Systems for Data Logics.” Moreover, the 5th European Workshop on
Probabilistic Graphical Models (PGM 2010) was co-located with JELIA 2010
and the invited talk of Adnan Darwiche was given jointly to the JELIA and
PGM audience. We were inspired by the breadth of topics covered in the confer-
ence and we are confident that this volume will provide a noteworthy reference
to current research issues in logics in AI.

The JELIA 2010 conference was sponsored by the Finnish Cultural Foun-
dation, the Federation of Finnish Learned Societies, University of Helsinki, and
Aalto University. We greatly appreciate their generous support and, in particu-
lar, the possibility of having the main building of the University of Helsinki in the
historical city center as the conference venue. Many individuals also contributed
to the success of the conference, to whom we hereby extend our gratitude and

VI Preface

thanks. We are indebted to the members of the JELIA Steering Committee for
selecting Helsinki for the JELIA 2010 event. Program Committee members and
several other external referees provided timely and in-depth reviews of the sub-
mitted papers, and worked hard to select the best papers for presentation at the
conference. The Local Chair, Matti Järvisalo, Publicity Chair, Emilia Oikarinen,
Volunteers Chair, Mikko Koivisto, and members of the Organizing Committee
contributed their invaluable assistance in arranging and hosting the conference.
However, it is evident that the broad logics in AI community contributed the
most to the success of JELIA 2010 by submitting excellent papers to the confer-
ence. Last but not least, we thank the developers of the EasyChair conference
management system, which made our job definitely easier.

September 2010 Tomi Janhunen
Ilkka Niemelä

Organization

JELIA 2010 was organized in collaboration with the Department of Information
and Computer Science of Aalto University and Department of Computer Science
of the University of Helsinki.

Organizing Committee

Satu Eloranta University of Helsinki, Finland
Raul Hakli University of Helsinki, Finland
Tomi Janhunen Aalto University, Finland
Matti Järvisalo Local Chair, University of Helsinki, Finland
Tommi Junttila Aalto University, Finland
Mikko Koivisto Volunteers Chair, University of Helsinki,

Finland
Ilkka Niemelä Chair, Aalto University, Finland
Emilia Oikarinen Publicity Chair, Aalto University, Finland

Program Committee

José Júlio Alferes Universidade Nova de Lisboa, Portugal
Franz Baader Technische Universität Dresden, Germany
Peter Baumgartner NICTA, Australia
Salem Benferhat Université d’Artois, France
Philippe Besnard Université Paul Sabatier, France
Piero Bonatti Università di Napoli Federico II, Italy
Gerhard Brewka University of Leipzig, Germany
Pedro Cabalar University of Coruña, Spain
Mehdi Dastani Utrecht University, The Netherlands
James Delgrande Simon Fraser University, Canada
Marc Denecker Katholieke Universiteit Leuven, Belgium
Ulle Endriss University of Amsterdam, The Netherlands
Esra Erdem Sabanci University, Turkey
Wolfgang Faber University of Calabria, Italy
Michael Fisher University of Liverpool, UK
Llúıs Godo CSIC, Spain
Rajeev Goré Australian National University, Australia
Andreas Herzig Université Paul Sabatier, France
Tomi Janhunen Co-chair, Aalto University, Finland
Tommi Junttila Aalto University, Finland
Joohyung Lee Arizona State University, USA
Nicola Leone University of Calabria, Italy

VIII Organization

Thomas Lukasiewicz Technische Universität Wien, Austria
Carsten Lutz Universität Bremen, Germany
Lúıs Moniz Pereira Universidade Nova de Lisboa, Portugal
Angelo Montanari University of Udine, Italy
Ilkka Niemelä Co-chair, Aalto University, Finland
David Pearce Universidad Politécnica de Madrid, Spain
Axel Polleres National University of Ireland, Ireland
Henri Prade Université Paul Sabatier, France
Jussi Rintanen NICTA, Australia
Francesca Rossi University of Padova, Italy
Chiaki Sakama Wakayama University, Japan
Renate Schmidt University of Manchester, UK
Ján Šefránek Comenius University, Slovakia
Terry Swift SUNY Stony Brook, USA
Michael Thielscher University of New South Wales, Australia
Hans Tompits Technische Universität Wien, Austria
Francesca Toni Imperial College, UK
Wiebe van der Hoek University of Liverpool, UK
Peter Vojtáš Charles University, Czech Republic
Toby Walsh University of New South Wales, Australia
Frank Wolter University of Liverpool, UK

Additional Referees

Salvador Abreu
Stéphane Airiau
Marco Alberti
Mario Alviano
Martin Baláž
Annamaria Bria
Domenico Corapi
Broes De Cat
Stef De Pooter
Pierangelo Dell’Acqua
Dario Della Monica
Agostino Dovier
Jori Dubrovin
Halit Erdogan
Marco Faella
Michael Fink
Alfredo Gabaldon
Ana Sofia Gomes
Ricardo Gonçalves
Gianluigi Greco
Davide Grossi

Antti Hyvärinen
Giovambattista Ianni
Katsumi Inoue
Matti Järvisalo
Reinhard Kahle
Matthias Knorr
Boris Konev
Roman Kontchakov
Thomas Krennwallner
João Leite
Nuno Lopes
Michael Maher
Marco Maratea
Enrico Marchioni
Yunsong Meng
Thomas Meyer
Sanjay Modgil
Marco Montali
Peter Novák
Philipp Obermeier
Johannes Oetsch

Emilia Oikarinen
Ravi Palla
Dirk Pattinson
Rafael Peñaloza
Daniele Porello
Jörg Pührer
Hilverd Reker
Francesco Ricca
Fabrizio Riguzzi
Riccardo Rosati
Sebastian Rudolph
Pietro Sala
Luigi Sauro
Stephan Scheele
Thomas Schneider
Stefan Schulz
Jozef Šǐska
Christoph Sticksel
Giorgio Terracina
Dmitry Tishkovsky
Paolo Turrini

Organization IX

Levan Uridia
Petko Valtchev
Agust́ın Valverde
Joost Vennekens

Hanne Vlaeminck
Dirk Walther
Heinrich Wansing
Gregory Wheeler

Johan Wittocx
Stefan Woltran
Michael Zakharyaschev
Antoine Zimmermann

Table of Contents

I Invited Talks

Nonmonotonic Tools for Argumentation . 1
Gerhard Brewka

Relax, Compensate and then Recover: A Theory of Anytime,
Approximate Inference . 7

Adnan Darwiche

Counter Systems for Data Logics . 10
Stéphane Demri

II Regular Papers

Similarity-Based Inconsistency-Tolerant Logics . 11
Ofer Arieli and Anna Zamansky

Decomposition of Distributed Nonmonotonic Multi-Context Systems . . . 24
Seif El-Din Bairakdar, Minh Dao-Tran, Thomas Eiter,
Michael Fink, and Thomas Krennwallner

Bridging Possibilistic Conditional Knowledge Bases and Partially
Ordered Bases . 38

Salem Benferhat, Sylvain Lagrue, and Safa Yahi

A Decidable Constructive Description Logic . 51
Loris Bozzato, Mauro Ferrari, Camillo Fiorentini, and Guido Fiorino

A Normal Form for Linear Temporal Equilibrium Logic 64
Pedro Cabalar

Rational Closure for Defeasible Description Logics 77
Giovanni Casini and Umberto Straccia

Extensional Higher-Order Logic Programming . 91
Angelos Charalambidis, Konstantinos Handjopoulos,
Panos Rondogiannis, and William W. Wadge

dl2asp: Implementing Default Logic via Answer Set Programming 104
Yin Chen, Hai Wan, Yan Zhang, and Yi Zhou

Sets of Boolean Connectives That Make Argumentation Easier 117
Nadia Creignou, Johannes Schmidt, Michael Thomas, and
Stefan Woltran

XII Table of Contents

Retroactive Subsumption-Based Tabled Evaluation of Logic
Programs . 130

Flávio Cruz and Ricardo Rocha

Preference-Based Inconsistency Assessment in Multi-Context
Systems . 143

Thomas Eiter, Michael Fink, and Antonius Weinzierl

A Logical Semantics for Description Logic Programs 156
Michael Fink and David Pearce

An Incremental Answer Set Programming Based System for Finite
Model Computation . 169

Martin Gebser, Orkunt Sabuncu, and Torsten Schaub

Parametrized Logic Programming . 182
Ricardo Gonçalves and José Júlio Alferes

Counterexample Guided Abstraction Refinement Algorithm for
Propositional Circumscription . 195

Mikoláš Janota, Radu Grigore, and Joao Marques-Silva

ALCALC : A Context Description Logic . 208
Szymon Klarman and Vı́ctor Gutiérrez-Basulto

Stable Belief Sets Revisited . 221
Costas D. Koutras and Yorgos Zikos

Efficient Inferencing for OWL EL . 234
Markus Krötzsch

Translating First-Order Causal Theories into Answer Set
Programming . 247

Vladimir Lifschitz and Fangkai Yang

Preprocessing Boolean Formulae for BDDs in a Probabilistic Context . . . 260
Theofrastos Mantadelis, Ricardo Rocha, Angelika Kimmig, and
Gerda Janssens

Minimal Knowledge and Belief via Minimal Topology 273
David Pearce and Levan Uridia

A Logical Account of Lying . 286
Chiaki Sakama, Martin Caminada, and Andreas Herzig

Tabling with Answer Subsumption: Implementation, Applications and
Performance . 300

Terrance Swift and David S. Warren

Table of Contents XIII

Embracing Events in Causal Modelling: Interventions and
Counterfactuals in CP-Logic . 313

Joost Vennekens, Maurice Bruynooghe, and Marc Denecker

An Approximative Inference Method for Solving ∃∀SO Satisfiability
Problems . 326

Hanne Vlaeminck, Johan Wittocx, Joost Vennekens,
Marc Denecker, and Maurice Bruynooghe

Horn Contraction via Epistemic Entrenchment . 339
Zhi Qiang Zhuang and Maurice Pagnucco

III System Descriptions

The DMCS Solver for Distributed Nonmonotonic Multi-Context
Systems . 352

Seif El-Din Bairakdar, Minh Dao-Tran, Thomas Eiter,
Michael Fink, and Thomas Krennwallner

The mcs-ie System for Explaining Inconsistency in Multi-Context
Systems . 356

Markus Bögl, Thomas Eiter, Michael Fink, and
Peter Schüller

Coala: A Compiler from Action Languages to ASP 360
Martin Gebser, Torsten Grote, and Torsten Schaub

DLV
MC : Enhanced Model Checking in DLV . 365

Marco Maratea, Francesco Ricca, and Pierfrancesco Veltri

A Dynamic-Programming Based ASP-Solver . 369
Michael Morak, Reinhard Pichler, Stefan Rümmele, and
Stefan Woltran

Author Index . 373

Nonmonotonic Tools for Argumentation

Gerhard Brewka

Universität Leipzig, Augustusplatz 10-11, 04109 Leipzig, Germany
brewka@informatik.uni-leipzig.de

Abstract. Dung’s argumentation frameworks (AFs) have become very
popular as semantical tools in argumentation. We discuss a generaliza-
tion of AFs called abstract dialectical frameworks (ADFs). These frame-
works are more flexible in that they allow arbitrary boolean functions
to be used for the specification of acceptance conditions for nodes. We
present the basic underlying definitions and give an example illustrat-
ing why they are useful. More precisely, we show how they can be used
to provide a semantical foundation for Gordon, Prakken and Walton’s
Carneades model of argumentation, lifting the limitation of this model
to acyclic argument graphs.

1 Introduction

Dung’s abstract argumentation frameworks (AFs) [4] are without doubt the most
influential tools currently used in argumentation. They provide basic conflict
handling mechanisms for argumentation: whenever all relevant arguments and
the conflict relations among them have been established, the semantics defined
for AFs specify different ways of identifying reasonable subsets of the arguments
which are jointly acceptable.

AFs have become extremely popular in argumentation. They are commonly
used in the following way: given a knowledge base, say consisting of defeasible
rules, preferences, proof standards, etc., the available information is first com-
piled into adequate arguments and attacks. The resulting AF then provides the
system with a choice of different semantics. The following picture illustrates this:

KB AF

?

AFs are among the simplest nonmonotonic systems one can think of - and
this is certainly part of why they are so popular. Still, we believe - and will
demonstrate here - that adding further functionality to AFs may be worthwhile
as this can bring the target systems of the compilation described above closer
to what one typically finds in the original knowledge bases.

This was one of the reasons for Brewka and Woltran to introduce abstract
dialectical frameworks (ADFs) [3]. ADFs are a powerful generalization of Dung-
style argumentation frameworks. Dung argumentation frameworks have an im-
plicit, fixed criterion for the acceptance of a node in the argument graph: a

T. Janhunen and I. Niemelä (Eds.): JELIA 2010, LNAI 6341, pp. 1–6, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

2 G. Brewka

node is accepted iff all its parents are defeated. This acceptance criterion can
be viewed as an implicit boolean function assigning a status to an argument
based on the status of its parents. The basic idea underlying ADFs is to make
this boolean function explicit, and then to allow arbitrary acceptance conditions
for nodes to be specified. In a nutshell, this turns the “calculus of opposition”
provided by AFs into a “calculus of support an opposition”.

It turns out that the standard semantics for Dung frameworks - grounded,
preferred and stable - can be generalized to ADFs, the latter two to a slightly
restricted class of ADFs called bipolar, where each link in the graph either sup-
ports or attacks its target node. Since all ADFs we are dealing with here are
bipolar, we will simply speak of ADFs and omit the adjective “bipolar” whenever
there is no risk of confusion.

In the next section we will briefly introduce the main definitions underly-
ing ADFs. We will then illustrate why they are useful, showing how Carneades
argument evaluation structures [6,7] can be reconstructed as ADFs.

2 Abstract Dialectical Frameworks

An ADF [3] is a directed graph whose nodes represent arguments or statements
which can be accepted or not. The links represent dependencies: the status of
a node s only depends on the status of its parents (denoted par(s)), that is,
the nodes with a direct link to s. In addition, each node s has an associated
acceptance condition Cs specifying the conditions under which s is accepted.
This is where ADFs go beyond Dung argumentation frameworks. Cs is a boolean
function yielding for each assignment of values to par (s) one of the values in ,
out for s. As usual, we will identify value assignments with the sets of nodes
which are in. Thus, if for some R ⊆ par(s) we have Cs(R) = in , then s will be
accepted provided the nodes in R are accepted and those in par (s) \ R are not
accepted.

Definition 1. An abstract dialectical framework is a tuple D = (S,L,C) where

– S is a set of statements,
– L ⊆ S × S is a set of links,
– C = {Cs}s∈S is a set of total functions Cs : 2par(s) → {in, out}, one for

each statement s. Cs is called acceptance condition of s.

S and L obviously form a graph, and we sometimes refer to elements of S as
nodes. For the purposes of this paper we will only deal with a subset of ADFs,
called bipolar in [3]. In such ADFs each link is either attacking or supporting:

Definition 2. Let D = (S,L,C) be an ADF. A link (r, s) ∈ L is

1. supporting iff, for no R ⊆ par (s), Cs(R) = in and Cs(R ∪ {r}) = out,
2. attacking iff, for no R ⊆ par(s), Cs(R) = out and Cs(R ∪ {r}) = in.

Nonmonotonic Tools for Argumentation 3

For simplicity we will only speak of ADFs here, keeping in mind that all ADFs
in this paper are indeed bipolar.

It turns out that Dung’s standard semantics - grounded, stable, preferred -
can be generalized adequately to ADFs. We first introduce the notion of a model.
Intuitively, in a model all acceptance conditions are satisfied.

Definition 3. Let D = (S,L,C) be an ADF. M ⊆ S is a model of D if for all
s ∈ S we have s ∈M iff Cs(M ∩ par (s)) = in.

We first define the generalization of grounded semantics:

Definition 4. Let D = (S,L,C) be an ADF. Consider the operator

ΓD(A,R) = (acc(A,R), reb(A,R))

where

acc(A,R) = {r ∈ S | A ⊆ S′ ⊆ (S \R)⇒ Cr(S′ ∩ par (r)) = in}, and
reb(A,R) = {r ∈ S | A ⊆ S′ ⊆ (S \R)⇒ Cr(S′ ∩ par (r)) = out}.

ΓD is monotonic in both arguments and thus has a least fixpoint. E is the well-
founded model of D iff for some E′ ⊆ S, (E,E′) is the least fixpoint of ΓD.

For stable models we apply a construction similar to the Gelfond/Lifschitz reduct
for logic programs. The purpose of the reduction is to eliminate models in which
nodes are in just because of self supporting cycles:

Definition 5. Let D = (S,L,C) be an ADF. A model M of D is a stable model
if M is the least model of the reduced ADF DM obtained from D by

1. eliminating all nodes not contained in M together with all links in which any
of these nodes appear,

2. eliminating all attacking links,
3. restricting the acceptance conditions Cs for each remaining node s to the

remaining parents of s.

Preferred extensions in Dung’s approach are maximal admissible sets, where
an admissible set is conflict-free and defends itself against attackers. This can
be rephrased as follows: E is admissible in a Dung argumentation framework
A = (AR, att) iff for some R ⊆ AR

– R does not attack E, and
– E is a stable extension of (AR-R, att ∩ (AR-R×AR-R)).

This leads to the following generalization:

Definition 6. Let D = (S,L,C), R ⊆ S. D-R is the ADF obtained from D by

1. deleting all nodes in R together with their acceptance conditions and links
they are contained in.

4 G. Brewka

2. restricting acceptance conditions of the remaining nodes to the remaining
parents.

Definition 7. Let D = (S,L,C) be an ADF. M ⊆ S is admissible in D iff
there is R ⊆ S such that

1. no element in R attacks an element in M , and
2. M is a stable model of D-R.

M is a preferred model of D iff M is (subset) maximal among the sets admissible
in D.

Brewka and Woltran also introduced weighted ADFs where an additional weight
function w assigns qualitative or numerical weights to the links in the graph. This
allows acceptance conditions to be defined in a domain independent way, based
on the weights of links rather than on the involved statements. They also showed
how the proof standards proposed by Farley and Freeman [5] can be formalized
based on this idea.

The reader is referred to [3] for further details.

3 Application: Reconstructing Carneades

The Carneades model of argumentation, introduced by Gordon, Prakken and
Walton in [6] and developed further in a series of subsequent papers [7,1,8], is an
advanced general framework for argumentation.1 It captures both static aspects,
related to the evaluation of arguments in a particular context based on proof
standards for statements and on weights arguments are given by an audience,
and dynamic aspects, covering for instance the shift of proof burdens in different
stages of the argumentation process.

Unlike many other approaches, Carneades does not rely on Dung’s argumen-
tation frameworks (AFs) [4] for the definition of its semantics, more specifically
its notion of acceptable statements. One goal of our reconstruction is to provide
a link, albeit an indirect one, between Carneades and AFs. As we will see, both
are instances of a more general framework. Moreover, in spite of this generality,
Carneades suffers from a restriction: it is assumed that the graphs formed by
arguments are acyclic. This is not as bad as it may first sound, as the use of
pro and con arguments allows some conflicts to be represented which require
cyclic representations in other frameworks. Still, cycles in argumentation appear
so common that forbidding them right from the start is certainly somewhat
problematic. And indeed, the authors in [6] write (page 882):

“We ... leave an extension to graphs that allow for cycles through excep-
tions for future work.”

1 As of June 2010, [6] is among the 10 most cited papers which appeared in the
Artificial Intelligence Journal over the last 5 years.

Nonmonotonic Tools for Argumentation 5

Indeed, by reconstructing Carneades argument evaluation structures as ADFs,
the mentioned limitation can be overcome.

We cannot go into the technical details of the translation here and refer the
reader to [2]. Nevertheless, we want to give a basic idea how the translation
works. We start with the definition of arguments in Carneades [7]:

Definition 8 (argument). Let L be a propositional language. An argument
is a tuple 〈P,E, c〉 where P ⊂ L are its premises, E ⊂ L with P ∩E = ∅ are its
exceptions and c ∈ L is its conclusion. For simplicity, c and all members of
P and E must be literals, i.e. either an atomic proposition or a negated atomic
proposition. Let p be a literal. If p is c, then the argument is an argument pro
p. If p is the complement of c, then the argument is an argument con p.

An argument evaluation structure was defined in [7] as a triple consisting of a
stage, an audience, and a function assigning a proof standard to propositions.
Since we are only interested in stage specific argument evaluation, the status
part of the definition of stages (see [7]) can be skipped, keeping only the set of
arguments, together with the audience (a pair consisting of a set of assumptions
and a weight function) and the proof standards.

To illustrate our translation, consider the argument

a = 〈{bird}, {peng, ostr}, f lies〉

and assume weights(a) = 0.8. The ADF graph generated by this argument is
shown in the following figure (we mark links with their weights):

bird

ostr

peng

a

flies

flies

(+, 0.8)

(−, 0.8)

+

−

−

Proof standards and assumptions can be captured by adequate acceptance con-
ditions for the nodes in the ADF. It was proven in [2] that this translation yields
the desired results, that is, the acceptable statements in Carneades coincide with
the statement nodes assigned in in the generated ADF.

The real advantage of our translation is that we can now lift the restriction of
acyclicity. Nothing in the translation hinges on the fact that the set of Carneades
arguments is acyclic. Indeed, cycles in the set of Carneades arguments will lead
to cycles in the ADF, yet these cycles are handled - in different ways - by the
available semantics of ADFs.

These results are of interest, both from the point of view of ADFs and from
the point of view of Carneades:

6 G. Brewka

1. They show that ADFs not only generalize Dung argumentation frameworks
- which have been the starting point for their development. They also gen-
eralize Carneades argument evaluation structures.

2. They clarify the relationship between Carneades and Dung AFs, showing
that both are instances of ADFs. They thus help to put Carneades on an
equally solid formal foundation.

3. Finally, they allow us to lift the restriction of Carneades to acyclic argument
structures.

As we believe, this provides sufficient evidence that the ADF framework is indeed
a useful nonmonotonic tool in the theory of argumentation.

References

1. Ballnat, S., Gordon, T. : Goal selection in argumentation processes. In: Proc. Com-
putational Models of Argumentation (2010)

2. Brewka, G., Gordon, T.F.: Carneades and abstract dialectical frameworks: A recon-
struction. In: Proc. COMMA (2010)

3. Brewka, G., Woltran, S.: Abstract dialectical frameworks. In: Proc. Principles of
Knowledge Representation and Reasoning, pp. 102–111 (2010)

4. Dung, P.M.: On the acceptability of arguments and its fundamental role in non-
monotonic reasoning, logic programming and n-person games. Artif. Intell. 77(2),
321–358 (1995)

5. Farley, A.M., Freeman, K.: Burden of proof in legal argumentation. In: Proc.
ICAIL 1995, pp. 156–164 (1995)

6. Gordon, T.F., Prakken, H., Walton, D.: The Carneades model of argument and
burden of proof. Artif. Intell. 171(10-15), 875–896 (2007)

7. Gordon, T.F., Walton, D.: Proof burdens and standards. In: Rahwan, I., Simari, G.
(eds.) Argumentation in Artificial Intelligence, pp. 239–258 (2009)

8. Grabmair, M., Gordon, T., Walton, D.: Probabilistic semantics for the Carneades
argument model using Bayesian belief networks. In: Proc. Computational Models of
Argumentation (2010)

Relax, Compensate and Then Recover:
A Theory of Anytime, Approximate Inference

Adnan Darwiche

Computer Science Department,
University of California, Los Angeles, USA

darwiche@cs.ucla.edu

This talk is based on two main ideas, one concerning exact probabilistic inference
and the second concerning approximate probabilistic inference. Both ideas have
their roots in symbolic inference and do complement each other.

The first idea shows how one can reduce exact probabilistic inference to a prob-
lem of knowledge compilation: transforming propositionalknowledge bases so they
attain certain syntactic properties [8]. In particular, I will discuss two syntactic
properties of propositionalknowledge bases, called decomposability and determin-
ism, and show that an ability to enforce these two properties efficiently leads to an
ability to efficiently do inference on probabilistic graphical models. This connec-
tion is not recent — see [7] for one of the first formulations. Yet, it is important
to highlight as it helps in showing the relevance of work on symbolic knowledge
compilation to probabilistic inference. I will in particular highlight some of the
open problems and computational bottlenecks in this area, in addition to recent
advances in this direction (e.g., [11]). My goal here is to motivate further work on
knowledge compilation by the symbolic logic reasoning community.

In logical terms, decomposability is about expressing an event γ as a conjunc-
tion, say, α ∧ β, where the conjuncts do not share variables. By decomposing γ
in this fashion, we will able to decompose computations on γ into independent
computations on α and on β. Sometimes, we cannot perform this decomposi-
tion, especially when the variables of α and β are already predetermined. The
solution to this problem is to express γ as a disjunction α1 ∧ β1 ∨ . . . ∨ αn ∧ βn,
where each disjunct αi ∧ βi is a decomposition. This is always possible, but one
would clearly want to minimize the size of such disjunctions. One may not be
able to escape exponential growth in some cases, however, especially that each
αi and βi would generally need to be decomposed recursively as well. Moreover,
when the ultimate goal is to perform probabilistic reasoning, one would want
the disjuncts to be mutually exclusive as well. That is, no pair of disjuncts can
be satisfied by the same model. This is the property of determinism.

Another, but approximate, method to enforce decomposability is based on
relaxations. Suppose for example that the conjuncts α and β share a single vari-
able X . One can simply pretend that the occurrences of X in α are distinct from
those in β. One way to realize this is by renaming every occurrence of X in β
to X ′. The conjunction α ∧ β is now decomposable, but clearly not equivalent
to the original conjunction. Note, however, that if we add the equivalence con-
straint X ≡ X ′ to this new conjunction, we would obtain a conjunction that is

T. Janhunen and I. Niemelä (Eds.): JELIA 2010, LNAI 6341, pp. 7–9, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

8 A. Darwiche

equivalent to the original one. Hence, our approximate decomposition technique
can be viewed as one of relaxing equivalence constraints. In its simplest form,
this technique has been the basis for some MAXSAT solvers [12,13]. It is also
the basis for some well known approximation methods in probabilistic reasoning,
such as minibuckets [9], as shown in [1]. Interestingly enough, one can provide
specific guarantees on the results obtained from such relaxations, typically in the
form of upper/lower bounds. These bounds are used as final approximations, as
in minibuckets, or form the basis of pruning in branch-and-bound search algo-
rithms, as in some MAXSAT solvers.

A more refined version of the above technique is to compensate for the relaxed
equivalence constraint. Such compensations, however, requires one to work with
a more refined form of logical knowledge bases. An example of this is MAXSAT,
where one is allowed to attach weights to logical constraints. Another example is
probabilistic reasoning, where one can attach probabilities to such constraints.
By utilizing these numerical tools, and adjusting them carefully, one can enforce
some weaker notions of equivalence — for example, ensuring that variables X
and its clone X ′ have the same probability. A number of such weaker notions
have been proposed recently for both MAXSAT [6] and probabilistic reason-
ing [2,5]. In fact, the influential algorithm of loopy belief propagation [10,14]
can be formulated in terms of relaxing equivalence constraints and a specific
compensation method, as shown in [2,3].

One of the key questions with regards to this approximation scheme concerns
the specific equivalence constraints to relax and then compensate for. The main
problem here is that a careful method for making such decisions would have to
perform inference, which is not feasible in the first place (otherwise, we would not
have a need to relax equivalences). Another approach is to relax too many equiv-
alence constraints, therefore, allowing one to perform approximate inference, and
then use the resulting approximations to decide which equivalence constraints to
recover. This is the approach advocated in [2] and the one we shall discuss in this
talk. A number of “recovery heuristics” have been proposed for this purpose with
varying computational overhead and effectiveness [2,4]. Ideally, one would recover
equivalence constraints one at a time, until the problem becomes too difficult com-
putationally. This would lead to a refined anytime behavior and allow one to re-
cover each equivalence constraint based on more accurate approximations. It may
also be inefficient, however, as it would require too much “thinking” during the re-
covery phase, therefore, calling for a coarser recovery scheme in certain situations.
I will present some empirical results on different recovery strategies and discuss a
particular one that was used successfully in the third UAI challenge on approxi-
mate inference, which took place in July 2010.

Acknowledgments. The results reported in this talk are mostly based on joint
work with Arthur Choi, who also contributed to the preparations behind the talk
itself.

Relax, Compensate and Then Recover 9

References

1. Choi, A., Chavira, M., Darwiche, A.: Node splitting: A scheme for generating
upper bounds in bayesian networks. In: Proceedings of the 23rd Conference on
Uncertainty in Artificial Intelligence (UAI), pp. 57–66 (2007)

2. Choi, A., Darwiche, A.: An edge deletion semantics for belief propagation and its
practical impact on approximation quality. In: Proceedings of the 21st National
Conference on Artificial Intelligence (AAAI), pp. 1107–1114 (2006)

3. Choi, A., Darwiche, A.: Approximating the partition function by deleting and then
correcting for model edges. In: Proceedings of the 24th Conference on Uncertainty
in Artificial Intelligence (UAI), pp. 79–87 (2008)

4. Choi, A., Darwiche, A.: Focusing generalizations of belief propagation on targeted
queries. In: Proceedings of the 23rd AAAI Conference on Artificial Intelligence
(AAAI), pp. 1024–1030 (2008)

5. Choi, A., Darwiche, A.: Relax then compensate: On max-product belief propaga-
tion and more. In: Proceedings of the Twenty-Third Annual Conference on Neural
Information Processing Systems (NIPS), pp. 351–359 (2009)

6. Choi, A., Standley, T., Darwiche, A.: Approximating weighted max-sat problems by
compensating for relaxations. In: Proceedings of the 15th International Conference
on Principles and Practice of Constraint Programming (CP), pp. 211–225 (2009)

7. Darwiche, A.: A logical approach to factoring belief networks. In: Proceedings of
KR, pp. 409–420 (2002)

8. Darwiche, A., Marquis, P.: A knowledge compilation map. Journal of Artificial
Intelligence Research 17, 229–264 (2002)

9. Dechter, R., Rish, I.: Mini-buckets: A general scheme for bounded inference. Jour-
nal of the ACM 50(2), 107–153 (2003)

10. Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible
Inference. Morgan Kaufmann Publishers, Inc., San Mateo (1988)

11. Pipatsrisawat, K., Darwiche, A.: A lower bound on the size of decomposable nega-
tion normal form. In: Proceedings of the 25th National Conference on Artificial
Intelligence, AAAI (2010)

12. Pipatsrisawat, K., Palyan, A., Chavira, M., Choi, A., Darwiche, A.: Solving
weighted max-sat problems in a reduced search space: A performance analysis.
Journal on Satisfiability Boolean Modeling and Computation (JSAT) 4, 191–217
(2008)

13. Ramı́rez, M., Geffner, H.: Structural relaxations by variable renaming and their
compilation for solving MinCostSAT. In: CP, pp. 605–619 (2007)

14. Yedidia, J.S., Freeman, W.T., Weiss, Y.: Understanding belief propagation and its
generalizations. In: Lakemeyer, G., Nebel, B. (eds.) Exploring Artificial Intelligence
in the New Millennium, ch. 8, pp. 239–269. Morgan Kaufmann, San Francisco
(2003)

Counter Systems for Data Logics

Stéphane Demri

LSV, CNRS, ENS de Cachan, INRIA Saclay IdF, France

Abstract. Data logics are logical formalisms that are used to specify
properties on structures equipped with data (data words, data trees, runs
from counter systems, timed words, etc.). In this survey talk, we shall see
how satisfiability problems for such data logics are related to reachability
problems for counter systems (including counter automata with errors,
vector addition systems with states, etc.). This is the opportunity to
provide an overview about the relationships between data logics and
verification problems for counter systems.

T. Janhunen and I. Niemelä (Eds.): JELIA 2010, LNAI 6341, p. 10, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Similarity-Based Inconsistency-Tolerant Logics

Ofer Arieli1 and Anna Zamansky2

1 Department of Computer Science, The Academic College of Tel-Aviv, Israel
oarieli@mta.ac.il

2 Department of Software Engineering, Jerusalem College of Engineering, Israel
annaza@jce.ac.il

Abstract. Many logics for AI applications that are defined by deno-
tational semantics are trivialized in the presence of inconsistency. It is
therefore often desirable, and practically useful, to refine such logics in
a way that inconsistency does not cause the derivation of any formula,
and, at the same time, inferences with respect to consistent premises are
not affected. In this paper, we introduce a general method of doing so
by incorporating preference relations defined in terms of similarities. We
exemplify our method for three of the most common denotational seman-
tics (standard many-valued matrices, their non-deterministic generaliza-
tion, and possible worlds semantics), and demonstrate their usefulness
for reasoning with inconsistency.

1 Introduction

Logics based on denotational semantics have many attractive properties for AI
applications. However, most of the standard logics that are defined this way,
including classical logic, intuitionistic logic, and some modal logics, are not
inconsistency-tolerant, in the sense that they are trivialized for inconsistent the-
ories: whenever the set of premises is not satisfiable, anything follows from it.1

This renders such logics practically useless for reasoning with inconsistency.
In this paper, we introduce a general framework for adding inconsistency-

maintenance capabilities to a wide range of logics that are defined by deno-
tational semantics, without affecting their inferences with respect to consistent
premises. More specifically, an inconsistency-tolerant variant of a logic L is a logic
that is faithful to L with respect to consistent theories, but does not “explode”
in the presence of inconsistency. For this, we incorporate the well-known prefer-
ential semantics of Shoham [13], in which for drawing conclusions from a set of
premises, one takes into account its “most preferred” (or “plausible”) valuations
(rather than all of its models, none of which exists in case of contradictions).

Preferential semantics yields non-monotonic logics that often tolerate incon-
sistency in a proper, non-trivial way. However, in general this method does not
guarantee faithfulness to the original logic (L) with respect to consistent theo-
ries. To achieve this, we consider a particular kind of preference criteria that are
1 For languages with a negation ¬, this usually means that the underlying logic is not

paraconsistent [6]: any formula φ follows from {ψ,¬ψ}.

T. Janhunen and I. Niemelä (Eds.): JELIA 2010, LNAI 6341, pp. 11–23, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

12 O. Arieli and A. Zamansky

based on the quantitative notion of similarity. Intuitively, similarities measure
to what extent each valuation is “similar” to some model of a given theory, or
how “close” each valuation is to satisfying the theory. This notion, which is more
general than the notion of a distance, allows us to generalize many revision and
merging operators considered in the literature for handling contradictory data.

We exemplify our similarity-based method on three of the most common types
of denotational semantics, and demonstrate their usefulness by some concrete
examples of reasoning with inconsistency.

2 Preliminaries

2.1 Denotational Semantics

In the sequel, L denotes a propositional language with a set Atoms of atomic
formulas and a set FL of well-formed formulas. We denote the elements of Atoms
by p, q, r, and the elements of FL by ψ, φ, σ. A theory Γ is a finite set of formulas
in FL. The atoms appearing in the formulas of Γ and the subformulas of Γ are
denoted, respectively, Atoms(Γ) and SF(Γ). The set of all theories of L is TL.

Definition 1. Given a language L, a propositional logic for L is a pair 〈L,�〉,
where � is a (Tarskian) consequence relation for L, i.e., a binary relation satis-
fying the following conditions:
Reflexivity : if ψ ∈ Γ then Γ � ψ.
Monotonicity : if Γ � ψ and Γ ⊆ Γ ′, then Γ ′ � ψ.
Transitivity : if Γ � ψ and Γ ′, ψ � ϕ then Γ, Γ ′ � ϕ.

A common (model-theoretical) way of defining consequence relations for L is
based on denotational semantics :

Definition 2. A denotational semantics for a language L is a pair S = 〈S, |=S〉,
where S is a nonempty set (of ’interpretations’), and |=S (the ‘satisfiability
relation’ of S) is a binary relation on S ×FL.

Let ν ∈ S and ψ ∈ FL. If ν |=S ψ, we say that ν satisfies ψ and call ν
an S-model of ψ. The set of the S-models of ψ is denoted by modS(ψ). If ν
satisfies every formulas ψ in a theory Γ , it is called an S-model of Γ . The set
of the S-models of Γ is denoted by modS(Γ). If modS(Γ) �= ∅ we say that Γ is
S-consistent , otherwise Γ is S-inconsistent.

Below, we shall usually omit the prefix S of the above notions.

A denotational semantics S induces the following relation on TL ×FL:

Definition 3. We denote by Γ �S ψ that modS(Γ) ⊆ modS(ψ).

Proposition 1. Let S = 〈S, |=S〉 be a denotational semantics for L. Then
〈L,�S〉 is a propositional logic for L.2

Next, we recall some common cases of denotational semantics and their corre-
sponding logics.
2 Proposition 1 is well-known and can be easily verified. Due to short of space, in what

follows proofs are considerably reduced or omitted altogether.

Similarity-Based Inconsistency-Tolerant Logics 13

2.2 Many-Valued Matrices

Definition 4. A (multi-valued) matrix for a languageL is a tripleM = 〈V ,D,O〉,
where V is a non-empty set of truth values, D is a non-empty proper subset of V ,
and O contains an interpretation �̃ : Vn → V for every n-ary connective of L.

Given a matrix M = 〈V ,D,O〉, we shall assume that V includes at least the
two classical values t and f, and that only the former belongs to the set D of
the designated elements in V (those that represent ‘true assertions’). The set
O contains the interpretations (the ‘truth tables’) of each connective in L. The
associated semantical notions are now defined as usual.

Definition 5. Let M = 〈V ,D,O〉 be a matrix for L. An M-valuation is a
function ν : FL → V so that, for every connective � in L, ν(�(ψ1, . . . , ψn)) =
�̃(ν(ψ1), . . . , ν(ψn)). We shall sometimes denote by ν = {p1 : x1, p2 : x2, . . .} the
assignments ν(pi) = xi, for i = 1, 2 The set of all M-valuations is denoted
by ΛM. We say that ν ∈ ΛM is a model of ψ, denoted ν |=M ψ, if ν(ψ) ∈ D.

Note that the pair 〈ΛM, |=M〉 is a denotational semantics in the sense of Defini-
tion 2. By Proposition 1 we have, then, that:

Proposition 2. The relation �M, induced from a matrixM by Definition 3, is
a Tarskian consequence relation.

Example 1. The most common matrix-based entailments are induced from two-
valued matrices. Thus, for instance, when L is the standard propositional lan-
guage, V = {t, f}, D = {t}, and O consists of the standard interpretations of the
connectives in L, 〈L, |=M〉 is the classical propositional logic.

Three-valued logics are obtained by adding to V a third element. For instance,
Kleene’s logic [9] and McCarthy’s logic [11] are obtained, respectively, from the
matrices M3⊥

K = 〈{t, f,⊥}, {t},OK〉 and M3⊥
M = 〈{t, f,⊥}, {t},OM〉, in which

the disjunction and conjunction are interpreted differently:

¬̃
f t
⊥ ⊥
t f

(Kleene)

∧̃ f ⊥ t

f f f f
⊥ f ⊥ ⊥
t f ⊥ t

∨̃ f ⊥ t

f f ⊥ t
⊥ ⊥ ⊥ t
t t t t

(McCarthy)

∧̃ f ⊥ t

f f f f
⊥ ⊥ ⊥ ⊥
t f ⊥ t

∨̃ f ⊥ t

f f ⊥ t
⊥ ⊥ ⊥ ⊥
t t t t

Priest’s logic LP [12] is similar to Kleene’s logic, but the third element is des-
ignated, so we denote it by � rather than ⊥. This logic is induced by M3�

P =
〈{t, f,�}, {t,�},OP 〉, where OP is obtained from OK by replacing ⊥ by �.

2.3 Non-deterministic Matrices

Matrix-based semantics is truth-functional in the sense that the truth-value of a
complex formula is uniquely determined by the truth-values of its subformulas.
Such a semantics cannot be useful in capturing non-deterministic phenomena.
This leads to the idea of non-deterministic matrices, introduced in [4], which
allows non-deterministic evaluation of formulas:

14 O. Arieli and A. Zamansky

Definition 6. A non-deterministic matrix (Nmatrix) for L is a tuple M =
〈V ,D,O〉, where V is a non-empty set of truth values, D is a non-empty proper
subset of V , and O contains an interpretation function �̃ : Vn → 2V \ {∅} for
every n-ary connective of L.

An M-valuation is a function ν : FL → V such that for every connective
� in L, ν(�(ψ1, . . . , ψn)) ∈ �̃(ν(ψ1), . . . , ν(ψn)). The set of all M-valuations is
denoted by ΛM. Again, ν ∈ ΛM is a model of ψ in M (ν |=M ψ), if ν(ψ) ∈ D.

Ordinary matrices can be thought of as Nmatrices, the interpretations of which
return singletons of truth-values. Henceforth, we shall identify deterministic
Nmatrices and the corresponding ordinary matrices. Again, for an NmatrixM,
the pair 〈ΛM, |=M〉 is a denotational semantics and it induces a Tarskian con-
sequence relation �M.

Example 2. Consider an interaction with remote computers, where each compu-
tation may be either serial or parallel. This can be captured by non-deterministic
interpretations, combining Kleene’s and McCarthy’s logics (Example 1):

¬̃
f {t}
⊥ {⊥}
t {f}

∧̃ f ⊥ t

f {f} {f} {f}
⊥ {f,⊥} {⊥} {⊥}
t {f} {⊥} {t}

∨̃ f ⊥ t

f {f} {⊥} {t}
⊥ {⊥} {⊥} {t,⊥}
t {t} {t} {t}

Nmatrices have important applications in reasoning under uncertainty, proof
theory, etc. We refer to [5] for a detailed discussion on Nmatrices.

2.4 Possible-Worlds Semantics

The last type of denotational semantics considered here is based on a many-
valued extension of standard Kripke semantics (see [7]), where the logical con-
nectives can be interpreted by a matrixM,3 and qualifications of the truth of a
judgement is expressed by the necessitation operator “�”. In case of the classical
two-valued matrix we have the usual Kripke-style semantics.

Definition 7. Let L be a propositional language.

– A frame for L is a triple F = 〈W,R,M〉, where W is a non-empty set (of
“worlds”), R (the “accessibility relation”) is a binary relation on W , and
M = 〈V ,D,O〉 is a matrix for L. We say that a frame is finite if so is W .

– Let F = 〈W,R,M〉 be a frame for L. An F-valuation is a function ν :
W ×FL → V that assigns truth values to the L-formulas at each world in W
according to the following conditions: For every connective � in the language
L (except for �),
• ν(w, �(ψ1, . . . , ψn)) = �̃M(ν(w,ψ1), . . . , ν(w,ψn)),
• ν(w,�ψ) ∈ D iff ν(w′, ψ) ∈ D for all w′ such that R(w,w′).

3 This framework can be extended to Nmatrices as well, but for simplicity we stick to
deterministic matrices.

Similarity-Based Inconsistency-Tolerant Logics 15

The set ofF -valuations is denoted by ΛF . The set ofF -valuations that satisfy
a formula ψ in a world w ∈W is modw

F (ψ) = {ν ∈ ΛF | ν(w,ψ) ∈ D}.
– A frame interpretation is a pair I = 〈F , ν〉, in which F = 〈W,R,M〉 is a

frame and ν is an F -valuation. We say that I satisfies ψ (or that I is a
model of ψ), if ν ∈ modw

F (ψ) for every w ∈ W . We say that I satisfies Γ if
it satisfies every ψ ∈ Γ .

Let I be a nonempty set of frame interpretations. Define a satisfaction relation
|=I on I × FL by I |=I ψ iff I satisfies ψ. Note that I = 〈I, |=I〉 is a denota-
tional semantics in the sense of Definition 2. By Proposition 1, then, the induced
relation �I is a Tarskian consequence relation for L.

3 Inconsistency-Tolerant Logics

In the context of reasoning with uncertainty, a major drawback of a logic 〈L,�S〉,
induced by a denotational semantics S = 〈S, |=S〉, is that it does not tolerate
inconsistency properly. Indeed, if modS(Γ) is empty, then by Definition 3, Γ �S ψ
for every formula ψ ∈ FL. We therefore consider a ‘refined’ entailment relation,
denoted |∼S, that overcomes this explosive nature of �S but respects �S with
respect to consistent theories. Formally, we require the following two properties:

I. Faithfulness: |∼S coincides with �S with respect to S-consistent theories,
i.e., if modS(Γ) �= ∅ then for every ψ ∈ FL, Γ |∼S ψ iff Γ �S ψ.

II Non-Explosiveness: |∼S is not trivialized when the premises are not S-
consistent, i.e., if modS(Γ) = ∅ then there is ψ ∈ FL such that Γ �|∼S ψ.

We call |∼S an inconsistency-tolerant variant of �S. When �S is clear from con-
text, we shall just say that |∼S is inconsistency-tolerant.

Note 1. When modS(Γ) �= ∅ for every theory Γ (as in Priest’s logic; see Exam-
ple 1), �S itself is inconsistency-tolerant. In what follows we shall be interested in
stronger logics (like classical logic) that do not tolerate inconsistency and so need
to be refined. Moreover, being a consequence relation, Priest’s logic is monotonic,
but frequently commonsense reasoning is nonmonotonic, in particular in light of
contradictions. Here, again, a refinement of the basic logic, adhering the two
properties above, is called upon.

One way of achieving non-explosiveness is by incorporating Shoham’s preferential
semantics [13]: Given a denotational semantics S = 〈S, |=S〉 for L, we define an
S-preferential operator ΔS : FL → 2S (where 2S is the power-set of S), that
relates a theory Γ to a set ΔS(Γ) of its ‘most preferred’ (or ‘most plausible’)
elements in S. Then, the role of modS(Γ) in Definition 3 is taken now by ΔS(Γ):

Definition 8. Given a denotational semantics S and a S-preferential operator
ΔS : FL → 2S, we denote by Γ |∼ΔS

ψ that ΔS(Γ) ⊆ modS(ψ).4

4 In words: any conclusion should be satisfied by all the ‘preferred’ semantical objects
(i.e., those elements in S describing the premises in the most plausible way).

16 O. Arieli and A. Zamansky

Note 2. By faithfulness, every two S-consistent theories that are logically equiv-
alent with respect to �S (that is, have the same S-models), must also share the
same |∼S-conclusions. On the other hand, while in any logic defined by denota-
tional semantics (including classical logic) all inconsistent theories are logically
equivalent, inconsistency-tolerant logics make a distinction between inconsistent
theories, so they cannot preserve logical equivalence, and must employ other
considerations. This is common to many methods for resolving inconsistencies,
e.g., those that are based on information and inconsistency measures (see [8]).

Proposition 3. Let S = 〈S, |=S〉 be a denotational semantics in which for every
ν ∈ S there is some formula ψ ∈ FL, such that ν �|=S ψ.5 Let ΔS be a preferential
operator for S. If (1) ΔS(Γ) is non-empty for every Γ , and (2) ΔS(Γ) = modS(Γ)
whenever modS(Γ) is not empty, then |∼ΔS

is inconsistency-tolerant.

Proof. Faithfulness follows from Condition (2); Non-explosiveness follows from
the condition on S and from Condition (1). �

Proposition 3 shows that in many cases inconsistency-tolerant entailments can
be obtained from a given denotational semantics S by a proper choice of a pref-
erential operator ΔS. Frequently, such an operator can be defined in terms of a
preferential function P that maps every theory Γ to a strict partial order <Γ on
S. In such cases,

ΔP
S(Γ) = {ν ∈ S | ¬∃μ ∈ S such that μ <Γ ν}, (1)

so, intuitively, ΔP
S(Γ) consists of the ‘best’ elements in terms of <Γ .

Proposition 4. Let S be a denotational semantics as in Proposition 3 and let P
be a preferential function, mapping every theory Γ to a strict partial order <Γ on
S. If (1) for every theory Γ , <Γ is well-founded, and (2) for every S-consistent
Γ , min<Γ (S) [= ΔP

S(Γ)] = modS(Γ), then |∼ΔP
S

is inconsistency-tolerant.

Proof. Clearly, the two conditions of this proposition imply, respectively, the two
conditions of Proposition 3, and so |∼ΔP

S
is inconsistency-tolerant. �

A preferential function P as in Proposition 4 represents preference by satisfia-
bility, that is: the models of the underlying theory (if such elements exist) are
preferred over the other elements in S.

Proposition 4 specifies natural conditions under which a strict pre-order <Γ

induces an inconsistency-tolerant entailment. However, this proposition does not
give a method for defining such an order. Next, we consider a simple and intu-
itive way of doing so by introducing the notion of similarity. In what follows,
we demonstrate similarity-based reasoning for the three types of denotational
semantics discussed previously.

5 This holds, e.g., when there is a contradictory formula ⊥S, for which modS(⊥S) = ∅.

Similarity-Based Inconsistency-Tolerant Logics 17

4 Similarity-Based Reasoning

4.1 Inconsistency Tolerance by Matrix Semantics

Given a matrixM = 〈V ,D,O〉, we fix the corresponding denotational semantics
S = 〈ΛM, |=M〉. For simplicity, we shall identify S withM. Now, the criterion of
preference by satisfiability, considered previously for general denotational seman-
tics, can be described in the case of (many-valued) valuations by the aspiration
of being ‘as similar as possible’ to valuations that satisfy the set of premises, Γ .
This is depicted in what follows by corresponding quantitative indications.

Definition 9. A (numeric) aggregation function is a total function f , such
that: (1) for every multiset of real numbers, the value of f is a real number,
(2) the value of f does not decrease when a number in its multiset increases,
(3) f({x1, . . . , xn}) = 0 iff x1 = x2 = . . . xn = 0, and (4) ∀x ∈ R f({x}) = x.

Summation, average, and maximum, are all aggregation functions.
To keep the set of the “preferred valuations” computable, we restrict the

comparison of valuations to relevant contexts:

Definition 10. A context is a finite set of formulas. A context generator is a
function G : TL → TL, producing a context for every theory.

Simple examples for context generators are, e.g., the functions GAt, GSF, GID,
defined for every Γ by GAt(Γ) = Atoms(Γ), GSF(Γ) = SF(Γ), and GID(Γ) = Γ .

Definition 11. Let M be a matrix, C a context, and G a context generator.

– An M-similarity with respect to C is a symmetric function s : ΛM × ΛM →
N+, such that s(ν, μ) = 0 iff ν(φ) = μ(φ) for all φ ∈ C.

– Given an M-similarity s with respect to C, we define:

ms(ν, ψ) =

{
min{s(ν, μ) | μ ∈ modM(ψ)} modM(ψ) �= ∅,
1 + max{s(ν, μ) | ν, μ ∈ ΛM} otherwise.

– Given an aggregation function f , we define:

ms
f (ν, Γ) = f

({
ms(ν, ψ1), . . . ,ms(ν, ψn)

})
,

where Γ = {ψ1, . . . , ψn} and ms is defined as in the previous item by a
similarity s with respect to G(Γ).

Note that lower values of similarities indicate higher correspondence between
valuations. However, this correspondence is limited to the relevant contexts: if s
is a similarity with respect to C, then s(ν, μ) = 0 indicates that ν and μ agree
on the formulas of C, but this does not necessarily mean that ν = μ.

Intuitively, ms(ν, ψ) indices how ‘close’ ν is to be a model of ψ. The function
ms

f extends ms to theories: ms
f (ν, Γ) indicates how ‘close’ is the valuation ν to

satisfy Γ . Note that if ψ is notM-satisfiable, then, as expected, all the valuations
ν ∈ ΛM are equally close to ψ: ms(ν, ψ) = 1 + max{s(ν, μ) | ν, μ ∈ ΛM}. By
Proposition 5 below, when ψ isM-satisfiable, the valuations ν for which ms(ν, ψ)
is minimal, are the models of ψ.

18 O. Arieli and A. Zamansky

Example 3. Let M = 〈V ,D,O〉, where V is a finite Euclidean space, i.e., V =
Rm = {〈x1, . . . , xm〉 | ∀ 1 ≤ i ≤ m xi ∈ R}.6 The following are distances on Rm:

– the discrete distance: dU (x, x) = 0 and dU (x, y) = 1 if x �= y,
– distance by average: dΣ

m
(x, y) = 1

m

(∑m
i=1 |xi − yi|

)
,

– the k-norm distance (k ≥ 1): ||x, y||k =
(∑m

i=1 |xi − yi|k
) 1

k ,
– the infinity-norm distance: limk→∞ ||x, y||k =max(|x1−y1|, . . . , |xn−yn|).

Consider the context C = Atoms(Γ) for some theory Γ . A function sg, defined
for every ν, μ ∈ ΛM by

sg(ν, μ) = g({d(ν(ψ), μ(ψ)) | ψ ∈ C}), (2)

where d is one of the distances above and g is an aggregation function, is a
similarity function with respect to C. For instance, in the two-valued case, we
get the uniform distance with respect to C when g = max, and the Hamming
distance with respect to C when g = Σ.

Definition 12. A (semantical) setting for L is a quadruple K = 〈M,G,S, f〉,
where M is a matrix, G is a context generator, f is an aggregation function,
and S is a similarity generator , i.e., a function so that for all Γ S(Γ) is an
M-similarity with respect to G(Γ).

Preference by similarities is now defined as follows:

Definition 13. Given a setting K = 〈M,G,S, f〉, the most plausible valuations
with respect to K of a (nonempty) theory Γ , are the elements of the set

ΔK(Γ) =
{
ν ∈ ΛM | ∀μ ∈ ΛM m

S(Γ)
f (ν, Γ) ≤ m

S(Γ)
f (μ, Γ)

}
.

In case that Γ is empty, we define ΔK(∅) = ΛM.

Note that ΔK can be represented in the form of (1), where <Γ is defined by
ν <Γ μ iff ν ∈ ΔK(Γ) and μ �∈ ΔK(Γ). Now, similarity-based entailments are
defined as in Definition 8:

Γ |∼ΔK
ψ iff ΔK(Γ) ⊆ modM(ψ). (3)

Example 4. Let K = 〈M3⊥
K ,GAt,S, Σ〉, whereM3⊥

K is Kleene’s three-valued ma-
trix (Example 1), GAt is the atom-based context generator (see below Defini-
tion 10), Σ is a summation function, and S is a similarity generator that for

6 This includes, among others, linearly ordered values (as in the three-valued logics
considered above, or the elements of the unit interval), that are represented by a
one-dimensional space; partial orders in which there are at most i− 1 different xj ’s
such that f < x1 < . . . < xi−1 < t, that may be represented by pairs of numbers in
{0, . . . , i−1} (see [2] for this kind of representation for Belnap’s four-valued logic);
the elements of an Nmatrix for mbC that can be represented by triples (see [5]), etc.

Similarity-Based Inconsistency-Tolerant Logics 19

each Γ produces a similarity sΣ in the form of (2), i.e., S(Γ) (ν, μ) = sΣ(ν, μ) =
Σ {dΣ(ν(p), μ(p)) | p ∈ Atoms(Γ)}. Here, dΣ is a distance on {t, f,⊥}, in which
dΣ(t, f) = 1 and dΣ(t,⊥) = dΣ(f,⊥) = 1

2 (see Example 3).
Now, let Γ = {¬p,¬q, p ∨ q}. Clearly, Γ is not M3⊥

K -satisfiable. We compute
its most plausible models w.r.t. K:

p q ¬p ¬q p ∨ q 1 2 3 mΣ(νi, Γ)
ν1 t t f f t 1 1 0 2
ν2 t f f t t 1 0 0 1
ν3 t ⊥ f ⊥ t 1 0.5 0 1.5
ν4 f t t f t 0 1 0 1
ν5 f f t t f 0 0 1 1
ν6 f ⊥ t ⊥ ⊥ 0 0.5 0.5 1
ν7 ⊥ t ⊥ f t 0.5 1 0 1.5
ν8 ⊥ f ⊥ t ⊥ 0.5 0 0.5 1
ν9 ⊥ ⊥ ⊥ ⊥ ⊥ 0.5 0.5 0.5 1.5

Legend. 1 = ms(νi,¬p), 2 = ms(νi,¬q), 3 = ms(νi, p ∨ q).

Hence, ΔK(Γ) = {ν2, ν4, ν5, ν6, ν8}, and so, for instance, Γ |∼ΔK
¬p ∨ ¬q (even

though Γ �|∼ΔK
¬p and Γ �|∼ΔK

¬q).

In what follows, we shall abbreviate |∼ΔK
by |∼K. Next, we show that entailments

of this type are inconsistency tolerant.

Definition 14. LetM = 〈V ,D,O〉 be a matrix for L. A context C is proper for
ψ (inM), if for every ν, μ ∈ ΛM, if ν(φ) = μ(φ) for all φ ∈ C, then ν(ψ) = μ(ψ)
as well. C is a proper context for a theory Γ , if it is proper for every ψ ∈ Γ .

In what follows we consider only proper settings , that is: settingsK = 〈M,G,S, f〉
in which for every theory Γ , G(Γ) is a proper context for Γ (in M). Note that
for all the context generators considered above (GAt, GSF, and GID), the corre-
sponding setting is proper.

Proposition 5. Let s be a similarity with respect to a context C that is proper
for ψ. Then ms(ν, ψ) = 0 iff ν ∈ modM(ψ).

Corollary 1. Let s be a similarity with respect to a context C that is proper for
Γ . Then ms

f (ν, Γ) = 0 iff ν ∈ modM(Γ).

Proof. By Proposition 5 and since f is an aggregation function. �

Definition 15. Γ1 and Γ2 are independent , if Atoms(Γ1) ∩ Atoms(Γ2) = ∅.

Proposition 6. Let K = 〈M,G,S, f〉 be a semantic setting. If G(Γ) and {ψ}
are independent, then Γ |∼Kψ iff ψ is an M-tautology.

Corollary 2. Let K = 〈M,G,S, f〉 be a semantic setting. For every Γ there is
a formula ψ such that Γ �|∼Kψ.

20 O. Arieli and A. Zamansky

Proof. Given Γ , let p ∈ Atoms\G(Γ) (such a p exists, since Atoms is infinite and
G(Γ) is not). As G(Γ) and {p} are independent, by Proposition 6, Γ �|∼K p. �

Proposition 7. For every setting K = 〈M,G,S, f〉, |∼K is an inconsistency-
tolerant variant of �M.

Proof. Faithfulness to �M follows from Corollary 1; Non-explosiveness follows
from Corollary 2. �

4.2 Inconsistency Tolerance by Nmatrices

Similarity-based entailments can be defined in the non-deterministic case just
as in the deterministic case. Given an NmatrixM, similarities and satisfiability
measures are defined according to Definition 11. This induces the operator ΔK
and the entailment |∼ΔK

, as in Definition 13 and in (3), respectively.
The results in the previous section also carry on to non-deterministic seman-

tics. It is important to note, though, that in the non-deterministic case the
context generator GAt does not produce proper contexts. This is explained by
the fact that, unlike deterministic valuations, non-deterministic valuations are
not truth functional, so they can agree on atomic formulas, but make differ-
ent non-deterministic choices on complex formulas. Yet, as the next proposition
shows, the other two context generators do provide proper contexts:

Proposition 8. For every NmatrixM, similarity generator S, and aggregation
f , both 〈M,GSF,S, f〉 and 〈M,GID,S, f〉 are proper.

Proof. By the fact that if ψ ∈ C then C is proper in M for ψ. �

Example 5. Let K = 〈M3⊥
KM ,GID,S, Σ〉 be a setting in whichM3⊥

KM is the Nma-
trix of Example 2, combining Kleene’s and McCarthy’s three-valued logics, GID

is the context generator by identity, Σ is a summation function, and S a similar-
ity generator defined for every Γ by S(Γ) (ν, μ) = Σ {dΣ(ν(ψ), μ(ψ)) | ψ ∈ Γ}.
Again, here dΣ is the distance on {t, f,⊥} defined in Example 3.

As in Example 4, we let Γ = {¬p,¬q, p∨q}. Clearly, Γ is notM3⊥
KM -satisfiable.

Note that in addition to the nine valuations in Example 4 we also have ν10 =
{p :⊥ , q :t, ¬p :⊥, ¬q : f, p∨q :⊥}. It can be verified that this time Γ � |∼ΔK

¬p∨¬q
(cf. Example 4).

4.3 Inconsistency Tolerance by Possible Worlds

We now extend similarities to the context of finite frames.

Definition 16. Let F = 〈W,R,M〉 be a finite frame, C a context, and G a
context generator.

– An F-similarity with respect to C is a symmetric function s : ΛF×ΛF → N+,
such that s(ν, μ) = 0 iff ν(w,ψ) = μ(w,ψ) for every w ∈ W and ψ ∈ C.

Similarity-Based Inconsistency-Tolerant Logics 21

– Given an F -similarity s with respect to C, we define:

ms(w, ν, ψ) =

{
min{s(ν, μ) | μ ∈ modw

F (ψ)} modw
F (ψ) �= ∅,

1 + max{s(ν, μ) | ν, μ ∈ ΛF} otherwise.

– For a frame interpretation I = 〈F , ν〉 and an aggregation function f , define:
ms

f (I, ψ) = f
({

ms(w, ν, ψ) | w ∈W
})

, where ms is defined as in the previous
item by an F -similarity s.

– For a frame interpretation I = 〈F , ν〉 and aggregation functions g, f , define:
ms

g,f (I, Γ) = g
({

ms
f (I, ψ1), . . . ,ms

f(I, ψn)
})

, where Γ = {ψ1, . . . , ψn} and
ms

f is defined as in the item above by an F -similarity s with respect to G(Γ).

Definition 17. A setting for L is a quintuple K = 〈I,G,S, f, g〉, where I is a
set of finite frames, G is a context generator, f and g are aggregation functions,
and S is a similarity generator for G, i.e., for every I = 〈F , ν〉 ∈ I and Γ ∈ TL,
S(I, Γ) is an F -similarity with respect to G(Γ).

Example 6. LetM = 〈V ,D,O〉 be a matrix where V ⊆ Rm. A variety of similar-
ity generators can be defined by letting d be one of the distances on Rm from Ex-
ample 3: S(I, Γ) (ν, μ) = f2

({
f1

({
d(ν(w,ψ), μ(w,ψ)) | ψ ∈ G(Γ)

})
| w ∈ W

})
,

where f1, f2 are some aggregation functions and G is a context generator.

Definition 18. Let K = 〈I,G,S, f, g〉 be a setting. The set of the most plausible
frame interpretations of Γ �= ∅ with respect to K is defined as follows:

ΔK(Γ) =
{
I ∈ I | ∀J ∈ I m

S(I,Γ)
g,f (I, Γ) ≤ m

S(J,Γ)
g,f (J, Γ)

}
.

If Γ = ∅, we define ΔK(∅) = I.

Again, ΔK is a particular case of (1). Now, for a (multi-valued) possible world
semantics I = 〈I, |=I〉 and a corresponding semantic setting K = 〈I,G,S, f, g〉
we define, like before, Γ |∼Kψ iff ΔK(Γ) ⊆ modI(ψ).

To show that |∼K is an inconsistency-tolerant variant of �I, we consider a
natural extension to possible-world semantics of the notion of properness:

Definition 19. Let F = 〈W,R,M〉 be a frame for L. A context C is proper for
ψ (in F), if for every ν, μ ∈ ΛF and every w ∈ W , if ν(w, φ) = μ(w, φ) for all
φ ∈ C, then ν(w,ψ) = μ(w,ψ) as well. We say that C is proper for Γ if it is
proper for every ψ ∈ Γ .

Note that, as before, for all the context generators considered above (GAt, GSF,
and GID), the corresponding setting is proper.

Proposition 9. Let I = 〈I, |=I〉 be a multi-valued possible world semantics,
and let K = 〈I,G,S, f, g〉 be a corresponding proper setting. Then |∼K is an
inconsistency-tolerant variant of �I.

22 O. Arieli and A. Zamansky

Example 7. Consider two companies a and b and two investment houses, h1 and
h2. An investment house h buys shares of a company if the latter is recommended
by all the investment houses that h knows; otherwise h sells its shares. This can
be modeled by a language L = {�,∧,¬}, and the classical two-valued matrix
Mcl with the standard interpretations. We use two atoms in L: Ra and Rb (where
Rx intuitively means that ‘company x is recommended’) and denote by Buy(x)
and by Sell(x) (for x ∈ {a, b}) the formulas �Rx, and ¬�Rx, respectively.

Suppose now that a third party, call it h3, wants to detect the trading inten-
tions of the two investment houses. However, h3 faces two problems. One is that
h3 gets contradictory rumors about these intentions: One rumor says that both
houses are going to buy shares of a and b: Buy(a, b) = Buy(a) ∧ Buy(b), and the
other rumor claims that they will sell the shares of a. The third party has, then,
an inconsistent theory describing the situation Γ = {Buy(a, b), Sell(a)}.

The other problem of h3 is that it does not know whether h1 and h2 have
access to each other (but it does know that accessibility must be symmetric
and reflexive). This can be represented by two frames Fi = 〈W,Ri,Mcl〉 (for
i = 1, 2), in which W = {h1, h2}, R1 = {〈h1, h2〉, 〈h2, h1〉, 〈h1, h1〉, 〈h2, h2〉},
and R2 = {〈h1, h1〉, 〈h2, h2〉}. The corresponding possible world semantics is
I = 〈I, |=I〉 with I = ∪i=1,2{〈Fi, ν〉 | ν ∈ ΛFi}.

For making plausible decisions despite these uncertainties, h3 uses |∼K, the
inconsistency-tolerant variant of �I, induced by the settingK = 〈I,GAt,S, Σ,Σ〉,
where S is defined by S(I, Γ) (ν, μ) = Σw∈W Σψ∈Atoms(Γ) dU

(
ν(w,ψ), μ(w,ψ)

)
.

The relevant frame interpretations are represented in the table below:

Ii 1 2 3 4 5 6 7 8 ms(Ii, Γ) Ii 1 2 3 4 5 6 7 8 ms(Ii, Γ)
I1
1 f f f f 0 0 4 4 8 I2

1 f f f f 0 0 2 2 4
I1
2 f f f t 0 0 3 3 6 I2

2 f f f t 0 0 2 1 3
I1
3 f f t f 0 0 3 3 6 I2

3 f f t f 0 1 2 1 4
I1
4 f f t t 0 0 2 2 4 I2

4 f f t t 0 1 2 0 3
I1
5 f t f f 0 0 3 3 6 I2

5 f t f f 0 0 1 2 3
I1
6 f t f t 0 0 2 2 4 I2

6 f t f t 0 0 1 1 2
I1
7 f t t f 0 0 2 2 4 I2

7 f t t f 0 1 1 1 3
I1
8 f t t t 0 0 1 1 2 I2

8 f t t t 0 1 1 0 2
I1
9 t f f f 0 0 3 3 6 I2

9 t f f f 1 0 1 2 4
I1
10 t f f t 0 0 2 2 4 I2

10 t f f t 1 0 1 1 3
I1
11 t f t f 1 1 2 2 6 I2

11 t f t f 1 1 1 1 4
I1
12 t f t t 1 1 1 1 4 I2

12 t f t t 1 1 1 0 3
I1
13 t t f f 0 0 2 2 4 I2

13 t t f f 1 0 0 2 3
I1
14 t t f t 0 0 1 1 2 I2

14 t t f t 1 0 0 1 2
I1
15 t t t f 1 1 1 1 4 I2

15 t t t f 1 1 0 1 3
I1
16 t t t t 1 1 0 0 2 I2

16 t t t t 1 1 0 0 2

Legend: 1 = νi(h1,Ra), 2 = νi(h1,Rb), 3 = νi(h2,Ra), 4 = νi(h2,Rb),
5 = ms(h1, νi,Sell(a)), 6 = ms(h2, νi,Sell(a)), 7 = ms(h1, νi,Buy(a, b)),
8 = ms(h2, νi,Buy(a, b)).

Similarity-Based Inconsistency-Tolerant Logics 23

It follows that ΔK(Γ) = {I1
8 , I

1
14, I

1
16, I

2
6 , I

2
8 , I

2
14, I

2
16} and so Γ |∼KBuy(b) while

Γ �|∼KSell(a). The third party anticipates, then, that the other houses will buy
b, but it cannot infer that they will sell a.

5 Conclusion

We have introduced a general method of supplementing different logics, based
on denotational semantics, with extra apparatus assuring a proper tolerance of
inconsistency. This is also the main motivation of other works, such as [1] that
introduced distance-based reasoning in deterministic matrices, and [3] that con-
siders distance reasoning in two-valued non-deterministic matrices. This paper
generalizes and extends those works in the following senses: First, the notion of
similarities is a generalization of the notion of distances, allowing to incorporate
a wider range of measures. This also admits the definition of some preferential
logics that are not even cumulative (the weakest family of preferential logics
considered in the well-known framework of Kraus-Lehmann-Magidor [10]), but
which still have some merit for AI applications. Second, our framework captures
some common properties shared by inconsistency-tolerant logics based on any
kind of denotational semantics, whereas the other works handle only specific
cases. In particular, new reasoning platforms are investigated, including applica-
tions within generalized Kripke-structures, and the extension of the similarity-
based approach to many-valued matrices. The latter has not been investigated
for Nmatrices, and yields some natural generalizations of well-studied distances.

References

1. Arieli, O.: Distance-based paraconsistent logics. International Journal of Approxi-
mate Reasoning 48(3), 766–783 (2008)

2. Arieli, O., Denecker, M.: Reducing preferential paraconsistent reasoning to classical
entailment. Logic and Computation 13(4), 557–580 (2003)

3. Arieli, O., Zamansky, A.: Distance-based non-deterministic semantics for reasoning
with uncertainty. Logic Journal of the IGPL 17(4), 325–350 (2009)

4. Avron, A., Lev, I.: Non-deterministic multi-valued structures. Logic and Compu-
tation 15, 241–261 (2005)

5. Avron, A., Zamansky, A.: Non-deterministic semantics for logical systems (A sur-
vey). In: Handbook of Philosophical Logic (Forthcoming)

6. da Costa, N.C.A.: On the theory of inconsistent formal systems. Notre Dame Jour-
nal of Formal Logic 15, 497–510 (1974)

7. Fitting, M.: Many-valued modal logics. Fundam. Inform. 15(3-4), 235–254 (1991)
8. Hunter, A., Konieczny, S.: Measuring inconsistency through minimal inconsistent

sets. In: Proc. KR 2008, pp. 358–366. AAAI Press, Menlo Park (2008)
9. Kleene, S.C.: Introduction to Metamathematics. Van Nostrand (1950)

10. Kraus, S., Lehmann, D., Magidor, M.: Nonmonotonic reasoning, preferential mod-
els and cumulative logics. Artificial Intelligence 44(1-2), 167–207 (1990)

11. McCarthy, J.: A basis for a mathematical theory of computation. In: Computer
Programming and Formal Systems, pp. 33–70 (1963)

12. Priest, G.: Reasoning about truth. Artificial Intelligence 39, 231–244 (1989)
13. Shoham, Y.: Reasoning about Change. MIT Press, Cambridge (1988)

Decomposition of Distributed
Nonmonotonic Multi-Context Systems�

Seif El-Din Bairakdar, Minh Dao-Tran, Thomas Eiter,
Michael Fink, and Thomas Krennwallner

Institut für Informationssysteme, Technische Universität Wien
Favoritenstraße 9-11, A-1040 Vienna, Austria

{bairakdar,dao,eiter,fink,tkren}@kr.tuwien.ac.at

Abstract. Multi-Context Systems (MCS) are formalisms that enable the inter-
linkage of single knowledge bases, called contexts, via bridge rules. Recently,
a fully distributed algorithm for evaluating heterogeneous, nonmonotonic MCS
was described in [7]. In this paper, we continue this line of work and present
a decomposition technique for MCS which analyzes the topology of an MCS.
It applies pruning techniques to get economically small representations of con-
text dependencies. Orthogonal to this, we characterize minimal interfaces for
information exchange between contexts, such that data transmissions can be min-
imized. We then present a novel evaluation algorithm that operates on a query
plan which is compiled with topology pruning and interface minimization. The
effectiveness of the optimization techniques is demonstrated by a prototype im-
plementation, which uses an off-the-shelf SAT solver and shows encouraging
experimental results.

1 Introduction

In the last years, there has been increasing interest in systems comprising multiple
knowledge bases. The rise of distributed systems and the World Wide Web fostered
this development, and to date, several formalisms are available that accommodate mul-
tiple, possibly distributed knowledge bases. One formalism are Multi-Context Systems
(MCS) consisting of several theories (the contexts) that are interlinked with bridge rules
which allow to add knowledge to a context depending on knowledge in other contexts.
E.g., the bridge rule a← (2 : b) of a context C1 means that C1 should conclude a if
context C2 believes b. MCS have applications in various areas, such as argumentation,
data integration, or multi-agent systems. There, contexts may model the beliefs of an
agent while the bridge rules model an agent’s perception of the environment, i.e., other
contexts.

Among the various MCS proposals (e.g., [10,11,12]), the general MCS framework
of [5] is of special interest, as it generalizes previous approaches in contextual reason-
ing and allows for heterogeneous and nonmonotonic MCS, i.e., with different, possibly
nonmonotonic logics in its contexts (thus furthering heterogeneity), and bridge rules

� This research has been supported by the Austrian Science Fund (FWF) project P20841 and by
the Vienna Science and Technology Fund (WWTF) project ICT 08-020.

T. Janhunen and I. Niemelä (Eds.): JELIA 2010, LNAI 6341, pp. 24–37, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Decomposition of Distributed Nonmonotonic Multi-Context Systems 25

may use default negation (to deal, e.g., with incomplete information). Hence, nonmono-
tonic MCS interlinking monotonic context logics are possible. This MCS framework
can conveniently capture the following scenario, which we use as a running example.

Example 1. A group of four scientists, Ms. 1, Mr. 2, Mr. 3, and Ms. 4, just finished their
conference visit and are now arranging a trip back home. They can choose between
going by train or by car (which is usually slower than the train); and if they use the
train, they should bring along some food. Moreover, Mr. 3 and Ms. 4 have additional
information from home that might affect their decision.

Mr. 3 has a daughter, Ms. 6. He is fine with either transportation option, but if Ms. 6
is sick then he wants to use the fastest vehicle to get home. Ms. 4 just got married, and
her husband, Mr. 5, wants her to come back as soon as possible. He urges her to try to
come home even sooner, while Ms. 4 tries to yield to her husband’s plea.

If they go by train, Mr. 3 is responsible for buying provisions. He might choose either
salad or peanuts. The options for beverages are coke or juice. Mr. 2 is a modest person
as long as he gets home. He agrees to any choice that Mr. 3 and Ms. 4 select for vehicle
but he dislikes coke. Ms. 1 is the leader of the group and prefers to go by car, but if
Mr. 2 and 3 go by train then she would not object. A problem is that Ms. 1 is allergic
to nuts.

Mr. 3 and Ms. 4 do not want to bother the group with their circumstances and com-
municate just their preferences, which is sufficient for reaching an agreement. Ms. 1
decides which option to take based on the information she gets from Mr. 2 and Mr. 3.

Similar scenarios have already been investigated in the realm of multi-agent systems
(see, e.g., [6] on social answer set programming). We do not aim at introducing a new
semantics for such scenarios; our example is meant to be a plain showcase application of
MCS. We stress that MCS have potential as a host for KR formalisms, just like answer
set programs have; however, in this paper we concentrate on efficient MCS evaluation.

The distributed algorithm introduced in [7], called DMCS, computes the semantics
of an MCS, which is given in terms of equilibria. Roughly, an equilibrium is a collection
of local models (belief sets) for the individual contexts that is compatible with the bridge
rules. The principle of the algorithm is, starting from context Ck (the root), that models
will be processed at each context. Bridge rules, which access beliefs in other contexts,
implicitly span belief import dependencies between contexts. This relationship is used
to navigate the system, and models returned from invoked neighbors are combined with
the local beliefs and passed back to the invoking contexts. DMCS uses a parameter for
projecting models to relevant variables to reduce data payload.

Experiments for an instantiation of DMCS with answer set programming contexts
revealed some scalability issues which can be tracked down to the following problems:
(1) contexts are unaware of context dependencies in the system beyond their neighbors,

and thus treat each neighbor in a generic way. Specifically, cyclic dependencies
remain undetected until a context, seeing the invocation chain, requests models
from a context in the chain. Furthermore, a context Ck does not know whether a
neighbor Ci already requests models from another neighbor Cj which then would
be passed to Ck; hence, Ck makes possibly a superfluous request to Cj .

26 S. Bairakdar et al.

(2) a context Ci returns the combination of its local models with the models received
from all neighboring contexts. As contexts may have multiple models, the
number of models can become huge as the size of the system respectively neighbors
increases. In fact, this is one of the main performance obstacles.

In this work, we address the issue of optimization; there is an urgent need for this in
order to increase the scalability of distributed MCS evaluation. Resorting to methods
from graph theory, we aim at decomposing, pruning, and improved cycle breaking for
dependencies in multi-context systems. Focusing on (1), we describe a decomposition
method using biconnected components of inter-context dependencies. Based on this we
can break cycles and prune acyclic parts before evaluating the system and create an
acyclic query plan. To address (2), we foster a partial view of the system, which is often
sufficient to reach a satisfactory answer. In Ex. 1, e.g., we could mask out the beliefs of
Mr. 5 and Ms. 6 to compute a partial equilibrium within the scientist group. This way we
can make a compromise between partial information and performance. We thus define a
set of variables for each import dependency in the system to project the models in each
context to the bare minimum such that they continue to be meaningful. In this manner,
we can omit needless information and circumvent excessive model combinations.

Based on these ideas, we have designed a new evaluation algorithm DMCSOPT,
which intertwines decomposition and pruning with variable projection. For evaluation,
we adapted our DMCS prototype and ran some experiments. The results show a major
improvement compared to DMCS; here we can handle systems with up to 600 contexts.
This demonstrates that our optimization techniques are effective and bring MCS closer
to applications.

2 Preliminaries

We recall some basic notions of heterogeneous nonmonotonic multi-context systems [5].
A logic is, viewed abstractly, a tuple L = (KBL, BSL, ACCL), where

– KBL is a set of well-formed knowledge bases, each being a set (of formulas),
– BSL is a set of possible belief sets, each being a set (of formulas), and
– ACCL : KBL → 2BSL assigns each kb ∈ KBL a set of acceptable belief sets.

This covers many (non-)monotonic KR formalisms like description logics, default logic,
answer set programs, etc. For example, a (propositional) ASP logic L may be such
that KBL is the set of answer set programs over a (propositional) alphabet A, BSL =
2A contains all subsets of atoms, and ACCL assigns each kb ∈ KBL the set of all its
answer sets (see [9] for details).

Definition 1. A multi-context system (MCS) M = (C1, . . . , Cn) consists of con-
texts Ci = (Li, kbi, bri), 1 ≤ i ≤ n, where Li = (KBi,BSi,ACCi) is a logic, kbi ∈
KBi is a knowledge base, and bri is a set of Li-bridge rules of the form

s← (c1 : p1), . . . , (cj : pj), not (cj+1 : pj+1), . . . ,not (cm : pm) (1)

where 1 ≤ ck ≤ n, pk is an element of some belief set of Lck
, 1 ≤ k ≤ m, and

kb ∪ {s} ∈ KBi for each kb ∈ KBi.

Informally, bridge rules allow to modify the knowledge base by adding s, depending on
the beliefs in other contexts.

Decomposition of Distributed Nonmonotonic Multi-Context Systems 27

The semantics of an MCS M is defined in terms of particular belief states, which are
sequences S = (S1, . . . , Sn) of belief sets Si ∈ BSi. Intuitively, Si should be a belief
set of the knowledge base kbi; however, also the bridge rules bri must be respected. To
this end, kbi is augmented with the conclusions of all r ∈ bri that are applicable.

Formally, r of form (1) is applicable in S, if pi ∈ Sci , for 1 ≤ i ≤ j, and pk �∈ Sck
,

for j + 1 ≤ k ≤ m. Let app(R,S) denote the set of all bridge rules r ∈ R that are
applicable in S. Furthermore, head(r) denotes the part s, and B(r) = {(ck : pk) | 1 ≤
k ≤ m}, for any r of form (1).

Definition 2. A belief state S = (S1, . . . , Sn) of a multi-context system M is an equi-
librium iff for all 1 ≤ i ≤ n, Si ∈ ACCi(kbi ∪ {head(r) | r ∈ app(bri, S)}).
In the rest of this paper, we assume that contexts Ci have finite belief sets Si that are
represented by truth assignments vSi : Σi → {0, 1} to a finite set Σi of propositional
atoms such that p ∈ Si iff vSi(p) = 1 (as in [5], such Si may serve as kernels that
correspond 1-1 to infinite belief sets). Furthermore, we assume that the Σi are pairwise
disjoint and that Σ =

⋃
i Σi.

Example 2. The scenario in Ex. 1 can be encoded as an MCS M = (C1, . . . , C6),
where all Li are ASP logics (ti and ci represent train and car in Ci, resp.) and

– kb1 = {c1 ← not t1; ⊥ ← nuts1} and
br1 = {t1 ← (2 : t2), (3 : t3); nuts1 ← (3 : peanuts3)};

– kb2 = {⊥ ← not c2, not t2} and
br2 = {c2 ← (3 : c3), (4 : c4); t2 ← (3 : t3), (4 : t4), not (3 : coke3)};

– kb3 = {c3 ∨ t3 ←; t3 ← urgent3; salad3 ∨ peanuts3 ← t3; coke3 ∨ juice3 ← t3}
and br3 = {urgent3 ← (6 : sick6); t3 ← (4 : t4)};

– kb4 =
{
c4 ∨ t4←

}
and br4 =

{
t4 ← (5 : sooner5)

}
;

– kb5 =
{
sooner5 ← soon5

}
and br5 =

{
soon5 ← (4 : t4)

}
;

– kb6 =
{
sick6 ∨ fit6 ←

}
and br6 = ∅.

The context dependencies of M are shown in Fig. 1b. M has three equilibria:
– S = ({t1}, {t2}, {t3, urgent3, juice3, salad3}, {t4}, {soon5, sooner5}, {sick6});
– T = ({t1}, {t2}, {t3, juice3, salad3}, {t4}, {soon5, sooner5}, {fit6}); and
– U = ({c1}, {c2}, {c3}, {c4}, ∅, {fit6}).

Partial Equilibria. We recall partial equilibria [7], which informally are equilibria of
a sub-MCS generated by a context Ck .

Definition 3 (Import Closure). Let M = (C1, . . . , Cn) be an MCS. The import neigh-
borhood of a context Ck is the set In(k) = {ci | (ci : pi) ∈ B(r), r ∈ brk}. Moreover,
the import closure IC (k) of Ck is the smallest set S such that (i) k ∈ S and (ii) for
all j ∈ S, In(j) ⊆ S.

Based on the import closure, we then define:

Definition 4 (Partial Belief States and Equilibria). LetM=(C1, . . . , Cn) be an MCS,
and let ε /∈

⋃n
i=1 BSi. A partial belief state of M is a sequence S = (S1, . . . , Sn),

such that Si ∈ BSi ∪ {ε}, for 1≤ i≤n. A partial belief state S =(S1, . . . , Sn) of
M is a partial equilibrium of M w.r.t. a context Ck iff i ∈ IC (k) implies Si ∈
ACCi(kbi ∪ {head(r) | r ∈ app(br i, S)}), and if i �∈ IC (k), then Si = ε, for
all 1 ≤ i ≤ n.

28 S. Bairakdar et al.

For instance, in our running example (ε, ε, {c3, coke3, peanuts3}, {t4},
{soon5, sooner5}, {fit6}) is a partial equilibrium w.r.t. context C3.

For combining partial belief states S = (S1, . . . , Sn) and T = (T1, . . . , Tn), we
define their join S �� T as the partial belief state (U1, . . . , Un) with (i) Ui = Si, if Ti =
ε∨ Si = Ti, and (ii) Ui = Ti, if Ti �= ε∧ Si = ε, for all 1 ≤ i ≤ n. Note that S �� T is
void, if some Si, Ti are from BSi but different. The join of two sets S and T of partial
belief states is then naturally defined as S �� T = {S �� T | S ∈ S, T ∈ T }.

Given a (partial) belief state S and set V ⊆ Σ of variables, the restriction of S to V ,
denoted S|V , is given by S = (S1|V , . . . , Sn|V), where Si|V = Si ∩ V if Si �= ε,
and ε|V = ε; for a set of (partial) belief states S, we let S|V = {S|V | S ∈S}.
Definition 5. The import interface of contextCk inM is V (k)= {p | (c : p)∈B(r), r ∈
brk}, and its recursive import interface is V∗(k) = V (k) ∪ {p ∈ V (j) | j ∈ IC (k)}.
As an example, the recursive import interface of C1 in M from Ex. 2 is V∗(1) = {c3,
c4, peanuts3, coke3, sick6, t2, t3, t4, sooner5}.

There are two extremal cases: 1. V =V∗(k). Then, partial equilibria projected to V
can be basically used for consistency-checking on the import closure of Ck. 2. V = Σ.
Here, the projection to V yields partial equilibria w.r.t. Ck. By providing a fixed in-
terface V such that V∗(k) ⊆ V ⊆ Σ, problem-specific knowledge (e.g. query vari-
ables) and infrastructure information can be exploited to focus computations to relevant
projections.

3 Decomposition of Nonmonotonic MCS

Reconsider our running example, with all contexts Ci and atoms referring to them re-
moved, for i > 3. Then, C1 has bridge rules with atoms of form (2 : p2) and (3 : p3) in
the body, and C2 with atoms (3 : p3). That is, C1 depends on both C2 and C3, while C2

depends on C3 (see Fig. 1a). A straightforward approach to evaluate this modified MCS
is to ask in C1 for the belief sets of C2 and C3. But as C2 also depends on C3, we would
need another query from C2 to C3 to evaluate C2 w.r.t. the belief sets of C3. This shows
that there is some evident redundancy in this approach, as C3 will need to compute its
belief sets twice. Simple caching strategies could mellow out the second belief state
building in C3; nonetheless, when C1 asks C3, the context will transmit back its belief
states, thus consuming network resources.

Moreover, when C2 asks for the partial equilibria of C3, it will receive a set of partial
equilibria that covers the belief sets of C3 and in addition all contexts in the import
closure IC (3). This is excessive from the view of C1, as it only needs to know the truth
of (2 : p2) and (3 : p3). However, C1 needs the belief states of both C2 and C3 in reply
of C2: if C2 only reports its own belief sets (which are consistent w.r.t. C3), then C1

has no chance to align the belief sets received from C2 with those received from C3.
Realizing that C2 also reports the belief sets of C3, no call to C3 must be made.

Based on this, we present an optimization strategy which pursues two orthogonal
goals: (i) to prune dependencies in an MCS and cut superfluous transmissions, be-
lief state building, and joining of belief states; and (ii) to minimize information in
transmissions.

Graph-Theoretic Concepts. We start with defining the topology of an MCS.

Decomposition of Distributed Nonmonotonic Multi-Context Systems 29

1

2 3

(ε, ε, S3)

(ε
, S

2
, S

3
) (ε, ε, S

3)

(a) Triangle

1

2

4

3

5

6

(b) Diamond-ring

B1

B2 B3

1

2 3

3

3

4

4

4

5
6

(c) Diamond-ring block tree

Fig. 1. Topologies and Decomposition of Scientist Group Example

Definition 6. The topology of an MCS M = (C1, . . . , Cn) is the digraph GM =
(V,E), where V = {1, . . . , n} and (i, j) ∈ E iff some rule in br i has an atom (j:p) in
the body.

The first optimization technique is made up of three graph operations. We get a coarse
view of the topology by splitting it into biconnected components, which form a tree
representation of the MCS. Then, edge removal techniques yield acyclic structures.

In the sequel, we will use standard terminology from graph theory (see [4]); graphs
are directed by default. For any graphG and set S ⊆ E(G) of edges, we denote byG\S
the subgraph of G that has no edges from S. For a vertex v ∈ V (G), we denote by G\v
the subgraph of G induced by V (G)\{v}. A graph is weakly connected if replacing
every directed edge by an undirected edge yields a connected graph. A vertex c of a
weakly connected graph G is a cut vertex, if G\c is disconnected. A biconnected graph
is a weakly connected graph without cut vertices. A block in a graph G is a maximal
biconnected subgraph of G. Let T (G) = (B ∪ C, E) denote the undirected bipartite
graph, called block tree of graph G, where B is the set of blocks of G, C is the set of cut
vertices of G, and (B, c) ∈ E with B ∈ B and c ∈ C iff c ∈ V (B). Note that T (G) is a
rooted tree for any weakly connected graph G; for arbitrary graphs, it is a forest.

Example 3. The topologyGM ofM in Ex. 2 is shown in Fig. 1b. It has two cut vertices,
viz. 3 and 4; thus the block tree T (GM) (Fig. 1c) contains the blocks B1, B2, and B3,
which are subgraphs of GM induced by {1, 2, 3, 4}, {4, 5}, and {3, 6}, respectively.

Pruning. In acyclic topologies, like the triangle presented in the previous section, we
can exploit a minimal graph representation to avoid unnecessary calls between contexts.
Namely, the transitive reduction of the graph GM ; recall that the transitive reduction
of a digraph G is the graph G− with the smallest set of edges whose transitive closure
equals the one of G. Note that G− is unique if G is acyclic.

Another essential part of our optimization strategy is to break cycles by removing
edges from topologies. To this end, we use ear decompositions of cyclic graphs. A block
may have multiple cycles which are not necessarily strongly connected, thus we first
decompose cyclic blocks into their strongly connected components. The topological
sort of these components yield a sequence of nodes r1, . . . , rs that are used as entry
points to each component. The next step is to break cycles. An ear decomposition of
a strongly connected graph G rooted at a node r is a sequence P = 〈P0, . . . , Pm〉 of

30 S. Bairakdar et al.

subgraphs of G such that (i) G = P0 ∪ · · · ∪ Pm, (ii) P0 is a simple cycle (i.e., has no
repeated edges or vertices) with r ∈ V (P0), and (iii) each Pi (i > 0) is a non-trivial
path (without cycles) whose endpoints are in P0 ∪ · · · ∪ Pi−1, but the other nodes are
not. Let cb(G,P) be the set of edges containing (�, r) from P0 and the last edge (�, t)
from each Pi, i > 0.

Example 4. Block B1 of T (GM) is acyclic, and the transitive reduction gives B−
1 with

edges {(1, 2), (2, 3), (3, 4)}.B2 is cyclic, and 〈B2〉 is the only ear decomposition rooted
at 4; removing cb(B2, 〈B2〉) = {(5, 4)}, we obtain B′

2 with edges {(4, 5)}. B3 is
acyclic and already reduced. Fig. 1c shows the final result (dotted edges are removed).

The graph-theoretic concepts introduced here, in particular the transitive reduction of
acyclic blocks and the ear decomposition of cyclic blocks, are used to implement the
first optimization of MCS evaluation outlined above. Intuitively, given the transitive
reduction B− of an acyclic block B ∈ B, and a total order on V (B−) that extends B−,
one can evaluate the respective contexts in reverse order for computing partial equilibria
at some context Ck: the first context simply computes its local belief sets which—
represented as a set of partial belief states S0—constitutes an initial set of partial belief
states T0. In any iterative Step i, Ti−1 is updated by joining it with the local belief sets Si

of the context under consideration. Given Tk (after updating with Sk) for context Ck, it
holds that Tk|V∗(k) is the set of partial equilibria atCk (restricted to contexts in V (B−)).

For cyclic blocks, one can in principle proceed as above; however, any context Ck

accessing beliefs from a context Ci that precedes it in the given total order, has to
temporarily consider all possible belief sets for Ci in Sk. As a consequence, the above
relation to partial equilibria can only be established after visiting all contexts that have
been temporarily considered in previous steps.

Refined recursive import. Next, we define the second part of our optimization strat-
egy which handles minimization of information needed for transmission between two
neighboring contexts Ci and Cj . For this purpose, we refine the notion of recursive
import interface in a context w.r.t. a particular neighbor, and a given (sub-)graph.

Definition 7. Given an MCS M = (C1, . . . , Cn) and a subgraph G of GM , for an
edge (i, j) ∈ E(G), the recursive import interface of Ci to Cj w.r.t. G is V∗(i, j)G =
{p ∈ V ∗(i) | p ∈ Σ�, j reaches � in G}.

Intuitively, if a context is a cut vertex c in GM , one can drop all entries Si (i �= c)
from the partial belief states computed at c, and pass this result to the parent block of c
in T (GM), without compromising the computation of compatible (restricted) belief
sets at the parent. Recursive import interfaces w.r.t. blocks in GM reflect this property,
which can be exploited for minimizing the information transmitted.

Algorithms. Alg. 1 and 2 combine the optimization techniques outlined above. Intu-
itively, OptimizeTree takes a block tree T as input together with parent cut vertex cp

and root cut vertex cr. It traverses T in a DFS-way and calls OptimizeBlock on every
block. The result of the latter calls are removed edges F ; after all blocks have been
processed, the final result of OptimizeTree is a pair of all edges removed from blocks
in T , and a labelling v for the remaining edges. OptimizeBlock takes a graph G and
calls subroutine CycleBreaker for cyclic G, which decomposes G into its strongly

Decomposition of Distributed Nonmonotonic Multi-Context Systems 31

Algorithm 1. OptimizeTree(T = (B ∪ C, E), cp, cr)
Input: T : block tree, cp: identifies level in T , cr: identifies level above cp
Output: F : removed edges from

⋃
B, v: labels for (

⋃
B)\F

B′ := ∅, F := ∅, v := ∅ // initialize siblings B′ and return values
if cp = cr then B′ := {B ∈ B | cr ∈ V (B)} else B′ := {B ∈ B | (B, cp) ∈ E}
foreach sibling block B ∈ B′ do // sibling blocks B of parent cp

E := OptimizeBlock(B, cp) // prune block
C′ := {c ∈ C | (B, c) ∈ E ∧ c �= cp} // children cut vertices of B
B′ := B\E, F := F ∪E
foreach edge (i, j) of B′ do // setup interface of pruned B

v(i, j) := V∗(i, j)B′ ∪
⋃
c∈C′ V

∗(cp)|Σc ∪
⋃

(�,t)∈E V∗(cp)|Σt

foreach child cut vertex c ∈ C′ do // accumulate children
(F ′, v′) := OptimizeTree(T\B, c, cp)
F := F ∪ F ′, v := v ∪ v′

return (F, v)

Algorithm 2. OptimizeBlock(G : graph, r : context id)
F := ∅
if G is cyclic then F := CycleBreaker(G, r) // ear decomp. of strong components
Let G− be the transitive reduction of G\F
return E(G) \E(G−) // removed edges from G

connected components, creates an ear decomposition P for each component Gc, and
breakes cycles by removing edges cb(Gc, P). For the resulting acyclic subgraph of G
(or if G was already acyclic), OptimizeBlock computes the transitive reductionG−. All
edges removed from G are returned. OptimizeTree continues computing the labelling
v for the remaining edges, building on the recursive import interface, but keeping rele-
vant interface variables of child cut vertices and removed edges. It can be shown that:

Proposition 1. For any context Ck in an MCS M , OptimizeTree(T (GM), k, k) re-
turns a pair (F, v) such that (i) the subgraph G of GM\F induced by IC (k) is acyclic,
and (ii) for all (i, j) ∈ E(G), v(i, j) = V∗(i, j)G.

Given GM , the block tree graph T (GM) can be constructed in linear time; transitive
reductions thereof can be computed in quadratic time. Since no other operation of the
algorithm exceeds this bound, the following holds.

Proposition 2. For any context Ck in an MCS M , OptimizeTree(T (GM), k, k) runs
in time polynomial (quadratic) in the size of T (GM) resp. GM .

Given the topology of an MCS, we need to represent a stripped version of it which
contains both the minimal dependencies between contexts and interface variables that
need to be transferred between contexts. This representation will be a query plan that
can be used for execution processing. Syntactically, query plans have the following
form.

32 S. Bairakdar et al.

Definition 8 (Query Plan). A query plan of an MCS M w.r.t. context Ck is any la-
beled subgraph Π of GM induced by IC (k) with E(Π) ⊆ E(GM), and edge la-
bels v : E(G)→ 2Σ .

In particular, for any MCS M and context Ck of M , the labeled graph Πk = (V (G),
E(G)\F, v) is a query plan of M w.r.t. Ck, where G is the subgraph of GM induced by
IC (k) and (F, v) = OptimizeTree(T (GM), k, k). This query plan is in fact effective;
we show how to use it for MCS evaluation.

4 Nonmonotonic MCS Evaluation with Query Plans
Given an MCS M and a starting context Ck, we aim at finding all projected partial
equilibria of M w.r.t. Ck in a distributed way. To this end, we design an algorithm
called DMCSOPT that is based on the algorithm DMCS in [7], but exploits properties
of the optimization techniques described above.

As a by-product, we obtain a simplification, because explicit cycle breaking is not
needed. At each context node, an instance of DMCSOPT runs independently and com-
municates with other instances for exchanging sets of partial belief states. This pro-
vides a method for distributed model building, such that DMCSOPT can be deployed
to any MCS where appropriate solvers for the respective context logics are available.
The main feature of DMCSOPT is that it computes projected partial equilibria based
on a query plan. This can be exploited for specific tasks like, e.g., local query answering
or consistency checking. When computing projected partial equilibria, the information
communicated between contexts is minimized, keeping communication cost low.

In the sequel, we present a basic version of the algorithm, abstracting from low-level
implementation issues. The idea is as follows: we start with context Ck and traverse a
given query plan by expanding the outgoing edges of that plan at each context, like in a
depth-first search, until a leaf context is reached. A leaf context Ci simply computes its
local belief sets, transforms all belief sets into partial belief states, and returns this result
to its parent. If the leaf Ci contains (j : p) in bodies of bridge rules such that there is no
context Cj to visit in the query plan—this means we broke a cycle by removing the last
edge toCj—, all possible truth assignments to the import interface to Cj are considered.

The result of any contextCi is a set of partial belief states, which amounts to the join,
i.e., the consistent combination, of its local belief sets with the results of its neighbors;
the final result is obtained fromCk. To keep re-computation and recombination of belief
states with local belief sets at a minimum, partial belief states are cached in every context.

Alg. 3 shows our distributed algorithm, DMCSOPT, with its instance at a context
Ck that runs in a background process (or daemon in Unix). On input of the id c of a
predecessor context (which the process awaits), it proceeds based on an (acyclic) query
plan Πr w.r.t. context Cr, i.e., the starting context of the system. The algorithm main-
tains a cache cache(k) at Ck, which is kept persistent by the background process. It
uses the following helper functions:

– Ci.DMCSOPT(c): send id c to DMCSOPT at context Ci and wait for its result.
– guess(V): guess all possible truth assignments for the interface variables V .
– lsolve(S) (Alg. 4): given a partial belief state S, augment kbk with all heads from

bridge rules brk applicable w.r.t. S (=: kb′k), compute local belief sets by ACC(kb′k),
and merge them with S; return the resulting set of partial belief states.

Decomposition of Distributed Nonmonotonic Multi-Context Systems 33

Algorithm 3. DMCSOPT(c : context id of predecessor) at Ck = (Lk, kbk, brk)
Data: Πr: query plan w.r.t. starting context Cr and label v, cache(k): cache
Output: set of accumulated partial belief states

(a) if cache(k) is not empty then S := cache(k) else
T := {(ε, . . . , ε)}

(b) foreach (k, i) ∈ E(Πr) do T := T �	 Ci.DMCSOPT(k) // neighbor beliefs
(c) if there is i ∈ In(k) s.t. (k, i) /∈ E(Πr) and Ti = ε for T ∈ T then

T := guess(v(c, k)) �	 T // guess for removed dependencies in Πr

(d) foreach T ∈ T do S := S ∪ lsolve(T) // get local beliefs w.r.t. T
cache(k) := S

(e) if (c, k) ∈ E(Πr) (i.e., Ck is non-root) then return S|v(c,k) else return S

Algorithm 4. lsolve(S : partial belief state) at Ck = (Lk, kbk, brk)
Output: set of locally acceptable partial belief states
T := ACCk(kbk ∪ {head(r) | r ∈ app(brk, S)})
return {(S1, , . . . , Sk−1, Tk, Sk+1, . . . , Sn) | Tk ∈ T}

The steps of Alg. 3 are explained as follows:
(a)+(b) check the cache, and if it is empty get neighbor contexts from the query plan,

request partial belief states from all neighbors and join them;
(c) if there are (i : p) in the bridge rules brk such that (k, i) /∈ E(Πr), and no neighbor

delivered the belief sets for Ci in step (b) (i.e., Ti = ε), we have to call guess on
the interface v(c, k) and join the result with T : intuitively, this happens when edges
had been removed from cycles;

(d) compute local belief states given the imported partial belief states collected from
neighbors; and

(e) return the locally computed belief states and project to the variables in v(c, k) for
non-root contexts; this is the point were we mask out parts of the belief states that
are not needed in contexts the lie in a different block of T (GM).

The following proposition shows that DMCSOPT is sound and complete.

Proposition 3. Let Ck be a context of an MCS M , let Πk be the query plan as de-
fined above and let V = {p ∈ v(k, j) | (k, j) ∈ E(Πk)}. Then, (i) for each S′ ∈
Ck.DMCSOPT(k), there exists a partial equilibrium S of M w.r.t. Ck such that S′ =
S|V ; and (ii) for each partial equilibrium S of M w.r.t. Ck, there exists an S′ ∈
Ck.DMCSOPT(k) such that S′ = S|V .

5 Implementation and Experimental Results

We present some results for a SAT-solver based prototype implementation of
DMCSOPT under Ubuntu Linux 9.10, written in C++. Full details of the experiments
and the implementation are available athttp://www.kr.tuwien.ac.at/research/
systems/dmcs/. The host system was using a Pentium Core2 Duo 2.53GHz processor
with 4GB RAM. Based on generated benchmarks, we compare the average response
time and the median of the number of results of DMCSOPT to our implementation

http://www.kr.tuwien.ac.at/research/systems/dmcs/
http://www.kr.tuwien.ac.at/research/systems/dmcs/

34 S. Bairakdar et al.

Table 1. Runtime for DMCSOPT (Ax) and DMCS (Bx), timeout 180 secs (—)

n Aφ A�� A↔ AΣ (σ) # (σ) Bφ B�� B↔ BΣ (σ) # (σ)
D 13 0.9 0.0 0.0 1.0 (0.2) 28 (17.6) 0.8 8.4 0.0 9.4 (5.5) 3136 (3155.8)

25 11.2 0.5 0.0 12.8 (1.3) 17 (18.9) —
31 51.1 3.7 0.0 59.5 (8.9) 58 (49.7) —

R 10 0.1 0.0 0.0 0.1 (0.0) 3.5 (3.4) 0.1 0.0 0.0 0.2 (0.1) 300 (694.5)
13 0.1 0.0 0.0 0.2 (0.1) 6 (1.2) 0.1 1.5 1.9 3.9 (5.3) 5064 (21523.8)

301 4.1 0.1 2.1 10.2 (2.2) 8 (4.9) —
Z 13 0.6 0.1 0.0 0.7 (0.2) 34 (41.8) 5.5 4.2 0.0 11.5 (4.0) 3024 (1286.8)

151 8.9 22.3 0.4 32.2 (7.3) 33 (28.5) —
301 21.6 99.5 1.7 124.3 (20.6) 22 (41.4) —

H 9 0.2 0.0 0.0 0.2 (0.0) 28 (44.4) 1.1 0.9 0.0 2.0 (1.3) 684 (1308.0)
101 1.8 0.3 0.3 3.8 (1.0) 48 (76.6) —
301 7.8 2.0 2.4 25.1 (8.7) 38 (34.2) —

of DMCS. The processes encoding the contexts communicated over local TCP/IP con-
nections. We used clasp 1.3.3 as a SAT solver, which accepts DIMACS CNF input [8].
Specifically, all generated instantiations of MCS have contexts with ASP logics. The
translation defined in [7] is used to create SAT instances at all contexts and clasp builds
all models.

For initial experimentation, we created random MCS instances with various fixed
topologies that should resemble the context dependencies of realistic scenarios. We have
generated instances with ordinary (D) and zig-zag (Z) diamond stack, house stack (H),
ring (R), and binary tree topologies. A diamond stack combines multiple diamonds
in a row (stacking m diamonds in a tower of 3m + 1 contexts). Ordinary diamonds
have, in contrast to zig-zag diamonds like block B1 in Fig. 1c, no connection between
the two middle contexts. A house consists of 5 nodes with 6 edges (the ridge context
has directed edges to the two middle contexts, which form with the two base contexts
a cycle with 4 edges); house stacks are subsequently built up by using the basement
nodes as ridges for the next houses (thus, m houses have 4m+1 contexts). Binary trees
grow balanced, i.e., every level is complete except for the last level, which grows from
the left-most context.

A parameter setting (n, s, b, r) specifies (i) the number n of contexts, (ii) the local
alphabet size |Σi| = s (each Ci has a random ASP program on s atoms with 2k answer
sets, 0 ≤ k ≤ s/2), (iii) the maximum interface size b (number of atoms exported), and
(iv) the maximum number r of bridge rules per context, each having ≤ 2 body literals.
Table 1 shows some experimental results for parameter settings (n, 10, 5, 5), where n
varies between 10 and 301. Each subtable X ∈ {D,H,R,Z} shows runs with growing
number of contexts and correspond to a benchmark topology from above. Each row
displays the average of total running time over 10 generated instances for DMCSOPT
in AΣ compared to DMCS in BΣ . For each context in the instances, the columns Ax

and Bx for x ∈ {φ, ��,↔} show the average over the (i) total time spent in the SAT
solver (φ), (ii) total time needed to join the belief states (��), and (iii) total time used

Decomposition of Distributed Nonmonotonic Multi-Context Systems 35

to transfer the belief states between the contexts (↔). The # columns show the median
of numbers of projected partial equilibria computed at C1 (initiated by sending the
request 1 to C1 for DMCSOPT with a fixed query plan Π1, respectively V∗(1) to C1

for DMCS). Entries in parenthesis (σ) show the standard deviation of AΣ and #.
The optimizations that can be applied in the topologies are quite diverse. In ordinary

diamond stacks and in binary trees, we cannot remove edges, as the topologies are equal
to their transitive reductions. But we can refine the import interface at each sub-diamond
(every fourth context is a cut vertex), thus the partial belief states eventually computed
just contain entries for the first four contexts. House stacks have a triangle element as
roof (Fig. 1a) and a ring as walls, thus two connections are pruned which results in
chains of contexts. As the two basement contexts are cut vertices, the final belief states
contain only belief sets for the 5 contexts in the top-most house. The refinement of the
import interface in binary trees is even more drastic, as every non-leaf context is a cut
vertex, and we can restrict to import interfaces between two neighboring contexts. In
the ring topology, we can remove the last edge closing the cycle to context C1. As the
resulting topology is a spanning tree, the refinement of the import interface is restricted
to neighboring contexts including the import interface of the removed edge. In zig-zag
diamond stacks, we remove in each block two edges to obtain the transitive reduction
and update the recursive import interface accordingly.

Evaluating the MCS instances with DMCSOPT compared to DMCS yields a drastic
improvement in response time. Stacking multiple diamonds in a tower models hard
instances with many joins. This is reflected in the ratio of running time to result size
in DMCS. Still, DMCSOPT could handle much larger instances. The ring topology
shows a similar increase in scalability. Thanks to the refined interface, the system size
can be increased dramatically; the runs for n=301 took only a few seconds. House
instances use a complex topology with cycles in each block, and each cycle has two
entry points. DMCS is already having a hard time evaluating instances with two houses,
whereas DMCSOPT could evaluate ten houses in a reasonable time due to the localized
computation of the belief states. Also for zig-zag diamond stacks, the optimizations
effect that DMCSOPT can run substantially larger systems, with hundreds of contexts;
DMCS has an early breakdown at n=16.

Comparing ordinary diamonds (D) to zig-zag diamonds (Z), one can notice a large
gap in the size n of the MCS that can be handled. This is explained by the transitive
reduction that can be applied to zig-zag diamonds, essentially resulting in a chain of
contexts such that each context can take the partial belief states of its single neighbor
and simply add its local beliefs. Diamonds cannot be further optimized and additionally
need to join the results from their neighbors. We omit detailed outcomes for binary tree
topology tests here. However, we noticeably could evaluate an instance with evenn=600
contexts in 175.6 seconds (#=4) with our parameter setting; setting the timeout to 12
minutes, DMCS runs out of memory for instances with n=22 during belief state joining.

The Aφ/Bφ and A�	/B�	 columns show that most time is spent in the SAT solver
in D, R, and H instances, whereas Z uses most time in combining the models. This
is explained by the need to guess many interface variables in those instances, as we
need to cater for the interface of the removed edges. A↔ reveals that almost no time is
used to transfer the belief states, even as n grows, thus showing the effectiveness of the

36 S. Bairakdar et al.

projection over blocks, as only a small amount of models have to be shipped. In B↔
we can see that already small instances produce many models and the price is that the
network is under heavy load.

6 Related Work and Conclusion

In [13], the authors described evaluation of monotone MCS with classical theories us-
ing SAT solvers for the contexts in parallel. They used a (co-inductive) fixpoint strategy
to check MCS satisfiability, where a centralized process iteratively combines results of
the SAT solvers. Apart from being not truly distributed, an extension to nonmonotonic
MCS is non-obvious; also, no caching was used. Distributed tableaux algorithms for
reasoning in distributed ontologies are defined in [14,15]. They can be used to decide
consistency of distributed description logic knowledge bases, provided that the dis-
tributed TBox is acyclic. The DRAGO system is an implementation of this approach.

The authors of [1] presented a framework of peer-to-peer inference systems. Local
theories of propositional clause sets share atoms, and a special algorithm can be used
for consequence finding. As we pursue the dual problem of model building, application
for our needs is not straightforward. Similarly, [3] developed a distributed algorithm
for query evaluation in a MCS framework based on defeasible logic. Here, contexts
are built using defeasible rules, and the algorithm can determine for a given literal l
three values: whether l is (not) a logical conclusion of the MCS, or whether it cannot be
proved that l is a logical conclusion. Again, applying this approach to model building
is not easy.

Biconnected components are used in [2] to decompose constraint satisfaction prob-
lems. The decomposition is used to localize the computation of a single solution in the
components of undirected constraint graphs. Likened to our approach, we are based on
directed dependencies, which allows us to use a query plan for MCS evaluation.

We have presented techniques and algorithms for decomposing, pruning, and cycle
breaking of dependencies in nonmonotonic multi-context systems. Based on this, we
have devised an algorithm, which uses a query plan to compute all partial equilibria
of such a system. A prototypical implementation of this approach shows promising
experimental results. They are a substantial improvement and encourage to research
further algorithms and methods for evaluation of distributed MCS, such that efficient
platforms for distributed nonmonotonic reasoning applications will become available.

References

1. Adjiman, P., Chatalic, P., Goasdoué, F., Rousset, M.C., Simon, L.: Distributed reasoning in
a peer-to-peer setting: Application to the semantic web. J. Artif. Intell. Res. 25, 269–314
(2006)

2. Baget, J.F., Tognetti, Y.: Backtracking through biconnected components of a constraint
graph. In: IJCAI 2001, pp. 291–296. Morgan Kaufmann, San Francisco (2001)

3. Bikakis, A., Antoniou, G., Hassapis, P.: Strategies for contextual reasoning with conflicts in
ambient intelligence. Knowl. Inf. Syst. (April 2010) (published online: April 9, 2010)

4. Bondy, A., Murty, U.S.R.: Graph Theory. Springer, Heidelberg (2008)

Decomposition of Distributed Nonmonotonic Multi-Context Systems 37

5. Brewka, G., Eiter, T.: Equilibria in heterogeneous nonmonotonic multi-context systems. In:
AAAI 2007, pp. 385–390. AAAI Press, Menlo Park (July 2007)

6. Buccafurri, F., Caminiti, G.: Logic programming with social features. Theory Pract. Log.
Program. 8(5-6), 643–690 (2008)

7. Dao-Tran, M., Eiter, T., Fink, M., Krennwallner, T.: Distributed nonmonotonic multi-context
systems. In: KR 2010, pp. 60–70. AAAI Press, Menlo Park (2010)

8. Gebser, M., Kaufmann, B., Neumann, A., Schaub, T.: Conflict-driven answer set solving. In:
IJCAI 2007, pp. 386–392. AAAI Press, Menlo Park (2007)

9. Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive databases.
New Gener. Comput. 9(3-4), 365–385 (1991)

10. Ghidini, C., Giunchiglia, F.: Local models semantics, or contextual reasoning = locality +
compatibility. Artif. Intell. 127(2), 221–259 (2001)

11. Giunchiglia, F., Serafini, L.: Multilanguage hierarchical logics or: How we can do without
modal logics. Artif. Intell. 65(1), 29–70 (1994)

12. McCarthy, J.: Notes on formalizing context. In: IJCAI 1993, pp. 555–562 (1993)
13. Roelofsen, F., Serafini, L., Cimatti, A.: Many Hands Make LightWork: Localized Satisfiabil-

ity for Multi-Context Systems. In: ECAI 2004, pp. 58–62. IOS Press, Amsterdam (2004)
14. Serafini, L., Borgida, A., Tamilin, A.: Aspects of distributed and modular ontology reasoning.

In: IJCAI 2005, pp. 570–575. AAAI Press, Menlo Park (2005)
15. Serafini, L., Tamilin, A.: Drago: Distributed reasoning architecture for the semantic web. In:

Gómez-Pérez, A., Euzenat, J. (eds.) ESWC 2005. LNCS, vol. 3532, pp. 361–376. Springer,
Heidelberg (2005)

Bridging Possibilistic Conditional Knowledge
Bases and Partially Ordered Bases

Salem Benferhat, Sylvain Lagrue, and Safa Yahi

Université Lille-Nord de France
Artois, F-62307 Lens, CRIL, F-62307 Lens

CNRS UMR 8188, F-62307 Lens
{benferhat,lagrue,yahi}@cril.fr

Abstract. Possibilistic logic offers a unified framework for revising pri-
oritized pieces of information and for reasoning with conditional knowl-
edge bases. A conditional assertion of the form ”generally, if α is true
then β is true” is interpreted as a constraint expressing that the possi-
bility degree of having α ∧ β being true is greater than the possibility
degree of having α∧¬β being true. Recently, an important extension of
possibilistic logic has been proposed to deal with partially pre-ordered
bases in order to avoid comparing unrelated pieces of information.

This paper establishes relationships between reasoning from partially
pre-ordered bases and reasoning from conditional knowledge bases. It
contains two important contributions. The first contribution consists in
identifying conditions under which a partially ordered belief base can be
encoded as a set of conditional assertions, and conversely. In particu-
lar, we provide the correspondences between the concept of compatible
possibility distributions used for conditional assertions and the one of
compatible prioritized bases used for partially pre-ordered bases. The
second important contribution of this paper consists in providing the
computational complexity of reasoning with partially pre-ordered bases
using the well-known possibilistic and inclusion-based policies.

1 Introduction

It is well known that one of the major purposes of nonmonotonic reasoning is to
cope with the presence of exceptions in knowledge based systems. Some emphasis
has been put on the application of nonmonotonic reasoning techniques to prac-
tical problems. For instance, in [15] several potential domains of applications,
like medical reasoning, legal reasoning and reasoning in business organizations,
have been identified.

A number of approaches for nonmonotonic reasoning can be found in the
literature. Reiter’s default logic [19] is among the best known and most widely
studied logical frameworks for reasoning with rules having exceptions. Inferences
are obtained by first defining a concept of extensions (composed of propositional
formulas derived from default rules), and then applying propositional inference
on these extensions. Moreover there are different efficient algorithms that have

T. Janhunen and I. Niemelä (Eds.): JELIA 2010, LNAI 6341, pp. 38–50, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Bridging Possibilistic Conditional Knowledge Bases 39

been used to compute extensions and defaults inferences (e.g., [12,13,14]). There
exist other approaches more normative like System P [10] and rational closure
[11]. This paper considers this framework using possibility theory.

A conditional knowledge base T is a set of default rules having exceptions,
simply called here conditional assertions. This paper focuses on the possibilistic
handling of conditional bases proposed in [2] that consists in viewing each con-
ditional assertion α → β as a constraint expressing that the situation where α
and β is true has a greater possibility than the one where α and ¬β is true. This
statement is expressed in a possibility theory framework [22,7] by α∧β <Π α∧¬β
where <Π is a plausibility ordering between formulas. Hence, a conditional base
T can be viewed as a restricting a family

∏
(T) of possibility distributions, where

a possibility distribution is a function from a set of universe of discourse to the
unit interval [0,1]. Selecting a possibility distribution from

∏
(T) using the min-

imum specificity principle is equivalent to System Z [11].
Recently, several approaches [3,21] have been proposed to reason from par-

tially pre-ordered belief bases using possibilistic logic or the well-known lexi-
cographic based approaches. Partially pre-ordered belief bases offer much more
flexibility in order (compared to totally pre-ordered bases) to efficiently repre-
sent incomplete knowledge and to avoid comparing unrelated pieces of informa-
tion. Indeed, in many applications, the priority relation associated with available
beliefs is only partially defined and forcing the user to introduce additional un-
wanted priorities may lead to infer undesirable conclusions.

Reasoning from partially pre-ordered belief bases also comes down to reason
with a family of “compatible” totally pre-ordered knowledge base. A compatible
totally pre-ordered (or prioritized) base represents a possible completion (i.e.,
by relating incomparable formulas) of a partially pre-ordered belief base.

This paper establishes on one side connections between reasoning from par-
tially pre-ordered bases and reasoning from conditional knowledge bases, and
on the other side provides complexity result of an important inference relation
that deals with partially pre-ordered belief bases. More precisely, this paper
contains two important contributions. The first contribution consists in iden-
tifying conditions under which a partially ordered belief bases can be encoded
as a set of conditional assertions, and conversely. In particular, we provide the
correspondences between the concept of compatible possibility distribution used
for conditional assertions and the one of compatible prioritized bases used for
partially ordered bases.

The second important contribution consists in providing the computational
complexity of reasoning with partially pre-ordered bases using inclusion-based
policies. In particular, we show that dealing with partially pre-ordered belief
bases is equivalent to deal with partially ordered bases, obtained by replacing
equally reliable formulas by one formula representing their conjunction.

The rest of the paper is structured as follows. Section 2 gives a brief refresher
on inference from partially ordered belief bases. Section 3 recalls possibilistic
handling of conditional bases. In section 4, we give the relation between condi-
tional bases and partially pre-ordered belief bases interpreted using possibilistic

40 S. Benferhat, S. Lagrue, and S. Yahi

inference. We give in Section 5 a tight complexity results of compatible-based
inclusion inference and conclude by Section 6.

2 Brief Refresher on Inference from Partially Ordered
Belief Bases

2.1 Notations

We consider a finite set of propositional variables V where its elements are
denoted by lower case Roman letters a, b, . . . The symbols � and ⊥ denote tau-
tology and contradiction respectively. Let PLV be the propositional language
built from V , {�,⊥} and the connectives ∧,∨,¬,→,↔ in the usual way. For-
mulas, i.e., elements of PLV are denoted by Greek letters φ, ϕ, ψ, . . . The set of
formulas are denoted by the upper case Roman letters A,B, . . . The symbol �
denotes classical inference relation. Let Σ be a finite set of formulas, Cons(Σ)
denotes the set of all consistent subbases of Σ while MCons(Σ) denotes the set
of all maximally consistent subbases of Σ. If Σ is consistent, then MCons(Σ)
contains one element which is Σ. The set of interpretations is denoted by Ω. Let
φ be a propositional formula, Mod(φ) denotes the set of models of φ, namely
Mod(φ) = {ω ∈ Ω : ω |= φ}.

A partial pre-order � on a finite set A is a reflexive and transitive binary
relation. In this paper, a � b expresses that a is at least as preferred as b. A
strict order ≺ on A is an irreflexive and transitive binary relation. a ≺ b means
that a is strictly preferred to b. A strict order is defined from a pre-order as a ≺ b
if and only if a � b holds but b � a does not hold.

We assume that the reader is familiar with some basic notions about com-
plexity theory, like the classes P, NP and co-NP. Now, we will sketch the classes
of the polynomial hierarchy (PH) (see [17] for more details). Let X be a class
of decision problems. Then PX denotes the class of decision problems that can
be solved using a polynomial algorithm that uses an oracle for X (informally, a
subroutine for solving a problem in X at unit cost). Similarly, NPX denotes the
class of decision problems that can be solved using a nondeterministic polyno-
mial algorithm that uses an oracle for X. Based on these notions, the classes Δp

k,
Σp

k and Πp
k (k ≥ 0) are defined as follows:

– Δp
0 = Σp

0 = Πp
0 = P

– Δp
k+1 = PΣp

k

– Σp
k+1 = NPΣp

k

– Πp
k+1 = coΣp

k+1.

In particular, ΔP
1 =P, Σp

1 =NP and Πp
1 = coNP.

2.2 Qualitative Possibility Distribution

One of the basic object of possibility theory [22,8] is the possibility distribution,
which is simply viewed here as a total pre-order, denoted by ≤π, on the set of

Bridging Possibilistic Conditional Knowledge Bases 41

interpretations . A possibility distribution �π represents the available knowledge
about what the real world is. In fact, ω ≤π ω′ means that ω is at least as
plausible (preferred) as ω′. In this case, Ω can be stratified or viewed as a well
ordered partition (WOP) as follows Ω = E1 ∪ E1 ∪ . . . ∪ Em ∪ E⊥ where E1

represents totally possible interpretations while E⊥ represents fully impossible
ones. Moreover, ∀i, 1 ≤ i ≤ m, ∀j, 1 ≤ j ≤ m, if i < j then the interpretations
of Ei are more plausible than those of Ej .

In possibility theory, ≤π induces two pre-orders grading respectively the pos-
sibility and the certainty of formulas:

– The possibility ordering between formulas of the language: ϕ <Π ψ iff ∃ω ∈
Mod(ϕ) such that ω ∈ Ei and ∀ω′ ∈ Mod(ψ), if ω′ ∈ Ej then i < j.
Namely, ϕ is more plausible than ψ iff there exists a model of ϕ which is
more plausible than any model of ψ.

– The certainty (or necessity) ordering between formulas of the language is
defined from the possibility one as follows: ϕ <N ψ iff ¬ψ <Π ¬ϕ

2.3 Inference from Totally Pre-ordered Inconsistent Belief Bases

A totally pre-ordered belief base (Σ,≤) is a set of propositional formulas Σ
equipped with a total pre-order ≤. (Σ,≤) can be viewed as a stratified belief
base Σ = S1∪· · ·∪Sm such that the formulas in Si have the same level of priority
and have a higher priority than those in Sj with j > i. Note that only somewhat
certain formulas are present in Σ (namely, all formulas in Σ are accepted to
some extent).

Reasoning under inconsistency represents a fundamental problem that arises
in many situations including exceptions tolerant reasoning, belief revision, inte-
grating pieces of information coming from different possibly conflicting sources,
reasoning with uncertainty or from incomplete information, etc. In this case,
classical inference cannot be directly used since from an inconsistent base every
formula can be inferred (ex falso quodlibet sequitur principle).

Many approaches have been proposed in order to reason under inconsistency
without trivialization. While some of them consist in weakening the inference
relation such as paraconsistent logics [6], others weaken the available beliefs like
the so-called coherence-based approaches which are quite popular. Most of the
coherence-based approaches [20] are defined with respect to totally pre-ordered
belief bases like

– the possibilistic inference [7],
– the inclusion-based inference [9],
– the lexicographic inference [1].

These inference relations are defined respectively with respect to the following
preference relations between consistent subbases of Σ which is denoted in the
following by Cons(Σ).

42 S. Benferhat, S. Lagrue, and S. Yahi

Besides, Let A,B ∈ Cons(Σ).

– A is at least as preferred as B with respect to the possibilistic or the best-
out preference, denoted by A ≤π B, iff m(B) ≤ m(A) where m(X) = min{i
such that ∃ϕ ∈ Si \X} for any consistent subbase X .

– A is lexicographically preferred to B, denoted by A <lex B, iff ∃i, 1 ≤ i ≤
m such that |Si ∩A| > |Si ∩B| 1 and ∀j, j < i, |Sj ∩B| = |Sj ∩A|.

– A is preferred to B with respect to the inclusion preference, denoted by
A <incl B, iff ∃i, 1 ≤ i ≤ m such that (Si ∩ B) ⊂ (Si ∩ A) and ∀j, j < i,
(Sj ∩B) = (Sj ∩A).

Example 1. Let (Σ,≤) = (S1, S2, S3) be a stratified belief base such that:

– S1 = {r ∧ q ∧ e}
– S2 = {¬r ∨ ¬p,¬q ∨ p,¬e ∨ p}
– S3 = {¬e ∨ l}

Let us consider three consistent subbases A, B and C such that:

– A = {r ∧ q ∧ e,¬q ∨ p,¬e ∨ p},
– B = {r ∧ q ∧ e,¬q ∨ p,¬e ∨ l},
– C = {¬q ∨ p,¬e ∨ p,¬e ∨ l}.

Clearly, we have m(A) = 2, m(B) = 2 and m(C) = 1. So, A =π B <π C.
Moreover, we have

– A ∩ S1 = B ∩ S1,
– B ∩ S2 ⊂ A ∩ S2.

Then, we deduce that A <incl B.
Besides, since we have

– |A ∩ S1| = |B ∩ S1|
– |B ∩ S2| < |A ∩ S2|

we conclude that A <lex B.

Definition 1. Let ψ be a formula and (Σ,≤) be a totally pre-ordered belief base.
Then, ψ is said to be a possibilistic (resp. a lexicographic, an inclusion-
based) consequence of (Σ,≤), denoted by (Σ,≤) �π ψ (resp. (Σ,≤) �lex ψ,
(Σ,≤) �incl ψ) , if and only if ∀B ∈ Pref(Cons(Σ), <π) : B |= ψ (resp.
∀B ∈ Pref(Cons(Σ), <lex) : B |= ψ, ∀B ∈ Pref(Cons(Σ), <incl) : B |= ψ).

2.4 Inference from Partially Pre-ordered Belief Bases

Now, given a partially pre-ordered belief base (K,≺), the three previous inference
relations have been extended to the case of partially ordered belief bases. Some
of these extensions rely on the notion of what we call here POB-compatible [3]
where POB stands for Partially pre-Ordred Bases.
1 |A| denotes the number of formulas of A.

Bridging Possibilistic Conditional Knowledge Bases 43

Definition 2. Let (K,≺) be a partially ordered belief base. A totally pre-ordered
belief base (K,≤) is said to be POB-compatible with (K,≺) if and only if:

∀ϕ, φ ∈ K : if ϕ ≺ φ then ϕ < φ.

Then, the possibilistic (resp. the inclusion-based, lexicographic) extension
amounts to apply the possibilistic inference (resp. inclusion, lexicographic in-
ference) on all the POB-compatible bases with the partially ordered belief base
at hand.

Example 2. Let us consider a partially pre-order belief base (Σ,�) such that:

Σ = {R ∧Q ∧ E,¬E ∨ S,¬Q ∨ P,¬R ∨ ¬P,¬E ∨ P,¬S ∨ L}.

The pre-order � is given by Figure 1.

R ∧Q ∧ E ≈ ¬E ∨ S

¬Q ∨ P ≈ ¬R ∨ ¬P ¬E ∨ P

¬S ∨ L

Fig. 1. Partial pre-order
 over Σ

The base (Σ,�) has five compatible totally pre-ordered bases: (Σ,≤1), . . . ,
(Σ,≤5) such that:

– (Σ,≤1) = ({R∧Q∧E,¬E ∨ S}, {¬Q∨ P,¬R ∨ ¬P}, {¬E ∨P}, {¬S ∨L}),
– (Σ,≤2) = ({R ∧Q ∧ E,¬E ∨ S}, {¬Q ∨ P,¬R ∨ ¬P,¬E ∨ P}, {¬S ∨ L}),
– (Σ,≤3) = ({R∧Q∧E,¬E ∨ S}, {¬E ∨P}, {¬Q∨P,¬R ∨¬P}, {¬S ∨L}),
– (Σ,≤4) = ({R ∧Q ∧ E,¬E ∨ S}, {¬E ∨ P}, {¬S ∨ L,¬Q ∨ P,¬R ∨ ¬P}),
– (Σ,≤5) = ({R∧Q∧E,¬E ∨ S}, {¬E ∨P}, {¬S ∨L}, {¬Q∨P,¬R ∨ ¬P}).

One can easily check that ∀i, 1 ≤ i ≤ 5, we have, for instance, (Σ,≤i) �π S.
Thus, we deduce that S is a consequence of (Σ,�) with respect to the extension
of possibilistic inference.

3 Possibilistic Handling of Conditional Assertions

By a conditional assertion we mean a generic rule of the form ”generally, if α
then β” having possibly some exceptions. These rules are denoted by ”α→ β”.
A default base is a set T = {αi → βi : 1 ≤ i ≤ n} of default rules.

44 S. Benferhat, S. Lagrue, and S. Yahi

In [2], it has been proposed to view each conditional assertion α → β as a
constraint expressing that the situation where α and β is true has a greater
possibility than the one where α and ¬β is true which is expressed in possibility
theory by the strict inequality α ∧ β <Π α ∧ ¬β.

Hence, a default theory T can be viewed as a family of constraints restricting
a family

∏
(T) of possibility distributions. Elements of

∏
(T) are said to be

compatible with T and are defined as:

Definition 3. A possibility distribution <π is said to be compatible with a con-
ditional base T , π ∈

∏
(T), iff for each default rule αi → βi of Δ: αi ∧ βi <Π

αi ∧ ¬βi, where <Π is the possibility ordering induced by <π.

A first way of defining a nonmonotonic consequence relation consists in consid-
ering all the possibility distributions of

∏
(Υ), namely a conditional assertion

α → β is said to be a universal possibilistic consequence of Υ , denoted by
Υ |=∀Π α → β, iff α ∧ β <Π α ∧ ¬β for each possibility distribution <π from∏

(Υ).
It has been shown in [2] that the universal possibilistic inference relation |=∀π

is equivalent to System P (P as Preferential) which is a set of postulates encoded
by a reflexivity axiom and five inference rules namely Left Logical Equivalence,
Right Weakening, Or, Cautious Monotony and Cut [10]. In [4], the authors
establishes the retionships between three formats of compact representations
of possibility distributions : conditional-based representation, possibilistic-logic
based representation and graphical-based representation.

However, the universal possibilistic consequence relation, even if it produces
acceptable and safe conclusions, is very cautious. One way of coping with the
cautiousness of |=∀π is to pick only one possibility distribution among those in∏

(Υ). It is what it is done when the so-called rational monotony property [11]
is added to System P.

To this effect, the minimum specificity principle can be used [2]. Let us con-
sider two possibility distributions <π and <′

π such that:

– <π= E1 ∪ . . . ∪ Em ∪ E⊥,
– <′

π= F1 ∪ . . . ∪ Fn ∪ F⊥.

Then, <π is said to be less specific than <′
π iff:

– F⊥ ⊆ E⊥,
– ∀i, 1 ≤ i ≤ n, ∀ω ∈ Fi, ∃Ej such that ω ∈ Ej and j < i.

Now, the MSP-entailment (MSP as minimum specificity principle) which is
equivalent to System Z is defined as follows:

Definition 4. Let π be the possibility distribution selected from
∏

(Υ) using the
minimum specificity principle. Then, a conditional assertion α → β is said to
be a MSP-consequence of Υ , denoted by Υ |=MSP α→ β, iff α ∧ β <Π α ∧ ¬β.

Bridging Possibilistic Conditional Knowledge Bases 45

4 On the Relation between Conditional Bases and
Partially Ordered Belief Base

Clearly, one common feature of reasoning from partially ordered belief bases and
conditional knowledge bases is that both of them use the concept of compatible
bases or distributions. The main difference is that the concept of compatible is de-
fined on interpretations for conditional knowledge bases while it is defined on for-
mulas for partiallypre-orderedbelief bases (by means of totally pre-orderedbases).

4.1 Preliminary Results

Recall that reasoning from partially pre-ordered knowledge bases is based on
the concept of POB-compatible totally pre-ordered bases. A natural question is
how to provide something similar to POB-compatibles but at semantical level
(namely, defined on interpretations) by means of a class of possibility called
π-compatible.

Then, we introduce the following definition:

Definition 5. A qualitative possibility distribution <π on Ω is said to be π-
compatible with (K,≺) if and only if:

– ∀ϕ, φ ∈ K : if ϕ ≺ φ then ϕ <N φ where <N is the necessity ordering
associated with <π,

– E1 = Mod(K), namely models of K are the most preferred ones.

So, a π-compatible distribution preserves the ordering between formulas of a par-
tially pre-ordered knowledge base. In order to compare POB-compatible bases
and π-compatible distributions, we need to define possibility distributions asso-
ciated with totally pre-ordered bases. Namely, given a totally ordered belief base
(K,<), so the associated qualitative possibility distribution <π is defined by :
∀ω, ω′ ∈ Ω, ω <π ω′ iff ∃ϕ ∈ K such that ω′ �|= ϕ and ∀ψ such that ω �|= ψ, we
have ϕ < ψ.

Let (K,≺) be a partially ordered belief base. In the following, Fπ(K,≺) de-
notes the set of all π-compatible of (Σ,≺), namely

Fπ(K,≺) = {<π such that <π is π-compatible with (K,≺)}.

Besides, POB(K,≺) denotes the set of all qualitative possibility distributions
associated with totally ordered belief bases which are compatible with (K,≺),
that is

POB(K,≺) = {<π such that <π is associated with the POB-compatible of
(K,≺)}.

Hence, we have (see also Figure 2):

Lemma 1. Let (K,≺) be a partially ordered belief base. Then, POB(K,≺) ⊆
Fπ(K,≺).

46 S. Benferhat, S. Lagrue, and S. Yahi

A partially ordered belief base (K,≺)

POB-compatibles

POB(K,≺) Fπ(K,≺)⊂

Fig. 2.

The converse does not hold. Indeed, let us consider the following example.

Example 3. Let us consider the belief base (K,≺) = {p, q} with p ≺ q. In this
case, K has a single POB-compatible base (K,<) = {p, q} such that p < q.
However, <π defined by:

pq <Π p¬q <Π ¬pq <Π ¬p¬q

is π-compatible, but does not belong to POB(K,≺).

4.2 From Conditional Bases to Partially Ordered Bases

In this section, we first point out that a conditional base can also be viewed as
partially ordered belief base. In fact, a conditional base T = {pi → qi, 1 ≤ i ≤ n}
can be viewed as a set of constraints under the form :

{pi ∧ qi >Π pi ∧ ¬qi, 1 ≤ i ≤ n}

or equivalently

{¬pi ∨ qi <N ¬pi ∨ ¬qi, 1 ≤ i ≤ n}.

Subsequently, a conditional knowledge base can be represented by a partially
ordered belief base of the form : {¬pi ∨ qi ≺ ¬pi ∨ ¬qi, 1 ≤ i ≤ n}.

Namely:

Proposition 1. Let T = {αi → βi, 1 ≤ i ≤ n} be a conditional base. Let
(KT , <T) be a partially ordered belief base where KT = {¬αi ∨ βi : αi → βi ∈
T } ∪ {¬αi ∨ ¬βi : αi → βi ∈ T } and <T is defined by {¬α ∨ β <T ¬α ∨ β :
αi → βi ∈ T }. Then, a possibility distribution is π-compatible with (KT , <T) iff
<π∈

∏
(T) where

∏
(T) is defined in Section 3.

Bridging Possibilistic Conditional Knowledge Bases 47

4.3 From Partially Ordered Bases to Conditional Bases

Let us consider a partially ordered belief base K = {ϕi ≺ ψi} such that ϕi ≺ ψi

is interpreted by ϕi <N ψi.
Note that ϕi <N ψi if and only if ¬ψi <Π ¬ϕi. Then, ¬ψi <Π ¬ϕi is

equivalent to say that ¬ψi ∧ φi >Π ¬ϕi which encodes in a possibilistic way the
conditional rule ¬ψi ∨ ¬ϕi → ϕi.

In fact, one can easily see that :

– (¬ψi ∨ ¬ϕi) ∧ ϕi ≡ ϕi ∧ ¬ψi,
– (¬ψi ∨ ¬ϕi) ∧ ¬ϕi ≡ ¬ϕi.

Consequently, a partially ordered belief base (K,≺) can be represented via a
conditional base T (K,≺).

4.4 Compatible Bases vs. Compatible Distributions

In Section 4.1, we investigated relationships between the set of possibilistic dis-
tributions used from POB-compatible bases and the set of π-compatible bases.
In Section 4.2 and Section 4.3, we showed the relation between the set of condi-
tional assertions and the set of partially pre-ordered bases.

A first corollary of the above subsections (4.1, 4.2,4.3) is a proposition of a
new inference relation which is stronger than System P and weaker than System
Z [18].

Definition 6. Let T be a conditional knowledge base. Let (KT ,≺T) be a par-
tially pre-ordered base obtained from T (see Section 4.2). Then, α → β is a
FΠ-consequence of T iff ∀ <π∈ POB(KT ,p recT), α ∧ β <π α ∧ ¬β.

Then, we show that :

Proposition 2. Let T be a conditional knowledge base. Then,

– if α→ β is a consequence of System P then α→ β is an POB consequence,
– if α→ β is an POB consequence then α→ β is a consequence of System Z.

Hence, the relation between conditional knowledge bases and partially ordered
bases allows to provide a new consequence relation between P and Z.

5 Complexity of Compatible-Based Inclusion Inference

In [5], complexity results regarding different inference relations from partially
pre-ordered bases have been proposed. It is in particular shown that the deci-
sion problem associated with lexicographic inference jumps from ΔP

2 -complete
when dealing with totally pre-ordered bases to ΠP

2 -complete when dealing with
partially pre-ordered bases. Regarding inclusion-based inference, only a weaker
result has been established, namely the fact that the associated decision problem
lies between ΠP

2 and ΠP
3 .

48 S. Benferhat, S. Lagrue, and S. Yahi

We show in this section that the decision problem associated with the
compatible-based inclusion inference, denoted in the following by CmpIncl, is
in fact ΠP

2 -complete. Hence, no extra computational complexity is generated
when we deal with partially pre-ordered information since it is well-known that
inclusion-based inference from totally pre-ordered bases is ΠP

2 -complete [16].
The key idea is to show that this problem is reductible to the problem Cm-

pLex which is the decision problem corresponding to the compatible-based lex-
icographic inference.

Let us first give the following lemma which describes the passage from par-
tially pre-ordered bases to partially ordered bases. Note that in the following,
given a partially pre-ordered belief base (Σ,�), then CmpIncl(Σ,�) (resp.
CmpLex(Σ,�)) denotes the set of all consistent preferred subbases with re-
spect to the inclusion-based (resp. lexicographic) preference over all the totally
pre-ordered POB-compatible bases.

Lemma 2. Let (Σ,�) be a partially pre-ordered belief base and let (Σ,≺I) be
the partially strictly ordered belief base obtained from (Σ,�) by replacing all
equalities by incomparabilities: ∀ϕ, ψ ∈ Σ, if φ = ψ then φ ∼I ψ. Then, we
have:

CmpIncl(Σ,�) = CmpIncl(Σ,≺I).

Besides, we show that the compatible-based inclusion inference and the
compatible-based lexicographic inference are equivalent with respect to a par-
tially strictly ordered belief base. More formally :

Lemma 3. Let (Σ,≺) be a partially strictly ordered belief base. Then, we have:

CmpLex(Σ,≺) = CmpIncl(Σ,≺).

Now, we are in position to give the following proposition.

Proposition 3. CmpIncl is ΠP
2 -complete.

Let us sketch the corresponding proof.

– Membership to ΠP
2 :

Given a partially pre-ordered belief base (Σ,�), then according to lemma
2, we have CmpIncl(Σ,�) = CmpIncl(Σ,≺I) where (Σ,≺I) is be the par-
tially strictly ordered belief base obtained from (Σ,�) by replacing all equal-
ities by incomparabilities.
Furthermore, we know that according to lemma 3 CmpIncl(Σ,≺I) =
CmpLex(Σ,≺I) which implies that CmpIncl(Σ,�) = CmpLex(Σ,≺I).
Subsequently, the problem CmpIncl is reducible to CmpLex, and since this
latter is ΠP

2 -complete and the class ΠP
2 is closed by polynomial reduction,

we deduce that CmpIncl belongs to ΠP
2 .

– Completeness for ΠP
2 :

First of all, the problem CmpIncl generalizes the problem Incl which means
that Incl is reducible to Cmplncl. In addition, the problem Incl is ΠP

2 -
complete. Therefore, CmpIncl is ΠP

2 -complete.

Bridging Possibilistic Conditional Knowledge Bases 49

6 Conclusion

This paper first pointed out relations between reasoning from conditional knowl-
edge bases and reasoning from partially pre-ordered belief bases. Then, we estab-
lished relationships between the concept of compatible bases and the concept of
compatible distributions. We show that reasoning from compatible distributions
is more cautious than reasoning from compatible bases (corollary of Figure 2).
The second important contribution concerns the computational complexity of
an important inconsistency-tolerant inference, which is inclusion-based is ΠP

2 -
complete. Hence, in the worst case, with inclusion based inference, reasoning
from partially pre-ordered (inconsistent) belief bases has the same complexity
as reasoning from totally pre-ordered (inconsistent) belief bases. Then, there is
no extra cost when information are partially pre-ordered.

References

1. Benferhat, S., Dubois, D., Cayrol, C., Lang, J., Prade, H.: Inconsistency manage-
ment and prioritized syntaxbased entailment. In: 13th International Joint Confer-
ence on Artificial Intelligence (IJCAI 1993), pp. 640–645 (1993)

2. Benferhat, S., Dubois, D., Prade, H.: Practical handling of exception-tainted rules
and independence information in possibilistic logic. Journal of Applied Intelli-
gence 9(2), 101–127 (1998)

3. Benferhat, S., Lagrue, S., Papini, O.: Reasoning with partially ordered information
in a possibilistic framework. Fuzzy Sets and Systems 144, 25–41 (2004)

4. Benferhat, S., Dubois, D., Kaci, S., Prade, H.: Bridging logical, comparative and
graphical possibilistic representation frameworks. In: Benferhat, S., Besnard, P.
(eds.) ECSQARU 2001. LNCS (LNAI), vol. 2143, pp. 422–431. Springer, Heidelberg
(2001)

5. Benferhat, S., Yahi, S.: Complexity and cautiousness results for reasoning from par-
tially preordered belief bases. In: Sossai, C., Chemello, G. (eds.) ECSQARU 2009.
LNCS, vol. 5590, pp. 817–828. Springer, Heidelberg (2009)

6. da Costa, N.C.A.: Theory of inconsistent formal systems. Notre Dame Journal of
Formal Logic 15, 497–510 (1974)

7. Dubois, D., Lang, J., Prade, H.: Possibilistic logic. In: Handbook of Logic in Articial
Intelligence and Logic Programming, vol. 3, pp. 439–513 (1994)

8. Dubois, D., Prade, H.: Possibility Theory: An Approach to Computerized Process-
ing of Uncertainty. Plenum Press, New York (1988)

9. Junker, U., Brewka, G.: Handling partially ordered defaults in TMS. In:
IJCAI 1989, pp. 1043–1048 (1989)

10. Kraus, S., Lehmann, D.J., Magidor, M.: Nonmonotonic reasoning, preferential
models and cumulative logics. Artificial Intelligience 44(1-2), 167–207 (1990)

11. Lehmann, D.J., Magidor, M.: What does a conditional knowledge base entail?
Artificial Intelligence 55(1), 1–60 (1992)

12. Linke, T., Schaub, T.: An approach to query-answering in reiter’s default logic and
the underlying existence of extensions problem. In: Dix, J., Fariñas del Cerro, L.,
Furbach, U. (eds.) JELIA 1998. LNCS (LNAI), vol. 1489, pp. 233–247. Springer,
Heidelberg (1998)

50 S. Benferhat, S. Lagrue, and S. Yahi

13. Linke, T., Schaub, T.: Alternative foundations for reiter’s default logic. Artificial
Intelligence 124(1), 31–86 (2000)

14. Mengin, J.: A theorem prover for default logic based on prioritized conflict reso-
lution and an extended resolution principle. In: Froidevaux, C., Kohlas, J. (eds.)
ECSQARU 1995. LNCS, vol. 946, pp. 301–310. Springer, Heidelberg (1995)

15. Morgenstern, L.: Inheritance comes of age: applying nonmonotonic techniques to
problems in industry. In: 15th International Joint Conference on Artificial Intelli-
gence (IJCAI 1997), pp. 1613–1613 (1997)

16. Nebel, B.: Belief Revision and Default Reasoning: Syntax-based Appraoch. In:
KR 1991, pp. 417–427 (1991)

17. Papadimitriou, C.H.: Computational Complexity. Addison Wesley Publishing
Company, Reading (1994)

18. Pearl, J.: System z: A natural ordering of defaults with tractable applications
to default reasoning. In: 6th Theoretical Aspects of Rationality and Knowledge
(TARK 1990), pp. 121–135 (1990)

19. Reiterp, R.: A logic for default reasoning. Artificial Intelligence 13(1-2), 81–132
(1980)

20. Rescher, N., Manor, R.: On inference from inconsistent premises. Theory and De-
cision 1, 179–219 (1970)

21. Yahi, S., Benferhat, S., Lagrue, S., Sérayet, M., Papini, O.: A lexicographic infer-
ence for partially preordered belief bases

22. Zadeh, L.A.: Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets and Sys-
tems 1, 3–28 (1978)

A Decidable Constructive Description Logic

Loris Bozzato1, Mauro Ferrari1, Camillo Fiorentini2, and Guido Fiorino3

1 DICOM, Univ. degli Studi dell’Insubria, Via Mazzini 5, 21100, Varese, Italy
2 DSI, Univ. degli Studi di Milano, Via Comelico, 39, 20135 Milano, Italy

3 DIMEQUANT, Univ. degli Studi di Milano-Bicocca
P.zza dell’Ateneo Nuovo 1, 20126 Milano, Italy

Abstract. Recently, there has been a growing interest in constructive
reinterpretations of description logics. This has been motivated by the
need to model in the DLs setting problems that have a consolidate tra-
dition in constructive logics. In this paper we introduce a constructive
description logic for the language of ALC based on the Kripke semantics
for Intuitionistic Logic. Moreover we give a tableau calculus and we show
that it is sound, complete and terminating.

1 Introduction

Nowadays Description Logics (DLs) are the most prominent formalism for
Knowledge Representation. Their success depends on the one side on their “nat-
ural” classical semantics and their expressivity and on the other side on the
decidability and efficiency of the reasoning problems. However, in recent years
there has been a growing interest in different interpretations of DLs allowing
one to model knowledge domains and problems that can hardly be treated in
the context of a classical semantics. Among these, we recall some proposals to-
wards a constructive approach to DLs: paraconsistent versions of DLs [14], dif-
ferent interpretations of negation [12], the introduction of semantics supporting
a computational reading of proofs [3,4,8] and the characterization of incomplete
information and typing systems for data streams [13].

As pointed out in [13], in general a constructive reading of DLs is useful in do-
mains with possibly dynamic and incomplete knowledge. This view is supported
by the model theoretical features of constructive semantics which allows the rep-
resentation of stages of information and truth evidence. Following this line, in
this paper we introduce the constructive description logic KALC. This logic is
based on the same language of ALC and relies on a Kripke-style semantics which
consists in a reformulation in the DLs setting of the Kripke semantics for first-
order Intuitionistic Logic. A Kripke model can be considered as a set of worlds,
representing states of knowledge, partially ordered by their information content.
This permits to express partial and incomplete states of knowledge which can
increase in time in the context of the Open World Assumption. We exemplify
this in Section 2 by means of an example inspired by [13]. The main difference
between our semantics and the one of [13] is that our refinement relation con-
cerns a whole state of knowledge and not a single individual. This provides a

T. Janhunen and I. Niemelä (Eds.): JELIA 2010, LNAI 6341, pp. 51–63, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

52 L. Bozzato et al.

semantics which seems a “natural” generalization of the classical semantics for
ALC. Reasoning problems for DLs in our setting are formulated as in ALC but
have a constructive meaning. Indeed, as we prove in Section 2, KALC meets the
disjunction property: if the assertion c : C � D (c belongs to concept C � D)
holds in KALC, then either c : C or c : D is true in KALC. In particular, the
classically valid assertion c : C � ¬C is not true in KALC. This is considered an
essential feature of every constructive system. We show that reasoning problems
for KALC are decidable by introducing a tableau calculus TK for KALC. To con-
clude, we notice that our semantics can be viewed as a refinement of iALC [6],
which corresponds to a direct translation of semantics of Intuitionistic first order
logics in the language of ALC.

In the following section we first introduce the syntax and semantics of KALC,
discussing its relations with classical semantics and the disjunction property. In
Section 3 we introduce the calculus TK and we prove its soundness with respect
to KALC semantics: completeness and termination are presented in Section 4.
We conclude in Section 5 by considering possible directions for future work.

2 Syntax and Semantics

We begin by introducing the language L of KALC which essentially coincides
with the one of ALC [7]. It is based on the following denumerable sets: the set
NI of individual names, the set NC of atomic concept names, the set NR of role
names. Concepts C,D and formulas H are defined as follows:

C,D ::= ⊥ | A | C �D | C �D | C → D | ∃R.C | ∀R.C
H ::= (c, d) : R | c : C | C � D

where c, d ∈ NI, A ∈ NC and R ∈ NR. As usual in constructive logics, we write ¬C
as an abbreviation for C → ⊥. Given N ⊆ NI, we denote with LN the language
only containing individual names from N . A (classical) model M for LN is a
pair (DM, ·M), where DM is a finite non-empty set (the domain ofM) and ·M
is a valuation map such that: for every c ∈ N , cM ∈ DM; for every A ∈ NC,
AM ⊆ DM; ⊥M is the empty set; for every R ∈ NR, RM ⊆ DM×DM. A Kripke
model for LN is a quadruple K = 〈P,≤, ρ, ι〉, where:

– (P,≤) is a finite poset with minimum element ρ; P is the set of worlds of K,
ρ the root of K.

– ι is a function associating with every world α a model (Dα, ·α) for LN such
that, for every α ≤ β, the following holds:

(K1) Dα ⊆ Dβ ;
(K2) for every c ∈ N , cβ = cα;
(K3) for every A ∈ NC, Aα ⊆ Aβ ;
(K4) for every R ∈ NR, Rα ⊆ Rβ .

Worlds of K represent states of knowledge that can be updated or refined by the
relation ≤; conditions (K1)–(K4) settle that the knowledge is monotonic. Given

A Decidable Constructive Description Logic 53

K = 〈P,≤, ρ, ι〉 and α ∈ P , we denote with Lα the language obtained by adding
to the individual names of LN every element d ∈ Dα and setting dα = d. Note
that, by Condition (K1), α ≤ β implies Lα ⊆ Lβ . Let α be a world of K and H
a formula of Lα; we inductively define the forcing relation α � H as follows:

– α � c : A, where A ∈ NC or A = ⊥, iff cα ∈ Aα;
– α � (c, d) : R where R ∈ NR, iff (cα, dα) ∈ Rα;
– α � c : C �D iff α � c : C and α � c : D;
– α � c : C �D iff α � c : C or α � c : D;
– α � c : C → D iff, for every β ≥ α, β � c : C implies β � c : D;
– α � c : ∃R.C iff there is d ∈ Dα such that α � (c, d) : R and α � d : C;
– α � c : ∀R.C iff, for every β ≥ α and d ∈ Dβ , β � (c, d) : R implies β � d : C;
– α � C � D iff, for every β ≥ α and c ∈ Dβ , β � c : C implies β � c : D.

We remark that, differently from ALC, the logical connectives are not interde-
finable; e.g., C → D is not equivalent to ¬C �D. As for negation, being ¬C an
abbreviation for C → ⊥, we get α � c : ¬C iff for every β ≥ α, β � c : C.

By conditions (K1)–(K4) the forcing relation satisfies the monotonicity prop-
erty: if α � H then β � H for every β ≥ α. A final world φ of K is a maximal
element of (P,≤). Note that φ �� H implies φ � ¬H . As a consequence, in φ any
formula c : C � ¬C is valid, as in classical models for ALC, hence a final world
represents a state of complete knowledge.

We now introduce the notion of KALC-logical consequence, denoted by |=,
which allows us to represent in KALC the usual inference problems for DLs. Let
F be a set of formulas; by α � F we mean that α � H for every H ∈ F . Given
a formula H , the relation F |= H holds iff:

– for every K = 〈P,≤, ρ, ι〉 and α ∈ P , if α � F then α � H .

By the above discussion, it follows that if F |= H then H is a logical conse-
quence of F as understood in ALC. Thus, KALC-logical consequence refines the
corresponding notion for ALC.

In our setting, an ABox A is a set of assertions of the kind (c, d) : R and c : C,
a TBox T is a set of inclusions of the form C � D. The inference problems for
KALC are formulated as in ALC, using the |= relation. To exemplify:

– Concept satisfiability. C is satisfiable w.r.t. (A, T) iff A∪T ∪{q : C} �|= c : ⊥,
with q not occurring in A.

– Instance checking. c : C is entailed by (A, T) iff A ∪ T |= c : C.
– Subsumption. D subsumes C w.r.t. (A, T) iff A ∪ T |= C � D.

In the next example we show how our semantics allows us to represent partial
and incomplete information and supports constructive reasoning.

Example 1 (Auditing). We reconsider the auditing example of [13]. Let us sup-
pose to have a knowledge base defined by the following ABox A (CW stands for
“Credit Worthy”):

54 L. Bozzato et al.

b c d

a

I

ρ

b c d

a

I

b c d

a

I I

<
<

φ1 φ2
CW CW

Fig. 1. The model K

a:Company d:Company (a,b):hasCustomer (c,d):hasCustomer

b:Company b:Insolvent (a,c):hasCustomer a:D → CW

c:Company d:¬Insolvent (b,c):hasCustomer

where D is the concept ∃hasCustomer.(Insolvent � ∃hasCustomer.¬Insolvent)

The formula a : D → CW states that if the company a has an insolvent customer
solv which in turn can rely on at least one non-insolvent customer unsolv, then a
can be trusted as CW (here and in Fig. 1 I abbreviates Insolvent). In ALC the
assertion a:CW is entailed by A. To prove this, letM be any model of A. We first
show that a : D holds inM. Since tertium non datur classically holds, inM the
customer c is either insolvent or not insolvent. Let us consider the worlds φ2 and
φ1 in Fig. 1 representing the two possibilities; in both cases, we can find out the
clients solv and unsolv required by D: solv = c and unsolv = d in the former case,
solv = b and unsolv = c in the latter. Since a : D → CW holds inM, it follows
that a : CW holds inM. Thus, in ALC the company a is trusted as CW though we
have not any knowledge about the identity of the customers solv and unsolv.

On the contrary, in KALC the information in A does not enable to assert that
a is CW. The point is that we have not enough knowledge on c, thus neither “c is
insolvent” nor “c is not insolvent” can be asserted (indeed, in a future world c
might become insolvent). This can be formalized in KALC semantics as follows.
Let N = {a, b, c, d} and let us consider the Kripke model K = 〈P,≤, ρ, ι〉 for
LN in Fig. 1, consisting of the root ρ, two final worlds φ1 and φ2 such that:

– for every α ∈ P , Dα = N and, for every z ∈ N , zα = z;
– atomic concepts and roles are interpreted as follows:

World Company Insolvent CW hasCustomer

ρ N {b} ∅ { (a, b), (a, c), (b, c), (c, d) }
φ1 N {b} {a} { (a, b), (a, c), (b, c), (c, d) }
φ2 N { b, c } {a} { (a, b), (a, c), (b, c), (c, d) }

Since φ1 �� c : Insolvent (actually, φ1 � c : ¬Insolvent) and φ2 � c :
Insolvent, we have that ρ �� c : Insolvent and ρ �� c : ¬Insolvent, hence

A Decidable Constructive Description Logic 55

ρ �� c : Insolvent � ¬Insolvent. Note that, b and c are the only individuals
such that (a, b) ∈ hasCustomerρ, b ∈ Insolventρ and (b, c) ∈ hasCustomerρ,
but ρ �� c : ¬Insolvent. Thus ρ �� a : D. Since φ1 � a : CW and φ2 � a : CW,
we have ρ � a : D → CW. To sum up, ρ � A and ρ �� a : CW; we conclude that
a : CW is not a KALC-logical consequence of A. Observe that the final worlds
correspond to the two possible ways of acquiring a complete knowledge about
the insolvency of c: clearly, in the final worlds a must be CW. �

We conclude the discussion on Kripke semantics by remarking that KALC satis-
fies the Disjunction Property (DP):

– |= c : C1 � C2 implies |= c : C1 or |= c : C2.

As an immediate consequence, the classically valid assertion c : C � ¬C is not
valid in KALC. The proof of (DP) exploits the standard technique of gluing
models: given two Kripke models 〈Pj ,≤j, ρj , ιj〉 (j = 1, 2) such that ρj ��j c : Cj ,
one can build a model 〈P,≤, ρ, ι〉, with ρ �∈ P1 ∪ P2, such that the immediate
successors of ρ are ρ1 and ρ2. It follows that ρ �� c : C1 �C2. Handling with care
the same technique, we can prove (DP) in a more general form:

– FH |= c : C1 � C2 implies FH |= c : C1 or FH |= c : C2

with FH a set of Harrop Formulas (occurrences of � and ∃ are only allowed in
the left-hand scope of → or �).

In this paper we only consider the reasoning problems over acyclic TBoxes T
according to the standard definition:

1. T only contains inclusions A � C, with A an atomic concept.
2. Let us say that the atomic concept A directly uses A′ in T iff, for some

A � C ∈ T , A′ is a subformula of C and let uses be the transitive closure of
the “directly uses” relation. Then, no concept occurring in T uses itself.

3 The Tableau Calculus TK

The tableau calculus TK works on signed formulas W = S(H), with H a formula
and S a sign in {T,F,Ts}. Formally:

W ::= T((c, d) : R) | F(c : C) | T(c : C) | Ts(c : C) | T(C � D)

Given a Kripke model K = 〈P,≤, ρ, ι〉, a world α ∈ P and a signed formula W ,
α realizes W in K, and we write K,α � W , iff:

– W = T(H) and α � H .
– W = F(H) and α � H .
– W = Ts(H) and, for every β ∈ P such that α < β, β � H .

The signs T and F have the usual meaning [9], whereas Ts refers to the successors
of a world. Let Δ be a set of signed formulas and let

Δs = {T(H) | T(H) ∈ Δ } ∪ {T(H) | Ts(H) ∈ Δ }

56 L. Bozzato et al.

Δ,T(c : C �D)

Δ,T(c : C),T(c : D)
T�

Δ,F(c : C �D)

Δ,F(c : C) | Δ,F(c : D)
F�

Δ,T(c : C �D)

Δ,T(c : C) | Δ,T(c : D)
T�

Δ,F(c : C �D)

Δ,F(c : C),F(c : D)
F�

Δ,F(c : C → D)

Δ,T(c : C),F(c : D) | Δs,T(c : C),F(c : D)
F→

Δ,T(c : C → D)

Δ,T(c : D) | Δ,F(c : C),Ts(c : D) | Δs,F(c : C),Ts(c : D)
T→

Δ,T(c : A),T(A � C)

Δ,T(c : A),T(A � C),T(c : C)
T	

Δ,T(c : ∃R.C)

Δ,T((c, q) : R),T(q : C)
T∃∗

Δ,T((c, d) : R),F(c : ∃R.C)

Δ,T((c, d) : R),F(c : ∃R.C),F(d : C)
F∃

Δ,T((c, d) : R),T(c : ∀R.C)

Δ,T((c, d) : R),T(c : ∀R.C),T(d : C)
T∀

Δ,F(c : ∀R.C)

Δ,T((c, q) : R),F(q : C) | Δs,T((c, q) : R),F(q : C)
F∀∗

∗q does not occur in the premise

Fig. 2. Rules of TK

Then, K,α�Δ implies K,β�Δs for every β > α (K,α�Δ means K,α�W for
every W ∈ Δ). We also note that K,α�Ts(c : ⊥) iff α is final. We say that Δ is
realizable if K,α�Δ for some K and α. Given a set of formulas F and a sign S,
S(F) denotes the set of signed formulas S(H) such that H ∈ F . The relations
among realizability, KALC-logical consequence and ALC-logical consequence are
stated by the following theorem, which can be easily proved:

Theorem 1. Let F be a set of formulas and q an individual name not in F .

(i) F |= c : C iff the set T(F) ∪ {F(c : C)} is not realizable.
(ii) F |= C � D iff the set T(F) ∪ {F(q : C → D)} is not realizable.
(iii) H is an ALC-logical consequence of F iff T(F)∪{Ts(c : ⊥),F(H)} is not

realizable.
(iv) c : C is an ALC-logical consequence of F iff F |= c : ¬¬C. ��

The rules of the tableau calculus TK are shown in Fig. 2. In the rules we write
Δ,W as a shorthand for Δ∪{W}; moreover, if Δ,W is the premise of a rule, we
assume W �∈ Δ. Every rule applies to a set of signed formulas, but only acts on
the signed formula W explicitly indicated in the premise. The consequence of a
rule consists of one or more sets of signed formulas separated by the symbol ’|’.

In the rules T∃ and F∀, q is a fresh individual name. Formulas of the kind
F(c : ∃R.C), T(c : ∀R.C) and T(A � C) must be duplicated in rule applica-
tion to guarantee the completeness; we call them dup-formulas. Note that in the

A Decidable Constructive Description Logic 57

intuitionistic case the treatment of T→-rule is problematic and requires dupli-
cations [1]; in TK duplications are avoided by the introduction of the sign Ts. A
set Δ clashes iff {F(c : C),T(c : C)} ⊆ Δ or T(c : ⊥) ∈ Δ. Clearly, a clashing
set is not realizable. A proof table for Δ is a finite tree τ with Δ as root and
such that all the children of a node Δ′ of τ are the sets in the consequence of a
rule applied to Δ′. If all the leaves of τ clash, τ is a closed proof table for Δ and
we say that Δ is provable (in TK); Δ is consistent iff Δ is not provable.

Before proving soundness and completeness we give an example of a proof.

Example 2. Let H = C � ¬C. Since c : H is valid in ALC, by Theorem 1
c : ¬¬H is valid in KALC. We show a proof of c : ¬¬H (recall that ¬D =
D → ⊥). The proof is displayed according to the standard notation [9]. In
the proof we underline the clashing formulas, we denote with X a clashing set
and we label with an integer the formulas treated by the rules when needed.

F(c : ¬¬H)
F→

T(c : ¬H),F(c : ⊥)
T→

T(c : ⊥),F(c : ⊥) | F(c : H)1,Ts(c : ⊥),F(c : ⊥) | F(c : H)2,Ts(c : ⊥)
F�1,F�2

X | F(c : C),F(c : ¬C)3,Ts(c : ⊥),F(c : ⊥) | Δ = F(c : C),F(c : ¬C)4,Ts(c : ⊥)
F→3

X | F(c : C),T(c : C),Ts(c : ⊥),F(c : ⊥) | T(c : C),F(c : ⊥),T(c : ⊥) | Δ
F→4

X | X | X | F(c : C),T(c : C),F(c : ⊥),Ts(c : ⊥) | T(c : C),F(c : ⊥),T(c : ⊥)

Note that, if Ts(c : ⊥) ∈ Δ, then Δs clashes. Thus, in applying one of the rules
F →, T → and F∀ to Δ, we can drop out the rightmost set in the conclusion
and a proof table for Δ,Ts(c : ⊥) resembles an ALC proof table. �

Soundness. The following is the main lemma to prove the soundness of TK.

Lemma 1. Let Δ be a set of signed formulas, K = 〈P,≤, ρ, ι〉 a Kripke model
such that K,α�Δ, with α ∈ P , and r a rule of TK applicable to Δ. Then, there
is a set Δ′ in the consequence of r and β ∈ P such that K,β � Δ′.

Proof. We only discuss the case of rule T →. Let W = T(c : C → D) and
let us assume K,α � Δ,W . If K,α � T(c : D), the assertion holds. Otherwise,
K,α � F(c : C); being K finite, there exists β ≥ α such that K,β � F(c : C)
and K,β � Ts(c : C), which implies K,β � Ts(c : D). If β = α then K,β � Δ,
otherwise K,β � Δs, and the assertion is proved. ��

By the previous lemma we get:

Theorem 2 (Soundness). Let Δ be a set of signed formulas. If Δ is realizable,
then Δ is consistent. ��

4 Completeness and Termination

In this section we prove the completeness of TK and we provide a decision pro-
cedure for KALC based on TK. Let Δ be a set of signed formulas; we say that Δ

58 L. Bozzato et al.

is acyclic iff the set of A � C such that T(A � C) ∈ Δ is an acyclic TBox. Note
that, according to Theorem 1, to solve the inference problems w.r.t. an acyclic
TBox is equivalent to decide the realizability of an acyclic set. We show that,
given a finite acyclic consistent set Δ, we can build in finite time a countermodel
for Δ, i.e. a Kripke model K = 〈P,≤, ρ, ι〉 such that K, ρ�Δ. Our construction
is inspired to the standard technique used for ALC [2] based on graph expansion.
A labelled graph G refers to a world α of the countermodel K under construc-
tion: the nodes of G form the domain Dα of α, while the labelled arcs (c, d, R)
of G define the interpretation of R in α. Each node c is associated with a finite
set of signed formulas S(c : C), representing the formulas that must be realized
in α. To get this, we repeatedly apply the following transformation rules on G:

1. Firstly, we apply to G expansion rules as in the standard construction of a
downward saturated set. We call expanded graph the graph Exp(G) obtained
at the end of this step; Exp(G) completely describes a world α of K.

2. Let Ge be an expanded graph describing a world α. We give rules to compute
the successor graphs G′ of Ge so that the graphs Exp(G′) will be all the
immediate successors of α in K.

We need some care to guarantee the termination. We partition the formulas
associated with a node in primary and secondary formulas. Roughly speaking,
primary formulas drive the graph construction. At every step a primary formula
or a TBox axiom is selected and the graph is expanded according to the chosen
formula. The formulas already considered are collected in the set of secondary
formulas. Dup-formulas require an ad-hoc treatment to avoid infinite loops: for
every dup-formula we store the individual names already considered in the ex-
pansion procedure. The TBox formulas can be seen as “global constraints” on
G and are not affected by the transformation rules, thus we take them apart.

Formally, we consider labelled graphs G = 〈N , E , Pf, Sf, Tb, Df〉 where:

– N is the set of nodes, with N a finite subset of NI.
– E is the set of labelled edges (c, d, R), with c, d ∈ N and R ∈ NR.
– Pf and Sf are functions associating with every node c a finite set of signed

formulas S(c : C), called the primary and secondary formulas of c respectively.
– Tb has the form T(T), with T a finite acyclic TBox.
– Df is a function mapping a dup-formula to a finite set of nodes.

The sets Form(G) and Form
∗(G) are defined as:

Form(G) =
⋃

c∈N Pf(c) ∪ {T((c, d) : R) | (c, d, R) ∈ E } ∪ Tb

Form
∗(G) = Form(G) ∪

⋃
c∈N Sf(c)

Assumptions on G. In the following we assume that at any step of the counter-
model construction a graph G satisfies the following properties (G1) and (G2):

(G1) Form(G) is consistent.
(G2) The following closure properties hold:

A Decidable Constructive Description Logic 59

– If T(c : C �D) ∈ Sf(c), then {T(c : C),T(c : D)} ⊆ Form
∗(G).

– If F(c : C �D) ∈ Sf(c), then F(c : C) ∈ Form
∗(G) or F(c : D) ∈ Form

∗(G).
– If T(c : C �D) ∈ Sf(c), then T(c : C) ∈ Form

∗(G) or T(c : D) ∈ Form
∗(G).

– If F(c : C �D) ∈ Sf(c), then {F(c : C),F(c : D)} ⊆ Form
∗(G).

– If T(c : C → D) ∈ Sf(c), then T(c : D) ∈ Form
∗(G) or {F(c : C),Ts(c :

D)} ⊆ Form
∗(G).

– If F(c : C → D) ∈ Sf(c), then {T(c : C),F(c : D)} ∈ Form
∗(G).

– If T(c : ∃R.C) ∈ Sf(c), then there is (c, q, R) ∈ E s.t. T(q : C) ∈ Form
∗(G).

– If W = F(c : ∃R.C) ∈ Pf(c) and d ∈ Df(W), then F(d : C) ∈ Form
∗(G).

– If W = T(c : ∀R.C) ∈ Pf(c) and d ∈ Df(W), then T(d : C) ∈ Form
∗(G).

– If F(c : ∀R.C) ∈ Sf(c), then there is (c, q, R) ∈ E s.t. F(q : C) ∈ Form
∗(G).

– If W = T(A � C) ∈ Tb and c ∈ Df(W) and T(c : A) ∈ Pf(c), then
T(c : C) ∈ Form

∗(G).

The starting graph GΔ. The countermodel construction for Δ starts with the
graph GΔ = 〈NΔ, EΔ, PfΔ, SfΔ, Tb, DfΔ〉, where NΔ is the set of individual
names occurring in Δ, EΔ is the set of (c, d, R) such that T((c, d) : R) ∈ Δ,
PfΔ(c) is the set of S(c : A) ∈ Δ, SfΔ and DfΔ maps any element to the
empty set, Tb is the set of T(A � C) ∈ Δ. One can easily check that GΔ

satisfies (G1) and (G2).

Expansion of a graph G. Let G = 〈N , E ,Pf,Sf,Tb,Df〉 be a finite graph and
W ∈ Form(G). Expansion rules are defined in Fig. 3. Given W , the correspond-
ing expansion rule transforms G in a new graph G′ = 〈N ′, E ′,Pf

′,Sf
′,Tb,Df

′〉.
In the rules, SW denotes the sign of W . We only indicate the components of the
graph that are actually modified; if an element E of G is not mentioned, it is
understood that the corresponding element E′ of G′ coincides with E. In some
cases rules have no effect (for instance, in the case W = F(c : C → D) when the
if condition does not hold).

We repeatedly apply expansion rules to G until no rule is applicable. Let
Exp(G) denote the expanded graph Ge = 〈Ne, Ee,Pfe,Sfe,Tb,Dfe〉 obtained at
the end of the expansion step; Mod(Ge) is the model (Dα, ·α) for LNe representing
the world α such that:

– Dα = Ne and, for every c ∈ Ne, cα = c;
– for every A ∈ NC, Aα is the set of c such that T(c : A) ∈ Pfe(c);
– for every R ∈ NR, Rα is the set of pairs (c, d) such that (c, d, R) ∈ Ee.

The following properties are crucial to prove the finiteness of Exp(G).

(P1) For every c ∈ Ne, the set of R-successors of c in Ge is finite.
(P2) Let c0 ∈ Ne \ N , let σ = c0, c1, . . . be an R-chain of nodes of Ge, namely:

(ck, ck+1, R) ∈ Ee for every k ≥ 0. Let A be a concept name and B(σ,A)
the set of c in σ such that T(c : A) ∈ Pfe(c). Then, B(σ,A) is finite.

We only give a sketch of the proof. As for (P1), d is an R-successor of c in Ge

iff (c, d, R) ∈ E or d has been generated by a formula W = T(c : ∃R.C) or
W = F(c : ∀R.C). In the former case the assertion follows by finiteness of G. In

60 L. Bozzato et al.

Formula Expansion rule
W = T(c : C �D)
W = F(c : C �D)

Pf
′(c) = (Pf(c) \ {W}) ∪ {SW (c : C), SW (c : D) }

Sf
′(c) = Sf(c) ∪ {W}

W = F(c : C �D)
W = T(c : C �D)

If (Δ \ {W}) ∪ {SW (c : C) } is consistent, then
Pf

′(c) = (Pf(c) \ {W}) ∪ {SW (c : C) }
else Pf

′(c) = (Pf(c) \ {W}) ∪ {SW (c : D) }
Sf

′(c) = Sf(c) ∪ {W}
W = F(c : C → D) If (Δ \ {W}) ∪ {T(c : C),F(c : D) } is consistent then

Pf
′(c) = (Pf(c) \ {W}) ∪ {T(c : C),F(c : D) }

Sf
′(c) = Sf(c) ∪ {W}

W = T(c : C → D) If (Δ \ {W}) ∪ {T(c : D)} is consistent then
Pf

′(c) = (Pf(c) \ {W}) ∪ {T(c : D) }
Sf

′(c) = Sf(c) ∪ {W}
else if (Δ \ {W}) ∪ {F(c : C),Ts(c : D)} is consistent then

Pf
′(c) = (Pf(c) \ {W}) ∪ {F(c : C),Ts(c : D) }

Sf
′(c) = Sf(c) ∪ {W}

W = T(A � C) Let c ∈ N \ Df(W)
If T(c : A) ∈ Pf(c) then

Pf
′(c) = Pf(c) ∪ {T(c : C) }

Df
′(W) = Df(W) ∪ {c}

W = T(c : ∃R.C) Let q �∈ N .
N ′ = N ∪ {q} E ′ = E ∪ { (c, q, R) }
Pf

′(c) = Pf(c) \ {W} Pf
′(q) = {T(q : C) }

Sf
′(c) = Sf(c) ∪ {W} Sf

′(q) = ∅
W = F(c : ∃R.C)
W = T(c : ∀R.C)

Let d ∈ N such that (c, d,R) ∈ E and d �∈ Df(W)
Pf

′(d) = Pf(d) ∪ {SW (d : C) }
Df

′(W) = Df(W) ∪ {d}
W = F(c : ∀R.C) Let q �∈ N

If (Δ \ {W}) ∪ {T((c, q) : R),F(q : C) } is consistent
N ′ = N ∪ {q} E ′ = E ∪ { (c, q, R) }
Pf

′(c) = Pf(c) \ {W} Pf
′(q) = {F(q : C) }

Sf
′(c) = Sf(c) ∪ {W} Sf

′(q) = ∅
SW denotes the sign of W

Fig. 3. Expansion rules

the latter two cases, W must be a subformula of a formula in Form
∗(G), and

only finitely many such W exist.
Let Tb = T(T) and let ≺ be the “uses” relation induced by the TBox T .

We prove (P2) by induction on ≺ (recall that T is finite and acyclic, hence ≺
is well-founded). If A is minimal w.r.t. ≺ then, for every T(A′ � C) ∈ Tb, A
is not a subformula of C. Thus, c ∈ B(σ,A) iff T(c : A) has been generated
by some formula in Pfe(c0) or Sfe(c0), and this implies that B(σ,A) is finite.
Suppose that A is not minimal. If B(σ,A) is infinite, there must exist a formula
W = T(A′ � C) ∈ Tb such that A is a subformula of C and the rule T �
has been applied infinitely many times on W . It follows that B(σ,A′) is infinite.
Since A′ ≺ A, this contradicts the induction hypothesis.

A Decidable Constructive Description Logic 61

Formula Successor graph
W = F(c : C → D)
W = T(c : C → D)

N ′ = N E ′ = E Df
′ = Dfs

Pf
′(c) = (Pf(c))s ∪RW Pf

′(d) = (Pf(d))s for every d �= c
Sf

′(c) = (Sf(c))s ∪ {W} Sf
′(d) = (Sf(d))s for every d �= c

where RF(c:C→D) = {T(c : C),F(c : D)}
and RT(c:C→D) = {F(c : C),Ts(c : D)}

W = F(c : ∀R.C) Let q �∈ N .
N ′ = N ∪ {q} E ′ = E ∪ { (c, q, R) } Df

′ = Dfs

Pf
′(q) = {F(q : C) } Pf

′(d) = (Pf(d))s for every d ∈ N
Sf

′(c) = (Sf(c))s ∪ {W} Sf
′(q) = ∅

Sf
′(e) = (Sf(e))s for every e ∈ N \ {c}

Dfs(Z) = Df(Z) if Z = T(H), otherwise Dfs(Z) = ∅

Fig. 4. Successor graphs

By (P2) it follows that Ge does not contain infinite R-chains starting from a
node c0 ∈ Ne \ N . We conclude:

Lemma 2. Exp(G) is finite. ��

Successor of an expanded graph G. Let W be a formula of Form(G). The suc-
cessor graph of G generated by W is the graph G′ = 〈N ′, E ′,Pf

′,Sf
′,Tb,Df

′〉
defined according to the form of W as specified in Fig. 4.

Countermodel construction. Let Δ be a finite acyclic consistent set of signed
formulas. The countermodel K(Δ) = 〈P,≤, ρ, ι〉 for Δ is built as follows.

– The root ρ coincides with Mod(Exp(GΔ)), where GΔ is the starting graph.
– Let α = Mod(Gα) be a world of K(Δ) and let G1,. . . , Gm be all the suc-

cessors of Gα. Then, the immediate successors of α in K(Δ) are the models
Mod(Exp(G1)), . . . , Mod(Exp(Gm)).

– ≤ is the reflexive and transitive closure of the immediate successor relation.

The termination of the countermodel construction procedure is guaranteed by
the following property.

(T) Let G′ be obtained by applying to G one of the rules of Fig. 3 and 4 defined
by W . Then, one of the following facts holds (|W | denotes the size of W):
(1) Form(G′) is obtained by replacing W with one or more formulas W ′

such that |W ′| < |W |, possibly substituting Ts with T and discharging
the F-formulas.

(2) If W is a dup-formula, Form(G′) = Form(G)∪{W ′}, with |W ′| < |W |,
and Df(W) ⊂ Df

′(W).

By Lemma 2 the sets Df(W) can not increase indefinitely, thus we cannot apply
the transformation rules infinitely many times.

We now state the main results of this section.

62 L. Bozzato et al.

Lemma 3. Let Δ be a finite acyclic consistent set of signed formulas.

(i) The model K(Δ) is finite.
(ii) Let α = Mod(Gα) be a world of K(Δ). Then, K(Δ), α � Form

∗(Gα).
(iii) K(Δ), ρ � Δ.

Proof. Point (i) follows by Property (T). To prove (ii), one has to show that
W ∈ Form

∗(Gα) implies K(Δ), α � W ; the proof is by induction on W , using
(G1) and (G2). Point (iii) follows by (ii), being Δ ⊆ Form(GΔ) ⊆ Form

∗(Gρ).
��

By the previous lemma and by the Soundness Theorem we conclude:

Theorem 3 (Completeness). Let Δ be a finite acyclic set of signed formulas.
Then, Δ is realizable iff Δ is consistent. ��
The countermodel construction procedure can be used to decide the realizability
of an acyclic Δ. Indeed, one tries to build K(Δ) by applying the transformation
rules in all possible ways; by Property (T), the search space is finite. If all the
attempts fail, yielding a clashing set Pf(c), Δ is not consistent (Lemma 3), hence
it is not realizable (Theorem 3). In this case, the failed branches correspond to
the branches of a closed proof table for Δ.

5 Related Works and Conclusions

The logic KALC we have introduced is strongly connected with the constructive
DL presented in [5], let us call KALC′. Indeed, a Kripke model K = 〈P ≤, ρ, ι〉
for KALC′ is a KALC model where P can be infinite and, for every α ∈ P , there
is a final element φ ∈ P such that α ≤ φ. The restriction to finite models is
crucial to prove the decidability of KALC (whereas KALC′ is semidecidable).
Clearly, KALC′ ⊆ KALC. If, as we conjecture, KALC ⊆ KALC′, we can conclude
that KALC = KALC′ has the finite model property.

It is well-known that DLs have multi-modal logic counterparts [2]; likewise,
intuitionistic DLs are related to intuitionistic multi-modal logics [10,15], via the
standard translation between the involved languages. It is easy to prove that the
multi-modal version of Fischer-Servi logic FS [10] is contained in KALC. On the
other hand FS �= KALC, since the formula H = c : ∀R.¬¬A→¬¬∀R.A belongs
to KALC, while the corresponding formula �¬¬A→¬¬�A does not belong to
FS (see the countermodel in [15]). We remark that H belongs to KALC′ as well,
due to the fact that KALC′ models have final elements.

As for the comparison with other approaches, we notice that our notion of
refinement (induced by the partial order relation of Kripke models) concerns
the whole state of knowledge. So it is closer to the usual Kripke interpretation
than those given in [13,14], which concern single individuals. Note that in [13]
the knowledge about roles is not monotonic. We plan to investigate the relation
between KALC and the constructive description logic BCDL [8], which exploits
a different semantics. Finally, we aim to extend the decision procedure to treat
general TBoxes and transitive and inverse role relations by introducing loop-
checking mechanisms, such as blocking and its variants [11].

A Decidable Constructive Description Logic 63

References

1. Avellone, A., Ferrari, M., Miglioli, P.: Duplication-free tableau calculi and related
cut-free sequent calculi for the interpolable propositional intermediate logics. Logic
J. of the IGPL 7(4), 447–480 (1999)

2. Baader, F., Nutt, W.: Basic description logics. In: [7], pp. 43–95
3. Bozzato, L., Ferrari, M., Fiorentini, C., Fiorino, G.: A constructive semantics for

ALC. In: Calvanese, D., et al. (eds.) 2007 International Workshop on Description
Logics. CEUR Proceedings, vol. 250, pp. 219–226 (2007)

4. Bozzato, L., Ferrari, M., Villa, P.: Actions over a constructive semantics for ALC.
In: Baader, F., et al. (eds.) 2008 International Workshop on Description Logics.
CEUR Proceedings, vol. 353 (2008)

5. Bozzato, L., Ferrari, M., Villa, P.: A note on constructive semantics for description
logics. In: 24-esimo Convegno Italiano di Logica Computazionale (2009),
http://www.ing.unife.it/eventi/cilc09/accepted.shtml

6. de Paiva, V.: Constructive description logics: what, why and how. Technical report,
Xerox Parc (2003)

7. Baader, F., et al. (eds.): The Description Logic Handbook: Theory, Implementa-
tion, and Applications. Cambridge University Press, Cambridge (2003)

8. Ferrari, M., Fiorentini, C., Fiorino, G.: BCDL: Basic Constructive Description
Logic. J. of Automated Reasoning 44(4), 371–399 (2010)

9. Fitting, M.C.: Proof Methods for Modal and Intuitionistic Logics. Reidel, Dor-
drechtz (1983)

10. Gabbay, D.M., Kurucz, A., Wolter, F., Zakharyaschev, M.: Many-dimensional
modal logics: theory and applications. Studies in logic and the foundations of math-
ematics. North-Holland, Amsterdam (2003)

11. Horrocks, I., Sattler, U., Tobies, S.: Practical reasoning for very expressive descrip-
tion logics. Logic J. of the IGPL 8(3), 239–264 (2000)

12. Kaneiwa, K.: Negations in description logic - contraries, contradictories, and sub-
contraries. In: Proc. of the 13th International Conference on Conceptual Structures
(ICCS 2005), pp. 66–79. Kassel University Press (2005)

13. Mendler, M., Scheele, S.: Towards Constructive DL for Abstraction and Refine-
ment. J. of Automated Reasoning 44(3), 207–243 (2010)

14. Odintsov, S.P., Wansing, H.: Inconsistency-tolerant description logic. Part II: A
tableau algorithm for CALCC . J. of Applied Logic 6(3), 343–360 (2008)

15. Simpson, A.K.: The Proof Theory and Semantics of Intuitionistic Modal Logic.
PhD thesis, University of Edinburgh (1994)

http://www.ing.unife.it/eventi/cilc09/accepted.shtml

A Normal Form for Linear Temporal
Equilibrium Logic�

Pedro Cabalar

Dept. Computación,
University of Corunna, Spain

cabalar@udc.es

Abstract. In previous work, the so-called Temporal Equilibrium Logic
(TEL) was introduced. This formalism provides an extension of the An-
swer Set semantics for logic programs to arbitrary theories in the syntax
of Linear Temporal Logic. It has already been shown that, in the non-
temporal case, arbitrary propositional theories can always be reduced to
logic program rules (with disjunction and negation in the head) inde-
pendently on the context. That is, logic programs constitute a normal
form for the non-temporal case. In this paper we show that TEL can
be similarly reduced to a normal form consisting of a set of implications
(embraced by a necessity operator) quite close to logic program rules.
This normal form may be useful both for a practical implementation of
TEL and a simpler analysis of theoretical problems.

1 Introduction

Logic programs under the answer set (or stable model) semantics [1] have be-
come a succesful paradigm for practical knowledge representation. The success
of Answer Set Programming (ASP) partly comes from a combination of solid
theoretical foundations with the availability of efficient solvers [2] that allowed
its use for real world applications. Among these typical applications of ASP we
frequently find dealing with transition systems and action theories. In this set-
ting, the nonmonotonic reasoning capabilities of ASP play a crucial role for a
suitable treatment of problems like prediction, explanation, planning or diagnos-
tics, allowing a natural representation of default rules like the well-known inertia
default for solving the frame problem [3]. However, the use of ASP solvers for ac-
tion domains has an important limitation: it requires fixing a finite length for the
sequence of transitions a priori, so that the program can be properly grounded.
In this way, it is impossible to deal with problems like the non-existence of solu-
tion (of any length) for a given planning problem or the study of properties like
the equivalence of two representations.

A natural choice for dealing with this kind of problems is extending ASP with
modal operators, as those used in Propositional Linear Temporal Logic [4] (LTL).
Defining such an extension becomes quite straightforward if we start from a purely
logical characterisation of ASP, like the one provided by Equilibrium Logic [5,6].
� This research was partially supported by Spanish MEC project TIN2009-14562-C05-

04 and Xunta de Galicia project INCITE08-PXIB105159PR.

T. Janhunen and I. Niemelä (Eds.): JELIA 2010, LNAI 6341, pp. 64–76, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

A Normal Form for Linear Temporal Equilibrium Logic 65

Equilibrium Logic has been proved to be a powerful tool for the theoretical analy-
sis of ASP, motivating the study of strong equivalence1 between logic programs [7],
covering most syntactic extensions considered up to date, or being closely related
to the conception of new definitions of stable models for arbitrary propositional [8]
and first order theories [9]. Another important advantage is that its formal defini-
tion is extremely simple: it amounts to a selection criterion among models of the
(monotonic) intermediate logic of Here-and-There (HT) [10].

An extension of Equilibrium Logic for dealing with LTL operators was first
introduced in [11] under the name of Temporal Equilibrium Logic (TEL). This
modal extension has been already used for encoding action languages [11] or
for checking strong equivalence of temporal logic programs by a reduction to
LTL [12]. However, the interest of TEL has mostly remained theoretical, as there
does not exist any automated method for computing the temporal equilibrium
models of an arbitrary modal theory yet. An important step in this direction
has to do with reducing the arbitrary syntax of temporal theories into a normal
form closer to logic programming rules. For instance, in the non-temporal case, it
has been already proved [13] that any arbitrary propositional theory is strongly
equivalent to a logic program (allowing disjunction and negation in the head), so
that logic programs constitute a normal form for Equilibrium Logic. Similarly, in
the case of (monotonic) LTL, an implicational clause-like normal form introduced
in [14] was used for designing a temporal resolution method.

In this paper we show that TEL can be similarly reduced (under strong equiv-
alence) to a normal form consisting of a set of implications (embraced by a ne-
cessity operator) quite close to logic program rules. The reduction into normal
form starts from the structure-preserving polynomial transformation presented
in [15] for the non-temporal case. This transformation has as a main feature the
introduction of an auxiliary atom per each subformula in the original theory. We
then combine this technique with the inductive definitions of temporal opera-
tors used for LTL in [14]. The obtained normal form considerably reduces the
possible uses of modal operators and may be useful both for a future practical
implementation of TEL and a simpler analysis of theoretical problems.

The rest of the paper is organised as follows. In Section 2, we introduce the
(monotonic) temporal extension of HT. In the next section, we then define the
model selection criterion that gives raise to TEL, providing some concepts and
definitions and introducing the normal form. Section 4 details the translation
and contains the proof of its correctness. Finally, Section 5 discusses related
work and Section 6 concludes the paper.

2 Linear Temporal Here-and-There (THT)

The logic of Linear Temporal Here-and-There (THT) is defined as follows. We
start from a finite set of atoms V called the propositional signature. A (temporal)
formula is defined as any (well-formed) combination of the classical connectives
1 Two programs are strongly equivalent when they yield the same answer sets even when

they are included in a common larger program or context.

66 P. Cabalar

∧,∨,→,⊥ with the unary temporal operator © (read “next”), the binary tem-
poral operators U (read “until”) and R (read “release”), and the atoms in V .
A formula is said to be non-modal if it does not contain temporal operators.
Negation is defined as ¬ϕ def= ϕ→ ⊥ whereas � def= ¬⊥. As usual, ϕ↔ ψ stands
for (ϕ→ ψ)∧ (ψ → ϕ). Other usual temporal operators can be defined in terms
of U and R as follows:

�ϕ
def= ⊥ R ϕ ♦ϕ def= � U ϕ ϕ W ψ

def= (ϕ U ψ) ∨�ϕ

Given a formula Γ , by size(Γ) we understand the number of occurrences of
atoms and connectives ∧,∨,→,⊥,©,U ,R in Γ . A theory is any set of formulas.
When Γ is a finite theory, we assume we deal with the conjunction of all its
formulas. For any theory Γ , subf(Γ) will denote the set of all subformulas of Γ .

A (temporal) interpretation M is an infinite sequence of pairs mi = 〈Hi, Ti〉
with i = 0, 1, 2, . . . where Hi ⊆ Ti are sets of atoms standing for here and there
respectively. For simplicity, given a temporal interpretation, we write H (resp. T)
to denote the sequence of pair components H0, H1, . . . (resp. T0, T1, . . .). Using
this notation, we will sometimes abbreviate the interpretation as M = 〈H,T〉.
An interpretation M = 〈H,T〉 is said to be total when H = T.

Let M be an interpretation for a signature U and let V ⊂ U . The expression
M∩ V denotes the interpretation M restricted to signature V , that is M∩ V is
a sequence of pairs 〈Hi ∩ V, Ti ∩ V 〉 for any 〈Hi, Ti〉 with i ≥ 0 in M.

Given an interpretation M and an integer number k > 0, by Mk we denote
a new interpretation that results from “shifting” M in k positions, that is, the
sequence of pairs 〈Hk, Tk〉, 〈Hk+1, Tk+1〉, 〈Hk+2, Tk+2〉, . . . Note that M0 = M.

Definition 1 (satisfaction). An interpretation M = 〈H,T〉 satisfies a formula
ϕ, written M |= ϕ, when:

1. M |= p if p ∈ H0, for any atom p.
2. M |= ϕ ∧ ψ if M |= ϕ and M |= ψ.
3. M |= ϕ ∨ ψ if M |= ϕ or M |= ψ.
4. 〈H,T〉 |= ϕ→ ψ if 〈x,T〉 �|= ϕ or 〈x,T〉 |= ψ for all x ∈ {H,T}.
5. M |=©ϕ if M1 |= ϕ.
6. M |= ϕ U ψ if ∃j ≥ 0, Mj |= ψ and ∀k s.t. 0 ≤ k < j, Mk |= ϕ
7. M |= ϕ R ψ if ∀j ≥ 0, Mj |= ψ or ∃k s.t. 0 ≤ k < j, Mk |= ϕ

A formula ϕ is valid if M |= ϕ for any M. An interpretation M is a model of a
theory Γ , written M |= Γ , if M |= α, for all formula α ∈ Γ .

We assume that a finite sequence M = m1,m2, . . . ,mn is an abbreviation of
an infinite sequence where the remaining elements coincide with mn, that is,
that for i > n, mi = mn. The logic of THT is an orthogonal combination of
the logic of HT and the (standard) linear temporal logic (LTL) [4]. When we
restrict temporal interpretations to finite sequences of length 1, that is 〈H0, T0〉
and disregard temporal operators, we obtain the logic of HT. On the other hand,
if we restrict the semantics to total interpretations, 〈T,T〉 |= ϕ corresponds to
satisfaction of formulas T |= ϕ in LTL. In this sense, item 4 of Definition 1 can
be rephrased as:

A Normal Form for Linear Temporal Equilibrium Logic 67

4’. 〈H,T〉 |= ϕ → ψ if both (1) 〈H,T〉 |= ϕ implies 〈H,T〉 |= ψ; and (2)
T |= ϕ→ ψ in LTL.

Similarly 〈H,T〉 |= ϕ ↔ ψ if both (1) 〈H,T〉 |= ϕ iff 〈H,T〉 |= ψ; and (2)
T |= ϕ↔ ψ in LTL. The following proposition can also be easily checked.

Proposition 1. For any Γ and any M = 〈H,T〉, if M |= Γ then T |= Γ . ��

The next result shows that, for formulas not containing implications, equivalence
in LTL and THT coincides.

Proposition 2. Let ϕ and ψ be two formulas not containing implication2. Then
ϕ↔ ψ is a THT tautology iff it is an LTL tautology.

Proof. As LTL models correspond to THT total models, it is obvious that any
THT tautology is an LTL tautology too. For the other direction, assume ϕ↔ ψ
is LTL valid but for some intepretation M = 〈H,T〉, M �|= ϕ↔ ψ. This means
that, either (i) T |= ϕ is not equivalent to T |= ψ or (ii) M |= ϕ is not equivalent
to M |= ψ. The former immediately contradicts that ϕ↔ ψ is an LTL tautology.
So, suppose (ii) and, without loss of generality, that M |= ϕ but M �|= ψ. Looking
at the definition of THT satisfaction, it is easy to observe that the only way to
refer to the T component in 〈H,T〉 is via implication. Since ϕ and ψ do not
contain implications, the T component is irrelevant and we conclude that for
any interpretation M′ = 〈H,T′〉, M′ |= ϕ and M′ �|= ψ, including the case
M′ = 〈H,H〉. But this means there exists a LTL intepretation H for which
H |= ϕ and H �|= ψ contradicting that ϕ↔ ψ is an LTL tautology. ��

In particular, the following LTL valid formulas are also THT valid:

ϕ U ψ ↔ ψ ∨ (ϕ ∧©(ϕ U ψ)) (1)
ϕ R ψ ↔ ψ ∧ (ϕ ∨©(ϕ R ψ)) (2)

We can alternatively represent any interpretation M = 〈H,T〉 by seeing each
mi = 〈Hi, Ti〉 as a three-valued mapping mi : V → {0, 1, 2} so that, for any atom
p, mi(p) = 0 when p �∈ Ti (the atom is false), mi(p) = 2 when p ∈ Hi (the atom
is true), and mi(p) = 1 when p ∈ Ti \Hi (the atom is undefined). We can then
define a valuation for any formula ϕ, written3 M(ϕ), by similarly considering
which formulas are satisfied by 〈H,T〉 (which will be assigned 2), not satisfied
by 〈T,T〉 (which will be assigned 0) or none of the two (which will take value 1).
By Mi(ϕ) we mean the 3-valuation of ϕ induced by the temporal interpretation
Mi, that is, M shifted i positions. From the definitions in the previous section,
we can easily derive the following conditions:

2 Remember that negation is a form of implication.
3 We use the same name M for a temporal interpretation and for its induced three-

valued valuation function – ambiguity is removed by the way in which it is applied
(a structure or a function on formulas).

68 P. Cabalar

1. M(p) def= m0(p)
2. M(ϕ ∧ ψ) def= min(M(ϕ),M(ψ)); M(ϕ ∨ ψ) def= max(M(ϕ),M(ψ))

3. M(ϕ→ ψ) def=
{

2 if M(ϕ) ≤M(ψ)
M(ψ) otherwise

4. M(©ϕ) def= M1(ϕ)

5. M(ϕ U ψ) def=

⎧⎨⎩2 if ∃j ≥ 0 : Mj(ψ) = 2 and ∀k, 0 ≤ k < j ⇒Mk(ϕ) = 2
0 if ∀j ≥ 0 : Mj(ψ) = 0 or ∃k, 0 ≤ k < j,Mk(ϕ) = 0
1 otherwise

6. M(ϕ R ψ) def=

⎧⎨⎩
2 if ∀j ≥ 0 : Mj(ψ) = 2 or ∃k, 0 ≤ k < j,Mk(ϕ) = 2
0 if ∃j ≥ 0 : Mj(ψ) = 0 and ∀k, 0 ≤ k < j ⇒Mk(ϕ) = 0
1 otherwise

From their definition, the interpretation of the temporal derived operators be-
comes M(�ϕ) = min {Mi(ϕ) | i ≥ 0} and M(♦ϕ) = max {Mi(ϕ) | i ≥ 0}.

Under this alternative three-valued definition, an interpretation M satisfies
a formula ϕ when M(ϕ) = 2. When M = 〈T,T〉, its induced valuation will
be just written as T(ϕ) and obviously becomes a two-valued function, that is
T(ϕ) ∈ {0, 2}. A pair of useful observations:

Observation 1. For any interpretation M, M |= ϕ ↔ ψ iff M(ϕ) = M(ψ)
whereas, M |= �(ϕ↔ ψ) iff for all i ≥ 0, Mi(ϕ) = Mi(ψ).

Observation 2. Given M = {H,T} and a pair of formulas ϕ, ψ, if M(ϕ) =
M(ψ) then also T(ϕ) = T(ψ). ��

3 Linear Temporal Equilibrium Logic (TEL)

We can now proceed to describe the model selection criterion that defines tem-
poral equilibrium models. Given two interpretations M = 〈H,T〉 and M′ =
〈H′,T′〉 we say that M′ is lower or equal than M, written M′ ≤ M, when
T′ = T and for all i ≥ 0, H ′

i ⊆ Hi. As usual, M′ < M stands for M′ ≤M but
M′ �= M.

Definition 2 (Temporal Equilibrium Model). An interpretation M is a
temporal equilibrium model of a theory Γ if M is a total model of Γ and there
is no other M′ < M, M′ |= Γ . �

Note that any temporal equilibrium model is total, that is, it has the form
〈T,T〉 and so can be actually seen as an interpretation T in the standard LTL.
By Eq(V, Γ) we denote the set of temporal equilibrium models under signature
V of a theory Γ ⊆ LV . Note that the consequence relation induced by temporal
equilibrium models is nonmonotonic. Thus, when dealing with equivalence of
two theories, Γ1, Γ2, the mere coincidence of equilibrium models Eq(V, Γ1) =

A Normal Form for Linear Temporal Equilibrium Logic 69

Eq(V, Γ2) will not suffice for safely replacing one by each other, since they may
behave in a different way in the presence of additional information. Two theories
Γ1, Γ2 are said to be strongly equivalent when Eq(V, Γ1 ∪Γ) = Eq(V, Γ2 ∪Γ) for
any arbitrary theory Γ .

We will further refine this idea of strong equivalence for transformations that
deal with an extended signature possibly containing auxiliary atoms.

Definition 3 (Strong faithfulness). We say that a translation σ(Γ) ⊆ LU of
some theory Γ ⊆ LV with V ⊆ U is strongly faithful if, for any theory Γ ′ ⊆ LV :

Eq(V, Γ ∪ Γ ′) = {M ∩ V | M ∈ Eq(U, σ(Γ) ∪ Γ ′)}

Finally, we describe the normal form we are interested in. Given a signature V ,
we define a temporal literal as any expression in the set4 {p,©p,¬p | p ∈ V }.

Definition 4 (Temporal rule). A temporal rule is either:

1. an atom p ∈ V ;
2. an implication like �(B1 ∧ · · · ∧Bn → C1 ∨ · · · ∨ Cm) where the Bi and Cj

are temporal literals, n ≥ 0 and m ≥ 0;
3. or an implication like �(�p→ q) or like �(p→ ♦q) with p, q atoms. ��

A temporal logic program (TLP for short) is a finite set of temporal rules.

4 Reduction to Temporal Logic Programs

The translation uses an extended signature VL that contains an atom (a label) for
each non-constant formula in the original language5 LV , that is VL = {Lϕ | ϕ ∈
LV \ {⊥,�}}. For convenience, we use Lϕ

def= ϕ when ϕ is �, ⊥ or an atom
p ∈ V . This allows us to consider VL as a superset of V . For any non-atomic
formula γ, we call its definition, df(γ) to:

df(γ) def=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

�(Lγ ↔ Lϕ • Lψ) if γ = (ϕ • ψ) with • ∈ {∧,∨,→};
�(Lγ ↔©Lϕ) if γ =©ϕ;
�(Lγ ↔ Lψ ∨ (Lϕ ∧©Lγ))
∧�(Lγ → ♦Lψ) if γ = (ϕ U ψ);

�(Lγ ↔ Lψ ∧ (Lϕ ∨©Lγ))
∧�(�Lψ → Lγ) if γ = (ϕ R ψ).

Definition 5. For any theory Γ in LV , we define the translation σ(Γ) as:

σ(Γ) def= {Lϕ | ϕ ∈ Γ} ∪ {df(γ) | γ ∈ subf(Γ)}
4 Expressions like ¬© p are not temporal literals: the three types above suffice.
5 In this way, VL is infinite, but when we later translate a given theory Γ , we can just

take VL as a label per each subformula.

70 P. Cabalar

That is, σ(Γ) collects the labels for all the formulas in Γ plus the definitions for
all the subformulas in Γ . When the main connective in γ is a derived operator
¬,♦,�, after simplifying truth constants, we obtain the following df(γ):

df(γ) =

⎧⎨⎩�(Lγ ↔¬Lϕ) if γ = ¬ϕ;
�(Lγ ↔ Lϕ ∨©Lγ) ∧�(Lγ → ♦Lϕ) if γ = ♦ϕ;
�(Lγ ↔ Lϕ ∧©Lγ) ∧�(�Lϕ → Lγ) if γ = �ϕ.

Lemma 1. Let M be a model of a theory Γ in LV . Then, there exists some M′

such that M = M′ ∩ V and M′ |= σ(Γ).

Proof. Take M′ as the sequence of 3-valued mappings M′ = m′
1,m

′
2, . . . for

signature VL so that:

m′
i(Lϕ) def= Mi(ϕ) (3)

for any formula ϕ ∈ LV . When ϕ is an atom p,m′
i(p) = m′

i(Lp) = Mi(p) = mi(p)
for all i ≥ 0, thus, the valuations for atoms in M and M′ coincide. This means
that M′ ∩ V = M.

Furthermore, as M |= Γ , for any ϕ ∈ Γ we get 2 = M(ϕ) = M0(ϕ)
(3)
=

m′
0(Lϕ) = M′(Lϕ). In other words M′ |= {Lϕ | ϕ ∈ Γ}. To prove that M′ |=

σ(Γ) it remains to be shown that M′ |= df(γ) for any γ ∈ subf(Γ). We will
show it by cases, depending on each type of subformula γ.

1. For γ = (ϕ•ψ) with • ∈ {∧,∨,→} we have to prove M′
i(Lγ) = M′

i(Lϕ •Lψ)
for all i ≥ 0:

M′
i(Lγ) = m′

i(Lϕ•ψ)
(3)
= Mi(ϕ • ψ) = f•(Mi(ϕ),Mi(ψ))
(3)
= f•(m′

i(Lϕ),m′
i(Lψ)) = M′

i(Lϕ • Lψ)

where f• denotes, for each • ∈ {∧,∨,→} their corresponding three-valued
mappings.

2. For γ =©ϕ we have:

M′
i(Lγ) = m′

i(L©ϕ)
(3)
= Mi(©ϕ) = Mi+1(ϕ)
(3)
= m′

i+1(Lϕ) = M′
i+1(Lϕ) = M′

i(©Lϕ)

3. For γ = (ϕ U ψ) we prove first M′
i(Lγ) = M′

i(Lψ ∨ (Lϕ ∧ ©Lγ)) for any
i ≥ 0.

M′
i(Lγ) = m′

i(LϕUψ)
(3)
= Mi(ϕ U ψ)

(1)
= Mi(ψ ∨ (ϕ ∧©(ϕUψ)))

= max(Mi(ψ), min (Mi(ϕ),Mi+1(ϕUψ)))
(3)
= max(m′

i(Lψ), min (m′
i(Lϕ),m′

i+1(LϕUψ)))
= M′

i(Lψ ∨ (Lϕ ∧©LϕUψ))

A Normal Form for Linear Temporal Equilibrium Logic 71

We have to prove now that M′ |= �(Lγ → ♦Lψ), that is, the implication
holds at any i ≥ 0. Assume at some i ≥ 0, M′

i |= Lγ . By construction of M′

this means Mi |= ϕ U ψ. This implies Mi |= ♦ψ, that is, for some j ≥ i,
Mj |= ψ. But then, by construction of M′ again, M′

j |= Lψ for some j ≥ i,
and this implies M′

i |= ♦Lψ . The same reasoning can be repeated replacing
M′ by T′, and thus M′

i |= Lγ → ♦Lψ for any i ≥ 0.
4. For γ = (ϕ R ψ) the proof is completely analogous to 3 replacing the use

of equivalence (1) by (2) and exchanging the roles of conjunction/min and
disjunction/max. ��

Lemma 2. Let Γ be a THT theory in LV and M a model for σ(Γ). Then for
any γ ∈ subf(Γ) and any i ≥ 0, Mi(Lγ) = Mi(γ).

Proof. We use structural induction on γ.

1. When the subformula γ has the shape �, ⊥ or an atom p this is trivial, since
Lγ = γ by definition.

2. When γ = ϕ • ψ for any connective • ∈ {∧,∨,→} then:

Mi(Lϕ•ψ) = Mi(Lϕ • Lψ) because M |= df(ϕ • ψ)
= f•(Mi(Lϕ),Mi(Lψ))
= f•(Mi(ϕ),Mi(ψ)) applying induction on Lϕ,Lψ

= Mi(ϕ • ψ)

3. When γ =©ϕ:

Mi(L©ϕ) = Mi(©Lϕ) because M |= df(©ϕ)
= Mi+1(Lϕ)
= Mi+1(ϕ) applying induction on Lϕ

= Mi(©ϕ)

4. When γ = (ϕ U ψ), if we apply structural induction using df(γ) as we did
in the previous cases, we can only prove that, for any i ≥ 0:

Mi(Lγ) = Mi(Lψ ∨ Lϕ ∧©Lγ) because M |= df(ϕ U ψ)
= Mi(ψ ∨ (ϕ ∧©Lγ)) by induction on Lϕ,Lψ (4)

but we cannot get rid of Lγ , since γ itself is the formula to be proved in the
induction step. To prove Mi(Lγ) = Mi(γ), we will equivalently show that
Mi |= Lγ ↔ γ, i.e., both (Mi |= Lγ iff Mi |= γ) and (Ti |= Lγ iff Ti |= γ).

4.a We prove first the two directions of Mi |= Lγ iff Mi |= γ.
From left to right, given Mi |= Lγ we get Mi |= ψ∨ (ϕ∧©Lγ) due to (4).

From M |= df(γ) we also conclude Mi |= Lγ → ♦Lψ and thus Mi |= ♦Lψ .
Applying structural induction on Lψ , we get Mi |= ♦ψ. But then, there exists
j ≥ i such that Mj |= ψ. Take the smallest j satisfying Mj |= ψ, so that we
further have Mk �|= ψ for any k, i ≤ k < j (when j = i we simply have no k).
We will inductively prove that Mk |= ϕ ∧©Lγ for all k = i, i + 1, . . . , j − 1
which, together with Mj |= ψ implies Mi |= (ϕ U ψ) = γ. For j = i this is

72 P. Cabalar

trivial, so take j > i. For k = i we know Mi �|= ψ and so Mi |= ϕ ∧©Lγ .
Assume proved for k with i ≤ k < j−1 and we want to prove it for k+1. By
induction, Mk |=©Lγ which is equivalent to Mk+1 |= Lγ . This corresponds
in its turn to Mk+1 |= ψ ∨ (ϕ ∧ ©Lγ) but as k + 1 < j we also have
(M, k + 1) �|= ψ so that Mk+1 |= ϕ ∧©Lγ .

From right to left, suppose Mi |= γ, that is, Mi |= ϕ U ψ. This means
there exists some j ≥ i such that Mj |= ψ and Mk |= ϕ for all k, i ≤ k < j.
We will inductivley show that for any k = j, j − 1, . . . , i, Mk |= Lγ which
includes the case k = i we really want to prove. For k = j, we saw that
Mj |= ψ and, from (4), this implies Mj |= Lγ . Assume proved for k + 1
with i ≤ k < j and we want to prove it for k. As i ≤ k < j, we had that
Mk |= ϕ. On the other hand, by induction Mk+1 |= Lγ and so Mk |=©Lγ .
Altogether, we get Mj |= ϕ ∧©Lγ which again from (4) implies Mk |= Lγ .

4.b Now, we must prove Ti |= Lγ iff Ti |= γ. Note that, due to Observation 2,
the inductive hypothesis Mi(ϕ) = Mi(Lϕ) also holds for Ti(ϕ) = Ti(Lϕ),
and the same happens with subformula ψ. Following the same reasoning as
in (4) we also have Ti(Lγ) = Ti(ψ ∨ (ϕ∧©Lγ)). From M′ |= df(γ) we also
conclude Ti |= Lγ → ♦Lψ . Using these premises, it is easy to check that the
proof of 4.a still applies when replacing M by T.

5. When γ = (ϕ R ψ), analogously to case 4 we can use df(γ) to obtain, for
any i ≥ 0: Mi(Lγ) = Mi(ψ ∧ (ϕ ∨©Lγ)). The rest of the proof is dual to
case 4 switching the roles of ∧ and ∨, and of ‘|=’ with ‘�|=.’ ��

Theorem 1. For any theory Γ in LV : {M |M |= Γ} = {M′∩V |M′ |= σ(Γ)}.

Proof. The ‘⊆’ direction immediately follows from Lemma 1. For proving the
‘⊇’ direction, suppose we have some M′ model of σ(Γ). This implies M′ |=
{Lϕ | ϕ ∈ Γ}, i.e. M′(Lϕ) = 2 for all ϕ ∈ Γ . As Γ ⊆ subf(Γ), we can apply
Lemma 2 to conclude M′

i(Lϕ) = M′
i(ϕ) for any i ≥ 0. But then M′

0(ϕ) = 2 for
any ϕ ∈ Γ , that is, M′ |= Γ . Finally, it follows that M′ ∩ V |= Γ since Γ is a
theory in language LV . ��

Clearly, including an arbitrary theory Γ ′ ⊆ LV in Theorem 1 as follows {M |
M |= Γ ∪Γ ′} = {M′∩V |M′ |= σ(Γ)∪Γ ′} and then taking the minimal models
on both sides trivially preserves the equality.

Corollary 1. Translation σ(Γ) is strongly faithful.

Transformation σ(Γ) is obviously modular, and its polynomial complexity can
be easily deduced, but is not a temporal logic program yet, as it contains nested
implications. However, we can apply some simple transformations on implication,
conjunction and disjunction that have been shown to be strongly equivalent at
the (non-temporal) propositional level6 [15], and obtain a TLP without changing

6 These transformations for propositional operators contain expressions that are re-
dundant in classical logic, but not in the logic of Here-and-There. The method in [16]
can be used to show that these are, in fact, their possible minimal representations
as sets of program rules.

A Normal Form for Linear Temporal Equilibrium Logic 73

γ df(γ) df∗(γ)

ϕ ∧ ψ �(Lγ ↔ Lϕ ∧ Lψ)
�(Lγ → Lϕ)
�(Lγ → Lψ)

�(Lϕ ∧ Lψ → Lγ)

ϕ ∨ ψ �(Lγ ↔ Lϕ ∨ Lψ)
�(Lϕ → Lγ)
�(Lψ → Lγ)
�(Lγ → Lϕ ∨ Lψ)

ϕ→ ψ �(Lγ ↔ (Lϕ → Lψ)

�(Lγ ∧ Lϕ → Lψ)
�(¬Lϕ → Lγ)
�(Lψ → Lγ)

�(Lϕ ∨ ¬Lψ ∨ Lγ)

ϕ U ψ
�(Lγ ↔ Lψ ∨ (Lϕ ∧©Lγ))
∧ �(Lγ → ♦Lψ)

�(Lγ → Lψ ∨ Lϕ)
�(Lγ → Lψ ∨©Lγ)
�(Lψ → Lγ)

�(Lϕ ∧©Lγ → Lγ)
�(Lγ → ♦Lψ)

ϕ R ψ
�(Lγ ↔ Lψ ∧ (Lϕ ∨©Lγ))
∧ �(�Lψ → Lγ)

�(Lψ ∧ Lϕ → Lγ)
�(Lψ ∧©Lγ → Lγ)

�(Lγ → Lψ)
�(Lγ → Lϕ ∨©Lγ)

�(�Lψ → Lγ)

Fig. 1. Transformation σ∗(γ) generating a temporal logic program

the signature VL. For each definition df(γ), we define the strongly equivalent set
(understood as the conjunction) of temporal logic program rules df∗(γ) as shown
in Figure 1. The temporal logic program σ∗(Γ) is obtained by replacing in σ(Γ)
each subformula definition df(ϕ) by the corresponding set of rules df∗(ϕ). Note
that, as σ∗(Γ) is strongly equivalent to σ(Γ) (under the same vocabulary) it
preserves strong faithfulness with respect to Γ . Figure 2 shows the translation
that results for derived operators after applying their definitions. To illustrate
the effect of σ∗ consider the example theory Γ1 just consisting of �(¬p→ q U p).
The translation σ∗(Γ1) consists of the conjunction of L4 plus the rules in the
df∗(γ) columns of tables in Figure 3.

Although σ∗(Γ) is systematically applied on any subformula, for a practical
implementation, we can frequently avoid the introduction of new labels, when
the obtained expressions are already a TLP. For instance, in the example above,
it would actually suffice with considering df∗(p U q) that introduces label L1

and then replacing Γ1 with �(¬p → L1). The next results shows that σ∗(Γ)
keeps polynomial (in fact, linear) complexity on the size of Γ .

Theorem 2. Translation σ∗(Γ) is linear and its size can be bounded as follows:
size(σ∗(Γ)) ≤ 2 |Γ |+ 34 size(Γ).

74 P. Cabalar

γ df∗(γ)
¬ϕ �(Lγ ∧ Lϕ → ⊥) �(¬Lϕ → Lγ)

♦ϕ �(Lγ → Lϕ ∨©Lγ) �(Lϕ → Lγ)
�(Lγ → ♦Lϕ) �(©Lγ → Lγ)

�ϕ �(Lϕ ∧©Lγ → Lγ) �(Lγ → Lϕ)
�(�Lϕ → Lγ) �(Lγ → ©Lγ)

Fig. 2. Transformation σ∗(γ) that results for derived operators

γ df∗(γ)

p U q

�(L1 → p ∨ q)
�(L1 → p ∨©L1)

�(p → L1)
�(q ∧©L1 → L1)

�(L1 → ♦p)

¬p �(L2 ∧ p → ⊥)
�(¬p → L2)

γ df∗(γ)

¬p→ p U q

�(L3 ∧ L2 → L1)
�(¬L2 → L3)

�(L1 → L3)
�(L2 ∨ ¬L1 ∨ L3)

�(¬p→ q U p)

�(L3 ∧©L4 → L4)
�(L4 → L3)
�(L4 → ©L4)

�(�L3 → L4)

Fig. 3. Transformation σ∗(Γ1) for example theory Γ1 = {�(¬p→ q U p)}

Proof. Theory σ∗(Γ) can be written as
(∧

γ∈Γ Lγ

)
∧ df∗(Γ). For the size of the

first conjunct, we have an atom plus a conjunction connective per each formula
in Γ (this also includes the last ∧ connecting to df∗(Γ)), so we get 2 |Γ |. The
second conjunct, df∗(Γ), corresponds to the conjunction of all df∗(γ) per each
subformula γ in Γ . In the worst case, operators U and R, we have 5 temporal
rules using a total of 13 atom occurrences and 16 connectives. These 5 rules will
be joined by 4 implicit conjunctions, and we can use an additional one to join
them to the rest of subformulas. Thus, we obtain size(df∗(Γ)) ≤ 34 |subf(Γ)|.
Finally, observe that the number of subformulas can be bounded by size(Γ) (it
will be strictly lower only if repeated subformulas occur). ��

5 Discussion and Related Work

It is perhaps interesting to compare the obtained TLP form to the so-called
Separated Normal Form (SNF) previously introduced in [14] for the case of LTL.
An LTL formula is in SNF if it is a conjunction of formulas having one of the
following forms7:

1. C1 ∨ · · · ∨ Cn an initial rule
2. �(B1 ∨ · · · ∨Bm →©C1 ∨ · · · ∨ ©Cn) a global �-rule
3. ♦C an initial ♦-rule
4. �(B1 ∨ · · · ∨Bm → ♦C) a global ♦-rule

7 For comparison purposes, we have adapted the original formulation that dealt with
both future and past operators, to the case in which only future operators are used.

A Normal Form for Linear Temporal Equilibrium Logic 75

where Bi, Cj , B and C are (non-modal) literals (that is, an atom or its negation).
Apart from the minor difference in initial rules, which can be easily removed in
favour of auxiliary atoms, we can observe that the main difference is that the
bodies of rules do not contain modal operators, whereas the heads always refer
to a modal operator, either a disjunction of ©Ci’s or a single ♦C. In LTL, an
obvious way for obtaining SNF from our TLP form would be moving any ©B
in the body to ©¬B in the head, and vice versa, moving any non-modal literal
C in the head to ¬C in the body, removing double negations afterwards. For
instance, a TLP rule like �(¬p ∧ ©q → r ∨ ©s) becomes the LTL-equivalent
SNF global �-rule �(¬p∧¬r →©s∨©¬q). For the case of rules like �(�p→ q)
we could similarly transform them into the SNF global ♦-rule: �(¬q → ♦¬p).
Unfortunately, in the logic of HT (even in the non-modal case) exchanging literals
between the body and the head in this way is not generally possible. This is
because, in this logic, ¬¬C↔C is not valid. As a result, we cannot replace, for
instance �C with ¬♦¬C and we must maintain rules �(p→ ♦q) and their dual
�(�p→ q). By this same reason, in THT it is not possible to define operator R
in terms of U or vice versa, by just applying De Morgan laws.

Another interesting question is why the U operator cannot be simply encoded
with the formula �(Lγ ↔ Lψ ∨ (Lϕ ∧ ©Lγ)) that results from applying the
inductive definition (1). The reason is that, in this way, we could infinitely make
the auxiliary atom Lγ true without guaranteeing that at some finite future Lψ

is made true. The latter is accomplished by the formula �(Lγ → ♦Lψ). Thus,
we cannot get rid of ♦ operator in the rule heads (as happens in SNF too). The
explanation for the R operator and the use of � in the body is completely dual.

6 Conclusions

We have introduced a normal form for Temporal Equilibrium Logic, a formalism
that provides an answer set semantics for arbitrary theories in the syntax of
propositional linear temporal logic. This normal form, called Temporal Logic
Programs, is close to logic programming rules (with disjunction and negation
in the head), embraced with necessity operators. As a result, we can disregard
the arbitrary nesting of temporal operators, or even the whole use of operators
like “until” and “release.” Besides, the close similarity of the obtained form
to standard logic programming may help in the future to apply well-known
techniques like the use of loop formulas [17] or the technique of splitting [18] to
(some families of) temporal programs.

References

1. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In:
Kowalski, R.A., Bowen, K.A. (eds.) Logic Programming: Proc. of the Fifth Inter-
national Conference and Symposium, vol. 2, pp. 1070–1080. MIT Press, Cambridge
(1988)

76 P. Cabalar

2. Denecker, M., Vennekens, J., Bond, S., Gebser, M., Truszczyński, M.: The second
Answer Set Programming competition. In: Erdem, E., Lin, F., Schaub, T. (eds.)
LPNMR 2009. LNCS (LNAI), vol. 5753, pp. 637–654. Springer, Heidelberg (2009)

3. McCarthy, J., Hayes, P.: Some philosophical problems from the standpoint of ar-
tificial intelligence. Machine Intelligence Journal 4, 463–512 (1969)

4. Manna, Z., Pnueli, A.: The Temporal Logic of Reactive and Concurrent Systems:
Specification. Springer, Heidelberg (1991)

5. Pearce, D.: A new logical characterisation of stable models and answer sets. In:
Dix, J., Przymusinski, T.C., Moniz Pereira, L. (eds.) NMELP 1996. LNCS(LNAI),
vol. 1216. Springer, Heidelberg (1997)

6. Pearce, D.: Equilibrium logic. Annals of Mathematics and Artificial Intelli-
gence 47(1-2), 3–41 (2006)

7. Lifschitz, V., Pearce, D., Valverde, A.: Strongly equivalent logic programs. Com-
putational Logic 2(4), 526–541 (2001)

8. Ferraris, P.: Answer sets for propositional theories. In: Baral, C., Greco, G., Leone,
N., Terracina, G. (eds.) LPNMR 2005. LNCS (LNAI), vol. 3662, pp. 119–131.
Springer, Heidelberg (2005)

9. Ferraris, P., Lee, J., Lifschitz, V.: A new perspective on stable models. In: Pro-
ceedings of the 20th International Joint Conference on Artificial Intelligence
(IJCAI 2007), pp. 372–379 (2007)

10. Heyting, A.: Die formalen Regeln der intuitionistischen Logik. Sitzungsberichte der
Preussischen Akademie der Wissenschaften, Physikalisch-mathematische Klasse,
pp. 42–56 (1930)

11. Cabalar, P., Vega, G.P.: Temporal equilibrium logic: a first approach. In: Moreno
Dı́az, R., Pichler, F., Quesada Arencibia, A. (eds.) EUROCAST 2007. LNCS,
vol. 4739, pp. 241–248. Springer, Heidelberg (2007)

12. Aguado, F., Cabalar, P., Pérez, G., Vidal, C.: Strongly equivalent temporal logic
programs. In: Hölldobler, S., Lutz, C., Wansing, H. (eds.) JELIA 2008. LNCS
(LNAI), vol. 5293, pp. 8–20. Springer, Heidelberg (2008)

13. Cabalar, P., Ferraris, P.: Propositional theories are strongly equivalent to logic
programs. Theory and Practice of Logic Programming 7(6), 745–759 (2007)

14. Fisher, M.: A resolution method for temporal logic. In: Proceedings of the 12th
International Joint Conference on Artificial Intelligence (IJCAI 1991), pp. 99–104.
Morgan Kaufmann Publishers Inc., San Francisco (1991)

15. Cabalar, P., Valverde, A., Pearce, D.: Reducing propositional theories in equi-
librium logic to logic programs. In: Bento, C., Cardoso, A., Dias, G. (eds.)
EPIA 2005. LNCS (LNAI), vol. 3808, pp. 4–17. Springer, Heidelberg (2005)

16. Cabalar, P., Valverde, A., Pearce, D.: Minimal logic programs. In: Dahl, V.,
Niemelä, I. (eds.) ICLP 2007. LNCS, vol. 4670, pp. 104–118. Springer, Heidelberg
(2007)

17. Lin, F., Zhao, Y.: ASSAT: Computing answer sets of a logic program by SAT
solvers. In: Artificial Intelligence, pp. 112–117 (2002)

18. Lifschitz, V., Turner, H.: Splitting a logic program. In: Proceedings of the 11th
International Conference on Logic programming (ICLP 1994), pp. 23–37 (1994)

Rational Closure for Defeasible Description Logics

Giovanni Casini1 and Umberto Straccia2

1 Scuola Normale Superiore, Pisa, Italy
giovanni.casini@gmail.com

2 Istituto di Scienza e Tecnologie dell’Informazione (ISTI - CNR), Pisa, Italy
straccia@isti.cnr.it

Abstract. In the field of non-monotonic logics, the notion of rational closure is
acknowledged as a landmark, and we are going to see that such a construction
can be characterised by means of a simple method in the context of propositional
logic. We then propose an application of our approach to rational closure in the
field of Description Logics, an important knowledge representation formalism,
and provide a simple decision procedure for this case.

1 Introduction

A lot of attention has been dedicated to non-monotonic reasoning (see, e.g. [20]). Rela-
tively less investigated is the application of such reasoning models to Description Log-
ics (DLs) [3]. In what follows we take under consideration one central non-monotonic
reasoning model, that is, the rational closure [28], and we are going to apply such a
construction to ALC , a significant and expressive representative of the various DLs.

The contributions of this work can be summarised as follows: (i) we provide a char-
acterisation of rational closure in the context of propositional logic, based on classical
entailment tests only and, thus, amenable of a simple implementation; and (ii) we ap-
ply this characterisation to the context of DLs (we provide a construct C|∼D stating
‘an instance of the concept C, typically is an instance of the concept D’), inheriting a
simple reasoning procedure to decide entailment under rational closure.

While there have been several non-monotonic extensions of DLs, such as [1, 4, 5,
7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 18, 21, 22, 23, 24, 25, 27, 31, 32, 34, 35, 36], which in-
tegrate several kind of non-monotonic reasoning mechanism into DLs, to the best of
our knowledge, none of them address specifically the issue to model rational closure
in DLs. Somewhat related to our proposal are [11, 23], but, beside other points, both
model rational consequence relations, while we refer to a rational consequence relation
that is recognised as particularly well-behaved, that is, rational closure.

We proceed as follows: first, we present a particular construction of the rational clo-
sure, based on the default-assumption approach (see, e.g. [30, 33]); then we implement
such a construction in ALC; in the end, we conclude with a summary of our contribu-
tion and future issues we plan to address.

T. Janhunen and I. Niemelä (Eds.): JELIA 2010, LNAI 6341, pp. 77–90, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

78 G. Casini and U. Straccia

2 Propositional Rational Closure

Consider a finitely generated classical propositional language �, defined in the usual
way 1. We shall use δ to indicate default formulae. The symbols |=, |∼ will represent
different kinds of consequence relations. In particular, |= will be the classical conse-
quence relation and |∼ a defeasible inference relation. An element of a consequence
relation, Γ |∼C, will be called a sequent and has to be read as ‘If Γ , then typically C’.

To start with, a conditional knowledge base will be characterised by a pair 〈T ,B〉,
where T is a set of formulae, representing certain knowledge, and B is a set of sequents
C|∼D, representing default information (see [28]).

Example 1. The typical ‘penguin’ example can be encoded as 2: K = 〈T ,B〉 with
T = {P → B} and B = {P |∼¬F,B|∼F}. �

Another way to formalise defeasible information may be based on the
default-assumption approach, where a default knowledge base is a pair 〈T , Δ〉, where
now Δ is a set of formulae representing what the agent considers as typically true.

Example 2. The ‘penguin’ example can, for instance, be encoded as: K = 〈T , Δ〉 with
T = {P → B} and Δ = {(B → F) ∧ (P → ¬F), P → ¬F}. �

Our proposal, using the results of Freund [19], will consist in mapping a conditional
knowledge base into a default knowledge base (e.g., we will transform the KB in Ex-
ample 1 into the KB of Example 2), and then we show a simple procedure to reason
within the latter, by relying on a decision procedure for |= only. We then suggest to
transpose such an approach, into the framework of DLs.

We proceed next in this way: (i) first, we define the notion of rational consequence
relation (see e.g. [29]) and we present the notion of rational closure, (ii) then, we briefly
present the default-assumption approach and show how to map, by preserving rational
closure, a conditional knowledge base into a default knowledge base. Eventually, we
describe a procedure to build a rational closure using the default-assumption approach.

Rational Consequence Relations. A particularly appreciated non-monotonic conse-
quence relation is represented by the class of rational consequence relations (see [28]).
A consequence relation |∼ is rational iff it satisfies the following properties:

(REF) C|∼C Reflexivity

(CT)
C|∼D C ∧ D|∼F

C|∼F
Cut (Cumulative Trans.)

(CM)
C|∼D C|∼F

C ∧ D|∼F
Cautious Monotony

(LLE)
C|∼F |= C ↔ D

D|∼F
Left Logical Equival.

(RW)
C|∼D D |= F

C|∼F
Right Weakening

(OR)
C|∼F D|∼F

C ∨ D|∼F
Left Disjunction

(RM)
C|∼F C � |∼¬D

C ∧ D|∼F
Rational Monotony

Rational consequence relations represent a particular subclass of the preferential infer-
ence relations (see [26]), which are defined by the above properties (REF – OR), with-
out (RM); these are generally considered as the core properties defining a satisfying

1 We use ¬,∧,∨,→ as connectives, C,D, . . . as sentences, Γ,Δ, . . . as finite sets of sentences,
� and ⊥ as A ∨ ¬A and A ∧ ¬A for some A.

2 Read B as ‘Bird’, P as ‘Penguin’ and F as ‘Flying’.

Rational Closure for Defeasible Description Logics 79

non-monotonic inference relation. Hence, rational consequence relations are preferen-
tial relations characterised by the property (RM), which can be read as ‘If C typically
implies F , and we are not aware that C typically implies ¬D, then we are authorised
to consider F as a typical consequence of C ∧D’. (RM) is generally considered as the
strongest form of monotonicity we can use in the characterisation of a reasoning system
in order to formalise a well-behaved form of defeasible reasoning.

Semantically, rational consequence relations can be characterised by means of a par-
ticular kind of possible-worlds model, that is, ranked preferential models, but we shall
not deepen the connection with such a semantical characterisation here (see [28]).

Rational Closure. Consider B = {C1|∼E1, . . . , Cn|∼En}. We want the agent to be
able to reason about its defeasible information, that is, to be able to derive new se-
quents from his conditional base. A way to derive new default information is by defin-
ing a closure operation P that, given B, gives back a preferential consequence relation
|∼ containing the sequents in B and is closed under the rules (REF)–(OR). Such a
closure operation under the rules (REF)–(OR) is unique (see [26], Corollary 1 and
p.31). Formally, given B, a sequent C|∼D is in its preferential closure P(B) iff it is
derivable from B using the preferential rules (REF)–(OR). However, the preferential
closure is generally considered too weak to be satisfactory, and so it is natural to look
for stronger forms of closure. The closure under the rule (RM) is considered, between
the interesting rules, the strongest one. Lehmann and Magidor have defined in [28] a
rational closure operation R that satisfies a set of desiderata: namely, (i) P(B) ⊆ R(B);
(ii) C|∼⊥ ∈ R(B) iff C|∼⊥ ∈ P(B); (iii) �|∼C ∈ R(B) iff �|∼C ∈ P(B); (iv)
If C|∼F in P(B), and C|∼¬D,C ∧ D|∼F /∈ P(B) then C ∧ D|∼F ∈ R(B) when-
ever is possible(see [28], Section 5, for the justification of these desiderata). We shall
not describe Lehmann and Magidor’s rational closure operation referring to [28]. How-
ever, we shall directly refer to a correspondent, more simple construction, based on the
default-assumption approach and defined by Freund in [19].

Default-Assumption Consequence Relations and Rational Closure. Consider a de-
fault knowledge baseK = 〈T , Δ〉. If the agent is confronted with a piece of information
Γ , representing what actually holds, then he has to ‘merge’ the information in Γ with his
background theory T and his default information Δ. Such an interaction is determined
by a consistency check, formalised referring to the notion of maxiconsistent subset. For-
mally, let Δ,Φ be two sets of formulae, then Ψ is a Φ-maxiconsistent subset of Δ iff
(i) Ψ ⊆ Δ; (ii) Ψ �|= ¬(

∧
Φ); and (iii) there is no set Ψ ′ such that Ψ ⊂ Ψ ′ ⊆ Δ,

and Ψ ′ �|= ¬(
∧
Φ). Now, to determine what the agent presumes to be true in a situ-

ation in which Γ holds, he takes under consideration all the (T ∪ Γ)-maxiconsistent
subsets of Δ, i.e. he considers all the default information that is compatible with what
he knows to be true. That is, we say that D is a default-assumption consequence of the
premise set Γ , given a background theory T and a set of default-assumptionsΔ, written
Γ |∼〈T ,Δ〉D, if and only if D is a classical consequence of the union of Γ with T and
whichever (T ∪ Γ)-maxiconsistent subset of Δ, i.e.

Γ |∼〈T ,Δ〉D iff (T ∪ Γ ∪Δ′) |= D for every (T ∪ Γ)-maxiconsistent Δ′ ⊆ Δ .

As next, we want to characterize the rational closure by means of the default-assumption
construction, i.e. we start from a defeasible KB 〈T ,B〉 and from it we build a correspon-

80 G. Casini and U. Straccia

dent default KB 〈T̃ , Δ̃〉. So, consider 〈T ,B〉, with B = {C1|∼E1, . . . , Cn|∼En}. The
steps for the construction of 〈T̃ , Δ̃〉 (obtained combining the results in [19] with some
results from [6]) are the following.

Step 1. We translate T into a sequential form and add it to B, that is, we move from a
characterisation 〈T ,B〉 to 〈∅,B′〉, where B′ = B ∪ {¬C|∼⊥ | C ∈ T }. Intuitively,
C is valid is equivalent to saying that its negation is an absurdity (¬C|∼⊥) ([6],
Section 6.5).

Step 2. We define ΓB′ as the set of the materializations of the sequents in B′, i.e. the
material implications corresponding to such sequents: ΓB′ = {C → D | C|∼D ∈
B′}. Also, we indicate by AB′ the set of the antecedents of the sequents in B′:
AB′ = {C | C|∼D ∈ B′}.

Step 3. Now we define an exceptionality ranking of sequents with respect to (w.r.t.)B′:
Step 3.1. Lehmann and Magidor [28] call a formula C exceptional for a set of se-

quents D iff D preferentially entails �|∼¬C (i.e. �|∼¬C ∈ P(D)). C|∼D is
said to be exceptional for D iff its antecedent C is exceptional for D. Excep-
tionality of sequents can be decided based on |= only (see [28], Corollary 5.22),
as C is exceptional for a set of sequentsD (i.e.�|∼¬C ∈ P(D)) iff ΓD |= ¬C.

Step 3.2. Given a set of sequents D, indicate by E(AD) the set of the antecedents
that result exceptional w.r.t. D, that is E(AD) = {C ∈ AD | ΓD |= ¬C}, and
with E(D) the exceptional sequents in D, i.e. E(D) = {C|∼D ∈ D | C ∈
E(AD)}. Obviously, for every D, E(D) ⊆ D.

Step 3.3. We can construct iteratively a sequence E0, E1 . . . of subsets of the con-
ditional base B′ in the following way: E0 = B′, Ei+1 = E(Ei). Since B′ is a
finite set, the construction will terminate with an empty set (En = ∅) or a fixed
point of E.

Step 3.4. Using such a sequence, we can define a ranking function r that associates
to every sequent in B′ a number, representing its level of exceptionality:

r(C|∼D) =
{
i if C|∼D ∈ Ei and C|∼D /∈ Ei+1

∞ if C|∼D ∈ Ei for every i .

Step 4. In Step 3, we defined the materialisation of B′ and the rank of every sequent in
it. Now,
Step 4.1. we can determine if B′ is inconsistent. A conditional base is inconsistent

if in its preferential closure we obtain the sequent�|∼⊥ (from this sequent we
can derive any other sequent using RW and CM). Given the result in Step 3.1,
we can check the consistency of B′ using ΓB′ : �|∼⊥ ∈ P(B′) iff ΓB′ |= ⊥.

Step 4.2. ifB′ is consistent and given the ranking, we define the background theory
T̃ of the agent as T̃ = {¬C | C|∼D ∈ B′ and r(C|∼D) = ∞} 3 (one may
verify that T ⊆ T̃).

Step 4.3. once we have T̃ , we can also identify the set of sequents B̃, i.e., the defea-
sible part of the information contained in B′: B̃ = {C|∼D ∈ B′ | r(C|∼D) <
∞} (one may verify that B̃ ⊆ B).

3 One may easily verify the correctness of this definition referring to the following results in [6]:
the definition of clash (p.175), Corollary 7.5.2, Definition 7.5.2, and Lemma 7.5.5. It suffices
to show that the set of the sequents with ∞ as ranking value represents the greatest clash of B.

Rational Closure for Defeasible Description Logics 81

Essentially, so far we have moved the non-defeasible knowledge ‘hidden’ in B to T .
Step 5. Now we build the default-assumption characterisation of the rational closure

of 〈T̃ , B̃〉. To do so, we translate B̃ into a set of default-assumptions, i.e. a set of
formulae, Δ̃. Specifically, given the rank value of the sequents in B̃, we construct a
set of default assumptions Δ̃ = {δ0, . . . , δn} (with n the highest rank-value in B̃),
with

δi =
∧
{C → D | C|∼D ∈ B̃ and r(C|∼D) ≥ i} . (1)

Following this construction, presented by Freund in [19], we obtain a set of de-
fault formulae, each one associated with a rank value, s.t. every default formula is
classically derivable from the preceding ones, that is, δi |= δi+1, for 0 ≤ i < n.

Step 6. Given the background theory T̃ and the default-assumption set Δ̃, we associate
to the agent the pair 〈T̃ , Δ̃〉 according to the steps defined so far.

Using [19], Theorem 24, we can prove that the default-assumption characterisation of
the agent by means of the pair 〈T̃ , Δ̃〉 is equivalent to the rational closure of the pair
〈T ,B〉 defined by Lehmann and Magidor. That is,

Proposition 1. Γ |∼〈T̃ ,Δ̃〉D iff Γ |∼D ∈ R(B′).

As a consequence, using the following knowledge base transformations

K = 〈T ,B〉� 〈∅,B′〉� 〈T̃ , B̃〉� 〈T̃ , Δ̃〉 , (2)

we can characterise the rational closure of 〈T ,B〉 via 〈T̃ , Δ̃〉 by means of Proposition 1.
Note that, given the Eq. (1), the default set Δ̃ is linearly ordered by δ0 |= δ1 |= . . . |=
δn. Hence, given a set of premises Γ there will be just one (Γ ∪ T̃)-maxiconsistent
subset of Δ̃, represented by a δi and every δj with j ≥ i. However, since every such
δj is classically implied by δi, we can associate to the set Γ just the default formula δi.
Hence we can show that

Proposition 2. Γ |∼〈T̃ ,Δ̃〉D iff Γ∪T̃ ∪{δi} |= D, where δi is the first (Γ∪T̃)-consistent

formula 4 of the sequence 〈δ0, . . . , δn〉.
So, we have a simple method to decide defeasible consequence under rational closure.
Given a defeasible knowledge base 〈T ,B〉, certain facts Γ and a formula D,

1. Once for all, apply to 〈T ,B〉 the transformations (2);
2. Given Γ , determine δi as the first (Γ ∪ T̃)-consistent formula of the sequence 〈δ0, . . . , δn〉.
3. Then decide ifD follows under rational closure from Γ w.r.t. 〈T ,B〉 by determining whether
Γ ∪ T̃ ∪ {δi} |= D.

Furthermore, it is easily verified that all transformations (2) require at most O(|K|)
entailment tests and, thus, by Proposition 2,

Corollary 1. Deciding defeasible consequence under rational closure is
coNP-complete.

Hence, the computational complexity does not increase w.r.t. classical entailment.
Let us illustrate the method with the following simple example.

4 That is, T̃ ∪ Γ |= ¬δi.

82 G. Casini and U. Straccia

Example 3. Consider Example 1. By Step 1 we transform K in B′ = {P ∧ ¬B|∼⊥,
P |∼¬F,B|∼F}. By Step 2, the set of the materializations of B′ is ΓB′ = {P ∧ ¬B →
⊥, P → ¬F,B → F}, with AB′ = {P ∧ ¬B,P,B}. By Step 3, we obtain the fol-
lowing exceptionality ranking over the sequents: E0 = {P ∧ ¬B|∼⊥, P |∼¬F,B|∼F},
E1 = {P∧¬B|∼⊥, P |∼¬F}, E2 = {P∧¬B|∼⊥} and E3 = {P∧¬B|∼⊥}. So the rank-
ing value of the sequents is: r(B|∼F) = 0, r(P |∼¬F) = 1 and r(P ∧¬B|∼⊥) =∞. By
Step 4, from such a ranking, we obtain a background theory T̃ = {¬(P ∧¬B)} (hence,
the background theory and the defeasible part of the knowledge base were already cor-
rectly separated in the originalK), and, by Step 5, a default-assumption set Δ̃= {δ0, δ1},
with δ0 := (B → F) ∧ (P → ¬F) and δ1 := P → ¬F , as in Example 2.

Now, to check if a flying creature presumably is not a penguin (i.e., F |∼¬P), we
take our premise F and our background theory T̃ = {¬(P ∧ ¬B)}, and we look for
the first default δi that is consistent with F and T̃ , i.e. T̃ ∪ {F} �|= ¬δi, that is δ0.
Now we have simply to check if F ∧ ¬(P ∧ ¬B) ∧ (B → F) ∧ (P → ¬F) |= ¬P .
Since this holds, we have F |∼〈T̃ ,Δ̃〉¬P . Similarly, with such a procedure we can obtain
a series of desirable results, as ¬F |∼¬B, ¬F |∼¬P , B|∼¬P , ¬B|∼¬P , B ∧ P |∼¬F ,
B ∧ green|∼F , P ∧ black|∼¬F . Instead, other counterintuitive connections are not
valid, such as B ∧ ¬F |∼P , B ∧ ¬F |∼¬P , or P |∼F . �

3 Rational Closure in DLs

We consider a significant DL representative, namelyALC (see e.g. [3], Chap. 2). ALC
corresponds to a fragment of first order logic, using monadic predicates, called con-
cepts, and diadic ones, called roles. In order to stress the parallel between the proce-
dure presented in Section 2 and the proposal in ALC, we are going to use the same
notation for the components playing an analogous role in the two construction: we
use C,D,E, . . . to indicate concepts, instead of propositions, and |= and |∼ to indi-
cate, respectively, the ‘classical’ consequence relation of ALC and a non-monotonic
consequence relation in ALC. δ will indicate a default concept, that is, a concept
that we assume as applying to every individual, if not informed of the contrary. We
have a finite set of concept names C, a finite set of role names R and the set L of
ALC -concepts is defined inductively as follows: (i) C ⊂ L; (ii) �,⊥ ∈ L; (iii)
C,D ∈ L ⇒ C�D,C�D,¬C ∈ L; and (iii)C ∈ L, R ∈ R ⇒ ∃R.C, ∀R.C ∈ L.
Concept C → D is used as a shortcut of ¬C �D. The symbols � and � correspond,
respectively, to the conjunction∧ and the disjunction∨ of classical logic. Given a set of
individualsO, an assertion is of the form a:C (C ∈ L) or of the form (a, b):R (R ∈ R),
respectively indicating that the individual a is an instance of concept C, and that the in-
dividuals a and b are connected by the role R. A general inclusion axiom (GCI) is of
the form C � D (C,D ∈ L) and indicates that any instance of C is also an instance of
D. We use C = D as a shortcut of the pair of C � D and D � C.

From a FOL point of view, concepts, roles, assertions and GCIs, may be seen as
formulae obtained by the following transformation

τ(a:C) = τ(a, C)
τ((a, b):R) = R(a, b)
τ(C � D) = ∀x.τ(x,C) → τ(x, D)
τ(x, A) = A(x)
τ(x,¬C) = ¬τ(x, C)

τ(x, C � D) = τ(x, C) ∧ τ(x, D)
τ(x, C � D) = τ(x, C) ∨ τ(x, D)
τ(x,∃R.C) = ∃y.R(x, y) ∧ τ(y, C)
τ(x,∀R.C) = ∀y.R(x, y) → τ(y, C) .

Rational Closure for Defeasible Description Logics 83

Now, a classical knowledge base is defined by a pair K = 〈A, T 〉, where T is a finite
set of GCIs (a TBox) andA is a finite set of assertions (the ABox), whereas a defeasible
knowledge base is represented by a triple K = 〈A, T ,B〉, where additionally B is a
finite set of sequents of the form C|∼D (‘an instance of a concept C is typically an
instance of a concept D’), with C,D ∈ L.

Example 4. Consider Example 3. Just add a role Prey in the vocabulary, where a role
instantiation (a, b):Prey is read as ‘a preys for b’, and add also two more concepts,
I (Insect) and Fi (Fish). A defeasible KB is K = 〈A, T ,B〉 with A = {a:P, b:B,
(a, c):Prey, (b, c):Prey}; T = {P � B, I � ¬Fi} and B = {P |∼¬F , B|∼F ,
P |∼∀Prey.F i, B|∼∀Prey.I}. �

The particular structure of a defeasible KB allows for the ‘isolation’ of the pair 〈T ,B〉,
that we could call the conceptual system of the agent, from the information about the
individuals (formalised in A) that will play the role of the facts known to be true. In
the next section we are going to work with the information about concepts 〈T ,B〉 first,
exploiting the immediate analogy with the homonymous pair of Section 2, then we will
address the case involving individuals as well.

Construction of the Default-Assumption System. We apply to 〈T ,B〉 an analogous
transformation (2), in order to obtain from 〈T ,B〉 a pair 〈T̃ , Δ̃〉, where T̃ is a set of
GCIs, representing the background knowledge, and Δ̃ is a set of concepts, playing the
role of default-assumptions, that is, concepts that, modulo consistency, apply to each
individual. Hence, starting with 〈T ,B〉, we apply the following steps.

Step 1. Define B′ = B∪{C �¬D|∼⊥ | C � D ∈ T }. Now our agent is characterised
by the pair 〈∅,B′〉.

Step 2. Define ΓB′ = {� � C → D | C|∼D ∈ B′}, and define a set AB′ as the set of
the antecedents of the conditionals in B′, i.e. AB′ = {C | C|∼D ∈ B′}.

Step 3. We determine the exceptionality ranking of the sequents in B′ using the set of
the antecedents AB′ and the materializations in ΓB′ , where a concept C is excep-
tional w.r.t. a set of sequents D iff ΓD |= � � ¬C. The steps are the same of the
propositional case (Steps 3.1 – 3.4), we just replace the expression ΓD |= ¬C with
the expression ΓD |= � � ¬C. In this way we define a ranking function r.

Step 4. From ΓB′ and the ranking function r we obtain two kinds of information. First
(Step 4.1.), we can verify if the conceptual system of the agent is consistent, by
checking the consistency of ΓB′ . Then (Steps 4.2.-4.3.), we can define the real
background theory and the defeasible information of the agent, respectively the
sets T̃ and B̃ as:

T̃ = {� � ¬C | C|∼D ∈ B′ and r(C|∼D) =∞}
B̃ = {C|∼D | C|∼D ∈ B′ and r(C|∼D) <∞} .

Step 5. Again, we define the set of our ‘default assumptions’ by using the materialisa-
tion of the sequents in B̃ and the ranking function r. That is, Δ̃ = {δ0, . . . , δn},
where

δi =
�
{C → D | C|∼D ∈ B̃ and r(C|∼D) ≥ i} .

84 G. Casini and U. Straccia

Hence, we obtain an analogous of the default-assumption characterisation defined in the
propositional case by substituting the conceptual system 〈T ,B〉 with the pair 〈T̃ , Δ̃〉,
where Δ̃ is a set of concepts, instead of a set of sequents C|∼D. It is not difficult to see
that Δ̃ presents the same characteristics described at the end of Section 3, that is, for
every δi, 0 ≤ i < n, |= δi � δi+1.

Closure Operation over Concepts. Consider now T̃ = {� � C1, . . . ,� � Cm} and
Δ̃ = {δ0, . . . , δn}. We call T the set of the concepts in T̃ , that is, T = {C1, . . . , Cm}.
Next we define the notion of default-assumption consequence relation between the con-
cepts, that is, a relation |∼〈T̃ ,Δ̃〉 that tells us what presumably follows from a finite set
of concepts. Formally, E is a default-assumption consequence of the set of concepts Γ ,
given a background theory T and a set of default-assumptions Δ, written Γ |∼〈T ,Δ〉E,
if and only if E is implied by the union of Γ with T and every (T ∪ Γ)-maxiconsistent
subset of Δ, i.e.

Γ |∼〈T ,Δ〉E iff |= (T ∪ Γ ∪Δ′) � E for every (T ∪ Γ)-maxiconsistent Δ′ ⊆ Δ .

Given that, also in the DL case, every element δi of the default set Δ classically implies
the subsequent elements (for every i, 0 ≤ i < n, |= δi � δi+1), we obtain, in exactly
the same way as in the propositional case, the analogous of Proposition 2 that every
|∼〈T ,Δ〉-sequent is determined by a single element of Δ. That is:

Proposition 3. Γ |∼〈T̃ ,Δ̃〉D iff |=
�
Γ �

�
T � δi � D, where δi is the first (Γ ∪ T)-

consistent formula 5 of the sequence 〈δ0, . . . , δn〉.
Hence, as in the propositional case, we have an unique default-assumption extension at
the level of concepts. From now on, talking about a default set Δ, we assume that it is
a linearly ordered set Δ = {δ0, . . . , δn} s.t. for every i, 0 ≤ i < n, |= δi � δi+1.

Now, the main point is: if |∼〈T̃ ,Δ̃〉 has been generated from K = 〈T ,B〉, then
|∼〈T̃ ,Δ̃〉 is a rational consequence relation validating K (i.e., if C � E ∈ T , then
C � ¬E|∼〈T̃ ,Δ̃〉⊥, and if C|∼E ∈ B, then C|∼〈T̃ ,Δ̃〉E).

Proposition 4. |∼〈T̃ ,Δ̃〉 is a rational consequence relation validating K = 〈T ,B〉.
This can be shown by noting that the analogous properties of the propositional rational
consequence relation are satisfied, namely:

(REF) C|∼〈T ,Δ〉C

C |∼〈T ,Δ〉 E |= C = D

(LLE)
D |∼〈T ,Δ〉 E

C |∼〈T ,Δ〉 D |= D � E

(RW)
C |∼〈T ,Δ〉 E

C � D |∼〈T ,Δ〉 E C |∼〈T ,Δ〉 D

(CT)
C |∼〈T ,Δ〉 E

C |∼〈T ,Δ〉 E C |∼〈T ,Δ〉 D

(CM)
C � D |∼〈T ,Δ〉 E

C |∼〈T ,Δ〉 E D |∼〈T ,Δ〉 E

(OR)
C � D |∼〈T ,Δ〉 E

C |∼〈T ,Δ〉 D C � |∼〈T ,Δ〉¬E

(RM)
C � E |∼〈T ,Δ〉 D

5 That is, |=
�

T �
�
Γ � ¬δi.

Rational Closure for Defeasible Description Logics 85

Let us work out the analogue of Example 3 in the DL context.

Example 5. Consider the KB of Example 4 without the ABox. Hence, we start with
K = 〈T ,B〉. Then K is changed into B′ = {P � ¬B|∼⊥, I � Fi|∼⊥, P |∼¬F , B|∼F ,
P |∼∀Prey.F i, B|∼∀Prey.I}. The set of the materializations of B′ is ΓB′ = {� �
P ∧ ¬B → ⊥,� � I � Fi → ⊥,� � P → ¬F,� � B → F,� � P →
∀Prey.F i,� � B → ∀Prey.I}, with AB′ = {P ∧ ¬B, I � Fi, P,B}. Following
the procedure at Step 3, we obtain the exceptionality ranking of the sequents: E0 =
{P � ¬B|∼⊥, I � Fi|∼⊥, P |∼¬F,B|∼F , P |∼∀Prey.F i, B|∼∀Prey.I}; E1 = {P �
¬B|∼⊥, I�Fi|∼⊥, P |∼¬F , P |∼∀Prey.F i}; E2 = {P�¬B|∼⊥, I�Fi|∼⊥} and E3 =
{P �¬B|∼⊥, I �Fi|∼⊥}. Automatically, we have the ranking values of every sequent
in B′: namely, r(B|∼F) = r(B|∼∀Prey.I) = 0; r(P |∼¬F) = r(P |∼∀Prey.F i) =
1 and r(P � ¬B|∼⊥) = r(I � Fi|∼⊥) = ∞. From such a ranking, we obtain a
background theory T̃ = {� � ¬(P ∧¬B),� � ¬(I �Fi)}, and a default-assumption
set Δ̃ = {δ0, δ1}, with

δ0 = (B → F) � (B → ∀Prey.I) � (P → ¬F) � (P → ∀Prey.F i)
δ1 = (P → ¬F) � (P → ∀Prey.F i) .

Now by using Proposition 3, we obtain the analogue sequents as in the propositional
case, and avoid the same undesirable ones. Moreover we can derive also sequents con-
nected to the roles, such as B|∼∀Prey.¬Fi and P |∼∀Prey.¬I . �

We conclude by noting that from a computational complexity point of view, as deciding
entailment in ALC is EXPTIME-complete [16] 6, we obtain immediately that

Corollary 2. Deciding C|∼〈T̃ ,Δ̃〉D in ALC is an EXPTIME-complete problem.

More generally, defeasible consequence under rational closure inherits the computa-
tional complexity of entailment of the underlying DL language and, thus, e.g. is poly-
nomial for the DL EL [2].

Closure Operation over Individuals. So far, we left out the ABox that we will consider
next. Given K = 〈A, T , Δ〉, we would like to infer whether a certain individual a is
presumably an instance of a concept C or not. The basic idea remains to associate
to every individual every default-assumption information that is consistent with our
knowledge base. As we will see, the major problem to be addressed here is to guarantee
the uniqueness of the default-assumption extension.

Example 6. Consider K = 〈A, ∅, Δ〉, with A = {(a, b):R} and Δ = {A � ∀R.¬A}.
Informally, if we apply the default to a first, we get b:¬A and we cannot apply the
default to b, while if we apply the default to b first, we get b:A and we cannot apply the
default to a. Hence, we may have two extensions. �

The possibility of multiple extensions is due to the presence of the roles, that allow the
transmission of information from an individual to another; if every individual was ‘iso-
lated’, without role-connections, then the addition of the default information to each

6 Recall that for any deterministic complexity class C, C = coC, so, e.g. EXPTIME =
coEXPTIME.

86 G. Casini and U. Straccia

individual would have been a ‘local’ problem, treatable without considering the con-
cepts associated to the other individuals in the dominion, and the default-assumption
extension would have been unique. On the other hand, while considering a specific in-
dividual, the presence of the roles forces to consider also the information associated to
other individuals in order to maintain the consistency of the knowledge base, and, as
show in example 6, the addition of default information to one individual could prevent
the association of default information to another.

Now, first of all, we will assume that K = 〈A, T , Δ〉 has already been transformed
into 〈A, T̃ , Δ̃〉, where 〈T̃ , Δ̃〉 have been computed as in the previous section and, thus,
the defaults in Δ̃ = {δ0, . . . , δn} are ordered (0 ≤ i < n, |= δi � δi+1). We also
assume that 〈A, T 〉 is consistent, i.e. 〈A, T 〉 �|= a:⊥, for any a. For the sake of this
paper, we will assume that T is unfoldable, that is defined as follows: (i) T contains
axioms of the form A � C or A = C, where A is a concept name and C a concept;
(ii) for any concept name A, there is at most one axiom having A on the left-hand
side; (iii) T is acyclic, i.e. there is no concept name A that depends on A 7. Besides
having a high practical interest, unfoldable TBoxes have the characteristics that they
can be removed in the following way: given K = 〈A, T , Δ〉, (i) replace any inclusion
axiom A � C ∈ T with A = C � A′, where A′ is a new concept name; (ii) in A
and Δ, replace recursively any occurrence of concept names with their definition in T ;
and (iii) remove T from K. Hence, we may assume that K is of the form K = 〈A, Δ〉.
We may also assume that any concept in A is in Negation Normal Form, that is, a
negation may occur in front of a concept name only (this is achieved in the usual way by
removing double negations and pushing negation inwards 8). Without loss of generality,
we will further assume that A is closed under the following ‘completion’ rules: (i) if
a:C �D ∈ A then both a:C and a:D are in A; (ii) if a:∃R.C ∈ A then there are
(a, b):R and b:C in A; and (iii) if a:∀R.C and (a, b):R are in A then so is b:C. In
this way, A contains all the information that is shared among all models of A. Now,
with OA we indicate the individuals occurring in A. Given K = 〈A, Δ〉 (recall that
Δ = {δ0, . . . , δn}), we say that a knowledge base K̃ = 〈AΔ〉 is a default-assumption
extension of K iff

– K̃ is classically consistent andA ⊆ AΔ.
– For any a ∈ OA, a:C ∈ AΔ \ A iff C = δi for some i and for every δh, h < i,
AΔ ∪ {a:δh} |= ⊥.

– There is no K′ ⊃ K̃ satisfying these conditions.

Essentially, we assign to any individual a ∈ OA, the strongest default to it.

Example 7. Referring to Example 6, consider K = 〈A, Δ〉, with A = {(a, b) : R}
and Δ = {A � ∀R.¬A,�}. Then we have two default-assumption extensions, namely
K̃1 = A ∪ {a:A, a:∀R.¬A, b:�} and K̃2 = A ∪ {b:A, b:∀R.¬A, a:�}. �

A simple procedure to obtain extensions is as follows:

7 A depends directly on B iff there is an axiom in T having A in the left-hand side and B in
the right-hand side. The relation depends on is defined as the transitive closure of the relation
depends directly on.

8 Note that ¬∀R.C is the same as ∃R.¬C.

Rational Closure for Defeasible Description Logics 87

1. fix a linear order s = 〈a1, . . . , am〉 of the individuals in OA;
2. for any individual aj processed in this order, consider the first default δi such that A∪{aj :δi}

is consistent;
3. update A by adding a:δi to it and process the next individual.

It can be shown that

Proposition 5. Given a linear order of the individuals in K, the above procedure de-
termines a default-assumption extension ofK. Vice-versa, every default-assumption ex-
tension of K corresponds to the knowledge base generated by some linear order of the
individuals in K.

For instance, related to Example 7, K̃1 is obtained from the order 〈a, b〉, while K̃2 is
obtained from the order 〈b, a〉.

Example 8. Refer to Example 4 and 5, and let K = {A, T , Δ}, where A = {a:P ,
b:B, (a, c):Prey, (b, c):Prey}, T = {P = B � B′, I = ¬Fi � I ′}, Δ = {δ0, δ1},
δ0 = (B → F) � (B → ∀Prey.I) � (P → ¬F) � (P → ∀Prey.F i) and δ1 =
(P → ¬F) � (P → ∀Prey.F i). After expanding the TBox and ‘applying’ the com-
pletion rules to A, we get K = {A, Δ}, where A = {a:B �B′, a:B, a:B′, b:B,
(a, c):Prey, (b, d):Prey}, Δ = {δ0, δ1}, δ0 = (B → F)�(B → ∀Prey.(¬Fi�I ′))�
((B�B′)→ ¬F)�((B�B′)→ ∀Prey.F i) and δ1 = ((B�B′)→ ¬F)�((B�B′)→
∀Prey.F i). If we consider an order where a is considered before b then we associate δ1
to a, and consequently c is presumed to be a fish and we are prevented in the association
of δ0 to b. If we consider b before a, c is not a fish and we cannot apply δ1 to a. �

Now, if we fix a priori a linear order s on the individuals, we may define a consequence
relation depending on the default-assumption extension generated from it: we say that
a:C is a defeasible consequence of K, written K �s a:C, iff K̃ |= a:C, where K̃ is the
default-assumption extension generated from K based on the order s.

For instance, related to Example 7 and order s1 = 〈a, b〉, we may infer that
K �s1 a:A, while with order s2 = 〈b, a〉, we may infer that K �s2 b:A.

The interesting point of such a consequence relation is that it satisfies the properties
of a rational consequence relation in the following way.

REFDL 〈A, Δ〉 �s a:C for every a:C ∈ A

LLEDL
〈A ∪ {b:D}, Δ〉 �s a:C � D = E

〈A ∪ {b:E}, Δ〉 �s a:C

RWDL
〈A, Δ〉 �s a:C � C � D

〈A, Δ〉 �s a:D

CTDL
〈A ∪ {b:D}, Δ〉 �s a:C 〈A, Δ〉 �s b:D

〈A, Δ〉 �s a:C

CMDL
〈A, Δ〉 �s a:C 〈A, Δ〉 �s b:D

〈A ∪ {b:D}, Δ〉 �s a:C

ORDL
〈A ∪ {b:D}, Δ〉 �s a:C 〈A ∪ {b:E}, Δ〉 �s a:C

〈A ∪ {b:D � E}, Δ〉 �s a:C

RMDL
〈A, Δ〉 �s a:C 〈A, Δ〉 ��s b:¬D

〈A ∪ {b:D}, Δ〉 �s a:C

We can show that

Proposition 6. Given K and a linear order s of the individuals in K, the consequence
relation �s satisfies the properties REFDL − RMDL.

Note that from a computational complexity point of view, as entailment w.r.t. a ALC
ABox is PSPACE-complete, we get immediately

88 G. Casini and U. Straccia

Proposition 7. Deciding K �s a:C in ALC with unfoldable TBox is a PSPACE-
complete problem.

We conclude by illustrating a case with a unique extension.

Example 9. Consider the KB in Example 8, where (b, c):Prey is replaced with
(b, d):Prey. Then, whatever is the order on the individuals, we obtain the follow-
ing association between the default formulae and the individuals: a:δ1, b:δ0, c:δ0, and
d:δ0. Using the information in these defaults, we obtain a unique default-assumption
extension. �

The above example suggest yet another consequence relation, namely based on the
intersection of every default-assumption extension: given K, we say that a:C is a strict
defeasible consequence of K, written K � a:C, iff K �s a:C for any linear order s of
the individuals in K. Note that � may not necessarily satisfy the properties of a rational
consequence relation. However, if the default-assumption extension is unique then �
satisfies the properties REFDL − RMDL.

4 Conclusions

We have presented a non-monotonic extension for the DL ALC , focussing on the mi-
gration of the properties of a rational closure consequence relation at the propositional
level towards the DL level. We provided first an algorithmic propositional definition
that we then adapted to the DL case. In particular, we have defined a consequence re-
lation C|∼〈T̃ ,Δ̃〉D among concepts and have shown that it is a rational consequence
relation. We then defined a consequence relation K �s a:C among an unfoldable KB
and assertions that, under a given linear order s of the individuals in K, is a rational
consequence relation as well. Note that here s denotes a priority on the individuals
on which to focus the attention, which is different from approaches such as [11, 23]
in which the order indicates that an individual is more typical than another one. In-
terestingly, both consequence relations we have defined additionally inherit the same
computational complexity of the underlying DL language.

Besides trying to extend our method to more expressive DL languages, we conjecture
the validity, as in the propositional case (see [28,19]), of a representation result connect-
ing rational consequence relations, default assumptions consequence relations (with Δ
linearly ordered by |= as above) and semantical models with a modular (i.e. reflexive,
transitive and complete) typicality relation defined over the individuals.

References

1. Baader, F., Hollunder, B.: How to prefer more specific defaults in terminological default
logic. In: Proc. of IJCAI, pp. 669–674. Morgan Kaufmann, San Francisco (1993)

2. Baader, F., Brandt, S., Lutz, C.: Pushing the EL envelope. In: Proc. of IJCAI, pp. 364–369.
Morgan Kaufmann, San Francisco (2005)

3. Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P.: The Description
Logic Handbook: Theory, Implementation and Applications. Cambridge University Press,
Cambridge (2003)

Rational Closure for Defeasible Description Logics 89

4. Baader, F., Hollunder, B.: Embedding defaults into terminological representation systems. J.
Automated Reasoning 14, 149–180 (1995)

5. Baader, F., Hollunder, B.: Priorities on defaults with prerequisites, and their application in
treating specificity in terminological default logic. J. Automated Reasoning 15, 41–68 (1995)

6. Bochman, A.: A logical theory of nonmonotonic inference and belief change. Springer, Hei-
delberg (2001)

7. Bonatti, P.A., Faella, M., Sauro, L.: Defeasible inclusions in low-complexity DLs: Prelimi-
nary notes. In: Proc. of IJCAI, pp. 696–701. Morgan Kaufmann, San Francisco (2009)

8. Bonatti, P.A., Lutz, C., Wolter, F.: Description logics with circumscription. In: Proc. of KR,
pp. 400–410. AAAI Press, Menlo Park (2006)

9. Bonatti, P.A., Lutz, C., Wolter, F.: The complexity of circumscription in description logic. J.
Artif. Int. Res. 35(1), 717–773 (2009)

10. Brewka, G.: The logic of inheritance in frame systems. In: Proc. of IJCAI, pp. 483–488
(1987)

11. Britz, K., Heidema, J., Meyer, T.: Semantic preferential subsumption. In: Proc. of KR, pp.
476–484. Morgan Kaufmann, San Francisco (2008)

12. Britz, K., Heidema, J., Meyer, T.: Modelling object typicality in description logics. In:
Proc. of the Australasian Joint Conf. on Advances in Artificial Intelligence, pp. 506–516.
Springer, Heidelberg (2009)

13. Cadoli, M., Donini, F.M., Schaerf, M.: Closed world reasoning in hybrid systems. In: Proc. of
ISMIS, pp. 474–481. North-Holland Publ. Co., Amsterdam (1990)

14. Donini, F.M., Lenzerini, M., Nardi, D., Nutt, W., Schaerf, A.: Adding epistemic operators to
concept languages. In: Proc. of KR, pp. 342–353. Morgan Kaufmann, San Francisco (1992)

15. Donini, F.M., Lenzerini, M., Nardi, D., Nutt, W., Schaerf, A.: An epistemic operator for
description logics. Artificial Intelligence 100(1-2), 225–274 (1998)

16. Donini, F.M., Massacci, F.: Exptime tableaux for ALC. Artificial Intelligence 124(1), 87–
138 (2000)

17. Donini, F.M., Nardi, D., Rosati, R.: Autoepistemic description logics. In: Proc. of IJCAI, pp.
136–141 (1997)

18. Donini, F.M., Nardi, D., Rosati, R.: Description logics of minimal knowledge and negation
as failure. ACM Trans. Comput. Logic 3(2), 177–225 (2002)

19. Freund, M.: Preferential reasoning in the perspective of Poole default logic. Artif. In-
tell. 98(1-2), 209–235 (1998)

20. Gabbay, D.M., Hogger, C.J., Robinson, J.A. (eds.): Handbook of logic in artificial intelli-
gence and logic programming. Nonmonotonic reasoning and uncertain reasoning, vol. 3.
Oxford University Press, Oxford (1994)

21. Giordano, L., Gliozzi, V., Olivetti, N., Pozzato, G.: Preferential description logics. In: Der-
showitz, N., Voronkov, A. (eds.) LPAR 2007. LNCS (LNAI), vol. 4790, pp. 257–272.
Springer, Heidelberg (2007)

22. Giordano, L., Gliozzi, V., Olivetti, N., Pozzato, G.: Reasoning about typicality in preferen-
tial description logics. In: Hölldobler, S., Lutz, C., Wansing, H. (eds.) JELIA 2008. LNCS
(LNAI), vol. 5293, pp. 192–205. Springer, Heidelberg (2008)

23. Giordano, L., Gliozzi, V., Olivetti, N., Pozzato, G.: On extending description logics for rea-
soning about typicality: a first step. Technical Report 116/09, Università degli studi di Torino
(December 2009)

24. Giordano, L., Gliozzi, V., Olivetti, N., Pozzato, G.: Prototypical reasoning with low complex-
ity description logics: Preliminary results. In: Erdem, E., Lin, F., Schaub, T. (eds.) LPNMR
2009. LNCS, vol. 5753, pp. 430–436. Springer, Heidelberg (2009)

25. Grimm, S., Hitzler, P.: A preferential tableaux calculus for circumscriptive ALCO. In:
Proc. of RR, pp. 40–54. Springer, Heidelberg (2009)

90 G. Casini and U. Straccia

26. Kraus, S., Lehmann, D., Magidor, M.: Nonmonotonic reasoning, preferential models and
cumulative logics. Artif. Intell. 44(1-2), 167–207 (1990)

27. Lambrix, P., Shahmehri, N., Wahlloef, N.: A default extension to description logics for use
in an intelligent search engine. In: Proc. of HICSS, vol. 5, p. 28. IEEE Computer Society,
Los Alamitos (1998)

28. Lehmann, D., Magidor, M.: What does a conditional knowledge base entail? Artif. In-
tell. 55(1), 1–60 (1992)

29. Makinson, D.: General patterns in nonmonotonic reasoning. In: Handbook of logic in artifi-
cial intelligence and logic programming: Nonmonotonic reasoning and uncertain reasoning,
vol. 3, pp. 35–110. Oxford University Press, Oxford (1994)

30. Makinson, D.: Bridges from Classical to Nonmonotonic Logic. King’s College Publications,
London (2005)

31. Padgham, L., Nebel, B.: Combining classification and non-monotonic inheritance reasoning:
A first step. In: Komorowski, J., Raś, Z.W. (eds.) ISMIS 1993. LNCS, vol. 689. Springer,
Heidelberg (1993)

32. Padgham, L., Zhang, T.: A terminological logic with defaults: A definition and an application.
In: Proc. of IJCAI, pp. 662–668. Morgan Kaufmann, San Francisco (1993)

33. Poole, D.: A logical framework for default reasoning. Artif. Intell. 36(1), 27–47 (1988)
34. Quantz, J., Royer, V.: A preference semantics for defaults in terminological logics. In: Proc.

of KR, pp. 294–305. Morgan Kaufmann, San Francisco (1992)
35. Rector, A.L.: Defaults, context, and knowledge: Alternatives for owl-indexed knowledge

bases. In: Pacific Symposium on Biocomputing, pp. 226–237. World Scientific, Singapore
(2004)

36. Straccia, U.: Default inheritance reasoning in hybrid KL-ONE-style logics. In: Proc. of IJ-
CAI, pp. 676–681. Morgan Kaufmann, San Francisco (1993)

Extensional Higher-Order Logic Programming�

Angelos Charalambidis1, Konstantinos Handjopoulos1, Panos Rondogiannis1,
and William W. Wadge2

1 Department of Informatics & Telecommunications, University of Athens, Greece
2 Department of Computer Science, University of Victoria, Canada

Abstract. We propose a purely extensional semantics for higher-order
logic programming. Under this semantics, every program has a unique
minimum Herbrand model which is the greatest lower bound of all Her-
brand models of the program and the least fixed-point of the immediate
consequence operator of the program. We also propose an SLD-resolution
proof procedure which is sound and complete with respect to the mini-
mum model semantics. In other words, we provide a purely extensional
theoretical framework for higher-order logic programming which gener-
alizes the familiar theory of classical (first-order) logic programming.

1 Introduction

The extension of logic programming to support higher-order constructs (in a
semantically clean way) is an intriguing research problem. The initial attitude
of logic programmers towards this problem was somewhat skeptical: it was ar-
gued (see for example [War82]) that higher-order extensions may not be that
necessary since there exist ways of simulating higher-order programming inside
Prolog itself. Later on, more genuine approaches were developed. The main such
examples are λ-Prolog [NM98] and Hilog [CKW93]. These two systems share
a common idea, namely they are both intensional: two predicates are not con-
sidered equal unless their names are the same. The intensional approach has
its merits, and this is evidenced by the fact that both of the above systems
continued to develop and to explore various application domains.

There have also been a few attempts to define extensional higher-order logic
programming systems. In such a system, two predicates are considered equal if
they have the same extensions, namely they are true for the same arguments. The
first extensional higher-order approach was proposed in [Wad91]. Subsequently,
M. Bezem [Bez99] also considered an alternative extensional approach which
however appears to differ from classical extensionality and has a more proof-
theoretical flavor. In [Wad91] it is suggested that by restricting the syntax of
higher-order programs, we can get a language in which the defined relations are
continuous. Continuity guarantees that every such program has a well-defined
meaning which can be computed with standard domain-theoretic techniques.
There are two main issues that remained unresolved in [Wad91]:
� This work has been partially supported by the University of Athens under the project

“Kapodistrias” (grant no. 70/4/5827).

T. Janhunen and I. Niemelä (Eds.): JELIA 2010, LNAI 6341, pp. 91–103, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

92 A. Charalambidis et al.

– The higher-order fragment considered in [Wad91], does not allow uninstan-
tiated higher-order variables to appear in clause bodies or in queries.

– A proof procedure is not provided (but it is conjectured that a sound and
complete such procedure exists that even covers the extension with unin-
stantiated higher-order variables).

In this paper we remedy the above issues and provide the first (to our knowledge)
framework for extensional higher-order logic programming that is complete both
from a semantic as-well-as from a proof theoretic point of view. To demonstrate
the key idea of our approach, consider the following higher-order program:

ordered(R,[]).
ordered(R,[X]).
ordered(R,[X,Y|T]):-R(X,Y),ordered(R,[Y|T]).

Consider the query← ordered(R,[a,b,c,d]). At first sight this appears to be
an unreasonable query, since the set of possible solutions is infinite (and actually
uncountable). However, at a closer look we realize that all such relations extend
the simple relation r = {(a, b), (b, c), (c, d)}. In other words, an implementation
that would return the answer R={(a,b),(b,c),(c,d)} would be satisfactory
in the sense that R can be taken to represent all its superset relations (whose
additional information is of no interest to the programmer). In the fragment that
we consider, if a relation satisfies a predicate then there exists a simple (or basic)
relation (like r in our example) that also satisfies the predicate. The set of such
simple relations is countable and therefore a proof procedure can be devised that
is not only sound but also complete. However, we need to formally characterize
which are these basic relations for every possible type.

Fortunately, there exists a branch of domain theory that examines exactly the
above issues. The key notion that we need is that of an ω-algebraic complete lat-
tice (a special case of an ω-algebraic domain, see for example [AJ94]), namely a
complete lattice which has an enumerable basis of compact elements (which cor-
respond to the simple elements that we have been talking about). Every element
of an ω-algebraic complete lattice can be represented as the least upper bound
of such compact elements. In our example, all the relations (even the infinite
ones) for which the ordered predicate could be true of, can be represented by
some simple relations (like r above).

The main task of the paper is therefore to develop a semantics for higher-
order logic programming that is based on ω-algebraic complete lattices. Our
semantics refines and extends the work of [Wad91], and has an extra important
advantage: it leads to a relatively simple sound and complete proof procedure
for higher-order logic programming.

2 Algebraic Complete Lattices

In the rest of the paper we assume a basic familiarity with the basic notions
regarding partially ordered sets and in particular complete lattices (see for ex-
ample [Llo87]). Given a partially ordered set (poset) P , we write �P (or simply
�) for the corresponding partial order.

Extensional Higher-Order Logic Programming 93

We will be interested in a certain type of complete lattices in which every
element can be “created” by using a set of “basic” elements of the lattice:

Definition 1. Let L be a complete lattice. An element c ∈ L is called compact
if for every directed set A ⊆ L with c �

⊔
A, there exists a ∈ A such that c � a.

The set of all compact elements of L is denoted by K(L).

Let P be a poset. Given B ⊆ P and x ∈ P , we write B[x] = {b ∈ B | b �P x}.

Definition 2. A complete lattice L is called an algebraic complete lattice if for
every x ∈ L, the set K(L)[x] is a directed subset of L with least upper bound x.
The set K(L) is called the basis of L. If additionally, K(L) is countable, then L
is called an ω-algebraic complete lattice.

We can now introduce the notion of “step functions” which form a subset of
monotonic functions with interesting properties:

Definition 3. Let A be a poset and L be an algebraic complete lattice. Let also
⊥L be the least element of L. For each a ∈ A and c ∈ K(L), we define the step
function (a↘ c) : A→ L as

(a↘ c)(x) =
{
c, if a �A x
⊥L, otherwise

Given posets P , Q, we write [P m→ Q] to denote the set of all monotonic functions
from P to Q. The following lemma, which will prove useful later on, can be easily
established:

Lemma 1. Let A be a poset and L an algebraic complete lattice. Then, [A m→ L]
is an algebraic complete lattice whose basis is the set of all least upper bounds
of finitely many step functions from A to L. If A is countable and L is an ω-
algebraic complete lattice then [A m→ L] is an ω-algebraic complete lattice.

3 The Higher-Order Language H: Syntax

In this section we define the higher-order language H, which will be the basis of
the higher-order logic programming language that we will subsequently develop.
The language H is based on a simple type system that supports two base types:
o, the boolean domain, and ι, the domain of individuals (data objects). The
composite types are partitioned into three classes: functional (assigned to func-
tion symbols), argument (assigned to parameters of predicates) and predicate
(assigned to predicate symbols).

Definition 4. A type τ can either be functional, argument, or predicate:

σ := ι | (ι→ σ)
ρ := ι | π
π := o | (ρ→ π)

94 A. Charalambidis et al.

The binary operator → is right-associative. A functional type that is different
than ι will often be written in the form ιn → ι, n ≥ 1, and a predicate type that
is different than o will be written in the form ρ1 → · · · → ρn → o, n ≥ 1.

Definition 5. The alphabet of the higher-order language H consists of the
following:

1. Predicate variables of every predicate type π (such as p, q, r, . . .).
2. Argument variables of every argument type ρ (such as Q,R,V,X, . . .).
3. Individual constant symbols of type ι (such as a, b, c, . . .).
4. Function symbols of every functional type σ �= ι (such as f, g, h, . . .).
5. The following logical constant symbols: the propositional constants 0 and 1 of

type o; the equality constant ≈; the generalized disjunction and conjunction
constants

∨
π and

∧
π for every predicate type π; the generalized inverse

implication constants ←π for every predicate type π.
6. The quantifier ∃.
7. The parentheses “(” and “)”.

Based on the above alphabet, the expressions of H can be composed as follows:

Definition 6. The set of expressions of the higher-order language H is recur-
sively defined as follows:

1. Every predicate variable of type π is an expression of type π; every argument
variable of type ρ is an expression of type ρ; every individual constant symbol
of type ι is an expression of type ι.

2. If f is an n-ary function symbol and E1, . . . ,En are expressions of type ι,
then (f E1 · · ·En) is an expression of type ι.

3. If E1 is an expression of type ρ→ π and E2 is an expression of type ρ, then
(E1E2) is an expression of type π.

4. If X is an argument variable of type ρ and E is an expression of predicate
type π, then (λX.E) is an expression of type ρ→ π.

5. If E1,E2 are expressions of predicate type π, then (E1 ←π E2) is an expression
of type o, and (E1

∧
π E2) and (E1

∨
π E2) are expressions of type π.

6. If E1,E2 are expressions of type ι, then (E1 ≈ E2) is an expression of type o.
7. If E is an expression of type o and Q is an argument variable (of any argu-

ment type), then (∃Q E) is an expression of type o.

To denote that an expression E has type τ , we will often write E : τ ; additionally,
we write type(E) to denote the type of expression E. Expressions of type ι will
be called terms and of type o will be called formulas. We will write ←, ∧ and
∨ instead of←o,

∧
o and

∨
o. When writing an expression, the usual precedence

rules will be used to avoid the excessive use of parentheses.
The notions of free and bound variables of an expression are defined as usual.

An expression is called closed if it does not contain any free variables. Given an
expression E, we denote by FV (E) the set of all free variables of E. By overloading
notation, we will also write FV (S), where S is a set of expressions.

In order to build a programming language based on H, a certain syntactic
subset of H must be considered:

Extensional Higher-Order Logic Programming 95

Definition 7. A positive expression of H is one that does not contain ←π.

Definition 8. A program clause of H is an expression of the form p ←π E,
where p is a predicate variable called the head of the clause, and E is a closed
positive expression of H. A program for H is a set of clauses.

Definition 9. A goal clause of H is an expression of the form ← E where E is
a positive expression of type o. The empty clause is denoted by �.

Notice that goal clauses may contain free argument variables (apart from the
argument variables that are existentially quantified). Operationally speaking, the
free argument variables that appear in a goal are the ones for which an answer
is sought for by the proof procedure.

Definition 10. A Horn clause of H is either a program clause or a goal clause.

Example 1. The following is a higher order program that computes the closure of
its input binary relation R. The type of closure is π = (ι→ ι→ o)→ ι→ ι→ o.

closure←π λR.λX.λY.(R X Y)
closure←π λR.λX.λY.∃Z((R X Z) ∧ (closure R Z Y))

A possible query could be: ← closureR a b (which intuitively requests for all
binary relations such that the pair (a, b) belongs to their transitive closure). ��

4 The Semantics of H

The semantics of H is built upon the notion of algebraic complete lattice. We
start with the semantics of types and proceed with the semantics of expressions.

4.1 The Semantics of Types

The set-theoretic meaning of the types of H are specified with respect to a set D
(where D is later going to be the domain of our interpretations). The fact that a
given type π denotes a set [[π]]D will mean that an expression of type π denotes
an element of [[π]]D. Similarly, an expression of type ρ denotes an element of
[[ρ]]D. In the following definition we define simultaneously (and recursively) two
things: the semantics [[τ]]D of a type τ and the corresponding partial order �τ .

Definition 11. Let D be a non-empty set. Then:

– [[ι]]D = D and �ι is the binary relation such that d �ι d, for all d ∈ D.
– [[ιn → ι]]D = Dn → D. A partial order for this case will not be needed.
– [[o]]D = {0, 1} and �o is the numerical ordering on {0, 1}.
– [[ι → π]]D = D → [[π]]D. Moreover, for all f, g ∈ [[ι → π]]D, f �ι→π g if and

only if f(d) �π g(d), for all d ∈ D.
– [[π1 → π2]]D = [K([[π1]]D) m→ [[π2]]D]. Moreover, for all f, g ∈ [[π1 → π2]]D,
f �π1→π2 g if and only if f(d) �π2 g(d), for all d ∈ K([[π1]]D).

96 A. Charalambidis et al.

Obviously each [[π]]D is an algebraic complete lattice (ω-algebraic if D is count-
able), due to the fact that the poset {0, 1} is an ω-algebraic complete lattice and
Lemma 1. The following definition gives us a convenient shorthand that will be
used in various places of the paper:

Definition 12. Let D be a non-empty set and let ρ be an argument type. Define:

FD(ρ) =
{
D, if ρ = ι
K([[ρ]]D), otherwise

The set FD(ρ) will be called the set of basic elements of type ρ.

Example 2. Consider the type ι→ o (a first-order predicate with one argument
has this type). Then, [[ι → o]]D is the set of all functions from D to {0, 1} (or
equivalently, of arbitrary subsets of D). Moreover, it can be verified by Defini-
tions 1 and 12 that the set FD(ι→ o) is the set of all finite functions from D to
{0, 1} (or equivalently, of finite subsets of D).

As a second example, consider the type (ι → o) → o. This is the type of
a predicate which takes as its only parameter another predicate which is first-
order. Then, [[(ι→ o)→ o]]D is the set of all monotonic functions from finite sets
(ie., elements of FD(ι → o)) to {0, 1}. In other words, in the semantics of the
higher-order language that we will develop, a predicate of type (ι→ o)→ o will
denote a monotonic function from finite subsets of D to {0, 1}, ie., it will denote
a set of finite subsets of D that respects monotonicity. On the other hand, it
can be verified that the set FD((ι→ o)→ o) contains all the relations that have
the following property: each one of them can be written as the union of a finite
number of simpler relations each one of which consists of a finite set of elements
of D together with all its finite supersets. ��

4.2 The Semantics of Expressions

We can now proceed to give meaning to the expressions of H. This is performed
by first defining the notions of interpretation and state for H, that are similar
to the corresponding notions for first-order languages:

Definition 13. An interpretation I of H consists of:

1. a nonempty set D, called the domain of I
2. an assignment to each individual constant symbol c, of an element I(c) ∈ D
3. an assignment to each predicate symbol p : π, of an element I(p) ∈ [[π]]D
4. an assignment to each function symbol f of type ιn → ι, of a function I(f) ∈

Dn → D.

Definition 14. Let I be a given interpretation with domain D. Then, a state s
over I is a function that assigns to each argument variable Q of type ρ of H, an
element s(Q) ∈ FD(ρ).

The key technical difficulty we now have to confront is the definition of the
semantics of application. The problem that arises can be explained by an example
(written in Prolog-like syntax):

Extensional Higher-Order Logic Programming 97

p(Q):-Q(0),Q(s(0)).
nat(0).
nat(s(X)):-nat(X).

Consider the query ← p(nat). The type of p is (ι → o) → o while the type
of nat is ι → o. Let I be an interpretation of our program with underlying
domain D. Then, I(p) must be a function from FD(ι→ o) to {0, 1}. According
to Example 2, FD(ι→ o) consists of finite sets of elements of D. But I(nat) is
obviously an infinite set. How can we apply I(p) to I(nat)? The key idea is that
if a higher-order predicate of our language is true of a relation, then this fact can
be established by examining a “finite number of facts” about this relation. In
our case, p just examines for its input relation Q whether it is true of 0 and s(0).
These remarks suggest that the meaning of p(nat) can be established as follows:
we apply I(p) to the “finite approximations” of I(nat), ie., to all elements of
FD(ι→ o)[I(nat)], and then take the least upper bound of the results. In our case
p(nat) will be true since there exists a finite fragment of I(nat) for which I(p)
is true (namely the set {I(0), I(s(0))}.

In the following definition, s[d/X] is used to denote a state that is identical to
s the only difference being that the new state assigns to X the value d.

Definition 15. Let I be an interpretation of H, let D be the domain of I, and
let s be a state over I. Then, the semantics of expressions of H with respect to
I and s, is defined as follows:

1. [[0]]s(I) = 0
2. [[1]]s(I) = 1
3. [[c]]s(I) = I(c), for every individual constant c
4. [[p]]s(I) = I(p), for every predicate variable p
5. [[Q]]s(I) = s(Q), for every argument variable Q
6. [[(f E1 · · ·En)]]s(I) = I(f) [[E1]]s(I) · · · [[En]]s(I), for every n-ary function sym-

bol f
7. [[(E1E2)]]s(I) =

⊔
b2∈B2

([[E1]]s(I)(b2)), where B2 = FD(type(E2))[[[E2]]s(I)]

8. [[(λX.E)]]s(I) = λd.[[E]]s[d/X](I), where d ranges over FD(type(X))

9. [[(E1 ←π E2)]]s(I) =
{

1, if [[E2]]s(I) �π [[E1]]s(I)
0, otherwise

10. [[(E1

∨
π E2)]]s(I) =

⊔
π{[[E1]]s(I), [[E2]]s(I)}, where

⊔
π is the least upper

bound function on [[π]]D
11. [[(E1

∧
π E2)]]s(I) =

�
π{[[E1]]s(I), [[E2]]s(I)}, where

�
π is the greatest lower

bound function on [[π]]D
12. [[(E1≈E2)]]s(I) =

{
1, if [[E1]]s(I) = [[E2]]s(I)
0, otherwise

13. [[(∃Q E)]]s(I)=
{

1, if there exists d ∈ FD(type(Q)) such that [[E]]s[d/Q](I)=1
0, otherwise

For closed expressions E we will often write [[E]](I) instead of [[E]]s(I) (in this
case, the meaning of E is independent of s). We now define the notion of model:

Definition 16. Let S be a set of closed formulas of H and let I be an interpre-
tation of H. We say that I is a model of S if for every F ∈ S, [[F]](I) = 1.

98 A. Charalambidis et al.

4.3 Herbrand Interpretations

Herbrand interpretations are a cornerstone of first-order logic programming.
Analogously, we have:

Definition 17. The Herbrand universe UH of H is the set of all terms that can
be formed out of the individual constants and the function symbols of H.

Definition 18. A Herbrand interpretation I of H is an interpretation such that:

1. The domain of I is the Herbrand universe UH of H.
2. For every individual constant c, I(c) = c.
3. For every predicate symbol p of type π, I(p) ∈ [[π]]UH

.
4. For every n-ary function symbol f and all t1, . . . , tn ∈ UH, I(f) t1 · · · tn =

f t1 · · · tn.

Since all Herbrand interpretations have the same underlying universe, we will
often refer to a “Herbrand state s”, meaning a state whose underlying universe
is UH. We will often also refer to an “interpretation of a set of formulas S”
rather than the underlying language H. In this case, we will implicitly assume
that the set of individual constants and function symbols are those that appear
in S. Under this assumption, we will often talk about the Herbrand universe US

of a set of formulas S. The set of Herbrand interpretations of a given program,
forms a complete lattice:

Definition 19. Let P be a program and let IP be the set of Herbrand interpreta-
tions of P. We define the following partial order on IP: for all I, J ∈ IP, I �IP

J
iff for every predicate variable p of P, I(p) � J(p).

Lemma 2. Let P be a program and let IP be the set of Herbrand interpretations
of P. Then, IP is a complete lattice under �IP

.

In the following we denote with ⊥IP
the least element of IP, ie., the interpretation

that assigns to each predicate p : π of P the element ⊥π.

5 Minimum Herbrand Model Semantics

The basic properties of logic programming extend to the higher-order case:

Theorem 1 (Model Intersection Theorem). Let P be a program and M a
non-empty set of Herbrand models of P. Then,

�
M is a Herbrand model for P.

It is straightforward to check that every higher-order program P has at least one
Herbrand model I, namely the one which for every predicate symbol p and for all
basic elements b1, . . . , bn of the appropriate types, I(p) b1 · · · bn = 1. Therefore,
the intersection of all Herbrand models is well-defined, and by the above theorem
is a model of the program. We will denote this model by MP.

Definition 20. Let P be a higher order program. The immediate consequence
operator TP : IP → IP is defined as TP(I)(p) =

⊔
(p←πE)∈P [[E]](I), for every p : π

in P and for every I ∈ IP.

Extensional Higher-Order Logic Programming 99

Lemma 3. Let P be a program. Then the mapping TP is continuous.

Define now the following sequence of interpretations:

TP ↑ 0 = ⊥IP

TP ↑ (n + 1) = TP(TP ↑ n)
TP ↑ ω =

⊔
{TP ↑ n | n < ω}

The following theorem is entirely analogous to the one for the first-order case:

Theorem 2. Let P be a program. Then MP = TP ↑ ω.

6 Proof Procedure

In this section we propose a sound and complete proof-procedure for extensional
higher-order logic programming.

6.1 Basic Expressions

Basic elements (introduced in Section 4) have played an important role in the
development of the semantics of our higher-order logic programming language.
In order to devise a sound and complete proof procedure for our language, we
first need to find a syntactic representation for basic elements:

Definition 21. The set of basic expressions of H is recursively defined as fol-
lows. The basic expressions of type ι are all expressions of H of type ι. The basic
expressions of type o are 0 and 1.

A basic expression of type ρ1 → · · · → ρn → o is a non-empty finite union of
lambda abstractions each of which has one of the following forms:

1. λX1. · · ·λXn.0
2. λX1. · · ·λXn.1
3. λX1. · · ·λXn.A1 ∧ · · · ∧ Am, where m > 0 and each Ai is either

(a) (Xk ≈ t), if Xk is of type ι and t is a basic expression of type ι whose
variables are different from X1, . . . ,Xn, or

(b) Xk, if Xk is of type o, or
(c) Xk(B1) · · · (Br), if Xk is of type ρ′1 → · · · → ρ′r → o and each Bj is a

basic expression of type ρ′j.

In the above definition, if any ρk is of type ι then the body of each abstraction
within the finite union must either be 0 or contain exactly one expression of the
form (Xk ≈ t).

The proof procedure that will be developed later in this section, relies on a
special form of basic expressions:

Definition 22. A basic expression B is called a basic template if in every subex-
pression of the form (X ≈ t) in B, the term t is a variable that does not appear
in any other place of B.

100 A. Charalambidis et al.

The following two lemmas suggest that basic expressions are the syntactic ana-
logues of basic elements:

Lemma 4. For every basic expression B : ρ, for every interpretation I with
domain D, and for every state s over I, [[B]]s(I) ∈ FD(ρ).

The converse of the above lemma holds if we restrict attention to Herbrand
interpretations and basic elements over the Herbrand universe.

Lemma 5. Let ρ be any argument type and let b ∈ FUH(ρ). Then, there exists
a ground basic expression B : ρ such that for every Herbrand interpretation I,
[[B]](I) = b.

6.2 Substitutions and Unifiers

Definition 23. A substitution θ is a finite set {V1/E1, . . . ,Vn/En}, where the
Vi’s are different argument variables of H and each Ei is an expression of H
having the same type as Vi. We write dom(θ) = {V1, . . . ,Vn} and range(θ) =
{E1, . . . ,En}. A substitution is called basic is all Ei are basic expressions.

Definition 24. Let θ be a substitution and let E be a positive expression. Then,
Eθ is an expression obtained from E as follows:

– Eθ = E, if E is 0, 1, c, or p.
– Qθ = θ(Q) if Q ∈ dom(θ); otherwise, Qθ = Q.
– (f E1 · · ·En)θ = (f E1θ · · ·Enθ).
– (E1E2)θ = (E1θ E2θ).
– (λX.E1)θ = (λZ.(E1{X/Z})θ), where Z ∈ FV (E1) ∪ FV (dom(θ)) ∪ FV (range(θ)).
– (E1

∨
π E2)θ = (E1θ

∨
π E2θ).

– (E1

∧
π E2)θ = (E1θ

∧
π E2θ).

– (E1 ≈ E2)θ = (E1θ ≈ E2θ).
– (∃QE1)θ = (∃Z (E1{Q/Z})θ), where Z ∈ FV (E1) ∪ FV (dom(θ)) ∪ FV (range(θ)).

The composition of substitutions can be defined in a similar way as in the first-
order case:

Definition 25. Let θ = {V1/E1, . . . ,Vm/Em} and σ = {Q1/E
′
1, . . . ,Qn/E

′
n} be

substitutions. Then the composition θσ of θ and σ is the substitution obtained
from the set {V1/E1σ, . . . ,Vm/Emσ,Q1/E

′
1, . . . ,Qn/E

′
n} by deleting any Vi/Eiσ

for which Vi = Eiσ and deleting any Qj/E
′
j for which Qj ∈ {V1, . . . ,Vm}.

The substitution corresponding to the empty set will be called the identity sub-
stitution and will be denoted by ε. The following proposition is easy to establish:

Proposition 1. Let θ, σ and γ be substitutions. Then:

1. θε = εθ = θ.
2. For all positive expressions E, (Eθ)σ = E(θσ).
3. (θσ)γ = θ(σγ).

Extensional Higher-Order Logic Programming 101

where equality should be understood as α-congruence ie., as syntactic equality
subject to a possible renaming of bound variables.

Definition 26. Let S be a set of terms of H (ie., expressions of type ι). A
substitution θ will be called a unifier of the expressions in S if the set Sθ = {Eθ |
E ∈ S} is a singleton. The substitution θ will be called a most general unifier
of S (denoted by mgu(S)), if for every unifier σ of the expressions in S, there
exists a substitution γ such that σ = θγ.

6.3 SLD Resolution

We now proceed to define the notions of answer and correct answer. Notice that
both of these notions rely on basic (ie., not arbitrary) substitutions:

Definition 27. Let P be a program and G a goal. An answer for P ∪ {G} is a
basic substitution for free variables of G.

Definition 28. Let P be a program, G =← E a goal clause and θ an answer for
P ∪ {G}. We say that θ is a correct answer for P ∪ {G} if for every model M of
P and for every state s over M , [[Eθ]]s(M) = 1.

Definition 29. Let P be a program and let G =← A and G′ =← A′ be goal
clauses. Then, we will say that A′ is derived in one step from A using the basic
substitution θ (or equivalently that G′ is derived in one step from G using θ),
and we denote this fact by A

θ→ A′ (respectively, G
θ→ G′) if one of the following

conditions applies:

1. p E1 · · ·En
ε→ E E1 · · ·En, where p←π E is a rule in P.

2. Q E1 · · ·En
θ→ (Q E1 · · ·En)θ, where θ = {Q/B} and B is a basic template

such that FV (B) ∩ FV ({E1, . . . ,En}) = ∅.
3. (λX.E) E1 · · ·En

ε→ (E{X/E1})E2 · · ·En.
4. (E′∨

π E′′) E1 · · ·En
ε→ E′ E1 · · ·En.

5. (E′∨
π E′′) E1 · · ·En

ε→ E′′ E1 · · ·En.
6. (E′∧

π E′′) E1 · · ·En
ε→ (E′ E1 · · ·En) ∧ (E′′ E1 · · ·En).

7. (E1 ∧ E2)
θ→ (E′

1 ∧ (E2θ)), if E1
θ→ E′

1.

8. (E1 ∧ E2)
θ→ ((E1θ) ∧ E′

2), if E2
θ→ E′

2.
9. (� ∧ E) ε→ E

10. (E ∧�) ε→ E

11. (E1 ≈ E2)
θ→ �, where θ is an mgu of E1 and E2.

12. (∃Q E) ε→ E

Definition 30. Let P be a program and G a goal. An SLD-derivation of P∪{G}
consists of (possibly infinite) sequences G0 = G,G1, . . . of goals and θ1, θ2, . . . of
basic substitutions such that each Gi+1 is derived in one step from Gi using θi+1.

102 A. Charalambidis et al.

Definition 31. Let P be a program and G a goal. An SLD-refutation of P∪{G}
is a finite SLD-derivation of P ∪ {G} which has the empty clause � as the last
goal in the derivation. If Gn = �, then we say that the refutation has length n.

Definition 32. Let P be a program and G a goal. A computed answer θ for
P∪{G} is the basic substitution obtained by restricting the composition θ1 · · · θn to
the free variables of G, where θ1, . . . , θn is the sequence of the basic substitutions
used in an SLD-refutation of P ∪ {G} of length n.

Example 3. Consider the program of Example 1. We have:

closure Q a b θ0 = ε
(λR.λX.λY.(R X Y)) Q a b θ1 = ε
Q a b θ2 = {Q/(λX.λY.(X ≈ X0) ∧ (Y ≈ Y0))}
(λX.λY.(X ≈ X0) ∧ (Y ≈ Y0)) a b θ3 = ε
(a ≈ X0) ∧ (b ≈ Y0) θ4 = {X0/a}
� ∧ (b ≈ Y0) θ5 = ε
(b ≈ Y0) θ6 = {Y0/b}
�

where some simple steps involving lambda abstractions have been omitted. The
composition of the above substitutions gives the substitution σ1 below. Similarly
we can get σ2, etc.

σ1 = {Q/λX.λY.(X ≈ a) ∧ (Y ≈ b)}
σ2 = {Q/(λX.λY.(X ≈ a) ∧ (Y ≈ Z))

∨
π (λX.λY.(X ≈ Z) ∧ (Y ≈ b))}

· · ·

Notice that σ1 above corresponds to the set {(a, b)}, σ2 to the set {(a, Z), (Z, b)},
for every Z in the Herbrand universe, and so on. ��

6.4 Soundness and Completeness of SLD-resolution

The proofs of soundness and completeness of the proposed proof procedure
(which due to space limitations will appear in the full version of the paper)
follow along similar lines as the corresponding results for the first-order case.

Theorem 3 (Soundness). Let P be a program and G a goal. Then, every com-
puted answer for P ∪ {G} is a correct answer for P ∪ {G}.

As in the first-order case, we have various forms of completeness. We start with
the analogue of a theorem due to Apt and van Emden (see [Llo87]).

Theorem 4. Let P be a program and G a goal and [[G]]s(MP) = 1 for all states
s. Then, there is a refutation for P ∪ {G} using the identity substitution.

The following is a generalization of Hill’s theorem (see [Llo87][Theorem 8.4]) for
the higher-order case:

Extensional Higher-Order Logic Programming 103

Theorem 5. Let P be a program, G a goal and assume that P ∪ {G} is unsat-
isfiable (ie., it does not have any models). Then, there exists an SLD-refutation
of P ∪ {G}.

Finally, the following is a generalization of Clark’s theorem (see [Llo87][Theorem
8.6]) for the higher-order case:

Theorem 6 (Completeness). Let P a program and G a goal. For every correct
answer θ for P ∪ {G}, there exists an SLD-refutation for P ∪ {G} using the
computed answer σ and a basic substitution γ such that θ = σγ.

7 Conclusions

An implementation of the proposed proof procedure has been performed in
Haskell1. The main difference in comparison to a first order implementation,
is that the proof procedure has to generate an infinite (yet enumerable) number
of basic templates. This affects the search tree, making it in general infinite not
only in depth but also in breadth. As a result, the naive depth first search strat-
egy would in general be unfair with respect to the enumeration of the solutions.
In our implementation we use the strategy for interleaving different solutions
proposed in [KSFS05], which solves the search problem in a satisfactory way.

References

[AJ94] Abramsky, S., Jung, A.: Domain theory. In: Abramsky, S., Gabbay, D.M.,
Maibaum, T.S.E. (eds.) Handbook of Logic in Computer Science III.
Clarendon Press, Oxford (1994) (expanded version)

[Bez99] Bezem, M.: Extensionality of Simply Typed Logic Programs. In: Interna-
tional Conference on Logic Programming (ICLP), pp. 395–410 (1999)

[CKW93] Chen, W.C., Kifer, M., Warren, D.S.: HILOG: A Foundation for Higher-
Order Logic Programming. J. of Logic Programming 15(3), 187–230 (1993)

[KSFS05] Kiselyov, O., Shan, C.C., Friedman, D.P., Sabry, A.: Backtracking, Inter-
leaving, and Terminating Monad Transformers. In: International Confer-
ence on Functional Programming (ICFP), pp. 192–203 (2005)

[Llo87] Lloyd, J.: Foundations of Logic Programming. Springer, Heidelberg (1987)
[NM98] Nadathur, G., Miller, D.: Higher-Order Logic Programming. In: Gabbay,

D.M., Hogger, C.J., Robinson, J.A. (eds.) Handbook of Logics for Artifi-
cial Intelligence and Logic Programming, pp. 499–590. Clarendon Press,
Oxford (1998)

[Wad91] Wadge, W.W.: Higher-Order Horn Logic Programming. In: Proceedings of
the International Symposium on Logic Programming, pp. 289–303 (1991)

[War82] Warren, D.H.D.: Higher-Order Extensions to Prolog: are they needed?
Machine Intelligence 10, 441–454 (1982)

1 The code can be retrieved from http://code.haskell.org/hopes

dl2asp: Implementing Default Logic via Answer
Set Programming

Yin Chen1, Hai Wan2, Yan Zhang3, and Yi Zhou3

1 Department of Computer Science, South China Normal University,
Guangzhou, China, 510631

2 School of Software, Sun Yat-Sen University, Guangzhou, China, 510275
3 School of Computing and Information Technology, University of Western Sydney,

Penrith South DC, NSW 1797, Australia

Abstract. In this paper, we show that Reiter’s default logic in the
propositional case can be translated into answer set programming by
identifying the internal relationships among formulas in a default the-
ory. Based on this idea, we implement a new default logic solver - dl2asp.
We report some experimental results, in particular the application of
dl2asp for solving the fair division problem in social choice theory.

1 Introduction

As a predominant approach for nonmonotonic reasoning, Default Logic (DL)
[21] has attracted many researchers in the last three decades. Default logic is
theoretically significant not only because of its elegant syntax and semantics, but
also its expressive power to capture other nonmonotonic reasoning approaches,
such as autoepistemic logic, defeasible reasoning, and so on [1,11,8,22].

However, despite the remarkable success on theoretical aspects, default logic
has encountered huge difficulties from a practical viewpoint. Although many
endeavors have been done [3,18,17], the implementation of default logic still
remains unsatisfactory. Consequently, the practical value of default logic has
been severely restricted.

This paper intends to address this issue by translating default logic into Answer
Set Programming (ASP) [7], a promising approach that has been successfully im-
plemented by a number of sophisticated solvers [6,19,12,13]. It is well-known that
ASP is a special case of default logic by restricting the formulas in default theories
to atoms/literals [8,22]. An interesting question arises whether the converse can
also be done to some extent. In other words, is it possible to translate default logic
back into answer set programming?

We answer this question positively. We show that default logic in the propo-
sitional case can be translated to answer set programming by identifying the
internal relationships among formulas in a default theory. By internal relation-
ships, we mean those implication rules whose head is a formula, whose body is
a set of formulas occurred in the default theory, and the body entails the head
in propositional logic.

T. Janhunen and I. Niemelä (Eds.): JELIA 2010, LNAI 6341, pp. 104–116, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

dl2asp: Implementing Default Logic via Answer Set Programming 105

This translation is not only theoretically interesting but also of practical rel-
evance. Based on the translation, we implement a new solver for default logic,
called dl2asp. We report some experimental results, which demonstrate that the
performance of dl2asp is rather satisfactory.

The paper is organized as follows. Section 2 recalls some basic notions and
definitions in default logic and answer set programming. Section 3 presents the
translation from default logic to answer set programming, and discusses some
related properties. Section 4 explains the implementation of dl2asp in detail.
Section 5 reports some experiments, while Section 6 considers an application
of dl2asp for solving the fair division problem in social choice theory. Finally,
Section 7 concludes the paper.

2 Preliminaries

2.1 Reiter’s Default Logic

We consider Reiter’s default logic [21] in propositional case. A default theory Δ
is a pair 〈W,D〉, where W is a set of propositional formulas and D is a set of
defaults of the following form:

α : β1, . . . , βn/γ, (1)

where α, β1, . . . , βn, γ are propositional formulas. In addition, α is called the
prerequisite, β1, . . . , βn the justifications, and γ the conclusion of the default. Let
Δ be a default theory. We use PΔ, JΔ and CΔ to denote the sets of prerequisites,
justifications and conclusions occurred in the default theory respectively.

Definition 1 (Extension [21]). Let Δ = 〈W,D〉 be a default theory and T a
theory. We say that T is an extension of Δ if T = Γ (T), where for any theory
S, Γ (S) is the minimal set (in the sense of set inclusion) satisfying the following
three conditions:

1. W ⊆ Γ (S).
2. Γ (S) is a theory.
3. For any default rule α : β1, . . . , βn/γ ∈ D, if α ∈ Γ (S) and ¬βi �∈ S, (1 ≤

i ≤ n), then γ ∈ Γ (S).

Example 1. Consider the default theory Δ1 = 〈W1, D1〉, where W1 = {¬b ∨
¬c, c ∨ d} and D1 contains the following four defaults:

: ¬b/a, (2)
: ¬a,¬c/b, (3)
: a ∧ ¬b/¬d, (4)
¬c : ¬a/¬a. (5)

It can be checked that Δ1 has two extensions (under equivalence): E1 = Th(W1∪
{a,¬d}) and E2 = Th(W1 ∪ {¬a, b}).1

1 We use Th(S) to denote the deductive closure of a set S of formulas.

106 Y. Chen et al.

2.2 Answer Set Programming

An answer set program (program for short) is a set of rules of the following form:

a← b1, . . . , bm, not bm+1, . . . , not bn, (6)

where 0 ≤ m ≤ n, a is either an atom or ⊥, and b1, . . . bn are atoms. In addition,
a is called the head of the rule and {b1, . . . , bm, not bm+1, . . . , not bn} the body
of the rule. More specifically, {b1, . . . , bm} is called the positive body of the rule,
while {bm+1, . . . , bn} is called the negative body of the rule. We call a rule a
constraint if a is ⊥, fact if n = 0, and positive if m = n.

Let X be a set of atoms. We say that X satisfies a rule of form (6) if X satisfies
its head (i.e. a ∈ X) whenever X satisfies its body (i.e. {b1, . . . , bm} ⊆ X and
{bm+1, . . . , bn} ∩ X = ∅). Hence, X satisfies a constraint iff it does not satisfy
its body.

Definition 2 (Answer set [7]). Let Π be a program and X a set of atoms.
We say that X is an answer set of Π if X is the minimal set (in the sense of
set inclusion) that satisfies ΠX , where ΠX is obtained as follows:

– delete all rules whose bodies are not satisfied by X;
– delete not bi in the bodies of the remaining rules.

Gelfond and Lifschitz [8] showed that answer set programming is a special case
of default logic by simply rewriting a rule of form (6) to the following default:

b1 ∧ . . . ∧ bm : ¬bm+1, . . . ,¬bn/a. (7)

Let Π be a program. By DL(Π), we denote the default theory obtained from Π
as above (Note that W in DL(Π) is obtained by facts in Π). Then, the answer
sets of Π and the extensions of DL(Π) are one-to-one corresponded.

Theorem 1 (From ASP to DL [8]). Let Π be a program and X a set of
atoms. Then, X is an answer set of Π iff Th(X) is an extension of DL(Π).

An interesting question arises whether the converse of Theorem 1 holds as well.
In other words, is it possible to translate default logic back into answer set
programming? In the next section, we answer it positively.

3 From Default Logic to Answer Set Programming

This section translates Reiter’s default logic in propositional case to answer set
programming. To begin with, let us take a closer look at the translation from
ASP to DL, which. In fact, this translation indicates that the rule of form (6) in
ASP plays the same role of the default (7) in DL. This means that, conversely, a
specific kind of default, namely of form (7) plays the same role to an ASP rule,
namely of form (6). Analogously, its suggests that a default of form (1) in DL,
i.e.

α : β1, . . . , βn/γ,

dl2asp: Implementing Default Logic via Answer Set Programming 107

should play a similar role to

γ ← α, not ¬β1, . . . , not ¬βn.

However, this is not exactly an ASP rule. To fix this problem, we can simply
introduce a new atom pα for each formula α. Then, analogous to the translation
from ASP to DL, a default of form (1) in DL should play a similar role to the
following rule in ASP:

pγ ← pα, not p¬β1 , . . . , not p¬βn . (8)

Now, we have a naive translation from DL to ASP. Formally, let Δ = 〈W,D〉
be a default theory. We introduce a set of new atoms pα for each formula α ∈
W ∪ PΔ ∪ ¬JΔ ∪ CΔ.2 Let r be a default of form (1), by R(r), we denote the
ASP rule of form (8). Let Δ = 〈W,D〉 be a default theory, by R(Δ), we denote
the program

{pα | α ∈ W} ∪ {R(r) | r ∈ D}.
Indeed, R(Δ) is the answer set program obtained from the default theory Δ by
mapping each formula occurred in the default theory to a corresponding new
atom.

Example 2. Recall Example 1. According to the above definition, R(Δ1) contains
the following rules:

p¬b∨¬c ← pb ← not pa, not pc

pc∨d ← p¬d ← not p¬(a∧¬b)

pa ← not pb p¬a ← p¬c, not pa.

It can be checked that R(Δ1) has two answer sets: M1 = {p¬b∨¬c, pc∨d, pa, p¬d}
and M2 = {p¬b∨¬c, pc∨d, pb, p¬d}. Compared to the extensions of Δ1, while M1

exactly corresponds to E1, M2 and E2 are not related.

Let us take a closer look at Examples 1 and 2. One may observe that there is no
extension of Δ1 containing b when ¬d holds because W1∪{¬d} |= c, thus default
(3) in Δ1 will never be triggered. This is the reason why M2 fails to correspond
to any extension of Δ1. Also, suppose that b is in an extension of Δ1. Then, ¬c
must be in the extension as well because W ∪ {b} |= ¬c. As such, default (5)
in Δ1 could be triggered so that ¬a is also in the extension. This explains why
there is no answer sets of R(Δ1) corresponding to E2.

In general, we can conclude that what is missing in R(Δ) are the internal
relationships among formulas in Δ. By simply translating Δ to R(Δ), some
internal relationships among formulas are lost, which might be crucial for com-
puting a default theory’s extensions, for instance, the entailment relationship
W1 ∪ {¬d} |= c as discussed above.

Our main theoretical result in this paper is: together with the internal re-
lationships, R(Δ) exactly captures the extensions of Δ. Formally, let Δ be a
2 We use ¬JΔ to denote the set of formulas {¬φ | φ ∈ JΔ}.

108 Y. Chen et al.

default theory and FΔ = W ∪ PΔ ∪ ¬JΔ ∪ CΔ. The set of implication rules of
Δ, denoted by I(Δ), is the set of rules of the form

pφ ← pφ1 , . . . , pφn (9)

where {φ, φ1, . . . φn} ⊆ FΔ, φ �∈ {φ1, . . . , φn} and {φ1, . . . , φn} |= φ.
Finally, let AS(Δ) = R(Δ)∪ I(Δ). The following theorem shows that AS(Δ)

exactly captures the extensions of Δ. That is, the answer sets of AS(Δ) is one-
to-one corresponding to the extensions of Δ.

Theorem 2 (From DL to ASP). Let Δ be a default theory and T a consistent
theory.3 Then, T is an extension of Δ iff pT is an answer set of AS(Δ), where
pT = {pα | α ∈ FΔ, T |= α}.

Proof (sketch). 4 Firstly, it is observed that if T is an extension of Δ, then there
exists F ⊆ FΔ such that T is the deductive closure of W ∪ F .

Now, suppose that T is an extension of Δ. Then, pT satisfies all rules in
AS(Δ) according to the definition. Thus, pT satisfies AS(Δ)pT . Assume that pT

is not an answer set of AS(Δ). Then, there exists X ⊂ pT such that X satisfies
AS(Δ)pT as well. Let T ′ be the deductive closure of {α | pα ∈ X}. Then, it
can be checked that T ′ satisfies the conditions of the operator Γ with respect
to T (note that X satisfies I(Δ)). Hence, Γ (T) ⊆ T ′. In addition, T ′ ⊂ T since
X ⊂ pT . This shows that Γ (T) ⊆ T ′ ⊂ T , a contradiction.

On the other hand, suppose that pT is an answer set of AS(Δ). Then, pT

satisfies each rule in R(Δ). Therefore, T satisfies the conditions of the operator
Γ with respect to T itself. Hence, Γ (T) ⊆ T . Assume that Γ (T) ⊂ T . Then,
pΓ (T) satisfies R(Δ)pT according to the definition of R(Δ). Also, pΓ (T) satisfies
I(Δ)pT according to the definitions of I(Δ) and pΓ (T). Hence, pΓ (T) satisfies
AS(Δ)pT . In addition, pΓ (T) ⊂ pT since Γ (T) ⊂ T . This shows that pT is not
an answer set of AS(Δ), a contradiction.

Although AS(Δ) exactly captures the extensions of Δ, the implication rules in
I(Δ) could be a lot. Next, we propose several techniques to reduce the number
of implication rules by the following observations:

– In ASP, suppose that there are two rules sharing the same head, the same
negative body but one rule’s positive body is a subset of another’s. Then, the
latter rule is “dummy” because these two rules are strongly equivalent to the
former one [15]. Hence, we can only consider those “minimal” implication
rules for a default theory Δ.

– In DL, given a default theory Δ = 〈W,D〉, all the extensions must contain
W . Hence, we can fix W for the implication rules. That is, we can only
consider those internal relationships (i.e. implication rules) generated from
the set PΔ ∪ ¬JΔ ∪ CΔ under the context of W .

3 Here, we only consider consistent extensions. Inconsistency can be easily checked in
default logic [22].

4 Due to a space limit, proofs in this paper, if given, are sketched.

dl2asp: Implementing Default Logic via Answer Set Programming 109

– Suppose that there exists an inconsistent (unsatisfiable) set of formulas.
Then, for any other φ, it generates an implication rule. Of course, this is
not necessary. All we need is a constraint stating that these formulas (their
corresponding atoms) cannot appear at the same time.

– Observed from Theorem 2.5 [21], all the extensions of a default theory Δ
can be rewritten as Th(W ∪C), where C is a subset of CΔ. Hence, we only
need to consider the implication rules whose heads are only from PΔ ∪ ¬JΔ

and bodies are only from CΔ.

Based on the above observations and discussions, we can simplify the implica-
tion rules as follows. Let Δ = 〈W,D〉 be a default theory. The set of modified
implication rules of Δ, denoted by I∗(Δ), is the set of rules of form (9), where

– either φ is ⊥,5 φi ∈ CΔ, W ∪ {φ1, . . . , φn} is unsatisfiable, and {φ1, . . . , φn}
is the minimal set satisfying the above conditions,

– or φ ∈ PΔ ∪ ¬JΔ, φi ∈ CΔ \ {φ}, W ∪ {φ1, . . . , φn} is satisfiable, W ∪
{φ1, . . . , φn} |= φ, and {φ1, . . . , φn} is the minimal set satisfying the above
conditions.

Example 3. Recall Δ1 discussed in Examples 1 and 2 again. According to the
definition, I∗(Δ) is the set of the following rules:

⊥ ← pa, p¬a pc ← p¬d

⊥ ← pb, p¬d p¬(a∧¬b) ← pb

p¬c ← pb p¬(a∧¬b) ← p¬a

It can be checked that R(Δ)∪I∗(Δ) has two answer sets: {p¬b∨¬c, pc∨d, pa, p¬d}
and {p¬b∨¬c, pc∨d, p¬a, pb}, which are exactly corresponding to the extensions
E1 and E2 of Δ1 respectively.

In general, let AS∗(Δ) = R(Δ) ∪ I∗(Δ). The following theorem shows that
AS∗(Δ) is enough to capture the extensions of Δ.

Theorem 3. Let Δ be a default theory and T a consistent theory. Then, T is
an extension of Δ iff p∗T is an answer set of AS∗(Δ), where p∗T = {pα | α ∈
W ∪ CΔ, T |= α}.

Clearly, the atoms used in AS∗(Δ) is linear with respect to the size of Δ. How-
ever, although the number of implication rules in I∗(Δ) is significantly reduced
compared to I(Δ), there might be exponential number of such rules. It is well-
known that checking whether a default theory in the propositional case has
an extension is ΣP

2 complete [10], while checking whether a normal logic pro-
gram has an answer set is NP complete [4]. Hence, the exponential size seems
inevitable, providing some general assumptions in the complexity theory.

However, as we will show later in the experiments, the number of implication
rules is not really explosive. This is also partially evidenced by the research of

5 In this case, we define p⊥ as ⊥ for convenience.

110 Y. Chen et al.

minimal unsatisfiable subset. For instance, the experiments in [14] showed that
the number of MUS (corresponding to minimal implication rules in I∗(Δ)) is
not big for many cases. Also, although simple, it is worth mentioning that if the
default theory Δ itself is ASP-like (i.e. W ∪CΔ∪¬JΔ∪PΔ only contains atoms),
then I∗(Δ) is empty.

A closely related work is due to Dao-Tran et al. [20] for translating default
logic to so-called description logic knowledge bases, which is an extension of ASP
with description logics. Restricted in the propositional case, while this work is to
translate DL to an extension of ASP, ours directly translates DL to ASP itself.

4 Implementation

Based on Theorems 2 and 3, we have implemented a new solver for default
logic, called dl2asp, which computes all extensions of a given default theory.
More precisely, the key idea of dl2asp is to translate a given default theory Δ
to AS∗(Δ). Then, by Theorem 3, the task of computing all the extensions of Δ
turns into computing all the answer sets of AS∗(Δ).

A default theory is encoded in an ASCII file in dl2asp. For example, the default
theory Δ1 in Example (1) is encoded as follows:

-b | -c c | d
: -b / a : -a, -c / b
: a & -b / -d -c : -a / -a

Here, “-”, “|” and “&” stand for the connectives ¬, ∨ and ∧ respectively.
Figure 1 illustrates how dl2asp works. An input default theory is firstly trans-

lated to an answer set program by the translator in dl2asp. Then, an ASP solver
is called to compute the answer sets of the program. Finally, the answer sets will
be interpreted back to extensions of the original default theory by a convertor.

For the ASP solver module in dl2asp, we just use clasp6. The convertor in
dl2asp is trivial. As demonstrated in Theorem 3, one can simply interpret each
atom in the answer sets to their corresponding formulas. Hence, the main issue
in dl2asp is the translator.

Default
Theory ASP Programs

ASP SolverConvertor Answer SetsExtensions

Translator

MCSes MUSesR() I ()

Fig. 1. Outline of dl2asp

6 http://www.cs.uni-potsdam.de/clasp/

dl2asp: Implementing Default Logic via Answer Set Programming 111

Let Δ = 〈W,D〉 be a default theory. According to the construction, AS∗(Δ)
contains two parts, namely R(Δ) and I∗(Δ). For R(Δ), we can first introduce
a new atom pα for each formula α ∈ FΔ, then get a new fact pα for each
formula α ∈ W and get a new rule of form (8) for each default in D of form
(1). However, I∗(Δ) is relatively difficult. The most technical part of dl2asp is
to compute I∗(Δ) - the set of modified implication rules.

For this purpose, we borrow some ideas and techniques of computing minimal
unsatisfiable subsets from [14]. Let S be a set of formulas. A subset S′ of S is a
Minimal Unsatisfiable Subset (MUS) if S′ is unsatisfiable and for any S′′ ⊂ S′,
S′′ is satisfiable. Liffiton and Sakallah [14] developed a sound and complete
algorithm, called CAMUS7, for computing all MUSes of a given set of clauses.
However, instead of computing MUSes directly, they computed so-called MCSes
first. Here, a subset S′ of S is a Maximal Correction Subset (MCS) if S\S′ is
satisfiable and for any S′′ ⊂ S′, S\S′′ is unsatisfiable. MCS and MUS are closely
related. In fact, all the MUSes are exactly all the minimal hitting sets of the
collection of all MCSes. Here, given a collection of sets Ω, a set H is a minimal
hitting set of Ω iff for all H0 ∈ Ω, H ∩H0 �= ∅ and there is no H ′ ⊂ H satisfying
the above condition.

We now apply this method to compute all the modified implication rules (i.e.
I∗(Δ)) in our translation. Let Δ be a default theory. According to the construc-
tion, I∗(Δ) contains rules of the form pφ ← pφ1 , . . . , pφn , where {pφ1 , . . . , pφn} is
a minimal set such that W ∪{φ1, . . . , φn} |= φ. That is, it is a minimal set incon-
sistent with W ∪ {¬φ}. In other words, it is an MUS of the set W ∪ {¬φ} ∪CΔ

by fixing W and {¬φ}. Hence, we can compute all the implication rules in I∗(Δ)
as follows:

constraints compute all the MUSes of W ∪CΔ by fixing W ;
other implication rules for all φi ∈ ¬JΔ ∪ PΔ, compute all the MUSes of

W ∪ {¬φi} ∪ CΔ by fixing W and {¬φi}.

There are two major differences between this task and the one in [14] for com-
puting all MUSes. Firstly, we need to fix some formulas, e.g. formulas in W .
Secondly, we need to compute the MUSes for every φ in PΔ ∪¬JΔ. Clearly, the
task of computing constraints can be considered as a special case of the second
case. In dl2asp, we first compute constraints, then the other implication rules,
where the latter is implemented by Algorithm 1.

Let use take a closer look at Algorithm 1. Step 1 fixes W as a background
formula set. Steps 2-4 (Steps 5-6) add a selector variable xi (yj) to the formula
¬ψi (φj resp.). The AtMost constraint in Step 7 is provided by MiniSat [5]
to restrict that at most one of {x1, . . . , xm} holds, and together with Step 8,
exactly one of {¬ψ1, . . . ,¬ψm} holds. In fact, xi is corresponding to those im-
plication rules whose head is pψi . Steps 9-16 compute all the MCSes in a similar
way to Figure 2 in [14] except that W and at most one of ψi are fixed. SAT
in Step 10 and IncrementalSAT in Step 12 uses MiniSat’s incremental solving
ability to find a model of a formula. BlockingClause in Steps 14 and 15 is pro-
7 http://www.eecs.umich.edu/~liffiton/camus/

112 Y. Chen et al.

vided by CAMUS to block the MCS that obtained before. Steps 17-20 compute
all the implication rules in the same way to computing MUSes in [14], where
ConstructMUS is provided by CAMUS for computing all minimal hitting sets,
and Rewrite is the function to rewrite an MUS to an implication rule of form
(9), and delete those self implication rules like pφ ← pφ and those implication
rules like pφ ← pφ1 , . . . , pφn when there is already a constraint ⊥ ← pφ1 , . . . , pφn .

Algorithm 1. Computing Implication Rules

input : A default theory Δ = 〈W,D〉, where CΔ = {φ1, . . . , φn} and
PΔ ∪ ¬JΔ = {ψ1, . . . , ψm}

output: the set of non-constraint implication rules of Δ

Φ←W // set W as background theory1

forall 1 ≤ i ≤ m do // add selector variables to ¬ψ2

MCS(¬ψi)← ∅3

Φ← Φ ∪ {¬ψi ∨ ¬xi}4

forall φj such that 1 ≤ j ≤ n do // add selector variables to φ5

Φ← Φ ∪ {φj ∨ ¬yj}6

Φ← Φ ∪AtMost({x1, . . . , xm}, 1) // at most one of xi holds7

Φ← Φ ∪ {x1 ∨ · · · ∨ xm} // at least one of xi holds8

k ← 19

while (SAT (Φ)) do // computing MCSes10

Φk ← Φ ∪AtMost({¬y1, . . . ,¬yn}, k)11

while (M = IncrementalSAT (Φk)) do12

MCS(¬ψi)←MCS(ψi) ∪ {φj | yj ∈M}13

Φk ← Φk ∪BlockingClause(M)14

Φ← Φ ∪BlockingClause(M)15

k ← k + 116

I∗(Δ)← ∅17

forall 1 ≤ i ≤ m do // computing implication rules18

I∗(Δ)← I∗(Δ) ∪Rewrite(ConstructMUS(ψi))19

return I∗(Δ)20

Example 4. Again, recall Δ1 discussed in Examples 1 and 2, and consider the
formula ¬(a∧¬b) ∈ ¬JΔ. According to Algorithm 1, we have MCS(¬(a ∧ ¬b)) =
{{b,¬a}} and MUS(¬(a ∧ ¬b)) = {{b}, {¬a}}. So, we have two rules p¬(a∧¬b) ←
pb and p¬(a∧¬b) ← p¬a in I∗(Δ1) corresponding to the result above.

Finally, we end up this section by showing how the rest parts of dl2asp
work for the example. By calling clasp, R(Δ1) ∪ I∗(Δ1) has two answer
sets: {p¬b∨¬c, pc∨d, pa, p¬d} and {p¬b∨¬c, pc∨d, p¬a, pb}. Then, the convertor just
rewrite them as: {¬b ∨ ¬c, c ∨ d, a,¬d} and {¬b ∨ ¬c, c ∨ d,¬a, b}. In contrast
with Example 1, these two formula sets are exactly the two extensions of Δ1.

dl2asp: Implementing Default Logic via Answer Set Programming 113

5 Experimental Results

In this section, we report some experimental results of dl2asp. First, we briefly re-
view some existing solvers for default logic, including DeReS, XRay, and GADEL.
Unfortunately, we are unable to run them properly because these solvers are out
of date, and the versions of softwares they used are too old to be compatible with
current versions.

Nevertheless, it is still necessary to review these approaches, particularly their
test data. The task of all these approaches is to compute all extensions of a
given default theory. For this purpose, DeReS [3] directly uses search algorithms
to compute the extensions. In [3], some benchmarks in graph theory, e.g. find-
ing Hamiltonian circuit, are tested. Instead, XRay [18] is implemented by using
Prolog, and supporting local proof procedures. XRay tested the Hamiltonian cir-
cuit problem and some contextual default theories randomly generated. GADEL
[16] applies genetic algorithms to compute the extensions. GADEL tested the
Hamiltonian circuit problem as well as a handed-coded default theory about
relationships among people (Example 4.1, [16]).

Similarly, dl2asp intends to find all extensions of a given default theory as
well. First of all, it is observed that if the default theory is ASP-like (i.e.
W ∪ CΔ ∪ ¬JΔ ∪ PΔ only contains atoms), then the set of implication rules
is empty. Furthermore, if the default theory is disjunction-free (i.e. all the for-
mulas occurred in the default theory are literals), then all the implication rules
are constraints, and the total number is linear. This is because the implication
rules can only be of the form ⊥ ← pl, not p¬l, where l is a literal occurred in the
default theory and ¬l is the complementary literal of l. In both cases, Algorithm
1 can find out all the implication rules immediately. Hence, it is not interesting
to test such default theories for dl2asp.

However, most of the test benchmarks, e.g. the Hamiltonian circuit problem,
belong to the above two categories. Therefore, in this section, we only report our
experimental results for solving the people’s relationship problem8 (Example 4.1
in [16]), which is claimed difficult to be solved in default logic.

The system dl2asp is written in C++. The program is running on a machine
with 4 processors(AMD Athlontm II X4 620) under Ubuntu 9.10 Linux op-
erating system. We record two series of time in seconds, timet - the time for
computing all implication rules and timeall - the overall time, taking the aver-
age of 3 runs. numI∗ is the number of the rules in I∗(ΔP). The experimental
results of the people’s relationship problem are summarized in Table 1.

Although we do not intend to compare dl2asp with other solvers on this par-
ticular instance because of fairness reasons, we can see that dl2asp performs
rather satisfactory on this benchmark. As an example, for woman ∧ student,
while dl2asp only takes 0.3 seconds, GADEL and DeRes takes 1202 seconds and
more than 7200 seconds respectively under their test environments (see Table 2
in [16]).

8 For more details about this particular default theory, please refer to [16].

114 Y. Chen et al.

Table 1. Experimental results of the people’s relationship problem

boy girl man woman man ∧ student woman ∧ student
numI∗ 10 10 11 12 10 11
timet 0.5134 0.5134 0.6427 0.7001 0.2453 0.2894
timeall 0.5227 0.5228 0.6534 0.7120 0.2520 0.2987

6 Application to Fair Division Problem

In this section, we apply dl2asp for solving the fair division problem, which is
one of the central problems in social choice theory. The problem of fair division
is: given a set of agents, a set of goods and the preference among goods for each
agent, to obtain a “fair” solution for allocating the goods to the agents [2].

Formally, a fair division problem is a tupleP = 〈I,X,R〉, where I = {1, . . . , N}
is a set of agents, X = {x1, . . . , xp} is a set of indivisible goods, and R =
{R1, . . . , RN} is a preference profile, where each Ri is a reflexive, transitive and
complete relation on 2X . An (complete) allocation for P = 〈I,X,R〉 is a mapping
π : I → 2X such that for all i and j �= i, π(i) ∩ π(j) = ∅, and for every x ∈ X
there exists an i such that x ∈ π(i). An allocation π is (Pareto-) efficient iff there
is no π′ such that π′ dominates π, where for two allocations π and π′, π dominates
π′ iff for all i, (π(i), π′(i)) ∈ Ri, and there exists an i such that (π′(i), π(i)) �∈ Ri.
An allocation π is envy-free iff (π(i), π(j)) ∈ Ri holds for all i and all j �= i.

A preference Ri is dichotomous iff there exists a subset Goodi of 2X such that
for all A,B ⊆ X , (A,B) ∈ Ri iff A ∈ Goodi or B �∈ Goodi. A dichotomous
preference can be naturally represented by a single propositional formula, where
variables correspond to goods. Given a dichotomous preference Ri, we can always
use formula φi =

∨
A∈Goodi

(
∧

x∈A x ∧
∧

x �∈A ¬x) to represent Ri. Thus, a fair
division problem with dichotomous preference P = 〈I,X,R〉 can always be
represented by 〈φ1, . . . , φN 〉, and I, X and R are obviously determined from
〈φ1, . . . , φN 〉. The following proposition shows that for fair division problem with
dichotomous preference, it can be translated into default logic.

Proposition 1 (Proposition 3, [2]). Let P = 〈φ1, . . . , φN 〉 be a fair division
problem. Let ΔP be the default theory 〈ΓP , ΦP ∪ {¬ΛP : /⊥}〉, where

– ΓP =
∧

x∈X

∧
i�=j ¬(xi ∧ xj),

– ΛP =
∧

i=1,...,N

[
φ∗

i ∨
(∧

j �=i ¬φ∗
j|i

)]
, and

– ΦP is the set of defaults of the form : φ∗
i /φ

∗
i , i = 1, . . . , N ,

where φ∗
i is obtained from φi by replace every variable x by a new symbol xi, and

φ∗
j|i is obtained from φ∗

i by replace every symbol xi by xj . Then, each extension
of ΔP is corresponding to an efficient and envy-free allocation of P.

Based on this result, we are able to use dl2asp to compute all efficient and
envy-free allocations for a given fair division problem. Given the numbers of
goods and agents, we randomly generate a fair division problem instance, then

dl2asp: Implementing Default Logic via Answer Set Programming 115

Table 2. Experimental results of Fair Division Problem

(goods, agents) (3, 4) (4, 4) (4, 6) (4, 8) (4, 10) (4, 15) (4, 20) (4, 25)
numI∗ 1 1 1 1 14 21 410 460
timet 0.0213 0.0267 0.0653 0.2213 0.4427 1.7534 21.8267 33.2407
timeall 0.0333 0.0547 0.1000 0.2787 0.5320 1.9148 22.2241 33.8248
EXT 0 0 0 0 5 13 170 177

compute all the extensions of the default theory according to Proposition 1.
Our experimental results are shown in Table 2, where EXT is the number of
extensions returned by dl2asp and numI∗ , timet and timeall are the same as
those in Table 1.

7 Conclusions and Future Work

This paper contributes the study of default logic both from a theoretical and
a practical point of view. Theoretically, we showed that default logic can be
translated into answer set programming by identifying the internal relationships
(i.e. implication rules) among formulas (Theorem 2), and indeed, the number of
such implication rules can be largely reduced (Theorem 3). Practically, based
on the above translation, we developed a new solver - dl2asp - for implementing
default logic via answer set programming. Our experimental results (Table 1)
illustrated that the performance of dl2asp is rather satisfactory, which is further
confirmed by applying dl2asp to solving the fair division problem (Table 2).

One of our future work is to consider the relationships between default logic
and disjunctive answer set programming as they are on the same complexity
level. For instance, an open problem is whether DL can be naturally translated
to disjunctive ASP, or the other way around. If not, then an interesting question
arises, for a particular application on the ΣP

2 level, whether it is better to be
encoded in DL or in disjunctive ASP.

For other future directions, one important task is to develop more techniques
for improving dl2asp, especially for computing the implication rules. Another
work worth pursuing is to extend dl2asp for more expressive default logics, such
as disjunctive default logic [9] and general default logic [22]. Last but not least,
it is interesting to explore more applications of default logic by using dl2asp.

Acknowledgments

We would like to thank Jérôme Lang for his generous help on the fair division
problem, and the anonymous reviewers for their valuable comments. This re-
search is supported in part by an Australian Research Council Linkage Project
grant LP0883646, and the first author is also partially supported by Natural
Science Foundation of China under grant NSFC60705095 and Natural Science
Foundation of GuangDong Province, China under grant GDSF07300237.

116 Y. Chen et al.

References

1. Bochman, A.: Default logic generalized and simplified. Ann. Math. Artif. In-
tell. 53(1-4), 21–49 (2008)

2. Bouveret, S., Lang, J.: Efficiency and envy-freeness in fair division of indivisible
goods: Logical representation and complexity. JAIR 32, 525–564 (2008)

3. Cholewinski, P., Marek, V.W., Truszczynski, M., Mikitiuk, A.: Computing with
default logic. Artificial Intelligence (AIJ) 112(1-2), 105–146 (1999)

4. Dantsin, E., Eiter, T., Gottlob, G., Voronkov, A.: Complexity and expressive power
of logic programming. ACM Comput. Surv. 33(3), 374–425 (2001)

5. Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella,
A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004)

6. Gebser, M., Kaufmann, B., Neumann, A., Schaub, T.: Conflict-driven answer set
solving. In: IJCAI, pp. 386–392 (2007)

7. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In:
ICLP/SLP, pp. 1070–1080 (1988)

8. Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive
databases. New Generation Comput. 9(3/4), 365–386 (1991)

9. Gelfond, M., Przymusinska, H., Lifschitz, V., Truszczynski, M.: Disjunctive de-
faults. In: KR, pp. 230–237 (1991)

10. Gottlob, G.: Complexity results for nonmonotonic logics. Journal of Logic and
Computation 2, 397–425 (1992)

11. Janhunen, T.: On the intertranslatability of autoepistemic, default and priority log-
ics, and parallel circumscription. In: Dix, J., Fariñas del Cerro, L., Furbach, U. (eds.)
JELIA 1998. LNCS (LNAI), vol. 1489, pp. 216–232. Springer, Heidelberg (1998)

12. Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S., Scarcello, F.:
The dlv system for knowledge representation and reasoning. ACM Trans. Comput.
Log. 7(3), 499–562 (2006)

13. Lierler, Y., Maratea, M.: Cmodels-2: Sat-based answer set solver enhanced to non-
tight programs. In: Lifschitz, V., Niemelä, I. (eds.) LPNMR 2004. LNCS (LNAI),
vol. 2923, pp. 346–350. Springer, Heidelberg (2003)

14. Liffiton, M.H., Sakallah, K.A.: Algorithms for computing minimal unsatisfiable
subsets of constraints. Journal of Automated Reasoning (JAR) 40(1), 1–33 (2008)

15. Lin, F., Chen, Y.: Discovering classes of strongly equivalent logic programs. J.
Artif. Intell. Res. (JAIR) 28, 431–451 (2007)

16. Nicolas, P., Saubion, F., Stéphan, I.: Gadel: a genetic algorithm to compute default
logic extensions. In: ECAI, pp. 484–490 (2000)

17. Nicolas, P., Saubion, F., Stéphan, I.: Heuristics for a default logic reasoning system.
IJAIT 10(4), 503–523 (2001)

18. Nicolas, P., Schaub,T.: The xray system: an implementation platform for local query-
answering in default logics. In: Hunter, A., Parsons, S. (eds.) Applications of Uncer-
taintyFormalisms.LNCS(LNAI),vol. 1455,pp.354–378.Springer,Heidelberg(1998)

19. Niemelä, I., Simons, P.: Smodels - an implementation of the stable model and
well-founded semantics for normal lp. In: Fuhrbach, U., Dix, J., Nerode, A. (eds.)
LPNMR 1997. LNCS, vol. 1265, pp. 421–430. Springer, Heidelberg (1997)

20. Dao-Tran, M., Eiter, T., Krennwallner, T.: Realizing Default Logic over Description
Logic Knowledge Bases. In: Sossai, C., Chemello, G. (eds.) ECSQARU 2009. LNCS,
vol. 5590, pp. 602–613. Springer, Heidelberg (2009)

21. Reiter, R.: A logic for default reasoning. Artificial Intelligence (AIJ) 13(1-2), 81–
132 (1980)

22. Zhou, Y., Lin, F., Zhang, Y.: General default logic. Annals of Mathematics and
Artificial Intelligence (2010) (to appear)

Sets of Boolean Connectives That Make
Argumentation Easier∗

Nadia Creignou1, Johannes Schmidt1, Michael Thomas2, and Stefan Woltran3

1 LIF, UMR CNRS 6166, Aix-Marseille Université
163, Avenue de Luminy, 13288 Marseille Cedex 9, France

creignou@lif.univ-mrs.fr, johannes.schmidt@lif.univ-mrs.fr
2 Institut für Theoretische Informatik, Gottfried Wilhelm Leibniz Universität

Appelstr. 4, 30167 Hannover, Germany
thomas@thi.uni-hannover.de

3 Institut für Informationssysteme E184/2, Technische Universität Wien
Favoritenstr. 9–11, 1040 Wien, Austria

woltran@dbai.tuwien.ac.at

Abstract. Many proposals for logic-based formalizations of argumen-
tation consider an argument as a pair (Φ, α), where the support Φ is
understood as a minimal consistent subset of a given knowledge base
which has to entail the claim α. In most scenarios, arguments are given
in the full language of classical propositional logic which makes reason-
ing in such frameworks a computationally costly task. For instance, the
problem of deciding whether there exists a support for a given claim
has been shown to be Σp

2-complete. In order to better understand the
sources of complexity (and to identify tractable fragments), we focus
on arguments given over formulae in which the allowed connectives are
taken from certain sets of Boolean functions. We provide a complexity
classification for four different decision problems (existence of a support,
checking the validity of an argument, relevance and dispensability) with
respect to all possible sets of Boolean functions.

1 Introduction

Argumentation is nowadays a main research topic within the area of Artificial
Intelligence ([BD07, BH08, RS09]) aiming to formally analyze pros and cons
of statements within a certain scenario in order to, for instance, support deci-
sion making. There are (among others) two important lines of research: abstract
argumentation [Dun95] focuses on the relation between arguments without tak-
ing their internal structure into account; deductive (or logic-based) argumenta-
tion [CML00, PV02, BH08] starts from a concrete formal representation of an
argument and then defines on top of this concept notions such as counterargu-
ments, rebuttals and more complex structures like argument trees [BH01].

∗ Supported by ANR Algorithms and complexity 07-BLAN-0327-04, WWTF grant
ICT 08-028, and DFG grant VO 630/6-2.

T. Janhunen and I. Niemelä (Eds.): JELIA 2010, LNAI 6341, pp. 117–129, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

118 N. Creignou et al.

In logic-based argumentation, most proposals consider an argument as a pair
(Φ, α), where the support Φ is a consistent set (or a minimal consistent set) of
formulae from a given knowledge base that entails the claim α which is a formula
(see, for example, [BH01, AC02, GS04, DKT06]). Different logical formalisms pro-
vide different definitions for consistency and entailment and hence give different
options for defining the notion of an argument. One natural candidate for for-
malizing arguments is the full language of classical propositional logic. However,
it is computationally challenging to generate arguments from a knowledge base
Δ using classical logic; in fact, the problem of deciding whether there exists a
support Φ ⊆ Δ for a given claim α has been shown to be Σp

2-complete [PWA03].
Computing the support for an argument underlies many reasoning problems

in logic-based argumentation, for instance, the computation of argument trees
as proposed by Besnard and Hunter [BH01]. Since the basic task of finding a
support is already computationally involved, it is indispensable to understand its
sources of complexity and to identify fragments for which that problem becomes
tractable. In this paper, we contribute to this line of research by restricting
the formulae involved (i.e., formulae in the knowledge base and thus in the
support, as well as the formula used as the claim). In fact, we restrict formulae
to connectives from a given set taken from certain sets of Boolean functions and
study the decision problems of existence, validity, relevance, and respectively,
dispensability, which are defined as follows: Arg (given Δ, α, does there exist
a support Φ ⊆ Δ of α), Arg-Check (given a pair (Φ, α), is it an argument),
Arg-Rel (given Δ, α, ϕ, is there an argument (Φ, α) such that ϕ ∈ Φ ⊆ Δ),
and Arg-Disp (given Δ, α, ϕ, is there an argument (Φ, α) such that ϕ /∈ Φ ⊆
Δ). We understand here as arguments pairs (Φ, α) with minimal support, i.e.,
(Φ, α) is an argument if Φ is consistent, entails α, and no Φ′ � Φ entails α. It
can be seen that the minimality condition is only important for the problems
Arg-Check and Arg-Rel (for instance, in case of Arg-Disp, there exists a
support Φ without ϕ for α exactly if there exists a minimal such support); we
will make this more precise in Section 3. We also mention that the problem of
Arg-Rel is of particular importance, since it allows to determine (in terms of
decision problems) the actual form of a potential support, an important core
problem in constructing argument trees.

The main contribution of this paper is a systematic complexity classification
for these four problems in terms of all possible sets of Boolean connectives. We
show that, depending on the chosen set of connectives, the problems range from
inside P up to the second level of the polynomial hierarchy, and we identify
those fragments complete for NP, coNP, and also for DP, the class of differences
of problems in NP. These fragments highlight the sources of complexity of the
problems. We also show that unless the polynomial hierarchy collapses there exist
particular sets of Boolean connectives such that: (i) deciding the existence of an
argument is easier than verifying a given one; (ii) deciding the dispensability of
a formula for some argument is easier than deciding its relevance.

The paper is structured as follows. Section 2 contains preliminaries. We de-
fine the studied framework of argumentation and relevant decision problems in

Sets of Boolean Connectives That Make Argumentation Easier 119

Section 3. The complexity of these problems is subsequently classified in the Sec-
tions 4 to 6. Section 7 concludes with a discussion of related work and provides
an overview of the achieved results as well as future research directions.

2 Preliminaries

We require standard notions of complexity theory. For the decision problems the
arising complexity degrees encompass the classes Logspace, P, NP, coNP, DP
and Σp

2 , where DP is defined as the set of languages recognizable by the difference
of two languages in NP, i.e., DP := {L1 \ L2 | L1, L2 ∈ NP} = {L1 ∩ L2 | L1 ∈
NP, L2 ∈ coNP}, and Σp

2 is the set of languages recognizable by nondeterministic
polynomial-time Turing machines with an NP oracle. A complete problem for
DP is Critical-Sat, the problem to decide whether a given formula in 3CNF is
unsatisfiable but removing any of its clauses makes it satisfiable [PW88]. For our
hardness results we employ logspace many-one reductions, defined as follows: a
language A is logspace many-one reducible to some language B (written A ≤log

m

B) if there exists a logspace-computable function f such that x ∈ A if and only
if f(x) ∈ B. For more background information on complexity theory, the reader
is referred to [Pap94].

We assume familiarity with propositional logic. The set of all propositional
formulae is denoted by L. We use α, ϕ, ψ . . . to denote formulae, and Δ,Φ,Ψ, . . .
to denote sets of formulae. A model for a formula ϕ is a truth assignment to
the set of its variables that satisfies ϕ. Further we denote by ϕ[x/u] the formula
obtained from ϕ by replacing all occurrences of x with u. For any formula ϕ ∈ L,
Vars(ϕ) denotes the set of variables occurring in ϕ (for Γ ⊆ L, we use Vars(Γ) :=⋃

γ∈Γ Vars(γ)), and we write Φ |= ϕ if Φ entails ϕ, i.e., if every model of Φ also
satisfies ϕ.

Throughout all the paper Δ is assumed to be a given finite set of formulae
(the knowledge base) representing a large depositary of information, from which
arguments can be constructed for arbitrary claims.

A clone is a set of Boolean functions that is closed under superposition, i.e.,
it contains all projections (the functions f(a1, . . . , an) = ak for 1 ≤ k ≤ n) and
is closed under arbitrary composition. Let B be a finite set of Boolean functions.
We denote by [B] the smallest clone containing B and call B a base for [B]. The
set of all clones was identified by Post [Pos41]. He gave a finite base for each clone
and showed that they form a lattice with respect to subset inclusion, union and
intersection; hence the name of Post’s lattice (see Figure 1). In order to define the
clones, we require the following notions, where f is an n-ary Boolean function:

– f is c-reproducing if f(c, . . . , c) = c, c ∈ {0, 1}.
– f is monotonic if a1 ≤ b1, . . . , an ≤ bn implies f(a1, . . . , an) ≤ f(b1, . . . , bn).
– f is c-separating of degree k if for all A ⊆ f−1(c) of size |A| = k there exist
i ∈ {1, . . . , n} and c ∈ {0, 1} such that (a1, . . . , an) ∈ A implies ai = c.

– f is c-separating if f is c-separating of degree |f−1(c)|.
– f is self-dual if f ≡ ¬f(¬x1, . . . ,¬xn).
– f is affine if f ≡ x1 ⊕ · · · ⊕ xn ⊕ c with c ∈ {0, 1}.

120 N. Creignou et al.

A list of the relevant clones with definitions and finite bases is given in Table 1
on page 128, see [BCRV03] for a complete list. A propositional formula using
only functions from B as connectives is called a B-formula. The set of all B-
formulae is denoted by L(B). Let f be an n-ary Boolean function. A B-formula
ϕ such that Vars(ϕ) = {x1, . . . , xn, y1, . . . , ym} is a B-representation of f if for
all a1, . . . , an, b1, . . . , bm ∈ {0, 1} it holds that f(a1, . . . , an) = 1 if and only if
every σ : Vars(ϕ) → {0, 1} with σ(xi) = ai and σ(yi) = bi for all relevant i,
satisfies ϕ.

3 Argumentation

Definition 3.1. [BH01] An argument is a pair (Φ, α), where Φ is a set of for-
mulae and α is a formula such that

1. Φ is consistent,
2. Φ |= α,
3. Φ is minimal with this last property, i.e., no proper subset of Φ entails α.

We say that (Φ, α) is an argument for α. If Φ ⊆ Δ then it is said to be an
argument in Δ. We call α the consequent and Φ the support of the argument.

Let B be a finite set of Boolean functions. Then the argument existence problem
for B-formulae is defined as

Problem: Arg(B).
Instance: A = (Δ, α), where Δ ⊆ L(B) and α ∈ L(B).
Question: Does there exist Φ such that (Φ, α) is an argument in Δ?

Besides the decision problem for the existence of an argument we are interested
in the decision problems for B-formulae for validity, relevance and dispensability.
They are defined as follows and deal with formulae in L(B) only.

Arg-Check(B): given a pair (Φ, α), is it an argument; Arg-Rel(B): given
Δ, α, ϕ, is there an argument (Φ, α) such that ϕ ∈ Φ ⊆ Δ; and Arg-Disp(B):
given Δ, α, ϕ, is there an argument (Φ, α) such that ϕ /∈ Φ ⊆ Δ.

Observe that the minimality of the support is only relevant for the problems
Arg-Check and Arg-Rel. For Arg and Arg-Disp, the existence of a consis-
tent subset Φ of the knowledge base Δ that entails the claim α (and does not
contain some formula ϕ) implies a consistent Φ′ ⊆ Φ such that Φ′ |= α and
Φ′ \ {ψ} �|= α for all ψ ∈ Φ′. To decide the existence of an argument, it therefore
suffices to find any consistent subset of Δ that entails α. For Arg-Rel, on the
other hand, we have to decide whether there exists an argument for α that con-
tains the formula ϕ. The existence of some consistent set Φ ⊆ Δ with ϕ ∈ Φ and
Φ |= α does not help here, because ϕ might be excluded from the minimal subset
Φ′ ⊆ Φ yielding an argument for α. Consequently, unlike in other nonmonotonic
reasoning formalisms, the complexity of deciding relevance and dispensability of
a formula for some argument may differ. Indeed, we will show that there exist
sets B such that Arg-Rel(B) is harder to decide than Arg-Disp(B) unless

Sets of Boolean Connectives That Make Argumentation Easier 121

the polynomial hierarchy collapses. Similarly, for Arg-Check, we have to verify
that the set Φ in the given pair (Φ, α) is indeed minimal with respect to consis-
tency and entailment of α. While this is supposedly easier to decide than Arg,
we will see that owing to the verification of minimality there exist sets B such
that Arg-Check(B) is harder to decide than Arg(B) unless the polynomial
hierarchy collapses.

We conclude this section with two lemmas that make clear the role of the
constant 1 in our study. They will be of use later on to establish our complexity
classifications. Recall that the clone E2 is defined in Table 1 on page 128.

Lemma 3.2. Let Arg-P denote any of the problems Arg, Arg-Check or
Arg-Rel. Let B be a finite set of Boolean functions such that ∧ ∈ [B], i.e.,
E2 ⊆ [B]. Then Arg-P(B ∪ {1}) ≤log

m Arg-P(B).

Proof. Let I be the given instance. We map I to the instance I ′ obtained by
replacing each formula ψ occurring in I by ψ[1/t] ∧ t. �

In addition on this, one can also eliminate the constant 1 for the problems
Arg(B) and Arg-Rel(B) when D2 ⊆ [B].

Lemma 3.3. Let B be a finite set of Boolean functions such that D2 ⊆ [B].
Then Arg(B ∪ {1}) ≤log

m Arg(B) and Arg-Rel(B ∪ {1}) ≤log
m Arg-Rel(B).

Proof. Let g(x, y, z) := (x ∧ y) ∨ (x ∧ z) ∨ (y ∧ z). The function g is a base of
D2 and evaluates to true if and only if at least two of the variables are set to
true. Given an instance (Δ, α) of Arg(B ∪ {1}), we define an instance (Δ′, α′)
of Arg(B) by Δ′ := {ψ[1/t] | ψ ∈ Δ} ∪ {t} and α′ = g(α[1/t], t, q),where t and
q are fresh variables. We claim that there is an argument for α in Δ if and only
if there is an argument for α′ in Δ′.

Let Φ be an argument for α in Δ. Consider Φ′ := {ψ[1/t] | ψ ∈ Φ} ∪ {t}.
Observe that Φ′ ≡ Φ. Thus Φ′ is satisfiable and Φ′ |= α, hence Φ′ |= α[1/t]∧t, as
t does not occur in α. Therefore, we obtain Φ′ |= g(α[1/t], t, q). Moreover, either
Φ′ or Φ′ \ {t} is minimal with this property. Indeed, suppose that there exists a
ψ′ ∈ Φ′ with ψ′ = ψ[1/t] for some ψ ∈ Φ such that Φ′ \ {ψ′} |= g(α[1/t], t, q).
Then Φ′ \ {ψ′} |= α[1/t] ∧ t as q does not occur in Φ′, and hence Φ \ {ψ} |= α,
contradictory to the minimality of Φ.

Conversely, with similar arguments it is easy to see that if Φ′ is an argument
for α′ in Δ′, then Φ := {ψ[t/1] | ψ ∈ Φ′, ψ �= t} is an argument for α in Δ: as q
does not occur in Φ′, Φ′ |= α′ implies that Φ′ |= α[1/t] ∧ t.

This proves correctness of the reduction from Arg(B ∪ {1}) to Arg(B). The
analogous result for Arg-Rel follows from the same arguments as above, map-
ping the additional component ϕ to ϕ′ := ϕ[1/t]. �

Remark 3.4. Observe that this reduction does not work for Arg-Check: one
would have to decide whether to map Φ to Φ′ or to Φ′ \{t} to ensure minimality,
which requires the ability to decide whether Φ′ \ {t} |= t in Logspace.

122 N. Creignou et al.

4 The Complexity of Verification

We commence our study of the introduced argumentation problems with the
argument verification problem. This problem is in DP. Indeed it is readily ob-
served, as there are languages A,B with A ∈ NP and B ∈ coNP such that
Arg-Check = A ∩B, with

A = {(Δ,Φ, α) | Φ is satisfiable, ∀ϕ ∈ Φ : Φ \ {ϕ} �|= α};
B = {(Δ,Φ, α) | Φ |= α}.

Proposition 4.1. Let S00 ⊆ [B]. Then Arg-Check(B) is DP-complete.

Proof. To prove DP-hardness we establish a reduction from Critical-Sat. Let
ψ =

∧m
j=1 Cj be an instance of Critical-Sat, and Vars(ψ) = {x1, . . . , xn}. Let

u, x′1, . . . , x
′
n be fresh, pairwise distinct variables. We may suppose without loss

of generality that each xi appears in ψ both as positive and as negative literal.
Let further C′

j := Cj [¬xi/x
′
i | 1 ≤ i ≤ n] for 1 ≤ j ≤ m and ψ′ :=

∧m
j=1 C

′
j . We

map ψ to (Φ, α), where we define

Φ = {C′
j | j ∈ {1, . . . ,m}}, and α =

n∨
i=1

u ∨ (xi ∧ x′i).

Since x ∨ y and x ∨ (y ∧ z) are functions of S00, α and all C′
j ’s are S00-formulae.

These are by definition 1-reproducing. Therefore, Φ and α are satisfiable. For
1 ≤ k ≤ m, let Φk, ψk, ψ′

k denote the respective set of clauses where we deleted
the kth clause. Note that always Φ ≡ ψ′ and Φk ≡ ψ′

k.
Suppose now that ψ ∈ Critical-Sat, i.e., ψ is unsatisfiable and ψk is satisfi-

able for all k ∈ {1, . . . ,m}. We show that Φ entails α. Since ψ ≡ ψ′∧
∧n

i=1(xi⊕x′i)
is unsatisfiable, and ψ′ ≡ Φ is monotonic, all models of Φ have to set both xi

and x′i to 1 for at least one i ∈ {1, . . . , n}. Since α[u/0] ≡
∨n

i=1(xi ∧ x′i), we
therefore have Φ |= α[u/0]. Obviously Φ |= α[u/1].

It remains to prove that Φ is minimal. Since for each k ∈ {1, . . . ,m} ψk ≡
ψ′

k ∧
∧n

i=1(xi ⊕ x′i) is satisfiable, no ψ′
k ≡ Φk entails α[u/0] ≡

∨n
i=1(xi ∧ x′i). A

fortiori no Φk entails α.
Conversely suppose that (Φ, α) ∈ Arg-Check. Then, in particular, Φ entails

α[u/0]. Thus we have ψ′ |=
∨n

i=1(xi ∧ x′i), which implies that ψ is unsatisfiable.
By the minimality of Φ we know that no Φk entails α. Since Φk |= α[u/1], we
conclude that Φk �|= α[u/0], which implies that ψ′

k∧
∧n

i=1(¬xi∨¬x′i) is satisfiable.
As ψ′

k is monotonic, we obtain that also ψ′
k ∧

∧n
i=1(xi ⊕ x′i) and hence ψk itself

is satisfiable.
We finally transform (Φ, α) into a B-instance for all B such that S00 ⊆ [B] by

replacing every connective by its B-representation. This transformation works
in logarithmic space if we construct α as an ∨-tree of depth logarithmic in n. �

Proposition 4.2. Let B be a finite set of Boolean functions such that D2 ⊆ [B].
Then Arg-Check(B) is DP-complete.

Sets of Boolean Connectives That Make Argumentation Easier 123

Proof. We give a reduction from Critical-Sat similar to Proposition 4.1. For
k ∈ N, we define gk as a (k+1)-ary function satisfying gk(z1, . . . , zk, 0) ≡

∧k
i=1 zi

and gk(z1, . . . , zk, 1) ≡
∨k

i=1 zi. Note that for every k ∈ N, gk is monotonic
and self-dual, and thus contained in D2. By abuse of notation, given a clause
C = (l1 ∨ l2 ∨ l3) and a variable x, g3(C, x) stands for g3(l1, l2, l3, x). Let ψ =∧m

j=1 Cj be an instance of Critical-Sat with Cj = (l1j ∨ l2j ∨ l3j) and Vars(ψ) =
{x1, . . . , xn}. Let further u, v, x′1, . . . , x

′
n be fresh, pairwise distinct variables and

C′
j := Cj [¬xi/x

′
i | 1 ≤ i ≤ n] for 1 ≤ j ≤ m. We may suppose without loss of

generality that each xi appears in ψ both as a positive and as a negative literal.
We map ψ to (Φ, α), where

Φ := {g3(C′
j , u) | 1 ≤ j ≤ m}, and α := gn

(
(g2(xi, x

′
i, v))1≤i≤n, u

)
.

Obviously α and the formulae in Φ are D2-formulae and thus satisfiable. As in
the proof of the previous proposition a careful examination allows to prove that
ψ ∈ Critical-Sat if and only if (Φ, α) ∈ Arg-Check.

Finally, we transform (Φ, α) into a B-instance for all B such that D2 ⊆ [B]
in replacing all occurrences of gk by its B-representation. This transformation
works in logarithmic space, because we may assume the function gn to be a
g2-tree of depth logarithmic in n. �

Theorem 4.3. Let B be a finite set of Boolean functions. Then the argument
validity problem for propositional B-formulae, Arg-Check(B), is

1. DP-complete if S00 ⊆ [B] or S10 ⊆ [B] or D2 ⊆ [B],
2. in P if L2 ⊆ [B] ⊆ L,
3. in Logspace if [B] ⊆ V or [B] ⊆ E or [B] ⊆ N.

Proof. For DP-completeness, according to Propositions 4.1 and 4.2 it remains
only to deal with the case S10 ⊆ [B]. Since D2 ⊆ M1 = [S10 ∪ {1}] ⊆ [B ∪ {1}],
we obtain that Arg-Check(B∪{1}) is DP-hard by Proposition 4.2. As ∧ ∈ [B],
we may apply Lemma 3.2 and obtain the DP-hardness of Arg-Check(B).

For testing whether (Φ, α) is an argument we need to check the following three
conditions:

(1) Φ is satisfiable,
(2) Φ ∧ ¬α is unsatisfiable (i.e., Φ |= α), and
(3) for all ϕ ∈ Φ, (Φ \ {ϕ}) ∪ {¬α} is satisfiable (i.e., Φ is minimal).

In the case L2 ⊆ [B] ⊆ L the sets Φ, Φ∪{¬α}, and (Φ\{ϕ})∪{¬α} for all ϕ ∈ Φ
can be easily transformed into systems of linear equations. Thus checking the
three conditions comes down to solving a polynomial number of systems of linear
equations. This can be done in polynomial time using Gaussian elimination. For
[B] ⊆ V, for [B] ⊆ E, and for [B] ⊆ N this check can be done in logarithmic
space, as in this case the satisfiability of sets of B-formulae can be determined
in logarithmic space. �

124 N. Creignou et al.

5 The Complexity of Existence and Dispensability

Theorem 5.1. Let B be a finite set of Boolean functions. Then the argument
existence problem for propositional B-formulae, Arg(B), is

1. Σp
2-complete if D ⊆ [B] or S1 ⊆ [B],

2. coNP-complete if X ⊆ [B] ⊆ Y with X ∈ {S00, S10,D2} and Y ∈ {M,R1},
3. in NP if [B] ∈ {L, L0, L3},
4. in P if [B] ∈ {L1, L2}, and
5. in Logspace if [B] ⊆ V or [B] ⊆ E or [B] ⊆ N.

The same classification holds for Arg-Disp(B).

Proof. The general argumentation problem has been shown to be Σp
2-complete

in [PWA03] via a reduction from Qsat2,∃. Starting from formulae in 3DNF, we
can use the reduction from [PWA03] and insert parentheses to obtain formulae
of logarithmic depth only. We can now substitute the connectives ∧, ∨, ¬ with
their B-representations to obtain Σp

2-completeness for Arg(B) if [B] = BF.
As E2 ⊆ S1 and [S1 ∪{1}] = BF, we obtain Σp

2-completeness for the case S1 ⊆
[B] according to Lemma 3.2. For the case D ⊆ [B], we obtain Σp

2-completeness
by Lemma 3.3, since D2 ⊆ D and [D ∪ {1}] = BF.

For X ⊆ [B] ⊆ Y with X ∈ {S00, S10,D2} and Y ∈ {M,R1}, membership in
coNP follows from the facts that satisfiability is in Logspace [Lew79], while
entailment is in coNP [BMTV09]. To prove the coNP-hardness of Arg(B), we
give a reduction from the implication problem for B-formulae, which is coNP-
hard if [B] contains one of the clones S00, S10, D2. Let (ψ, α) be a pair of
B-formulae. We map this instance to ({ψ}, α) if ψ is satisfiable and to a trivial
positive instance otherwise.

For [B] ∈ {L, L0, L3}, membership in NP follows from the fact that in this
case Arg-Check is in P. Due to the trivial satisfiability of B-formulae for [B] ∈
{L1, L2}, we can improve the upper bound for Arg(B) with [B] ∈ {L1, L2} to
membership in P.

In all other cases, Logspace-membership follows from the fact that the satis-
fiability and entailment problem for B-formulae are contained in Logspace (see
[BMTV09]).

Finally, observe that we have Arg-Disp(B) ≡log
m Arg(B). To prove that

Arg(B) ≤log
m Arg-Disp(B), map A = (Δ, α) to D := (Δ ∪ {t}, α, t). For the

converse direction, map D = (Δ, α, ϕ) to A := (Δ \ {ϕ}, α). �

6 The Complexity of Relevance

Proposition 6.1. Let B be a finite set of Boolean functions such that S00 ⊆ [B].
Then Arg-Rel(B) is Σp

2-complete.

Proof. To see that Arg-Rel(B) is contained in Σp
2 , observe that, given an in-

stance (Δ, α, ϕ), we can guess a set Φ ⊆ Δ such that ϕ ∈ Φ and verify condi-
tions (1)–(3) as given in the proof of Theorem 4.3 in polynomial time using an
NP-oracle.

Sets of Boolean Connectives That Make Argumentation Easier 125

To prove Σp
2-hardness, we provide a reduction from the problem Qsat2,∃. An

instance of this problem is a quantified formula ∃X∀Y β where β =
∨p

j=1 tj with
exactly three literals by term. Let X = {x1, . . . , xn} and Y = {y1, . . . , ym}. We
transform ∃X∀Y β to (Δ, α, ϕ), where

Δ := {xi, x
′
i | 1 ≤ i ≤ n} ∪ {v ∧

∧m
i=1(yi ∨ y′i)} ∪ {u},

α := β′ ∧ v ∧
(∨n

i=1(xi ∧ x′i) ∨ u
)
, and ϕ := u,

and where β′ =
∨p

j=1 t
′
j , t

′
j := tj [¬x1/x

′
1, . . . ,¬xn/x

′
n,¬y1/y

′
1, . . . ,¬ym/y′m] for

all 1 ≤ j ≤ p, and u, v are fresh variables.
We show that ∃X∀Y β is valid if and only if (Δ, α, ϕ) ∈ Arg-Rel({∧,∨}). If

∃X∀Y β is valid, then there exists an assignment σ : X → {0, 1} such that σ |= β.
Consequently, for Φ := {xi | σ(xi) = 1}∪{x′i | σ(xi) = 0}∪{u, v∧

∧m
i=1(yi∨y′i)},

we obtain Φ |= β. As Φ is consistent, it thus remains to show that u is relevant,
i.e., that Φ \ {u} �|= α. This follows from the fact that Φ \ {ϕ} is satisfied by the
assignment σ′ obtained from σ by setting σ′(u) := 0, while σ′ �|=

∨n
i=1(xi∧x′i)∨u

and hence σ′ �|= α.
For the converse direction, let Φ be a support for α such that u ∈ Φ. Since

Φ |= α we conclude that v∧
∧m

i=1(yi∨y′i) ∈ Φ and hence Φ = X ∪{v∧
∧m

i=1(yi∨
y′i)} ∪ {u}, for some X ⊆ {xi, x

′
i | 1 ≤ i ≤ n}. From Φ |= α also follows that

Φ |= β′. From the minimality of Φ we conclude that in particular Φ \ {u} �|= α.
And therefore Φ �|=

∨n
i=1(xi ∧ x′i). That is Φ∧

∧n
i=1(¬xi ∨¬x′i) is satisfiable and

since Φ is monotonic, consequently also Φ∧
∧n

i=1(xi⊕x′i) is satisfiable. Summed
up, we know that γ := X ∧

∧n
i=1(xi⊕x′i)∧

∧m
i=1(yi∨y′i) is satisfiable and γ |= β′.

Hence, a fortiori, γ′ := X ∧
∧n

i=1(xi ⊕ x′i) ∧
∧m

i=1(yi ⊕ y′i) is satisfiable and
γ′ |= β′. Define now σX(xi) = 1 if xi ∈ X , σX(xi) = 0 otherwise. Obviously any
extension of σX to Y satisfies β and therefore ∃X∀Y β is valid.

It remains to transform (Δ, α, ϕ) into an Arg-Rel(B)-instance for all B
such that S00 ⊆ [B]. As both ∧ and ∨ are associative, we can insert parentheses
into (Δ, α, ϕ) such that we can represent each formula as binary {∧,∨}-tree of
logarithmic depth. Let f be a fresh variable and let h be the boolean function
in S00 defined by h(f, x, y) ≡ f ∨ (x∧ y). We further transform our instance into
(Δ′, α′ ∨ f, ϕ′), where Δ′, α′, ϕ′ are obtained by replacing each occurrence of
x∧ y by h(f, x, y). One easily verifies that (Δ′, α′ ∨ f, ϕ′) is in Arg-Rel({∨, h})
if and only if (Δ, α, ϕ) ∈ Arg-Rel({∧,∨}). We finally replace ∨ and h by their
B-representation. �
Proposition 6.2. Let B be a finite set of Boolean functions such that [B] ⊆ V
or [B] ⊆ E or [B] ⊆ N. Then Arg-Rel(B) is in Logspace.

Proof. We assume the representation of V-, E-, or N-formulae as respectively
positive clauses, positive terms, or literals. Let us first consider Arg-Rel(B) for
[B] ⊆ E. It is easy to observe that a set of positive terms Δ entails a positive
term α if and only if Vars(α) ⊆ Vars(Δ). We claim that Algorithm 1 decides
Arg-Rel(B).

Algorithm 1 can be implemented using only a logarithmic amount of space if
we do not construct Δx entirely but rather check the condition in line 3 directly:
Δx |= α holds if and only if Vars(α) ⊆ Vars(ϕ) ∪Vars({τ ∈ Δ | x /∈ Vars(τ)}).

126 N. Creignou et al.

Algorithm 1. Algorithm for Arg-Rel(B) with [B] ⊆ E

Require: a set Δ of positive terms and positive terms α, ϕ with ϕ ∈ Δ.
1: for all x ∈ Vars(ϕ) do
2: Δx := {ϕ} ∪ {τ ∈ Δ | x /∈ Vars(τ)}
3: if Δx |= α then
4: accept
5: end if
6: end for
7: reject

To prove correctness, notice that Algorithm 1 accepts only if there exists a
Δx ⊆ Δ such that Δx |= α and Δx \ {ϕ} �|= α. Thus Δx contains a support Φ
such that ϕ ∈ Φ. Conversely, let Φ be a support such that ϕ ∈ Φ. Since Φ |= α
and Φ\{ϕ} �|= α, there is at least one xi ∈ (Vars(ϕ)∩Vars(α))\Vars(Φ). For this
xi the algorithm constructs Δxi := {ϕ} ∪ {τ ∈ Δ | xi /∈ Vars(τ)}. Obviously
Φ ⊆ Δxi and therefore Δxi |= α which causes the algorithm to accept.

Next, consider Arg-Rel(B) for [B] ⊆ V. Observe that a set of positive clauses
C entails a positive clause α if and only if there is a clause c ∈ C such that
Vars(c) ⊆ Vars(α). Thus if there is a support Φ with ϕ ∈ Φ then it is the
singleton {ϕ}. Given (Δ, α, ϕ) as an instance of Arg-Rel(V), it hence suffices
to check whether Vars(ϕ) ⊆ Vars(α), which can be done in Logspace.

Finally Arg-Rel(B) for [B] ⊆ N is in Logspace, since each B-formula can
be transformed into a single literal. �

From the two propositions above, Lemma 3.2 and Lemma 3.3 we obtain the
following complexity classification for Arg-Rel.

Theorem 6.3. Let B be a finite set of Boolean functions. Then the argument
relevance problem for propositional B-formulae, Arg-Rel(B), is

1. Σp
2-complete if S00 ⊆ [B] or D2 ⊆ [B] or S10 ⊆ [B],

2. in NP if L2 ⊆ [B] ⊆ L,
3. in Logspace if [B] ⊆ V or [B] ⊆ E or [B] ⊆ N.

7 Discussion and Conclusion

Complexity classifications along the lines of Boolean clones have already been
carried out for AI formalisms as circumscription [Tho09] and abduction [CST10].
In particular, the latter work is closely related to the contents of this paper. To
make this more precise, let us consider the positive abduction problem P-Abd(B)
which takes as an instance a triple (Γ, H,m), where Γ ⊆ L(B), m ∈ L(B),
H is a set of variables, and asks whether there exists an explanation E ⊆ H
such that Γ ∧ E is satisfiable and Γ ∧ E |= m. Hence, the main difference to
argumentation is the presence of the knowledge base Γ in the tests for consistency
and entailment. Nonetheless, the following relations hold: (1) if ∧ ∈ [B], i.e., if
E2 ⊆ [B], then P-Abd(B) ≤log

m Arg(B); (2) if → ∈ [B], i.e., if S0 ⊆ [B], then
Arg(B) ≤log

m P-Abd(B).

Sets of Boolean Connectives That Make Argumentation Easier 127

BF

R1 R0

R2

M

M1 M0

M2

S2
0

S2
02 S2

01
S3

0
S2

00
S3

02 S3
01

S3
00

S0

S02 S01

S00

D

D1

D2

V

V1 V0

V2

L

L1 L3 L0

L2

N

N2

I

I1 I0

I2

S2
1

S2
12S2

11
S3

1
S2

10
S3

12S3
11

S3
10

S1

S12S11

S10

E

E0E1

E2

∈ Logspace

∈ P

∈ NP

coNP-c.

Σp
2-c.

Arg-Disp(B)

Arg(B)

∈ Logspace

∈ P

∈ P

DP-c.

DP-c.

Arg-Check(B)

∈ Logspace

∈ NP

∈ NP

Σp
2-c.

Σp
2-c.

Arg-Rel(B)

Fig. 1. Post’s lattice showing the complexity of the argumentation problems studied
herein

In fact, it turns out that Arg and Arg-Disp have the same complexity clas-
sification as positive abduction. This is due to the fact that minimality of the
argument plays no role in Arg and Arg-Disp. However, for Arg-Rel the sit-
uation is different but we expect similarly harder complexity for the relevance
problem in abduction with respect to subset-minimal explanations (see, e.g.,
[EG95] for the definitions) which has not been analyzed in [CST10]. In other
words, the results provided in the present paper can be used to obtain novel
results for certain variants of abduction, which have not been classified yet.

To summarize, we took in this paper first steps to understanding the com-
plexity of logic-based argumentation by providing a classification of the com-
plexity of four important tasks for all possible restrictions on the set of allowed
connectives. The results are collected in Figure 1. Notably are the sets B of
Boolean connectives where X ⊆ [B] ⊆ Y with X ∈ {S00, S10,D2} and Y ∈
{M,R1} which give coNP-completeness for Arg(B), while Arg-Rel(B) remains
complete for Σp

2 (typically this applies to monotonic formulae in which no nega-
tion is involved). As well, Arg(B) with L2 ⊆ [B] ⊆ L1 is in P, while for the

128 N. Creignou et al.

Table 1. List of some Boolean clones with definitions and bases.

Name Definition Base

BF All Boolean functions {x ∧ y,¬x}
R0 {f | f is 0-reproducing} {x ∧ y, x ⊕ y}
R1 {f | f is 1-reproducing} {x ∨ y, x ↔ y}
R2 R0 ∩ R1 {∨, x ∧ (y ↔ z)}
M {f | f is monotonic} {x ∨ y, x ∧ y, 0, 1}
S0 {f | f is 0-separating} {x → y}
S1 {f | f is 1-separating} {x ∧ ¬y}
S00 S0 ∩ R2 ∩ M {x ∨ (y ∧ z)}
S10 S1 ∩ R2 ∩ M {x ∧ (y ∨ z)}
D {f | f is self-dual} {(x ∧ ¬y) ∨ (x ∧ ¬z) ∨ (¬y ∧ ¬z)}
D2 D ∩ M {(x ∧ y) ∨ (x ∧ z) ∨ (y ∧ z)}
L {f | f is affine} {x ⊕ y, 1}
L0 L ∩ R0 {x ⊕ y}
L1 L ∩ R1 {x ↔ y}
L2 L ∩ R2 {x ⊕ y ⊕ z}
L3 L ∩ D {x ⊕ y ⊕ z ⊕ 1}
V {f | f is a disjunction of variables or constant} {x ∨ y, 0, 1}
V2 V ∩ R2 {x ∨ y}
E {f | f is a conjunction of variables or constant} {x ∧ y, 0, 1}
E2 E ∩ R2 {x ∧ y}
N {f | f depends on at most one variable} {¬x, 0, 1}
I {f | f is a projection or a constant} {id, 0, 1}
I2 I ∩ R2 {id}

corresponding problems Arg-Rel(B), we only have an NP upper-bound, so far.
In fact, the exact classification of the problems into tractable and intractable
cases remains open for affine sets of Boolean connectives in the following cases:
Arg(B) with [B] ∈ {L, L0, L3} and Arg-Rel(B) with L2 ⊆ [B] ⊆ L.1

The complexity of Arg-Rel is a computational core for evaluating more com-
plex argumentationproblems, for instance, the warranted formula problem (WFP)
on argument trees, whichhas recentlybeen shown tobePSPACE-complete [HG10].
We expect that fragments studied here also lower the complexity of WFP, but leave
details for future work.

Further future work concerns studying the complexity of all these problems in
the popular Schaefer’s framework (in which formulas are in generalized conjunc-
tive normal form), as well as addressing more advanced problems of logic-based
argumentation which are defined, e.g., over argument-trees.

References

[AC02] Amgoud, L., Cayrol, C.: A model of reasoning based on the production
of acceptable arguments. Ann. Math. Artif. Intell. 34, 197–216 (2002)

[BCRV03] Böhler, E., Creignou, N., Reith, S., Vollmer, H.: Playing with Boolean
blocks I: Post’s lattice with applications to complexity theory. SIGACT
News 34(4), 38–52 (2003)

1 We note that the complexity of the corresponding fragments remained unclassified
also for circumscription and positive abduction.

Sets of Boolean Connectives That Make Argumentation Easier 129

[BD07] Bench-Capon, T., Dunne, P.: Argumentation in artificial intelligence. Ar-
tif. Intell. 171(10-15), 619–641 (2007)

[BH01] Besnard, P., Hunter, A.: A logic-based theory of deductive arguments.
Artif. Intell. 128, 203–235 (2001)

[BH08] Besnard, P., Hunter, A.: Elements of Argumentation. MIT Press, Cam-
bridge (2008)

[BMTV09] Beyersdorff, O., Meier, A., Thomas, M., Vollmer, H.: The complexity of
propositional implication. Inf. Process. Lett. 109(18), 1071–1077 (2009)

[CML00] Chesñevar, C., Maguitman, A., Loui, R.: Logical models of argument.
ACM Comput. Surv. 32, 337–383 (2000)

[CST10] Creignou, N., Schmidt, J., Thomas, M.: Complexity of propositional ab-
duction for restricted sets of Boolean functions. In: Proc. 12th KR, pp.
8–16. AAAI, Menlo Park (2010)

[DKT06] Dung, P., Kowalski, R., Toni, F.: Dialectical proof procedures for
assumption-based admissible argumentation. Artif. Intell. 170, 114–159
(2006)

[Dun95] Dung, P.M.: On the acceptability of arguments and its fundamental role
in nonmonotonic reasoning, logic programming and n-person games. Ar-
tif. Intell. 77(2), 321–358 (1995)

[EG95] Eiter, T., Gottlob, G.: The complexity of logic-based abduction. J.
ACM 42(1), 3–42 (1995)

[GS04] Garćıa, A., Simari, G.: Defeasible logic programming: An argumenta-
tive approach. Theory and Practice of Logic Programming 4(1), 95–138
(2004)

[HG10] Hirsch, R., Gorogiannis, N.: The complexity of the warranted formula
problem in propositional argumentation. J. Log. Comput. 20, 481–499
(2010)

[Lew79] Lewis, H.: Satisfiability problems for propositional calculi. Mathematical
Systems Theory 13, 45–53 (1979)

[Pap94] Papadimitriou, C.H.: Computational Complexity. Addison-Wesley, Read-
ing (1994)

[Pos41] Post, E.: The two-valued iterative systems of mathematical logic. Ann.
Math. Stud. 5, 1–122 (1941)

[PV02] Prakken, H., Vreeswijk, G.: Logical systems for defeasible argumentation.
In: Gabbay, D. (ed.) Handbook of Philosophical Logic. Kluwer, Dordrecht
(2002)

[PW88] Papadimitriou, C., Wolfe, D.: The complexity of facets resolved. J. Com-
put. Syst. Sci. 37(1), 2–13 (1988)

[PWA03] Parsons, S., Wooldridge, M., Amgoud, L.: Properties and complexity
of some formal inter-agent dialogues. J. Log. Comput. 13(3), 347–376
(2003)

[RS09] Rahwan, I., Simari, G. (eds.): Argumentation in Artificial Intelligence.
Springer, Heidelberg (2009)

[Tho09] Thomas, M.: The complexity of circumscriptive inference in Post’s lattice.
In: Erdem, E., Lin, F., Schaub, T. (eds.) LPNMR 2009. LNCS, vol. 5753,
pp. 290–302. Springer, Heidelberg (2009)

Retroactive Subsumption-Based Tabled
Evaluation of Logic Programs

Flávio Cruz and Ricardo Rocha�

CRACS & INESC-Porto LA, Faculty of Sciences, University of Porto
Rua do Campo Alegre, 1021/1055, 4169-007 Porto, Portugal

{flavioc,ricroc}@dcc.fc.up.pt

Abstract. Tabled evaluation is a recognized and powerful implementa-
tion technique that overcomes some limitations of traditional Prolog sys-
tems in dealing with recursion and redundant sub-computations. Tabling
based systems use call similarity to determine if a tabled subgoal will
produce their own answers or if it will consume from another subgoal.
While call variance has been a very popular approach, call subsumption
can yield superior time performance and space improvements as it al-
lows greater reuse of answers. However, the call order of the subgoals
can greatly affect the success and applicability of the call subsumption
technique. In this work, we present an extension, named Retroactive Call
Subsumption, that supports call subsumption by allowing full sharing of
answers between subsumed/subsuming subgoals, independently on the
order in which they are called. Our experiments using the YapTab tabling
engine show considerable gains in evaluation time for some applications,
at the expense of a very small overhead for the programs that cannot
benefit from it.

Keywords: Tabled Evaluation, Call Subsumption, Implementation.

1 Introduction

Tabling [1] is an implementation technique that solves some of the shortcomings
of Prolog systems based on the traditional SLD resolution method. Tabled reso-
lution methods can considerably reduce the search space, avoid looping and have
better termination properties than SLD resolution based methods. The tabling
technique is a refinement of SLD resolution that stems from one simple idea:
save intermediate answers from past computations so that they can be reused
when a similar call appears during the resolution process. In a nutshell, first
calls to tabled subgoals are evaluated as usual, using SLD resolution, but their
answers are stored in a global data space, called the table space. Similar calls to
tabled subgoals are then resolved by consuming the answers already stored in the
table entry for the corresponding similar subgoal, instead of being re-evaluated
against the program clauses. Call similarity thus determines if a subgoal will
� This work has been partially supported by the FCT research projects STAMPA

(PTDC/EIA/67738/2006) and HORUS (PTDC/EIA-EIA/100897/2008).

T. Janhunen and I. Niemelä (Eds.): JELIA 2010, LNAI 6341, pp. 130–142, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Retroactive Subsumption-Based Tabled Evaluation of Logic Programs 131

produce their own answers or if it will consume from another subgoal. In gen-
eral, we can distinguish two main approaches to determine similarity between
tabled subgoals: variant-based tabling and subsumption-based tabling.

In variant-based tabling, two subgoals are considered to be similar if they
are the same by renaming the variables. For example, subgoals p(X, 1, Y) and
p(Y, 1, Z) are variants because both can be made identical to p(V AR0, 1, V AR1)
through variable renaming. In subsumption-based tabling, two subgoals are con-
sidered to be similar if one subgoal subsumes the other. A subgoal R is subsumed
by a subgoal S (or a subgoal S subsumes a subgoal R) if R is more specific than
S (or S is more general then R). For example, subgoal p(X, 1, 2) is subsumed by
subgoal p(Y, 1, Z) because there is a substitution {Y = X,Z = 2} that makes
p(X, 1, 2) an instance of p(Y, 1, Z). Notice that, if R is subsumed by S, S will
contain in its table entry the full set of answers that also satisfy R and thus, R
can reuse and consume answers directly from S.

In general, subsumption-based tabling can yield superior time performance,
as it allows greater reuse of answers, and better space usage, since the answer
sets for the subsumed subgoals are not stored. However, the mechanisms to
efficiently support subsumption-based tabling are more complex and hard to
implement, which makes variant-based tabling more popular within the available
tabling systems. To the best of our knowledge, until now, XSB Prolog was the
unique system supporting subsumption-based tabling. The first implemented
design was called Dynamic Threaded Sequential Automata (DTSA) [2], but was
later replaced by an alternative table space organization called Time-Stamped
Trie (TST) [3], that showed better space efficiency than DTSA.

Despite the good results and performance gains obtained with the DTSA and
TST designs, both approaches suffer from a major problem: the order in which
subgoals are called during a particular evaluation can greatly affect the success
and applicability of the call subsumption technique. For example, consider again
the subgoals p(X, 1, 2) and p(Y, 1, Z). If p(X, 1, 2) is called after p(Y, 1, Z), then
p(X, 1, 2) will be able to consume answers from p(Y, 1, Z) tables. Otherwise, if
p(X, 1, 2) is called before, then no sharing will be possible, since answer reuse
only happens when more general subgoals appear before specific ones.

In this work, we present an extension to the original TST design, named
Retroactive Call Subsumption (RCS), that supports call subsumption by allowing
full sharing of answers between subsumed/subsuming subgoals, independently
on the order in which they are called. The RCS proposal implements a strategy
that allows retroactive sharing of answers among subgoals by means of selectively
pruning and restarting the evaluation of subsumed subgoals. In order to support
this, we introduce the following main extensions for subsumption-based tabling:
(i) a new algorithm to efficiently traverse the table space searching for subsumed
subgoals; (ii) a new table space organization, based on the ideas of the common
global trie proposal [4], where answers are represented only once; and (iii) a
new evaluation strategy to selectively prune and restart the evaluation of tabled
nodes. We will focus our discussion on a concrete implementation, the YapTab
system [5], but our proposals can be generalized and applied to other tabling

132 F. Cruz and R. Rocha

systems. Notice that, in order to do this work, first we have ported, from XSB
Prolog to YapTab, the full code that implements the TST design1.

The remainder of the paper is organized as follows. First, we briefly introduce
the main background concepts about tabled evaluation in YapTab. Next, we
present the RCS proposal and discuss the main operational challenges involved
in its design. We then describe how we have extended YapTab to provide engine
support for it. Finally, we present some experimental results and conclusions.

2 Tabled Evaluation in YapTab

Tabling consists of storing intermediate answers for subgoals so that they can be
reused when a similar subgoal appears. Whenever a tabled subgoal is first called,
a new entry is allocated in the table space. Table entries are used to keep track of
subgoal calls and to store their answers. Each time a tabled subgoal is called, we
know if it is a repeated call by inspecting the table space searching for a similar
call. Within this model, the nodes in the search space are classified as either:
generator nodes, if they are being called for the first time; consumer nodes, if
they are repeated calls; or interior nodes, if they are non-tabled subgoals.

To support tabled evaluation, the YapTab design [5] extends the Warren’s
Abstract Machine (WAM) [6] execution model with the following four operations:

Tabled Subgoal Call: this operation searches the table space looking for a
subgoal S similar to the current subgoal C being called. If such subgoal is
found, C will be resolved using answer resolution and for that it allocates
a consumer node and starts consuming the set of available answers from
S. If not, C will be resolved using program clause resolution and for that it
allocates a generator node, adds a new entry to the table space and initializes
it with an empty set AC of answers.

New Answer: this operation checks whether a newly found answer a for a
generator node C is already in its table entry. If a is a repeated answer, the
operation fails. Otherwise, a new answer set A′

C = AC ∪ a is generated.
Answer Resolution: this operation checks whether a consumer node C has

new answers available for consumption. If no answers are available, C is
suspended and execution proceeds using a specific strategy [7]. Consumers
must suspend because new answers may still be found by the corresponding
variant/subsuming call S. Otherwise, given C’s last consumed answer, we
determine the unconsumed answer set UC ⊆ AS and consume the next one.

Completion: this operation determines whether a subgoal S is completely eval-
uated. If this is not the case, this means that there are still consumers with
unconsumed answers and execution thus proceeds to one of such consumers.
Otherwise, the operation closes S’s table entry, meaning that the full set
of answers AS was found, and future variant/subsumed calls to S can then
reuse AS without the need to suspend.

1 We would like to thank Terrance Swift for his help in introducing us the XSB Prolog
code that implements the TST design.

Retroactive Subsumption-Based Tabled Evaluation of Logic Programs 133

In YapTab, tabled nodes are implemented as WAM choice points extended with
some extra fields. Furthermore, YapTab associates a data structure, named sub-
goal frame, to generator nodes and another, named dependency frame, to con-
sumer nodes. Each subgoal frame stores information about the subgoal, namely
the entry point to its answer set. Each dependency frame stores information
about the consumer node, namely information for detecting completion. Both
sets of subgoal and dependency frames are connected in creation time order
forming a doubly-linked list.

3 Retroactive Call Subsumption

In this section, we present the RCS proposal in more detail, focusing the discus-
sion on the new evaluation strategy that allows retroactive sharing of answers
among subgoals by means of selectively pruning and restarting the evaluation of
subsumed subgoals. Pruning the evaluation of a subsumed subgoal R requires
knowing the parts of the execution stacks and respective choice points involved
in its computation, and then transforming R’s generator choice point in such
a way that it can consume the answers from the subsuming subgoal S, instead
of continuing its normal execution. We argue that there are two main types of
pruning situations from where any other situation can be derived. The first type
is external pruning and occurs when the subsuming subgoal S is an external
subgoal to the evaluation of R. The second type is internal pruning and occurs
when S is an internal subgoal to the evaluation of R. Although the two base
cases are very distinct, they share some side-effects, which we discuss next.

3.1 External Pruning

Consider the program that follows and the query goal ‘?- a(X), p(Y,Z)’.

:- use_subsumptive_tabling p/2.

a(X) :- p(1,X). p(1,3).
a(X) :- ... p(X,Y) :- ...

Initially, a(X) calls p(1,X)which succeeds with {X=3}, and in the continuation
p(Y,Z) is called (Fig. 1(a)). The call to p(Y,Z) then checks if there are more
specific subgoals being evaluated and it finds p(1,X). The subgoal frame for
p(1,X) is thus marked as a consumer subgoal frame and its producer subgoal
field is set to point to the subgoal frame for p(Y,Z). Next, the choice point
for p(1,X) is transformed from a generator node to a retroactive node, which
amounts to pruning p(1,X)’s current evaluation by updating the continuation
alternative choice point field to a pseudo-instruction called retroactive resolution
(Fig. 1(b)). Upon backtracking, this instruction will allow the retroactive node
to transform itself in other types of nodes, as we will see.

After p(Y,Z) has completed, the evaluation backtracks to p(1,X) and, by
executing the retroactive resolution instruction, it is detected that the producer
subgoal has already completed. The choice point for p(1,X) is then converted to

134 F. Cruz and R. Rocha

(a) (b) (c)

a(X) Int

Choice Point
Stack

p(1,X) Loa

a(X), p(Y,Z)

p(1,X), p(Y,Z)

p(Y,Z)

X=3

a(X) Int

Choice Point
Stack

...

p(1,X) Ret

p(Y,Z) Gen

a(X), p(Y,Z)

p(1,X), p(Y,Z)

p(Y,Z)

X=3

a(X)

...

Int

Choice Point
Stack

...

p(1,X) Gen

p(Y,Z) Gen

...

Fig. 1. The base case for external pruning

a loader node2 (Fig. 1(c)) in order to load from p(Y,Z) all the answers relevant
to p(1,X) minus the answers previously found when the choice point was a
generator node (answer {X=3} in Fig. 1), therefore avoiding repeated answers.

In the previous example, the pruned evaluation of p(1,X) do not included
other choice points, just the generator node for p(1,X). The following example
mixes subsumptive with variant checks and introduces pruning over choice points
belonging to the subsumed subgoal.

:- use_variant_tabling [a/2, b/1], use_subsumptive_tabling p/2.

a(X,Y) :- p(1,X), b(Y). p(1,X) :- a(_,X).
a(X,Y) :- ... p(1,X) :- b(X).
b(1). b(2). p(X,Y) :- ...

The query goal to consider is ‘?- a(X,Y), p(Z,W)’ and the first part of the
evaluation is illustrated in Fig. 2.

p(V0,V1)

top_gen

b(V0)

top_gen

Subgoal
Frames

Dependency
Frames

a(X,Y) Gen

Choice Point
Stack

p(1,X) Gen

a(_,X) Con

b(X) Gen

b(Y) Con

p(Z,W) Gen

a(V0,V1)

top_gen

p(1,V0)

top_gen

a(_,X)

top_gen

b(Y)

top_gen

a(X,Y), p(Z,W)

p(1,X), b(Y), p(Z,W)

a(_,X), b(Y), p(Z,W)

...

...

b(X), b(Y), p(Z,W)

X=1
...

b(Y), p(Z,W)

Y=1
...

p(Z,W)

Fig. 2. Before external pruning over choice points belonging to the subsumed subgoal

2 At the engine level, a loader node is implemented as a consumer node but without
a dependency frame, since loader nodes do not need to suspend.

Retroactive Subsumption-Based Tabled Evaluation of Logic Programs 135

Execution starts by storing generator nodes for a(X,Y) and p(1,X). Next, the
first clause of p/2 is executed and a consumer node for a(,X) is allocated. As
no answers for this variant subgoal exist, a(,X) is suspended and the execution
backtracks to p(1,X). The second clause of p/2 is then executed and subgoal
b(X) is called, allocating a new generator node. In the continuation, a first
answer for b(X) and p(1,X) is found, {X=1}, and execution proceeds with a
call to b(Y). As subgoal b(Y) is a variant of b(X), a consumer node is created
and the answer {X=1} is consumed, thus generating a first answer for a(X,Y),
{X=1,Y=1}. Finally, subgoal p(Z,W) is called and we proceed as in the previous
example for the subsumed subgoal p(1,X). But now, as the evaluation of p(1,X)
includes other choice points, a(,X) and b(X), they should be pruned. Figure 3
shows the state of the computation after pruning. The prune action depends on
the choice point type and is discussed next in more detail.

Pruning Interior Nodes. Interior nodes are related to normal Prolog exe-
cution and can be easily pruned by ignoring them altogether. This approach,
while simple, suffers from the problem of trapped choice points. A more complex
solution would involve modifications to the WAM garbage collector to collect
unused space on the choice point stack.

Pruning Internal Consumers. The consumer node for a(,Y) must be explic-
itly pruned as otherwise it might be resumed, if new answers are to be consumed,
and incorrectly reactivate the pruned branch of p(1,X). For each pruned internal
consumer, we must thus delete its corresponding dependency frame.

Pruning Internal Generators. The generator node for b(X) must be explic-
itly pruned as otherwise it might be incorrectly completed. For each pruned
internal generator, we must thus remove its corresponding subgoal frame from
the subgoal frames stack and alter its state to pruned.

Generally, when pruning internal generators, we have two situations: (i) the
generator does not have consumers that are external to the computation of the

p(V0,V1)

top_gen

Subgoal
Frames

Dependency
Frames

a(X,Y) Gen

Choice Point
Stack

p(1,X) Ret

a(_,X)

b(X)

b(Y) Ret

p(Z,W) Gen

a(V0,V1)

top_gen

b(Y)

top_gen

a(X,Y), p(Z,W)

p(1,X), b(Y), p(Z,W)

...

X=1

b(Y), p(Z,W)

Y=1
...

p(Z,W)

Fig. 3. After external pruning over choice points belonging to the subsumed subgoal

136 F. Cruz and R. Rocha

subsumed subgoal; or (ii) the generator has external consumers. The former
situation does not introduce any problem, but the latter origins orphaned con-
sumers. In our example, the consumer node for b(Y) is external to the evaluation
of p(1,X) and when pruning b(X), b(Y) becomes orphan.

Usually, a pruned generator is called again, during the evaluation of the sub-
suming subgoal, and before the computation reaches any of the orphaned con-
sumers. Once reactivated, the subgoal frame for the pruned generator is pushed
again into the top of the subgoal frame stack and its state altered to evaluat-
ing. Then, the new generator node starts by consuming the previously generated
answers and only then executes the program clauses.

Orphaned Consumers. To deal with orphaned consumers, we use the same
strategy as for subsumed subgoals and transform them into retroactive nodes.
Upon backtracking, they then become either: (i) a loader node, if the pruned
generator was reactivated and has completed; (ii) a consumer node, if the pruned
generator was reactivated but has not completed yet; or (iii) a generator node,
if the pruned generator was not reactivated until then. This latter situation only
occurs in variant-based tabling, since in subsumption-based tabling, when the
subsuming call is executed it will necessarily either call the same or a more
general subgoal, reactivating a new producer for the orphaned consumers.

By default, orphaned consumers always keep their frames on the dependency
frame stack. The frame is only removed if the retroactive node turns into a
loader or a generator node. If the retroactive node turns again into a consumer
node, lazy removal of dependency frames allows us to avoid removing and allo-
cating a new frame and the potentially expensive operation of inserting it on the
dependency frame stack in the correct order (ordered by choice point address).

Lost Consumers. A lost consumer is a retroactive node that will not be re-
sumed through standard tabled evaluation, i.e., through backtracking or through
answer resolution. When a lost consumer is not resumed, we might lose answers
and incorrectly detect completion. As we will see next, to avoid that, we must
ensure that all retroactive nodes are always resumed. While in the example of
Fig. 3, both p(1,X) and b(Y) will be resumed by means of backtracking, this
may not be always the case. Consider, for example, the program on Fig. 4 and
the query goal ‘?- a(X,Y)’.

In this example, when the subsuming call p(X,Y) is executed, the generator
node b(1,X) will be pruned and the external consumer b(1,Y) (the center node
in the gray oval box) will be turned into a retroactive node and became a lost
consumer. Notice that b(1,Y) will be resumed neither trough backtracking, since
it is not on the current branch, nor through answer resolution, since its pruned
generator will not be reactivated.

Hence, when later the computation backtracks to a(X,Y) to attempt com-
pletion, b(1,Y) still remains as a retroactive node. Clearly, to correctly detect
completion, we must resume it in order to generate the answers {X=0,Y=0} and
{X=0,Y=1}, as otherwise they will be lost. Therefore, to ensure that all retroactive
nodes are resumed, we extended the completion operation to, while traversing

Retroactive Subsumption-Based Tabled Evaluation of Logic Programs 137

:- use_variant_tabling [a/2, b/2].
:- use_subsumptive_tabling p/2.

a(X,0) :- p(1,X).
a(0,Y) :- b(1,Y).
a(X,Y) :- p(X,Y).

b(1,Y) :- a(_,Y).
b(2,1).

p(X,Y) :- b(X,Y).
a(_,Y)

top_gen

Dependency
Frames

p(1,X)

top_gen

b(1,Y)

top_gen

a(X,Y)

p(1,X) b(1,Y)

b(1,X)

a(_,X)

p(X,Y)

b(X,Y)

a(_,Y)

X=0
Y=0

X=1

true

X=2
 Y=1

pruned by

Fig. 4. A lost consumer after an external pruning

the dependency frame stack checking for new answers, also check for retroactive
nodes, and resume the corresponding consumer node in both cases.

A more tricky situation may occur when a pruned subsumed subgoal R is also
a leader node3. In such situations, R will not attempt completion and we will
not be able to use the completion operation, as described above, to resume any
potential lost consumer. Instead, when resuming the computation in R, if R is
to be transformed into a loader node (this means that R is a pseudo-leader since
no dependencies to upper nodes exist), we also traverse the dependency frame
stack looking for younger retroactive nodes with unconsumed answers and, when
that is the case, execution is first resumed in those nodes.

With these two simple extensions, our strategy is able to ensure that all
retroactive nodes are always resumed.

Frontier Node. A frontier node is a choice point that is external to the com-
putation of a subsumed subgoal R but that is chained to a choice point that is
internal to the computation of R. In the example of Fig. 2, the choice point of
b(Y) is a frontier node. In order to avoid execution to step into the pruned branch
of a subsumed subgoal R upon backtracking, in general, a frontier node must
be updated and linked to R. In the example of Fig. 3, the choice point of b(Y)
is linked to p(1,X). However, for cases where the subsumed subgoal appears
outside the branch of the subsuming subgoal, there is no need to update the
frontier node. This is safe, because the branch including the subsumed subgoal
will only be resumed on consumers during completion and thus no backtracking
to previous choice points will occur as they were fully explored before.

3.2 Internal Pruning

Internal pruning occurs when the subsuming subgoal S is internal to the evalu-
ation of the subsumed subgoal R. In this type of pruning we want to keep one
part of R running, the one that computes S.
3 The youngest generator node which does not depend on older generators is called

the leader node. A leader node defines the next completion point.

138 F. Cruz and R. Rocha

Our approach involves computing S using local scheduling4 [7], but without
returning answers to the environment of R, as it has been pruned. Instead, we
jump directly to the choice point of R, which was transformed into a retroactive
node, and resume the computation there in order to consume the matching
answers found by S. When resuming the retroactive node for R, it can become
either: (i) a loader node, if S has completed; or (ii) a consumer node, if S has
not completed because it is not the leader node, i.e., the leader node is above R.

Notice that, when the completion operation is later attempted at the leader
node, the computation can still be resumed, as usual and without any special
handling, at R or at the internal consumers of S, until no unconsumed answers
are available. Moreover, the effects of pruning involving internal generators and
external consumers discussed for external pruning, still apply to internal pruning.

Our engine also supports multiple internal pruning. Consider, for instance,
that a subgoal R1 calls recursively internal subgoals R2, .., Rn until a subgoal S
is called that subsumes R1, R2, ..., Rn. In such cases, we ignore all intermediate
subgoals and answers are only pushed from S to R1, the top subgoal. For an
example, consider the query goal ‘?- p(1,X)’ and the following program:

:- use_subsumptive_tabling p/2.

p(1,X) :- p(2,X).
p(2,X) :- p(X,_).
p(X,Y) :-

Execution starts by storing generator nodes for p(1,X) and p(2,X), and then
p(2,X) calls p(X,) that subsumes both p(1,X) and p(2,X). Pruning is done
between the top subsumed subgoal p(1,X) and the subsuming subgoal p(X,)
and the node for p(2,X) is ignored (Fig. 5(a)). The choice point for p(1,X) is
transformed into a retroactive node and execution proceeds by applying local
scheduling to evaluate p(X,) (Fig. 5(b)).

(a) (b)

Local
Scheduling

p(1,X) Ret

Choice Point
Stack

p(2,X)

p(X,_) Gen

p(1,X)

p(X,_)

p(1,X) Gen

Choice Point
Stack

p(2,X) Gen

p(X,_) Gen

p(1,X)

p(2,X)

...

...

p(X,_)

Fig. 5. Multiple internal pruning

4 Local scheduling is a scheduling strategy that tries to evaluate subgoals as inde-
pendently as possible. The key idea is that whenever new answers are found, they
are added to the table space as usual but execution fails. Hence, answers are only
returned when all program clauses for the subgoal at hand were fully explored.

Retroactive Subsumption-Based Tabled Evaluation of Logic Programs 139

Later, if p(X,) completes, the computation is resumed at p(1,X) and the
retroactive node is transformed into a loader node, thus loading the matching
answers from p(X,). If p(,X) could not complete because it is not the leader
node, the evaluation still resumes at p(1,X) and the retroactive node is trans-
formed into a consumer node, and for that it allocates a new dependency frame
and inserts it in the proper order in the dependency frame stack.

4 Implementation Details

In this section, we describe implementation details worthy of note. First, we will
describe some other topics related to pruning, next we present how the table
space is organized, and, then, we give a brief overview of the algorithm used to
search for subsumed subgoals.

From Consumers to Generators. In order to be able to transform a con-
sumer node into a retroactive node and then into a generator node, all con-
sumer choice points are allocated, by default, as generator choice points. We
are studying a more sophisticated solution that will uniformize the choice point
representation of tabled nodes in order to simplify this problem.

External or Internal. Each subsumptive subgoal frame was extended with two
new fields: start code and end code, that initially are standard WAM variables.
The start code field is bound to an arbitrary value when the subgoal starts
executing and unbound when the subgoal backtracks, therefore allowing us to
easily detect if the subgoal is in the current branch. The end code field is bound
when a new answer is found, i.e., when the code has reached the end of a program
clause, thus allowing us to easily detect if a pruned subgoal is external or internal.

To reconstruct the dependency tree of generators and consumers, we extended
both subgoal and dependency frames with a new top gen field (see Figs 2 and 3).
When a new frame is created, this field is set to point to the subgoal frame
corresponding to the generator node whose code is in execution, if any. This
subgoal frame is represented by a global variable that is updated when a new
generator is called or when it reaches the end of a program clause. Dependency
frames save the value of this global variable in order to correctly restore it when
a consumer node is resumed.

In order to detect if a subgoal S is external or internal to another subgoal
R, the top gen links are traversed until: (i) R is reached and, in this case, S is
internal; or (ii) we reach a subgoal older than R and, in this case, S is external.

Table Space. In our subsumptive engine, all answers for a tabled predicate are
stored in a Single Time Stamped Trie (STST) that is common to all subgoals
calls for the predicate. This approach reduces memory usage, allows easy sharing
of answers between different subgoals and, in particular, allows us to efficiently
load answers from subsumed/subsuming subgoals. The STST keeps a time stamp
for the last answer inserted and each subgoal frame keeps a time stamp for the

140 F. Cruz and R. Rocha

last answer generated or consumed. This time stamps are then used to easily
compute the answers to be considered when pruning a subsumed subgoal.

This approach also allows reusing the answers on the STST when a new
subgoal is called. As an example, consider that two unrelated (no subsumption
involved) subgoals S1 and S2 are fully evaluated. If a subgoal S is then called,
it is possible that some of the answers on the STST match S even if S neither
subsumes S1 nor S2. Hence, instead of eagerly running the predicate clauses,
we start by loading the matching answers already on the STST, which can be
enough if, for example, S gets pruned by a cut. While this approach has some
advantages, it can lead to redundant computations if later, when running the
program clauses, S generates more general answers than the ones initially loaded.

Searching Subsumed Subgoals. Each subgoal trie node was extended with
a new field called in eval which stores the number of subgoals, represented be-
low the node, that are in evaluation. The subgoal trie path is incremented or
decremented when the subgoal enters or exists the computation, respectively.
Our algorithm for searching subsumed subgoals then uses this field to quickly
discard irrelevant trie branches as it descends the trie. The search is done by
matching the subgoal arguments through backtracking along the subgoal trie.
On a successful match, the algorithm stores a continuation for an alternative
node before descending into the next trie level. If a match fails, a continuation is
popped from the continuation stack and the state of the computation is restored
(bindings and the trie node). The matching works by the following rules. A non-
variable term argument must always match with a non-variable trie symbol.
Unbound variable term arguments can match any trie symbol and are bound to
the symbol before descending. When a variable term bounds to a trie variable,
it must always match against the same trie variable on the following matches.

5 Experimental Results

In this section, we present some experimental results comparing our new RCS
proposal with traditional call subsumption. The environment for our experiments
was an Intel Core(TM) 2 Quad 2.66 GHz with 4 GBytes of memory and running
the Linux kernel 2.6.31 with YapTab 6.0.3 and XSB Prolog 3.2.

First, we measured the RCS overhead for programs that do not take advantage
of it, i.e., programs that never call more general subgoals after specific ones, and
for that we used a set of benchmark programs downloaded from the XSB Prolog
repository5 with different configurations of data (see Table 1).

Table 1 shows the running time, in milliseconds, for YapTab using RCS (col-
umn RCS), and its ratio compared with traditional call subsumption for both
YapTab (column CS/RCS) and XSB Prolog (column XSB/RCS). Our results
show that, for this set of programs, RCS support adds a very small overhead to
running time when compared with traditional call subsumption, and for some
programs it can even run faster, probably due to cache behavior effects.
5 http://xsb.cvs.sourceforge.net/viewvc/xsb/xsbtests

http://xsb.cvs.sourceforge.net/viewvc/xsb/xsbtests

Retroactive Subsumption-Based Tabled Evaluation of Logic Programs 141

Table 1. RCS running times on programs that do not benefit from it

Program/Data RCS CS/RCS XSB/RCS

right first

binary tree 170 0.94 0.96
chain 2,900 0.99 1.10
grid 14,456 1.18 1.20

pyramid 11,520 1.00 1.01

left last

binary tree 146 0.93 0.96
chain 3,068 0.93 1.24
grid 13,356 1.00 1.28

pyramid 3,260 1.08 0.90

double last
binary tree 952 0.94 1.03

chain 2,912 0.90 1.41

samegen
binary tree 8,272 0.97 1.20

chain 44 1.18 0.64
Average 1.00 1.08

Table 2. RCS running times on programs that are expcted to benefit from it

Program/Data RCS CS/RCS XSB/RCS

left first

binary tree 156 1.18 1.18
chain 44 1.00 1.18
grid 40 1.20 1.40

pyramid 200 0.92 0.96

double first

binary tree 784 1.62 1.46
chain 2,916 0.95 1.24
grid 2,132 0.97 1.30

pyramid 12,004 1.01 1.19

reach first
iproto 2,244 1.54 2.77
leader 3,152 1.92 3.82
sieve 19,997 1.94 1.96

reach last
iproto 2,300 1.51 2.77
leader 3,128 1.94 4.33
sieve 17,693 2.18 2.97

Average 1.42 2.01

Next, we tried some benchmarks where RCS was expected to perform better.
We used a path/2 program, left and doubly recursive variants, to compute the
query goal ‘?- path(X,1)’ and also experimented a reach/2 program with three
different transition relation graphs used in model-checking applications.

From Table 2, we can observe that for some path/2 benchmarks, RCS performs
worse, possibly because the time saved by pruning evaluation branches does not
pay the incurred overhead in traversing the new STST table organization to
collect relevant answers. For the model-checking benchmarks, RCS performance
is notoriously better than traditional call subsumption, with speedups reaching
2.18 for YapTab and 4.33 for XSB. For these benchmarks, the performance

142 F. Cruz and R. Rocha

impact of using the STST is much smaller when compared to the time saved by
pruning evaluation branches of subsumed subgoals.

6 Conclusions and Further Work

We have presented a new tabling extension called Retroactive Call Subsumption
that supports full sharing of answers between subsumptive subgoals, regardless
of the order in which they are called, and we have described the main concepts
and operational challenges of its design in the context of the YapTab system.

Initial experiments comparing our proposal with traditional call subsumption
semantics, showed low overheads when executing standard programs and good
results when applied to tabled programs that can benefit from it. Further work
involves refining the system, testing it against more real-world applications, and
studying the impact on performance and memory usage of new data structures,
like the Single Time Stamped Trie.

As argued by Johnson et al. [3], for some programs it may be useful to lose
some goal directness by means of call abstraction and, instead of calling a goal
G, we may decide to call a more general goal G′ and then reuse the answers from
G′ to solve G. Our implementation already includes all the machinery necessary
to do that, which makes it a good framework to further support call abstraction
by devising various analysis techniques of call patterns.

References

1. Chen, W., Warren, D.S.: Tabled Evaluation with Delaying for General Logic Pro-
grams. Journal of the ACM 43(1), 20–74 (1996)

2. Rao, P., Ramakrishnan, C.R., Ramakrishnan, I.V.: A Thread in Time Saves Tabling
Time. In: Joint International Conference and Symposium on Logic Programming,
pp. 112–126. The MIT Press, Cambridge (1996)

3. Johnson, E., Ramakrishnan, C.R., Ramakrishnan, I.V., Rao, P.: A Space Efficient
Engine for Subsumption-Based Tabled Evaluation of Logic Programs. In: Middel-
dorp, A. (ed.) FLOPS 1999. LNCS, vol. 1722, pp. 284–300. Springer, Heidelberg
(1999)

4. Costa, J., Rocha, R.: Global Storing Mechanisms for Tabled Evaluation. In: Garcia
de la Banda, M., Pontelli, E. (eds.) ICLP 2008. LNCS, vol. 5366, pp. 708–712.
Springer, Heidelberg (2008)

5. Rocha, R., Silva, F., Santos Costa, V.: On applying or-parallelism and tabling to
logic programs. Theory and Practice of Logic Programming 5(1 & 2), 161–205 (2005)

6. Warren, D.H.D.: An Abstract Prolog Instruction Set. Technical Note 309, SRI In-
ternational (1983)

7. Freire, J., Swift, T., Warren, D.S.: Beyond Depth-First: Improving Tabled Logic
Programs through Alternative Scheduling Strategies. In: Kuchen, H., Swierstra, S.D.
(eds.) PLILP 1996. LNCS, vol. 1140, pp. 243–258. Springer, Heidelberg (1996)

Preference-Based Inconsistency Assessment in
Multi-Context Systems�

Thomas Eiter, Michael Fink, and Antonius Weinzierl

Institute of Information Systems
Vienna University of Technology

Favoritenstraße 9-11, A-1040 Vienna, Austria
{eiter,fink,weinzierl}@kr.tuwien.ac.at

Abstract. Resolving inconsistency in knowledge-integration systems is
a major issue, especially when interlinking heterogeneous, autonomous
sources. The latter can be done using a multi-context system, also in
presence of non-monotonicity. Recent work considered diagnosis and ex-
planation of inconsistency in such systems in terms of faulty information
exchange. To discriminate between different solutions, we consider in-
consistency assessment using preference. We present means to a) filter
undesired diagnoses b) select the most preferred ones given an arbitrary
preference order and c) use CP-nets for efficient selection. Furthermore,
we show how to incorporate the assessment into a Multi-Context System
by a transformational approach. In a range of settings, the complexity
does not increase compared to the basic case and key properties like de-
centralized information exchange and information hiding are preserved.

Keywords: Inconsistency Management, Multi-Context Systems,
Hybrid Reasoning Systems, Nonmonotonic Reasoning, Preferences.

1 Introduction

Inconsistencies in heterogeneous, nonmonotonic knowledge-integration systems
often do not have a single cause, but emerge from interaction, i.e., by the
exchange of knowledge between knowledge bases. The nonmonotonic Multi-
Context System (MCS) framework of [4], which extends seminal works by [9,6],
is a logic-based approach to flexibly model the information exchange between
heterogeneous (nonmonotonic) knowledge bases, which exist a priori and incor-
porate external knowledge via so-called bridge rules. Recently, formal notions for
explaining inconsistency in such MCSs in terms of faulty bridge rules have been
developed [8], serving the purpose of inconsistency analysis with the eventual
aim of resolving inconsistency. However, multiple possibilities for this call for a
further assessment, taking application specific criteria into account.

To the best of our knowledge, no general method has been proposed to assess
inconsistencies in MCSs which is flexible enough to adapt to application specific

� Supported by the Vienna Science and Technology Fund (WWTF), grant ICT08-020.

T. Janhunen and I. Niemelä (Eds.): JELIA 2010, LNAI 6341, pp. 143–155, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

144 T. Eiter, M. Fink, and A. Weinzierl

criteria. Although, for instance, [2] provides methods based on local trust and
provenance to determine preferred models for a MCS avoiding inconsistency, the
proposal requests to choose one out of four predefined evaluation algorithms.
Our work instead aims at general techniques for assessing inconsistency in MCSs
that can be ‘instantiated’ to encode application-specific properties for preferred
consistency restorations.

For example, consider a health-care decision-support system that interlinks
knowledge sources about patient histories, lab test results, a disease ontology, and a
decision support system for patient treatment. Here, an inconsistency might easily
arise if some scenario of contradicting information has not been anticipated. E.g.,
the ontology classifies symptoms as atypical pneumonia, which requires strong an-
tibiotics, but a patient is allergic to it; the treatment system may then raise an
inconsistency. One possibility to resolve it is to ignore the imported disease infor-
mation. While technically fine, this solution might be unacceptable, as a constraint
“No illness of a patient may be ignored” should be fulfilled.

To account for such selection criteria on consistency restorations, we take a
preference-based approach. Two basic elements of preference-based selection can
be found in the literature: filters, which discard unpreferred solutions that fail
some preference condition, and qualitative comparison relations establishing pref-
erence orders to single out the most appealing solutions. Our main contributions
enabling these for inconsistency assessment in MCSs are summarized as follows.
• We formalize both preference approaches above in the setting of MCSs. For

preference orders, we further investigate the application of conditional preference
networks (CP-nets), which exhibit appealing features of locality and privacy. CP-
nets [3] capture a natural class of preference statements like “If my new car is
from Japan, I prefer hybrid over diesel engine, assuming all else is equal”.
• We further show how to realize the preference approaches inside the MCS

framework by using meta-reasoning on consistency restorations. For a given MCS
and a filter, preference order, or CP-net, a rewriting yields a transformed system
such that consistency restorations of the latter directly correspond to preferred
consistency restorations of the original system (wrt. the given filter, preference
order, or CP-net).
• For preference notions that are not inherently centralized, the realization

allows that preferred solutions are found in a decentralized, localized manner,
maintaining privacy and information hiding. Thus we preserve key properties of
MCSs also for inconsistency assessment.

Our results not only refine existing methods for inconsistency handling in MCSs
without complexity increase, but also show the versatility of the basic framework
to couch advanced reasoning tasks, including self-reflective assessment.

2 Preliminaries

This section introduces MCS and diagnoses in general; it is largely based on [8].
A heterogeneous nonmonotonic MCS [4] consists of contexts, which comprise

knowledge bases in underlying logics, and bridge rules to control the information
flow between contexts.

Preference-Based Inconsistency Assessment in Multi-Context Systems 145

A logic L = (KBL,BSL,ACCL) consists, in an abstract view, of

– a set KBL of knowledge bases of L, each being a set (of “formulas”),
– a set BSL of possible belief sets, whose elements are “beliefs”, and
– a “semantics” function ACCL : KBL → 2BSL which assigns each knowledge

base a set of acceptable belief sets.

This concept of a logic captures many monotonic and nonmonotonic logics, e.g.,
classical logic, description logics, modal logics, default logics, circumscription,
and logic programs under the answer set semantics.

A bridge rule can add information to a context, depending on the belief sets
which are accepted at other contexts. Let L = (L1, . . . , Ln) be a sequence of
logics. An Lk-bridge rule r over L is of the form

(k : s) ← (c1 : p1), . . . , (cj : pj),not (cj+1 : pj+1), . . . ,not (cm : pm). (1)

where 1 ≤ ci ≤ n, pi is an element of some belief set of Lci , k refers to the
context receiving information s. We denote by hd (r) the formula s in the head
of r.

A multi-context system (MCS) is a collection M = (C1, . . . , Cn) of contexts
Ci = (Li, kbi, bri), 1 ≤ i ≤ n, where Li = (KBi,BSi,ACCi) is a logic, kbi ∈
KBi a knowledge base, and bri is a set of Li-bridge rules over (L1, . . . , Ln). In
addition, for each H ⊆ {hd (r) | r ∈ bri} we have kbi ∪ H ∈ KBi, i.e., bridge
rule heads are compatible with knowledge bases. By brM =

⋃n
i=1br i we denote

the set of bridge rules of M .
A belief state of an MCS M = (C1, . . . , Cn) is a sequence S = (S1, . . . , Sn)

such that Si ∈ BSi. A bridge rule (1) is applicable in a belief state S iff for
1 ≤ i ≤ j: pi ∈ Sci and for j < l ≤ m: pl /∈ Scl

.

Example 1. Consider two scientists, Prof. K and Dr. J, planning to write a paper.
We formalize their reasoning in an MCS M using two contexts each employing
answer set semantics. Dr. J will write most of the paper and Prof. K only par-
ticipates if either he finds time or if Dr. J thinks the paper needs improvement
(bridge rule r1). Dr. J knows that the participation of Prof. K results in a good
paper (r2 and kbJ) and he will name Prof. K as author if she participates (r3).
The knowledge bases of the contexts are:

kbK ={has time. contribute ← improve . contribute ← has time.}
kbJ ={good ← coauthored .}

The bridge rules are r1 = (K:improve)← not (J :good).,
r2 = (J :coauthored)← (K:contribute)., and r3 = (J :name K)← (K:contribute).

Equilibrium semantics selects certain belief states of an MCS M = (C1, . . . , Cn)
as acceptable. Intuitively, an equilibrium is a belief state S = (S1, . . . , Sn) where
each context Ci respects all bridge rules applicable in S and accepts Si. Formally,
S is an equilibrium of M , iff for 1 ≤ i ≤ n,

Si ∈ ACCi(kbi ∪ {hd (r) | r ∈ bri applicable in S}).

146 T. Eiter, M. Fink, and A. Weinzierl

Example 2 (Ex. 1 ctd.). The MCS has just one equilibrium S = ({has time,
contribute}, {coauthored ,name K , good}) where both scientists author a good
paper. Bridge rules r2 and r3 are applicable in S.

Inconsistency in an MCS is the lack of an equilibrium.

Example 3 (Ex. 1 ctd.). Assume Prof. K has no time, so she only contributes,
if Dr. J considers the paper to be not good, i.e, kbK = {contribute ← improve .
contribute ← has time.}. Then there is a loop with an odd number of negations
via bridge rules r1 and r2. This makes the MCS inconsistent.

For any MCS M and set R of bridge rules (fitting M), we denote by M [R] the
MCS obtained from M by replacing brM with R (e.g., M [brM] = M and M [∅]
is M with no bridge rules); by M |= ⊥ we denote that M has no equilibrium (is
inconsistent). For any set of bridge rules A, heads(A) = {α← � | α←β ∈ A}
are the rules in A in unconditional form.

Diagnoses. As well-known, in nonmonotonic reasoning, adding knowledge can
both cause and prevent inconsistency; the same is true for removing knowledge.
The consistency-based explanation of inconsistency, therefore considers pairs
(D1, D2) of sets of bridge rules, such that if the rules in D1 are deactivated, and
the rules in D2 are added in unconditional form, the MCS becomes consistent
(i.e., it admits an equilibrium). Adding rules unconditionally makes sense due to
non-monotonicity; the idea is related to that of consistency restoring rules [1].

Formally, a diagnosis of an MCS M is a pair D = (D1, D2), D1, D2 ⊆ brM ,
s.t. M [brM \D1∪heads(D2)] �|= ⊥; by D±(M) we denote the set of all diagnoses.
To obtain a more relevant set of diagnoses, pointwise subset-minimal diagnoses
are preferred; we denote by D±

m(M) the set of all such diagnoses of an MCS M .
In our example D±

m(M) = {({r1} , ∅) , ({r2} , ∅) (∅, {r2}) , (∅, {r1})}; the first
two diagnoses break the cycle by removing a rule, the last two “stabilize” it.

3 Filtering and Comparing Diagnoses

In this section we introduce ways to assess consistency restorations of inconsis-
tent MCSs. First, we consider selection-based preference and provide a method to
check whether diagnoses adhere to user-defined criteria. This allows to filter out
undesired diagnoses. Then we turn to comparison-based preference, addressing
the general problem of using arbitrary preference relations on diagnoses, before
we focus on CP-nets, representing (semi-)local preference relations.

3.1 Filtering Diagnoses

Filters allow a designer of an MCSs to apply sanity checks on diagnoses, thus
they can be seen as hard constraints on diagnoses: diagnoses that fail to satisfy
the conditions are filtered out and not considered for consistency restoration.

Preference-Based Inconsistency Assessment in Multi-Context Systems 147

Definition 1. Let M be an MCS with bridge rules brM . A diagnosis filter for
M is a function f :2brM×2brM → {0, 1} and the set of filtered diagnoses is
D±

f (M) = {D ∈ D± (M) | f(D) = 1}. By D±
f,m (M) we denote the set of

all subset-minimal such diagnoses.

Example 4 (Ex. 3 ctd.). Consider the diagnosesD = ({r2} , ∅) andD′ = (∅, {r2}),
where the contribution of Prof. K is either enforced or forbidden. For both cases,
the authorship information conveyed by r3 is wrong. Using a filter, we can declare
diagnoses undesired if they modify r2 without modifying r3 accordingly, in par-
ticular f(D) = f(D′) = 0.

As it is a key strength of MCS to integrate different knowledge bases in a decen-
tralized manner, users of MCS will want to specify their constraints on diagnoses
in a logic of their choice, decentralized, and under the provision that they do not
have to disclose information considered private. In Section 4 we realize filters
within the MCS formalism, such that these properties are retained.

3.2 Comparing Diagnoses

To compare minimal diagnoses, we first consider an arbitrary preference order to
select most preferred diagnoses, and further on focus on CP-nets. A preference
order over diagnoses for an MCS M is a transitive binary relation � on 2brM ×
2brM ; we say that D is preferred to D′ iff D � D′.

Definition 2. Let M be an inconsistent MCS. A diagnosis D ∈ D±(M) of M
is called pre-most preferred iff for all D′ ∈ 2brM × 2brM with D′ � D ∧D �� D′

it holds that D′ /∈ D±(M). A diagnosis D ∈ D±(M) is called most preferred,
iff D is subset-minimal among all pre-most preferred diagnoses.

Given that MCSs are decentralized systems, users may want to express prefer-
ences on diagnoses solely based on a local set of bridge rules, assuming all other
things equal. Such preferences can be formalized using CP-nets, which are an
extension of ceteris paribus orders (“all else being equal”). They represent local
preference and have successfully been used for preference elicitation (e.g. [7]).

Example 5. Assume an MCS where several corporations make contracts using
bridge rules. Contract details, such as when a contract will start, how long
it is valid, who owns what to whom, etc, are encoded with bridge rules. For
instance, C1 is leasing a car from C2 with the following properties encoded
as bridge rules r1 = (C1 : pay(car , 500)) ← (C2 : price(car , 500)) and r2 =
(C1 : due(car ,monthly))← (C2 : due(car ,monthly)). If r2 is removed to restore
consistency, r1 becomes meaningless and possibly confuses further reasoning.
Removing both rules is then preferred to removing only r2.

A CP-net is a directed graph (V,E) where V is a finite set of variables (at-
tributes) and E ⊆ V × V is the conditional dependency between variables. For
v ∈ V we denote the set of parents of v by pa(v) = {v′ ∈ V | (v′, v) ∈ E}. Fur-
thermore, the set of outcomes of a variable v is denoted by dom(v). Preferences

148 T. Eiter, M. Fink, and A. Weinzierl

on the outcomes of a variable are specified in terms of total preorders, which
allow indifference. A relation � is a total preorder, iff it is transitive, reflexive,
and for any two elements o, o′ of � it holds that o � o′ ∨ o′ � o.

Each vertex v in a CP-net (V,E) is associated with a conditional preference
table (CPT) pv that maps each combination of outcomes of parents of v, i.e.,
o ∈ dom(p1)× . . .×dom(pn), to a total preorder �v(o) ⊆ dom(v) × dom(v) over
the outcomes of v.

We associate a CP-net (V,E) with an MCS M , if every variable v ∈ V is
assigned a set of bridge rules rules(v) ⊆ brM , such that the assignment of rules
is disjoint, i.e., ∀v, v′ ∈ V : rules(v)∩rules(v′) = ∅. Moreover, dom(v) for every v
is given by dom(v) = {unchangedr , removedr , unconditionalr | r ∈ rules(v)}. In
the following we confine here to CP-nets that are acyclic, i.e, the directed graph
(V,E) contains no cycles, and whose preference graph over outcomes is acyclic.

Example 6 (Ex. 5 ctd.). Recall r1 and r2 encoding properties of a leasing
contract.

If r2 is removed, r1 is preferred to be removed, too. Consider an associated
CP-net N = ({v1, v2} , {(v2, v1)}), i.e. pa(v1) = {v2} and pa(v2) = ∅, where
rules(v1) = {r1}, rules(v2) = {r2}. Assuming that adding rules unconditionally
is always considered to be the worst option, v1’s conditional preference table is:

pv1(unchanged r2
) = unchangedr1

≺v1 removedr1 ≺v1 unconditional r1 (2)
pv1(removed r2) = removedr1 ≺v1 unchangedr1

≺v1 unconditional r1 (3)
pv1(unconditional r2) = unchangedr1

≺v1 removedr1 ≺v1 unconditional r1 (4)

For v2 the table pv2 is unchangedr2
≺v2 removed r2 ≺v2 unconditional r2 .

A CP-net N induces a preference graph GN over outcomes, where each global
outcome is a node in the preference graph. An arc from outcome oi to oj indicates
that a preference for oj over oi can be determined directly from one conditional
preference table of the CP-net (cf. [3]). The transitive closure G+

N of a preference
graph induces a partial order on global outcomes. Furthermore, for a CP-net
associated with an MCS, every global outcome represents a potential diagnosis.

Proposition 1. Let M be an inconsistent MCS, and let N be a CP-net associ-
ated with M . Then G+

N induces a preference order ≺ over diagnoses of M .

By D±
opt (M,N) we denote the subset-minimal among the most preferred diag-

noses according to G+
N , i.e., for which no other diagnosis is more preferred.

The semantics of CP-nets may also be defined in terms of flips : Let |V | = m,
and let a = (a1, . . . , ai, . . . , am) and b = (a1, . . . , ai−1, bi, ai+1, . . . , am) be two
global outcomes with aj , bj ∈ dom(vj), that differ only in the outcome of one
variable. The flipping of vi from ai to bi is improving, iff in the CPT of vi outcome
bi is preferred over ai, given all other parent variables set as in a and b. The
converse notion of an improving flip is called a worsening flip. A global outcome
is optimal, if no improving flips are possible. Notably, for CP-nets an optimal
outcome is reachable from any outcome by a finite sequence of improving flips.

Preference-Based Inconsistency Assessment in Multi-Context Systems 149

In terms of flips, the most preferred diagnoses D±
opt(M,N) of an MCS are:

D±
opt(M,N) = min⊆{D ∈ D±(M) | ∀D′ ∈ D±(M) : iflips(D,D′) = ∅}, where

iflips(D,D′) denotes the set of sequences of improving flips from D to D′.

4 MCS-Realization

We now present ways to realize filters, preference orders, and CP-nets. All re-
alizations use a rewriting technique transforming an MCS M into an extended
MCS M ′, where certain new contexts can do meta-reasoning on diagnoses of
the original M . This is achieved in a way, such that a diagnosis of M ′ directly
corresponds to a diagnosis of M , and subset-minimal diagnoses of M ′ coincide
with the preferred diagnoses of M .

Meta-reasoning as described below allows certain contexts to observe whether
a bridge rule of M is part of a diagnosis. For this, the context observes the body
and head beliefs of a bridge rule. For a diagnosis (D1, D2) and a bridge rule r, if
the body of r is satisfied, but its head is not believed, then r ∈ D1; if the body
is not satisfied, but the head is believed, then r ∈ D2. The observation of body
and head beliefs is accomplished by additional bridge rules in M ′, that are not
subject to diagnosis. We thus adapt the notion of diagnosis such that certain
bridge rules, tagged as protected, are never part of it.

Definition 3. Let M be an MCS with protected rules brP ⊆ brM . A diagnosis
excluding protected rules brP is a diagnosis (D1, D2) ∈ D±(M), where D1, D2 ⊆
brM \ brP . We denote the set of all minimal such diagnoses by D±

m(M, brP).

A direct consequence is the following:

Proposition 2. Let M be an inconsistent MCS with protected rules brP . Then
D±

(m)(M, brP) ⊆ D±
(m)(M), i.e., every (minimal) diagnosis excluding protected

rules is a (minimal) diagnosis.

Furthermore one can show that the duality between diagnoses and inconsistency
explanations (cf. [8]) also holds for diagnoses and inconsistency explanations ex-
cluding protected rules, and that computing such diagnoses has the same com-
plexity as computing ordinary diagnoses.

Meta-Reasoning Transformation: Using additional protected bridge rules in or-
der to observe a bridge rule r with head (k : s), we aim at monitoring the import
of belief s into context k. Accessing k directly however, will in general not serve
this purpose, since s could be in an accepted belief set of k also without import.
In order to observe r properly, we therefore introduce a relay context for k, which
can then be accessed by an observer.

Given an MCS M and a set of bridge rules bro to be observed, an observation
context ob for bro is a context with bridge rules brob = brob

b ∪ brob
h with brob

b =
{robb | r ∈ bro} and brob

h = {robh | r ∈ bro}, where robb and robh are of the form

(ob : bodyr)← (c1 : p1), . . . , (cj : pj),not (cj+1 : pj+1), . . . ,not (cm : pm). (5)
(ob : head r)← (relayk : s). (6)

150 T. Eiter, M. Fink, and A. Weinzierl

for a bridge rule (1), respectively. Here, relayk is the relay context for context
k (cf. below). Context ob is conservative iff ACCob(S) �= ∅ for every S ⊆
{hd (brob)}.

Now, let Bk = {s | (k : s) ← � ∈ heads(br o)}. We say that relayk is a relay
context for context Ck wrt. bro iff KBrelayk

= BSrelayk
= 2Bk , ACCrelayk

(S) =
{S}, kbrelayk

= ∅, and br relayk
= {rrelay | r ∈ bro}, where rrelay is of the form

(relayk : s)← (c1 : p1), . . . , (cj : pj),not (cj+1 : pj+1), . . . ,not (cm : pm). (7)

for a bridge rule of the form (1). Furthermore, we associate with context Ck =
(Lk, kbk, brk) its relayed context Crel

k = (Lk, kbk, (brk \ brob) ∪ br rel
k) wrt. bro,

where br rel
k = {rrel | r ∈ bro}, and rrel is for a bridge rule (1) of the form

(k : s)← (relayk : s). (8)

Based on this, the meta-reasoning transformation of an MCS is as follows.

Definition 4. Given an MCS M = (C1, . . . , Cn), let B = {(ob1, bro1), . . . ,
(obm, brom)} be an association of observation contexts obi �∈ M to disjoint sets
of bridge rules broi ⊆ brM . The meta-reasoning transformation MB of M wrt.
B is the MCS MB = (Crel

1 , . . . , Crel
n , relay1, . . . , relayn, ob1, . . . obm), where Crel

i

and relay i are relayed contexts and relay contexts wrt.
⋃m

k=1 brok
, respectively,

and brB
P =

⋃n
i=1 br rel

i ∪
⋃m

k=1 brobk
are protected rules.

In cases where contexts are known to not interfere with the beliefs they are
importing, a simpler transformation can be obtained where observation contexts
directly import from the original contexts and relay contexts are omitted.

Suppose that ob is an ASP context for the observation of a set of rules bro of
an MCS M. Then the following ASP rules allow ob to check whether r is part of
a subset-minimal diagnosis:

rremoved ← bodyr, not head r. (9)
runconditional ← not bodyr, head r. (10)

runchanged ← not rremoved , not runconditional . (11)

Note that this is correct for diagnoses D = (D1, D2) with D1 ∩ D2 = ∅ as
otherwise for r ∈ D1 ∩ D2, ob will not observe rremoved . We call a diagnosis
D = (D1, D2) safe iff D1 ∩D2 = ∅ holds and for any equilibrium S of M [brM \
D1∪heads(D2)] holds that r ∈ D1 only if r is applicable in S and r ∈ D2 only if
r is not applicable in S. Note that all minimal diagnoses are safe. In the following
theorem we consider only safe diagnoses.

Theorem 1. Let MB be the meta-reasoning transformation of an MCS M
wrt. B = {(ob1, bro1), . . . , (obn, bron)}, let ob1, . . . , obn be conservative, and let
bro =

⋃n
k=1 brok

. Then,
(i) (D1, D2) ∈ D±

(m)(M
B, brB

p) implies (D′
1, D

′
2) ∈ D±

(m)(M), where D′
i = (Di ∩

brM) ∪ {r ∈ brM | rrelay ∈ Di} for 1 ≤ i ≤ 2, and
(ii) (D1, D2) ∈ D±

(m)(M) implies (D′
1, D

′
2) ∈ D±

(m)(M
B, brB

p), where D′
i =

(Di \ bro) ∪ {rrelay | r ∈ Di ∩ bro} for 1 ≤ i ≤ 2.

Preference-Based Inconsistency Assessment in Multi-Context Systems 151

This theorem effectively states that the meta-reasoning transformation enables
observation contexts to correctly observe the effects of diagnosis. This is the basis
of the following realizations, which use non-conservative observation contexts for
assessing and pruning diagnoses.

4.1 Filters

Using the above transformation, users of MCSs can analyze diagnoses inside
observation contexts a way they see fit. If a diagnosis is considered inappropriate,
the observer just needs to become inconsistent which prevents a corresponding
diagnosis of the transformed system. This holds because the assessment uses
protected bridge rules only. We next present a transformation realizing a general
filter. For generality, it uses a central context mf for analysis.

Definition 5. Let M be an MCS and f a filter for M . A filter-transformation
of M wrt. f is a meta-reasoning transformation MB with B = {(mf , brM)} and
the logic Lf of mf is such that for any diagnosis D = (D1, D2) :

ACCmf

(
kbmf

∪ {rbody |r ∈ D1} ∪ {rhead |r ∈ D2}
)

= ∅1 iff f(D) = 0.

Example 7 (Ex. 4 ctd.). For our scientists, we want to filter diagnoses that mod-
ify r2 and r3 differently, e.g., D = ({r2} , ∅). The filter-transformation yields a
system with five contexts, K, relayK , J, relayJ , and mf . The rewritten rules for
r2 are (analogous for r1 and r3):

(relayJ : coauthored)← (K : contribute).
(J : coauthored)← (relayJ : coauthored).

(m : bodyr2
)← (K : contribute).

(m : head r2)← (relayJ : coauthored).

We use answer-set semantics for the assessment context mf . To realize the filter
function, mf contains rules (9) - (11) for r1 and r2 and:

⊥ ← not same change.
same change ← r1unconditional , r2unconditional .

same change ← r1unchanged , r2unchanged .

same change ← r1removed , r2removed .

One can show that the transformation indeed realizes any given filter:

Theorem 2. Given an inconsistent MCS M , let f be a filter on diagnoses and
let Mf be a filter-transformation for f of M with protected rules brP . Then
D ∈ D±

m(Mf , brP) iff D ∈ D±
f,m(M).

If f is not given abstractly as a function, but as a family of constraints, each set
of constraints is realizable using a separate assessment context, observing just
the bridge rules it needs to assess. Realizing such a filter is decentralized, adheres
to information hiding, and each observer’s logic can be chosen as desired.
1 For logics having always an acceptable belief set, inconsistency can still be created

using a new bridge rule (mf : inc) ← (mf : cause inc),not (mf : inc).

152 T. Eiter, M. Fink, and A. Weinzierl

4.2 Preference Orders and CP-Nets

The general idea for realizing best outcomes of a CP-net is to create an order-
preserving mapping from the CP-net preference to the subset-order of diagnoses.
We add a new context mv for each variable v of the CP-net which “observes”
the bridge rules with outcomes represented by v. It searches for improving flips
on a path to a more preferred diagnosis. If the combined local guesses succeed,
some bridge rules can be removed; ensuring that the zero-length path allows no
removal, the most preferred diagnoses are those without removal. To accomplish
this, we use prioritized bridge rules whose minimization has precedence.

Definition 6. Let M be an MCS with bridge rules brM , protected rules brP ,
and prioritized rules brH ⊆ brM . The set of minimal prioritized diagnoses is

D±
m(M, brP , brH) = { D ∈ D±

m(M, brP) | ∀D′ ∈ D±
m(M, brP) :

D′ ∩ brH ⊆ D ∩ brH ⇒ D′ ∩ brH = D ∩ brH } .

where (D1, D2) ∩ S := (D1 ∩ S,D2 ∩ S).

Note that given D, D±
m(M, brP), and brH , deciding D∈D±

m(M, brP , brH) is easy.
Let M be an MCS and consider an associated CP-net N = (V,E). We assume

that the CPT of any v ∈ V is given by vn = 2|dom(pv)|×2×|dom(v)| “binarized”
preferences (two successive outcomes); let m =

∑
v∈V vn be their total number.

Given any total and strict preference order <r on the set Vr ⊆ V of root nodes
in N , we call E′ = E ∪ {(v, v′) | v <r v

′} a root extension of E.
Let 2M be the mirrored M , i.e., add a copy C′

i of each of context Ci in M
with disjoint beliefs (alphabetic variants). An observer associated with v ∈ V
sees rules(v) and crules(v) = {cr | r ∈ rules(v)}, where cr is the rule copy of r.

We say a set Q encodes o iff (a) head r ∈ Q⇔ bodyr ∈ Q for o = unchangedr,
(b) headr �∈ Q and bodyr ∈ Q for o = removed r, (c) head r ∈ Q and bodyr �∈ Q
for o = unconditionalr; that Q encodes co is analog. Eventually, let

Lv = {vfi,k, vgi,k, vngi,k, v
′usedk, v

′diff , o, co, io, ok, cok, eq, false},

where 1 ≤ i ≤ vn, 1 ≤ k ≤ m, v′ ∈ V , and o ∈ dom(v). A set S ⊆ 2Lv is
compatible with Q, iff

– vdiff ∈ S iff (a) v′diff ∈ Q for some v′ �= v, or (b) o ∈ Q, and co′ ∈ Q, such
that o corresponds to r, co′ corresponds to cr, and o �= o′;

– vusedk ∈ S iff vgi,k ∈ Q or v′usedk ∈ Q, for some 1 ≤ i ≤ vn respectively,
and 1 ≤ k ≤ m;

– eq ∈ S iff eq ∈ Q or v is <r-maximal in Vr and v′diff �∈ S∪Q for any v′ ∈ V ;
– o1 ∈ S iff o ∈ Q;
– ok+1 ∈ S for o ∈ dom(v) iff (a) o is most preferred according to v’s i-th CPT

entry and vgi,k ∈ Q, or (b) o is the outcome of ok ∈ S and vgi,k �∈ Q;
– false ∈ S iff for some 1 ≤ i ≤ vn, 1 ≤ k ≤ m: (a) io ∈ Q and o ∈ Q,

(b) eq ∈ S and vfi,k ∈ Q, (c) vgi,k, vngi,k ∈ Q, (d) vngi,k, vfi,k ∈ Q, (e)

Preference-Based Inconsistency Assessment in Multi-Context Systems 153

v′usedk, vgi,k ∈ Q, where v′ �= v, (f) v′usedk, v
′′usedk ∈ Q, where v′ �= v′′,

(g) vgi,k ∈ Q and either v’s i-th CPT entry is not applicable wrt. {o | ok ∈
Q∧o ∈

⋃
v′∈pa(v) dom(v′)}, or it is not improving wrt. o ∈ dom(v) such that

ok ∈ Q; (h) o �= o′ for o and o′ from dom(v), such that om ∈ S, and co′ ∈ Q.

Definition 7. Let N = (V,E), V = {v1, . . . , vn}, be a CP-net associated with
an MCS M , and let E′ be a root extension of E. The CP-net transformation of
M wrt. N is the meta-reasoning transformation 2MB of 2M wrt. B = {(mvi ,
rules(vi) ∪ crules(vi)) | 1 ≤ i ≤ n}, putting in observation contexts

– for every v ∈ V , 1 ≤ i ≤ vn, and 1 ≤ k ≤ m: protected bridge rules
(mv : vgi,k) ← not (mv : vng i,k) and (mv : vng i,k) ← not (mv : vgi,k), and
prioritized bridge rules (mv : vfi,k)← � and (mv : io)← � for o ∈ dom(v);

– for every (v′, v) ∈ E′, a protected bridge rule (mv : eq)← (mv′ : eq);
– for every (v, v′) ∈ E′, and 1 ≤ k ≤ m, protected bridge rules (mv : v′usedk)
← (mv′ : v′usedk) and (mv : v′diff)← (mv′ : v′diff);

– for every (v′, v) ∈ E, o ∈ dom(v′), and 1 ≤ k ≤ m: protected bridge rules
(mv : ok)← (mv′ : ok).

Furthermore, the logic of everymv (v ∈ V) has BSmv = 2Lv , and ACCmv (kbmv∪
Q) = S for any set S in BSmv compatible with Q and false �∈ S.

Let br i
H denote the set of all prioritized bridge rules of the form (mv : vfi,k)← �

in 2MB. Intuitively, this transformation ensures the following for any observa-
tions o and co′. If o = o′ (the outcomes correspond to the same diagnosis of the
original system), then bridge rules br i

H need to be removed to obtain a diagnosis
of 2MB. If o �= o′ (different diagnoses), then there are two cases: either o′ is
reachable from o via a sequence of improving flips (thus a diagnosis of 2MB ex-
ists removing only some of br i

H), otherwise there is no diagnosis of 2MB for this
observation (an inconsistency by the protected rules, which cannot be resolved
by removing prioritized rules).

Example 8 (Ex. 6 ctd.). Recall the contracts example, and assume that the re-
sulting MCS M is inconsistent having only two diagnoses D = ({r1, r2} , ∅) and
D′ = ({r2} , ∅). Note that D is preferred over D′ wrt. N . Consider the case
where o = D and co′ = D′ are observed in 2MB: Flipping r1 from unchanged to
removed (using the 3rd rule of v2’s CPT) improves the outcome, hence priori-
tized rules br i

H \ {mv1 : v1f3,1} have to be removed to restore consistency. Since
this is a subset of br i

H , D is not most preferred (see also the following theorem).

Theorem 3. Let MN be the CP-net transformation of an inconsistent MCS M
wrt. an associated CP-net N with protected rules brP and prioritized rules brH .
Then, D ∈ D±

opt (N,M) iff D′ ∈ D±
m(MN , brP , brH) such that D′ ∩ br i

H = br i
H

and D′ ∩ brM = D.

The techniques of meta-reasoning and prioritized diagnoses can be used to realize
arbitrary preference orders on diagnoses. This is achieved by introducing a global
assessment context, i.e., an observation context for all bridge rules of the original
system, and (exponentially many) new prioritized bridge rules, to which the
preference order is mapped. For space reasons, however, we omit details.

154 T. Eiter, M. Fink, and A. Weinzierl

5 Discussion

Computational complexity: The generalized notions of diagnoses can be
realized by transformations to diagnoses of an MCS, using assessment contexts.
The respective bridge rules can be set up efficiently for filters and preference
orders. The number of bridge rules for filters increases by at most a factor of
4 per bridge rule while for a CP-net (V,E) it is quadratic in the size of the
CPTs. Then, the complexity of preferred diagnoses does not increase over that
of ordinary diagnoses, if the preference assessment in the analysis contexts has
not higher complexity than regular contexts.

In particular, deciding whether a given pair (D1, D2) of bridge rules is a
prioritized diagnosis (excluding protected bridge rules) is of the same complexity
as recognizing ordinary diagnoses; from the results in [8], the complexity ranges,
depending on the computational complexity of contexts, from coNP (for P and
NP contexts) to DP

2 (for ΣP
2 contexts, e.g. disjunctive ASP contexts). Detecting

subset-minimal diagnosis is DP-complete (for P, NP, and coNPcontexts).
From the requirement that preferred diagnoses also be minimal follows that

this complexity can not be improved, even for easily evaluable preference orders.

Decentralization: A key property of MCSs is decentralized information exchange.
Filters and preference orders can be realized in such a way. If a filter or preference
order is composed of local tests, then the realization can be broken down to these
local, decentral tests. An example of this is the realization of CP-nets, where
information is only exchanged as much as necessary to realize the CP-net.

Quantitative Assessment: As system knowledge to rank diagnoses is not always
available, one may consider a quantitative inconsistency measure. Following the
approach of [10], which is based on the cardinalities of the minimal inconsistent
sets a certain formula belongs to, a measure on minimal inconsistent sets of
bridge rules may be established. A notion of such sets is given in [8], termed
inconsistency explanation, which is a pair of bridge rules (E1, E2) where E1 is a
minimal inconsistent set of bridge rules causing inconsistency and E2 contains
rules which could resolve the inconsistency if some were applicable.

Based on this we may define an inconsistency measure as follows. Let M be
an MCS and r ∈ brM , and let Ai

r(M) = {(E1, E2) ∈ E±
m(M) | r ∈ Ei}, i = 1, 2

where E±
m(M) is the set of subset-minimal inconsistency explanations of M :

m(M, r)=
(∑

(E1,E2)∈A1
r(M)

1
|E1|

,
∑

(E1,E2)∈A2
r(M)

1
|E2|

)
.

Thus, m(M, r) measures the inconsistency of r in M by counting the relative
contribution of r to the minimal inconsistent sets in M , respectively, its contri-
bution to resolving inconsistency. A key property of a measure is monotonicity
(in the form of sub-additivity), which m is lacking in general. Finding such an
inconsistency measure for MCSs faces the problem of providing a monotonic
measure for a non-monotonic system. It remains to explore whether restrictions
on inconsistency explanations can serve this purpose.

Preference-Based Inconsistency Assessment in Multi-Context Systems 155

6 Related Work and Conclusion

Although inconsistency handling and preferences are widely used in knowledge-
based systems, their application to systems interlinking different knowledge bases
is still rare. In [5] argumentation context systems which equip special MCS
with mediators are introduced. Mediators realize two tasks: First, they guard a
context by controlling its import information. Second, they restore consistency
using local information. In our approach, the first task is done by import relays
of the meta-reasoning transformation, and the second task is achieved by the
analyzing contexts which may be local or global as needed. This allows us not
only to establish global filters and preferences, but also the implementation is
local and decentralized as possible.

Bikakis et al. [2] propose a certain way of inconsistency removal which is
based on local trust orders. They propose several trust-based algorithms using
such orders combined with provenance; their provenance-free algorithm can be
realized with our approach. In our view, information hiding is an important
aspect of MCSs, which however is in conflict with provenance. Thus the goals
behind the works are different.

Future work includes the development and implementation of particular filter
and CP-net transformations as well as further analysis of our and other possible
measures of inconsistency in MCS.

References

1. Balduccini, M., Gelfond, M.: Logic programs with consistency-restoring rules. In:
International Symposium on Logical Formalization of Commonsense Reasoning,
AAAI 2003 Spring Symposium Series, pp. 9–18 (2003)

2. Bikakis, A., Antoniou, G., Hassapis, P.: Alternative strategies for conflict resolution
in multi-context systems. In: AIAI, pp. 31–40 (2009)

3. Boutilier, C., Brafman, R.I., Domshlak, C., Hoos, H.H., Poole, D.: Cp-nets: A tool
for representing and reasoning with conditional ceteris paribus preference state-
ments. J. Artif. Intell. Res. (JAIR) 21, 135–191 (2004)

4. Brewka, G., Eiter, T.: Equilibria in heterogeneous nonmonotonic multi-context
systems. In: AAAI, pp. 385–390. AAAI Press, Menlo Park (2007)

5. Brewka, G., Eiter, T.: Argumentation context systems: A framework for abstract
group argumentation. In: Erdem, E., Lin, F., Schaub, T. (eds.) LPNMR 2009.
LNCS, vol. 5753, pp. 44–57. Springer, Heidelberg (2009)

6. Brewka, G., Roelofsen, F., Serafini, L.: Contextual default reasoning. In: IJCAI,
pp. 268–273 (2007)

7. Domshlak, C., Brafman, R.I., Shimony, S.E.: Preference-based configuration of web
page content. In: Nebel, B. (ed.) IJCAI, pp. 1451–1456. Morgan Kaufmann, San
Francisco (2001)

8. Eiter, T., Fink, M., Schüller, P., Weinzierl, A.: Finding explanations of inconsis-
tency in nonmonotonic multi-context systems. In: KR (2010)

9. Giunchiglia, F., Serafini, L.: Multilanguage hierarchical logics or: How we can do
without modal logics. Artif. Intell. 65(1), 29–70 (1994)

10. Hunter, A., Konieczny, S.: Measuring inconsistency through minimal inconsistent
sets. In:Brewka, G., Lang, J. (eds.) KR, pp. 358–366. AAAIPress, Menlo Park (2008)

A Logical Semantics for Description Logic Programs�

Michael Fink1 and David Pearce2

1 Vienna University of Technology, Austria
fink@kr.tuwien.ac.at

2 Universidad Politcnica de Madrid, Spain
david.pearce@upm.es

Abstract. We present a new semantics for Description Logic programs [1] (dl-
programs) that combine reasoning about ontologies in description logics with
non-monotonic rules interpreted under answer set semantics. Our semantics is
equivalent to that of [1], but is more logical in style, being based on the logic
QHT of quantified here-and-there that provides a foundation for ordinary logic
programs under answer set semantics and removes the need for program reducts.
Here we extend the concept of QHT-model to encompass dl-programs. As an
application we characterise some logical relations between dl-programs, by mat-
ing the idea of QHT-equivalence with the concept of query inseparability taken
from description logics.

1 Introduction

Amalgamating description logics and nonmonotonic logic programs in order to combine
rule-based reasoning with ontologies is a growing field of research in knowledge repre-
sentation and reasoning. Its relevance stems from the aim to build powerful AI systems for
Semantic Web reasoning, gradually extending the expressiveness and reasoning capabil-
ities of their underlying formal framework. There have been several different proposals
for merging description logics and logic programs into a more tightly or a more loosely
integrated semantical framework. Among the best known methods are those based on
stable model semantics or answer set programming (ASP); see eg., [1,2,3,4,5,6]. We
shall focus on dl-programs [1] which are given as a pair D = (T ,P), where T is a de-
scription logic (classical) knowledge base, andP is a set of so-called dl-rules. Intuitively,
the intended models are simply models ofP . However the rules ofP may contain special
expressions, called dl-atoms, that refer to concepts in T . These atoms are evaluated in a
candidate model for P by posing queries to the classical base T .

As for ordinary ASP, the semantics of dl-programs has been defined by means of
program reducts of P . However, it is more involved, since the meaning assigned to
concepts appearing in dl-atoms via T has to be taken into account as well, and the
interpretations of the two parts of the program are to some extent distinct. While we
can understand the T component roughly in the sense of classical logic, the answer set
semantics does not associate any logic to the P component and thus to the dl-program

� Partially supported by the MCICINN projects TIN2006-15455, TIN2009-14562-CO5, and
CSD2007-00022, as well as by the WWTF project ICT08-020.

T. Janhunen and I. Niemelä (Eds.): JELIA 2010, LNAI 6341, pp. 156–168, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

A Logical Semantics for Description Logic Programs 157

as a whole. This is clearly an obstacle to studying intertheory relations and modularity
properties that are relevant for applications. It is therefore useful to try to reformulate
the answer set semantics of dl-programs in a style that is closer to ordinary logical
semantics.

Fortunately there is a suitable logical foundation for ASP. Answer sets can be under-
stood as minimal models in an ordinary, monotonic logic: the logic of here-and-there.
In first-order form this logic, called the quantified logic of here-and-there, in symbols
QHT, provides a foundation for non-ground answer set programs [7]. In QHT one
can define a notion of minimal model, called equilibrium model [8], that exactly corre-
sponds to answer sets. The logic associated with just these minimal models is known
as equilibrium logic. An important feature of QHT is that equivalence in this logic is
a necessary and sufficient condition for two programs or nonmonotonic theories to be
strongly equivalent, meaning that they are inter-substitutable without loss in all con-
texts [15]. We may call this the strong equivalence property.

If hybrid theories like dl-programs are to become a successful, practical tool in
knowledge-based reasoning, we need to study how ontologies and rules can be com-
bined in a modular fashion. Knowing for instance in which contexts one hybrid theory
can be replaced by another without loss is important for formalising knowledge and
for transforming and simplifying theories. There has already been a strong interest re-
cently in developing logical treatments of modularity for ontologies reconstructed in
description logics (DL). An approach based on conservative extensions and entailment
and difference concepts can be found in [9,10,11]. On the other hand, in ASP, work on
(strong) equivalence relations between programs began already in [12], and the study
of variations of this basic concept has formed a very active area of research since, espe-
cially as a tool for program transformation and optimisation. Recently focus has turned
from propositional programs to theories and programs in first-order logic [13,14,15].
This is important for the study of dl-programs where first-order languages are needed.

The aim of this paper is to provide a more logical style of semantics for dl-programs
by extending the concepts of QHT-model and equilibrium model to embrace dl-rules.
This helps to make the semantics simpler and more uniform. As an illustration of its use
we consider ways to define and study strong forms of equivalence between programs
that may be useful for combining ontologies and rules in a modular fashion. Briefly:

– We formulate different, logical semantics for dl-programs using QHT-models, re-
moving the need for program reducts.

– We combine the idea of QHT-equivalence with the concept of query inseparabil-
ity and apply the new semantics to characterise different notions of equivalence
between dl-programs.

– Besides strong and weak answer set semantics for dl-programs, we define an alter-
native semantics which precisely captures the semantics of dl-programs realised as
HEX programs, ie., under the so-called FLP-reduct [16].

In the next section we introduce necessary background, before characterising dl-
program semantics by means of QHT in Section 3. We study equivalence concepts
for dl-programs in Section 4, followed by a discussion of extensions to dl-programs
under HEX semantics and conclusions (Sections 5 and 6).

158 M. Fink and D. Pearce

2 Preliminaries

Quantified Equilibrium Logic. In this paper we restrict attention to function-free lan-
guages with a single negation symbol, ‘¬’, working with a quantified version of the
logic here-and-there. In other respects we follow the treatment of [17,7]. We consider
first-order languages L = 〈C,P 〉 built over a set of constant symbols, C, and a set of
predicate symbols, P . The sets of L-terms, ground L-terms, L-formulas, L-sentences
and atomic L-sentences are defined in the usual way. If D is a non-empty set of domain
constants, we denote by At(D,P) the set of ground atomic sentences of 〈D,P 〉. By an
L-interpretation I over a set D we mean a subset of At(D,P). A classical L-structure
can be regarded as a tupleM = 〈(D,σ), I〉 where I is an L-interpretation over D and
σ : C ∪D → D is a mapping, called the assignment, such that σ(d) = d for all d ∈ D.
If D = C and σ = id,M is an Herbrand structure.

A here-and-there L-structure with static domains, or QHT(L)-structure, is a tuple
M = 〈(D,σ), Ih, It〉 where 〈(D,σ), Ih〉 and 〈(D,σ), It〉 are classical L-structures
such that Ih ⊆ It. We can think of a here-and-there structureM as similar to a first-
order classical model, but having two parts, or components, h and t, that correspond to
two different points or “worlds”, ‘here’ and ‘there’, in the sense of Kripke semantics
for intuitionistic logic [18], where the worlds are ordered by h ≤ t. At each world
w ∈ {h, t} one verifies a set of atoms Iw in the expanded language for the domain D.
We call the model static, since, in contrast to say intuitionistic logic, the same domain
serves each of the worlds. Since h ≤ t, whatever is verified at h remains true at t. The
satisfaction relation forM is defined so as to reflect the two different components, so
we write M, w |= ϕ to denote that ϕ is true inM with respect to the w component.
The recursive definition of the satisfaction relation forces us to consider formulas from
〈C ∪ D,P 〉. Evidently we should require that an atomic sentence is true at w just in
case it belongs to the w-interpretation. Formally, if p(t1, . . . , tn) ∈ At(C ∪ D,P), r
and s are L-terms, and w ∈ {h, t} then

M, w |= p(t1, . . . , tn) iff p(σ(t1), . . . , σ(tn)) ∈ Iw.

M, w |= r = s iff σ(r) = σ(s)

The second clause means that our semantics satisfies the axiom of “decidible equality”

∀x∀y(x = y ∨ x �= y).

Then |= is extended recursively using the usual Kripke truth conditions for ∧,∨,→
,¬, ∀, ∃ in intuitionistic logic bearing in mind our assumptions about the two worlds h
and t and the single domain D, see eg. [18,7].

Truth of a sentence in a model is defined as follows:M |= ϕ iffM, w |= ϕ for each
w ∈ {h, t}. In a modelM we also use the symbols H and T , possibly with subscripts,
to denote the interpretations Ih and It respectively; so, an L-structure may be written in
the form 〈U,H, T 〉, where U = (D,σ). A structure 〈U,H, T 〉 is called total if H = T ,
whence it is equivalent to a classical structure.

The resulting logic is called Quantified Here-and-There Logic with static domains
and decidable equality, and denoted in [15] by SQHT=, where a complete axiomai-
sation can be found. To simplify notation we drop the labels for static domains and

A Logical Semantics for Description Logic Programs 159

equality and refer to this logic simply as quantified here-and-there, QHT. Quantified
equilibrium logic, or QEL, is based on a suitable notion of minimal model.

Definition 1. Among QHT-structures over a given language we define the order �

by: 〈(D,σ), H, T 〉 � 〈(D′, σ′), H ′, T ′〉 if D = D′, σ = σ′, T = T ′ and H ⊆ H ′.
If the subset relation is strict, we write ‘�’. Let Γ be a set of sentences and M =
〈(D,σ), H, T 〉 a model of Γ .M is said to be an equilibrium model of Γ if it is minimal
under � among models of Γ , and it is total.

Answer sets. We assume the reader is familiar with the usual definitions of answer
set based on Herbrand models and ground programs, eg. [19]. Two variations of this
semantics, the open [20] and generalised open answer set [5] semantics, consider non-
ground programs and open domains, thereby relaxing the standard name assumption.
In addition, [21] offers a very general concept of stable model for arbitrary first-order
formulas, defining the property of being a stable model syntactically via a second-order
condition.

The correspondence between QEL and answer set semantics is by now quite well
known and has been described in several works (see [22,17,7,21]). By the usual conven-
tion, when P is a logic program with variables we consider the models of its universal
closure expressed as a set of logical formulas. It follows that if P is a logic program (of
any form), a total QHT model 〈U, T, T 〉 of P is an equilibrium model of P iff it is a
stable model of P in the sense of [21]. Moreover, two logic programs P1 and P2 are
strongly equivalent iff they coincide on their QHT-models. Placing additional restric-
tions on QHT models, we obtain a correspondence to other notions of answer set such
as those based on a standard name assumption.

DL-programs. Turning to dl-programs [1,23], we start without restricting the syntax
of the classical part or the knowledge base that is combined with logic program rules;
later on we shall consider some concepts and properties that apply to dl-programs based
on (particular) description logics (for a background and corresponding notation used
cf. [24]). In other words, we consider arbitrary function-free first-order theories that are
combined with dl-rules and, for the moment, we allow for arbitrary formulas as queries
in dl-atoms. Moreover, disjunction is allowed in rule heads, while we require that the
classical theory and the logic program share a single set of constants.

More formally, let LT = 〈C,PT 〉 and LP = 〈C,PP 〉 be function-free first-order
languages, such that PT ∩ PP = ∅. Symbols in PT , respectively in PP , are called
classical predicates and rule predicates, respectively. A dl-atom is of the form

DL[S1op1p1, . . . , Smopmpm; Q](t1, . . . , tn), (1)

where Si ∈ PT and pi ∈ PP are k-ary predicate symbols, opi ∈{*, −∪, −∩}, Q is an
n-ary classical predicate or a formula in LT with n free variables, and t1, . . . , tn are
terms. A dl-rule is like a logic program rule of the form

b1 ∧ . . . ∧ bm ∧ ¬bm+1 ∧ . . . ∧ ¬bn → h1 ∨ . . . ∨ hl (2)

with the restriction that head atoms h1, . . . , hl are equality-free atoms of LP , and body
atoms b1, . . . , bn are either atoms of LP or dl-atoms. The positive body {b1, . . . , bm}

160 M. Fink and D. Pearce

and the negative body {bm+1, . . . , bn} of a dl-rule r are denoted by B+(r) and B−(r),
respectively. The expression h1 ∨ . . . ∨ hl is abbreviated by Hd(r). A dl-program over
L = 〈C,PT ∪PP〉 is a pair D = (T ,P), where T is a finite first-order theory over LT
and P is a set of dl-rules.

Example 1. Consider the following vocabulary dealing with wine: constants frb and
ldm are used for ‘Freixenet Brut’ and ‘Lambrusco di Modena’, respectively; the classi-
cal predicates W (x), R(x), S(x), and L(x), represent the concepts of White Wine, Red
Wine, Sparkling Wine, and Lambrusco; w(x), r(x), s(x), and l(x) are rule predicates
intended to reason about the above concepts in rules; an additional rule predicate sc(x)
encodes whether a wine is served cold.

Now, let (T ,P) be the following dl-program over this vocabulary.

T P
L � R � S l(ldm) sc(X) ∨ ¬sc(X)

¬W � ¬R � ⊥ s(frb) l(X)→ ¬sc(X)
R �W � ⊥ DL[S * s, L * l;R](X)→ r(X) ¬r(X)→ w(X)

Intuitivey, the dl-rule says: in T add to S the contents of s and add to L the contents of
l; if R(X) now follows (in the enlarged T), then r(X). �

Turning to the formal semantics of dl-programs, let us denote the set of dl-atoms in a
rule r, respectively in a set of rules P , by DL(r) and DL(P), respectively, and let |=c

denote classical entailment.
An Herbrand structure M = 〈U, I〉 (with U = (D,σ)) is a model of a literal l

under T if l ∈ I . It is a model of a ground dl-atom of the form (1) under T if T ∪⋃m
i=1 Ai(I) |=c Q(t1, . . . , tn), where

– Ai(I) = {Si(e) | pi(e) ∈ I}, for opi = *,
– Ai(I) = {¬Si(e) | pi(e) ∈ I}, for opi = −∪,
– Ai(I) = {¬Si(e) | pi(e) /∈ I}, for opi = −∩,

and e = e1, . . . , en are ground terms.
As usual, M is a model of a ground dl-rule r under T if M is a model of some

hi ∈ {h1, . . . , hl} under T , wheneverM is a model of all bi ∈ {b1, . . . , bm} under T
and it is no model of any bi ∈ {bm+1, . . . , bn} under T .M is a model of a dl-program
D = (T ,P) ifM is a model of every r ∈ grU (P) under T .

Furthermore, given a dl-program D = (T ,P), the weak dl-transform of P relative
to T and a modelM of P , denoted wPM

T , is the logic program obtained from grU (P)
by deleting

– each r∈ grU (P) such that eitherM is not a model of some α∈ B+(r)∩DL(r),
or a model of some α∈B−(r), and

– all literals in B−(r) ∪ (B+(r) ∩DL(r)) from each remaining r ∈ grU (P).

IfM is an answer set of the logic program wPM
T , thenM is a weak answer set of D.

Now assume that, D = (T ,P) has an associated set of ground dl-atoms DL+(P)
known to be monotonic, and for any ground rule r, let DL?(r) = DL(r) \DL+(P).
The strong dl-transform of P relative to T and a modelM of P , denoted sPM

T , is the
logic program obtained from grU (P) as before replacing DL(r) by DL?(r). IfM is
the least model of (T , sPM

T), thenM is a strong answer set of D.

A Logical Semantics for Description Logic Programs 161

3 Logical Semantics

We reformulate the semantics for dl-programs in a style that is closer to ordinary logical
semantics and in particular to the logic QHT. This makes it easier to characterise
logical properties of dl-programs and relations between them.

Dl-atoms and rules are defined as above in (1), (2). We use the usual semantics for
QHT, so the truth conditions for ordinary atoms, conjunctions, disjunctions, negation
and implications in a modelM = 〈U,H, T 〉 are the same as before. For dl-atoms we
define three semantics, the last two of which correspond to weak and strong answer sets
respectively. Informally these semantics work as follows. The truth of a dl-atom (1) is
checked as before by inspecting whether the query Q follows classically from a certain
extension of the theoryT . The difference is that, as a base model for computing theAi, as
well as for defining the truth of a dl-atom, we now use aQHTmodel instead of a classical
Herbrand model. This allows a more uniform treatment of the different operators. We
begin with a semantics that corresponds to a variation of strong answer sets.

Definition 2 (models of dl-atoms). Let α be a ground dl-atom of the form (1) and let
M = 〈U,H, T 〉 be a QHT structure. Then,M is a model of α under T iffM, w |= α
for w = h, t; whereM, w |= α iff T ∪

⋃m
i=1 Ai(w) |=c Q(t1, . . . , tn), where

– Ai(w) = {Si(e) | M, w |= pi(e)}, for opi = *,
– Ai(w) = {¬Si(e) | M, w |= pi(e)}, for opi = −∪,
– Ai(w) = {¬Si(e) | M, w |= ¬pi(e)}, for opi = −∩,

and e = e1, . . . , en are ground terms.

Definition 3 (weak models of dl-atoms). Let α be a ground dl-atom of the form (1)
and letM = 〈U,H, T 〉 be a QHT structure. Then we say thatM is a weak model of
α under T iffM, w |= α for w = h, t; whereM, t |= α is defined as in the semantics
of Definition 2 andM, h |= α⇔M, t |= α.

Observe that now (U, T) need not be an Herbrand model. Notice that in the first semantics
operators are evaluated at both worlds h and t in the model, while in the second, weak
semantics they are essentially evaluated only at t which then determines the value at h.

Finally we introduce a variant of the first semantics that corresponds to strong an-
swer sets. For this we need to distinguish between atoms known to be monotonic and
others. As before we use the symbols DL+(P) and DL?(P) for these. Let us adopt the
convention that all atoms containing an occurrence of the operator opi = −∩ belong to
DL?(P), while all others are in DL+(P).

Definition 4 (strong models of dl-atoms). Let α be a ground dl-atom of the form (1)
and letM = 〈U,H, T 〉 be a QHT structure. Then we say thatM is a strong model
of α under T iffM, w |= α for w = h, t; where for all atoms α,M, t |= α is defined
as in the semantics of Definition 2, whileM, h |= α is defined as in the semantics of
Definition 2 if α ∈ DL+(P), and as in Definition 3, ie. byM, h |= α ⇔ M, t |= α,
otherwise.

A dl-rule r is true in a modelM under T , in symbolsM |=T r, if the rule is satisfied
according to the usual QHT semantics. We may suppress the subscript T if the context
is clear. The following property is important but easy to verify.

162 M. Fink and D. Pearce

Proposition 1 (persistence). For any modelM and rule r,M, h |= r ⇒ M, t |= r,
for each of the semantics.

The notions of model (resp. weak and strong model) and equilibrium model (resp. weak,
strong equilibrium model) are now defined in the obvious way.

Definition 5. A QHT structureM = 〈U,H, T 〉 is a model (resp. weak model, strong
model) of a dl-program D = (T ,P) ifM |=T r for each r ∈ P under the semantics
(resp. the weak, the strong semantics) for dl-atoms. It is said to be an equilibrium model
(resp. weak, strong equilibrium model) ofD if H = T andM is a minimal model (resp.
weak, strong model) of P under T wrt �, ie. there is no model of D (resp. weak model,
strong model of D) of the form 〈U,H ′, T 〉 where H ′ is a proper subset of H .

For reasons of space we do not give a detailed proof of our main theorem, Proposition 2
below, which established the correctness of our semantics. However the proof is based
on the following two lemmas which are fairly routine. We formulate for the case of
strong models; similar properties hold for weak models.

Lemma 1. Let M = 〈U,H, T 〉 be a QHT strong Herbrand model of P under T .
Then 〈H,T 〉 |= sPM

T .

Lemma 2. Let M = 〈U,H, T 〉 be a QHT strong Herbrand model of P under T .
Then M is a minimal model of P under T wrt � if and only if 〈U,H〉 is a minimal
model of (T , sPM

T).

From these properties we can derive:

Proposition 2. A total Herbrand QHT structure M = 〈U, T, T 〉 is a weak (resp.
strong) equilibrium model of a dl-program D = (T ,P) iff 〈U, T 〉 is a weak (resp.
strong) answer set of D.

Example 2. Reconsider D = (T ,P) from Example 1 with universe U = ({frb, ldm},
id). The structuresM = 〈U, T, T 〉 andM = 〈U, T ′, T ′〉, where T = {s(frb), l(ldm),
w(frb), r(ldm)} and T ′ = T ∪ {sc(frb)}, are weak and strong equlibrium models of
D (note that the only dl-atom is monotone, and that, for every {l(ldm)} ⊆ H ⊂ T ′,
the dl-atom is true for ldm). They are also weak, as well as strong, answer sets of D. �

Although the alternative semantics is therefore equivalent to the original one, there are
several features worth emphasising. First, since we have removed the need for reducts,
we can extend the semantics to more general types of rules and formulas just using the
usual truth conditions for QHT models.1 Secondly, although we shall consider here
just the usual dl-programs with Herbrand models, our semantics is not limited to this
and we could in principle consider non-Herbrand interpretations, as in the case of hybrid
knowledge bases. Thirdly, we now have a more homogeneous and logical semantics that
may help us derive logical properties of dl-programs.

Finally, an advantage of the first semantics is that, by using QHT structures, we
do not have to distinguish semantically between monotone and possibly non-monotone

1 In principle we could extend the syntax of rules r to any formula providing that Proposition 1
continues to hold.

A Logical Semantics for Description Logic Programs 163

operators. All operators are treated similarly. The difference between models and weak
models is merely that the former evaluate dl-atoms by looking only at the t-world.
Notice that although we apply the words ‘weak’ and ‘strong’ to models, these labels
are really used to reflect the difference between weak and strong equilibrium models or
answer sets. For example, while every strong equilibrium model is also a weak one, not
every strong model (or ordinary model) need be a weak one. Observe that if all dl-atoms
containing opi = −∩ are ‘pure’, in the sense that they do not contain occurrences of * or
−∪, then the first semantics and the strong semantics coincide.

4 Equivalence Concepts

To illustrate the use of the new semantics, we introduce and study some concepts of
equivalence between dl-programs. We can consider different equivalence relations be-
tween dl-programs according to how the different components, T and P , are allowed to
vary. If D = (T ,P) is a dl-program, T ’ is a classical theory and P’ is a set of dl-rules,
then D ∪ T ′ stands for the program (T ∪ T ′,P) and D ∪ P ′ stands for the program
(T ,P ∪ P ′).

Definition 6 (Equivalence for dl-programs). Two dl-programsD1 andD2 are said to
be equivalent if they have the same equilibrium models, they are T -equivalent ifD1∪T
and D2 ∪ T are equivalent for any T , they are P-equivalent if D1 ∪P andD2 ∪P are
equivalent for any P , and they are strongly equivalent if D1 ∪ T ∪ P and D2 ∪ T ∪ P
are equivalent for any T and P .

Having the same equilibrium models is to be understood under any of the given seman-
tics. However, unless our results are specific to one semantics, we don’t further specify
which one. We also say that D1 and D2 are QHT-equivalent if they have the same
QHT models (in any of the given senses). Lastly, it is useful to introduce relativised
versions of these concepts. Thus, if Σ is a signature or vocabulary and P is a set of
dl-rules, we say that P is a set of Σ-dl-rules if all classical predicates appearing in any
dl-atom are from Σ.

Definition 7 (Σ-equivalence for dl-programs). Given a signature Σ, two dl-
programsD1 andD2 are said to beΣ-T -equivalent ifD1∪T andD2∪T are equivalent
for any theory T in Σ, they are Σ-P-equivalent if D1 ∪ P and D2 ∪ P are equivalent
for any set of Σ-dl-rules P , and they are strongly Σ-equivalent if D1 ∪ T ∪ P and
D2 ∪ T ∪ P are equivalent for any T and P , such that T in Σ and P is a set of
Σ-dl-rules.

A first, simple observation is that if two ordinary answer set programs are strongly
equivalent they cannot be separated by additional dl-rules.

Proposition 3. Let Π1, Π2 be two strongly equivalent logic programs. Let R be any
set of dl-rules and let (T ,P1), (T ,P2) be dl-programs where P1 = Π1 ∪ {R} and
P2 = Π2∪{R}. Then (T ,P1) and (T ,P2) are equivalent under all the given semantics
for dl-programs.

This simple observation can be generalised. Notice that we keep T fixed in each case
since otherwise a given rule r ∈ R could have a completely different interpretation in
one of the extended dl-programs than it does in the other.

164 M. Fink and D. Pearce

Proposition 4. Two dl-programs, (T ,P1) and (T ,P2), are P-equivalent (under a
given semantics) if and only if they are QHT-equivalent (under the same semantics).

Proof (Sketch). For the ‘if’ direction the argument is the same as for Proposition 3:
if (T ,P1) and (T ,P2) have the same QHT models, then, whatever set of dl-rules R
that is added to them will yield the same set of QHT models in each case, and hence
the same equilibrium models. For the ‘only if’ direction we can use the proofs of strong
equivalence theorems found in [15]. The only additional property we need to check for
the case of dl-rules is that ifM = 〈U,H, T 〉 is a QHT model of a program P under
T , thenM = 〈U, T, T 〉 is also a QHT model of P under T . But this is guaranteed by
the persistence property stated in Proposition 1. �

We now turn to the case of a varying knowledge base. To deal with the situation where
T is allowed to vary, we consider an equivalence concept drawn from the area of on-
tologies reconstructed in description logics (DL). We assume the reader is familiar with
the standard notions of TBox and ABox (see eg. the following references). In the pa-
pers [9,10,11] on modular ontologies there are several slightly different terminologies
and notations. However, basically these works consider an ontology to be represented
by a TBox, while a knowledge base is a combination of a TBox together with an ABox.
We state here a definition from [11,25]. To simplify notation we assume that some DL
is given, while Σ is a vocabulary or signature.2 Let T1 and T2 be TBoxes.

Definition 8. The Σ-query difference between T1 and T2, in symbols DiffΣ(T1, T2), is
the set of pairs (A, Q(x)) where A is an ABox and Q(x) ∈ Σ is a query such that
(T1,A) �|=c Q(a) and (T2,A) |=c Q(a), for some tuple a of object names from A. We
say that T1 Σ-query entails T2 if DiffΣ(T1, T2) = ∅. Furthermore we say that T1 and
T2 are Σ-query inseparable if each Σ-query entails the other.

In other words, query inseparability means equivalence for all ABoxes and Σ-queries.
Let us turn to dl-programs and let us suppose for the moment that their classical part
comprises an ontology or TBox, so a dl-program has the form (T ,P) for some TBox,
T . Now the way in which a ground dl-atom is evaluated in an Herbrand interpretation
M is similar to the effect of adding an ABox A to T and then checking whether a
ground query Q(a) follows from (T ,A). This yields the following property. From now
on we make the assumption that the same syntactic class of queries is allowed in each
case of TBoxes and dl-programs, for example arbitrary queries, conjunctive queries or
some intermediate class.3

Proposition 5. Suppose that T1 and T2 are Σ-query inseparable TBoxes, and let P be
any set of Σ-dl-rules. Then the dl-programs (T1, P) and (T2, P) are equivalent.

In order to explore the notion of Σ-T -equivalence we can make use of the concept
of strong query entailment from [11]. The strong Σ-query difference between T1 and

2 For [11,25] the signature does not include constant symbols.
3 In general the concept of query inseparability depends not only on the vocabulary Σ but also

on the given query language or syntax; different ones have been considered in the literature. To
save space we leave this variable implicit and merely suppose that the query language operating
over T in the DL is the same one that is used for evaluating dl-atoms in the dl-program.

A Logical Semantics for Description Logic Programs 165

T2, in symbols sDiffΣ(T1, T2), is the set of triples (T ,A, q(x)) such that T is a Σ-
TBox and (A, q(x)) ∈ DiffΣ(T1∪T , T2∪T). Then T1 strongly Σ-query entails T2 if
sDiffΣ(T1, T2) = ∅, and T1 and T2 are strongly Σ-query inseparable if each strongly
Σ-query entails the other. Moreover, we say that T1 and T2 are strongly query insepara-
ble if they are Σ-query inseparable for any Σ. This leads to the following observation
by an obvious extension to the argument for Proposition 5.

Proposition 6. Suppose that T1 and T2 are strongly Σ-query inseparable TBoxes, and
let P be any set of Σ-dl-rules. Then (T1, P) and (T2, P) are Σ-T -equivalent.

An interesting result of [11] is that in some DLs, such as DL-Litebool, query and strong
query inseparability coincide and are equivalent to the notion of strong concept insep-
arability (also defined there). In that case we would have the consequence that if T1 T2
are Σ-query inseparable then the dl-programs (T1,P) and (T2,P) are Σ-T -equivalent.

By combining ideas from Propositions 4 and 5 we can obtain some sufficient condi-
tions for Σ-P-equivalence under varying TBoxes.

Proposition 7. Let D1 = (T1,P1) and D2 = (T2,P2) be QHT-equivalent dl-
programs where T1 and T2 are Σ-query inseparable TBoxes. Then D1 and D2 are
Σ-P-equivalent.

Analogous to Proposition 6, we obtain a ‘strong’ version of Proposition 7 by replacing
Σ-query inseparability by strong Σ-query inseparability.

Proposition 8. Let D1 = (T1,P1) and D2 = (T2,P2) be QHT-equivalent dl-
programs where T1 and T2 are strongly Σ-query inseparable TBoxes. Then the dl-
programs D1 and D2 are strongly Σ-equivalent.

The following corollary that drops reference to Σ is straightforward. It also generalises
Proposition 4.

Corollary 1. Suppose T1 and T2 are strongly query inseparable. Then (T1,P1) and
(T2,P2) are strongly equivalent iff they are QHT-equivalent.

Further generalisations may be possible by applying the concept of relativised program
equivalence, but we leave this for future work.

To illustrate the above concepts, let us consider a simple example.

Example 3. Using the vocabulary of Example 1, let D1 = (T1,P1) and D2 = (T2,P2)
be dl-programs given by:

T1 T2 P ′

L � R � S l(ldm)
¬W � ¬R � ⊥ s(frb)

R �W � ⊥ R � ¬W sc(X) ∨ ¬sc(X)
W � ¬R l(x)→ ¬sc(x)

and P1 = P ′ ∪ {r11 , r21 , r3}, P2 = P ′ ∪ {r12 , r22 , r3}, where r11 = w(X)→ sc(X),
r12 = w(X) ∧ ¬sc(X)→ ⊥, r3 =DL[S * s, L * l;S](X) ∧ ¬r(X)→ w(X),
r21 = DL[S * s, L * l;R](X)→ r(X), r22 = DL[S * s, L * l;¬W](X)→ r(X).

Suppose that T1 and T2 are TBoxes in DL-Litebool. If Σ is the classical language as
given in Example 1, then T1 and T2 are Σ-query equivalent and therefore strongly Σ-
query equivalent by the results of [11]. Moreover,D1 and D2 are QHT-equivalent. To

166 M. Fink and D. Pearce

see the latter, first observe that the ordinary rules in each of the programs are strongly
equivalent. Secondly, the dl-atom DL[S * s, L * l;R](X) has the same models under
T1 as the dl-atom DL[S * s, L* l;¬W](X) has under T2, because in both theories the
concepts R and ¬W are equivalent. Therefore,D1 and D2 are strongly equivalent. �

5 HEX Programs

Another type of hybrid theory, called HEX program, was introduced in [6]. This com-
bines answer set programs with higher-order atoms and external atoms. In particular,
the external atoms can refer, as in dl-programs, to concepts belonging to a classical
knowledge base or ontology. In such a case one can compare the semantics of the HEX
program with that of the corresponding dl-program. Although both are based on an-
swer sets, the two semantics are only partially in agreement. Specifically, as shown in
[6], they agree on programs all of whose external atoms (dl-atoms) contain only mono-
tone operators. Then, the answer sets of the HEX program coincide with the strong
answer sets of the dl-program.

The study of equivalence concepts for HEX programs in general is beyond the scope
of this work. However, we can easily deal with the case where such programs contain
external atoms having precisely the form of dl-atoms (monotonic or otherwise). For in
this case the HEX semantics is in agreement with our first, alternative semantics for dl-
programs, given in Definition 2. Without giving a detailed account of HEX programs,
we indicate briefly why this is so.

Formally, external atoms in HEX programs have their own special notation and se-
mantics. However, since dl-atoms can easily be simulated in HEX programs, for the
purposes of our comparison let us keep the usual notation as for dl-programs. In that
case, a HEX program is just a disjunctive logic program P containing rules of form
(2) whose bodies can contain dl-atoms of form (1). The interpretation of such rules is
similar to that of dl-programs except that a different form of program reduct is used. In
[6] this is called FLP-reduct following the first use of this notion in [16].

Assume that we are given such a HEX program P along with some knowledge base
T with respect to which the external atoms are evaluated (in what follows we shall
leave the T component as implicit). Then the truth of an external atom of form (1) in a
classical Herbrand modelM is defined as for dl-programs in Section 4 above. Ground
rules are also satisfied inM in the same way. Given P and a classical Herbrand model
M = 〈U, T 〉, the reduct of P wrt.M, denoted by PM, is the set of all r ∈ grU (P)
such that M |= B(r). Then M is said to be an answer set of P iff it is a minimal
model of PM.

Proposition 9. Let P be a HEX program as above with external atoms in the form of
dl-atoms. A QHT Herbrand structure 〈U, T, T 〉 is an equilibrium model of P under
the semantics of Definition 2 if and only if 〈U, T 〉 is an answer set of P .

All our observations and results about equivalences of dl-programs hold for any of the
three semantics given. By Proposition 9 they carry over to HEX programs with external
access to a TBox T .

A Logical Semantics for Description Logic Programs 167

6 Conclusion

The logic QHT of quantified here-and-there provides a foundation for the answer set
semantics of logic programs, and sharing the same QHT-models is a necessary and
sufficient condition for two programs or theories to be strongly equivalent. In this paper
we have shown how the concept of QHT-model can be extended to embrace also dl-
programs interpreted under answer set semantics, removing the need for reducts and
allowing a more logical style of semantics. Slight variations in the concept of QHT-
model give rise to the weak and the strong answer set semantics as well as to a variation
based on HEX programs.

As an application of the new semantics we considered some strong forms of equiv-
alence between dl-programs as a first step towards the modular combination of ontolo-
gies and rules. Since a dl-program is a pair (T ,P), strong forms of equivalence are
obtained by considering theory extensions, which can be relativised to either the T
component or the P component.

As in ordinary answer set programmming, the property that two theories have the
same QHT models is again significant. This property is a necessary and sufficient
condition for the P-equivalence of dl-programs, if they are based on the same classical
theory T or on possibly different but query inseparable TBoxes.

For the other main kind of equivalence, where the T component may vary, the situa-
tion is as follows. For dl-programs based on TBoxes we can use the idea of Σ-query in-
separability to characterise forms of T -equivalence for dl-programs based on the same
P component or on QHT-equivalent programs. The concept of Σ-query inseparability
has been studied for description logics such as DL-Lite and EL and model-theoretic
characterisations are available and in some cases implemented [11,26,9,25].

One direction of future work is to study modularity issues and equivalence concepts
and their properties for dl-programs based on specific DLs such as EL. Such properties
may include algorithmic aspects and an analysis of computational complexity. Another
direction of work is the study of more specific and relativised notions of equivalence
between programs.

References

1. Eiter, T., Lukasiewicz, T., Schindlauer, R., Tompits, H.: Combining answer set programming
with description logics for the semantic web. In: KR, pp. 141–151. AAAI Press, Menlo Park
(2004)

2. Rosati, R.: Dl+log: Tight integration of description logics and disjunctive datalog. In: KR,
pp. 68–78. AAAI Press, Menlo Park (2006)

3. Rosati, R.: On the decidability and complexity of integrating ontologies and rules. J. Web
Sem. 3(1), 61–73 (2005)

4. Rosati, R.: Semantic and computational advantages of the safe integration of ontologies and
rules. In: Fages, F., Soliman, S. (eds.) PPSWR 2005. LNCS, vol. 3703, pp. 50–64. Springer,
Heidelberg (2005)

5. Heymans, S., de Bruijn, J., Predoiu, L., Feier, C., Nieuwenborgh, D.V.: Guarded hybrid
knowledge bases. TPLP 8(3), 411–429 (2008)

6. Eiter, T., Ianni, G., Schindlauer, R., Tompits, H.: A uniform integration of higher-order rea-
soning and external evaluations in answer-set programming. In: IJCAI, pp. 90–96 (2005)

168 M. Fink and D. Pearce

7. Pearce, D., Valverde, A.: Quantified equilibrium logic and foundations for answer set pro-
grams. In: Garcia de la Banda, M., Pontelli, E. (eds.) ICLP 2008. LNCS, vol. 5366, pp.
546–560. Springer, Heidelberg (2008)

8. Pearce, D.: Equilibrium logic. AMAI 47(1-2), 3–41 (2006)
9. Lutz, C., Wolter, F.: Conservative extensions in the lightweight description logic EL. In:

Pfenning, F. (ed.) CADE 2007. LNCS (LNAI), vol. 4603, pp. 84–99. Springer, Heidelberg
(2007)

10. Lutz, C., Walther, D., Wolter, F.: Conservative extensions in expressive description logics.
In: IJCAI, pp. 453–458 (2007)

11. Kontchakov, R., Wolter, F., Zakharyaschev, M.: Can you tell the difference between dl-lite
ontologies? In: KR, pp. 285–295. AAAI Press, Menlo Park (2008)

12. Lifschitz, V., Pearce, D., Valverde, A.: Strongly equivalent logic programs. ACM TOCL 2(4),
526–541 (2001)

13. Fink, M.: A general framework for equivalences in answer-set programming by countermod-
els in the logic of here-and-there. In: TPLP (2010) (forthcoming)

14. Fink, M.: Equivalences in answer-set programming by countermodels in the logic of here-
and-there. In: Garcia de la Banda, M., Pontelli, E. (eds.) ICLP 2008. LNCS, vol. 5366, pp.
99–113. Springer, Heidelberg (2008)

15. Lifschitz, V., Pearce, D., Valverde, A.: A characterization of strong equivalence for logic
programs with variables. In: Baral, C., Brewka, G., Schlipf, J. (eds.) LPNMR 2007. LNCS
(LNAI), vol. 4483, pp. 188–200. Springer, Heidelberg (2007)

16. Faber, W., Leone, N., Pfeifer, G.: Recursive aggregates in disjunctive logic programs: Seman-
tics and complexity. In: Alferes, J.J., Leite, J. (eds.) JELIA 2004. LNCS (LNAI), vol. 3229,
pp. 200–212. Springer, Heidelberg (2004)

17. Pearce, D., Valverde, A.: Quantified equilibrium logic an the first order logic of here-and-
there. Technical Report MA-06-02, Univ. Rey Juan Carlos (2006)

18. van Dalen, D.: Logic and Structure, 4th edn. Springer, Heidelberg (2004)
19. Baral, C.: Knowledge Representation, Reasoning, and Declarative Problem Solving. Cam-

bridge University Press, Cambridge (2003)
20. Heymans, S., Nieuwenborgh, D.V., Vermeir, D.: Open answer set programming with guarded

programs. ACM TOCL 9(4) (2008)
21. Ferraris, P., Lee, J., Lifschitz, V.: A new perspective on stable models. In: IJCAI, pp. 372–379

(2007)
22. Pearce, D., Valverde, A.: A first order nonmonotonic extension of constructive logic. Studia

Logica 80(2-3), 321–346 (2005)
23. Eiter, T., Ianni, G., Lukasiewicz, T., Schindlauer, R., Tompits, H.: Combining answer set

programming with description logics for the Semantic Web. AIJ 172(12-13), 1495–1539
(2008)

24. Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P. (eds.): The De-
scription Logic Handbook: Theory, Implementation and Applications. Cambridge University
Press, Cambridge (2003)

25. Lutz, C., Wolter, F.: Deciding inseparability and conservative extensions in the description
logic el. J. Symb. Comput. 45(2), 194–228 (2010)

26. Kontchakov, R., Wolter, F., Zakharyaschev, M.: A logic-based framework for ontology com-
parison and module extraction in dl-lite (2010) (submitted)

27. Fink, M., Pearce, D.: Some equivalence concepts for hybrid theories. In: CAEPIA, Spanish
Association for Artifical Intelligence, pp. 327–336 (2009)

An Incremental Answer Set Programming Based
System for Finite Model Computation

Martin Gebser1, Orkunt Sabuncu1, and Torsten Schaub1,2

1 Universität Potsdam
{gebser,orkunt,torsten}@cs.uni-potsdam.de

2 Simon Fraser University, Canada, and Griffith University, Australia

Abstract. We address the problem of Finite Model Computation (FMC) of first-
order theories and show that FMC can efficiently and transparently be solved by
taking advantage of a recent extension of Answer Set Programming (ASP), called
incremental Answer Set Programming (iASP). The idea is to use the incremental
parameter in iASP programs to account for the domain size of a model. The
FMC problem is then successively addressed for increasing domain sizes until an
answer set, representing a finite model of the original first-order theory, is found.
We implemented a system based on the iASP solver iClingo and demonstrate its
competitiveness by showing that it slightly outperforms the winner of the FNT
division of CADE’s Automated Theorem Proving (ATP) competition.

1 Introduction

While Finite Model Computation (FMC;[1]) constitutes an established research area
in the field of Automated Theorem Proving (ATP;[2]), Answer Set Programming
(ASP;[3]) has become a widely used approach for declarative problem solving, fea-
turing manifold applications in the field of Knowledge Representation and Reasoning.
Up to now, however, both FMC and ASP have been studied in separation, presumably
due to their distinct hosting research fields. We address this gap and show that FMC
can efficiently and transparently be solved by taking advantage of a recent extension of
ASP, called incremental Answer Set Programming (iASP;[4]).

Approaches to FMC for first-order theories [5,6] fall in two major categories, trans-
lational and constraint solving approaches. In translational approaches [7,8], the FMC
problem is divided into multiple satisfiability problems in propositional logic. This divi-
sion is based on the size of the finite domain. A Satisfiability (SAT;[9]) solver searches
in turn for a model of the subproblem having a finite domain of fixed size, which is
gradually increased until a model is found for the subproblem at hand. In the constraint
solving approach [10,11], a system computes a model by incrementally casting FMC
into a constraint satisfaction problem. While systems based on constraint solving are
efficient for problems with many unit equalities, translation-based ones are applicable
to a much wider range of problems [6].

In fact, translational approaches to FMC bear a strong resemblance to iASP. The
latter was developed for dealing with dynamic problems like model checking and plan-
ning. To this end, iASP foresees an integer-valued parameter that is consecutively in-
creased until a problem is found to be satisfiable. Likewise, in translation-based FMC,

T. Janhunen and I. Niemelä (Eds.): JELIA 2010, LNAI 6341, pp. 169–181, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

170 M. Gebser, O. Sabuncu, and T. Schaub

the size of the interpretations’ domain is increased until a model is found. This similar-
ity in methodologies motivates us to encode and solve FMC by means of iASP.

The idea is to use the incremental parameter in iASP to account for the domain size.
Separate subproblems considered in translational approaches are obtained by ground-
ing an iASP encoding, where care is taken to avoid redundancies between subproblems.
The parameter capturing the domain size is then successively incremented until an an-
swer set is found. In the successful case, an answer set obtained for parameter value i
provides a finite model of the input theory with domain size i.

We implemented a system based on the iASP solver iClingo [4] and compared its
performance to various FMC systems. To this end, we used the problems from the FNT
division of last year’s CADE ATP competition. The results demonstrate the efficiency
of our system. iClingo solved the same number of problems as Paradox [8] in approx-
imately half of its run time on average. Note that Paradox won first places in the FNT
division in 2007, 2008, and 2009.

The paper is organized as follows. The next section introduces basic concepts about
the translational approach to FMC and about iASP. Section 3 describes our incremental
encoding of FMC and how it is generated from a given set of clauses. Information about
our system can be found in Section 4. We empirically evaluate our system in Section 5
and conclude in Section 6. An input first-order theory along with logic programs, as
used by our FMC system based on iASP, are provided in appendixes.

2 Background

We assume the reader to be familiar with the terminology and basic definitions of first-
order logic and ASP. In what follows, we thus focus on the introduction of concepts
needed in the remainder of this paper.

In our method, we translate first-order theories into sets of flat clauses. A clause
is flat if (i) all its predicates and functions have only variables as arguments, (ii) all
occurrences of constants and functions are within equality predicates, and (iii) each
equality predicate has at least one variable as an argument. Any first-order clause can be
transformed into an equisatisfiable flat clause via flattening [7,8,6], done by repeatedly
applying the rewrite ruleC[t] � (C[X]∨(X �= t)), where t is a term offending flatness
and X is a fresh variable. For instance, the clause (f(X) = g(Y)) can be turned into the
flat clause (Z = g(Y))∨ (Z �= f(X)). In the translational approach to FMC, flattening
is used to bring the input into a form that is easy to instantiate using domain elements.

As regards ASP, we rely on the language supported by grounders lparse [12] and
gringo [13], providing normal and choice rules as well as cardinality and integrity con-
straints. As usual, rules with variables are regarded as representatives for all respective
ground instances. Beyond that, our approach makes use of iASP [4] that allows for deal-
ing with incrementally growing domains. In iASP, a parameterized domain description
is a triple (B,P,Q) of logic programs, among which P and Q contain a (single) param-
eter k ranging over positive integers. In view of this, we sometimes denote P and Q by
P [k] and Q[k]. The base program B describes static knowledge, independent of param-
eter k. The role of P is to capture knowledge accumulating with increasing k, whereas
Q is specific for each value of k. Our goal is then to decide whether the program

An Incremental Answer Set Programming Based System for FMC 171

R[k/i] = B ∪
⋃

1≤j≤iP [k/j] ∪Q[k/i] (1)

has an answer set for some (minimum) integer i ≥ 1. In what follows, we refer to rules
in B, P [k], and Q[k] as being static, cumulative, and volatile, respectively.

3 Approach

In this section, we present our encoding of FMC in iASP. The first task, associating
terms with domain elements, is dealt with in Section 3.1. Based on this, Section 3.2
describes the evaluation of (flat) clauses within iASP programs. In Section 3.3, we ex-
plain how a model of a first-order theory is then read off from an answer set. Section 3.4
presents an encoding optimization by means of symmetry breaking. Finally, we show
the soundness and completeness of our approach in Section 3.5.

Throughout this section, we illustrate our approach on a running example. Assume
that the following first-order theory is given as starting point:

p(a)
(∀X) ¬q(X,X)
(∀X) (p(X)→ (∃Y) q(X,Y)).

(2)

The first preprocessing step, clausification of the theory, yields the following:

p(a)
¬q(X,X)
¬p(X) ∨ q(X, sko(X)).

The second step, flattening, transforms these clauses into the following ones:

p(X) ∨ (X �= a)
¬q(X,X)
¬p(X) ∨ q(X,Y) ∨ (Y �= sko(X)).

(3)

Such flat clauses form the basis for our iASP encoding. Before we present it, note that
the theory in (3) has a model I over domain {1, 2} given by:

aI = 1

skoI = {1 +→ 2, 2 +→ 2}
pI = {1}
qI = {(1, 2)}.

(4)

Importantly, I is also a model of the original theory in (2), even if skoI is dropped.

172 M. Gebser, O. Sabuncu, and T. Schaub

3.1 Interpreting Terms

In order to determine a model, we need to associate the (non-variable) terms in the input
with domain elements. To this end, every constant c is represented by a fact cons(c).,
belonging to the static part of our iASP program. For instance, the constant a found
in (3) gives rise to the following fact:

cons(a). (5)

Our iASP encoding uses the predicate assign(T,D) to represent that a term T is
mapped to a domain element D. Here and in the following, we write k to refer to the
incremental variable in an iASP program. Unless stated otherwise, all rules provided
in the sequel are cumulative by default. For constants, the following (choice) rule then
allows for mapping them to the kth domain element:

{assign(T, k)} ← cons(T). (6)

Note that, by using k in assign(T, k), it is guaranteed that instances of the rule are
particular to each incremental step.

Unlike with constants, the argument tuples of (non-zero arity) functions grow when k
increases. To deal with this, we first declare auxiliary facts to represent available domain
elements:

dom(k). arg(k, k). (7)

Predicates dom and arg are then used to qualify the arguments of an n-ary function f
in the following rule:

func(f(X1, . . . , Xn))← dom(X1), . . . , dom(Xn),
1{arg(X1, k), . . . , arg(Xn, k)}.

(8)

The cardinality constraint 1{arg(X1, k), . . . , arg(Xn, k)} stipulates at least one of the
arguments X1, . . . , Xn of f to be k. As in (6), though using a different methodology,
this makes sure that the (relevant) instances are particular to a value of k. However,
note that rules of the above form need to be provided separately for each function in
the input, given that the arities of functions matter. For the unary function sko in (3),
applying the described scheme leads to the following rule:

func(sko(X))← dom(X), 1{arg(X, k)}. (9)

To represent new mappings via a function when k increases, the previous methodology
can easily be extended to requiring some argument or alternatively the function value
to be k. The following (choice) rule encodes mappings via an n-ary function f :

{assign(f(X1, . . . , Xn), Y)} ← dom(X1), . . . , dom(Xn), dom(Y),
1{arg(X1, k), . . . , arg(Xn, k), arg(Y, k)}.

(10)

For instance, the rule encoding mappings via unary function sko is as follows:

{assign(sko(X), Y)} ← dom(X), dom(Y), 1{arg(X, k), arg(Y, k)}. (11)

An Incremental Answer Set Programming Based System for FMC 173

Observe that the cardinality constraint 1{arg(X, k), arg(Y, k)} necessitates at least one
of argument X or value Y of function sko to be k, which in the same fashion as before
makes the (relevant) instances of the rule particular to each incremental step.

To see how the previous rules are handled in iASP computations, we below show the
instances of (7) and (11) generated in and accumulated over three incremental steps:

Step 1 Step 2 Step 3

dom(1). arg(1, 1). dom(2). arg(2, 2). dom(3). arg(3, 3).
{assign(sko(1), 1)}. {assign(sko(1), 2)}. {assign(sko(1), 3)}.

{assign(sko(2), 1)}. {assign(sko(2), 3)}.
{assign(sko(2), 2)}. {assign(sko(3), 1)}.

{assign(sko(3), 2)}.
{assign(sko(3), 3)}.

Given that the body of (11) only relies on facts (over predicates dom and arg), its
ground instances can be evaluated and then be reduced: if a ground body holds, the
corresponding (choice) head is generated in a step; otherwise, the ground rule is trivially
satisfied and needs not be considered any further. Hence, all rules shown above have
an empty body after grounding. Notice, for example, that rule {assign(sko(1), 1)}. is
generated in the first step, while it is not among the new ground rules in the second and
third step.

Finally, a mapping of terms to domain elements must be unique and total. To this
end, translation-based FMC approaches add uniqueness and totality axioms for each
term to an instantiated theory. In iASP, such requirements can be encoded as follows:

← assign(T,D), assign(T, k), D < k. (12)

← cons(T), {assign(T,D) : dom(D)}0. (13)

← func(T), {assign(T,D) : dom(D)}0. (14)

While the integrity constraint in (12) forces the mapping of each term to be unique,
the ones in (13) and (14) stipulate each term to be mapped to some domain element.
However, since the domain grows over incremental steps and new facts are added for
predicate dom , ground instances of (13) and (14) are only valid in the step where they
are generated. Hence, the integrity constraints in (13) and (14) belong to the volatile
part of our iASP program.

3.2 Interpreting Clauses

To evaluate an input theory, we also need to interpret its predicates. To this end, we
include a rule of the following form for every n-ary predicate p in our iASP program:

{p(X1, . . . , Xn)} ← dom(X1), . . . , dom(Xn),
1{arg(X1, k), . . . , arg(Xn, k)}.

(15)

As discussed above, requiring 1{arg(X1, k), . . . , arg(Xn, k)} to hold guarantees that
(relevant) instances are particular to each incremental step. The only exception to this

174 M. Gebser, O. Sabuncu, and T. Schaub

is n = 0 (a predicate p of arity zero), in which case the rule {p}. belongs to the static
part of our program. Also note that, unlike constants and functions, we do not reify
predicates, as assigning a truth value can be expressed more naturally without it. For
example, the following rules allow for interpreting the predicates p and q in (3):

{p(X)} ← dom(X), 1{arg(X, k)}.
{q(X,Y)} ← dom(X), dom(Y), 1{arg(X, k), arg(Y, k)}.

(16)

Following [14], the basic idea of encoding a (flat) clause is to represent it by an integrity
constraint containing the complements of the literals in the clause. However, clauses
may contain equality literals of the form (X = Y) or (X �= Y), where at least one of
the terms X and Y is a variable, and so we also need to consider complements of such
literals. W.l.o.g., we below assume that the left-hand side of every equality literal is a
variable, while the right-hand side is either a variable or a non-variable term. In view of
this convention, we define the encodingL of the complement of a (classical or equality)
literal L as follows:

L =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

not p(X1, . . . , Xn) if L = p(X1, . . . , Xn)
p(X1, . . . , Xn) if L = ¬p(X1, . . . , Xn)
not assign(t,X) if L = (X = t) for some non-variable term t

assign(t,X) if L = (X �= t) for some non-variable term t

X �= Y if L = (X = Y) for some variable Y

X = Y if L = (X �= Y) for some variable Y .

Observe that the first two cases refer to the interpretation of a predicate p, the third and
the fourth to the mapping of non-variable terms to domain elements, and the last two to
built-in comparison operators of grounders like lparse and gringo.

With the complements of literals at hand, we can now encode a flat clause containing
literals L1, . . . , Lm and variables X1, . . . , Xn by an integrity constraint as follows:

← L1, . . . , Lm, dom(X1), . . . , dom(Xn), 1{arg(X1, k), . . . , arg(Xn, k)}. (17)

Note that we use the same technique as before to separate the (relevant) instances ob-
tained at each incremental step. For our running example, the clauses in (3) give rise to
the following integrity constraints:

← not p(X), assign(a,X), dom(X), 1{arg(X, k)}.
← q(X,X), dom(X), 1{arg(X, k)}.
← p(X),not q(X,Y), assign(sko(X), Y),

dom(X), dom(Y), 1{arg(X, k), arg(Y, k)}.

(18)

While the first two integrity constraints each contribute a single instance at an incre-
mental step, (2 ∗ k)− 1 instances are obtained for the third one.

Although they are unlikely to occur in first-order theories, propositional clauses
without variables and equality literals require a slightly different treatment. For a propo-
sitional clause containing (classical) literals L1, . . . , Lm, instead of (17), we include the
following simpler integrity constraint in the static part of our iASP program:

← L1, . . . , Lm. (19)

An Incremental Answer Set Programming Based System for FMC 175

3.3 Extracting Models

The rules that represent the mapping of terms to domain elements (described in Sec-
tion 3.1) along with those representing satisfiability of flat clauses (described in Sec-
tion 3.2) constitute our iASP program for FMC. To compute an answer set, the incre-
mental variable k is increased by one at each step. This corresponds to the addition of a
new domain element. If an answer set is found in a step i, it means that the input theory
has a model over a domain of size i. In fact, from an answer set A of our iASP program,
a model I of the input theory over domain {d | dom(d) ∈ A} is extracted as follows:

cI = d where cons(c), assign(c, d) ∈ A,

f I = {(d1, . . . , dn) +→ d | assign(f(d1, . . . , dn), d) ∈ A},
pI = {(d1, . . . , dn) | p(d1, . . . , dn) ∈ A}.

For the iASP program encoding the theory in (3), composed of the rules in (5–7, 9,
11–14, 16, 18), the following answer set is obtained in the second incremental step:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

dom(1), dom(2), arg(1, 1), arg(2, 2),
cons(a), assign(a, 1),
func(sko(1)), assign(sko(1), 2),
func(sko(2)), assign(sko(2), 2),
p(1), q(1, 2)

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
The corresponding model over domain {1, 2} is the one shown in (4).

3.4 Breaking Symmetries

In view of the fact that interpretations obtained by permuting domain elements are iso-
morphic, an input theory can have many symmetric models. For example, an alternative
model to the one in (4) can easily be obtained by swapping domain elements 1 and 2.
Such symmetries tend to degrade the performance of FMC systems. Hence, systems
based on the constraint solving approach, such as Sem and Falcon, apply variants of a
dynamic symmetry breaking technique called least number heuristic [11]. Translation-
based systems, such as Paradox and FM-Darwin, staticly break symmetries by narrow-
ing how terms can be mapped to domain elements.

Our approach to symmetry breaking is also a static one that aims at reducing the
possibilities of mapping constants to domain elements. To this end, we use the technique
described in [8,15], fixing an order of the constants in the input by uniquely assigning
a rank in [1, n], where n is the total number of constants, to each of them. Given such a
ranking in terms of facts over predicate order , we can replace the rule in (6) with:

{assign(T, k)} ← cons(T), order(T,O), k ≤ O.

For instance, if the set of constants is {c1, c2, c3} and the order is given by facts
order (ci, i). for i ∈ {1, 2, 3}, the following instances of the above rule are generated
in and accumulated over three incremental steps:

176 M. Gebser, O. Sabuncu, and T. Schaub

Step 1 Step 2 Step 3

{assign(c1, 1)}.
{assign(c2, 1)}. {assign(c2, 2)}.
{assign(c3, 1)}. {assign(c3, 2)}. {assign(c3, 3)}.

That is, while all three constants can be mapped to the first domain element, c1 cannot
be mapped to the second one, and only c3 can be mapped to the third one.

Finally, we note that our iASP encoding of the theory in (3) yields 10 answer sets in
the second incremental step. If we apply the described symmetry breaking, it disallows
mapping the single constant a to the second domain element, which prunes 5 of the 10
models. Although our simple technique can in general not break all symmetries related
to the mapping of terms because it does not incorporate functions, the experiments in
Section 5 demonstrate that it may nonetheless lead to significant performance gains.
Unlike with constants, given a priori, additionally incorporating functions into our ap-
proach to symmetry breaking would require the extension of predicate order to newly
composed functional terms in each incremental step. For the special case of unary func-
tions, such an extension [8] is implemented in Paradox; with FM-Darwin, it has not
turned out to be more effective than symmetry breaking for only constants [15].

3.5 Soundness and Completeness

Before stating our theorem, we first define the parameterized domain description
formed for a set T of flat clauses. The signature 〈F0,F ,P0,P〉 of T is built from a
set F0 of constants, a set F of (non-zero arity) functions, a set P0 of zero arity predi-
cates, and a set P of non-zero arity predicates. For T , we then form the parameterized
domain description (B,P,Q) in the following way:

B =
{

cons(c). | c ∈ F0

}
∪
{
{p}. | p ∈ P0

}
∪ΠT0 ,

P =
{

dom(k). arg(k, k). {assign(T, k)} ← cons(T).

← assign(T,D), assign(T, k), D < k.
}
∪ΠF ∪ΠP ∪ΠT , and

Q =
{
← cons(T), {assign(T,D) : dom(D)}0.
← func(T), {assign(T,D) : dom(D)}0.

}
,

where ΠF contains rules of form (8) and form (10) for each function f ∈ F , ΠP

contains a rule of form (15) for each predicate p ∈ P , ΠT contains a rule of form (17)
for each non-propositional clause in T , and ΠT0 contains a rule of form (19) for each
propositional clause in T . With these concepts at hand, we are ready to formulate the
soundness and completeness of our approach.

Theorem 1. Let T be a set of flat clauses and (B,P,Q) the parameterized domain
description for T . Then, the logic program R[k/i], as defined in (1), has an answer set
for some positive integer i iff T has a finite model over a domain of size i.

Note that the theorem still applies when including symmetry breaking, as described in
the previous section, in view of the fact that it may eliminate some isomorphic models,
but not all of them.

An Incremental Answer Set Programming Based System for FMC 177

4 System

We use FM-Darwin to read an input in TPTP format, a format for first-order theories
widely used within the community of ATP, to clausify it if needed, and to flatten the
clauses at hand. Additionally, FM-Darwin applies some input optimizations before flat-
tening, such as renaming deep ground subterms to avoid the generation of flat clauses
with many variables [15]. For obtaining flat clauses from an input theory specified in a
file tptp input.p, FM-Darwin is invoked as follows:

darwin -fd true -pfdp Exit tptp input.p

Having an input in terms of flat clauses, we can apply the transformations described
in Section 3.1 and 3.2 to generate an iASP program. To this end, we implemented a
compiler called fmc2iasp1, written in Python. It outputs the rules that are specific to an
input theory, while the theory-independent rules in (6), (7), and (12–14) are provided
in a separate file. This separation allows us to test encoding variants without changing
fmc2iasp, for instance, the symmetry breaking described in Section 3.4. Finally, we use
iClingo to incrementally ground the obtained iASP program and to search for answer
sets representing finite models of the input theory. Provided that fmc.lp is the file
containing theory-independent rules, the following command-line call is used for FMC:

darwin -fd true -pfdp Exit tptp input.p | fmc2iasp.py |
cat fmc.lp - | iclingo

5 Experiments

We consider the following systems: iClingo (2.0.5), Clingo (2.0.5), Paradox (3.0), FM-
Darwin (1.4.5), and Mace4 (2009-11A). While Paradox and FM-Darwin are based on
the translational approach to FMC, Mace4 applies the constraint solving approach. For
iClingo and Clingo, we used command line switch --heuristic=VSIDS, as it im-
proved search performance.2 Our experiments have been performed on a 3.4GHz Intel
Xeon machine running Linux, imposing 300 seconds as time and 2GB as memory limit.

FMC instances stem from the FNT (First-order form Non-Theorems) division of the
2009 CADE ATP competition. The instances in this division are satisfiable and suitable
for evaluating FMC systems, among which Paradox won the first place. The considered
problem domains are: common-sense reasoning (CSR), geography (GEG), geometry
(GEO), graph theory (GRA), groups (GRP), homological algebra (HAL), knowledge
representation (KRS), lattices (LAT), logic calculi (LCL), management (MGT), miscel-
laneous (MSC), natural language processing (NLP), number theory (NUM), processes
(PRO), software verification (SWV), syntactic (SYN).3

Table 1 shows benchmark results for each of the problem domains. Column # displays
how many instances of a problem domain belong to the test suite. For each system and
problem domain, average run time in seconds is taken over the solved instances; their

1 http://potassco.sourceforge.net/
2 Note that Minisat, used internally by Paradox, also applies VSIDS as decision heuristic [16].
3 http://www.cs.miami.edu/˜tptp/

http://potassco.sourceforge.net/
http://www.cs.miami.edu/~tptp/

178 M. Gebser, O. Sabuncu, and T. Schaub

Table 1. Benchmark results for problems in the FNT division of the 2009 CADE competition

Benchmark # iClingo (1) iClingo (2) Clingo Paradox FM-Darwin Mace4
CSR 1 2.28 (1) 2.19 (1) 4.20 (1) — 20.96 (1) —
GEG 1 — — — 229.12 (1) — —
GEO 12 0.07 (12) 0.06 (12) 0.09 (12) 0.08 (12) 0.09 (12) 0.02 (12)
GRA 2 3.48 (1) — 12.33 (1) 0.50 (1) — —
GRP 1 5.58 (1) 215.62 (1) 78.90 (1) 0.65 (1) — 0.26 (1)
HAL 2 2.35 (2) 2.40 (2) 2.68 (2) 0.68 (2) 11.43 (1) —
KRS 6 0.13 (6) 0.13 (6) 0.24 (6) 0.20 (6) 30.76 (6) 0.02 (4)
LAT 5 0.09 (5) 0.09 (5) 0.12 (5) 0.10 (5) 0.07 (5) 0.03 (5)
LCL 17 8.71 (17) 9.36 (17) 11.44 (17) 3.72 (17) 1.56 (17) 5.07 (8)
MGT 4 0.06 (4) 0.06 (4) 0.08 (4) 0.07 (4) 0.12 (4) 0.98 (4)
MSC 3 9.31 (2) 0.20 (1) 16.51 (2) 121.03 (2) 0.19 (1) —
NLP 9 1.60 (9) 1.98 (9) 3.06 (9) 0.25 (9) 0.28 (8) 22.19 (1)
NUM 1 0.19 (1) 0.19 (1) 0.26 (1) 0.26 (1) 0.13 (1) 202.45 (1)
PRO 9 1.09 (9) 8.99 (9) 1.91 (9) 0.37 (9) 0.78 (9) 31.56 (7)
SWV 8 0.13 (4) 0.12 (4) 0.17 (4) 0.16 (4) 45.13 (5) 0.03 (2)
SYN 18 0.56 (18) 0.57 (18) 0.68 (18) 0.40 (18) 3.88 (12) 0.66 (5)
Total 99 2.39 (92) 5.49 (90) 4.24 (92) 6.02 (92) 6.43 (82) 9.88 (50)

number is given in parentheses. A dash in an entry means that a system could not solve any
instance of the corresponding problem domain within the run time and memory limits.
For each system, the last row shows its average run time over all solved instances and
provides their number in parentheses. The evaluation criteria in CADE competitions are
first number of solved instances and then average run time as tie breaker.

In Table 1, we see that Mace4 and FM-Darwin solved 50 and 82 instances, respec-
tively, out of the 99 instances in total. Paradox, the winner of the FNT division in the
2009 CADE competition, solved 92 instances in 6.02 seconds on average. While the
version of our system not using symmetry breaking (described in Section 3.4), denoted
by iClingo (2), solved two instances less, the one with symmetry breaking, denoted by
iClingo (1), also solved 92 instances. As it spent only 2.39 seconds on average, accord-
ing to the CADE criteria, our system slightly outperformed Paradox. For assessing the
advantages due to incremental grounding and solving, we also ran Clingo, performing
iterative deepening search by successively grounding and solving our iASP encoding
for fixed domains of increasing size. The average run time achieved with Clingo, 4.24
seconds, is substantially greater than the one of iClingo (1), and the gap becomes more
apparent the more domain elements are needed.

However, a general problem with the translational approach is that flattening may
increase the number of variables in a clause, which can deteriorate grounding perfor-
mance. We observed this clearly for the instance in the GEG domain, where the flat
clauses contain about seven variables. While iClingo could not ground the resulting
iASP program within the given limits, Paradox still solved it (in 229.12 seconds). The
fact that the underlying first-order theory has many sorts, so that sort inference [8] of
Paradox helps, shows that there is still potential to improve the translational approach
via iASP. On the other hand, for the instances in groups CSR and MSC, we speculate

An Incremental Answer Set Programming Based System for FMC 179

that clausification and further preprocessing steps of Paradox may be the cause for its
deteriorated performance.

6 Discussion

We presented an efficient yet transparent approach to computing finite models of first-
order theories by means of ASP. Our approach takes advantage of an incremental exten-
sion of ASP that allows us to consecutively search for models with given domain size
by incrementing the corresponding parameter in the iASP encoding. The declarative
nature of our approach makes it easily modifiable and leaves room for further improve-
ments. Moreover, our approach is rather competitive and has even a slight edge on the
hitherto leading system for FMC. Finally, our approach complements the work in [17],
where FMC systems were used for computing the answer sets of tight4 logic programs
in order to circumvent grounding.

In [18], a special class of first-order formulas, called Effectively Propositional (EPR)
formulas, was addressed via ASP. EPR formulas must not contain function symbols in
their clause forms. Although our approach takes more general input than this, it can
currently not decide EPR formulas. To this end, we had either to extract a bound on the
incremental parameter to make the system halt or to provide an alternative dedicated
encoding of EPR formulas. Such extensions are interesting topics for future research.

Acknowledgments. This work was supported by the German Science Foundation (DFG)
under grant SCHA 550/8-1.

References

1. Caferra, R., Leitsch, A., Peltier, N.: Automated Model Building. Kluwer Academic, Dor-
drecht (2004)

2. Bibel, W.: Automated Theorem Proving. Vieweg (1987)
3. Baral, C.: Knowledge Representation, Reasoning and Declarative Problem Solving. Cam-

bridge University, Cambridge (2003)
4. Gebser, M., Kaminski, R., Kaufmann, B., Ostrowski, M., Schaub, T., Thiele, S.: Engineering

an incremental ASP solver. In: Garcia de la Banda, M., Pontelli, E. (eds.) ICLP 2008. LNCS,
vol. 5366, pp. 190–205. Springer, Heidelberg (2008)

5. Zhang, J., Huang, Z.: Reducing symmetries to generate easier SAT instances. Electronic
Notes in Theoretical Computer Science 125(3), 149–164 (2005)

6. Tammet, T.: Finite model building: Improvements and comparisons. In: Baumgartner, P.,
Fermüller, C. (eds.) Proceedings of the Workshop on Model Computation — Principles,
Algorithms, Applications, MODEL 2003 (2003)

7. McCune, W.: A Davis-Putnam program and its application to finite first-order model search:
Quasigroup existence problems. Technical Report ANL/MCS-TM-194, Argonne National
Laboratory (1994)

8. Claessen, K., Sörensson, N.: New techniques that improve MACE-style finite model finding.
In: Baumgartner, P., Fermüller, C. (eds.) Proceedings of the Workshop on Model Computa-
tion — Principles, Algorithms, Applications, MODEL 2003 (2003)

4 Tight programs are free of recursion through positive literals (cf. [3]).

180 M. Gebser, O. Sabuncu, and T. Schaub

9. Biere, A., Heule, M., van Maaren, H., Walsh, T.: Handbook of Satisfiability. IOS (2009)
10. Zhang, J., Zhang, H.: SEM: A system for enumerating models. In: Proceedings of the 14th

International Joint Conference on Artificial Intelligence (IJCAI 1995), pp. 298–303. Morgan
Kaufmann, San Francisco (1995)

11. Zhang, J.: Constructing finite algebras with FALCON. Journal of Automated Reason-
ing 17(1), 1–22 (1996)

12. Syrjänen, T.: Lparse 1.0 user’s manual,
http://www.tcs.hut.fi/Software/smodels/lparse.ps.gz

13. Gebser, M., Kaminski, R., Kaufmann, B., Ostrowski, M., Schaub, T., Thiele, S.: A user’s
guide to gringo, clasp, clingo, and iclingo, http://potassco.sourceforge.net

14. Simons, P., Niemelä, I., Soininen, T.: Extending and implementing the stable model seman-
tics. Artificial Intelligence 138(1-2), 181–234 (2002)

15. Baumgartner, P., Fuchs, A., de Nivelle, H., Tinelli, C.: Computing finite models by reduction
to function-free clause logic. Journal of Applied Logic 7(1), 58–74 (2009)

16. Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella, A. (eds.)
SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004)

17. Sabuncu, O., Alpaslan, F.: Computing answer sets using model generation theorem provers.
In: Costantini, S., Watson, R. (eds.) Proceedings of the 4th International Workshop on An-
swer Set Programming (ASP 2007), pp. 225–240 (2007)

18. Lierler, Y., Lifschitz, V.: Logic programs vs. first-order formulas in textual inference,
http://z.cs.utexas.edu/users/ai-lab/publications_recent.php

A Input Theory

The input theory (2), written in TPTP format, is as follows:

fof(1, axiom, p(a)).
fof(2, axiom, ! [X]: (˜q(X,X))).
fof(3, axiom, ! [X]: (p(X) => (? [Y]: q(X,Y)))).

B Theory-Independent iASP Program

The theory-independent program part with symmetry breaking (cf. Section 3.4), in the
input language of iClingo, is as follows:

#cumulative k.

dom(k).
arg(k,k).

{ assign(T,k) } :- cons(T), order(T,O), k<=O.

:- assign(T,D), assign(T,k), D<k.

#volatile k.

:- cons(T), { assign(T,D):dom(D) } 0.
:- func(T), { assign(T,D):dom(D) } 0.

http://www.tcs.hut.fi/Software/smodels/lparse.ps.gz
http://potassco.sourceforge.net
http://z.cs.utexas.edu/users/ai-lab/publications_recent.php

An Incremental Answer Set Programming Based System for FMC 181

C Theory-Dependent iASP Program

The rules generated by fmc2iasp for the flat clauses in (3) are as follows:

#cumulative k.

% functions
func(sko(X0)) :- dom(X0), 1 { arg(X0,k) }.
{ assign(sko(X0),Y) } :- dom(X0;Y), 1 { arg(X0;Y,k) }.

% predicates
{ p(X0) } :- dom(X0), 1 { arg(X0,k) }.
{ q(X0,X1) } :- dom(X0;X1), 1 { arg(X0;X1,k) }.

% flat clauses
:- not p(X0), assign(a,X0), dom(X0), 1 { arg(X0,k) }.
:- q(X0,X0), dom(X0), 1 { arg(X0,k) }.
:- p(X0), not q(X0,X1), assign(sko(X0),X1),

dom(X0;X1), 1 { arg(X0;X1,k) }.

#base.

cons(a).
order(a,1).

#hide.
#show assign/2.
#show q/2.
#show p/1.

In order to compute a finite model of (2), we can use this program concatenated with
the rules from Appendix B, as it is described in Section 4.

Parametrized Logic Programming

Ricardo Gonçalves� and José Júlio Alferes

CENTRIA, Dep. Informática, FCT/Universidade Nova de Lisboa, Portugal

Abstract. Traditionally, a logic program is built up to reason about
atomic first-order formulas. The key idea of parametrized logic program-
ming is that, instead of atomic first-order formulas, a parametrized logic
program reasons about formulas of a given parameter logic. Of course,
the main challenge is to define the semantics of such general programs. In
this work we introduce the novel definitions along with some motivating
examples. This approach allows us to prove general results that can be
instantiated for every particular choice of the parameter logic. Impor-
tant general results we can prove include the existence of semantics and
the alternating fix-point theorem of well-founded semantics. To reenforce
the soundness of our general framework we show that some known ap-
proaches in the literature of logic programming, such as paraconsistent
answer-sets and the MKNF semantics for hybrid knowledge bases, are
obtained as particular choices of the parameter logic.

1 Introduction

Usually, we write a logic program to reason about atomic formulas. The truth
value of each of these atoms does not influence the truth values of the others.
Thus, in this sense, atomic first-order formulas are independent of each other.
One way to increase the expressivity of a logic program is to allow dependence
between the atoms. Pursuing this path, some approaches in the literature allow
complex formulas to appear in the body and head of rules [4,15].

Our approach, parametrized logic programming, also aims this increased ex-
pressivity, but has its roots in the area of combination of logics [2]. Combination
mechanisms are operations that take logics as arguments and produce new logics
as a result. Combined logics are not only important from a theoretical point of
view but, what is more, have also a deep practical signicance, namely in areas
like knowledge representation in articial intelligence. In fact, the use of formal
logic as a tool for knowledge representation frequently requires the integration
of several logic systems into a homogeneous environment. Fibring of logics [5]
is one of the most general and flexible mechanism for combining logics and it
has parametrization of logics [1] as an important special case. Roughly speaking,
parametrization of logics consists of replacing the atomic part of a given logic L
by a logic L′, which is called the parameter logic.

� The first author was supported by FCT under the postdoctoral grant
SFRH/BPD/47245/2008.

T. Janhunen and I. Niemelä (Eds.): JELIA 2010, LNAI 6341, pp. 182–194, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Parametrized Logic Programming 183

In the case of logic programming, our idea is to fix a parameter logic L and
build up logic programs by replacing atomic sentences with formulas of L. These
more expressive atoms (the formulas of L) are no longer independent and their
interdependence is governed by L through its consequence relation.

It is important to stress that our approach differs from existing ones, such as
[15,3], that aim to find the “logic” of logic programming, i.e., find a suitable logic
that generalizes the well-known role of classical logic in the semantics of definite
logic programs. Contrarily, the keystone idea of parametrized logic programming
is the decoupling between the metalevel language and the parametrized logical
language. In the metalevel language we have the usual constructors of logic
programs rules: ←, ”, ”, not and”or”. In the parametrized logical language we
have the language of the parameter logic L.

The major challenge when envisaging such a general language is to define the
semantics. Here, our key idea is to generalize the concept of interpretation with
the notion of logical theory. This is in fact a non-trivial novel approach and it
overcomes the difficulty of defining semantics of more complex logic programs.
For example, it is well-known that classical interpretations are not suitable for
defining the semantics of extended logic programs, thus leading to the artificial
trick of considering classically negated atoms as new atoms.

As one application, we show that our approach can be very useful in the topic
of combining rules and ontologies, which is an important topic in for the Semantic
Web. In fact, we prove that one of the main frameworks for combining rules and
ontologies for the semantic web, the MKNF semantics for hybrid knowledge
bases, can be captured as a particular case of our approach, and, moreover, our
language is richer than that of MKNF.

We start by introducing the novel definitions along with some motivating
examples. We then define a general version of stable model semantics and of
the well-founded semantics and prove that the non-parametrized is a special
case obtained by a natural choice of the parameter logic. In the last section we
prove that the semantics of MKNF knowledge bases is nothing but that of logic
programs parametrized by the appropriate description logic. We end by drawing
some conclusions and presenting some paths for future work.

2 Parametrized Normal Logic Programs

In this section we introduce the syntax and semantics of normal parametrized
logic programs. To focus on the novel key ideas we will not consider here epis-
temic disjunction or, along with its intrinsic difficulties1.

2.1 Language

The syntax of a normal parametrized logic program has the same structure of
that of a normal logic program. The only difference is that the atomic symbols
1 In fact, a results more general than this one, namely generalising for parametrized

Here-There theories [13], is subject of current work.

184 R. Gonçalves and J.J. Alferes

of a normal parametrized logic program are replaced by formulas of a parameter
logic. Let us start by introducing the necessary concepts related with the notion
of (monotonic) logic.

Definition 1. A (monotonic) logic is a pair L = 〈L,�L〉 where L is a set of
formulas and �L is a Tarskian consequence relation [16] over L, i.e. satisfying
the following conditions, for every T ∪Φ∪ {ϕ} ⊆ L, Reflexivity: if ϕ ∈ T then
T �L ϕ; Cut: if T �L ϕ for all ϕ ∈ Φ, and Φ �L ψ then T �L ψ; Weakening:
if T �L ϕ and T ⊆ Φ then Φ �L ϕ.

When clear from the context we write � instead of �L. Let Th(L) be the set of
theories of L, i.e. the set of subsets of L closed under the relation �L. It is well-
known that, for every (monotonic) logic L, the tuple 〈Th(L),⊆〉 is a complete
lattice with smallest element the set Theo = ∅� of theorems of L and the greatest
element the set L of all formulas of L. Given a subset A of L we denote by A� the
smallest theory that contains A. A� is also called the theory generated by A.

In what follows we consider fixed a (monotonic) logic L = 〈L,�L〉 and call it
the parameter logic. The formulas of L are dubbed (parametrized) atoms and
a (parametrized) literal is either a parametrized atom ϕ or its negation not ϕ,
where as usual not denotes negation as failure. We dub default literal those of
the form not ϕ.

Definition 2. A normal L-parametrized logic program is a set of rules

ϕ← ψ1, . . . , ψn, not δ1, . . . , not δm

where ϕ, ψ1, . . . , ψn, δ1, . . . , δm ∈ L.
A definite L-parametrized logic program is a set of rules without negations as

failure, i.e. of the form ϕ← ψ1, . . . , ψn where ϕ, ψ1, . . . , ψn ∈ L.

2.2 Semantics

Given this general language of parametrized logic programs, we define its stable
model semantics and its well-founded semantics, as generalisations of the stable
model semantics [8] and well-founded semantics [7] of normal logic programs.

Interpretations and Models. In the traditional approach a (2-valued) inter-
pretation is just a set of atoms. In our approach, since we substitute atoms by
formulas of a parameter logic, the first idea is to take sets of formulas of the
parameter logic as (2-valued) interpretations. The problem is that, contrary to
the case of atoms, the parametrized atoms are not independent of each other.
This interdependence is governed by the consequence relation of the parameter
logic. For example, if we take classical propositional logic (CPL) as the param-
eter logic, we have that if the parametrized atom p ∧ q is true then so are the
parametrized atoms p and q. To account for this interdependence, we use theories
(sets of formulas closed under the consequence of the logic) as the generalisation
of interpretations, thus capturing the above mentioned interdependence.

Parametrized Logic Programming 185

Definition 3. A (parametrized) 2-valued interpretation is a theory of L.

As usual, a 2-valued interpretation T can be seen as a tuple 〈T, F 〉 such that T is
a theory of L, and F is the complement, wrt L, of T . Note that, defined as such,
F is not a theory, viz. it is not closed under the consequence of the logic. E.g. F
does not, and should not, include tautologies in the parameter logic. This must
be taken into account when defining parametrized 3-valued interpretations.

In 3-valued interpretations, as defined below, formulas are either true, unde-
fined or false. True formulas, as we just seen, must be closed under the conse-
quence of the logic; non-false formulas (i.e. true or undefined formulas) must also
be closed; false formulas are just the complement of non-false formulas, and as
such are not closed.

Definition 4. A (parametrized) 3-valued interpretation is determined by any
two theories T and TU such T ⊆ TU . For similarity with the usual definition of
3-valued interpretations, we represent one such interpretation as a tuple 〈T, F 〉
where F = L− TU .

Any interpretation I = 〈T, F 〉 can be equivalently defined as a function I : L→
{0, 1

2 , 1} in the usual way. We dub empty interpretation the 3-valued interpre-
tation 〈∅�, ∅〉. Given an interpretation I we can extend it to literals by setting
I(not ϕ) = 1− I(ϕ) for every ϕ ∈ L.

Definition 5. An interpretation I satisfies a rule
ϕ← ψ1, . . . , ψn, not δ1, . . . , not δm

if Min{I(ψ1), . . . , I(ψn), I(not δ1), . . . , I(not δm)} ≤ I(ϕ).

An interpretation is a model of logic program P if it satisfies every rule of P .
We denote by ModL2 (P) the set of 2-valued models of P and by ModL3 (P) the
set of 3-valued models of P .

The usual orderings defined over 2- and 3-valued interpretations can easily be
generalised. Moreover, given one such ordering, minimal and least interpretations
may be defined in the usual way.

Definition 6 (Classical ordering). If I and J are two interpretations then
we say that I ≤ J if I(ϕ) ≤ J(ϕ) for every ϕ ∈ L.

Definition 7 (Fitting ordering). If I1 = 〈T1, F1〉 and I2 = 〈T2, F2〉 are two
3-valued interpretations then we say that I1 ≤F I2 if T1 ⊆ T2 and F1 ⊆ F2.

Stable Model Semantics. As in the case of non-parametrized, we start by
assigning semantics to definite parametrized programs. The stable model of a
definite program is its least 2-valued model. In order to generalise this definition
to the parametrized case we need to prove that the least parametrized 2-valued
model exists for every definite L-parametrized logic program.

Theorem 1. Every definite L-parametrized logic program has a least 2-valued
model.

186 R. Gonçalves and J.J. Alferes

Proof. Consider the set SL
P =

⋂
M∈ModL

2 (P) M . Note that the set SL
P always

exists since 〈ThL,⊆〉 is a complete lattice for every (monotonic) logic L. It is
clear that SL

P is included in every model of P and it is trivial to prove that SL
P

is still a model of P .

It is important to note that this theorem holds for every choice of the parameter
logic L.

To define the stable model semantics of a normal L-parametrized logic pro-
grams we use a Gelfond-Lifschitz like operator.

Definition 8. Let P be a normal L-parametrized logic program and I a 2-valued
interpretation. The GL-transformation of P modulo I is the program P

I obtained
from P by performing the following operations:

– remove from P all rules which contain a literal not ϕ such that I �L ϕ;
– remove from the remaining rules all default literals.

Since P
I is a definite L-parametrized program, it has an unique least model J .

We define Γ (I) = J .

Definition 9. A 2-valued interpretation I of a L-parametrized logic program P
is a stable model of P iff Γ (I) = I. A formula ϕ is true under the stable model
semantics iff it belongs to all stable models of P .

Well-Founded Semantics. Several equivalent definitions of well-founded se-
mantics exist in the literature. In this work we follow the iterated fixed-point
approach of [6].

First of all it can be readily proved that, as in the non-parametrized case, the
operator Γ is antitonic, i.e, for any theories I, J ∈ I we have that if I ⊆ J then
Γ (J) ⊆ Γ (I). Therefore, applying Γ twice, denoted by Γ 2, yields a monotone
operator on the lattice of theories.

Definition 10. A 3-valued interpretation 〈T, F 〉 is a partial stable model of a
normal L-parametrized logic program P if T = Γ 2(T) and F = L− Γ (T).

For defining the well-founded semantics, we first need to prove that the F -least
partial stable model of a normal L-parametrized logic program always exits.

Theorem 2. Every normal L-parametrized logic program has a unique F -least
partial stable model.

Proof. Let P be a normal L-parametrized logic program. Since Γ 2 is a monotone
operator we can conclude by the Knaster-Tarski thereom that Γ 2 has a least
fixed-point which we denote by T ∗. Consider the 3-valued interpretation I∗ =
〈T ∗, L−Γ (T ∗)〉. We now prove that I∗ is in fact the F -least partial stable model
of P . By definition I∗ is a partial stable model of P . We still have to prove that
it is the F -least. Let I = 〈T, F 〉 be a partial stable model of P , i.e., Γ 2(T) = T
and F = L − Γ (T). We have that T ∗ ⊆ T since T ∗ is the least fixed-point of
Γ 2. Using the fact that Γ is antitonic we have that Γ (T) ⊆ Γ (T ∗). Therefore,
L− Γ (T ∗) ⊆ L− Γ (T), thus proving that I∗ ≤F I.

Parametrized Logic Programming 187

We can now define the well-founded semantics of a normal L-parametrized logic
program.

Definition 11. The well-founded semantics of a normal L-parametrized logic
program P is defined by its unique F -least partial stable model.

2.3 Particular Cases

For soundness reasons it is important to show that the non-parametrized case
is a special case of our approach, using an appropriate choice of the parameter
logic. This is indeed the case for normal and extended logic programs.

Normal Logic Programs. Suppose that we fix an alphabet A for building the
language of normal logic programs. Since we want the class of L-parametrized
logic programs to coincide with the class of normal logic programs over A, then
the language L of the parameter logic Lmust be the set of atoms overA. We then
have that L = H, where H is the Herbrand base of A. Now that we have fixed
the language L of L we still have to define the Tarskian consequence relation
�L over L. At first sight it seems that we have a large range of possibilities for
defining �L. Nevertheless, the low expressivity of the language enforces that the
only reasonable consequence relation we can choose is the trivial one, i.e. for
every T ∪{ϕ} ⊆ L we have that T �L ϕ iff ϕ ∈ T . Therefore, Th(L) = P(L), i.e.
the theories of L, are precisely the sets of atoms over A. Recall that the notion
of parametrized interpretation, both 2 or 3-valued, is based on theories of L.
Therefore, by construction, the parametrized versions of stable model semantics
and well-founded semantics coincide with the classical ones for normal logic
programs.

Extended Logic Programs. Suppose that we fix an alphabet A for building
the language of extended logic programs. This language is enriched with a second
negation ¬, usually called explicit negation, which is allowed to appear in front
of the atoms. An objective literal is either an atom or the explicit negation of
an atom.

Recall that we want the class of L-parametrized logic programs to coincide
with the class of extended logic programs over A. Therefore, we need to take the
language L of the parameter logic L = 〈L,�〉 as L = H∪ {¬p : p ∈ H}. The set
H∪ {¬p : p ∈ H} is usually called the extended Herbrand base of P .

In the case of programs with explicit negation there is no a general consensus
with respect to the semantics. In fact, there are two main approaches: the classi-
cal one that assumes the explosion principle of negation; and the paraconsistent
approach that rejects the explosion principle of negation.

It is very interesting that our parametrized approach allows to easily explain
why two different approaches to the semantics of extended logic programs exist.
In fact, this can be explained by the fact that only two consequence relations
can naturally be defined over the language L.

The first consequence relation over L, denoted by �1, assumes the explosion
principle and is such that, for every T∪ϕ, we have T �1 ϕ if ϕ ∈ T or {p,¬p} ⊆ T

188 R. Gonçalves and J.J. Alferes

for some atom p. It can be readily proved that, taking L1 = 〈L,�1〉, the L1-
parametrized stable model semantics of an extended logic program coincides
with its answer set semantics. The second consequence relation over L, denoted
by �2, does not assume the explosion principle and, therefore, is such that,
for every T ∪ ϕ, we have T �2 ϕ if ϕ ∈ T . The consequence relation �2 is
in fact the 4-valued Belnap paraconsistent logic Four restricted to this more
restricted language. It can be readily proved that, taking L2 = 〈L,�2〉, the L2-
parametrized stable model semantics of an extended logic program coincides
with its paraconsistent answer set semantics.

Beyond Extended Logic Programs. Let us now consider a full classical
language L built over a set P of propositional symbols using the usual connectives
(¬,∨,∧,⇒). Of course, many consequence relations can be defined over this
language. Here we only focus on classical logic, Belnap’s paraconsistent logic
and intuitionistic logic. Consider the following programs:

P1

{
p← ¬q
p← q

P2

{
p← ¬q ∨ q P3

⎧⎨⎩ q ←
(q ∨ s)⇒ p←
r ← p

P4

⎧⎪⎪⎨⎪⎪⎩
r ←
¬p←
(p ∨ q)← r
s← q

P5

{
p← not q, not ¬q P6

{
p← not (q ∨ ¬q)

Example 1 (Classical logic)
Let L = 〈L,�CPL〉 be Classical Propositional Logic (CPL) over the language
L. Let us study in detail the semantics of P1. Note that every theory of CPL
that does not contain neither p nor ¬p satisfies P1. In particular, the set Theo
of theorems of CPL is a model of P1. So, SCPL

P1
= Theo. This means that

p,¬p, q,¬q /∈ SCPL
P1

.
Using the same kind of reasoning we can conclude that SCPL

P2
= {p}�. So,

in the case of P2 we have that p ∈ SCPL
P2

. We can also easily conclude that
r ∈ SCPL

P3
and s ∈ SCPL

P4
.

In the case of P5 its stable models are the theories of CPL that contain p
and do not contain q and ¬q. Therefore, we can conclude that p ∈ SCPL

P5
. In

the case of P6, since (p ∨ ¬p) ∈ T for every theory T of CPL we can conclude
that the only stable model of P6 is the set Theo of theorems of CPL. Therefore
p /∈ SCPL

P6
.

Example 2 (Paraconsistent logic)
Consider now L = 〈L,�4〉 the 4-valued Belnap paraconsistent logic Four. Con-
sider the program P4. Contrarily to the case of CPL, in Four it is not the case
that ¬p, (p ∨ q) �4 q. Therefore we have that q, s /∈ SFour

P4
.

Example 3 (Intuitionistic logic)
Let now L = 〈L,�IPL〉 be the propositional intuitionistic logic IPL. It is well-
known that q ∨ ¬q is not a theorem of IPL. Therefore, considering program

Parametrized Logic Programming 189

P2 we have SIPL
P2

= ∅�IPL . So, contrarily to the case of CPL, we have that
p /∈ SIPL

P2
. Using the same idea for program P6 we can conclude, contrarily to

the case of CPL, that p ∈ SIPL
P6

.

3 MKNF

In this section we show that our approach is general enough to capture the se-
mantics of MKNF hybrid knowledge bases [12,14,10], which tightly combines
normal logic programs with description logic (DL) based ontologies. More pre-
cisely, the goal of this section is to prove that, taking first-order logic as the
parameter logic, and translating every DL formula in the ontology into a fact of
the corresponding parametrized program, we exactly obtain the MKNF seman-
tics. Moreover, by doing so, the expressiveness of the language can naturally be
extended by allowing complex DL formulas to appear anywhere in rules, as it
happens e.g. in [11] but in this latter one only for definite programs.

Before we come to this main result, we recall some basic notions of MKNF,
and then prove some required intermediate results.

Let O be a DL database. Consider a first-order signature Σ such that Σ con-
tains the equality predicate ≈, all atomic concepts from O as unary predicates,
all atomic roles from O as binary predicates and all individuals ofO as constants.
Let FOLΣ = 〈LΣ ,�FOLΣ 〉 denote first-oder logic over the first-order language
LΣ obtained fromΣ. As it is usual in the MKNF approach, we assume thatO can
be translated into a formula π(O) of function free first-order logic over Σ. Given
a MKNF knowledge base K = 〈O, P 〉 we denote by PK the FOLΣ-parametrized
logic program obtained from K such that PK = P ∪ {π(O)←}. We denote by I
be the set of all Herbrand interpretations over Σ and by Δ the Herbrand uni-
verse of Σ. Following [14] we also assume that in every member of I the equality
predicate ≈ is interpreted as a congruence relation. Recall that the language of
MKNF, here denoted by LK

Σ , is obtained by extending the first-order language
over Σ with the modal operators K and not. A MKNF structure is a triple
〈I,M,N〉 where M ∪ N ∪ {I} ⊆ I and M and N are non-empty. Satisfiability
of MKNF formulas in a MKNF structure 〈I,M,N〉 is defined as follows:
〈I,M,N〉 � p(t1, . . . , tn) iff p(t1, . . . , tn) is true in I
〈I,M,N〉 � ¬ϕ iff 〈I,M,N〉 �� ϕ
〈I,M,N〉 � ϕ ∧ ψ iff 〈I,M,N〉 � ϕ and 〈I,M,N〉 � ψ
〈I,M,N〉 � ∃xϕ iff 〈I,M,N〉 � ϕ[α/x] for some α ∈ Δ
〈I,M,N〉 � Kϕ iff 〈J,M,N〉 � ϕ for all J ∈M
〈I,M,N〉 � notϕ iff 〈J,M,N〉 �� ϕ for some J ∈ N
A MKNF interpretation is a nonempty set M ⊆ I. A MKNF interpretation

M is a model of a formula ϕ, denoted by M � ϕ, if 〈I,M,M〉 � ϕ for every
I ∈M , and for each MKNF interpretation M ′ such that M ⊂M ′, we have that
〈I ′,M ′,M〉 �� ϕ for some I ′ ∈M ′.

We write M � T to denote that for every I ∈ M , we have that I � ϕ for
every ϕ ∈ T .

For M ⊆ I consider TM = {ϕ ∈ LΣ : I � ϕ for every I ∈ M}. Conversely,
given T ⊆ LΣ consider MT = {I ∈ I : I � ϕ for every ϕ ∈ T }. It is easy to

190 R. Gonçalves and J.J. Alferes

see that if M ⊆ M ′ then TM ′ ⊆ TM . Conversely, if T ⊆ T ′ then MT ′ ⊆ MT .
It is also easy to see that the inclusions M ⊆ MTM and T ⊆ TMT always hold,
whereas the respective converse inclusions do not always hold. When the first
inclusion holds, that is M = MTM , the set M is called complete. Let M denote
the set of all complete subsets of I. It is easy to see that the second converse
inclusion, TMT ⊆ T , holds for every T ∈ Th(FOLΣ).

Lemma 1. The function φ : M → Th(FOLΣ) such that M +→ TM is a
bijection.

Proof. We start by proving that φ is well-defined, that is, that TM is a FOLΣ-
theory. Suppose that TM �FOLΣ ϕ. Then, using the fact that M is complete, we
have the following sequence of equivalent sentences:

for every I ∈ M, if I � δ for every δ ∈ TM then I � ϕ iff for every I ∈ M, if
I ∈ MTM then I � ϕ iff for every I ∈ M, if I ∈ M then I � ϕ. Therefore, we
have that ϕ ∈ TM and we can conclude that TM is a FOLΣ-theory.

Let us now prove that φ is injective. Let M1,M2 ∈M such that TM1 = TM2 .
Clearly we have that MTM1

= MTM2
. Since M1,M2 are complete we have that

M1 = MTM1
= MTM2

= M2.
It remains to be proved that φ is surjective. Let T be a FOLΣ-theory. First

we prove that MT is complete. Since the inclusion MT ⊆MTMT
always holds, it

remains to prove the converse inclusion. Let I ∈ MTMT
. Then, I � TMT . Since

T ⊆ TMT we have that I � T . Therefore, I ∈MT and the inclusion MTMT
⊆MT

holds. It just remains to be proved that φ(MT) = T , that is, TMT = T . We prove
the inclusion TMT ⊆ T since the reverse one always holds. Let ϕ ∈ TMT . Then
MT � ϕ and by definition T �FOLΣ ϕ. Since T is a FOLΣ-theory we conclude
that ϕ ∈ T .

Lemma 2. Let M,M ′ ∈ M and T, T ′ ∈ Th(FOLΣ). Then

1. T ⊂ T ′ iff MT ′ ⊂MT ;
2. M ⊂M ′ iff TM ′ ⊂ TM .

Proof. 1. Suppose T ⊂ T ′. Then, if I ∈ MT ′ then I ∈ MT . Suppose now that
MT ′ ⊂ MT . Using Lemma 1 we have that TMT = T ⊂ T ′ = TMT ′ . 2. Suppose
M ⊂ M ′. Then TM ′ ⊂ TM . Suppose now that TM ′ ⊂ TM . Using Lemma 1 we
have that MTM = M ⊂M ′ = MTM′

Lemma 3. Let M ∪M ′ ∪ {I} ⊆ I, T ∈ Th(FOLΣ) and ϕ ∈ LΣ. Then,

1. 〈I,MT ,M
′〉 � Kϕ iff ϕ ∈ T ;

2. 〈I,M,M ′〉 � Kϕ iff ϕ ∈ TM ;
3. 〈I,M ′,MT 〉 � notϕ iff ϕ /∈ T ;
4. 〈I,M ′,M〉 � notϕ iff ϕ /∈ TM .

Proof. 1. 〈I,MT ,M
′〉 � Kϕ iff MT � ϕ iff ϕ ∈ T ; 2. 〈I,M,M ′〉 � Kϕ iff M � ϕ

iff ϕ ∈ TM ; 3. 〈I,M ′,MT 〉 � notϕ iff there exists I ′ ∈ MT such that I ′ �� ϕ iff
(since TMT = T) ϕ /∈ T ; 4. 〈I,M ′,M〉 � notϕ iff there exists I ′ ∈M such that
I ′ �� ϕ iff ϕ /∈ TM .

Parametrized Logic Programming 191

Given Φ ⊆ LK
Σ and M ⊆ I consider Γ (Φ,M) = {M ′ ⊆ I : M ′ is maximal

such that 〈I,M ′,M〉 � Φ, for every I ∈ M ′}. Note that, by definition, M is
a MKNF model of Φ iff M ∈ Γ (Φ,M). Moreover, it can be readily proved
that if M is a MKNF model of some Φ ⊆ LK

Σ then M is complete. Given
Φ ⊆ LK

Σ and T ∈ Th(FOLΣ) consider also the set Γ0(Φ, T) = {T ′ ∈ Th(FOLΣ) :
T ′ minimal such that 〈I,MT ′ ,MT 〉 � Φ, for every I ∈MT ′}.

Lemma 4. Let M ∪M ′ ∪ {I} ⊆ I and P a normal FOLΣ-parametrized logic
program. Then, 〈I,M,M ′〉 � π(P) iff 〈I,MTM ,M ′〉 � π(P).

Proof. Recall that π(P) =
∧

r∈Pπ(r), and that if r = ϕ← ψ1, . . . , ψn, not ϕ1, . . . ,
not ϕm then π(r) = (Kψ1 ∧ . . . ∧Kψn ∧ notϕ1 ∧ . . . ∧ notϕm)⇒Kϕ. Consider
the following sequence of equivalent conditions: 〈I,M,M ′〉 � π(r) iff 〈I,M,M ′〉 �
Kϕwhenever 〈I,M,M ′〉 � notϕi for every i ∈ {1, . . . ,m} and 〈I,M,M ′〉 � Kψj

for every j ∈ {1, . . . , n} iff (Lemma 3) ϕ ∈ TM whenever ϕi /∈ TM ′ for every i ∈
{1, . . . ,m} and ψj ∈ TM for every j ∈ {1, . . . , n} iff (Lemma 3) 〈I,MTM ,M ′〉 �
Kϕwhenever 〈I,MTM ,M ′〉 � notϕi for every i ∈ {1, . . . ,m} and 〈I,MTM ,M ′〉 �
Kψj for every j ∈ {1, . . . , n} iff 〈I,MTM ,M ′〉 � π(r).

Proposition 1. Let M ∈ M, I ∈ I and P a normal FOLΣ-parametrized logic
program. Then, M ∈ Γ (π(P),M) iff TM ∈ Γ0(π(P), TM).

Proof. Let us first assume that M ∈ Γ (π(P),M). Then M is maximal such
that 〈I,M,M〉 � π(P) for every I ∈ M . Therefore, 〈I,MTM ,MTM 〉 � π(P).
We still have to prove the minimality condition for TM . Suppose there exists
T ′ ⊂ TM such that 〈I,MT ′ ,MTM 〉 � π(P). Then, using Lemma 2 we have
MTM = M ⊂ MT ′ , which contradicts the maximality of M . Therefore, we can
conclude that TM ∈ Γ0(π(P), TM).

Suppose now that TM ∈ Γ0(π(P), TM). Then TM is minimal such that
〈I,MTM ,MTM 〉 � π(P). Since M ∈ M, i.e., M = MTM , we have that
〈I,M,M〉 � π(P). We still have to prove the maximality condition for M .
Suppose there exists M ⊂ M ′ such that 〈I,M ′,M〉 � π(P). Using Lemma 4
we have that 〈I,MTM′ ,MTM 〉 � π(P). Using Lemma 2 we have that TM ′ ⊂ TM ,
which contradicts the minimality condition of TM . Therefore, we can conclude
that M ∈ Γ (π(P),M).

Lemma 5. Let T ∈ Th(FOLΣ) and P a normal FOLΣ-parametrized logic pro-
gram. Then, Γ0(π(P

T), T) = Γ0(π(P), T).

Proof. Let T ∈ Th(FOLΣ). It suffices to prove that 〈I,MT ′ ,MT 〉 � π(P) iff
〈I,MT ′ ,MT 〉 � π(P

T). Assume first that 〈I,MT ′ ,MT 〉 � π(P). Recall that every
rule r = ϕ← ψ1, . . . , ψn of P

T is obtained from a rule r = ϕ← ψ1, . . . , ψn, not ϕ1,
. . . , not ϕm of P such that ϕi /∈ T for every i ∈ {1, . . . ,m}. Then, using
Lemma 3 we have that 〈I,MT ′ ,MT 〉 � notϕi for every i ∈ {1, . . . ,m}. There-
fore, 〈I,MT ′ ,MT 〉 � π(r) iff 〈I,MT ′ ,MT 〉 � π(r). Since we are assuming that
〈I,MT ′ ,MT 〉 � π(P) we can conclude that 〈I,MT ′ ,MT 〉 � π(P

T).
Let us now assume that 〈I,MT ′ ,MT 〉 � π(P

T) and consider the rule r = ϕ←
ψ1, . . . , ψn, not ϕ1, . . . , not ϕm of P . We have two cases:

192 R. Gonçalves and J.J. Alferes

Case 1: ϕi ∈ T for some i ∈ {1, . . . ,m}. Then, by Lemma 3 we have that
〈I,MT ′ ,MT 〉 �� notϕi. Therefore, 〈I,MT ′ ,MT 〉 � π(r).

Case 2: ϕi /∈ T for every i ∈ {1, . . . ,m}. Then, by Lemma 3 we have that
〈I,MT ′ ,MT 〉 � notϕi for every i ∈ {1, . . . ,m}. We then have that 〈I,MT ′ ,MT 〉
� π(r) iff 〈I,MT ′ ,MT 〉 � π(r), where r = ϕ ← ψ1, . . . , ψn ∈ P

T . Since we are
assuming that 〈I,MT ′ ,MT 〉 � r′ for every rule r′ of π(P

T) we can conclude that
〈I,MT ′ ,MT 〉 � π(r).

Therefore we can conclude that 〈I,MT ′ ,MT 〉 � π(P).

Lemma 6. Let T ∈ Th(FOLΣ) and P a definite FOLΣ-parametrized logic
program. Then Γ0(π(P), T) is the set of all FOLΣ-parametrized stable models
of P .

Proof. Let T ∈ Th(FOLΣ). Then we have the following sequence of equivalent
sentences: T is a FOLΣ-parametrized stable model of P iff T is minimal such
that, for every rule r = ϕ ← ψ1, . . . , ψn, we have that ϕ ∈ T whenever ψi ∈ T
for every i ∈ {1, . . . , n} iff (Lemma 3) T is minimal such that, for every rule r =
ϕ← ψ1, . . . , ψn, we have that 〈I,MT ,MT 〉 � Kϕ whenever 〈I,MT ,MT 〉 � Kψi

for every i ∈ {1, . . . , n} iff T is minimal such that 〈I,MT ,MT 〉 � π(r) for every
rule r of P iff T ∈ Γ0(π(P), T).

Theorem 3. M is a MKNF model of K iff TM is a FOLΣ-parametrized stable
model of PK.

Proof. Just consider the following sequence of equivalent sentences:

M is a MKNF model of K iff M is a MKNF model of π(PK) iff M ∈ Γ (π(PK),M)
iff (Proposition 1) TM ∈ Γ0(π(PK), TM) iff (Lemma 5) TM ∈ Γ0(π(PK

TM
), TM) iff

(Lemma 6) TM is a FOLΣ-parametrized stable model of PK
TM

iff (by definition)
TM is a FOLΣ-parametrized stable model of PK.

Using Lemma 1 the following corollary of Theorem 3 is immediate.

Corollary 1. T ∈ Th(FOLΣ) is a FOLΣ-parametrized stable model of PK iff
MT is a MKNF model of K.

Example 4. Let L be a description logic seen as a fragment of FOL. The follow-
ing program (P7) is an adaptation of an example taken from [14].

NotMarried ≡ ¬Married← NotMarried(x)← p(x), not Married(x)
NotMarried � HighRisk← Discount(x)← Spouse(x, y), p(x), p(y)
∃Spouse.� �Married← p(Jonh)←
Note that in our approach the combination of an ontology with a rule system
can be done in a natural way, simply by adding the ontology elements as facts of
the rule system. In fact, we are able to rewrite P7 in order to remove its first rule,
which is nothing but an artificial tool to overcome the impossibility of having
complex DL formulas in the head of MKNF rules (in this case, having the clas-
sical negation of an atom in a head). Moreover, we may also add bodies to the

Parametrized Logic Programming 193

facts coming from the ontology. E.g. we can add a non-monotonic condition to
the second statement of P7 above, to state that non married are only considered
high-risk in non exceptional periods, obtaining P8:

¬Married � HighRisk← not exceptionalPeriod
∃Spouse.� �Married← ¬Married(x)← p(x), not Married(x)
Discount(x)← Spouse(x, y), p(x), p(y) p(Jonh)←
Let us study the stable model semantics of this program. If I is a 2-valued
interpretation such that I(Married(Jonh)) = 1 then Γ (I) is the least model of
the following program P8

I :
¬Married � HighRisk←
∃Spouse.� �Married←
Discount(x)← Spouse(x, y), p(x), p(y) p(Jonh)←

It is clear that the smallest model of P8
I does not contain Married(Jonh), and

so, such interpretation I cannot be a stable model. Therefore, every stable model
must satisfy ¬Married(Jonh) and consequently HighRisk(Jonh).

Suppose that we obtain P9 by adding to P8 the following facts: p(Bill) ←,
∃Spouse.�(Bill) ←, and exceptionalPeriod ←. Note that although ev-
ery stable model now contains ¬Married(John), we no longer conclude
HighRisk(Jonh) since we have exceptionalPeriod. Every stable model of P9

contains Married(Bill). So, the Stable Model Semantics of P9 does not entail
¬Married(Bill) nor HighRisk(Bill).

Suppose now that instead we add to P8 the facts: Spouse(Bob,Ann) ←,
p(Bob) ←, and p(Ann) ←. Every stable model now contains Discount(Bob),
and so the Stable Model Semantics entails Discount(Bob).

4 Conclusions

We have introduced the novel notion of parametrized logic program along with
several motivating examples, and showed how some usual approaches to the se-
mantics of logic programs can be obtained as particular choices of the parameter
logic. We gave a contribution to the important problem of combining rules and
ontologies, by capturing MKNF semantics of hybrid knowledge bases as par-
ticular case and, moreover, by extending the expressivity of its language. Note
that, as a consequence, we are also able to capture Description Logic Programs
(DLP) [9] since we can write arbitrary DL formulas in the heads and bodies
of rules. Though here we only explored the stable models semantics of MKNF
knowledge bases, our approach also naturally yields a well founded semantics for
such knowledge bases.

The work raises several interesting paths for future research. One, which is
already ongoing is the generalization to the parametrized case of the here-there
theories [15], this way allowing for combining in a general way logic programming
connectives with formulas of a parameter logic. This work would also generalise
for any parameter logic the general default logic of [17], which is fixed for propo-
sitional classical logic. Future work also includes a detailed study of particular

194 R. Gonçalves and J.J. Alferes

choices of the parameter logic which seem very promising. One such example is
the case where the parameter logic is temporal logic, to obtain logic programs
expressive enough to reason about temporal logic formulas.

This first paper on parametrized logic programs is focused on the definition
of the semantics and on showing its interest for capturing at least one known
combination of logic programming with other logics (viz. description logic in
MKNF) and, as such, left out a study on decidability and complexity issues,
which must also be subject of future work.

References

1. Caleiro, C., Sernadas, C., Sernadas, A.: Parameterisation of logics. In: Fiadeiro,
J.L. (ed.) WADT 1998. LNCS, vol. 1589, pp. 48–62. Springer, Heidelberg (1999)

2. Carnielli, W.A., Coniglio, M.E., Gabbay, D., Gouveia, P., Sernadas, C.: Analysis
and Synthesis of Logics - How To Cut And Paste Reasoning Systems. Applied
Logic, vol. 35. Springer, Heidelberg (2008)

3. Damásio, C.V., Pereira, L.M.: Antitonic logic programs. In: Eiter, T., Faber, W.,
Truszczyński, M. (eds.) LPNMR 2001. LNCS (LNAI), vol. 2173, pp. 379–392.
Springer, Heidelberg (2001)

4. Fitting, M.: Bilattices and the semantics of logic programming. J. Log. Pro-
gram. 11(2), 91–116 (1991)

5. Gabbay, D.: Fibring logics. Oxford University Press, Oxford (1999)
6. Van Gelder, A.: The alternating fixpoint of logic programs with negation. J. Com-

put. Syst. Sci. 47(1), 185–221 (1993)
7. Van Gelder, A., Ross, K.A., Schlipf, J.S.: The well-founded semantics for general

logic programs. J. ACM 38(3), 620–650 (1991)
8. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In:

ICLP/SLP, pp. 1070–1080 (1988)
9. Grosof, B.N., Horrocks, I., Volz, R., Decker, S.: Description logic programs: com-

bining logic programs with description logic. In: WWW, pp. 48–57 (2003)
10. Knorr, M., Alferes, J.J., Hitzler, P.: A well-founded semantics for hybrid mknf

knowledge bases. In: Description Logics (2007)
11. Krötzsch, M., Rudolph, S., Hitzler, P.: Elp: Tractable rules for owl 2. In: Sheth,

A.P., Staab, S., Dean, M., Paolucci, M., Maynard, D., Finin, T., Thirunarayan, K.
(eds.) ISWC 2008. LNCS, vol. 5318, pp. 649–664. Springer, Heidelberg (2008)

12. Lifschitz, V.: Minimal belief and negation as failure. Artif. Intell. 70(1-2), 53–72
(1994)

13. Lifschitz, V., Pearce, D., Valverde, A.: Strongly equivalent logic programs. ACM
Trans. Comput. Log. 2(4), 526–541 (2001)

14. Motik, B., Rosati, R.: A faithful integration of description logics with logic pro-
gramming. In: IJCAI, pp. 477–482 (2007)

15. Pearce, D.: Equilibrium logic. Ann. Math. Artif. Intell. 47(1-2), 3–41 (2006)
16. Wójcicki, R.: Theory of Logical Calculi. Synthese Library. Kluwer Academic Pub-

lishers, Dordrecht (1988)
17. Zhou, Y., Lin, F., Zhang, Y.: General default logic. Annals of Mathematics and

Artificial Intelligence 57(2), 125–160 (2009)

Counterexample Guided Abstraction Refinement
Algorithm for Propositional Circumscription�

Mikoláš Janota1, Radu Grigore2, and Joao Marques-Silva3

1 INESC-ID, Lisbon, Portugal
2 Queen Mary, University of London
3 University College Dublin, Ireland

Abstract. Circumscription is a representative example of a nonmonoto-
nic reasoning inference technique. Circumscription has often been stud-
ied for first order theories, but its propositional version has also been the
subject of extensive research, having been shown equivalent to extended
closed world assumption (ECWA). Moreover, entailment in propositional
circumscription is a well-known example of a decision problem in the
second level of the polynomial hierarchy. This paper proposes a new
Boolean Satisfiability (SAT)-based algorithm for entailment in proposi-
tional circumscription that explores the relationship of propositional cir-
cumscription to minimal models. The new algorithm is inspired by ideas
commonly used in SAT-based model checking, namely counterexample
guided abstraction refinement. In addition, the new algorithm is refined
to compute the theory closure for generalized close world assumption
(GCWA). Experimental results show that the new algorithm can solve
problem instances that other solutions are unable to solve.

1 Introduction

Closed world reasoning (CWR) and circumscription (CIRC) are well-known non-
monotonic reasoning techniques, that find a wide range of practical applications.
Part of the interest in these techniques is that they bring us closer to how hu-
mans reason [16,18,17]. While these techniques have been studied in the context
of both first-order and propositional logic, this paper addresses the propositional
case. Research directions that have characterized the study of nonmonotonic
reasoning techniques include expressiveness, computational complexity, applica-
tions and algorithms. The different CWR rules proposed in the late 70s and 80s
illustrate the evolution in terms of expressive power in first-order and propo-
sitional logics. The computational complexity of propositional CWR rules was
studied in the early 90s [1,6] and showed that, with few exceptions, the com-
plexity of CWR deduction problems are in the second level of the polynomial
hierarchy, being ΠP

2 -complete [6]. Nonmonotonic reasoning finds a wide range
of applications in Artificial Intelligence (AI), but also in description logics [7]

� This work is partially supported by SFI project BEACON (09/IN.1/I2618) and Euro-
pean projects COCONUT (FP7-ICT-217069) and MANCOOSI (FP7-ICT-214898).

T. Janhunen and I. Niemelä (Eds.): JELIA 2010, LNAI 6341, pp. 195–207, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

196 M. Janota, R. Grigore, and J. Marques-Silva

and in interactive configuration [13], among many others. Finally, different al-
gorithms have been proposed over the years, examples of which include minimal
model resolution [21], tableau calculus [19], Quantified Boolean Formula (QBF)
solvers [5] and Disjunctive Logic Programming (DLP) [15,12,20].

The main contribution of this paper is to propose a new algorithm for solving
the deduction problem for the propositional version of some CWR rules and for
propositional circumscription. The new algorithm is based on iterative calls to
a SAT solver, and is motivated by the practical success of modern SAT solvers.
However, given the complexity class of entailment for CWR rules, a SAT solver
can be expected to be called an exponential number of times in the worst case,
or be required to process an exponentially large input. To cope with this issue,
we utilize a technique inspired in counterexample guided abstraction refinement
(CEGAR), widely used in model checking [3]. One of the key ideas of the new
algorithm is that we try to prove a stronger formula, which is weakened if it turns
out to be too strong. Based on this idea we develop an algorithm that decides
entailment in circumscription. Further, we refine the algorithm to compute the
closure of a formula defined by one of the variants of CWR, namely GCWA.
As a result, the main contributions of the paper can be summarized as follows:
(i) A novel algorithm for propositional circumscription that does not require
an enumeration of all minimal models or prime implicates; (ii) Specialization of
this algorithm to compute variables that are 0 in all minimal models; and (iii)
Computing the closure of GCWA.

2 Preliminaries

All variables are propositional, and represented by a finite set V . A Conjunctive
Normal Form (CNF) formula φ is a conjunction of clauses, which are disjunctions
of literals, which are possibly negated variables. A formula φ can also be viewed
as a set of sets of literals. The two representations are used interchangeably in this
paper. A clause is called positive, if it contains only positive literals. Arbitrary
Boolean formulas will also be considered, for which the standard definitions
apply. A variable assignment ν is a total function from V to {0, 1}. In the text,
a variable assignment is represented as {xv1

1 , . . . , xvn
n } where V = {x1, . . . , xn}

and vi ∈ {0, 1}, i ∈ 1..n. For a variable assignment ν and a formula φ we write
ν |= φ to denote that ν satisfies φ. In this case, ν is called a model of φ. We write
φ |= ψ if the models of φ are also models of ψ. Given a set of variables S ⊆ V
and v ∈ {0, 1}, the expression φ[S +→ v] denotes the formula φ with all variables
in S replaced with v.

2.1 Minimal Models

Minimal models are widely used in nonmonotonic reasoning and AI in general.
To introduce minimal models, we consider the bitwise ordering on variable as-
signments. For variable assignments ν and μ we write ν ≤ μ and say that ν is
smaller than μ iff (∀x ∈ V)(ν(x) ≤ μ(x)). We write ν < μ and say that ν is

Counterexample Guided Abstraction Refinement Algorithm 197

strictly smaller than μ iff ν ≤ μ and ν �= μ. A model ν of φ is a minimal model
iff there is no model of φ strictly smaller than ν. Finally, we write φ |=min ψ if
ψ holds in all minimal models of φ.

Proposition 1. The models of formula φ that are strictly smaller than some
variable assignment ν are the models of the formula

φ ∧
∧

ν(x)=0
¬x ∧

∨
ν(x)=1

¬x (1)

2.2 Closed World Reasoning

The intuition behind closed world assumption (CWA) reasoning is that facts are
not considered to be true unless they were specifically stated. This is motivated
by the type of reasoning humans use on an everyday basis. For instance, if
Alice asks Bob to buy eggs, Bob will clearly buy eggs. However, he will not
buy bread even though Alice has not specified that the bread should not be
bought. Traditional mathematical logic behaves differently in this respect: the
fact buy-eggs trivially entails buy-eggs but does not entail the fact ¬buy-bread.

This intuition has been realized by several different formalisms. Here we
present only a small portion of these formalisms and the interested reader is
referred to appropriate publications for further reference [1,6,4].

The standard formulation of CWA rules partitions set V into three sets: P , Q
and Z, where P denotes the variables to be minimized, Z are the variables that
can change when minimizing the variables in P , and Q represents all other (fixed)
variables. For any set R, R+ and R− denote, respectively, the sets of positive
and negative literals from variables in R. Following [1,6], a closure operation is
defined for CWR rules as follows:

Definition 1. Let φ be a propositional formula, 〈P ;Q;Z〉 a partition of V , and
α a CWR-rule. Then, the closure of φ with respect to α is defined by,

α(φ;P ;Q;Z) = φ ∪ {¬K | K is free for negation in φ w.r.t. α} (2)

Each CWR rule considers a different set of formulas that are free for negation.
For each CWR rule below, a formula K is free for negation if and only if the
corresponding condition holds:
GCWA (Generalized CWA [18]): K is a positive literal and for every posi-
tive clause B such that φ � B it holds that φ � B ∨K.

EGCWA (Extended GCWA [25]): K is a conjunction of positive literals and
for every positive clause B such that φ � B it holds that φ � B ∨K.

ECWA (Extended CWA [25]): K is an arbitrary formula not involving liter-
als from Z, and for every positive clause B whose literals belong to P+∪Q+∪Q−,
such that φ � B, it holds that φ � B ∨K.

198 M. Janota, R. Grigore, and J. Marques-Silva

We consider only a subset of existing CWR rules. A detailed characterization
for existing CWR rules can be found elsewhere [1,6,4].

Observe that a single positive literal is free for negation in both GCWA and
EGCWA under the same conditions. Since a positive literal corresponds to some
variable, we extend the terminology for variables accordingly.

Definition 2. A variable x is free for negation in φ iff for every positive clause
B such that φ � B it holds that φ � B ∨ v.

Another concept closely related to closed world assumption is circumscription.
Originally, McCarthy defined circumscription in the context of first order logic
as a closure of the given theory that considers only predicates with minimal ex-
tension [16]. In propositional logic, circumscription of a formula yields a formula
whose models are the minimal models of the original one.

Definition 3. Consider the sets of variables P , Q and Z introduced above. The
circumscription of a formula φ is defined as follows:

CIRC(φ;P ;Q;Z) = φ ∧ (∀P ′,Z′)((φ(P ′;Q;Z ′) ∧ (P ′ ⇒ P))⇒ (P ⇒ P ′)) (3)

Where P ′, Z ′ are sets of variables s.t. X ′ = {x′ | x ∈ X}; φ(P ′, Q, Z ′) is obtained
from φ(P,Q,Z) by replacing the variables in P and Z by the corresponding
variables in P ′ and Z ′; finally, P ′ ⇒ P stands for

∧
x∈P (x′ ⇒ x).

In the remainder of the paper the sets Z and Q are assumed to be empty. The
extension to the general case where these sets are not empty is simple and is
outlined in an extended version of the article [14].

It is well-known that for the propositional case, circumscription is equivalent
to ECWA [9]. Another well-known relationship is the one of both CWR rules
and circumscription to minimal models (e.g. [18,1,6]). In particular variables
free for negation take value 0 in all minimal models. And, both EGCWA and
circumscription entail the same set of facts as the set of minimal models. These
relations are captured by the following propositions (adapted from [18,1,6]):

Proposition 2. A variable x is free for negation in a formula φ iff x is assigned
value 0 in all minimal models of φ.

Proposition 3. Let φ and ψ be formulas. It holds that EGCWA(φ) |= ψ iff
φ |=min ψ. And, it holds that CIRC(φ) |= ψ iff φ |=min ψ.

3 Problems

The CWR rules yield the two following problems. The first problem consists of
computing the closure of the theory, as defined by the CWR rule. The second
problem is that of computing whether a certain fact is entailed by that closure.

If the closure has been computed, standard satisfiability algorithms can be
used to solve the entailment problem. However, whereas the closure of GCWA
increases the size of the formula by at most a linear number of literals, the

Counterexample Guided Abstraction Refinement Algorithm 199

closure of both ECWA and EGCWA may increase the size of the formula by
an exponential number of conjuncts of literals. The circumscription of a formula
can be constructed easily but gives rise to a QBF formula and our objective is
to stay within propositional logic with the ultimate goal of developing purely
SAT-based solutions. Hence, this paper focuses on the following problems.

Entails-Min

instance: formulas φ and ψ
question: Does the formula ψ hold in all minimal models of φ?

Free-For-Negation

instance: formula φ and variable x ∈ V
question: Does x take value 0 in all minimal models of ψ?

Free-For-Negation-All

instance: formula φ and a variable v ∈ V
question: What is the set of variables with value 0 in all minimal models of φ?

Note that solving Entails-Min enables answering whether a fact is entailed by
ECWA or by circumscription due to Proposition 3. Clearly, the problem Free-

For-Negation is a special case of Entails-Min with ψ set to ¬x. Solving
Free-For-Negation-All gives us the closure of GCWA.

Interestingly, in terms of complexity, the problem Free-For-Negation is
not easier than the problem Entails-Min. Both Entails-Min and Free-For-

Negation are ΠP
2 -complete [6, Lemma 3.1].

4 Computing Entails-Min

The algorithm we wish to develop will be using a SAT solver. This gives us two
objectives. One objective is to construct a propositional formula that corresponds
to the validity of φ |=min ψ. The second objective is to avoid constructing an
exponentially large formula. We begin by observing that if φ |=min ψ is to hold,
then any model of φ that violates ψ must not be a minimal model.

Proposition 4. ψ holds in all minimal models of φ iff any model ν of φ where
¬ψ holds is not a minimal model of φ.

[φ |=min ψ]⇔ [(∀ν) ((ν |= φ ∧ ¬ψ)⇒ (∃ν′)(ν′ < ν ∧ ν′ |= φ))]

Proposition 4 tells us that whether φ |=min ψ holds or not can be decided by
deciding whether the following formula is valid:

(∀ν) ((ν |= φ ∧ ¬ψ)⇒ (∃ν′)(ν′ < ν ∧ ν′ |= φ)) (4)

Since our first objective is to find a propositional formula, we need to eliminate
· |= · and quantifiers from (4). First, let us focus on the subformula (∃ν′)(ν′ <
ν ∧ ν′ |= φ), which expresses that ν is not a minimal model.

200 M. Janota, R. Grigore, and J. Marques-Silva

Proposition 5. A model ν of φ is not minimal iff there exists a set S of vari-
ables such that ν is a model of φ[S +→ 0], and ν(x) = 1 for some x ∈ S.

(∃ν′)(ν′ < ν ∧ ν′ |= φ)⇔ (∃S ⊆ V) (ν |= φ[S +→ 0] ∧ (∃x ∈ S)(ν(x) = 1)) (5)

Example 1. Let φ = ¬x ∨ y. The model μ = {x0, y0} is minimal and the right-
hand side of (5) is invalid since there is no set S satisfying the condition (∃x ∈
S)(ν(x) = 1). Let ν = {x0, y1} and let us choose S = {x, y}, which yields
φ[S +→ 0] = 1. ν is not minimal and the right-hand side of (5) is valid since
ν |= 1 and ν(y) = 1.

Replacing the left-hand side of (5) with the right-hand side of (5) in (4) yields
the following formula:

(∀ν) ((ν |= φ ∧ ¬ψ)⇒ (∃S ⊆ V) (ν |= φ[S +→ 0] ∧ (∃x ∈ S)(ν(x) = 1))) (6)

Removing the universal quantifier and replacing existential quantifiers with the
Boolean operator ∨ in (6), gives us that (6) holds iff the following formula is a
tautology:

(φ ∧ ¬ψ)⇒
∨

S∈P(V)

(
φ[S +→ 0] ∧

∨
x∈S

x

)
(7)

Intuitively, (7) expresses that if ψ is violated in a model of φ, then a different
model of φ is obtained by flipping a set of variables to 0. That this model is
indeed different is guaranteed by the condition

∨
x∈S x. The model obtained by

the flipping serves as a witness of that the model violating ψ is not minimal.
If (7) is constructed, its validity can be decided by calling a SAT solver on

its negation. However, the formula is too large to construct since it requires
considering all subsets of V . Therefore, we construct a stronger version of it
that considers only some subsets of V . This stronger version is referred to as the
abstraction of (7) and always has the following form:

(φ ∧ ¬ψ)⇒
∨

S∈W

(
φ[S +→ 0] ∧

∨
x∈S

x

)
where W ⊆ P(V) (8)

Each abstraction is determined by a set of sets of variables W . For any W , if
the abstraction (8) is shown to be a tautology, then (7) is also a tautology and
we are done because we have shown that φ |=min ψ. If the abstraction is not
a tautology, it is either because φ |=min ψ does not hold or the abstraction is
overly strong—it is too coarse. If the abstraction is shown to be too coarse, a
different abstraction must be considered.

Example 2. Let us show that ¬x ∨ y |=min ¬y. First, let us try W1 = {{y}},
which yields the abstraction ((¬x ∨ y) ∧ y) ⇒ ¬x. This abstraction is not a
tautology. In particular, it is violated by the assignment {x1, y1}, which means
that flipping y to value 0 in this assignment does not yield a model. Now, let
us try W2 = {{x, y}}, which yields the abstraction ((¬x ∨ y) ∧ y) ⇒ 1. This
abstraction is a tautology, which means that any model where y is 1 can be turned
into another model by flipping both x and y to 0. Therefore, ¬x ∨ y |=min ¬y.

Counterexample Guided Abstraction Refinement Algorithm 201

input : formulas φ and ψ
output: true iff φ |=min ψ

1 ω ← φ ∧ ¬ψ
2 while true do
3 (outc1, ν) ← SAT(ω)
4 if outc1 = false then
5 return true // no counterexample was found

6 (outc2, ν
′) ← SAT

(
φ ∧

∧
ν(x)=0 ¬x ∧

∨
ν(x)=1 ¬x

)
// find ν′ < ν

7 if outc2 = false then // ν is minimal

8 return false // abstraction cannot be refined

9 S ← {x ∈ V | ν(x) = 1 ∧ ν′(x) = 0}
10 ω ← ω ∧ (¬φ[S �→ 0] ∨

∧
x∈S ¬x) // refine

Algorithm 1. Refining

Example 3. Let φ = ¬x ∨ ¬y ∨ ¬z and ψ = (¬x ∨ ¬y) ∧ (¬x ∨ ¬z) ∧ (¬z ∨ ¬y)
Let us show that φ |=min ψ. Let us choose the abstraction defined by the set
W = {{x}, {y}}. The following diagram demonstrates that each model violating
ψ has a witness corresponding to one of the sets in W .

000

100 010 001

110 101 011
{y}

{x}
{y}

111

φ

φ∧¬ψ Each triple represents a variable assignment

where the elements represent the values of x,

y, and z, respectively. Models and their per-

taining witnesses are connected by an edge,

which is labeled by the set of variables S whose

values are flipped to 0 to obtain the witness.

The approach of searching for the right abstraction follows the Counter-
Example Guided Abstract Refinement (CEGAR) loop [3]. If the abstraction
is a tautology, the search terminates. If the abstraction is not a tautology, it is
weakened by adding some set of variables S to the set W . This weakening is
referred to as refinement and is done by investigating the counterexample that
shows that the current abstraction is not a tautology. If it cannot be refined, (7)
is not a tautology and φ |=min ψ does not hold.

Algorithm 1 realizes the idea outlined above. The algorithmmaintains the nega-
tion of the abstraction in variable ω and starts withW being the empty set. There-
fore the initial abstraction is (φ ∧ ¬ψ)⇒ 0 with the negation being φ∧¬ψ (line 1).
The test whether the abstraction is a tautology or not is done by calling a SAT
solver on its negation (line 3). If the negation is unsatisfiable—the abstraction is
a tautology—then the algorithm terminates and returns true (line 4). If a model
ν is found showing that the abstraction is not a tautology, it means that for any
assignment that is obtained from ν by flipping some set of variables in S ∈W to 0
is not a model of φ. The algorithm looks for a model ν′ that is strictly smaller than
ν applying Proposition 1 (line 6). If there is no model strictly smaller than ν then
the algorithm terminates and returns false since ν is a minimal model and violates
ψ (line 7). If there is a model ν′ that is strictly smaller than ν, there is some set of

202 M. Janota, R. Grigore, and J. Marques-Silva

variables that are 1 in ν but are 0 in ν′. This set of variables is added to the sets
determining the abstraction (line 10). Observe that a set S will be used at most
once to refine the abstraction since once the set is added to W , an assignment for
which flipping 1 to 0 for variables in S yields a model cannot satisfy the negation
of the abstraction. Consequently, the algorithm is terminating and will perform
at most as many iterations as there are subsets of the set V .

5 Computing Free-For-Negation

This section specializes Algorithm 1 to compute variables free for negation—
variables that take value 0 in all minimal models. As mentioned earlier, this
problem is a special case of the problem Entails-Min, studied in the previous
section: x is free for negation in φ iff φ |=min ¬x. However, focusing on this type
of formulas enables a more efficient implementation of the algorithm.

The abstractions used in the previous section have to contain the condition
that at least one of the variables being flipped to 0 is 1 to guarantee the cor-
responding witnesses is strictly smaller (see (7)). For variables free for negation
these conditions will not be needed thanks to the following proposition.

Proposition 6. Let ν be a model of φ s.t. ν(x) = 1 for a variable x. If x is free
for negation, then there exists a model ν′ of φ s.t. ν′ < ν and ν′(x) = 0.

Proposition 6 tells us that if ν(x) = 1 and x is free for negation, there must be
a witness ν′ that flips x to 0 (and possibly some other variables). This ensures
that ν and ν′ are different. This observation enables us to compute φ |=min ¬x
by determining the validity of a stronger and more concise formula than before.

Proposition 7. A variable x is free for negation in φ iff the following formula
is a tautology.

(φ ∧ x)⇒
∨

S⊆V ∧x∈S
φ[S +→ 0] (9)

The abstraction of (9) is analogous to the one used in the previous section with
the difference that only sets of variables containing x are considered. Hence, the
abstraction always has the following form.

(φ ∧ x)⇒
∨

S∈W
φ[S +→ 0], where W ⊆ P(V) and (∀S ∈W)(x ∈ S) (10)

5.1 Constructing and Refining Abstraction

Whenever the abstraction is being refined (weakened) the size of the formula
representing the negation of the abstraction increases. Since the abstraction
is refined in the worst case exponentially many times, it is warranted to pay
attention to the size of the formula representing the negation of the abstraction.

The negation of an abstraction is a conjunct of the left-hand side of the
implication and formulas capturing the substitutions.

Counterexample Guided Abstraction Refinement Algorithm 203

input : CNF formula φ and a variable x
output: true iff φ |=min ¬x

1 φ0 ← φ[x �→ 0]

2 φ′
0 ← {¬rc ∨ c | c ∈ φ0} ∪ {¬l ∨ rc | c ∈ φ0, l ∈ c} ∪

{∨
c∈φ0

¬rc
}

3 ω ← φ ∧ x ∧ φ′
0

4 while true do
5 (outc1, ν) ← SAT(ω)
6 if outc1 = false then
7 return true // no counterexample was found

8 (outc2, ν
′) ← SAT

(
φ ∧ ¬x ∧

∧
ν(z)=0 ¬z

)
// find ν′ < ν and ν′(x) = 0

9 if outc2 = false then
10 return false // abstraction cannot be refined

11 S ← {z ∈ V | ν(z) = 1 ∧ ν′(z) = 0}
12 Cp ← {c ∈ φ0 | (c ∩ S) = ∅} // clauses with some y ∈ S
13 Cn ← {c ∈ φ0 | (c ∩ ¬S) = ∅} // clauses with some ¬y ∈ S
14 C ← {c′ | c ∈ (Cp � Cn) ∧ c′ = c[S �→ 0]} // new clauses

15 ω ← ω ∪ {¬rc ∨ c | c ∈ C} ∪ {¬l ∨ rc | c ∈ C, l ∈ c} // representation

16 ω ← ω ∪
{∨

c∈φ�(Cn∪Cp) ¬rc ∨
∨
c∈C ¬rc

}
// negation of clauses

Algorithm 2. Deciding whether a variable is free for negation

(φ ∧ x) ∧
∧

S∈W
¬φ[S +→ 0], where W ⊆ P(V) and (∀S ∈W)(x ∈ S) (11)

When the abstraction is being refined, a new set of variables S is added to the
set W , therefore, the negation of the abstraction is strengthened by conjoining
it with ¬φ[S +→ 0]. We aim to implement this strengthening without duplicating
those parts of the formula that are already present.

Algorithm 2 outlines this procedure. Since all the sets S must contain x,
the algorithm starts with the abstraction determined by W = {{x}}. In the
initialization phase, the negation of this abstraction is φ ∧ x ∧ ¬φ[x +→ 0] and
is computed using the Tseitin transformation [24]. Each clause c in φ[x +→ 0]
is represented by a fresh variable rc and a clause is added that expresses that
at least one of these variables must be 0 (line 2). As in the previous section,
variable ω represents the negation of the abstraction (see (11)).

When the abstraction is being refined, the formula in variable ω is conjoined
with ¬φ[S +→ 0]. Since ω already contains clauses from ¬φ[x +→ 0], we need to
consider only those clauses that contain literals on the variables in S. Clauses
containing negative literals on variables from S are skipped, positive literals are
removed. Each of the affected clauses is represented by a fresh Tseitin variable.
Finally, a clause is added to express that one of the clauses in φ[S +→ 0] is 0.
Note that this clause is referring to the original Tseitin variables for the clauses
that are not affected by the substitution besides the freshly created ones. Note
that when looking for a model ν′ < ν, the algorithm requires that x has value 0
in ν′ since the set S must contain x (line 8).

204 M. Janota, R. Grigore, and J. Marques-Silva

5.2 Finding Models

An abstraction is refined according to two responses from the underlying SAT
solver (ν and ν′). This enables us to devise heuristics that prefer some responses
of the solver to another. The motivation for these heuristics is to find abstractions
where the set W determining the abstraction contains few sets S. Dually, this
means that each of S ∈ W yields a witness for many models. The heuristics used
in the current implementation are motivated by the two following examples.

Example 4. Let φ = (x⇒ y) ∧ (w ∨ z). The abstraction defined by W ={{x, y}}
shows that φ |=min ¬y since flipping both x and y in any model yields a model (a
witness). The abstraction determined by W = {{x, y, z}} is not sufficient. This
abstraction provides a witness for models with w having value 1 but not for the
others. Intuitively, variable z is irrelevant to the relation x⇒ y and therefore it
is better to choose a small S.

Example 5. Let φ = x ⇒ (y ∨ w1 ∨ . . . wn) and let us prove that φ |=min ¬y.
The abstraction determined by W = {{x, y}} is sufficient. However, if ν is not
minimal, it may be that ν = x1, y1, w1

1 , . . . w
1
n which gives us an exponential

number of possibilities for ν′ while only one of them is desirable. Intuitively, if
ν is not minimal and there is some set S that yields a witness for both ν and
some ν1 < ν, then the set S is more likely to be found when ν1 is inspected.

Based on this last observation, the model ν is required to be minimal. To make
the difference between ν and ν′ small, and therefore make this set S small, the
solution ν′ is required to be a maximal model.

To obtain a minimal, respectively maximal, model from a SAT solver is done
by specifying the phase—the value that the solver prefers when making decisions
when traversing the search space. Namely, preferring 0 yields a minimal model
while preferring 1 yields a maximal model [10,22].

6 Computing Free-For-Negation-All

To calculate the set of variables that are free for negation, we invoke the al-
gorithm described in the previous section for each variable. This procedure is
optimized by conjoining the negations of the variables that have already been
shown to be free for negation, which is justified by the following proposition.

Proposition 8. Let φ and ψ be formulas such that φ |=min ψ. The formula φ∧ψ
has the same set of minimal models as φ. In particular, if φ |=min ¬x then
(φ ∧ ¬x) |=min ¬y iff φ |=min ¬y.

The motivation for conjoining negations of variables free for negation is to give
more information to subsequent inferences. The effectiveness of this technique,
however, depends on the ordering of the variables. Hence, the approach we use
is to set timeouts for testing a single variable and if a test times out, the variable
is tested again but with information gained from the other tests.

Counterexample Guided Abstraction Refinement Algorithm 205

input : CNF formula φ and a set of variables V
output: subset of V that are free for negation

1 F ← ∅
2 X ← V
3 timeout ← initial-timeout
4 while X = ∅ do
5 G← ∅
6 foreach x in X do
7 (success, outc) ← Free-For-Negation(φ, x, timeout)
8 if success = true then
9 G← G ∪ {x}

10 if outc = true then
11 F = F ∪ {x}
12 φ = φ ∧ ¬x

13 X ← X � G
14 timeout ← k × timeout
15 return F

Algorithm 3. Computing the set of variables that are free for negation

Algorithm 3 summarizes these ideas in pseudocode. The algorithm described
in the previous section is represented by the function Free-For-Negation, which
returns a pair of values. The first value in the pair indicates whether the algo-
rithm terminated before the given timeout or not. The second value of the pair
indicates whether the given variable is free for negation or not. The timeout is
gradually multiplied by some constant coefficient k. In the actual implementa-
tion there is a maximum timeout for which the algorithm stops and returns an
approximation of the set of variables free for negation.

7 Evaluation

Algorithm 3 was implemented in Java using SAT4J as the underlying SAT solver
while availing of its incremental interface [23]. The implementation was evaluated
on a benchmark of 260 tests1. A majority of these are valid software configu-
rations (motivated by [13]). A few tests are from the SAT ’09 competition—
relatively easy instances were chosen as the computed problem is significantly
harder than satisfiability. The results appear in Table 1. An instance is consid-
ered solved if the answer is given in less than 30 s. The time given in the table
is the average for the solved instances.

The alternative we tried was based on the tool circ2dlp [20], which trans-
forms circumscription into a disjunctive logic program, and gnt [11], which lists
all models of that program. From the list of models it is easy and fast to con-
struct the set of variables that are free for negation. We also tried using a QBF
solver along with (3), but that implementation solved none of the 260 tests.

1 Available at http://logos.ucd.ie/confs/jelia10/jelia10-bench.tgz

http://logos.ucd.ie/confs/jelia10/jelia10-bench.tgz

206 M. Janota, R. Grigore, and J. Marques-Silva

Table 1. Experimental evaluation

Algorithm 3 circ2dlp+gnt
tests solved time[s] solved time[s]

e-shop 174 174 2.1 95 2.4
BerkeleyDB 30 30 0.9 30 < 0.1
model-transf 41 41 1.1 35 2.8

SAT2009 15 3 7.6 2 2.5

8 Summary and Future Work

This paper proposes an algorithm for deduction under the set of minimal models
of a propositional formula. This algorithm enables us to reason under the proposi-
tional versions of close world assumption or circumscription. The algorithm hinges
on an application of a SAT solver but more importantly on counterexample guided
abstraction refinement (CEGAR). While CEGAR has been amplyused in software
verification [3,8],we are not aware of its application in nonmonotonic reasoning.

The deduction problem under the set of minimal models can be formulated as
QBF [5] or as a DLP [15,12]. The experimental results suggest that current QBF
solvers are not practical for this problem. The comparison to the DLP-based
solution indicates that our dedicated algorithm enables solving more instances.
Nevertheless, the DLP-based solution was faster for some instances.

The promising experimental results indicate that the ideas behind the pre-
sented algorithms have potential for further work. The evaluation was performed
for the computation of variables free for negation defining the closure of a the-
ory in GCWA, hence, further evaluations should be performed on other types of
problems in this domain. On a more general scale, it is well known that minimal
models can be seen as optima with respect to the pertaining ordering [2,22]. This
opens possibilities to investigate generalizations of the presented algorithms for
different orderings than the one used for minimal models. Last but not least, the
comparison with the DLP-based solution indicates that it would be beneficial to
investigate approaches tackling the problem with hybrid techniques.

References

1. Cadoli, M., Lenzerini, M.: The complexity of closed world reasoning and circum-
scription. In: AAAI Conference on Artificial Intelligence, pp. 550–555 (1990)

2. Castell, T., Cayrol, C., Cayrol, M., Berre, D.L.: Using the Davis and Putnam pro-
cedure for an efficient computation of preferred models. In: European Conference
on Artificial Intelligence, pp. 350–354 (1996)

3. Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided
abstraction refinement. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS,
ch. 1855, pp. 154–169. Springer, Heidelberg (2000)

4. Dix, J., Furbach, U., Niemelä, I.: Nonmonotonic reasoning: Towards efficient calculi
and implementations. In: Voronkov, A., Robinson, A. (eds.) Handbook of Auto-
mated Reasoning, vol. 19, pp. 1241–1354. North-Holland, Amsterdam (2001)

Counterexample Guided Abstraction Refinement Algorithm 207

5. Egly, U., Eiter, T., Tompits, H., Woltran, S.: Solving advanced reasoning tasks
using quantified boolean formulas. In: AAAI Conference on Artificial Intelligence,
pp. 417–422 (2000)

6. Eiter, T., Gottlob, G.: Propositional circumscription and extended closed-world
reasoning are ΠP

2 -complete. Theor. Comput. Sci. 114(2), 231–245 (1993)
7. Eiter, T., Ianni, G., Lukasiewicz, T., Schindlauer, R., Tompits, H.: Combining

answer set programming with description logics for the Semantic Web. Artif. In-
tell. 172(12-13), 1495–1539 (2008)

8. Flanagan, C., Qadeer, S.: Predicate abstraction for software verification. In: Prin-
ciples of programming languages (POPL), pp. 191–202. ACM, New York (2002)

9. Gelfond, M., Przymusinska, H., Przymusinski, T.C.: On the relationship between
circumscription and negation as failure. Artif. Intell. 38(1), 75–94 (1989)

10. Giunchiglia, E., Maratea, M.: Solving optimization problems with DLL. In: Euro-
pean Conference on Artificial Intelligence, pp. 377–381 (2006)

11. Janhunen, T., Niemelä, I., Seipel, D., Simons, P., You, J.H.: Unfolding partiality and
disjunctions in stable model semantics. ACM Trans. Comput. Log. 7(1), 1–37 (2006)

12. Janhunen, T., Oikarinen, E.: Capturing parallel circumscription with disjunctive
logic programs. In: European Conf. on Logics in Artif. Intell., pp. 134–146 (2004)

13. Janota, M., Botterweck, G., Grigore, R., Marques-Silva, J.: How to complete an
interactive configuration process? In: Conference on Current Trends in Theory and
Practice of Computer Science, pp. 528–539 (2010)

14. Janota, M., Grigore, R., Marques-Silva, J.: Counterexample guided abstraction
refinement algorithm for propositional circumscription. Tech. Rep. TR-32-2010,
INESC-ID Lisboa (2010)

15. Lifschitz, V.: Foundations of logic programming. In: Principles of Knowledge Rep-
resentation, pp. 69–127 (1996)

16. McCarthy, J.: Circumscription - a form of non-monotonic reasoning. Artif. In-
tell. 13(1-2), 27–39 (1980)

17. McCarthy, J.: Applications of circumscription to formalizing common-sense knowl-
edge. Artif. Intell. 28(1), 89–116 (1986)

18. Minker, J.: On indefinite databases and the closed world assumption. In: Loveland,
D.W. (ed.) CADE 1982. LNCS, vol. 138, pp. 292–308. Springer, Heidelberg (1982)

19. Niemelä, I.: Implementing circumscription using a tableau method. In: European
Conference on Artificial Intelligence, pp. 80–84 (1996)

20. Oikarinen, E., Janhunen, T.: circ2dlp — translating circumscription into disjunc-
tive logic programming. In: Baral, C., Greco, G., Leone, N., Terracina, G. (eds.)
LPNMR 2005. LNCS (LNAI), vol. 3662, pp. 405–409. Springer, Heidelberg (2005)

21. Przymusinski, T.C.: An algorithm to compute circumscription. Artif. Intell. 38(1),
49–73 (1989)

22. Rosa, E.D., Giunchiglia, E., Maratea, M.: Solving satisfiability problems with pref-
erences. Constraints. An International Journal (2010) (in press)

23. SAT4j, http://www.sat4j.org
24. Tseitin, G.S.: On the complexity of derivation in propositional calculus. Studies in

constructive mathematics and mathematical logic 2(115-125), 10–13 (1968)
25. Yahya, A.H., Henschen, L.J.: Deduction in non-Horn databases. Journal of Auto-

mated Reasoning 1(2), 141–160 (1985)

http://www.sat4j.org

ALCALC: A Context Description Logic

Szymon Klarman1 and Vı́ctor Gutiérrez-Basulto2

1 Department of Computer Science, Vrije Universiteit Amsterdam
sklarman@few.vu.nl

2 Department of Computer Science, Universität Bremen
victor@informatik.uni-bremen.de

Abstract. We develop a novel description logic (DL) for representing
and reasoning with contextual knowledge. Our approach descends from
McCarthy’s tradition of treating contexts as formal objects over which
one can quantify and express first-order properties. As a foundation we
consider several common product-like combinations of DLs with multi-
modal logics and adopt the prominent (Kn)ALC. We then extend it with
a second sort of vocabulary for describing contexts, i.e., objects of the
second dimension. In this way, we obtain a two-sorted, two-dimensional
combination of a pair of DLs ALC, called ALCALC. As our main technical
result, we show that the satisfiability problem in this logic, as well as in
its proper fragment (Kn)ALC with global TBoxes and local roles, is 2Ex-

pTime-complete. Hence, the surprising conclusion is that the significant
increase in the expressiveness of ALCALC due to adding the vocabulary
comes for no substantial price in terms of its worst-case complexity.

1 Introduction

Over two decades ago John McCarthy introduced the AI community to a new
paradigm of formalizing contexts in logic-based knowledge systems. This idea,
presented in his Turing Award Lecture [1], was quickly picked up by others and
by now has led to a significant body of work studying different implementations
of the approach in a variety of formal frameworks and applications [2,3,4,5,6,7,8].
The great appeal of McCarthy’s paradigm stems from the simplicity and intu-
itiveness of the three major postulates it is based on:

1. Contexts are formal objects. More precisely, a context is anything that
can be denoted by a first-order term and used meaningfully in a statement of
the form ist(c, p), saying that proposition p is true in context c [1,5,6,2], e.g.,
ist(Hamlet , ‘Hamlet is a prince.’). By adopting a strictly formal view on contexts,
one can bypass unproductive debates on what they really are and instead take
them as primitives underlying practical models of contextual reasoning.

2. Contexts are organized in relational structures. In the commonsense
reasoning, contextual assumptions are dynamically and directionally altered
[8,2]. Contexts are entered and then exited, accessed from other contexts or
transcended to broader ones. Formally, we want to allow nestings of the form
ist(c, ist(c′, p)), e.g., ist(France, ist(capital , ‘The city river is Seine.’)).

T. Janhunen and I. Niemelä (Eds.): JELIA 2010, LNAI 6341, pp. 208–220, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

ALCALC: A Context Description Logic 209

3. Contexts have properties and can be described. As first-order ob-
jects, contexts can be in a natural way described in a first-order language [4,6].
This allows for addressing them generically through quantified formulas such as
∀x(P (x) → ist(x, p)), expressing that p is true in every context of type P , e.g.,
∀x(barbershop(x)→ ist(x, ‘Main service is a haircut.’)).

The goal of this work is to import McCarthy’s paradigm into the framework of
Description Logics (DLs), a popular family of knowledge representation
formalisms, with many successful applications [9]. Although the importance of
contexts in DLs has been generally acknowledged, the framework is still not sup-
ported with a dedicated, generic theory of accommodating contextual knowledge.
The most common perspectives considered in this area are limited to: 1) inte-
gration of local ontologies [10,11], 2) modeling levels of abstraction as subsets
of DL models [12,13], and 3) capturing dynamics of knowledge across a fixed
modal dimension, most typically a temporal one [14,15,16].

The DL ALCALC , which we develop here, is a novel formalism for repre-
senting and reasoning with context-dependent knowledge. On the one hand, we
systematically incorporate the three postulates of McCarthy, and thus, ground
our proposal in a longstanding tradition of formalizing contexts in AI. On the
other, we build on top of two-dimensional DLs [17], which provide ALCALC with
well-understood formal foundations. In this paper we present a thorough study
of the formal properties of ALCALC , including its expressiveness, computational
complexity and relationships to other formalisms. As our main technical result,
we show that the satisfiability problem in ALCALC , as well as in its proper frag-
ment (Kn)ALC with global TBoxes and local roles, is 2ExpTime-complete. This
reveals that the jump in the complexity from ExpTime is essentially caused by
the interaction of multiple K-modalities with global TBoxes.

2 Overview

We start with an outline of the milestones for constructing and studying the
logic ALCALC . Then, we recap the basic notions concerning the DL ALC.

2.1 Roadmap

We introduce ALCALC in a gradual way. First, in Section 3, we elaborate on
some well-studied combinations of the DL ALC with modal logics, known as two-
dimensional or modal DLs [18,17,19]. From our perspective, the two-dimensional
semantics of such logics is very well suited for representing context objects and
the relational structures they form. After some conceptual and computational
evaluation we then adopt (Kn)ALC as the foundation for our context DL. Finally,
we show that the migration from ALC to (Kn)ALC with global TBoxes and local
roles rises the complexity from ExpTime to 2ExpTime.

Next, in Section 4, we extend (Kn)ALC with a second sort of vocabulary,
which serves for describing contexts. Formally, we can see this extension as a
shift from (Kn)ALC to ALCALC , i.e., a two-sorted, two-dimensional combination

210 S. Klarman and V. Gutiérrez-Basulto

of a pair of DLs ALC. Each sort in ALCALC applies to its corresponding di-
mension and the two are allowed to interact in a controlled manner. Since such
an extension is relatively uncommon, we then relate ALCALC to the standard
framework of products of modal logics and show that the departure is not rad-
ical. More interestingly, we also prove that the extension, although offering a
lot of expressive flexibility, is not to be paid for in yet another increase of the
worst-case complexity. Satisfiability in ALCALC remains 2ExpTime-complete.

In Section 5, we present an example application of ALCALC . Finally, in Sec-
tion 6, we conclude the paper and point to directions for future research.

2.2 Preliminaries: DL ALC
A DL language is specified by a vocabulary Σ = (NI , NC , NR), where NI is a
set of individual names, NC a set of concept names, NR a set of role names, and
a number of operators for constructing complex concept descriptions [9]. The
ALC concept language L over Σ is the smallest set of concepts containing �, all
concept names from NC and closed under the constructors:

¬C | C �D | ∃r.C
where C,D ∈ L and r ∈ NR. Conventionally, we abbreviate ¬� with ⊥, ¬(¬C �
¬D) with C � D and ¬∃r.¬C with ∀r.C. The semantics of L is given through
interpretations of the form I = (Δ, ·I), where Δ is a non-empty domain of
individuals, and ·I is an interpretation function. The meaning of the vocabulary
is fixed via mappings: aI ∈ Δ for every a ∈ NI , AI ⊆ Δ for every A ∈ NC and
rI ⊆ Δ × Δ for every r ∈ NR, and �I = Δ. Then the function is inductively
extended over L according to the fixed semantics of the constructors:

(¬C)I = {x ∈ Δ | x �∈ CI},
(C �D)I = {x ∈ Δ | x ∈ CI ∩DI},

(∃r.C)I = {x ∈ Δ | ∃y : 〈x, y〉 ∈ rI ∧ y ∈ CI}.
A knowledge base (or an ontology) K = (T ,A) consists of a TBox T and an

ABox A. The TBox contains general concept inclusion axioms (GCIs) C � D,
for arbitrary concepts C,D ∈ L. We write C ≡ D whenever both C � D and
D � C are in T . The ABox consists of concept assertionsC(a) and role assertions
r(a, b), where a, b ∈ NI , C ∈ L and r ∈ NR. An interpretation I satisfies an
axiom in either of the following cases:

– I |= C � D iff CI ⊆ DI ,
– I |= C(a) iff aI ∈ CI ,
– I |= r(a, b) iff 〈aI , bI〉 ∈ rI .

Finally, I is a model of a DL knowledge base whenever it satisfies all its axioms.

3 Adding Context Structures: From ALC to (Kn)ALC

In order to introduce context structures into the DL semantics, and thus ac-
count for the first two postulates of McCarthy, we move from ALC to its two-
dimensional, multi-modal extensions.

ALCALC: A Context Description Logic 211

3.1 Syntax and Semantics

A two-dimensional, multi-modal concept language LALC over vocabulary Σ is
the smallest set of concepts containing �, concept names from NC and closed
under the ALC and the two new constructors:

�iC | �iC

where C ∈ LALC and 1 ≤ i ≤ n for some fixed n ∈ �. It is assumed that �i

abbreviates ¬�i¬. In our framework, every i is interpreted as a distinguished
contextualization operation. The modal context operators associated with i en-
able a transition to the state of affairs holding in some (�i) or all (�i) contexts
accessible from the current one through i. An interpretation of LALC is defined
as a tuple M = (C, {Ri}1≤i≤n, Δ, {·I(c)}c∈C), where:

– C is a non-empty context domain,
– Ri ⊆ C× C is an accessibility relation on C, associated with �i and �i,
– Δ is a non-empty object domain,
– ·I(c) is an interpretation function in context c.

For every c ∈ C, the interpretation function I(c) fixes the meaning of the lan-
guage by extending the basic ALC interpretation rules with the additional:

(�iC)I(c) = {x ∈ Δ | ∃d ∈ C : cRid ∧ x ∈ CI(d)},
(�iC)I(c) = {x ∈ Δ | ∀d ∈ C : cRid→ x ∈ CI(d)}.

In what follows, we loosely refer to C as the context dimension and to Δ
as the object dimension of the combination (see example in Fig. 1). Generally,
the semantic setup for multi-dimensional DLs allows several degrees of freedom
regarding rigidity of names and domain assumptions [17]. Here, we pose the nat-
ural, rigid interpretation of individual names, i.e., aI(c) = aI(d) for every c, d ∈ C,
and local (non-rigid) interpretation of concepts. The interpretation of roles is dis-
cussed in the next paragraphs. We also assume that all contexts share the same
object domain. Even if not suiting all applications, the constant domain assump-
tion is known to be most universal, in the sense that the expanding/varying case
can be always reduced to the constant one.

For a fixed language LALC the knowledge about the object dimension, now
relative to contexts, can be expressed by means of usual axioms. In particular, a
TBox T is a set of GCIs over concepts from LALC . In this section it suffices to
consider only the basic problem of concept satisfiability with respect to a global
T . The satisfaction relation for GCIs is defined with respect to an interpretation
M and a context c ∈ C:

– (M, c) |= C � D iff CI(c) ⊆ DI(c).

We call M a model of a global T whenever it satisfies all axioms in T in every
c ∈ C. A concept C is satisfiable w.r.t. T iff there exists a model of T such that
for some c ∈ C and d ∈ Δ it is the case that d ∈ CI(c).

It is not hard to see that without further constraints the resulting logic corre-
sponds to the well-known product of multi-modal Kn with ALC, denoted shortly

212 S. Klarman and V. Gutiérrez-Basulto

Fig. 1. A context structure modeling concept A � �right¬A � ∃r.(�leftA � �rightB).

as (Kn)ALC [18,20,17,19]. As for many other applications, also in the case of con-
text DLs (Kn)ALC seems to provide the most natural and flexible foundation.
Obviously, it is not difficult to further constrain accessibility relations in order to
obtain context structures with more specific properties. Leaving a broader study
of this subject for future research, let us just consider two such restrictions,
sometimes evoked in the literature on contexts:

(quasi-functionality) ∀c, d, e ∈ C (cRd ∧ cRe→ d = e),
(seriality) ∀c ∈ C ∃d ∈ C (cRd).

Buvač’s propositional logic of contexts [2,3] is a notational variant of Kn, with
�iϕ written as ist(i, ϕ). In Buvač’s setting �i quantifies over possible interpreta-
tions of the context i. In our framework, where contexts are not modality indices
but first-order objects, �i would quantify over possible contexts instead, which
clearly distorts the intended behavior of ist. To avoid this, one might rather use
�i of the logic Altn, characterized by all quasi-functional Kripke frames [19].
In Altn there is at most one context accessible through each contextualization
operation. Thus, �iϕ ∧ �iψ semantically implies ist(c, ϕ ∧ ψ) for some unique
c. Nossum [8] pursues similar intuitions and advocates even stronger DAltn,
which is Kripke-complete w.r.t. all quasi-functional and serial frames. Such a
semantics ensures that it is always possible to reach exactly one context through
each accessibility relation. Since formally the two frame properties boil down to
the functionality condition, it follows that the two operators �i,�i collapse into
a single©i. Finally Dn, characterized by all serial frames, is used by Buvač [2,3]
for verifying consistency of contextual knowledge. Since the seriality condition
enforces existence of all potential contexts, the knowledge attributed to these
contexts cannot be self-contradictory.

3.2 Complexity

As it turns out, the choice between any of the characterizations discussed above
is quite irrelevant from the computational perspective. In most cases the com-
plexity results apply to all logics LALC , for L ∈ {DAltn,Dn,Altn,Kn}. To ease
the transfer of some of the observations we make below, we use the following
reductions:

Proposition 1. Concept satisfiability w.r.t. global TBoxes is polynomially re-
ducible between the following logics (where +→ means reduces to):

ALCALC: A Context Description Logic 213

(DAltn)ALC +→ {(Dn)ALC , (Altn)ALC} +→ (Kn)ALC .

To see that the reductions hold indeed, it is enough to notice that if (C, T) is a
problem of deciding whether a concept C is satisfiable w.r.t. a global TBox T ,
then by simple transformations of C and T one can enforce only models that
are bisimilar to those characterizing the respective frame conditions:

(quasi-functionality) W.l.o.g. assume that C = NNF(C), where NNF stands
for Negation Normal Form, and T = {� � CT }, for some CT = NNF(CT).
Let C′ and C′

T be the result of replacing every subconcept �iB occurring in
C and CT , respectively, with (�i�) � (�iB). Then, (C, T) is satisfiable on
a quasi-functional frame iff (C′, {� � C′

T }) is satisfiable.
(seriality) Let T ′ = T ∪ {� � �i� | 1 ≤ i ≤ n}, where n is the number of

all modalities occurring in T and C. Then, (C, T) is satisfiable on a serial
frame iff (C, T ′) is satisfiable.

Our first result is a negative one. It closes the option of using rigid roles,
i.e., such that rI(c) = rI(d) for every c, d ∈ C, or applying context operators to
roles. Unfortunately, adding rigid roles leads to undecidability already for the
strongest of the logics with just a single context operator.

Theorem 1. Concept satisfiability in DAltALC w.r.t. global TBoxes and with
a single rigid role is undecidable.

The full proof, along the others from this paper, is included in the appendix of
the accompanying technical report [21]. We notice that DAltALC corresponds to
a fragment of LTLALC with the next-time operator, which is enough to construct
a usual encoding of the undecidable � × � tiling problem [14]. Together with
Proposition 1, the theorem immediately entails the following:

Theorem 2. For anyL ∈ {DAltn,Dn,Altn,Kn}, concept satisfiability inLALC
w.r.t. global TBoxes with a single rigid role is undecidable.

This result reveals an obvious limitation to the formalism, but a limitation one
has to live with, considering that combinations of rigid roles with global TBoxes
are rarely decidable unless the expressive power of the modal or the DL com-
ponent is significantly reduced [19,14]. In the rest of this paper, we almost ex-
clusively address the case of local (non-rigid) roles. To show decidability and
the upper bound of the concept satisfiability problem in this setup,1 we devise
a quasistate elimination algorithm for (Kn)ALC , similar to [19, Theorem 6.61].
As usual, the idea is to abstract from the domains C and Δ and consider only a
finite, in fact double exponential, number of quasistates which represent possible
contexts inhabited by a finite number of possible types of individuals. Then, we
iteratively eliminate all those that do not satisfy necessary conditions.
1 Mind that the NExpTime-completeness result for concept satisfiability in KALC [19,

Theorem 15.15] applies to ALC with a single pair of K operators, full booleans on
modalized formulas and no global TBoxes.

214 S. Klarman and V. Gutiérrez-Basulto

Theorem 3. Deciding concept satisfiability in (Kn)ALC w.r.t. global TBoxes
and only with local roles is in 2ExpTime.

One could hope that at least some of the considered logics could be less complex
than that. However, as the next theorem shows, this is not the case.

Theorem 4. Deciding concept satisfiability in (DAltn)ALC w.r.t. global TBoxes
and only with local roles is 2ExpTime-hard.

For the proof we use a reduction of the word problem for exponentially bounded
Alternating Turing Machines, which is known to be 2ExpTime-hard [22]. The
increase in the complexity by one exponential, as compared to ALC alone (for
which the problem is ExpTime-complete [9]), is notable and quite surprising.
It could be expected that without rigid roles the satisfiability problem can be
straightforwardly reduced to satisfiability in fusion models. This in turn should
yield ExpTime upper bound by means of the standard techniques. However, as
the following example for (Kn)ALC demonstrates, this strategy fails.

(†) �iC � ∃r.�i⊥ (‡) ∃succi.C � ∃r.∀succi.⊥

Although (†) clearly does not have a model, its reduction (‡) to a fusion language,
where context operators are translated to restrictions on fresh ALC roles, is
satisfiable. The reason is that while in the former case the information about
the structure of the K-frame is global for all individuals, in the latter it becomes
local. The r-successor in (‡) is simply not ‘aware’ that it should actually have
a succi-successor.2 This effect, amplified by presence of multiple modalities and
global TBoxes (which can enforce infinite K-trees), makes the reasoning harder.

The two complexity bounds from Theorem 3 and 4, together with the reduc-
tions established in Proposition 1, provide us with the completeness result.

Theorem 5. For any L ∈ {DAltn,Dn,Altn,Kn}, deciding concept satisfiabil-
ity in LALC w.r.t. global TBoxes and only with local roles is 2ExpTime-complete.

The theorem is quite robust under changes of domain assumptions and holds
already in the case of expanding/varying domains in (Altn)ALC . The only ex-
ception applies to (DAltn)ALC and (Dn)ALC with expanding/varying domains,
where reduction to ALC is still possible.

What follows from this analysis, is that by sacrificing the generality of Kn-
frames one does not immediately obtain a better computational behavior as long
as multiple context operators are permitted. For this reason, we adopt (Kn)ALC
as the baseline for ALCALC , leaving for now the option of restricting context
structures as an open problem.

2 Demonstrating the corresponding phenomenon in (DAltn)ALC is not that straight-
forward due to the seriality condition, as then the global information concerns only
the existence of succi-predecessors. Thus, one needs role inverses in the fusion lan-
guage to observe the loss of such information.

ALCALC: A Context Description Logic 215

4 Describing Contexts: From (Kn)ALC to ALCALC

We are now ready to define the target logic ALCALC , which additionally to
(Kn)ALC offers a second sort of vocabulary for directly describing contexts. This
extension addresses the third postulate of McCarthy.

4.1 Syntax and Semantics

We start by introducing the context component of the language and then suitably
revise the object component.

The context language LC is an ALC concept language over vocabulary Γ =
(MI ,MC ,MR), where MI is a set of (context) individual names, MC is a set of
(context) concept names, and MR is a set of (context) role names. For disam-
biguation, we use bold font when writing names from the context vocabulary
and we denote the elements of LC as c-concepts. The semantics is defined in
the usual manner (as presented in Section 2.2), in terms of an interpretation
function ·J ranging over the context domain C. The context knowledge base C
consists of TBox and ABox axioms over Γ and LC , also with the usual satis-
faction conditions. Thus, C is in fact a standard ALC ontology with standard
models of the form (C, ·J).

The interpretationsof the context languageare incorporated in the fullALCALC
interpretations of the form M = (C, ·J , Δ, {·I(c)}c∈C), where:

– C is a non-empty context domain,
– ·J is an interpretation function of the context language,
– Δ is a non-empty object domain,
– ·I(c) is an interpretation function of the object language in c.

The divergence from the original (Kn)ALC interpretations is minor. Basically,
the accessibility relations over C become now redundant, as their function can
be taken over by context roles. For every contextualization operation i we can
assume an implicit correspondence Ri = rJ

i , for some r i ∈MR. Note that given
the broadened take on the context dimension, we might be now less strict about
the informal reading of some of the components of the framework. Arguably, not
all context roles have to be necessarily seen as ‘contextualization operations’ and
not all elements of C as genuine ‘contexts’. Sometimes they can be just entities
needed for describing contexts. Nevertheless, we keep using the context-object
nomenclature to avoid potential confusions.

Although one can already express rich knowledge about contexts, such knowl-
edge remains ‘invisible’ from the object level. In order to render it more accessi-
ble, and so gain better control over the interaction between the dimensions, we
need to suitably internalize context descriptions in the object language.

Let Σ = (NI , NC , NR) be the object vocabulary disjoint from Γ . The object
language LO over Σ and the context language LC is the smallest set of concepts,
called o-concepts, containing �, concept names from NC and closed under the
ALC and the following two constructors:

〈C 〉rD | [C]rD

216 S. Klarman and V. Gutiérrez-Basulto

where C ∈ LC and r ∈ MR. Again, [·]r abbreviates ¬〈·〉r¬. Intuitively, 〈C 〉rD
denotes all objects which are D in some context which is C and is accessible
through r . Similarly, [C]rD denotes all objects which are D in every context
which is C and is accessible through r . Overall, the syntax of the object language
diverges from the one of (Kn)ALC only in that the indices appearing by �i,�i

are now replaced with context roles, while both operators embrace a single c-
concept, which additionally qualifies the accessed contexts. Consequently, the
changes in the semantics affect only the contextualized concepts:

(〈C 〉rD)I(c) = {x ∈ Δ | ∃d ∈ C : 〈c, d〉 ∈ rJ ∧ d ∈ CJ ∧ x ∈ DI(d)},
([C]rD)I(c) = {x ∈ Δ | ∀d ∈ C : 〈c, d〉 ∈ rJ ∧ d ∈ CJ → x ∈ DI(d)}.

To grant maximum flexibility in expressing the knowledge about the object
dimension we first define the set of possible object formulas, i.e., formulas which
can meaningfully hold in individual contexts:

B � D | a : D | s(a, b) | ¬ϕ | ϕ ∧ ψ | 〈C 〉rϕ | [C]rϕ

where B,D are o-concepts, a, b ∈ NI , s ∈ NR, C is a c-concept and r ∈ MR.
Object formulas are satisfied by M in context c ∈ C in the following cases:

– (M, c) |= B � D iff BI(c) ⊆ DI(c),
– (M, c) |= a : D iff aI(c) ∈ DI(c),
– (M, c) |= s(a, b) iff 〈aI(c), bI(c)〉 ∈ sI(c),
– (M, c) |= ¬ϕ iff (M, c) �|= ϕ,
– (M, c) |= ϕ ∧ ψ iff (M, c) |= ϕ and (M, c) |= ψ,
– (M, c) |= 〈C 〉rϕ iff (M, d) |= ϕ for some d ∈ C s.t. 〈c, d〉 ∈ rJ and d ∈ CJ ,
– (M, c) |= [C]rϕ iff (M, d) |= ϕ for every d ∈ C s.t. 〈c, d〉 ∈ rJ and d ∈ CJ .

Then we define an object knowledge base O as a set of axioms of two forms:

a : ϕ | C : ϕ

where a ∈ MI , C is a c-concept and ϕ is an object formula. Such axioms have
a straightforward reading: ϕ is true in context a ; and ϕ is true in every context
which is C . Formally, we specify those conditions as follows:

– M |= a : ϕ iff (M, c) |= ϕ for c = aJ ,
– M |= C : ϕ iff (M, c) |= ϕ for every c ∈ CJ .

A pair K = (C,O) is called an ALCALC knowledge base. An interpretation M
is a model of K whenever all axioms in K are satisfied. A small example of an
ALCALC knowledge base is presented in Section 5.

4.2 Complexity and Expressiveness

Obviously, the expressiveness of ALCALC properly subsumes that of (Kn)ALC .
In particular, the following relationship holds:

Proposition 2. Concept satisfiability problem in (Kn)ALC w.r.t. global TBoxes
is polynomially reducible to knowledge base satisfiability in ALCALC.

To see this is indeed the case suppose (C, T) is the problem of deciding whether
concept C is satisfiable w.r.t. global TBox T . Let C′ and T ′ be the results of

ALCALC: A Context Description Logic 217

replacing every �i with 〈�〉r i
and every �i with [�]r i

in C and T , respectively,
where for i �= j we have r i �= r j . Further define C = ∅ and O = {c : a :
C′} ∪ {� : C � D | C � D ∈ T ′}. It clearly follows that C is satisfiable w.r.t. T
in (Kn)ALC iff the knowledge base K = (C,O) is satisfiable in ALCALC . Note,
that the reduction holds even when object roles are interpreted rigidly.

This naturally means that the 2ExpTime lower bound established in
Theorem 5 transfers immediately to ALCALC . But can it get even higher? Quite
surprisingly, the answer is negative. Despite the increase of expressiveness, sat-
isfiability problem in ALCALC remains in 2ExpTime.

Theorem 6. Deciding satisfiability of an ALCALC knowledge base in which ob-
ject roles are interpreted locally is 2ExpTime-complete.

The proof of the upper bound is based on quasimodel elimination technique,
which extends the one used for Theorem 3. In particular, every quasistate has to
carry now also the type of the context which it represents and the set of object
formulas which are satisfied in it.

To give a final insight into the expressiveness of the formalism, in more tradi-
tional terms of products of modal logics, we show that ALCALC (with rigid roles)
is equally expressive to the full ALC language over the union of two vocabularies
interpreted in product models.

Let L1 and L2 be two ALC concept languages over disjoint vocabularies Γ =
(MC ,MR, ∅) and Σ = (NC , NR, ∅), respectively. Now, let L1×2 be the ALC
concept language over vocabularyΘ = (MC∪NC ,MR∪NR, ∅). The semantics for
L1×2 is given through product interpretations P = (C×Δ, ·P), which align every
r ∈ NR along the ‘vertical’ dimension and every p ∈ MR along the ‘horizontal’
one. Thus, rP ,pP ⊆ (C×Δ)× (C×Δ) and for every u, v, w ∈ C and x, y, z ∈ Δ:

〈(u, x), (v, y)〉 ∈ rP → u = v & 〈(w, x), (w, y)〉 ∈ rP ,
〈(u, x), (v, y)〉 ∈ pP → x = y & 〈(u, z), (v, z)〉 ∈ pP .

All concepts are interpreted as subsets of C × Δ. Additionally, we force every
A ∈ MC to be interpreted rigidly across the ‘vertical’ dimension, i.e., for every
v ∈ C and x, y ∈ Δ we assume:

(∗) (v, x) ∈ AI → (v, y) ∈ AI

Finally, ·P is extended inductively as usual. A concept C ∈ L1×2 is satisfiable
iff for some product model P = (C × Δ, ·P) it is the case that CP �= ∅. On
the contrary to the others, the condition (∗) is rather uncommon in the realm
of products of modal logics. Nevertheless, it captures precisely the difference
between the semantics of the two sorts of concepts. Without it the sorts collapse
into one, while the whole logic turns into a notational variant of (Kn)ALC . It
turns out that the following claim holds:

Theorem 7. The language L1×2 interpreted in product models is exactly as
expressive as the concept language of ALCALC interpreted in models with rigid
interpretations of object roles.

What follows from Theorem 7 is that the syntactic constraints of ALCALC ,
which make the logic more intuitive and well-behaved, by no means lead to

218 S. Klarman and V. Gutiérrez-Basulto

loss of expressiveness. Moreover, it shows that ALCALC (at least in its concept
component) does not seriously deviate from the usual products of modal logics.
In principle, the only feature distinguishing it from (Kn)ALC (both with and
without rigid roles) is the condition (*) imposed on the interpretations of selected
concepts, which in ALCALC we simply happen to call context concepts.

5 Contextual Ontologies — Example

One of the designated applications of ALCALC is construction of contextual on-
tologies. The distinguishing feature of such ontologies is that they allow for vary-
ing the characterization of concepts according to contexts. Hence, ALCALC can
provide a good formal support for exchanging and integrating information in DL.
Moreover, as the context knowledge base can be created independently from the
object component, the framework encourages reuse of existing ontologies.

As an example of a contextual ontology, we present a simple representation
of knowledge about the food domain contextualized with respect to geographic
locations. Consider the (context) geographic knowledge base C = (T ,A), where
T is a TBox and A an ABox.
T = { (1)Country � ∃location.Europe � ∃location.America ,

(2)Region � ∃part of .Country,
(3)City � ∃has part.Neighborhood }

A = { (4)US : Country,
(5)SanFrancisco : City,
(6)California : Region,
(7)part of(California ,US),
(8)France : Country � ∃location.Europe }

Now, we define an (object) food ontology O, contextualized with C.

O = { (a)� : Food ≡ Meat � Beverages � Sea Food � Grains
(b)� : Wine ≡WhiteWine � RedWine
(c)� : (SauvignonBlanc : WhiteWine)
(d)Country : [Europe]location(WhiteWine � Popular Beverage)
(e)California : WhiteWine � [Country]part ofPopular Wine
(f)US : Popular Wine � ¬Popular Beverage
(g)SanFrancisco : [�]has part(WhiteWine � ¬Popular Wine) }

Let us shortly highlight the intuition behind O by explaining some of
the axiom definitions and the inferences they sanction. First, axioms (a)-(c)
present geographic-independent terminology of the food domain. For exam-
ple, by (c), SauvignonBlanc is a WhiteWine in any part of the world. Then,
(d)-(g) characterize WhiteWine as Popular Wine or Popular Beverage accord-
ing to different territories. We explain (d)-(g) in terms of SauvignonBlanc.
By (d), in any Country that has as a location Europe (e.g., France)
SauvignonBlanc is a Popular Beverage. However, by (e)-(f), SauvignonBlanc
is not a Popular Beverage in US . This, is explained as follows: (e) establishes

ALCALC: A Context Description Logic 219

that SauvignonBlanc is a Popular Wine in any Country of which California
is part of, namely US . Then, by (f), in the US any Popular Wine is not a
Popular Beverage. Hence, SauvignonBlanc is not a Popular Beverage in US . Al-
though SauvignonBlanc is a Popular Wine in US , this is does not necessar-
ily transfer to more specific contexts. For instance, by (g), in every part of
SanFrancisco, SauvignonBlanc is not in fact a Popular Wine. In particular, by
(3), there is at least one such Neighborhood in which this happens.

6 Conclusions and Future Work

We have presented a novel DL ALCALC for representing and reasoning with
contextual knowledge. Our approach is derived from McCarthy’s conception of
contexts as first-order objects which are describable in a first-order language.
Formally, the logic extends the well-known (Kn)ALC with another sort of ‘con-
text’ vocabulary interpreted over the K-dimension. The surprising conclusion is
that the increase of the expressiveness of the logic due to this addition comes for
no substantial price in terms of the worst-case complexity. The jump to 2Exp-

Time-completeness stems from the interaction of multiple modalities with global
TBoxes and is inherent already to the underlying two-dimensional DLs.

We believe that with this work we have set the stage for a promising future
research on similar combinations of DLs. Clearly, there are three major determi-
nants of such formalisms which deserve a careful study: 1) the expressiveness of
the context language, 2) the expressiveness of the object language, 3) the level of
interaction between the two. Finding a proper balance between them is the key
to identifying well-behaved and potentially useful fragments. One of the first
directions, which we want to investigate, is to reduce the interaction between
the languages by employing only S5-like operators. Such operators, e.g., 〈C 〉ϕ,
would state that there exists a context of type C in which ϕ holds, without in-
volving context roles. This modification should result in a better computational
behavior and a somewhat simpler conceptual design of the language.

On the applied side, it could be interesting to consider a restricted fragment
of the framework (a finite number of named contexts) for the task of ontology
integration on the Semantic Web. Arguably, such fragment is sufficient to pro-
vide a logical underpinning for the ongoing endeavor of describing and linking
OWL/RDFS knowledge sources in a context-sensitive manner.

Acknowledgements. We want to thank Carsten Lutz and Stefan Schlobach for
many helpful discussions and suggestions on the ideas presented in this paper.

References

1. McCarthy, J.: Generality in artificial intelligence. Communications of the ACM 30,
1030–1035 (1987)

2. Buvač, S., Mason, I.A.: Propositional logic of context. In: Proceedings of the
Eleventh National Conference on Artificial Intelligence, pp. 412–419 (1993)

3. Buvač, S., Buvac, V., Mason, I.A.: Metamathematics of contexts. Fundamenta
Informaticae 23, 412–419

220 S. Klarman and V. Gutiérrez-Basulto

4. Buvač, S.: Quantificational logic of context. In: Proceedings of the Eleventh Na-
tional Conference on Artificial Intelligence, pp. 412–419 (1996)

5. McCarthy, J.: Notes on formalizing context. In: Proc. of International Joint Con-
ference on Artificial Intelligence, IJCAI 1993, pp. 555–560. Morgan Kaufmann, San
Francisco (1993)

6. Guha, R.: Contexts: a formalization and some applications. PhD thesis, Stanford
University (1991)

7. Guha, R., Mccool, R., Fikes, R.: Contexts for the semantic web. In: McIlraith,
S.A., Plexousakis, D., van Harmelen, F. (eds.) ISWC 2004. LNCS, vol. 3298, pp.
32–46. Springer, Heidelberg (2004)

8. Nossum, R.: A decidable multi-modal logic of context. Journal of Applied Logic 1(1-
2), 119–133 (2003)

9. Baader, F., Calvanese, D., Mcguinness, D.L., Nardi, D., Patel-Schneider, P.F.: The
description logic handbook: theory, implementation, and applications. Cambridge
University Press, Cambridge (2003)

10. Borgida, A., Serafini, L.: Distributed description logics: Assimilating information
from peer sources. Journal of Data Semantics 1, 2003 (2003)

11. Cuenca Grau, B., Kutz, O.: Modular ontology languages revisited. In: Proc. of the
Workshop on Semantic Web for Collaborative Knowledge Acquisition (2007)

12. Goczyla, K., Waloszek, W., Waloszek, A.: Contextualization of a DL knowledge
base. In: The Proceedings of the International Workshop on Description Logics,
DL 2007 (2007)

13. Grossi, D.: Desigining Invisible Handcuffs. Formal Investigations in Institutions and
Organizations for Multi-Agent Systems. PhD thesis, Utrecht University (2007)

14. Lutz, C., Wolter, F., Zakharyaschev, M.: Temporal description logics: A survey.
In: Proceedings of the Fourteenth International Symposium on Temporal Repre-
sentation and Reasoning. IEEE Computer Society Press, Los Alamitos (2008)

15. Artale, A., Lutz, C., Toman, D.: A description logic of change. In: Veloso, M. (ed.)
Proceedings of IJCAI 2007, pp. 218–223 (2007)

16. Artale, A., Kontchakov, R., Lutz, C., Wolter, F., Zakharyaschev, M.: Temporal-
ising tractable description logics. In: Proceedings of the Fourteenth International
Symposium on Temporal Representation and Reasoning (2007)

17. Wolter, F., Zakharyaschev, M.: Multi-dimensional description logics. In: IJCAI
1999: Proceedings of the Sixteenth International Joint Conference on Artificial
Intelligence, San Francisco, CA, USA, pp. 104–109 (1999)

18. Baader, F., Laux, A.: Terminological logics with modal operators. In: Mellish, C.
(ed.) Proceedings of the 14th International Joint Conference on Artificial Intelli-
gence, Montréal, Canada, pp. 808–814. Morgan Kaufmann, San Francisco (1995)

19. Kurucz, A., Wolter, F., Zakharyaschev, M., Gabbay, D.M.: Many-Dimensional
Modal Logics: Theory and Applications. Studies in Logic and the Foundations
of Mathematics, vol. 148. Elsevier, Amsterdam (2003)

20. Wolter, F., Zakharyaschev, M.: Satisfiability problem in description logics with
modal operators. In: Proceedings of the Sixth Conference on Principles of Knowl-
edge Representation and Reasoning, pp. 512–523. Morgan Kaufman, San Francisco
(1998)

21. Klarman, S., Gutiérrez-Basulto, V.: ALCALC: a context description logic. Technical
report, Vrije Universiteit Amsterdam (2010),
http://klarman.synthasite.com/resources/JELIA2010TechRep.pdf

22. Chandra, A.K., Kozen, D.C., Stockmeyer, L.J.: Alternation. J. ACM 28(1), 114–
133 (1981)

http://klarman.synthasite.com/resources/JELIA2010TechRep.pdf

Stable Belief Sets Revisited

Costas D. Koutras1 and Yorgos Zikos2,�

1 Department of Computer Science and Technology
University of Peloponnese

end of Karaiskaki Street, 22 100 Tripolis, Greece
ckoutras@uop.gr

2 Graduate Programme in Logic, Algorithms and Computation (MPLA)
Department of Mathematics, University of Athens

Panepistimioupolis, 157 84 Ilissia, Greece
zikos@sch.gr

Abstract. Stable belief sets were introduced by R. Stalnaker in the early ‘80s,
as a formal representation of the epistemic state for an ideal introspective agent.
This notion motivated Moore’s autoepistemic logic and greatly influenced modal
nonmonotonic reasoning. Stalnaker stable sets possess an undoubtly simple and
intuitive definition and can be elegantly characterized in terms of S5 universal
models or KD45 situations. However, they do model an extremely perfect intro-
spective reasoner and suffer from a Knowledge Representation (KR) version of
the logical omniscience problem. In this paper, we vary the context rules underly-
ing the positive and/or negative introspection conditions in the original definition
of R. Stalnaker, to obtain variant notions of a stable epistemic state, which appear
to be more plausible under the epistemic viewpoint. For these alternative notions
of stable belief set, we obtain representation theorems using possible world mod-
els with non-normal (impossible) worlds and neighborhood modal models.

Keywords: modal epistemic logic, stable belief sets, nonmonotonic logics.

1 Introduction

Classical epistemic reasoning has been born and bred within the realm of Philosophical
Logic and always had a modal flavour, already from its early inception in Hintikka’s
seminal work [12]. The epistemic/doxastic logic stream of research was very active
for more than two decades and mainly revolved around constructing and discussing
axiomatic systems which accurately describe the phenomena of knowledge and belief,
from the perspective of a philosopher ‘externally’ reasoning about other entities’ knowl-
edge [18]. Many axiomatic systems have been proposed and several problems around
this axiomatic approach to knowledge and belief have been identified and discussed (see
[17,9]); in more recent years, epistemic and doxastic modal logics have found important
applications in Knowledge Representation and Computer Science [5].

AI has created a completely new battlefield for epistemic reasoning, through the at-
tempts to construct nonmonotonic logics in Knowledge Representation. The perspective

� The second author gratefully acknowledges financial support by the Greek Ministry of Educa-
tion, Lifelong Learning and Religious Affairs under the scheme of educational leave.

T. Janhunen and I. Niemelä (Eds.): JELIA 2010, LNAI 6341, pp. 221–233, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

222 C.D. Koutras and Y. Zikos

of KR is much different, as the objective now is to describe ‘internally’ the epistemic
capabilities of an intelligent agent reasoning on his/her own beliefs; see [2] for a recent,
interesting discussion on the ‘internal’ vs ‘external’ viewpoint in modeling epistemic
states. The use of modal languages and the import of techniques from classical epis-
temic reasoning have been employed from as early as the beginning of the ‘80s, when
nonmonotonic logics have been announced. Modal nonmonotonic reasoning has been
introduced through the work of D. McDermott and J. Doyle [22], with the use of a fix-
point construction which has been seriously criticized initially. Stable belief sets were
introduced by R. Stalnaker at the same time; the short note [25] was written as a com-
mentary on modal nonmonotonic logic and proposed the notion of a stable set of beliefs
as a formal representation of the epistemic state of an ideally rational agent, with full
introspective capabilities. Assuming a propositional language, endowed with a modal
operator �ϕ, interpreted as ‘ϕ is believed’, a set of formulas S is a stable set if it is
‘stable’ under classical inference and epistemic introspection:

(i) CnPC(S) ⊆ S

(ii) ϕ ∈ S implies �ϕ ∈ S

(iii) ϕ /∈ S implies ¬�ϕ ∈ S

This notion proved to be of major importance in nonmonotonic modal logics. Ac-
cording to [25], R. Moore has written that this notion ‘ .. was a very important influence
on the development of autoepistemic logic’ [23]; it also played a role in the logical in-
vestigations of Marek, Schwarz and Truszczyński on the McDermott & Doyle family
of modal nonmonotonic modal logics [21]. Actually, the definition of stable sets was
the first important step towards the idea of constructing epistemic logic(s) in nonmono-
tonic reasoning, without any appeal to classical modal logic (known as the ‘Modality
Si, Modal Logic No!’ motto of J. McCarthy).

The syntactic definition of stable sets is very natural and intuitive. Further research
quickly revealed that they possess interesting properties while they do also admit simple
and elegant semantic characterizations: they can be represented as the theories of uni-
versal (S5) Kripke models, or alternatively, as the set of beliefs of an agent residing in
a KD45 situation (see [21, Chapt.8], [8]). It is not hard to see however, that Stalnaker’s
stable sets model an extremely perfect reasoner. In a sense, the situation is reminiscent
of the ‘logical omniscience’ problem in classical epistemic logic: normal modal logics
of knowledge describe a reasoner who knows all the logical consequences of his/her
beliefs; more on this, in section 2. Actually, the situation in Stalnaker’s stable sets is
a bit more uncomfortable: all tautologies are known and a stable set is a theory maxi-
mally consistent with provability in S5. This raises some important philosophical and
technical questions in modal non-monotonic reasoning, observed in [8] and addressed
from a fine viewpoint in the work of Marek, Schwarz and Truszczyński [20].

So, stable sets are defined by calling for closure under (classical propositional logic
and) suitable context rules, intended to capture positive and negative introspection on
self beliefs. They are characterized by (and represented as theories of) well-known epis-
temic possible-worlds models, which have emerged in logics of classical epistemic rea-
soning (S5, KD45). It is absolutely natural to investigate whether one can define in

Stable Belief Sets Revisited 223

a natural way, variants of this notion which represent a less ideal and less omniscient
agent, while retaining some of their interesting and useful properties; in this direction it
is interesting from the KR viewpoint to work on the following two questions, related to
the interplay between syntax and semantics of stable epistemic states:

– can we weaken the positive and/or negative introspection conditions (seen hence-
forth as context-dependent rules) in Stalnaker’s original definition and still obtain a
plausible (and perhaps, more pragmatic) notion of stable epistemic state? For such
an emerging notion, does there exist a good model-theoretic representation?

– can we suitably replace S5 and KD45 in the semantic characterization of stable
sets, with a possible-worlds model (possibly with non-normal worlds or a neigh-
borhood model) determining some other classical modal logic and prove that the
emerging notion of an epistemic state admits a syntactic definition in terms of (clo-
sure under) natural positive and negative introspection conditions?

In this paper, we work on the first of these two questions, actually the most important
from the KR viewpoint. We vary conditions (ii) and (iii) in Stalnaker’s definition to
obtain three weaker notions of an epistemic state. We obtain semantic characterizations
for the notions of stable sets we define; not surprisingly, we have to employ impossible
worlds and neighborhood modal models. In Section 2 we gather the necessary technical
background needed for our results, establishing notation and terminology. In Section 3
we very briefly mention some results we have obtained on the determination of classical
and regular modal logics, with a notion of strong provability from premises. Sections 4
and 5 form the core of our results: we define, examine and characterize weaker notions
of a stable epistemic state. In Section 6 we comment on related work and discuss open
questions for future research. Due to space limitations, many proofs are omitted or
sketched; the details can be found in the full paper (draft version in [16]).

2 Background Material

In this section we gather the necessary background material and results. For the basics
of Modal Logic the reader is refered to the books [3,4,13] and for the essentials of
modal nonmonotonic logics to [21]. We assume a modal propositional language L�,
endowed with an epistemic operator �ϕ, read as ‘it is believed that ϕ holds’. Sentence
symbols include � (for truth) and ⊥ (for falsity). Some of the important axioms in
epistemic/doxastic logic are:

K. (�ϕ ∧ �(ϕ ⊃ ψ)) ⊃ �ψ

T. �ϕ ⊃ ϕ (axiom of true, justified knowledge)

D. �ϕ ⊃ ¬�¬ϕ or ¬(�ϕ ∧ �¬ϕ) (consistent belief)

4. �ϕ ⊃ ��ϕ (positive introspection)

5. ¬�ϕ ⊃ �¬�ϕ (negative introspection)

w5. (ϕ ∧ ¬�ϕ) ⊃ �¬�ϕ (negative introspection limited to true facts)

p5. (¬�ϕ ∧ ¬�¬ϕ) ⊃ �¬�ϕ (negative introspection limited to possible facts)

224 C.D. Koutras and Y. Zikos

Modal logics are sets of modal formulas containing classical propositional logic
(i.e. containing all tautologies in the augmented language L�) and closed under rule
MP.ϕ,ϕ⊃ψ

ψ . The smallest modal logic is denoted as PC (propositional calculus in the
augmented language). Normal are called those modal logics, which contain all instances
of axiom K and are closed under rule

RN.
ϕ

�ϕ

By KA1 . . .An we denote the normal modal logic axiomatized by axioms A1 to An.
Well-known epistemic logics comprise KT45 (S5) (a strong logic of knowledge) and
KD45 (a logic of consistent belief). Throughout this paper we use the notion of strong
provability from a theory I . In the case of a normal modal logic Λ we write I �RN

Λ ϕ
iff there is a Hilbert-style proof, where each step of the proof is a formula, which is a
tautology in L�, or an instance of K, or an instance of an axiom of Λ, or a member of
I , or a result of applying MP or RN to formulas of previous steps.

Normal modal logics are interpreted over Kripke models: a Kripke model M =
〈W,R, V 〉 consists of a set of possible worlds W and a binary relation between them
R ⊆ W ×W : whenever wRv, we say that world w ‘sees’ world v. The valuation V
determines which propositional variables are true inside each possible world. Within a
world w, the propositional connectives (¬, ⊃, ∧, ∨) are interpreted classically, while
�ϕ is true at w iff it is true in every world ‘seen’ by w, notation: (M, w � �ϕ iff
(∀v ∈ W)(wRv ⇒ M, v � ϕ)). A logic Λ is determined by a class of models iff it
is sound and complete with respect to this class; it is known that S5 is determined by
the class of Kripke models with a universal relation, while KD45 is determined by the
class of models consisting of a world which ‘sees’ a ‘cluster’ (i.e. a universally con-
nected subset) of worlds and which does not ‘see’ itself; every model of this class has
the form 〈{w} ∪W, ({w} ∪W)×W,V 〉).

Normal modal epistemic logics suffer from the so-called logical omniscience prob-
lem, which can be attributed to axiom K and rule RN. Because of the latter, all tau-
tologies are known. Also, because of the axiom K, logical consequences of knowledge
constitute knowledge, something unreasonable in realistic situations. Note however that
axiom K and axioms as simple as N.�� are unavoidable in Kripke models and ubiq-
uitous in normal modal logics. A first step towards solving the logical omniscience
problem is by defining regular modal logics which contain K, but substitute rule RN
for rule

RM.
ϕ ⊃ ψ

�ϕ ⊃ �ψ

We denote by KA1 . . .AnR the regular modal logic axiomatized by axioms A1 to
An. In this case (of a regular modal logic Λ) we use again a notion of strong prov-
ability, where the application of RN in any step of the proof is replaced by RM,
and we write I �RM

Λ ϕ. Regular modal logics are interpreted on a strange species of
possible world models, introduced by Kripke too; we will call them q-models here
(M = 〈W,N,R, V 〉). We now have two kinds of worlds: normal worlds (N), which
behave in the way we described above and non-normal (also called queer or impossi-
ble) worlds (W \ N), where nothing is known/believed (�ϕ is never true there) and

Stable Belief Sets Revisited 225

everything is consistent to our state of affairs (¬�¬ϕ is always true there). Within a
world w, the propositional connectives are interpreted classically and �ϕ is true at w
iff w ∈ N and (∀v ∈W)(wRv ⇒M, v � ϕ)).

This however does not avoid the effect of K: to be able to eliminate K we have to
resort to neighborhood (also called Montague or minimal in [4]) semantics. Neighbor-
hood structures are very flexible and they are considered to be the standard semantic tool
used to reason about non-normal modal logics; see [11] for some recent results. In this
kind of models, which we will call n-models, each world does not ‘see’ other worlds but
it is associated to possible ‘neighborhoods’ (subsets) of possible worlds: an n-model is a
triple N = 〈W,E, V 〉, where W is any set of worlds, E is any function assigning to any
world, its sets of ‘neighboring’ worlds (i.e. E : W → P(P(W))) and V is again a val-
uation. The interpretation of any formula is exactly as in Kripke models, except of the
formulas of the form �ϕ; such a formula is true at w iff the set of worlds whereϕ holds,
belong to the possible neighborhoods of w: V (ϕ) = {v ∈ W | N, v � ϕ} ∈ E(w).
Theory of a (Kripke, q- or n-) model M (denoted as Th(M)) is the set of all formulae
being true in every world of M. Having a q-model, we can define a pointwise equivalent
n-model:

Definition 1. Let M = 〈W,N,R, V 〉 be a q-model and NM = 〈W,E, V 〉 the n-model,
where E(w) = {X ⊆W | Rw ⊆ X}1, if w ∈ N , and E(w) = ∅, if w ∈ W \N . NM

is called the equivalent n-model produced by M.

This notion of ‘equivalence’ seems to be appropriate, because of the following result:

Proposition 1. Let M = 〈W,N,R, V 〉 be a Kripke q-model. Then (∀ϕ ∈ L�) (∀w ∈
W) (M, w � ϕ ⇐⇒ NM, w � ϕ)

The directed graph F = 〈W,R〉, underlying a (Kripke, q-, or n-) model, is called a
frame. A modal logic Λ is called classical iff it is closed under the rule

RE.
ϕ ≡ ψ

�ϕ ≡ �ψ

See [4] for results on the characterization of classical modal logics in terms of Montague
semantics. By A1 . . .AnC we denote the classical modal logic axiomatized by axioms
A1 to An. Again, in this case (of a classical modal logic Λ) we use a notion of strong
provability, where in any step of the proof the use of K-instances is prohibited and the
application of RN is replaced by RE; we write I �RE

Λ ϕ.2 It is convenient in our paper
to consider the following context-dependent versions of the modal rules mentioned up
to this point: assuming a set S of modal formulae, we denote the rules

RNc.
ϕ ∈ S

�ϕ ∈ S
NIc.

ϕ /∈ S

¬�ϕ ∈ S

RMc.
ϕ ⊃ ψ ∈ S

�ϕ ⊃ �ψ ∈ S
REc.

ϕ ≡ ψ ∈ S

�ϕ ≡ �ψ ∈ S

1 Rw = {v ∈ W | wRv}.
2 Usually, we just use the notion �Λ instead of �RN

Λ , �RM
Λ or �RE

Λ , if it is clear by the context
whether Λ is normal, regular or classical respectively.

226 C.D. Koutras and Y. Zikos

Stalnaker stable sets are closed under propositional reasoning (i), under rule RNc

(ii) and rule NIc (iii). The following theorem gathers some of their useful properties;
see [21] for a proof.

Theorem 1. a) If a set S is stable, then it is closed under strong S5 provability3. In
particular, it contains every instance of K, T, 4, and 5.
b) A set S is stable iff it is the theory of a Kripke model with a universal accessibility
relation.
c) A set S is stable iff it is the set of formulae believed in a world w of a KD45-model,
i.e. S is stable iff there is a KD45-model M = 〈W,R, V 〉 and (∃w ∈ W)S = {ϕ ∈
L� |M, w � �ϕ}.

3 A Digression: Regular and Classical Modal Logics

To be able to characterize the stable sets introduced in the subsequent sections, we have
to work on the proof theory of regular and classical modal logics with a notion of strong
provability from premises. The results are original, in the sense that they have not been
developed elsewhere, yet they are quite lengthy to be included in this extended abstract
and they are left for the full paper; a preliminary version can be found at [16]

For regular modal logics, we employ the axioms:

4�. �ϕ ⊃ �(�� ⊃ �ϕ)

B�. (ϕ ∧ ��) ⊃ �¬�¬ϕ
5�. (¬�ϕ ∧ ��) ⊃ �¬�ϕ
The first of them appears in [24] and all of them seem useful in our KR investigations.

Furthermore, for a q-frame F = 〈W,N,R〉, we employ following property:

(Uq) (∀w ∈ N)(∀v ∈W)wRv

We also use the following definitions for a regular modal logic Λ: a theory I is called
consistent with Λ (cΛ-theory) iff I �Λ ⊥, and T is called I-consistent with Λ (IcΛ-
theory) iff (∀n ∈ N, ∀ϕ0, . . . , ϕn ∈ T) I �Λ ϕ0 ∧ . . . ∧ ϕn ⊃ ⊥ - otherwise, T is
called IincΛ. T is called maximal I-consistent with Λ (mIcΛ-theory) iff T is IcΛ and
(∀ψ /∈ T) T ∪ {ψ} is IincΛ. Then, we can prove following facts:

Proposition 2. Let I be a cΛ-theory and Γ a mIcΛ-theory. Then
(i) Γ is closed under MP.
(ii) (∀ϕ ∈ L�)(ϕ ∈ Γ or ¬ϕ ∈ Γ)
(iii) (∀ϕ ∈ L�)(I �Λ ϕ⇒ ϕ ∈ Γ)
(iv) (∀ϕ ∈ L�)(ϕ ∧ ψ ∈ Γ ⇔ (ϕ ∈ Γ and ψ ∈ Γ))

Furthermore, using a typical Lindenbaum construction and the (appropriate version of
the) canonical model method, we can define the canonical model MΛ,I (for a regular
modal logic Λ and for a cΛ-theory I).

3 i.e. S = {ϕ ∈ L� | S �S5 ϕ}.

Stable Belief Sets Revisited 227

Definition 2. Let Λ be any regular modal logic and I be any cΛ-theory. The canonical
model MΛ,I for Λ and I is the Kripke q-model, which is defined as the quadruple
〈WΛ,I , NΛ,I , RΛ,I , V Λ,I〉, where:
(i) WΛ,I = {Γ ⊆ L� | Γ : mIcΛ}
(ii) NΛ,I = {Γ ∈WΛ,I | �� ∈ Γ}
(iii) (∀Γ,Δ ∈ WΛ,I)(ΓRΛ,I

Δ iff (∀ϕ ∈ L�)(�ϕ ∈ Γ⇒ ϕ ∈ Δ))
(iv) (∀p ∈ Φ)(V Λ,I(p) = {Γ ∈WΛ,I | p ∈ Γ})

We can prove the following characterization of a useful regular modal logic, namely
S5′

R = KT4�B�R

Proposition 3. S5′
R is strongly complete with respect to all q-frames, for which (Uq)

holds.

Actually, a more general result can be proved, which will be useful in subsequent
sections.

Proposition 4. Let I be a cΛ-theory. Then, (∀ϕ ∈ L�)

MΛ,I � ϕ ⇐⇒ I �Λ ϕ

About classical modal logics, due to space limitations, we can only mention that a
similar result can be proved for a classical logic Λ and for a corresponding strong notion
of RE-provability, having defined the appropriate canonical n-model:

Definition 3. Let Λ be a classical modal logic and I be a cΛ-theory. The canonical
model NΛ,I forΛ and I is the n-model, which is defined as the triple 〈WΛ,I, EΛ,I , V Λ,I〉,
where:
(i) WΛ,I = {Γ ⊆ L� | Γ : mIcΛ}
(ii) (∀Γ ∈ WΛ,I)(∀ϕ ∈ L�)(|ϕ|Λ,I ∈ EΛ,I(Γ) ⇐⇒ �ϕ ∈ Γ)

where |ϕ|Λ,I = {Γ ∈WΛ,I | ϕ ∈ Γ}
(iii) (∀p ∈ Φ)(V Λ,I(p) = {Γ ∈WΛ,I | p ∈ Γ})

4 RM-Stable Theories

Having set the appropriate background, we proceed to define our first variant of a stable
belief set by taking the most obvious road: substituting RMc for RNc in Stalnaker’s
definition.

Definition 4. A theory S ⊆ L� is called RM-stable iff

(i) PC ⊆ S and S is closed under MP
(ii) S is closed under rule RMc.

ϕ⊃ψ ∈ S
�ϕ⊃�ψ ∈ S

(iii) S is closed under rule NIc. ϕ /∈ S
¬�ϕ ∈ S

The first observation is that the axiom �� plays here a role similar to the one encoun-
tered in non-normal modal logics, where �� eliminates queer worlds and leads to the
realm of normal modal logics. Addition of �� to an RM-stable set leads to the classical
Stalnaker notion.

228 C.D. Koutras and Y. Zikos

Fact 2. A theory S is a Stalnaker stable set iff it is an RM-stable set containing ��.

From the proof-theoretic viewpoint, the following result shows that RM-stable sets
stand to the regular logic S5′

R, as classical Stalnaker (RN-)stable sets stand to S5.
The following theorem should be compared to theorem 1a), and it is stated without a
proof.

Theorem 3. a) If a set S is RM-stable, then it is closed under strong S5′
R provability.

In particular, it contains every instance of K, T, 4�, and B�.
b) If a set S is RM-stable and consistent, then it is a consistent with S5′

R theory (cS5′
R-

theory)

Representation theory for RM-stable sets. We can provide model-theoretic charac-
terizations of RM-stable theories in terms of q-models and n-models. We can set RM-
stable theories in an one-to-one-correspondence to theories of q-models consisting of a
cluster of normal worlds ‘seeing’ every non-normal world (if any). We can also charac-
terize RM-stable sets as the set of beliefs held within a normal world in such a q-model.

Theorem 4. Let S ⊆ L� be a consistent theory. S is RM-stable iff there is a q-model
M = 〈W,N,R, V 〉 satisfying property (Uq) s.t. Th(M) = S.

PROOF. (⇒) Since S is RM-stable, by Theor.3a), S contains any formula of the form
of T, 4� or B�. Hence, since S is consistent, by Theor.3b), S is a cS5′

R-theory. So,
model MS5′

R,S does exist and, by Prop.4, Th(MS5′
R,S) = {ϕ ∈ L� | S �S5′

R
ϕ}.

Consequently, by Theor.3a), Th(MS5′
R,S) = S.

Now, consider any Γ ∈ NS5′R,S and Δ ∈ W S5′R,S . For any ψ ∈ L� s.t. �ψ ∈ Γ,
since Γ is ScS5′R, ¬�ψ /∈ Γ. Suppose now that ¬�ψ were in S. Then, S �S5′

R
¬�ψ,

hence, by Prop.2(iii), ¬�ψ ∈ Γ, which is a contradiction. So ¬�ψ /∈ S. But, S is
RM-stable, so, by NIc, ψ ∈ S, hence, S �S5′

R
ψ, consequently, again by Prop.2(iii),

ψ ∈ Δ. So, by Def.2, ΓRS5′
R,S

Δ.
(⇐) (i) Since Th(M) contains every tautology inL� and is closed under (MP), Def.4(i)
is trivially established.
(ii)-RMc Let ϕ, ψ ∈ L� s.t. ϕ ⊃ ψ ∈ Th(M) and w ∈ W s.t. M, w � �ϕ. Then,
w ∈ N and (∀v ∈ W) wRv ⇒ M, v � ϕ. Therefore, since ϕ ⊃ ψ ∈ Th(M),
M, v � ψ, hence, M, w � �ψ. So, �ϕ ⊃ �ψ ∈ Th(M).
(iii)-NIc Let ϕ ∈ L� s.t. ϕ /∈ Th(M) i.e. there is v ∈ W s.t. M, v � ϕ. Let now be
any w ∈ W . If w ∈ W \N , then, by definition of q-models, M, w � ¬�ϕ. If w ∈ N ,
then again, since wRv and M, v � ϕ, M, w � ¬�ϕ.

So, ¬�ϕ ∈ Th(M).

The following characterization is the parallel to the characterization of Stalnaker stable
sets in terms of beliefs held ‘inside’ a KD45 situation, and as such, seems amenable to
generalization in multi-agent situations (as argued convincingly in [10]). Its proof can
be found in [16].

Proposition 5. Let S ⊆ L� be a consistent theory. S is RM-stable iff there is a
q-model M = 〈W,N,R, V 〉 and u ∈ N s.t. S = {ϕ ∈ L� | M, u � �ϕ} and
(∀w ∈ N)(∀v ∈ W \ {u})wRv.

Stable Belief Sets Revisited 229

By using Theorem 4, we also obtain a representation for RM-stable sets, in terms of
neighborhood semantics.

Proposition 6. Let S ⊆ L� be a consistent theory. S is RM-stable iff there is an n-
model N = 〈W,E, V 〉 s.t. Th(N) = S and (∀w ∈ W)(E(w) = ∅ or E(w) = {W}).

PROOF. (⇒) By Theor.4, there is a q-model M = 〈W,N,R, V 〉 s.t. Th(M) = S
and (∀w ∈ N)(∀v ∈ W)wRv. Consider now NM = 〈W,E, V 〉, the equivalent n-
model produced by M (see Def.1). By Prop.1 follows immediately that Th(NM) =
Th(M) = S. Furthermore, if w ∈ W \ N , then E(w) = ∅ and if w ∈ N , then
E(w) = {X ⊆W | Rw ⊆ X} = {W}, since (∀v ∈ W)wRv.

(⇐) (i) Since Th(N) contains every tautology in L� and is closed under (MP),
Def.4(i) is established. (ii)-RMc Let ϕ, ψ ∈ L� s.t. ϕ ⊃ ψ ∈ Th(N) and w ∈ W s.t.
N, w � �ϕ. Then, V (ϕ) ∈ E(w), hence, E(w) = {W} and V (ϕ) = W . Therefore,
since ϕ ⊃ ψ ∈ Th(N), (∀w ∈ W)N, w � ψ, i.e. V (ψ) = W , so, V (ψ) ∈ E(w),
hence, N, w � �ψ. So, �ϕ ⊃ �ψ ∈ Th(N). (iii)-NIc Let ϕ ∈ L� s.t. ϕ /∈ Th(N)
i.e. V (ϕ) �= W . Let now be any w ∈ W . E(w) = ∅ or E(w) = {W}, so in both cases,
V (ϕ) /∈ E(w). Hence, N, w � ¬�ϕ. So, ¬�ϕ ∈ Th(N).

Finally, we can obtain the following representation of Stalnaker stable sets, in terms of
n-models, given for the first time.

Proposition 7. Let S ⊆ L� be a consistent theory. S is stable iff there is an n-model
N = 〈W,E, V 〉 s.t. Th(N) = S and (∀w ∈W)E(w) = {W}.

5 RE-Stable Theories

Following a typical route, it is tempting to attempt weakening further the positive intro-
spection condition. Rule REc seems the obvious candidate, but we have soon to face
the obvious problem that the introspective reasoner should be able to distinguish tau-
tologies as equivalent formulae. We have then to consider the addition of �� and this
leads us to the following generic notion:

Definition 5. A theory S ⊆ L� is called RE-stable iff

(i) PC ⊆ S and S is closed under MP

(ii) �� ∈ S

(iii) S is closed under rule REc.
ϕ≡ψ ∈ S

�ϕ≡�ψ ∈ S

We can prove that RE-stable theories are consistent with strong provability in classical
modal logics:

Lemma 1. Let S be an RE-stable theory containing axioms A1, . . . ,An. Then
a) S is closed under strong A1 . . .AnC provability.
b) If S is also consistent, then it is a consistent with A1 . . .AnC theory (cA1 . . .AnC-
theory)

230 C.D. Koutras and Y. Zikos

But, it comes that by adding ��, we get nothing less than RNc, as in the original
definition.

Lemma 2. Any RE-stable theory is closed under RNc.

PROOF. Let S be an RE-stable theory and ϕ ∈ S. Since ϕ ⊃ (� ⊃ ϕ) ∈ S, by
Def.5(i), � ⊃ ϕ ∈ S. Furthermore, ϕ ⊃ � ∈ S, so, by Def.5(i), � ≡ ϕ ∈ S, hence, by
REc, �� ≡ �ϕ ∈ S, and, by Def.5(i), �� ⊃ �ϕ ∈ S, and finally, by Def.5(ii) and
(i), �ϕ ∈ S.

This means we have to proceed to different notions of negative introspection and by
doing so, we obtain two different notions of RE-stable sets.

5.1 REw-Stable Theories

We introduce the following context rule4 for negative introspection:

NIc−w.
¬ϕ /∈ S

�ϕ ∈ S or ¬�ϕ ∈ S

which ‘says’ that if ϕ is consistent with what is believed, something is known about it.

Definition 6. An RE-stable theory S is called REw-stable iff it is closed under NIc−w.

We readily prove the presence of axiom w5 and then, we can obtain a representation
theorem for REw-stable theories in terms of n-models.

Lemma 3. Every instance of axiomatic scheme w5 is contained in any REw-stable
theory.

PROOF. Let S be an REw-stable theory and ϕ ∈ L�.
If ¬ϕ ∈ S or �ϕ ∈ S, then, by Def.5(i), w5 ∈ S.
If ¬ϕ /∈ S and �ϕ /∈ S, then, by NIc−w, ¬�ϕ ∈ S, and , by Lem.2, �¬�ϕ ∈ S,
hence again, w5 ∈ S.

Theorem 5. Let S ⊆ L� be a consistent theory. S is REw-stable iff there is an n-
model N = 〈W,E, V 〉 s.t. Th(N) = S and (∀w ∈ W) W ∈ E(w) (1) and
(∀v ∈W)(E(v) \ E(w) ⊆ {∅}) (2)

PROOF. (⇒) Since S is REw-stable, by Lem.3, S contains w5, hence, since S is RE-
stable and consistent, by Lem.1b), S is a cw5C -theory. So, model Nw5C ,S does exist.
For simplicity, let us denote Nw5C ,S as N = 〈W,E, V 〉. Then, by Prop.4 (for classical
logics and RE-proofs), Th(N) = {ϕ ∈ L� | S �w5C

ϕ}. Consequently, by Lem.1a),
Th(N) = S. Now, fix any Γ ∈ W .
(1) By Def.5(i), � ∈ S, so, by Prop.2(iii), (∀Δ ∈ W)� ∈ Δ, hence, since every Δ

is a mScw5C -theory, |�|w5C ,S = W . But, by Def.5(ii), �� ∈ S, i.e., by Prop.2(iii),

4 Perhaps, it would be more appropriate to call this a postulate, rather than a (context) rule.
We wish however to stick with the tradition of modal nonmonotonic logic which stresses the
presence of a context in the involved inferences.

Stable Belief Sets Revisited 231

�� ∈ Γ, hence, by Def.3(ii), |�|w5C ,S ∈ E(Γ). Consequently, W ∈ E(Γ).
(2) Consider any Δ ∈ W and let Y ⊆ W s.t. Y ∈ E(Δ) but Y /∈ E(Γ). Then, by
Def.3(ii), there must be a ϕ ∈ L� s.t. Y = |ϕ|w5C ,S and �ϕ ∈ Δ (I)
But, since Y /∈ E(Γ), �ϕ /∈ Γ, hence, by Prop.2(iii), �ϕ /∈ S (II)

Suppose now, for the sake of contradiction, that Y �= ∅. Then, there is a Ξ ∈ Y .
Since Y = |ϕ|w5C ,S , ϕ ∈ Ξ, and since Ξ is consistent, ¬ϕ /∈ Ξ, so, by Prop.2(iii),
¬ϕ /∈ S (III)

Now, (II) and (III) imply by NIc−w, ¬�ϕ ∈ S, therefore, again by Prop.2(iii),
¬�ϕ ∈ Δ, hence, by (I), Δ is inconsistent, which is a contradiction. So, Y = ∅.

(⇐)(i) Since Th(N) contains every tautology in L� and is closed under (MP),
Def.5(i) is trivially established.(ii) Since V (�) = W and, by (1), (∀w ∈ W)W ∈
E(w), �� ∈ Th(N).(iii)-REc Let ϕ, ψ ∈ L� s.t. ϕ ≡ ψ ∈ Th(N). Then, V (ϕ) =
V (ψ), hence, (∀w ∈ W) (V (ϕ) ∈ E(w) ⇐⇒ V (ψ) ∈ E(w)), consequently,
�ϕ ≡ �ψ ∈ Th(N).NIc−w Let ϕ ∈ L� s.t. ¬ϕ /∈ Th(N) and �ϕ /∈ Th(N).
Then, V (¬ϕ) �= W and (∃w ∈ W) N, w � �ϕ, i.e. V (ϕ) �= ∅ and (∃w ∈
W)V (ϕ) /∈ E(w). Now, suppose for the sake of contradiction, that there is a v ∈ W
s.t. V (ϕ) ∈ E(v). Then, V (ϕ) ∈ E(v) \ E(w), hence, by (2), V (ϕ) = ∅, which is
a contradiction. So, (∀v ∈ W) V (ϕ) /∈ E(v), i.e. (∀v ∈ W) N, v � ¬�ϕ, hence
¬�ϕ ∈ Th(N).

5.2 REp-Stable Theories

We can alternatively consider the following rule for negative introspection:

NIc−p.
ϕ /∈ S and ¬ϕ /∈ S

¬�ϕ ∈ S

which ‘says’ that if nothing is known to hold about ϕ, then it is known that ϕ is not
known.

Definition 7. An RE-stable theory S is called REp-stable iff it is closed under NIc−p.

This notion is stronger than the previous one and contains every instance of axiom p5,
introduced in [15].

Fact 6. Every REp-stable theory is REw-stable.

Lemma 4. Every instance of axiomatic scheme p5 (introduced and examined in [15])
is contained in any REp-stable theory.

Furthermore, we can prove a representation theorem for REp-stable sets.

Theorem 7. Let S ⊆ L� be a consistent theory. S is REp-stable iff there is an n-model
N = 〈W,E, V 〉 s.t. Th(N) = S and (∀w ∈W)(E(w) = {W} or E(w) = {∅,W}).

PROOF. (⇒) Since S is REp-stable, by Lem.4, S contains p5, hence, since S is RE-
stable and consistent, by Lem.1b), S is a cp5C -theory. So, model Np5C ,S does exist.
For simplicity, let us denote Np5C ,S as N = 〈W,E, V 〉. Then, by Prop.4 (for classical

232 C.D. Koutras and Y. Zikos

logics and RE-proofs), Th(N) = {ϕ ∈ L� | S �p5C
ϕ}. Consequently, by Lem.1a),

Th(N) = S. Now, let Γ ∈ W . Exactly as in Theor.5(1), one can prove that W ∈ E(Γ).
Consider now any Y ∈ E(Γ) s.t. Y �= W . Then, by Def.3(ii), there must be a ϕ ∈ L�

s.t. Y = |ϕ|p5C ,S and �ϕ ∈ Γ (I) But, since |ϕ|p5C ,S ⊂ W , there is a mScp5C -
theory Δ s.t. Δ /∈ |ϕ|p5C ,S, hence, ϕ /∈ Δ, consequently, by Prop.2(iii), ϕ /∈ S (II)
Suppose now, for the sake of contradiction, that Y �= ∅. Then, there is a Ξ ∈ Y .
Since Y = |ϕ|p5C ,S, ϕ ∈ Ξ, and since Ξ is consistent, ¬ϕ /∈ Ξ, so, by Prop.2(iii),
¬ϕ /∈ S (III). Now, (II) and (III) imply by NIc−p, ¬�ϕ ∈ S, therefore, again
by Prop.2(iii), ¬�ϕ ∈ Γ, hence, by (I), Γ is inconsistent, which is a contradiction. So,
Y = ∅.

(⇐) (i) – (iii)-REc can be proved exactly as in Theor.5. So, let us prove property
NIc−p. Let ϕ ∈ L� s.t. ϕ /∈ Th(N) and ¬ϕ /∈ Th(N). Then, V (ϕ) �= W and V (ϕ) �=
∅, hence, for any w ∈ W , since E(w) = {W} or E(w) = {∅,W}, V (ϕ) /∈ E(w),
consequently, (∀w ∈ W) N, w � ¬�ϕ, hence ¬�ϕ ∈ Th(N).

Theorem 7 and Fact 6 allow us to prove that REp-stable (and hence, REw-stable) theo-
ries do not suffer from the presence of all known epistemic axioms.

Proposition 8. There is an REp-stable theory (which is also REw-stable), which does
not contain K, T, 4 and 5.

6 Related Work - Future Research

The notion of a stable belief set has been very useful in modal nonmonotonic reasoning.
Investigations on stable sets have mainly focused on identifying their technical proper-
ties and representing them with the aid of model-theoretic constructions known from
classical modal logic. It seems natural however to investigate, both from the logician’s
and the KR engineer’s viewpoint, what can be obtained by loosening the conditions in
the original definition of R. Stalnaker. To the best of our knowledge, it is the first time
that notions of stable sets are investigated by varying the positive and negative intro-
spection closure conditions. Up to now, there have been approaches which build belief
sets by changing classical logic in condition (i) (replacing Modus Ponens by tautologi-
cal entailment in [19], or adopting intuitionistic logic in [1]), or generalizing the notion
of stability in a way somewhat related to the second question of our introduction [14].

The basic motivation of the research reported in our paper, is to define more plausible
notions of an epistemic state and the ultimate goal is to employ these notions in new
mechanisms for nonmonotonic modal logics, à la McDermott and Doyle. The latter
goal is the first step in the roads of future research, along with the investigation on
the assessment of epistemic states which emerge if we adopt even weaker notions of
positive introspection, for instance by employing a context-dependent version of Oscar
Becker’s rule which has been employed in the study of modal systems which go some
way towards solving the logical omniscience problem [6].

Acknowledgements. The authors wish to thank the three anonymous JELIA 2010 re-
viewers of the paper for raising important questions, providing valuable advice on the
presentation of the results and pointing to interesting recent articles in the bibliography.

Stable Belief Sets Revisited 233

References

1. Amati, G., Carlucci Aiello, L., Pirri, F.: Intuitionistic autoepistemic logic. Studia Logica 59
(1997)

2. Aucher, G.: An internal version of epistemic logic. Studia Logica 94(1), 1–22 (2010)
3. Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic. Cambridge Tracts in Theoretical

Computer Science, vol. 53. Cambridge University Press, Cambridge (2001)
4. Chellas, B.F.: Modal Logic, an Introduction. Cambridge University Press, Cambridge (1980)
5. Fagin, R., Halpern, J., Moses, Y., Vardi, M.: Reasoning about Knowledge. MIT Press, Cam-

bridge (2003)
6. Fitting, M.C.: Basic Modal Logic. In: Gabbay, et al. (eds.) [7], vol. 1, pp. 368–448 (1993)
7. Gabbay, D.M., Hogger, C.J., Robinson, J.A.: Handbook of Logic in Artificial Intelligence

and Logic Programming. Oxford University Press, Oxford (1993)
8. Halpern, J.: A critical reexamination of default logic, autoepistemic logic and only-knowing.

Computational Intelligence 13(1), 144–163 (1997)
9. Halpern, J.Y., Moses, Y.: A guide to completeness and complexity for modal logics of knowl-

edge and belief. Artificial Intelligence 54(2), 319–379 (1992)
10. Halpern, J.Y.: A theory of knowledge and ignorance for many agents. Journal of Logic and

Computation 7(1), 79–108 (1997)
11. Hansen, H.H., Kupke, C., Pacuit, E.: Neighbourhood Structures: Bisimilarity and Basic

Model Theory. Logical Methods in Computer Science 5(2:2), 1–38 (2009)
12. Hintikka, J.: Knowledge and Belief: an Introduction to the Logic of the two notions. Cornell

University Press, Ithaca (1962)
13. Hughes, G.E., Cresswell, M.J.: A New Introduction to Modal Logic. Routledge (1996)
14. Jaspars, J.: A generalization of stability and its application to circumscription of positive

introspective knowledge. In: Schönfeld, W., Börger, E., Kleine Büning, H., Richter, M.M.
(eds.) CSL 1990. LNCS, vol. 533, pp. 289–299. Springer, Heidelberg (1991)

15. Koutras, C.D., Zikos, Y.: On a modal epistemic axiom emerging from McDermott-Doyle
logics. Fundamenta Informaticae 96(1–2), 111–125 (2009)

16. Koutras, C. D., Zikos, Y.: Stable belief sets revisited, Technical Report, draft version (May
2010), available through the authors’ web pages, in particular,
http://users.att.sch.gr/zikos/index/logic/KZ-SBSr-extended.pdf

17. Lenzen, W.: Recent Work in Epistemic Logic. North-Holland, Amsterdam (1978)
18. Lenzen, W.: Epistemologische Betractungen zu [S4,S5]. Erkenntnis 14, 33–56 (1979)
19. Lakemeyer, G., Levesque, H.J.: A Tractable Knowledge Representation Service with Full In-

trospection. In: Vardi, M. (ed.) Proceedings of the 2nd Conference on Theoretical Aspects of
Reasoning about Knowledge, TARK 1988, pp. 145–159. Morgan Kaufmann, San Francisco
(1988)

20. Marek, V.W., Schwarz, G.F., Truszczyński, M.: Modal non-monotonic logics: Ranges, char-
acterization, computation. Journal of the ACM 40, 963–990 (1993)

21. Marek, V.W., Truszczyński, M.: Non-Monotonic Logic: Context-dependent Reasoning.
Springer, Heidelberg (1993)

22. McDermott, D., Doyle, J.: Non-monotonic logic I. Artificial Intelligence 13, 41–72 (1980)
23. Moore, R.C.: Semantical considerations on non-monotonic logics. Artificial Intelligence 25,

75–94 (1985)
24. Segerberg, K.: An essay in Clasical Modal Logic. Filosofiska Studies, Uppsala (1971)
25. Stalnaker, R.: A note on non-monotonic modal logic. Artificial Intelligence 64, 183–196

(1993), Revised version of the unpublished note originally circulated in 1980

http://users.att.sch.gr/zikos/index/logic/KZ-SBSr-extended.pdf

Efficient Inferencing for OWL EL

Markus Krötzsch

Institute AIFB, Karlsruhe Institute of Technology, DE
mak@aifb.uni-karlsruhe.de

Abstract. We develop inferencing methods for SROEL(�,×) – a DL that sub-
sumes the main features of the W3C recommendation OWL EL –, and present
a framework for studying materialisation calculi based on datalog. The latter is
used to investigate the resource requirements for inferencing, and we can show
that certain SROEL(�,×) feature combinations must lead to increased space up-
per bounds in any materialisation calculus, suggesting that efficient implementa-
tions are easier to obtain for suitably chosen fragments of SROEL(�,×).

1 Introduction

The recent OWL 2 W3C recommendation includes the lightweight ontology language
OWL EL [9] which is semantically based on an extension of the EL++ description logic
(DL). It is widely assumed that inferencing in OWL EL is possible in polynomial time,
but it is not obvious how to extend existing reasoning procedures for EL++ accordingly
[2]. In this paper, we set out to close this gap by developing suitable inferencing cal-
culi for the DL SROEL(�,×) which can be considered as an extension of the tractable
DL EL++ with local reflexivity (Self), conjunctions of roles, and concept products. The
latter two features generalise role disjointness, the universal (top) role, and admissible
range restrictions as introduced in OWL EL. Concrete domains (datatypes) hardly in-
teract with the additional features of SROEL(�,×) and are not considered in this paper,
though the according mechanisms used in [2] could be lifted to SROEL(�,×).

Our second main contribution is to assess the efficiency of the proposed calculi. Infer-
encing for EL-type DLs often suggests a materialisation-based (or consequence-driven)
implementation, where all deductions are computed simultaneously in a bottom-up
fashion. The number of inferable facts is an important measure of efficiency in this
case, and we present a formalisation of materialisation calculi to relate it to the space
complexity of datalog reasoning. Since upper space bounds for datalog are exponential
in the arity of inferred predicates, our goal is to find materialisation calculi where these
arities are low. We are able to show that there are limits to such optimisation: some
inferencing tasks intrinsically require predicates of higher arities than others.

We present four inferencing calculi: a materialisation calculus for instance checking
in SROEL(�,×) in Section 3, and three calculi for classification in SROEL(�,×) and
two of its fragments in Section 4. Thereafter, in Section 5, we show that the arity of
inferred predicates is minimal for each of the presented calculi. We provide extended
sketches for some of the more interesting proofs to the extent that space permits. De-
tailed proofs for all results are found in the accompanying technical report [6].

T. Janhunen and I. Niemelä (Eds.): JELIA 2010, LNAI 6341, pp. 234–246, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Efficient Inferencing for OWL EL 235

Table 1. Syntax and semantics of SROEL(�,×) axioms

Axiom Syntax Semantics for an interpretation I = 〈ΔI, ·I〉
concept assertion C(a) aI ∈ CI

role assertion R(a, b) 〈aI, bI〉 ∈ RI

concept inclusion (GCI) C � D CI ⊆ DI

role inclusion R � T RI ⊆ TI

generalised role inclusion R ◦ S � T {〈x, z〉 | 〈x, y〉 ∈ RI, 〈y, z〉 ∈ S I for some y} ⊆ TI

role conjunction S 1 � S 2 � T S I1 ∩ S I2 ⊆ TI

concept product C × D � T CI × DI ⊆ TI

R � C × D TI ⊆ CI × DI

C,D ∈ C, R, S (i),T ∈ NR, a, b ∈ NI

2 Preliminaries

This section summarises the basic notions from DL and datalog that are used in this
paper. Readers who are not familiar with these topics may find extended introductory
definitions in [6]. The main DL studied herein is SROEL(�,×) which subsumes all
semantic features of OWL EL that are not related to datatypes (concrete domains).
SROEL(�,×) is based on three disjoint finite sets of individual names NI, concept
names NC, and role names NR. The set C of SROEL(�,×) concept expressions then is
given as C� � | ⊥ | NC | C � C | ∃NR.C | ∃NR.Self | {NI}. The set of SROEL(�,×)
axioms is defined as in Table 1. One may distinguish axioms of ABox (assertional ax-
ioms), TBox (terminological axioms: GCIs), and RBox (axioms related to roles).

Knowledge bases are sets of axioms that satisfy some additional properties. Consider
a set KB of SROEL(�,×) axioms. We inductively define the set of non-simple roles of
KB to contain all roles T for which there is an axiom R◦S � T ∈ KB, or an axiom R � T
such that R is non-simple. A role that is not non-simple is called simple. Moreover,
given a role name R, we define ran(R) to denote the set of concept expressions D ∈ C
for which KB contains axioms R � S 1, . . . , S n−1 � S n and S n � C × D for some
S 1, . . . , S n ∈ NR and n ≥ 0. The set KB is a SROEL(�,×) knowledge base if the
following restrictions are satisfied:

– all roles S occurring in expressions ∃S .Self ∈ KB are simple,
– all roles S 1, S 2 occurring in axioms S 1 � S 2 � T ∈ KB are simple,
– for every axiom R ◦ S � T ∈ KB we have ran(T) ⊆ ran(S), and
– for every axiom S 1 � S 2 � T ∈ KB we have ran(T) ⊆ ran(S 1) ∪ ran(S 2).

Note that we do not impose the structural restrictions of RBox regularity here [5] which
also apply to OWL DL (and hence to OWL EL) ontologies, since these are not needed
for efficient reasoning in SROEL(�,×).

The semantics of SROEL(�,×) is specified by defining DL interpretations I =
〈ΔI, ·I〉 as usual. Here, we merely recall the semantics of axioms in Table 1; see [6]
for a complete definition of SROEL(�,×) semantics and entailment. Note that concept
products on the left-hand side allow us to define the universal (top) role U with an axiom
� × � � U. Since we can also define the empty (bottom) role N using ∃N.� � ⊥,

236 M. Krötzsch

conjunctions of (simple) roles are a generalisation of disjointness of (simple) roles:
the axiom R � S � N declares S and R to be disjoint. In the absence of other role
conjunctions, our requirements on concept products in SROEL(�,×) knowledge bases
agree with the known admissibility requirements for range restrictions in EL++ [3].

Our formalisation of inferencing calculi is based on the simple rule language datalog
[1]. A signature of datalog is a tuple 〈C,P〉, where C is a finite set of constants, and P
is a finite set of predicates, and each predicate p ∈ P has a fixed arity ar(p) ≥ 0. We
assume P to be a disjoint union Pi∪Pe of IDB predicates Pi and EDB predicates Pe.1 A
countably infinite set of variables is denoted by V. Elements of C∪V are called terms.

A datalog atom over a signature 〈C,P〉 is an expression p(t1, . . . , tn) where p ∈ P
with ar(p) = n, and ti ∈ C ∪V for i = 1, . . . , n. An IDB (EDB) atom is one that uses an
IDB (EDB) predicate. A datalog rule is a formula of the form B1∧ . . .∧ Bl → H where
Bi and H are datalog atoms, and H is an IDB atom. The premise of a rule is also called
its body, and the conclusion is called its head. A datalog program P is a set of datalog
rules. A fact is a ground, i.e. variable-free, rule with an empty body.

A ground substitutionσ for a signature 〈C,P〉 is a functionσ : V→ C. Substitutions
are extended to datalog atoms by setting σ(p(t1, . . . , tn)) � p(σ(t1), . . . , σ(tn)), and
σ(p(t1, . . . , tn)) is called a ground instance of p(t1, . . . , tn) in this case.

A proof tree for a datalog program P is a structure 〈N, E, λ〉 where N is a finite set
of nodes, E ⊆ N × N is a set of edges of a directed tree, and λ is a labelling function
that assigns a ground datalog atom to each node, where the following holds: for each
node n ∈ N, there is a rule B1 ∧ . . . ∧ Bl → H ∈ P and a ground substitution σ such
that λ(n) = σ(H) and the set of child nodes {m | 〈n,m〉 ∈ E} is of the form {m1, . . . ,ml}
where λ(mi) = σ(Bi) for each i = 1, . . . , l.

A ground atom H is a consequence of a datalog program P if there is a proof tree for
P that has H as the label λ(r) of its root node r.

Definition 1. Given a datalog signature 〈C,P〉, a renaming ρ is a function ρ : C → C.
To extend ρ to ground datalog atoms we set ρ(p(t1, . . . , tn)) � p(ρ(t1), . . . , ρ(tn)).

3 Instance Checking for SROEL(�,×)

We now introduce a calculus for solving the inference task of instance checking – de-
ciding if C(a) is entailed for any C ∈ NC, a ∈ NI – for SROEL(�,×). In Section 5 we
show its optimality in the sense that no other materialisation calculus can be better in
terms of certain characteristics. To prepare this study of calculi, it makes sense to seek
a uniform presentation for deduction calculi that have been proposed for EL-type DLs,
e.g., in [2,4]. This motivates our use of datalog in this section.

Intuitively speaking, a materialisation calculus is a system of deduction rules for de-
riving logical consequences which – as opposed to a complete inferencing algorithm –
does not specify a control flow or processing strategy for evaluating these rules. Deduc-
tion rules can be denoted in many forms, e.g. using textual if-then descriptions [2], in

1 This terminology originates from the field of deductive databases where one distinguishes
extensional and intensional data base.

Efficient Inferencing for OWL EL 237

C(a) �→ {subClass(a,C)} R(a, b) �→ {subEx(a,R, b, b)} a ∈ NI �→ {nom(a)}
� � C �→ {top(C)} A � ⊥ �→ {bot(A)} A ∈ NC �→ {cls(A)}
{a} � C �→ {subClass(a,C)} A � {c} �→ {subClass(A, c)} R ∈ NR �→ {rol(R)}

A � C �→ {subClass(A,C)} A � B � C �→ {subConj(A, B,C)}
∃R.Self � C �→ {subSelf(R,C)} A � ∃R.Self �→ {supSelf(A,R)}
∃R.A � C �→ {subEx(R,A,C)} A � ∃R.B �→ {supEx(A,R, B,auxA�∃R.B)}

R � T �→ {subRole(R,T)} R ◦ S � T �→ {subRChain(R, S ,T)}
R � C × D �→ {supProd(R,C,D)} A × B � R �→ {subProd(A, B,R)}
R � S � T �→ {subRConj(R, S ,T)}

A, B,C,D ∈ NC, R, S ,T ∈ NR, a, b, c ∈ NI

Fig. 1. Input translation Pinst

tabular form [9], or as sequent calculus style derivation rules [4]. Premises and conclu-
sions of rules often consist of logical formulae, but may also contain auxiliary expres-
sions that are relevant to the calculus.2 A deduction rule can then be viewed as a schema
for deriving new expressions from a finite set of given expressions. In particular, the ap-
plicability of rules is normally not affected by uniform renamings of signature symbols
in premise and conclusion.

Deduction rules in this sense can be denoted as datalog rules where concrete logi-
cal sentences are represented as ground facts that use signature symbols in term posi-
tions. For example, we can represent A � B as subclassOf(A, B), and introduce a rule
subclassOf(x, y)∧ subclassOf(y, z)→ subclassOf(x, z). This unifies the presenta-
tion of diverse calculi, and allows us to exploit techniques from deductive databases. For
connecting datalog to DL, we require an input translation from individual DL axioms
to (sets of) datalog EDB facts. This translations is also defined for signature symbols,
since symbols must generally be “loaded” into datalog to be able to derive conclusions
about them, regardless of whether the symbols occurred in input axioms or not. A for-
malisation of these ideas is given later in Definition 2.

Calculi in the above sense generally suggest materialisation-based (or consequence-
driven) reasoning: after translating a knowledge base to datalog facts, all consequences
of these facts under the deduction rules can be computed in a bottom-up fashion, and
all supported entailments can then be checked without further recursive computation.
This contrasts with other reasoning principles such as the tableaux method where just a
single entailment is checked in one run of the algorithm.

It is not hard to formulate the deduction algorithms presented for EL-type logics in
[2] and [4] using datalog rules. The calculus we present here, however, is derived from
a datalog reduction introduced in [8] for a rule language based on EL++. This approach
can be modified to cover SROEL(�,×) and to use a fixed set of datalog rules to yield
a materialisation calculus in our sense. For simplicity, the following calculus only con-
siders SROEL(�,×) axioms of the basic forms in Fig. 1. SROEL(�,×) axioms can be
translated to such normalised axioms in linear time so that all entailments of the input
knowledge base are preserved [6].

2 For instance, the calculus in [2] uses auxiliary statements A�R B for A, B ∈ NC, R ∈ NR.

238 M. Krötzsch

(1) nom(x)→ inst(x, x)
(2) nom(x) ∧ triple(x, v, x)→ self(x, v)
(3) top(z) ∧ inst(x, z′)→ inst(x, z)
(4) bot(z) ∧ inst(u, z) ∧ inst(x, z′) ∧ cls(y)→ inst(x, y)
(5) subClass(y, z) ∧ inst(x, y)→ inst(x, z)
(6) subConj(y1, y2, z) ∧ inst(x, y1) ∧ inst(x, y2)→ inst(x, z)
(7) subEx(v, y, z) ∧ triple(x, v, x′) ∧ inst(x′, y)→ inst(x, z)
(8) subEx(v, y, z) ∧ self(x, v) ∧ inst(x, y)→ inst(x, z)
(9) supEx(y, v, z, x′) ∧ inst(x, y)→ triple(x, v, x′)
(10) supEx(y, v, z, x′) ∧ inst(x, y)→ inst(x′, z)
(11) subSelf(v, z) ∧ self(x, v)→ inst(x, z)
(12) supSelf(y, v) ∧ inst(x, y)→ self(x, v)
(13) subRole(v,w) ∧ triple(x, v, x′)→ triple(x,w, x′)
(14) subRole(v,w) ∧ self(x, v)→ self(x,w)
(15) subRChain(u, v,w) ∧ triple(x, u, x′) ∧ triple(x′, v, x′′)→ triple(x,w, x′′)
(16) subRChain(u, v,w) ∧ self(x, u) ∧ triple(x, v, x′)→ triple(x,w, x′)
(17) subRChain(u, v,w) ∧ triple(x, u, x′) ∧ self(x′, v)→ triple(x,w, x′)
(18) subRChain(u, v,w) ∧ self(x, u) ∧ self(x, v)→ triple(x,w, x)
(19) subRConj(v1, v2,w) ∧ triple(x, v1, x′) ∧ triple(x, v2, x′)→ triple(x,w, x′)
(20) subRConj(v1, v2,w) ∧ self(x, v1) ∧ self(x, v2)→ self(x,w)
(21) subProd(y1, y2,w) ∧ inst(x, y1) ∧ inst(x′, y2)→ triple(x,w, x′)
(22) subProd(y1, y2,w) ∧ inst(x, y1) ∧ inst(x, y2)→ self(x,w)
(23) supProd(v, z1, z2) ∧ triple(x, v, x′)→ inst(x, z1)
(24) supProd(v, z1, z2) ∧ self(x, v)→ inst(x, z1)
(25) supProd(v, z1, z2) ∧ triple(x, v, x′)→ inst(x′, z2)
(26) supProd(v, z1, z2) ∧ self(x, v)→ inst(x, z2)
(27) inst(x, y) ∧ nom(y) ∧ inst(x, z)→ inst(y, z)
(28) inst(x, y) ∧ nom(y) ∧ inst(y, z)→ inst(x, z)
(29) inst(x, y) ∧ nom(y) ∧ triple(z, u, x)→ triple(z, u, y)

Fig. 2. Deduction rules Pinst

Theorem 1. Consider the materialisation calculus Kinst with input translation Iinst as in
Fig. 1, and derivation rules Pinst as in Fig. 2. For a knowledge base KB such that Iinst(α)
is defined for all α ∈ KB, set P(KB) � Pinst ∪⋃α∈KB Iinst(α) ∪⋃s∈NI∪NC∪NR

Iinst(s).
For all C ∈ NC, and a ∈ NI, KB entails C(a) if and only if P(KB) entails inst(a,C),

whenever P(KB) is defined. Thus Kinst provides a materialisation calculus for instance
checking for SROEL(�,×) knowledge bases within which all axioms are normalised.

The IDB predicates inst, triple, and self in Pinst correspond to ABox axioms for
atomic concepts, roles, and concepts ∃R.Self, respectively. Rule (1) serves as an ini-
tialisation rule that accounts for the first inst facts to be derived. Rule (2) speci-
fies the (only) case where reflexive triple facts lead to self facts. The rules (3) to
(26) capture expected derivations for each of the axiom types as encoded by the EDB
predicates. Rule (4) checks for global inconsistencies, and would typically not be ma-
terialised in implementations since its effect can directly be taken into account during
entailment checking. Rules (9) and (10) make use of auxiliary constants auxA�∃R.B for
handling existentials. Roughly speaking, each such constant represents the class of all

Efficient Inferencing for OWL EL 239

role successors generated by the axiom from which it originates; see [6] for details. The
remaining rules (27) to (29) encode equality reasoning that is relevant in the presence
of nominals where statements inst(a, b) with a, b ∈ NI encode equality of a and b.

Axiom normalisation and the computation of Iinst can be accomplished in linear time,
and the time for reasoning in datalog is polynomial w.r.t. the size of the collection of
ground facts. Together with the known P-hardness of EL++ [2], we obtain the following
result, of which no formal proof seems to have been published so far:

Corollary 1. Instance checking in SROEL(�,×) and in OWL EL without datatype
properties is P complete w.r.t. the size of the knowledge base.

This result can be extended to OWL EL with datatype properties along the lines of
datatype reasoning in EL++ [2], but this is not implied by the above theorem. The proof
of Theorem 1 is found in [6]. Completeness is obtained by transforming models of
datalog programs to corresponding models of DL knowledge bases, part of which is to
show that equality reasoning really suffices to establish a congruence between elements
of the domain. Soundness is shown by interpreting the meaning of datalog atoms in
terms of DL, and showing inductively that each rule application preserves soundness
of this interpretation. This is most interesting for rules (19) and (25) where the result
hinges upon the restrictions on role conjunction and concept products in SROEL(�,×).

4 Classification of SROEL(�,×) Knowledge Bases

The materialisation calculus Kinst of Theorem 1 solves the instance checking prob-
lem for SROEL(�,×). A calculus for checking satisfiability is easily derived since a
SROEL(�,×) knowledge base is inconsistent if and only if Kinst infers a fact inst(x, z)
where bot(z) holds. In this section, we ask how to obtain calculi for classification – the
computation of all subsumptions of atomic classes implied by a knowledge base.

Class subsumption, too, can be reduced to instance retrieval: to check A � B, one
introduces a new individual c and adds an assertion A(c); then the subsumption holds if
the modified knowledge base entails B(c). This reduction requires the knowledge base
to be modified, leading to new entailments, possibly even to global inconsistency. Thus
Kinst cannot directly be used for classification, since it is not feasible to introduce test
individuals c for all (atomic) classes at load time so as to materialise all subsumptions
in parallel. Rather, one would have to use a separate run of Kinst for each subclass A to
compute all entailments of the form A � B.

This approach allows us to derive a sound and complete materialisation calculus for
materialisation in SROEL(�,×) by “internalising” the runs of Kinst by extending all
IDB predicates with an additional parameter to encode the test assumption under which
this fact can be inferred. Our assumptions have the form A(c), but the name of c is not
essential. So we re-use the datalog constant A as the test instance of class A, such that
the additional parameter of IDB atoms can simply be a concept name A. The proof of
the following theorem is immediate from this discussion.

Theorem 2. Consider the materialisation calculus Ksc with input translation Isc de-
fined like Iinst in Fig. 1 and datalog program Psc containing the following rules:

240 M. Krötzsch

– for each rule r ∈ Pinst (Fig. 2), a rule r′ obtained from r by adding a new body
atom cls(q), and replacing each IDB atom inst(x, y) (triple(x, y, z), self(x, y))
by an atom inst_sc(x, y, q) (triple_sc(x, y, z, q), self_sc(x, y, q)), where q is a
variable not occurring in r,

– the additional rule cls(q)→ inst_sc(q, q, q).

For a knowledge base KB such that Isc(α) is defined for all α ∈ KB, set P(KB) � Psc ∪⋃
α∈KB Isc(α)∪⋃s∈NI∪NC∪NR

Isc(s). Then for all A, B ∈ NC, KB entails A � B if and only
if P(KB) entails inst_sc(A, B, A), whenever P(KB) is defined. Thus Ksc provides a
materialisation calculus for subsumption checking for SROEL(�,×) knowledge bases
within which all axioms are normalised.

It must be noted that Ksc is not very efficient since deductions that are globally true
are inferred under each local assumption q independently. This means that the number
of globally derived facts can multiply by the number of class names in the signature,
e.g. by more than 300,000 for the popular SNOMED CT ontology. Our formalisation
of materialisation calculi provides a direct measure of this increase: the maximal arity
of IDB predicates in Ksc is four while it had been three in Kinst, leading to potentially
higher space requirements for materialised derivations. Implementations may of course
achieve lower space bounds by using suitable optimisations; yet standard implemen-
tation techniques for datalog, such as semi-naive materialisation, are sensitive to the
number of parameters in IDB predicates. In developing the database-driven reasoner
Orel [7], we also experienced major runtime penalties associated with higher arities
due to the larger numbers of inferences that must be considered in each derivation step.

The arity of IDB predicates thus is an important measure for the efficiency of a
materialisation calculus, and we will denote this parameter as the arity of a calculus
and speak of binary/ternary/n-ary materialisation calculi. The search for more efficient
materialisation calculi can now be formalised as the task of finding a ternary or binary
calculus that is sound and complete for SROEL(�,×) classification. Unfortunately, as
shown in Section 5, such a calculus cannot exist. To illustrate that this is not obvious,
we now present a classification calculus of lower arity for a fragment of SROEL(�,×).

We now develop a ternary materialisation calculus that supports role chains but no
�, ⊥, nominal classes, and concept products on the left-hand side of axioms. The in-
put translation can remain as in Fig. 1 but without the cases that involve the excluded
features. The EDB predicates top, bot, and subProd are no longer used.

A set of rules is developed by restricting the rules of Ksc of Theorem 2. We use the
numbers as in Fig. 2 for referring to the rules obtained from Kinst. Rules (3), (4), (21),
and (22) are no longer needed due to the restriction of EDB predicates. Without nominal
classes, we find that all derivations inst_sc(x, y, q) are such that y is a DL class name,
or y is a DL individual name and x = y. This is not hard to verify inductively by
considering each rule, and the symbols used in relevant EDB facts. This shows that
rules (27), (28), and (29) are obsolete as well. As shown in [6], the essential feature of
the remaining rule set is that the additional parameter q that has been introduced for Ksc

above is no longer required for obtaining a sound and complete materialisation calculus.

Theorem 3. Consider the materialisation calculus Kscc with Iscc defined like Iinst in
Fig. 1 but undefined for all axioms that use nominal classes, �, ⊥, or concept products

Efficient Inferencing for OWL EL 241

on the left-hand side, and the program Pscc consisting of the rules (1), (2), (5)–(20), and
(23)–(26) of Fig. 2 together with a new rule cls(z)→ inst(z, z).

For a knowledge base KB such that Iscc(α) is defined for all α ∈ KB, set P(KB) �
Pscc ∪⋃α∈KB Iscc(α) ∪⋃s∈NI∪NC∪NR

Iscc(s). Then for all A, B ∈ NC, KB entails A � B if
and only if P(KB) entails inst(A, B), whenever P(KB) is defined. Thus Kscc provides a
materialisation calculus for subsumption checking for SROEL(�,×) knowledge bases
that contain only � (for concepts and roles), ∃, Self, ◦, and concept products on the
right-hand side.

In terms of OWL 2, the DL of the previous theorem covers all OWL EL ontologies with-
out datatype properties and the constructs owl:Thing, owl:topObjectProperty,
owl:Nothing, owl:bottomObjectProperty, objectHasValue and objectOneOf.

It is not hard to further simplify Kscc for the case that no role chains occur
in the knowledge base, leading to a binary classification calculus for normalised
SROEL(�,×) knowledge bases that contain only � (for concepts and roles), ∃, Self,
and concept products on the right-hand side. For reasons of space, the calculus has
been removed from the final version of this paper; it can still be found in [6]. A similar
approach was used to optimise a classification calculus for ELH presented in [4].

5 Minimal Arities of Materialisation Calculi

The previously discussed materialisation calculi for SROEL(�,×) featured different
arities: while some reasoning tasks could be solved by binary and ternary calculi, our
classification calculus for SROEL(�,×) is 4-ary. We have argued above that lower
arities are important for efficient processing, so it is desirable to develop materialisa-
tion calculi of minimal arity. In this section, we establish lower bounds on the arity of
materialisation calculi for various reasoning problems. This requires a concrete under-
standing of what a materialisation calculus is. Generalising the properties of the calculi
discussed above, we obtain the following formalisation of this notion.

Definition 2. A materialisation calculus K is a tuple K = 〈I, P,O〉 where I and O are
partial functions, and P is a set of datalog rules, such that

1. given an axiom or signature symbol α, I(α) is either undefined or a set of datalog
facts over EDB predicates,

2. given an axiom α, O(α) is either undefined or a datalog fact over an IDB predicate,
3. the set of EDB and IDB predicates used by I, P, and O is fixed and finite,
4. P contains no constant symbols,
5. all constant symbols used in I(α) or O(α) for some axiom (or signature symbol)
α are either signature symbols that appear in (or are equal to) α, or constants of
the form auxαi with i ≥ 0, where all constant names auxαi are mutually distinct and
unequal to any DL signature symbol,

6. I and O do not depend on concrete signature symbols, i.e. for a renaming ρ of sig-
nature symbols that maps individual/concept/role names to individual/concept/role
names, we find I(ρ(α)) = ρ(I(α)) and O(ρ(α)) = ρ(O(α)) if ρ(auxαi) = auxρ(α)

i .

242 M. Krötzsch

We extend I to knowledge bases KB by setting I(KB) �
⋃
β∈KB I(β) if I(β) is defined

for all β ∈ KB and undefined otherwise. We extend I to sets of signature symbols S by
setting I(S) �

⋃
s∈S ,I(s) defined I(s). K induces an entailment relation �K between knowl-

edge bases KB and axioms α over a signature 〈NI,NC,NR〉, defined by setting KB �K α
whenever I(KB) and O(α) are defined and I(KB) ∪ I(NI ∪ NC ∪ NR) ∪ P |= O(α).

We say that K is sound (complete) if KB �K α implies (is implied by) KB |= α for all
knowledge bases KB and axioms α for which I(KB) and O(α) are defined.

Note that this definition explicitly allows the datalog transformation I to introduce ar-
bitrarily many auxiliary constants auxαi . This can be utilised, e.g., to perform a normal-
isation that introduces auxiliary concept names as part of the input translation, or to
introduce new constants for handling existentials as in the above calculi. Yet, the in-
put translation is limited in its expressivity, since it depends only on individual axioms
and signature symbols. In particular, this precludes complex datalog translations as in
[10,11]. Note that we do not make any assumptions on the computability or complexity
of I and O, but both functions are typically very simple.

Now our general proof strategy is as follows. For a contradiction, we suppose that
there is a materialisation calculus of lower arity that solves a given reasoning problem.
We then consider a particular instance of that problem, given by a knowledge base
KB from which a relevant consequence α must follow. Since the calculus is assumed
to be complete, we obtain an according datalog derivation with a corresponding proof
tree. This proof tree is then modified by renaming constants, leading to a variant of the
proof tree that is still valid for the given materialisation calculus, but that is based on
different (renamed) assumptions. The modified assumptions correspond to a modified
knowledge base KB′, and by our construction we find that the materialisation calculus
still computes the entailment of α on the input KB′. We then show that α is not entailed
by KB′, so that the calculus is proven to be unsound. Since KB′ is based on the modified
proof tree, some graph theoretic arguments are required to establish this last step.

A central notion of this proof strategy is the following modification of proof trees.

Definition 3. Consider a materialisation calculus K = 〈I, P,O〉 and a knowledge base
KB such that I(KB) is defined, and a proof tree T = 〈N, E, λ〉 for I(KB) ∪ I(NI ∪ NC ∪
NR)∪ P. We say that a DL signature symbol σ occurs in a ground atom F if F contains
σ as a constant, or if F contains some auxiliary constant auxαi such that σ occurs in α.
The interface of a node n ∈ N is the set of signature symbols that occur in λ(n).

The (labels of) T can be diversified by the following recursive construction:

– replace all signature symbols s that do not occur in the interface of the root node
by a fresh symbol s′ that has not yet been used in T or in this construction,

– recursively diversify the subtrees below each of the direct child nodes of the root.

We tacitly assume that the datalog signature contains all required new constant names.
Note that the renaming may affect auxiliary constants by renaming symbols in the ax-
ioms that are part of their name. The diversification is thus obtained by replacing some
signature symbols with fresh symbols. This replacement may not be uniform throughout
the tree, and we use sn to denote the symbol by which s is replaced in node n.

Intuitively speaking, the above renaming removes any re-use of constant names
throughout the proof tree that is not strictly necessary for applying the rules of P.

Efficient Inferencing for OWL EL 243

n1: inst(A,C)
n2: subClass(B ,C) n3: inst(A,B)

n11: cls(A)
n8: inst(A,A)

n7: supEx(A,R ,C ,aux)

n4: subEx(R ,C ,B) n5: triple(A,R ,aux) n6: inst(aux ,C)
n10: inst(A,A)

n1 n1

n3

n3n3

n3 n3

A⊑∃R .C n3 n3

n1 A⊑∃R .C n3 n3 A⊑∃R .C n3 n3

n9: supEx(A,R ,C ,aux)n3n3 A⊑∃R .C n3 n3

n12: cls(A)

n3

Fig. 3. Diversification of a Kscc proof for {A � ∃R.C,∃R.C � B, B � C} |= A � C

What is “strictly necessary” is captured by the interface of each node: constants that are
not in the interface of a rule application can be renamed uniformly in all descendants of
the current node without affecting the correctness of the proof tree. This creates directly
connects the arity of a calculus to the amount of renaming during diversification.

Figure 3 shows an example diversification based on the calculus Kscc of Theorem 3,
where we use the notation from Definition 3 for denoting renamed symbols. Note how
C is renamed to Cn3 in some but not in all labels. Also note that no further renamings
occur below the nodes n5 and n6 since all relevant symbols occur in their interface
due to the auxiliary constant. As expected, the diversification is again a proof tree for a
knowledge base that contains suitably renamed axioms:

Definition 4. Consider a materialisation calculus K, knowledge base KB, and proof
tree T as in Definition 3. Let λ′ denote a diversified labelling for T .

For each leaf node m ∈ N, there is some α ∈ KB with λ(m) ∈ I(α). By Definition 2,
one can rename symbols in α to obtain an axiom α′ such that λ′(m) ∈ I(α′). Concretely,
α′ is obtained from α be replacing all symbols s in the interface of m by sm, and by
replacing all other symbols t by some fresh symbol t′ not used anywhere yet. We select
one such axiom α′m for each leaf node.

The diversification KB′ of KB is the knowledge base KB′ � {α′n | n ∈ N, n a leaf}.
The tree structure of T can be used to represent KB′ as a set of nested sets Γn for
n ∈ N, recursively defined by setting Γn � {α′m | 〈n,m〉 ∈ E,m a leaf} ∪ {Γm | 〈n,m〉 ∈
E,m not a leaf}. We say that an axiom or set is below a set Γn if it is either an element
of Γn, or if it is (recursively) below some element of Γn.

For Fig. 3, the diversified knowledge base is {A � ∃Rn3.Cn3,∃Rn3.Cn3 � Bn1, Bn1 � C}
and we have Γn1 = {Bn1 � C, {∃Rn3.Cn3 � Bn1, {A � ∃Rn3.Cn3}}}. Since the underlying
calculus is correct, the conclusion still follows from the diversified knowledge base, and
the diversified proof tree is still correct. Below we use diversification to construct proof
trees with invalid conclusions for calculi with insufficient arities.

To this end, note that if l is the maximal number of premises in rules of K, then
each set Γn has at most l elements (axioms α′m for leaf children, sets Γm for non-leaf
children). Moreover, if Γm ∈ Γn, then the DL signature symbols that occur in axioms
below Γm either belong to the interface of n, or occur only in axioms of KB′ that are
below Γm. The interface includes all DL symbols that occur in the ground IDB atom
that is derived at a certain node of the proof tree, so the use of auxiliary constants can
require the inclusion of all symbols of a given input axiom into the interface. Yet, the

244 M. Krötzsch

d0 d1

s0

r0 r1

d2

r2

dk

rk

dk+1

rk+1

s1 sk

B

Fig. 4. Dependency graph for the proof of Theorem 4

arity clearly limits the number of axioms for which this may be the case: for a calculus
of arity a, the interface of any node can comprise no more than the set of DL symbols
that occur in a axioms of the input knowledge base.

These observations can also be interpreted graphically based on the dependency
graph of KB′ – the graph that has the signature symbols in KB′ as its nodes, and, for
each axiom of KB′ with exactly n signature symbols, an n-ary hyperedge connecting
these n symbols. The sets of axioms Γn can be viewed as subgraphs of a dependency
graph, where the interface of the node n describes the nodes that this subgraph is al-
lowed to share with the remaining graph. These insights allow us to provide a proof
sketch for our first minimality result; see [6] for details on each step of the argument.

Theorem 4. Let L be a DL with GCIs, existential quantification, and role chains. Ev-
ery materialisation calculus that is sound and complete for classification or instance
retrieval in L has arity three or more.

Proof. To obtain the result for classification, suppose that there is a binary materialisa-
tion calculus K = 〈I, P,O〉 for classification inL. Let KB contain the following axioms:

Di � ∃S i.Di+1, S i ◦ Ri+1 � Ri, Dk+1 � ∃Rk+1.B, ∃R0.B � B,

for all i ∈ {0, . . . , k}, where k > 2(l+1) for l the maximal number of body atoms in rules
of P. Then KB entails D0 � B. Thus there is a proof tree T for deriving O(D0 � B) for
the program I(KB) ∪ I(NI ∪NC ∪NR) ∪ P. Let T ′ = 〈N, E, λ′〉 be the diversified proof
tree obtained from T by using renamed symbols sn as in Definition 3, and let KB′ be
the according diversified knowledge base. One can now construct a model I of KB′ in
such a way that I |= D0 � B can hold only if KB′ contains axioms of the form:

d0 � s0.d1, . . . , dk � sk.dk+1, s0 ◦ r1 � r0, . . . , sk ◦ rk+1 � rk, dk+1 � B, ∃r0.B � B,

where d0 = D0, di = Do
i for some o ∈ N, si = S o

i for some o ∈ N, and ri = Ro
i for some

o ∈ N. We claim that this is impossible. For a contradiction, suppose KB′ contains a
set of axioms KB′′ of this form. The axioms of KB′′ are distributed over sets (Γo)o∈N as
in Definition 4. Since T ′ has an out-degree of at most l (as specified above), our choice
of k implies that T ′ contains a node o ∈ N such that Γo has three axioms of the form
di � ∃si.di+1 below it, and such that three other axioms of this form are not below it.

The axioms below Γo induce a subgraph of the dependency graph of KB′′ as shown
in Fig. 4. As discussed above, this subgraph may share at most two nodes with the rest
of the graph since K has arity two. Now it is not hard to argue that such a subgraph
cannot exist. Hence Γo cannot exist, and KB′′ cannot be contained in KB′. So I does

Efficient Inferencing for OWL EL 245

not satisfy D0 � B, and thus the latter is not a consequence of KB′. As T ′ is a proof
tree for I(KB′) ∪ I(NI ∪ NC ∪ NR) ∪ P, K derives D0 � B. So K cannot be sound,
contradicting our assumption of its existence.

The result for instance retrieval is obtained by extending KB with an axiom D0(a),
and using an analogous argument to show that B(a) is not entailed by any diversification
of this knowledge base on a materialisation calculus of arity 2. ��
Analogous proofs can be given to obtain results for DLs that include nominals:

Theorem 5. Let L be a DL with GCIs, existential quantification, and nominal classes.
Every materialisation calculus that is sound and complete for classification in L has
arity three or more.

Theorem 6. LetL be a DL with GCIs, existential quantification, role chains, and nomi-
nal classes. Every materialisation calculus that is sound and complete for classification
in L has arity four or more.

These results do not extend to instance retrieval, so in a sense classification is harder
to implement efficiently. Indeed, Theorem 1 shows that a ternary instance retrieval cal-
culus exists for a DL that includes existentials, nominals, and role chains. For DLs as
in Theorem 5, we have not presented calculi of optimal arity. A ternary (binary) cal-
culus for classification (instance retrieval) in this case can be obtained by eliminating
the triple_sc (triple) predicate from Ksc (Kinst) as done for the binary calculus Ksc-

presented in [6]. Theorem 6 may be surprising, given that the calculus proposed in [2]
for EL++ would be ternary in our notation. The explanation is that this algorithm is
incomplete for classification; the proof of Theorem 6 can be used to find a suitable
counter example [6].

6 Summary and Conclusions

The focus of this work has been the study of inferencing calculi for SROEL(�,×) and
its fragments, and especially this paper is – to the best of our knowledge – the first to
present a sound and complete polynomial time calculus for inferencing in a DL that is
so closely related to the OWL EL ontology language. For investigating properties of
such calculi, we presented a simple framework for expressing materialisation calculi
in terms of datalog. This revealed the arity of IDB predicates as an interesting mea-
sure for the worst-case space requirements of materialisation-based algorithms. While
SROEL(�,×) fragments without role chains and nominals admit classification calculi
based on binary IDB predicates, the inclusion of either feature increases the required
arity by one. Having both features, SROEL(�,×) thus does not admit any sound and
complete classification calculus of arity below four.

We are thus able to differentiate various SROEL(�,×) fragments and inferencing
tasks based on a measure that relates to the efficiency of actual implementations. Indeed,
our findings agree with practical experiences that especially nominals and role chains
are harder to implement efficiently than basic EL features.3 Computational complexity

3 Based on the author’s experience implementing Orel [7], and personal communication with
developers of DB [4] and CEL (http://lat.inf.tu-dresden.de/systems/cel/)

http://lat.inf.tu-dresden.de/systems/cel/

246 M. Krötzsch

has not been able to provide an explanation for such discrepancies, since all reasoning
problems we consider are P-complete. In addition, our study also shows that various
other features are not harder to implement than some of the most basic ones, thus pro-
viding guidance for deciding which features to implement or to use in an application.

Although there are standard implementation strategies for datalog reasoning, our
study is independent of actual algorithms. A promising next step thus is to develop con-
trol strategies for implementing our calculi in a “pay-as-you-go” algorithm that min-
imises the potential negative impact of the occurrence of certain features. Moreover,
we conjecture that our results about datalog arity can be further strengthened to obtain
more direct statements about space complexity of almost arbitrary monotone calculi.

Acknowledgements. The author thanks Yevgeny Kazakov for his valuable input, and
the anonymous reviewers for helpful comments. This work was supported by DFG in
project ExpresST and by EPSRC in project ConDOR (EP/G02085X/1).

References

1. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley, Reading
(1994)

2. Baader, F., Brandt, S., Lutz, C.: Pushing the EL envelope. In: Kaelbling, L., Saffiotti, A.
(eds.) Proc. 19th Int. Joint Conf. on Artificial Intelligence (IJCAI 2005), pp. 364–369 (2005),
Professional Book Center

3. Baader, F., Brandt, S., Lutz, C.: Pushing the EL envelope further. In: Clark, K.G., Patel-
Schneider, P.F. (eds.) Proc. OWLED 2008 DC Workshop on OWL: Experiences and Direc-
tions. CEUR Workshop Proceedings, vol. 496 (2008), CEUR-WS.org

4. Delaitre, V., Kazakov, Y.: Classifying ELH ontologies in SQL databases. In: Patel-
Schneider, P.F., Hoekstra, R. (eds.) Proc. OWLED 2009 Workshop on OWL: Experiences
and Directions. CEUR Workshop Proceedings, vol. 529 (2009), CEUR-WS.org

5. Horrocks, I., Kutz, O., Sattler, U.: The even more irresistible SROIQ. In: Doherty, P., My-
lopoulos, J., Welty, C.A. (eds.) Proc. 10th Int. Conf. on Principles of Knowledge Represen-
tation and Reasoning (KR 2006), pp. 57–67. AAAI Press, Menlo Park (2006)

6. Krötzsch, M.: Efficient inferencing for the description logic underlying OWL EL. Tech. Rep.
3005, Institute AIFB, Karlsruhe Institute of Technology (2010),
http://www.aifb.kit.edu/web/Techreport3005

7. Krötzsch, M., Mehdi, A., Rudolph, S.: Orel: Database-driven reasoning for OWL 2 profiles.
In: Haarslev, V., Toman, D., Weddell, G. (eds.) Proc. 23rd Int. Workshop on Description
Logics, DL 2010 (2010)

8. Krötzsch, M., Rudolph, S., Hitzler, P.: ELP: Tractable rules for OWL 2. In: Sheth, et al. (eds.)
[12], pp. 649–664

9. Motik, B., Cuenca Grau, B., Horrocks, I., Wu, Z., Fokoue, A., Lutz, C. (eds.): OWL 2 Web
Ontology Language: Profiles. W3C Recommendation (October 27, 2009),
http://www.w3.org/TR/owl2-profiles/

10. Motik, B., Sattler, U.: A comparison of reasoning techniques for querying large description
logic ABoxes. In: Hermann, M., Voronkov, A. (eds.) LPAR 2006. LNCS (LNAI), vol. 4246,
pp. 227–241. Springer, Heidelberg (2006)

11. Rudolph, S., Krötzsch, M., Hitzler, P.: Description logic reasoning with decision diagrams:
Compiling SHIQ to disjunctive datalog. In: Sheth, et al. (eds.) [12], pp. 435–450

12. Sheth, A., Staab, S., Dean, M., Paolucci, M., Maynard, D., Finin, T., Thirunarayan, K. (eds.):
ISWC 2008. LNCS, vol. 5318. Springer, Heidelberg (2008)

http://www.aifb.kit.edu/web/Techreport3005
http://www.w3.org/TR/owl2-profiles/

Translating First-Order Causal Theories into
Answer Set Programming

Vladimir Lifschitz and Fangkai Yang

Department of Computer Science
University of Texas at Austin

Austin, TX 78712, USA
{vl,fkyang}@cs.utexas.edu

Abstract. Nonmonotonic causal logic became a basis for the semantics
of several expressive action languages. Norman McCain and Paolo Fer-
raris showed how to embed propositional causal theories into logic pro-
gramming, and this work paved the way to the use of answer set solvers
for answering queries about actions described in causal logic. In this paper
we generalize these embeddings to first-order causal logic—a system that
has been used to simplify the semantics of variables in action descriptions.

1 Introduction

Propositional nonmonotonic causal logic [McCain and Turner, 1997] and its gen-
eralizations became a basis for the semantics of several expressive action languages
[Giunchiglia and Lifschitz, 1998; Giunchiglia et al., 2004; Lifschitz and Ren, 2006;
Lifschitz and Ren, 2007]. The last paper argues, in particular, that one of these
generalizations—first-order causal logic in the sense of [Lifschitz, 1997]—is useful
for defining the semantics of variables in action descriptions.

An important theorem due to Norman McCain [McCain, 1997, Proposition 6.7]
shows how to embed a subset of propositional causal logic into the language of
logic programming under the answer set semantics [Gelfond and Lifschitz, 1991].
A similar translation, applicable to arbitrary propositional causal theories, is de-
fined in [Ferraris, 2007]. These results (reviewed in the next section) paved the way
to the use of answer set programming (ASP) for answering queries about actions
described in causal logic [Gebser et al., 2010].

In this note we extend the translations given by McCain and Ferraris to first-
order causal theories. Our generalizations rely on the approach to stable models
(answer sets) proposed in [Ferraris et al., 2007; Ferraris et al., 2010].

2 Background: Translating Propositional Causal Theories
into ASP

2.1 Propositional Causal Theories

A nonmonotonic causal theory in the sense of [McCain and Turner, 1997] is a
set of causal rules of the form F ⇐ G, where F and G are propositional formulas

T. Janhunen and I. Niemelä (Eds.): JELIA 2010, LNAI 6341, pp. 247–259, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

248 V. Lifschitz and F. Yang

(the head and the body of the rule). The rule can be read “F is caused if G is
true.”

Distinguishing between being true and having a cause turns out to be essential
for the study of commonsense reasoning. The assertion “if the light is on at time 2
and you toggle the switch then the light will be off at time 3” can be written as
an implication:

On2 ∧ Toggle2 → Off 3.

In causal logic, on the other hand, we can express that under the same assump-
tion there is a cause for the light to be off at time 3:

Off 3 ⇐ On2 ∧Toggle2.

(Performing the toggle action is the cause.) McCain and Turner show that dis-
tinctions like this help us solve the frame problem and overcome other difficulties
arising in the theory of reasoning about actions.

The semantics of theories of this kind defines when a propositional interpre-
tation (truth assignment) is a model of the given theory (is “causally explained”
by the theory, in the terminology of McCain and Turner). We do not repro-
duce the definition here, because a more general semantics is described below in
Section 3.1. But here is an example: the causal theory

p⇐ ¬q
¬q ⇐ p

(1)

has one model, according to the semantics from [McCain and Turner, 1997]. In
this model, p is true and q is false. (Since the bodies of both rules are true in
this model, both rules “fire”; consequently the heads of the rules are “caused”;
consequently the truth values of both atoms are “causally explained.”)

2.2 McCain’s Translation

McCain’s translation is applicable to a propositional causal theory T if the head
of each rule of T is a literal, and the body is a conjunction of literals:

L⇐ A1 ∧ · · · ∧Am ∧ ¬Am+1 ∧ · · · ¬An. (2)

The logic program corresponding to T consists of the logic programming rules

L← not ¬A1, . . . ,not ¬Am,not Am+1, . . . ,not An (3)

for all rules (2) of T . According to Proposition 6.7 from [McCain, 1997], complete
answer sets of this logic program are identical to the models of T . (A set of
literals is complete if it contains exactly one member of each complementary
pair of literals A,¬A. In the statement above, we identify a complete set of
literals with the corresponding truth assignment.)

For instance, McCain’s translation turns causal theory (1) into

p← not q
¬q ← not ¬p. (4)

The only answer set of this program is {p,¬q}. It is complete, and it corresponds
to the model of causal theory (1).

Translating First-Order Causal Theories into Answer Set Programming 249

2.3 Eliminating Strong Negation

Rule (3) involves two kinds of negation: negation as failure (not) and strong,
or classical, negation (¬). As observed in [Gelfond and Lifschitz, 1991], strong
negation can be eliminated from a logic program in favor of additional atoms.
Denote the new atom representing a negative literal ¬A by Â. Then (3) will
become

A0 ← not Â1, . . . ,not Âm,not Am+1, . . . ,not An (5)

if L is a positive literal A0, and

Â0 ← not Â1, . . . ,not Âm,not Am+1, . . . ,not An (6)

if L is a negative literal ¬A0. The modified McCain translation of T consists of

– the rules (5), (6) corresponding to the rules of T , and
– the completeness constraints

← A, Â

← not A,not Â
(7)

for all atoms A.

For instance, the modified McCain translation of (1) is

p← not q
q̂ ← not p̂
← p, p̂
← not p,not p̂
← q, q̂
← not q,not q̂.

(8)

The only answer set of this program is {p, q̂}.

2.4 Rules as Formulas

The definition of an answer set for sets of propositional formulas proposed in
[Ferraris, 2005] is a generalization of the concept of an answer set for proposi-
tional logic programs without strong negation, in the sense that rewriting each
rule of a given program in the syntax of propositional logic produces a collec-
tion of formulas with the same answer sets as the given program. For instance,
rules (5) and (6), rewritten as propositional formulas, become

¬Â1 ∧ · · · ∧ ¬Âm ∧ ¬Am+1 ∧ · · · ∧ ¬An → A0

and
¬Â1 ∧ · · · ∧ ¬Âm ∧ ¬Am+1 ∧ · · · ∧ ¬An → Â0.

250 V. Lifschitz and F. Yang

The completeness constraints for an atom A turn into

¬(A ∧ Â)
¬(¬A ∧ ¬Â).

(9)

Note that the process of rewriting a rule as a formula is applicable only when
the rule does not contain strong negation; the symbol ¬ in the resulting formula
corresponds to the negation as failure symbol (not) in the rule.

One of the advantages of writing rules as formulas is that it allows us to relate
properties of answer sets to subsystems of classical logic. We know, for instance,
that if the equivalence of two sets Γ , Δ of formulas can be proved in intuitionistic
logic (or even in the stronger logic of here-and-there) then Γ and Δ have the
same answer sets [Ferraris, 2005, Proposition 2]. It follows that replacing the
completeness constraints (9) with the intuitionistically equivalent formula

¬(A↔ Â) (10)

does not affect the class of answer sets.
If we rewrite program (8) in the syntax of propositional logic and modify the

completeness constraints as shown above then (8) will turn into

¬q → p
¬p̂→ q̂
¬(p↔ p̂)
¬(q ↔ q̂).

(11)

This collection of formulas is essentially identical to logic program (8), and it
has the same answer set.

2.5 Translating Arbitrary Definite Theories

The paper [Ferraris, 2007] shows, among other things, how to lift the require-
ment, in the definition of McCain’s translation, that the bodies of all causal rules
should be conjunctions of literals. Take any set T of causal rules of the forms

A⇐ G (12)

and
¬A⇐ G (13)

where A is an atom and G is an arbitrary formula (such rules are called definite).
For each rule (12), take the formula ¬¬G → A, and, for each rule (13), the
formula ¬¬G → Â. Then add completeness constraints (10) for all atoms A.
Answer sets of this collection of propositional formulas correspond to the models
of T .

In application to example (1), this modification of McCain’s translation gives

¬¬¬q → p
¬¬p→ q̂
¬(p↔ p̂)
¬(q ↔ q̂).

(14)

Translating First-Order Causal Theories into Answer Set Programming 251

It is not surprising that (14) has the same answer set as (11): the two collections
of formulas are intuitionistically equivalent to each other.

2.6 Ferraris’s Translation

The main result of [Ferraris, 2007] deals with causal theories “in clausal form”:
the heads of rules are disjunctions of literals (and the bodies are arbitrary propo-
sitional formulas, as in Section 2.5). This is essentially the general case, because
any propositional causal theory can be converted to clausal form by converting
the head of each rule to conjunctive normal form D1∧· · ·∧Dk and then breaking
it into k rules with the heads D1, . . . , Dk.

Ferraris’s translation turns the rule∨
A∈Pos

A ∨
∨

A∈Neg

¬A⇐ G

(Pos and Neg are sets of atoms) into the implication

¬¬G ∧
∧

A∈Pos

(Â ∨ ¬Â) ∧
∧

A∈Neg

(A ∨ ¬A)→
∨

A∈Pos

A ∨
∨

A∈Neg

Â.

For instance, it transforms p ∨ ¬q ⇐ r into

¬¬r ∧ (p̂ ∨ ¬p̂) ∧ (q ∨ ¬q)→ p ∨ q̂. (15)

The number of “excluded middle formulas” in the antecedent of the implication,
such as p̂∨¬p̂ and q ∨¬q in (15), equals the number of disjunctive terms in the
head of the given causal rule. In particular, the result of Ferraris’s translation
includes one such formula when the head of the given causal rule is a single
literal, as in Section 2.5. For instance, in application to (1) this process would
produce

¬¬¬q ∧ (p̂ ∨ ¬p̂)→ p
¬¬p ∧ (q ∨ ¬q)→ q̂
¬(p↔ p̂)
¬(q ↔ q̂).

(16)

This collection of formulas differs from (14) by the presence of excluded middle
formulas in the antecedents of the two implications. These conjuncive terms are
redundant: dropping them from (16) is an intuitionistically equivalent transfor-
mation and consequently does not affect the collection of answer sets.

But when the result of translating a rule has more than one excluded middle
formula in the antecedent, as in example (15), then the presence of these formulas
may be crucial for the validity of the translation [Ferraris, 2007, Section 4].

3 Review: Causal Theories and Stable Models in a
First-Order Setting

In this section we review the definition of a first-order causal theory
from [Lifschitz, 1997] and the definition of a stable model of a first-order sentence
from [Ferraris et al., 2010]. Both definitions are based on syntactic transforma-
tions that produce second-order formulas.

252 V. Lifschitz and F. Yang

3.1 First-Order Causal Theories

According to [Lifschitz, 1997], a first-order causal theory T is defined by

– a list p of distinct predicate constants (other than equality), called the ex-
plainable symbols of T ,1 and

– a finite set of causal rules of the form F ⇐ G, where F and G are first-order
formulas.

The semantics of first-order causal theories can be described as follows. For each
p ∈ p, choose a new predicate variable υp of the same arity, and let υp stand
for the list of all these variables. By T †(υp) we denote the conjunction of the
formulas

∀x(G→ Fp
υp) (17)

for all rules F ⇐ G of T , where x is the list of all free variables of F , G.
(The expression Fp

υp denotes the result of substituting the variables υp for the
corresponding constants p in F .) We view T as shorthand for the sentence

∀υp(T †(υp)↔ (υp = p)). (18)

(By υp = p we denote the conjunction of the formulas ∀x(υp(x)↔ p(x)) for all
p ∈ p, where x is a tuple of distinct object variables.)

Consider, for instance, the causal theory T with the explainable symbol p that
consists of two rules:

p(a)⇐ �

(here � is the logical constant true) and

¬p(x)⇐ ¬p(x).

The first rule says that there is a cause for a to have property p. The second
rule says that if an object does not have property p then there is a cause for
that; including this rule in a causal theory has the same effect as saying that p
is “false by default” [Lifschitz, 1997, Section 3]. In this case, T †(υp) is

υp(a) ∧ ∀x(¬p(x)→ ¬υp(x)),

so that T is understood as shorthand for the sentence

∀υp(υp(a) ∧ ∀x(¬p(x)→ ¬υp(x))↔ ∀x(υp(x)↔ p(x))).

This sentence is equivalent to the first-order formula ∀x(p(x)↔ x = a).

1 To be precise, the definition in [Lifschitz, 1997] is more general: object and function
constants can be treated as explainable as well.

Translating First-Order Causal Theories into Answer Set Programming 253

3.2 Operator SM

If p and q are predicate constants of the same arity then p ≤ q stands for the
formula ∀x(p(x)→ q(x)), where x is a tuple of distinct object variables. If p and
q are tuples p1, . . . , pn and q1, . . . , qn of predicate constants then p ≤ q stands
for the conjunction

(p1 ≤ q1) ∧ · · · ∧ (pn ≤ qn),

and p < q stands for (p ≤ q) ∧ ¬(q ≤ p). In second-order logic, we apply the
same notation to tuples of predicate variables.

We will define the stable model operator with the intensional predicates p,
denoted by SMp [Ferraris et al., 2010]. Some details of the definition depend on
which propositional connectives and quantifiers are treated as primitives, and
which of them are viewed as abbreviations. We assume that ⊥ (falsity), ∧, ∨,
→, ∀, ∃ are the primitives; ¬F stands for F → ⊥, � stands for ⊥ → ⊥, and
F ↔ G is (F → G) ∧ (G→ F).

Let p be a list of distinct predicate constants (other than equality). For each
p ∈ p, choose a new predicate variable υp of the same arity, and let υp stand
for the list of all these variables. For any first-order sentence F , by SMp[F] we
denote the second-order sentence

F ∧ ¬∃υp((υp < p) ∧ F ∗(υp)),

where F ∗(υp) is defined recursively:

– p(t)∗ = υp(t) for any p ∈ p and any tuple t of terms;
– F ∗ = F for any atomic F that does not contain members of p;
– (F ∧G)∗ = F ∗ ∧G∗;
– (F ∨G)∗ = F ∗ ∨G∗;
– (F → G)∗ = (F ∗ → G∗) ∧ (F → G);
– (∀xF)∗ = ∀xF ∗;
– (∃xF)∗ = ∃xF ∗.

A model of F is stable (relative to the set p of intensional predicates) if it satisfies
SMp[F].

For instance, let F be the formula

∀x(p(x)→ (q(x) ∨ ¬q(x))

(it represents the lparse choice rule {q(X)} :- p(X)).2 If we take q to be the
only intensional predicate then F ∗(υq) is

∀x((p(x)→ (υq(x) ∨ (¬υq(x) ∧ ¬q(x)))) ∧ (p(x)→ (q(x) ∨ ¬q(x)))),

which is equivalent to ∀x(p(x) → (υq(x) ∨ ¬q(x))). Consequently SMq[F] is
equivalent to

∀x(p(x)→ (q(x) ∨ ¬q(x))) ∧ ¬∃υq((υq < q) ∧ ∀x(p(x)→ (υq(x) ∨ ¬q(x)))).
2 For a description of the language see http://www.tcs.hut.fi/Software/smodels/

lparse.ps

254 V. Lifschitz and F. Yang

The first conjunctive term here is logically valid and can be dropped. The sec-
ond is equivalent to the first-order formula ∀x(q(x) → p(x)), which reflects the
intuitive meaning of choice: q is an arbitrary subset of p.

4 Translating First-Order Causal Theories

4.1 A First-Order Counterpart of McCain’s Translation

In this section we extend the McCain translation as described in Section 2.5
to first-order causal theories. By T we denote here a causal theory in the sense
of Section 3.1 such that the head of every rule of T is a literal containing an
explainable predicate. Thus every rule of T has the form

p(t)⇐ G (19)

or the form
¬p(t)⇐ G, (20)

where p is an explainable predicate and t is a tuple of terms. For instance, the
example at the end of Section 3.1

p(a)⇐ �
¬p(x)⇐ ¬p(x) (21)

is a causal theory of this type.
For every member p of the list p of explainable predicates, let p̂ be a new

predicate constant of the same arity, and let p̂ be the list of all these predicate
constants. By CC we denote the conjunction of the formulas

∀x¬(p(x)↔ p̂(x)), (22)

where x is a tuple of distinct object variables, for all p from p. These formulas
are first-order counterparts of completeness constraints (10).

The McCain translation MC[T] of T is the conjunction of

– formulas ∀̃(¬¬G→ p(t)) for all rules (19) of T , and
– formulas ∀̃(¬¬G→ p̂(t)) for all rules (20) of T , and
– completeness constraints CC .

(The symbol ∀̃ denotes universal closure.) For instance, if T is (21) then MC[T]
is the conjunction of the formulas

¬¬� → p(a)
∀x(¬¬¬p(x) → p̂(x))
∀x¬(p(x)↔ p̂(x)),

or, after (intuitionistically acceptable) simplifications,

p(a) ∧ ∀x(¬p(x)→ p̂(x)) ∧ ∀x¬(p(x)↔ p̂(x)).

Translating First-Order Causal Theories into Answer Set Programming 255

In logic programming syntax, this formula can be rewritten as

p(a)
p̂(x)← not p(x)

← p(x), p̂(x)
← not p(x),not p̂(x).

(23)

Theorem 1. The sentence SMpp̂[MC[T]] is equivalent to T ∧ CC.3

Note that formula (22) is classically equivalent to

∀x(p̂(x)↔ ¬p(x)), (24)

so that CC can be viewed as the conjunction of explicit definitions of the pred-
icates p̂ in terms of the predicates p. Since the predicates p̂ do not belong to
the language of T , Theorem 1 shows that SMpp̂[MC[T]] is a definitional, and
consequently conservative, extension of T . In other words, the pp̂-stable models
of MC[T] are identical to the models of T extended by the interpretations of the
predicates p̂ given by explicit definitions (24). Note also that in this character-
ization of the stable models of MC[T] the set of intensional predicates includes
both the explainable predicates p of T and the corresponding predicates p̂.

4.2 A First-Order Counterpart of Ferraris’s Translation

In this section, T is a causal theory in the sense of Section 3.1 such that

– the head of each rule of T is a disjunction of literals, and
– all predicate constants occurring in the heads of rules are explainable.

In other words, we assume that every rule of T has the form∨
A∈Pos

A ∨
∨

A∈Neg

¬A⇐ G (25)

for some sets Pos, Neg of atomic formulas that contain a predicate constant from
the set p of explainable symbols.

As in Section 4.1, for each p ∈ p we choose a new predicate constant p̂ of the
same arity. If A is an atomic formula p(t), where p ∈ p and t is a tuple of terms,
then Â stands for p̂(t).

The Ferraris translation Fer[T] of T is the conjunction of

– formulas

∀̃

⎛⎝¬¬G ∧ ∧
A∈Pos

(Â ∨ ¬Â) ∧
∧

A∈Neg

(A ∨ ¬A)→
∨

A∈Pos

A ∨
∨

A∈Neg

Â

⎞⎠ (26)

for all rules (25) of T , and
– completeness constraints CC .

3 Recall that we identify a causal theory T with the corresponding sentence (18).

256 V. Lifschitz and F. Yang

For instance, if T is (21) then Fer[T] is the conjunction of the formulas

¬¬� ∧ (p̂(a) ∨ ¬p̂(a))→ p(a)
∀x(¬¬¬p(x) ∧ (p(x) ∨ ¬p(x))→ p̂(x))
∀x¬(p(x)↔ p̂(x)).

Theorem 2. The sentence SMpp̂[Fer[T]] is equivalent to T ∧ CC.

Thus the pp̂-stable models of Fer[T] are identical to the models of T extended
by the interpretations of the predicates p̂ given by explicit definitions (24).

5 Proof Outlines

Our proofs of Theorems 1 and 2 are quite different from the published proofs
of similar results for the propositional case, because of the difference between
the semantics used in this paper (Section 3) and the semantics of propositional
causal theories and logic programs, which are based on reducts.

Theorem 1 follows from Theorem 2 in view of the following fact:

Lemma 1. For any causal theory T consisting of rules of forms (19) and (20),
MC[T] is intuitionistically equivalent to Fer[T].

In the proof of Theorem 2, Π stands for the conjunction of sentences (26) for
all rules (25) in T . Then Fer[T] is Π ∧ CC . Formula SMpp̂[Fer[T]] is equivalent
to SMpp̂[Π] ∧ CC , because CC has no strictly positive occurrences of inten-
sional predicates [Ferraris et al., 2010, Section 5.1]. Therefore the statement of
Theorem 2 is equivalent to the claim that CC entails

SMpp̂[Π]↔ T. (27)

By υp, υp̂ we denote the lists of the predicate variables υp, υp̂ used in the
second-order formula SMpp̂[Π] (see Section 3.2). If A is an atomic formula p(t),
where p ∈ p and t is a tuple of terms, then we will write υA for υp(t), and υÂ

for υp̂(t). By ∀̃objF we denote the formula ∀xF , where x is list of all free object
variables of F (“object-level universal closure”).

The expression H(υp, υp̂) stands for the conjunction of the implications

∀̃obj

⎛⎝G→
∨

A∈Pos

((υÂ ∨A)→ υA) ∨
∨

A∈Neg

((υA ∨ ¬A)→ υÂ)

⎞⎠
for all rules (25) in T . The role of this formula is determined by the following
lemma:

Lemma 2. Formula CC entails

SMpp̂[Π]↔ Π ∧ ∀(υp)(υp̂)(((υp, υp̂) < (p, p̂))→ ¬H(υp, υp̂)).

Translating First-Order Causal Theories into Answer Set Programming 257

For any formula F , by FΣ1 we denote the formula

F
(υp)(υp̂)
(υp∧p)(¬υp∧¬p)

where υp∧p is understood as the list of predicate expressions4 λx(υp(x)∧p(x))
for all p ∈ p, and ¬υp ∧ ¬p is understood in a similar way.

Lemma 3. Formula ((υp, υp̂) < (p,¬p))Σ1 is equivalent to υp �= p. Formula
H(υp, υp̂)Σ1 is equivalent to T †(υp).

The proof of the first part of this lemma is based on the fact that formula
(υp, υp̂) < (p,¬p) is equivalent to∨

p∈p

(((υp, υp̂) ≤ (p,¬p)) ∧ ∃x(¬υp(x) ∧ ¬υp̂(x))).

The fact that CC entails the “only if” part of equivalence (27) follows from
Lemmas 2 and 3.

For any formula F , by FΣ2 we denote the formula

F υp
(((υp,υp̂)≤(p,¬p))∧¬υp∧¬υp̂)↔¬p

where the subscript

(((υp, υp̂) ≤ (p,¬p)) ∧ ¬υp ∧ ¬υp̂)↔ ¬p

is understood as the list of predicate expressions

λx((((υp, υp̂) ≤ (p,¬p)) ∧ ¬υp(x) ∧ ¬υp̂(x))↔ ¬p(x))

for all p ∈ p.

Lemma 4. Formula (υp �= p)Σ2 is equivalent to (υp, p̂) < (p,¬p). The impli-
cation (υp, υp̂) ≤ (p,¬p)→ (T †(υp)Σ2 ↔ H(υp, υp̂)) is logically valid.

The fact that CC entails the “if” part of equivalence (27) follows from Lemmas 2
and 4.

6 Conclusion

The definition of a stable model based on the operator SM, reviewed in Section 3.2,
is more general than the traditional defintion [Gelfond and Lifschitz, 1988] in sev-
eral ways. It is more general syntactically, because it is applicable to formulas con-
taining quantifiers. It is more general semantically, in the sense that it is applicable
to non-Herbrand models. It also allows us to distinguish between intensional and
extensional predicates. Ferraris et al. [2010] argued that these features can be use-
ful in applications to knowledge representation. They showed how to extend many
4 See [Lifschitz, 1994, Section 3.1].

258 V. Lifschitz and F. Yang

familiar propertiesof stablemodels to thefirst-order case.This lineofworkwas con-
tinued in [Lee et al., 2008] and [Ferraris et al., 2009], and the theorems presented in
this paper belong to the same direction of research.

We expect that Theorem 2 will help us extend the theorem on synonymity
proved in [Lee et al., 2010] to first-order causal theories, and that it will help us
in this way to design a new implementation of modular action language MAD
[Erdoğan, 2008; Ren, 2009].

In application to causal theories with variables, the translations defined in
this paper often generate logic programs that are not safe and thus cannot be
processed by existing answer set solvers.5 For instance, the second rule of (23) is
unsafe, because the only occurrence of x in its body is in the scope of negation
as failure. It may be possible to find modifications of the McCain and Ferraris
translations that produce safe logic programs in practically important cases.

Another topic for future research is extending the translations to causal the-
ories with explainable object and function constants; such constants correspond
to non-Boolean fluents in action languages.

Acknowledgements

We are grateful to the anonymous referees for useful comments. This research
was partially supported by the National Science Foundation under grant IIS-
0712113.

References

[Erdoğan, 2008] Erdoğan, S.T.: A Library of General-Purpose Action Descriptions6.
PhD thesis, University of Texas at Austin (2008)

[Ferraris et al., 2007] Ferraris, P., Lee, J., Lifschitz, V.: A new perspective on stable
models. In: Proceedings of International Joint Conference on Artificial Intelligence
(IJCAI), pp. 372–379 (2007)

[Ferraris et al., 2009] Ferraris, P., Lee, J., Lifschitz, V., Palla, R.: Symmetric splitting
in the general theory of stable models. In: Proceedings of International Joint
Conference on Artificial Intelligence (IJCAI), pp. 797–803 (2009)

[Ferraris et al., 2010] Ferraris, P., Lee, J., Lifschitz, V.: Stable models and circumscrip-
tion7. Artificial Intelligence (to appear, 2010)

[Ferraris, 2005] Ferraris, P.: Answer sets for propositional theories. In: Baral, C., Greco,
G., Leone, N., Terracina, G. (eds.) LPNMR 2005. LNCS (LNAI), vol. 3662, pp.
119–131. Springer, Heidelberg (2005)

[Ferraris, 2007] Ferraris, P.: A logic program characterization of causal theories. In:
Proceedings of International Joint Conference on Artificial Intelligence (IJCAI),
pp. 366–371 (2007)

[Gebser et al., 2010] Gebser, M., Grote, T., Schaub, T.: Coala: a compiler from action
languages to ASP. In: Janhunen, T., Niemelä, I. (eds.) JELIA 2010. LNCS (LNAI),
vol. 6341, pp. 357–359. Springer, Heidelberg (2010)

5 See Chapter 3 of the dlv manual, http://www.dbai.tuwien.ac.at/proj/dlv/man/
6 http://www.cs.utexas.edu/users/tag/mad/erdogan-dissertation.pdf
7 http://peace.eas.asu.edu/joolee/papers/smcirc.pdf

Translating First-Order Causal Theories into Answer Set Programming 259

[Gelfond and Lifschitz, 1988] Gelfond, M., Lifschitz, V.: The stable model semantics
for logic programming. In: Kowalski, R., Bowen, K. (eds.) Proceedings of Inter-
national Logic Programming Conference and Symposium, pp. 1070–1080. MIT
Press, Cambridge (1988)

[Gelfond and Lifschitz, 1991] Gelfond, M., Lifschitz, V.: Classical negation in logic pro-
grams and disjunctive databases. New Generation Computing 9, 365–385 (1991)

[Giunchiglia and Lifschitz, 1998] Giunchiglia, E., Lifschitz, V.: An action language
based on causal explanation: Preliminary report. In: Proceedings of National Con-
ference on Artificial Intelligence (AAAI), pp. 623–630. AAAI Press, Menlo Park
(1998)

[Giunchiglia et al., 2004] Giunchiglia, E., Lee, J., Lifschitz, V., McCain, N., Turner,
H.: Nonmonotonic causal theories. Artificial Intelligence 153(1-2), 49–104 (2004)

[Lee et al., 2008] Lee, J., Lifschitz, V., Palla, R.: Safe formulas in the general theory of
stable models (preliminary report). In: Garcia de la Banda, M., Pontelli, E. (eds.)
ICLP 2008. LNCS, vol. 5366, pp. 672–676. Springer, Heidelberg (2008)

[Lee et al., 2010] Lee, J., Lierler, Y., Lifschitz, V., Yang, F.: Representing synonymity
in causal logic and in logic programming8. In: Proceedings of International Work-
shop on Nonmonotonic Reasoning, NMR (2010)

[Lifschitz and Ren, 2006] Lifschitz, V., Ren, W.: A modular action description lan-
guage. In: Proceedings of National Conference on Artificial Intelligence (AAAI),
pp. 853–859 (2006)

[Lifschitz and Ren, 2007] Lifschitz, V., Ren, W.: The semantics of variables in ac-
tion descriptions. In: Proceedings of National Conference on Artificial Intelligence
(AAAI) (2007)

[Lifschitz, 1994] Lifschitz, V.: Circumscription. In: Gabbay, D.M., Hogger, C.J., Robin-
son, J.A. (eds.) Handbook of Logic in AI and Logic Programming, vol. 3, pp.
298–352. Oxford University Press, Oxford (1994)

[Lifschitz, 1997] Lifschitz, V.: On the logic of causal explanation. Artificial Intelli-
gence 96, 451–465 (1997)

[McCain and Turner, 1997] McCain, N., Turner, H.: Causal theories of action and
change. In: Proceedings of National Conference on Artificial Intelligence (AAAI),
pp. 460–465 (1997)

[McCain, 1997] McCain, N.: Causality in Commonsense Reasoning about Actions9.
PhD thesis, University of Texas at Austin (1997)

[Ren, 2009] Ren, W.: A Modular Language for Describing Actions10, PhD thesis, Uni-
versity of Texas at Austin (2009)

8 http://userweb.cs.utexas.edu/users/vl/papers/syn.pdf
9 ftp://ftp.cs.utexas.edu/pub/techreports/tr97-25.ps.gz

10 http://www.cs.utexas.edu/users/rww6/dissertation.pdf

Preprocessing Boolean Formulae for BDDs
in a Probabilistic Context

Theofrastos Mantadelis1, Ricardo Rocha2, Angelika Kimmig1,
and Gerda Janssens1

1 Departement Computerwetenschappen, K.U. Leuven
Celestijnenlaan 200A - bus 2402, B-3001 Heverlee, Belgium

{Theofrastos.Mantadelis,Angelika.Kimmig,Gerda.Janssens}@cs.kuleuven.be
2 CRACS & INESC-Porto LA, Faculty of Sciences, University of Porto

Rua do Campo Alegre, 1021/1055, 4169-007 Porto, Portugal
ricroc@dcc.fc.up.pt

Abstract. Inference in many probabilistic logic systems is based on rep-
resenting the proofs of a query as a DNF Boolean formula. Assessing the
probability of such a formula is known as a #P-hard task. In practice,
a large DNF is given to a BDD software package to construct the corre-
sponding BDD. The DNF has to be transformed into the input format
of the package. This is the preprocessing step. In this paper we inves-
tigate and compare different preprocessing methods, including our new
trie based approach. Our experiments within the ProbLog system show
that the behaviour of the methods changes according to the amount
of sharing in the original DNF. The decomposition method is preferred
when there is not much sharing in the DNF, whereas DNFs with sharing
benefit from our trie based method. While our methods are motivated
and applied in the ProbLog context, our results are interesting for other
applications that manipulate DNF Boolean formulae.

Keywords: Boolean Formula Manipulation, Binary Decision Diagrams,
ProbLog, Probabilistic Logic Learning.

1 Introduction

The past few years have seen a surge of interest in the field of Probabilistic Logic
Learning (PLL) [1], also known as Statistical Relational Learning [2]. A multi-
tude of formalisms combining logical or relational languages with probabilistic
reasoning has been developed. One line of work, based on the distribution se-
mantics [3], extends Logic Programming (LP) with probabilistic facts, i.e., facts
whose truth values are determined probabilistically. Main representatives of this
approach are PRISM [4], ICL [5] and ProbLog [6]. Even in such simple proba-
bilistic logics, inference is computationally hard. As learning requires evaluating
large amounts of queries, efficient inference engines are crucial for PLL.

The core of inference in these LP-based languages is a reduction to proposi-
tional formulae in Disjunctive Normal Form (DNF). Such a DNF describes all

T. Janhunen and I. Niemelä (Eds.): JELIA 2010, LNAI 6341, pp. 260–272, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Preprocessing Boolean Formulae for BDDs in a Probabilistic Context 261

proofs of a query in terms of the probabilistic facts used, thus reducing proba-
bilistic inference to calculating the probability of a DNF formula. The PRISM
system requires programs to ensure that the probability of the DNF corresponds
to a sum of products. ProbLog has been motivated by a biological network min-
ing task where this is impossible, and therefore obtains the probability from an
external Binary Decision Diagram (BDD) tool. To this aim, the DNF is first con-
structed using logical inference, and then preprocessed into a sequence of BDD
definitions which builds up the final BDD by applying Boolean operations on
subformulae. While previous work on the efficient implementation of ProbLog
has been focused on obtaining the DNF, little attention has been devoted to its
further processing. However, as the performance of BDD construction depends
on the size and structure of the intermediate BDDs and on the operations among
them, the performance of this second phase is crucial for the overall performance
of inference in ProbLog.

In this paper, we therefore study different approaches to preprocessing with
special attention to the exploitation of repeated formulae to avoid redundant
work in BDD construction. To this aim, we introduce a new data structure,
named depth breadth trie, which facilitates detecting repeated subformulae in
the DNF. This results in an improvement of the performance of ProbLog’s pre-
processing step. At the same time, this new data structure allows one to eas-
ily identify more shared subformulae, which can be used to further simplify
BDD construction. A second contribution of this work is the implementation
in ProbLog of an alternative preprocessing method, called decomposition [7],
which we used to perform a comparative study of preprocessing methods in
ProbLog. Our experimental results show that in structured problems, our trie
based approaches are clearly outperforming the decomposition method, but in
less structured problems decomposition seems to be better.

The remainder of the paper is organized as follows. First, Section 2 briefly
introduces some background concepts about ProbLog, tries and BDDs. Next,
Section 3 reviews different preprocessing methods. Then, we present our new
approach in detail, including three new optimizations that can be performed
with the depth breadth trie in Section 4. We present experimental results in
Section 5 and end by outlining some conclusions in Section 6.

2 ProbLog

A ProbLog program T [6] consists of a set of labeled ground facts pi :: ci to-
gether with a set of definite clauses. Each such fact ci is true with probabil-
ity pi, i.e., these facts correspond to random variables, which are assumed to
be mutually independent. Together, they define a distribution over subsets of
LT = {c1, . . . , cn}. The definite clauses allow one to add arbitrary background
knowledge (BK) to those sets of logical facts. Given the one-to-one mapping be-
tween ground definite clause programs and Herbrand interpretations, a ProbLog
program also defines a distribution over its Herbrand interpretations.

Inference in ProbLog calculates the success probability Ps(q|T) of a query q in a
ProbLog program T , i.e., the probability that the query q is provable in a program

262 T. Mantadelis et al.

that combines BK with a randomly sampled subset of LT . Figure 1 shows a
ProbLog program encoding a probabilistic graph. The success probability of
path(a,d) corresponds to the probability that a randomly sampled subgraph
contains at least one of the four possible paths from node a to node d.

path(X,Y) :- edge(X,Y).
path(X,Y) :- edge(X,Z), path(Z,Y).

0.8 :: edge(a,c). 0.9 :: edge(c,d).
0.7 :: edge(a,b). 0.8 :: edge(c,e).
0.6 :: edge(b,c). 0.5 :: edge(e,d).

a c d

b e

0.8 0.9

0.50.80.60.7

Fig. 1. A probabilistic graph and its
encoding in ProbLog

As checking whether a query is prov-
able in each subprogram is clearly infeasi-
ble in most cases, ProbLog inference uses
a reduction to a Boolean formula in DNF.
This formula describes the set of programs
where the query is provable. Variables in
the formula correspond to probabilistic
facts in the program, conjunctions cor-
respond to specific proofs, and the en-
tire disjunction to the set of all proofs.
ProbLog then calculates the probability
of that formula being true.

While the probability of a single con-
junction, which represents the programs containing at least the facts used by
the corresponding proof, is the product of the probabilities of these facts, it is
impossible to simply sum the probabilities of conjunctions, as enumerating proofs
does not partition the set of programs. Instead, we face the so called disjoint-
sum-problem, which is known to be #P-hard [8]. By tackling this problem with
(reduced ordered) BDDs [9], a graphical representation of Boolean formulae that
enables probability calculation by means of dynamic programming, the ProbLog
implementation scales to DNFs with tens of thousands of conjunctions.

ProbLog programs are executed in three steps. Given a ProbLog program T
and a query q, the first step, SLD-resolution, collects all proofs for query q in
BK ∪ LT . Proofs are stored as lists of identifiers corresponding to probabilistic
facts in a trie data structure. This trie represents the DNF for query q. An
essential property of the trie data structure is that common prefixes are stored
only once, which in the context of ProbLog allows us to exploit natural prefix
sharing of proofs, as two proofs with common prefix will branch off from each
other at the first distinguishing probabilistic fact.

The second step, preprocessing, converts the DNF represented by the trie into
a so-called script. A script is a sequence of BDD definitions, which define BDDs
corresponding to Boolean random variables or Boolean formulae obtained by
applying Boolean operators to previously defined BDDs. The last BDD defined
in the script corresponds to the entire DNF.

Finally, the third step, BDD construction, follows the script to construct a
sequence of intermediate BDDs leading to the final BDD for probability cal-
culation. To this aim, ProbLog uses the front-end SimpleCUDD1 for the BDD
package CUDD2.

1 http://people.cs.kuleuven.be/~theofrastos.mantadelis/tools/simplecudd.

html
2 http://vlsi.colorado.edu/~fabio/CUDD/

http://people.cs.kuleuven.be/~theofrastos.mantadelis/tools/simplecudd.html
http://people.cs.kuleuven.be/~theofrastos.mantadelis/tools/simplecudd.html
http://vlsi.colorado.edu/~fabio/CUDD/

Preprocessing Boolean Formulae for BDDs in a Probabilistic Context 263

The complexity of combining BDDs by Boolean operators is proportional to
the product of their sizes, which depend on the variable order used by the BDD
package and can be exponential in the number of Boolean variables. As comput-
ing the order that minimizes the size of a BDD is a coNP-complete problem [9],
BDD packages include heuristics to reduce the size by reordering variables. While
reordering is often necessary to handle large BDDs, it can be quite expensive.
To control the complexity of BDD construction, it is therefore crucial to restrain
the size of the intermediate BDDs and the amount of operations performed. At
the very least, preprocessing should aim to avoid repeated construction of BDDs
for identical subformulae. In this work, we therefore use tries to exploit prefix
sharing on the level of proofs as well as – by means of the new data structure
depth breadth trie – on the level of BDD definitions.

3 From Tries to BDDs

ac ∧ cd
ac ∧ ce ∧ ed
ab ∧ bc ∧ cd

ab ∧ bc ∧ ce ∧ ed

cd

ab

bc

ed

ac

ce

ed

ce

cd

Fig. 2. Collected proofs and re-
spective trie for path(a,d)

In this section, we discuss the different ap-
proaches for preprocessing. Remember that pre-
processing converts a DNF (represented as trie)
to a script. We will use the example in Figure 1
as our running example. Figure 2 shows the set of
proofs and the trie for the query path(a,d). On
top, the four proofs of the query are represented
as conjunctions, where we use xy to denote the
Boolean variable corresponding to probabilistic
fact edge(x,y). The disjunction of those con-
junctions is depicted as a trie, where each branch
of the trie corresponds to one conjunction. For
simplicity of illustration, in the figures that fol-
low, we will use the same xy notation. In scripts,
we use ni to refer to the ith defined BDD.

The naive method directly mirrors the struc-
ture of the DNF by first constructing all con-
junctions of the DNF formula and then combining those in one big disjunction.
Figure 3 shows, on the left, the resulting script for the proofs of our example.
The worst case complexity of this preprocessing step is O(N ·M)3.

The decomposition method [7] recursively divides a Boolean formula in DNF
into smaller ones until only one variable remains. To do so, it first chooses a
Boolean variable from the formula, the so-called decomposition variable dv, and
then breaks the formula into three subformulae. The first subformula f ′

1 contains
the conjunctions that include dv, the second subformula f ′

2 those that include
the negation of dv and the third subformula f3 those that include neither of the
two. Then, by applying the distribution axiom, the original Boolean formula can
be re-written as f = f ′

1 ∨ f ′
2 ∨ f3 = (dv ∧ f1) ∨ (¬dv ∧ f2) ∨ f3.

3 Complexity results for N proofs and M probabilistic facts. For more details see:
https://lirias.kuleuven.be/bitstream/123456789/270070/2/complexity.pdf

https://lirias.kuleuven.be/bitstream/123456789/270070/2/complexity.pdf

264 T. Mantadelis et al.

Naive Method Decomposition Method Recursive Node Merging

n1 = ac ∧ cd n1 = ce ∧ ed n1 = ce ∧ ed
n2 = ac ∧ ce ∧ ed n2 = cd ∨ n1 n2 = cd ∨ n1

n3 = ab ∧ bc ∧ cd n3 = ce ∧ ed n3 = ac ∧ n2

n4 = ab ∧ bc ∧ ce ∧ ed n4 = cd ∨ n3 n4 = bc ∧ n2

n5 = n1 ∨ n2 ∨ n3 ∨ n4 n5 = bc ∧ n4 n5 = ab ∧ n4

n6 = ab ∧ n5 n6 = n3 ∨ n5

n7 = ac ∧ n2

n8 = n7 ∨ n6

Fig. 3. Scripts obtained by different preprocessing methods for the example DNF

Algorithm 1. Recursive node merging. Takes a trie T representing a DNF and
an index i and writes a script. replace(T,C, ni) replaces each occurrence of C
in T by ni.

function Recursive Node Merging(T, i)
if ¬leaf(T) then
S∧ := {(C,P)| leaf C is the only child of P in T}
for all (C,P) ∈ S∧ do

write ni = P ∧ C
T := replace(T, (C,P), ni)
i := i+ 1

S∨ := {[C1, . . . , Cn]| leaves Cj are all the children of some node P in T, n > 1}
for all [C1, . . . , Cn] ∈ S∨ do

write ni = C1 ∨ . . . ∨ Cn
T := replace(T, [C1, . . . , Cn], ni)
i := i+ 1

Recursive Node Merging(T, i)

As all three new subformulae f1, f2 and f3 do not contain dv, they can be
decomposed independently. The most basic choice for the decomposition variable
is the first variable of the current formula, however, various heuristic functions
can be used as well, cf. [7]. All definitions resulting from the same decomposition
step are written as a block at the end of that step, omitting those equivalent
to false to avoid unnecessary BDD operations. Figure 3 (middle column) again
shows the result for our example query. The worst case complexity is O(N ·M2).

The approach followed in ProbLog, as described in [6], exploits the sharing
of both prefixes – as directly given by the tries – and suffixes, which have to be
extracted algorithmically. We will call this approach recursive node merging.

Recursive node merging traverses the trie representing the DNF bottom-up. In
each iteration it applies two different operations that reduce the trie by merging
nodes. The first operation (depth reduction) creates the conjunction of a leaf
node with its parent, provided that the leaf is the only child of the parent. The
second operation (breadth reduction) creates the disjunction of all child nodes
of a node, provided that these child nodes are all leaves. Algorithm 1 shows
the details for recursive node merging and Figure 4 illustrates its step-by-step

Preprocessing Boolean Formulae for BDDs in a Probabilistic Context 265

ncd 1

ab

bc

ac

ncd 1

(a)

n2

ab

bc

ac

n2

(b)

n4

n3 ab

(c)

n5n3

(d)

Fig. 4. Tries obtained during recursive node merging applied to the trie for path(a,d)

application to the example trie in Figure 2. The resulting script can be found
on the right in Figure 3.

For both reduction types, a subtree that occurs multiple times in the trie
is reduced only once, and the resulting conjunction/disjunction is used for all
occurrences of that subtree, thus performing some suffix sharing. Note however
that the replace() procedure can be quite costly when fully traversing the trie
to search for repeated occurrences of subtrees.

4 Depth Breadth Trie

n3

n1

ce

ed

n3

ac

n4

bc

n5

ab

n6 n2

cd

breadth/2

n2 n2 n4 n5 n1

depth/2

Fig. 5. Depth breadth trie containing a com-
plete set of definitions (right column of Fig-
ure 3) for the DNF Boolean formula repre-
senting path(a,d). Each leaf node contains a
unique reference identifying the corresponding
path’s definition. Each branch in the depth/2
(breadth/2) part defines the conjunction (dis-
junction) of the entries in its white nodes
(Boolean variables or definition references).

In this section, we introduce
our new approach to implement-
ing recursive node merging. The
initial implementation explicitly
performed the costly replace()

procedure of Algorithm 1. The new
approach avoids this by storing
all BDD definitions during recur-
sive node merging. Once merging
is completed, the script is obtained
from this store. For each defini-
tion encountered during merging,
we first check if it is already present
in the store, and if so, reuse the cor-
responding reference ni. As such a
check/insert operation can be done
in a single pass for tries, we intro-
duce an additional and specific trie configuration for this purpose, that we named
depth breadth trie. Apart from this improvement, the depth breadth trie has the
additional advantage of allowing one to easily identify common prefixes on the
level of BDD definitions, which was not possible before. As we will see, this
leads to the definition of three new (optional) optimizations that can be per-
formed during recursive node merging to further reduce the number of Boolean
operations to be performed in BDD construction.

266 T. Mantadelis et al.

A depth breadth trie is divided in two parts corresponding to the two reduc-
tion types of recursive node merging: the depth part collects the conjunctions,
the breadth part the disjunctions. This separation is achieved by two specific
functors of arity two, depth/2 and breadth/2. Their first argument is a Prolog
list containing the literals that participate in the formula, the second argument
is the unique reference ni assigned to the corresponding BDD definition.

For example, the definitions n1 = ce ∧ ed and n2 = cd ∨ n1 are represented
respectively by the terms depth([ce,ed],n1) and breadth([cd,n1],n2). Note
that reference n1 introduced by the first term is used in the second term to refer
to the corresponding subformula. At the same time, those references provide the
order in which BDDs are defined in the script. Figure 5 shows the complete
depth breadth trie built by recursive node merging for our example.

In the following, we introduce the three new optimizations that can be ex-
ploited with the depth breadth trie. The motivation is again to decrease the
amount of operations performed in BDD construction. The optimizations are
illustrated in Figure 6. Figure 6(a) presents the initial trie used in all cases,
Figures 6(b), 6(c) and 6(d) show Optimizations I, II and III, respectively. The
worst case complexity is O(N ·M) in all cases.

depth/2

a

b

c

nr

(a) Initial trie

depth/2

a

b

c

nr

d

nr+1

nr

(b) Adding [a, b, c, d]

nr-1

depth/2

a

b c

nr

nr-1

(c) Adding [a, b]

nr-1

depth/2

a

b c

nr

nr-1

d

nr+1

(d) Adding [a, b, d]

Fig. 6. Examples of definitions that trigger (b) Optimization I, (c) Optimization II
and (d) Optimization III when added to the depth breadth trie in (a)

Optimization I (Contains Prefix): The first optimization occurs when a new
formula [p1, . . . , pn] to be added to the depth breadth trie contains as prefix an
existing formula [p1, . . . , pi], i ≥ 2, with reference nr. In this case, the exist-
ing formula will be reused and, instead of inserting [p1, . . . , pn], we will insert
[nr, pi+1, . . . , pn] and assign a new reference to it.

Optimization II (Is Prefix): The second optimization considers the inverse
case of the first optimization. It occurs when a new formula [p1, . . . , pi],
i ≥ 2, to be added to the depth breadth trie is a prefix of an existing formula
[p1, . . . , pn] with reference nr. In this case, we split the existing subformula
representing [p1, . . . , pn] in two: the first one representing the new formula

Preprocessing Boolean Formulae for BDDs in a Probabilistic Context 267

Algorithm 2. Depth breadth trie optimizations. Takes a T representing either
the depth or breadth part of the depth breadth trie and a list L with the formula
to be added and returns the reference ni assigned to L in T . COUNTER is a
global counter and replace(L,C, ni) replaces C in L by ni.

function Update Depth Breadth Trie(T , L)
if (L, ni) ∈ T then

return ni
for all (list, ni) ∈ T do

if list is prefix of L then
/* Optimization I */
L := replace(L, list, ni)
return Update Depth Breadth Trie(T,L)

if L is prefix of list then
/* Optimization II */
T := remove((list, ni), T)
T := add((L,ni−(length(list)−length(L))), T)
list := replace(list, L, ni−(length(list)−length(L)))
T := add((list, ni), T)
return ni−(length(list)−length(L))

if L and list have a common prefix prefix with length(prefix) > 1 then
/* Optimization III */
nj := Update Depth Breadth Trie(T, prefix)
L := replace(L, prefix, nj)
return Update Depth Breadth Trie(T,L)

COUNTER := COUNTER+ length(L)
T := add ((L, nCOUNTER), T)
return nCOUNTER

[p1, . . . , pi] with a new reference nr−1, the other representing the existing
formula, but modified to re-use the new reference nr−1, i.e., [p1, . . . , pn] is
replaced by [nr−1, pi+1, . . . , pn].

Optimization III (Common Prefix): The last optimization exploits defini-
tions branching off from each other. It occurs when a new formula [p1, . . . , pn]
shares a common prefix [p1, . . . , pi], n > i ≥ 2, with an existing formula
[p1, . . . , pi, p

′
i+1, . . . , p

′
m], m > i, with reference nr. In this case, first, the

common prefix is inserted as a new formula with reference nr−1, triggering
the second optimization, and second, the original new formula is added as
[nr−1, pi+1, . . . , pn] using nr−1 as in the first optimization.

Each repeated occurrence of a prefix of length P identified by one of the op-
timizations decreases the total number of operations required by P − 1. For
example, if Optimization III identifies a common prefix fP of length P of two
formulae fM and fN of length M and N respectively, the number of operations
decreases from (N−1)+(M−1) to (P−1)+(N−P)+(M−P) = N+M−P−1,
and if a third formula fK shares the same prefix, the number of operations it
requires again reduces to (K − 1)− (P − 1) = K − P .

268 T. Mantadelis et al.

Algorithm 2 formalizes the implementation of these three optimizations, which
roughly speaking replaces the write and replace operations in Algorithm 1. One
should notice that with the depth breadth trie, the references ni are no longer
incremented by one but by the length of the formula being added. This is nec-
essary as Optimizations II and III insert additional subformulae that have to be
created before the current formula being added, and thus need to be assigned a
smaller reference. As our formulae always contain at least two elements, using
the length of the formula to increment ni is sufficient to leave enough free places
for later use with Optimizations II and III. The order given by those references
will therefore ensure that subformulae will be generated before being referred
to. Moreover, as we are using tries, these optimizations can be performed while
adding the new formulae. Note that the optimizations require a modification of
the trie insertion procedure4: if the new definition first differs from an existing
one after two or more steps, the insertion of the new formula is frozen while the
appropriate optimization is performed and resumed afterwards.

To assess the effect of optimizations, our implementation in fact offers four
choices of optimization level: no optimizations, Optimization I only, Optimiza-
tions I and II, or all three optimizations. Furthermore, the minimal length of
common prefixes (2 by default) can be adapted. Note that depending on the
order in which the formulae are inserted, different optimizations might trigger
and the resulting trie might be slightly different.

5 Experimental Results

We next report on experiments comparing the four preprocessing methods: naive,
decomposition (dec), recursive node merging as described in [6] (rnm) and
recursive node merging with the depth breadth trie (dbt). The environment for
our experiments was a C2Q 2.83 GHz 8 GB machine running Linux using a single
core. The entire ProbLog engine, including preprocessing, is implemented in Yap
Prolog 6.0, except for dbt, which is implemented in C as its optimizations require
modifications to Yap’s trie insertion, which is itself implemented in C. BDD
construction uses the CUDD BDD package with automatic triggering of variable
reordering by group sifting [10]. As rnm has been developed to exploit structure
sharing in the trie, whereas dec is a general purpose method, we consider two
benchmarks that contrast in this aspect.

The first benchmark is a three-state Markov model, where we query for the
probability of an arbitrary sequence of N steps (starting in a random state at
time point 0) ending in a given state. Each of the N time steps in such a sequence
involves two new random variables (jointly encoding the three different start
states of the step), and the number of proofs is thus 3N .

4 A definition is inserted term by term incrementally and each term is compared for
identical prefix.

Preprocessing Boolean Formulae for BDDs in a Probabilistic Context 269

Table 1. Average runtimes for
BDD construction on three-state
Markov model, for sequence
length N . Cases with (/) ex-
ceeded the time limit for BDD
construction, cases with (−) fail
for memory reasons.

N naive dec rnm dbt
7 251 45 28 25
8 786 87 28 25
9 3,698 188 31 25
10 20,854 539 35 29
11 256,330 1,638 43 31
12 / 5,024 96 31
13 / - 205 48
14 / - - 75

The second benchmark comes from the
domain of connectivity queries in biological
graphs that originally motivated ProbLog. In
this case, we consider two different ProbLog in-
ference methods which lead to different types
of formulae. Exact inference as discussed in
Section 2 produces formulae with high sharing
in both prefixes and suffixes of proofs (which
correspond to paths starting and ending at spe-
cific nodes). On the other hand, upper bound
formulae as encountered in bounded approxi-
mation [6] typically contain small numbers of
proofs and large numbers of so-called stopped
derivations, i.e., partial proofs cut off at a prob-
ability threshold. While the latter still share
prefixes, their suffixes are a lot more diverse.
This type of formulae has been observed to be
particularly hard for ProbLog. In our experi-
ments, we use a graph with 144 edges (and thus 144 random variables) extracted
from the Biomine network also used in [6], and query for acyclic paths between
given pairs of nodes. We use a set of 45 different queries, some chosen randomly,
and some maximizing the degrees of both nodes. In exact inference, the number
of conjunctions in the DNF ranges from 13136 to 351600, with an average of
90127, for upper bound formulae, it ranges from 53 to 26085, with an average of
9516. The number of trie nodes in the exact case varies from 44479 to 1710621
(average 387073), representing between 161100 and 5776734 virtual nodes (aver-
age 1376030)5. In the upper bound case, tries have 126 to 60246 nodes (average
22251), corresponding to 334 to 232618 virtual nodes (average 80525).

We set up experiments to study the following questions:

Q1: How do the different preprocessing methods compare on more, or less struc-
tured problems?

Q2: What is the impact of each optimization and which parameters affect them?

As the main goal of this work is to optimize the performance of BDD con-
struction, we will focus on the runtime of this last step of ProbLog inference as
central evaluation criterion. The time to calculate probabilities on the final BDD
is included in the construction time; it typically is a very small fraction thereof.

Table 1 presents BDD construction times for the Markov model. In this bench-
mark, no extra optimizations are triggered for dbt. Times are given in millisec-
onds and are averages over three runs. BDD construction uses a timeout of
600 seconds, when a method reaches this timeout, it is not applied to larger
problems. These cases are marked with (/). Cases marked with (-) fail due to

5 The number of virtual nodes roughly corresponds to the number of occurrences of
Boolean variables in the DNF written in uncompressed form. Each trie branch is
represented by a node for each variable and by two special start and end nodes.

270 T. Mantadelis et al.

memory during script preprocessing; this also occurs when using dbt at length
15. In this experiment, both trie based methods clearly outperform the naive
and dec methods, and BDD construction also seems to benefit slightly from the
modifications used in the dbt-based version of rnm. As a first answer to Q1,
we thus conclude that for structured problems, trie-based methods are indeed
the first choice to optimize BDD construction.

Table 2. BDDs for exact inference: average and
standard deviation of times over 45 queries (dbti
uses all optimization levels l ≤ i)

Method
Preprocessing BDD Constr
avg sdev avg sdev

dec 40,076 38,417 2,235 1,313
rnm 3,694 3,632 1,844 1,150
dbt 124 117 1,998 1,318
dbt1 125 118 1,891 1,697
dbt2 125 118 1,481 630
dbt3 128 120 1,446 769

For the graph domain, we
use a timeout of 300 seconds on
BDD construction, and a cut-
ting threshold δ = 0.05 for ob-
taining upper bound formulae.
As the naive method always
performs worst, it is excluded
from the following discussion.
Typically, all optimizations for
the dbt method are triggered,
with type I being most frequent
(note that type III increases
type I usage).

Table 3. BDDs for upper bounds at threshold
0.05: average and standard deviation of times
over 44 queries grouped into categories accord-
ing to runtimes

Group Method
BDD Constr Time

avg sdev outs
dec 9,351 2,323 0
rnm 24,710 6,415 0

Easy dbt 10,148 2,192 0
19/44 dbt1 10,714 2,389 0

dbt2 14,417 3,263 0
dbt3 15,311 4,055 0
dec 21,785 5,197 0
rnm 46,428 9,084 0

Medium dbt 29,719 4,029 0
14/44 dbt1 39,914 9,084 0

dbt2 28,522 3,165 0
dbt3 46,263 19,231 0
dec 28,979 9,172 0
rnm 114,870 18,225 0

Hard dbt 62,612 16,350 3
11/44 dbt1 121,442 29,052 2

dbt2 94,454 28,753 3
dbt3 122,150 37,751 3

In exact inference, cf. Table 2,
BDD construction times for all
methods are very close and rarely
exceed 4 seconds. However, pre-
processing time for dec is one or-
der of magnitude higher than for
rnm (remember that dbt should
not directly be compared, as it
is implemented in a different lan-
guage). Again, this is due to the
high amount of suffix sharing in
those tries, which is exploited by
our method, but causes repeated
work during construction for the
decomposition method. These re-
sults clearly enforce our first con-
clusions about Q1. Regarding Q2,
these results show that the dbt op-
timizations are incrementally effec-
tive in reducing construction time
without introducing costs in pre-
processing time.

For upper bound BDDs, the re-
sults are more diverse. Here, we fo-
cus on the comparison between dec
and dbt with different optimiza-

Preprocessing Boolean Formulae for BDDs in a Probabilistic Context 271

tion levels. For presentation of results in Table 3, we partition queries in cat-
egories by using two thresholds on BDD construction time (t < 15, 000ms for
Easy, 15, 000ms ≤ t < 50, 000ms for Medium and t ≥ 50, 000ms for Hard),
and majority vote among the methods (as one single test query finishes in few
milliseconds, it is omitted from the results). The last column gives the number
of queries reaching the timeout in BDD construction.

Upper bound DNFs contain less conjunctions than those obtained in exact
inference, and preprocessing times are one order of magnitude lower for all meth-
ods. BDD construction times, however, are generally higher when considering
upper bounds. On average, BDDs obtained by dec have smaller construction
times than those obtained from rnm and dbt, even though variation is high.

Table 4. Upper bound BDDs: number of queries
where a given method leads to fastest BDD
construction, comparing all methods (All), the
two implementations of recursive node merging
without optimizations (rnm/dbt) or including
different optimization levels (rnm/dbt*), and
different depth breadth trie optimization levels
only (dbt*)

Method All rnm/dbt rnm/dbt* dbt*
dec 26 - - -
rnm 2 14 6 -
dbt 6 30 13 16
dbt1 2 - 9 10
dbt2 5 - 9 9
dbt3 3 - 7 9

Table 4 compares methods by
counting the number of queries
for which they achieve fastest
upper bound BDD construction
compared to competing meth-
ods. As dec performs best in
the overall comparison for this
type of problem, we further
compare the two implementa-
tions of recursive node merging.
While the BDDs obtained from
the implementation using depth
breadth tries often outperform
those from the previous im-
plementation, there is no clear
winner between the various op-
timization levels for this type of
problem. Together, those results
provide the second part of the answer to Q1: for problems with less suffix shar-
ing, scripts obtained from dec often outperform those obtained from dbt.

Concerning the optimization levels, Tables 3 and 4 indicate that for the graph
case, their effect varies greatly. For all levels, we observe cases of improvement
as well as deterioration. We suspect that optimizations are often performed too
greedily. Initial experimentation on artificially created formulae indicates that
several factors influence performance of optimizations, among which are: (i) the
length of the shared prefix; (ii) the number of times it occurs; (iii) the structure
of the subformulae occurring in the prefix; and (iv) the structure of the suffixes
sharing the prefix. While the latter three are harder to control during prepro-
cessing, we performed a first experiment where we only trigger the optimizations
for shared prefixes of minimal length n > 2. Results on upper bound formulae
confirm that this parameter indeed influences BDD construction, again to the
better or the worse. We conclude that, while we identified certain parameters
influencing the success of optimizations in synthetic data, in the case of less
regular data, the answer to Q2 remains an open issue for further investigation.

272 T. Mantadelis et al.

6 Conclusions and Future Work

We introduced depth breadth tries as a new data structure to improve prepro-
cessing in ProbLog, and compared the resulting method and its variations to
the method used so far as well as to the decomposition method presented by [7].
Our experiments with the three-state Markov model and with exact inference
confirm that our trie based method outperforms the other methods on problems
with high amount of suffix sharing between proofs. At the same time they reveal
that the decomposition method is more suited if this is not the case, and thus
is a valuable new contribution to ProbLog.

While the three new optimizations, aimed at reducing the number of BDD
operations, can greatly improve performance in some cases, in others, they have
opposite effects. Initial experiments suggest that those optimizations should be
applied less greedily. Future work therefore includes a more in depth study of
the factors influencing the effects of optimizations. We also plan to further inves-
tigate the respective strengths of our trie based approach and the decomposition
method, and to exploit those in a hybrid preprocessing method. Finally, we need
to further explore existing work on BDD construction in other fields, which might
provide valuable insights for our specific application context.

Acknowledgments. T. Mantadelis is supported by the GOA/08/008 Proba-
bilistic Logic Learning, A. Kimmig is supported by the Research Foundation
Flanders (FWO Vlaanderen) and R. Rocha has been partially supported by
the FCT research projects STAMPA (PTDC/EIA/67738/2006) and HORUS
(PTDC/EIA-EIA/100897/2008).

References

1. De Raedt, L., Frasconi, P., Kersting, K., Muggleton, S. (eds.): Probabilistic Induc-
tive Logic Programming. LNCS (LNAI), vol. 4911. Springer, Heidelberg (2008)

2. Getoor, L., Taskar, B. (eds.): Statistical Relational Learning. The MIT press, Cam-
bridge (2007)

3. Sato, T.: A statistical learning method for logic programs with distribution seman-
tics. In: Proceedings of ICLP, pp. 715–729 (1995)

4. Sato, T., Kameya, Y.: Parameter learning of logic programs for symbolic-statistical
modeling. JAIR 15, 391–454 (2001)

5. Poole, D.: The independent choice logic and beyond. In: [1], pp. 222–243
6. Kimmig, A., Santos Costa, V., Rocha, R., Demoen, B., De Raedt, L.: On the

efficient execution of ProbLog programs. In: Garcia de la Banda, M., Pontelli, E.
(eds.) ICLP 2008. LNCS, vol. 5366, pp. 175–189. Springer, Heidelberg (2008)

7. Rauzy, A., Châtelet, E., Dutuit, Y., Bérenguer, C.: A practical comparison of
methods to assess sum-of-products. Reliab. Eng. Syst. Safe 79(1), 33 – 42 (2003)

8. Valiant, L.G.: The complexity of enumeration and reliability problems. SIAM Jour-
nal on Computing 8(3), 410–421 (1979)

9. Bryant, R.E.: Graph-based algorithms for boolean function manipulation. IEEE
Trans. Computers 35(8), 677–691 (1986)

10. Panda, S., Somenzi, F.: Who are the variables in your neighborhood. In: Proceed-
ings of ICCAD 1995, pp. 74–77 (1995)

Minimal Knowledge and Belief via Minimal Topology

David Pearce1 and Levan Uridia2

1 Universidad Politécnica de Madrid, Spain
david.pearce@upm.es

2 Universidad Rey Juan Carlos, Madrid, Spain
uridia@ia.urjc.es

Abstract. We introduce and study a modal logic wK4f that is related to the
idea of minimal belief in much the same way as its strengthening, S4F , has been
shown to be related to the idea of minimal knowledge. wK4f can be obtained by
adding a weakened version of axiom F to the modal logic wK4. We show that,
like S4F , wK4f is sound and complete with respect to the class of all minimal
topological spaces ie topological spaces with only three open sets. We describe
the rooted frames of wK4f by quadruples of natural numbers. Finally we char-
acterise non-monotonic wK4f in terms of minimal models.

1 Introduction

In this paper we explore an approach to minimal belief that borrows the basic ideas
of minimal knowledge studied by Schwarz and Truszczynski [8,9]. At the same time
we show how the logics underlying minimal knowledge and belief are related to min-
imal topologies using the well-known methods for obtaining logics from topologies
described by [19] and [2]. We start with a brief review of these basic ideas.1

Minimal Knowledge and Minimal Belief. The paradigm of minimal knowledge de-
rives from the well-known work of Halpern and Moses, especially [3], later extended
and modified in works such as [15,13,14] and others. Many approaches are based
on Kripke-S5-models with a universal accessibility relation and the minimisation of
knowledge is represented by maximising the set of possible worlds with respect to in-
clusion. In general, this has the effect of minimising objective knowledge, ie knowl-
edge of basic facts and propositions. A somewhat different approach was developed by
Schwarz and Truszczynski [8] and can be seen as a special case of the very general
method of Shoham [15] for obtaining different concepts of minimality by changing the
sets of models and preference relations between them. The initial models considered by
[8] (see also [22,9]) consist of not one (S5) cluster but rather two clusters arranged in
such a way that all worlds in one cluster are accessible from all worlds in the other (but
not vice versa). In Figure 1 clusters are labelled W1,W2, all points are reflexive and

1 The authors are grateful to anonymous reviewers whose comments helped to improve the read-
ability of the paper. The second author is grateful to Leo Esakia for discussions on monotonic
wK4f and its connections with topology and also to David Gabelaia due to whom the axiom
f is much more readable. This research has been partially supported by the MCICINN projects
TIN2006-15455, TIN2009-14562-CO5, and CSD2007-00022.

T. Janhunen and I. Niemelä (Eds.): JELIA 2010, LNAI 6341, pp. 273–285, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

274 D. Pearce and L. Uridia

W2

W1first floor

second floor

Fig. 1.

every point in W2 is accessible from every point in W1. We call W1,W2 respectively
the first and the second floor of the model. The former may be empty but the latter not.

In [8,9], given a background theory or knowledge set I , minimal knowledge (with
respect to I) is captured by an S5-model of the theory, say M , but now the idea of
minimality is that there should be no two-floor model M ′ as in Figure 1 of the same
theory I , where M coincides with the restriction of M ′ to the second floor W2, and
W1 is smaller in the sense that it fails to verify some objective (non-modal) sentence
true in M . Schwarz and Truszczynski argue that this approach to minimal knowledge
has some important advantages over the method of [3] and they study its properties in
depth, in particular showing that while the two-floor models correspond to the modal
logic S4F first studied by Segerberg [5], minimal knowledge is precisely captured by
non-monotonic S4F . In [9] they show that non-monotonic S4F captures, under some
intuitive encodings, several important approaches to knowledge representation. They
include disjunctive logic programming under answer set semantics [10], (disjunctive)
default logic [11], [12], the logic of grounded knowledge [13], the logic of minimal
belief and negation as failure [14] and the logic of minimal knowledge and belief [9].
Recently, Truszczynski [16] and Cabalar [17] have revived the study of S4F in the
context of a general approach to default reasoning.

Logics via Topology. Alfred Tarski [6], together with Chen McKinsey [19,20], laid the
foundations for the algebraic and topological study of intuitionistic and modal logics.
The basic idea, recalled and developed in a recent paper by Leo Esakia [2], is that from
an arbitrary topological space X we can generate three different algebraic structures
each giving rise to different logical systems.2 By considering the algebra of open sets,
Op(X), one is led to the well-known Heyting algebra that forms a semantical basis
for intuitionistic logic. By considering the closure algebra, (P(X), c) one is led to the
modal system S4.3

The third path from topology to logic is via what are known as derivative algebras,
(P(X), der). These are Boolean algebras with a unary operation der representing topo-
logical derivation: if A is a subset of X then der(A) is the set of all accumulation or
limit points of A. The derivative algebra (P (X), der) gives rise to the modal logic

2 For the basic notions of topology see eg [4] or any appropriate textbook.
3 Recall that a Heyting algebra (H,∨,∧,→,⊥) is a distributive lattice with smallest element
⊥ containing a binary operation → such that x ≤ a → b iff a ∧ x ≤ b. (B,∨,∧,−, c) is
a closure algebra if (B,∨,∧,−) is a Boolean algebra and c is a closure operator satisfying:
a ≤ ca, cca = ca, c(a ∨ b) = ca ∨ cb, c⊥ = ⊥.

Minimal Knowledge and Belief via Minimal Topology 275

wK4, a slightly weaker version of the logic K4, that was first studied from a topologi-
cal point of view in [1] (see [2] for a detailed overview).

All three paths to logic are of interest for the modelling of agents’ reasoning, their
knowledge and beliefs in AI. Intuitionistic logic and its extensions capture different
forms of constructive reasoning, while extensions of S4, including S5, have formed the
basis for epistemic logics of knowledge. On the other hand, extensions of wK4 may be
considered good candidates for doxastic logics of belief inasmuch as the axiom �p→ p
does not hold. In fact, the standard doxastic logic KD45 is one such extension of wK4.

From the viewpoint of non-monotonic reasoning, there is a special interest in exam-
ining the logics that arise as above from topological spaces X that are minimal, that is
where X has only three open sets. In the first case, we obtain the three-element Heyting
algebra that captures a logic known as here-and-there, HT , the maximal intermediate
logic that is properly contained in classical logic. The well-known non-monotonic ex-
tension of HT called equilibrium logic [18] provides a logical foundation for reasoning
with the stable model semantics of logic programs and thus for the popular approach
to knowledge representation and declarative problem solving known as answer set pro-
gramming, ASP. Starting from a minimal topological space and using instead the idea
of closure algebras one arrives at S4F , a reflexive normal modal logic first studied by
Segerberg [5]. We have already observed how non-monotonic S4F relates to minimal
knowledge and is important in knowledge representation and reasoning.

In this paper we study the third path from topology to logic based on minimal topo-
logical spaces. This yields a logic that we call wK4f . Our main motivation is that this
logic (and some close variants) can serve to model minimal belief, in the same way as
S4F captures minimal knowledge. We would like to emphasise again that these ideas
of minimal knowledge and belief are based on properties of models (and what they
verify) and not on the shape of modal axioms. While obtaining a complete axiomatisa-
tion is therefore an important and even essential part of our study, it is not the axioms
themselves that motivate the choice of logic. They provide a compact formulation of a
calculus rather than a direct formalisation of some or other intuitive property of belief.
The connections with minimal belief will be explored in the second half of the paper,
in Section 5, while the first parts of the paper are devoted to the study of wK4f itself.

As we have seen, S4F is captured by Kripke frames consisting of two clusters con-
nected by an accessibility relation. In the case of wK4f the picture is similar except
that we drop the condition of reflexivity on frames: in Fig. 2 some points in W1,W2

may now be irreflexive (where i and r label this difference). Since S4F and wK4f are
closely related, many results can be transferred from one to the other.

W2

W1

i2 r2

i1 r1first floor

second floor

Fig. 2.

276 D. Pearce and L. Uridia

The paper is organised in the following way. In section 2 we present the syntax and
Kripke semantics of wK4f . We prove completeness and the finite model property. In
section 3 we characterise finite one-step, weakly-transitive frames and their bounded
morphisms in terms of quadruples of natural numbers. In section 4 we prove a main
theorem of the paper, which states that wK4f is the (sound and complete) logic of all
minimal topological spaces. Section 5 describes non-monotonicwK4f and relates it to
the idea of minimal belief. In the last section we state some conclusions and mention
topics for future work.

2 The Modal Logic wK4f

Following the Tarski/McKinsey suggestion to treat modality as the derivative of the
topological space [19], Esakia in [1,21] introduced wK4 as the modal logic of all topo-
logical spaces, with the desired (derivative operator) interpretation of the modal ♦.
wK4f is a normal modal logic obtained by adding the axiom weak-F to the modal
logic wK4. wK4f is a weaker logic than S4F discussed in Segerberg [5] since it
doesn’t satisfy the axiom T . However since the frames of wK4f and S4F are closely
related, some results about wK4f may carry over to S4F .

Syntax. The normal modal logic wK4f is defined in a basic modal language with an
infinite set Prop of propositional letters and connectives ∨,∧,¬,�. The axioms are
all classical tautologies plus the axioms listed below. Rules of inference are: modus
ponens, substitution and necessitation.

K : �(p→ q)→ (�p→ �q)
w4 : �p ∧ p→ ��p

f : p ∧ ♦(q ∧ �¬p)→ �(q ∨ ♦q)

Semantics. Kripke semantics for the modal logic wK4f is provided by frames which
have in a weak sense height at most two and which do not allow forking. This is made
precise in the following two definitions.

Definition 1. We will say that a relation R ⊆W ×W is weakly-transitive if (∀x, y, z)
(xRy ∧ yRz ∧ x �= z ⇒ xRz).

Clearly every transitive relation is weakly-transitive as well. Moreover, clusters (where
a cluster is a subset of a frame where every two distinct points are related with each
other) with weakly transitive relations differ from those with transitive relations in that
they allow for irreflexive points. Such clusters will be called weak-clusters.

Definition 2. We will say that a relation R ⊆ W × W is a one-step relation if the
following two conditions are satisfied:

1)(∀x, y, z)((xRy ∧ yRz)⇒ (yRx ∨ zRy)),
2)(∀x, y, z)((xRy ∧ ¬(yRx) ∧ xRz ∧ y �= z)⇒ zRy).

Minimal Knowledge and Belief via Minimal Topology 277

As the reader can see the first condition restricts the ‘strict’ height of the frame to two.
Where informally by ”strict” we mean that the steps are not counted within a cluster.
The second condition is more complicated. Essentially it restricts the ‘strict’ width of
the frame to one, though more points could be allowed at the bottom.

We briefly recall some standard definitions in modal logic. The pair (W,R), with
W an arbitrary set and R ⊆ W ×W is called a Kripke frame. If we additionally have
a third component, a function V : Prop ×W → {0, 1}, then we say that we have a
Kripke modelM = (W,R, V).

For a given Kripke modelM = (W,R, V) the satisfaction of a formula at a point
w ∈W is defined inductively as follows:M, w � p iff V (p, w) = 1, the Boolean cases
are standard,M, w � �φ iff (∀v ∈ W)(wRv ⇒ v � φ). A formula φ is valid in a
modelM if for every point w ∈ W we haveM, w � φ in this case we writeM � φ.
A formula is valid in a frame if it is valid in every model based on the frame. A formula
is valid in a class of frames if it is valid in every frame in the class. Notice that from the
definition of ♦, (♦φ ≡ ¬�¬φ) it easily follows thatM, w � ♦φ iff ∃v ∈ W such that
wRv ∧ v � φ.

Let K denote the class of all one-step and weakly-transitive Kripke frames . The
following theorem links the logic wK4f with the class K. The proof uses standard
modal logic completeness techniques, so we will not enter into all the details.

Theorem 3. The modal logic wK4f is sound and strongly complete wrt the class K.

We give the soundness proof only for the axiom f . For the proofs for other axioms the
reader may consult [21].

Proof. Take an arbitrary, weakly-transitive, one-step model (W,R, V). Assume at some
point w ∈ W it holds that w � p ∧ ♦(q ∧ �¬p). This implies that w � p and there
exists w′ such that wRw′, w′ � q and it is not the case that w′Rw (as far as w′ � �¬p).
Now for an arbitrary v with wRv and v �= w′, by the second condition of definition 2,
we have that vRw′, which implies that v � ♦q and hence w � �(q ∨ ♦q).

For strong completeness assume I � φ. We will construct the one-step and weakly-
transitive model M c = {W c, Rc, V c} such that M c � I and M c � φ. For M c we take
a standard canonical model ie. W c = {Γ |Γ � I and Γ is a maximal consistent set}.
The relation is defined in a standard way ΓRcΓ ′ iff (∀α)(�α ∈ Γ ⇒ α ∈ Γ ′) and
V c(p, Γ) = 1 iff p ∈ Γ .

Lemma 4 (Truth Lemma). For any formula φ we have M c, Γ � φ iff φ ∈ Γ .

The proof follows a standard pattern found in modal logic textbooks. As I � φ we have
that I ∪ {¬φ} is consistent, so there exists a maximally consistent set Γ¬φ containing
I ∪ {¬φ} and by the truth lemma this means that M c, Γ¬φ � ¬φ which completes
the proof. The main thing to be checked is that M c ∈ K. For weak transitivity of the
relation Rc the reader may consult [21]. Let us show that Rc is a one-step relation.

First let us show that Rc satisfies the first condition of definition 2. For the contradic-
tion assume there exist three distinct pointsΓ, Γ ′, Γ ′′ ∈ W c such that ΓRcΓ ′∧Γ ′RcΓ ′′

and ¬(Γ ′RcΓ)∧¬(Γ ′′RcΓ ′). This means that there is a formula ψ such that �ψ ∈ Γ ′

and ¬ψ ∈ Γ and there is a formula φ such that �φ ∈ Γ ′′ and ¬φ ∈ Γ ′ and as Γ ′ �= Γ ′′

278 D. Pearce and L. Uridia

there exists a formula γ with γ ∈ Γ ′ and ¬γ ∈ Γ ′′. From these assumptions we have
that (¬φ∧ γ)∧�¬¬ψ ∈ Γ ′. Now as ΓRcΓ ′ we have that ♦((¬φ∧ γ)∧�¬¬ψ) ∈ Γ
and as ¬ψ ∈ Γ we have that♦((¬φ∧γ)∧�¬¬ψ)∧¬ψ ∈ Γ . Applying axiom f (with
p = ¬ψ, q = ¬φ ∧ γ) we get that �((¬φ ∧ γ) ∨ ♦(¬φ ∧ γ)) ∈ Γ . Hence as ΓRcΓ ′′

(because of weak transitivity) we have that (¬φ∧ γ)∨♦(¬φ∧ γ) ∈ Γ ′′ . On the other
hand ♦(¬φ ∧ γ) �∈ Γ ′′ since �φ ∈ Γ ′′ and ¬φ ∧ γ /∈ Γ ′′ because ¬γ ∈ Γ ′′. Hence we
get a contradiction.

Now let us show that Rc satisfies the second condition of definition 2. Again the
proof is by contradiction. Assume there exist three distinct points Γ, Γ ′, Γ ′′ ∈W c such
that ΓRcΓ ′∧ΓRcΓ ′′∧¬(Γ ′RcΓ) and ¬(Γ ′′RcΓ ′). This means that there is a formula
ψ such that �ψ ∈ Γ ′ and ¬ψ ∈ Γ and there is a formula φ such that �φ ∈ Γ ′′ and
¬φ ∈ Γ ′ and as Γ ′ �= Γ ′′ there exists a formula γ with γ ∈ Γ ′ and ¬γ ∈ Γ ′′. From
these assumptions we have that (¬φ ∧ γ) ∧ �¬¬ψ ∈ Γ ′. Now as ΓRcΓ ′ we have that
♦((¬φ∧γ)∧�¬¬ψ) ∈ Γ and as¬ψ ∈ Γ we have that♦((¬φ∧γ)∧�¬¬ψ)∧¬ψ ∈ Γ .
Applying axiom f we get that �((¬φ∧γ)∨♦(¬φ∧γ)) ∈ Γ . Hence as ΓRcΓ ′′ we have
that (¬φ∧γ)∨♦(¬φ∧γ) ∈ Γ ′′ . On the other hand♦(¬φ∧γ) �∈ Γ ′′ since �φ ∈ Γ ′′.
Nor can we have ¬φ ∧ γ ∈ Γ ′′ because ¬γ ∈ Γ ′′. Hence we get a contradiction.

Theorem 5. The modal logic wK4f is sound and complete wrt the class of all finite
one-step and weakly-transitive Kripke frames.

3 Finite, Rooted, Weakly-Transitive and One-Step Kripke Frames

We saw from (Theorem 5), which we do not prove in this paper, that the class of finite,
weakly-transitive and one-step Kripke frames fully captures the modal logic wK4f .
From general theorems in modal logic it is well known that this class can be reduced to a
smaller class of frames which are rooted so that the completeness theorem still holds. In
this section we characterise finite, rooted, weakly-transitive and one-step Kripke frames
in terms of quadruples of natural numbers.

Definition 6. The upper cone of a set A ⊆ W in a weakly-transitive Kripke frame
(W,R) is defined as a set R(A) =

⋃
{y : x ∈ A&xRy} ∪A.

Observe that the general definition of upper cone in an arbitrary Kripke frame is given in
terms of the reflexive, transitive closure of a relation, while Definition 6 is a simplified
version for the particular case of weakly transitive frames.

Definition 7. A Kripke frame (W,R) is called rooted if there exists a point w ∈ W
such that the upper cone R({w}) = W ; w is called the root of the frame.

Let N4 be the set of all quadruples of natural numbers and let N 4 = N4 −
{(n,m, 0, 0)|n,m ∈ N}. The following theorem states that the set Kr of all finite,
rooted, one-step, weakly-transitive frames considered up to isomorphism can be seen
as the set N 4.

Minimal Knowledge and Belief via Minimal Topology 279

Theorem 8. There is a one-to-one correspondence between the set Kr and the setN 4.

Proof. We know that any one-step frame has ”strict” width one and ”strict” height less
than or equal to two (We didn’t give the formal definition of ”strict” height and width,
but it should be clear from the intuitive explanation after the definitions 2 and 1 what
we mean by this). If additionally we have that the frame is rooted, the case where strict
width is greater than one at the bottom is also restricted. It is not difficult to verify that
any such frame (W,R) is of the form (W1,W2), where W1 ∪W2 = W , W1 ∩W2 = ∅

and (∀u ∈ W1, ∀v ∈ W2)(uRv). Besides because of the weak-transitivity, we have
that (∀u, u′ ∈ W1)(u �= u′ ⇒ uRu′) and the same for every two points v, v′ ∈ W2.
Pictorially any rooted, weak-transitive and one-step Kripke frame can be represented
as in Figure 2. Again we call W1 the first floor and W2 the second floor of the frame
(W,R). Notice that W1 or W2 may be equal to ∅ ie the frame has only one floor. In
this case we treat the only floor of the frame as the second floor.

Now let us describe how to construct the function from Kr to N 4. With every frame
(W,R) ∈ N 4 we associate the quadruple (i1, r1, i2, r2), where i1 is the number of
irreflexive points in W1, r1 is the number of reflexive points in W1, i2 is the number
of irreflexive points in W2 and r2 is the number of reflexive points in W2. We will call
the quadruple (i1, r1, i2, r2) the characteriser of the frame (W,R). In case the frame
(W,R) has only one floor, by our earlier remark it is treated as the frame (∅,W).
Hence its characteriser has the form (0, 0, i, r). Now it is clear that the correspondence
described above defines a function from the set Kr to the set N 4. We denote this func-
tion by Ch.
Claim 1: Ch is injective. Take any two distinct finite, rooted, weakly-transitive, one-
step Kripke frames (W,R) and (W ′, R′). That they are distinct in Kr means that they
are non-isomorphic ie either |W | �= |W ′| or R �. R′. In the first case it is immediate
that Ch(W,R) �= Ch(W ′, R′) since |W | = i1 + i2 + r1 + r2. In the second case we
have three subcases:

1) |W1| �= |W ′
1|. In this subcase i1 + r1 �= i′1 + r′1 and hence Ch(W,R) �=

Ch(W ′, R′).
2) The number of reflexive (irreflexive) points in |W1| differs from the number of

reflexive (irreflexive) points in |W ′
1|. In this subcase i1 �= i′1 and again Ch(W,R) �=

Ch(W ′, R′).
3) The number of reflexive (irreflexive) points in |W2| differs from the number of

reflexive (irreflexive) points in |W ′
2|. This case is analogous to the previous one.

It is straightforward to see that if none of these cases above occur ie |W | = |W ′|,
|W1| = |W ′

1|, |{w|w ∈ W1 ∧ wRw}| = |{w′|w′ ∈ W ′
1 ∧ w′R′w′}| and |{w|w ∈

W2 ∧ wRw}| = |{w′|w′ ∈ W2 ∧ w′R′w′}| then (W,R) is isomorphic to (W ′R′) and
hence (W,R) = (W ′, R′) in Kr.
Claim 2: Ch is surjective. Take any quadruple (i1, r1, i2, r2) ∈ N 4. Let us show that
the pre-image Ch−1((i1, r1, i2, r2)) is not empty. Take the frame (W,R) = (W1,W2),
where |W1| = i1 + r1, |W2| = i2 + r2, W1 contains i1 irreflexive and r1 reflexive
points and |W2| contains i2 irreflexive and r2 reflexive points. Then by the definition of
Ch, we have that Ch(W,R) = (i1, r1, i2, r2).

280 D. Pearce and L. Uridia

4 Connection with Minimal Topological Spaces

In this section we show that wK4f is the modal logic of minimal topological spaces. A
topological space is minimal if it has only three open sets. It is well known that there is
a bijection between Alexandrof spaces and weakly-transitive, irreflexive Kripke frames
and this bijection preserves modal formulas. In this section we show that the special
case of this correspondence for minimal topological spaces gives one-step, irreflexive
and weakly-transitive relations as a counterpart. As a corollary it follows that the logic
wK4f is sound and complete wrt the class of minimal topological spaces.

Theorem 9. There is a one-to-one correspondence between the class of all irreflex-
ive, weakly-transitive, finite, rooted, one-step Kripke frames and the class of all finite
minimal topological spaces.

Proof. Assume (W,R) is a finite, rooted, irreflexive, weakly-transitive and one-step
relational structure. (Note that as the frame is irreflexive its characteriser has the form
(i1, 0, i2, 0), where i1 + i2 = |W |.) Let W1 be the first floor and W2 the second floor of
the frame, then the topology we construct is {W,∅,W2}. It is immediate that the space
(W,ΩR), where ΩR = {W,∅,W2}, is a minimal topological space.

Let us show that the correspondence we described is injective. Take two arbitrary
distinct irreflexive, finite, rooted, weakly-transitive frames (W,R) and (W ′, R′). As
they are distinct, either W �= W ′ or R �= R′. In the first case it is immediate that
(W,ΩR) �= (W ′, ΩR′). In the second case as both R and R′ are irreflexive the second
floors are not the same, so W2 �= W ′

2 and hence ΩR �= ΩR′ .
For surjectivity take an arbitrary minimal topological space (W,Ω), where Ω =

{W,∅,W0} for some subset W0 ⊆ W . Take the frame (W,R), where R = (W0 ×
W0 − {(w,w)|w ∈ W0}) ∪ (−W0 × −W0 − {(w,w)|w ∈ −W0}) ∪ {(w,w′)|w ∈
−W0, w

′ ∈ W0}. In words every two distinct points are related in W0 by R and the
same in the complement −W0 = W − W0, besides every point from the −W0 is
related to every point from W0. What we get is the rooted one-step relation which is
weakly-transitive, with the second floor equal to W0. As we didn’t allow wRw for any
point w ∈W , the relation R is also irreflexive.

We now give the definition of a derived set (or set of accumulation points) of a set in a
topological space. This definition is needed to give the derived set semantics of modal
formulas in an arbitrary topological space.

Definition 10. Given a topological space (W,Ω) and a set A ⊆ W we will say that
w ∈W is an accumulation point of A if for every neighborhood Uw of w the following
holds: Uw ∩A− {w} �= ∅. The set of all accumulation points of A will be denoted by
der(A) and will be called the derived set of A.

Below we give the definition of satisfaction of modal formulas.

Definition 11. A topological model (W,Ω, V) is a triple, where (W,Ω) is a topolog-
ical space and V : Prop → P (W) is a valuation function. Satisfaction of a modal
formula in a topological model (W,Ω, V) at a point w ∈ W is defined by:

w � p iff w ∈ V (p) ; w � ♦p iff w ∈ der(V (p)),

Minimal Knowledge and Belief via Minimal Topology 281

Boolean cases are standard. Validity of a formula in a topological space and class of
topological spaces is defined in a standard way

Fact 12 Let (W,R) be a finite, weakly-transitive and irreflexive frame and let (W,ΩR)
be its Alexandrof space. For every modal formula α the following holds:

(W,R) � α iff (W,ΩR) � α.

Note that here � on the left hand side denotes the validity in Kripke frames while on the
right hand side it denotes the validity in topological frames in derived set semantics.

Theorem 13. The modal logic wK4f is sound and complete with respect to the class
of all minimal topological spaces.

Proof. Soundness can be checked directly so we do not prove it here. For complete-
ness assume � φ. By theorem 5 there exists a finite, one-step, weakly-transitive frame
(W,R) which falsifies φ. Assume that Ch(W,R) = (i1, r1, i2, r2). It is not dif-
ficult to check that (W,R) is a p-morphic image of (W ′, R′), where (W ′, R′) =
Ch−1(i1 + 2× r1, 0, i2 + 2 × r2, 0). Roughly speaking the main idea here is that two
distinct irreflexive points from first floor (second floor) of (W ′, R′) are mapped to one
reflexive point of first floor (second floor) of (W,R). So each reflexive point in (W,R)
has two irreflexive preimages and each irreflexive point in (W,R) has one irreflexive
point as a preimage. Now as you can see on each floor in (W ′, R′) there are enough
irreflexive points to cover both reflexive and irreflexive point of the corresponding floor
in (W,R). So we have a surjection. To check that the described function satisfies back
and forth conditions of the p-morphism is left to the reader. The surjection implies that
(W ′, R′) � φ. Now as far as (W ′, R′) is irreflexive, the result immediately follows
from theorem 9, and the fact 12.

5 Minimal Belief and Non-Monotonic wK4f

It is often held that KD45 represents an adequate logic for belief. One motivation for
this is that it allows positive and negative introspection and additionally �p→ p is not
derivable in the logic. A Kripke modelM for KD45 consists of cluster W plus one
irreflexive point w so that w is related to every point in W but no point in W is related
to w. In other words the first floor ofM is one irreflexive point and the second floor is
a cluster. The belief set of an agent is obtained as a theory of the second floor. Indeed
ϕ ∈ Th(W) iff M � �ϕ.4 In particular minimisation is relative to some base set I
of beliefs. The aim is to capture a set which contains I , is closed under positive and
negative introspection, is closed under logical deduction and does not contain anything
superfluous. One way to obtain such a set is to consider a KD45 Kripke modelM such
that v � I for every v ∈W and extend the cluster W by adding points which still make
I true. As a result the set of objective facts true in every world will be reduced while
the starting beliefs I will stay unchanged. This approach is applied in [3] to knowledge
sets, but as discussed in [9] it has some unintuitive consequences. For this reason we

4 Recall that the idea of minimisation applies to the belief set of an agent.

282 D. Pearce and L. Uridia

follow the pattern of [9] which relies on the idea that an agent’s belief is dependent
not only on the objective facts but also on the things that are believed by agent. More
concretely we minimise the belief set by adding worlds on the first floor of the modelM
leaving the second floor untouched. This form of minimal model semantics provides an
alternative way of minimising belief and I-expansions for wK4f are exactly minimal
belief sets. This is the chief motivation for considering non-monotonic wK4f to be a
good candidate for the logic of minimal belief.

Formally we want to relate non-monotonic wK4f to the idea of minimal model in-
troduced and characterised in [22]. However we cannot directly apply the general result
(Theorem 3.1) of [22] since that theorem refers to what are called cluster-closed logics.
Instead we can adapt Schwarz’s techniques to our case, starting with the definition of
preferred model for a class K. The preference relation is between one-floor S5-models
and two-floor models and only two-floor models can be preferred over S5-models. For
example we can not compare two one-floor models with each other.

Definition 14. We say that a two-floor model N = (N,S, U) is preferred over S5-
modelM = (W,R, V) if:
a) There is a propositional formula ψ such thatM � ψ andN � ψ,
b) (W,R) is the second floor of (N,S) and V equals to the restriction of U to the
second floor. Briefly,M is the model which is obtained by deleting the first floor inN .

We next define the notion of minimal model that is central for the semantics of non-
monotonic modal logics.

Definition 15. An S5-modelM = (W,R, V) is called a K-minimal model for the set
of formulas I ifM � I and for every preferred modelN ∈ K we haveN � I .

Non-monotonic wK4f does not fit the scope of Theorem 3.1 [22] because the class
K which characterises monotonic wK4f is not cluster closed. In particular some two-
floor models inK may not have a cluster as a maximum. On the other hand every model
in K has a maximal weak-cluster (that is a cluster where irreflexive points are allowed
or more precisely it is a rooted, symmetric, weakly-transitive frame). For this reason we
need to consider weak-cluster closed classes.

Definition 16. Let N = (N,S, U) be a Kripke model. A nonempty set W ⊆ N is
called a final weak-cluster if:
a) W is an upper cone (def. 6),
b) W is weak-cluster,
c) For every v ∈ N −W and for every w ∈ W , vRw.

It is immediate from Definition 16 and from Theorem 8 that every rooted, weakly-
transitive, one-step frame has a final weak-cluster and it is the second floor (or the only
floor) of the frame.

Definition 17. Let N = (N,S, U) be a Kripke model and let N2 be its final weak-
cluster. LetM = (W,R, V) be a cluster. By cluster substitution ofM in N we mean
the model < (N −N2) ∪W,S′, V ′ >, where for each w, v ∈ (N −N2) ∪W,wS′v if
and only if wSv or v ∈ W and V ′ agrees with U on (N −N2) and agrees with V on
W . In other words we substitute the cluster W instead of the weak-cluster N2 into N .

Minimal Knowledge and Belief via Minimal Topology 283

Definition 18. By the concatenation of two models (W,R, V) and (N,S, U) with W ∩
N = ∅ we mean the model (N ∪W,S ∪N ×W ∪R,U ∪ V).

Definition 19. Let C be a class of models. We say that C is weak-cluster closed if
C contains all weak-clusters and for each N ∈ C, at least one of the following two
conditions holds: the concatenation of N and each cluster belongs to C, or N has
a final weak-cluster and for each S5-model M, the cluster substitution of M in N
belongs to C.

It is immediate that K is weak-cluster closed. As usual, non-monotonic modal logics
are defined via the notion of expansion.

Definition 20. Let L be a modal logic. A set of formulas T is said to be an L-expansion
of a set of formulas I if T = CnL(I ∪ {¬�ϕ : ϕ �∈ T }).

where CnL denotes consequence in L. Now we are ready to prove the main theorem of
this section.

Theorem 21. LetM = (W,R, V) be an S5-model, and T = {φ|M � φ}. Then T is
an wK4f -expansion of I if and only ifM is a K-minimal model of I .

Proof. Assume T is a wK4f -expansion for I . This means that T = CnL[I ∪
{¬�φ|φ �∈ T }], where L stands for wK4f . For the contradiction assume M is not
minimal. This means that there is a wK4f -model N = (N,S, U) such that N is pre-
ferred overM and N � I . That N is preferred overM means that there is a proposi-
tional formula α such thatM � α whileN � α. Now take an arbitrary formulaψ �∈ T .
Since T is an expansion we have that ♦¬ψ ∈ T henceM � ♦¬ψ. Hence there is at
least one point w ∈ W with w � ¬ψ and hence for every point y in the first floor of N
we have y � ♦¬ψ which yields thatN � ♦¬ψ. So we get thatN � I∪{¬�φ|φ �∈ T }
and henceN � T which is a contradiction since α ∈ T .

For the other direction assume M is K-minimal for I . That CnL[I ∪ {¬�φ|φ �∈
T }] ⊆ T follows directly from the fact thatM � I and ifM � ψ then there exists at
least one point w ∈W with w � ¬ψ and since R is a universal relation,M � ♦¬ψ.

For the other inclusion we show that for every rooted weakly-transitive and one-step
modelN = (N,S, U) the following holds:

(∗) N � CnL[I ∪ {¬�φ|φ �∈ T }]⇒ N � T.

This by Theorem 3 will imply that CnL[I ∪ {¬�φ|φ �∈ T }] � T in wK4f and, as the
left side is closed under consequence, we get that T ⊆ CnL[I ∪ {¬�φ|φ �∈ T }]. Now
let us prove the star.

AssumeN � CnL[I∪{¬�φ|φ �∈ T }]. Note thatN cannot have one irreflexive point
as a maximum. This would imply Ch(N,S) = (i1, r1, 1, 0), see Theorem 8. Then the
irreflexive point does not satisfy ¬�⊥, hence ⊥ ∈ T , which is a contradiction as far a
T is the theory ofM.

Let us denote the floors of N by N1 and N2 respectively. In case N is a one-floor
frame, N2 = ∅. Since K is weak-cluster closed, there is N ∗ ∈ K which is either
the concatenation of N and M or is a cluster substitution of M in N . We prove by

284 D. Pearce and L. Uridia

induction on the complexity of a formula that for every pointw ∈ N1, we haveN ∗, w �
φ iff N , w � φ. The only non-trivial case is for formulas of the form �φ. Assume
N , w � �φ, then φ ∈ T . This means that M � φ. Now for every point w′ ∈ N1

such that wSw′ we haveN , w′ � φ and hence by the inductive assumption we get that
N ∗, w′ � φ. So N ∗, w � �φ.

Conversely assume for some point w ∈ N1 we have N ∗, w � �φ. By the same
argument as in the previous case, for every point v ∈ N1 such that wSv,N , v � φ. Now
if N ∗ is a concatenation of N andM then N = N1, and hence we have N , w � �φ.
In case N ∗ is cluster substitution we additionally need to show that for every point
v ∈ N2, N , v � φ. FromN ∗, w � �φ we have thatM � φ and henceM � �φ. This
implies that ¬�φ �∈ T and hence N � ♦�φ. It is not hard to check that this implies
that for every point v ∈ N2 we have N , v � φ. The main point here is that N cannot
have one-irreflexive point as a maximum. Now asN � I , we have thatN ∗ � I , hence
N ∗ is not preferred overM which implies that N ∗ � T . HenceN � T .

This yields the promised link between wK4f and minimal models in the style of [8,9];
so non-monotonicwK4f may be a promising first step in the search for logics of min-
imal belief.

6 Conclusions

Following Tarski and McKinsey there are three natural paths from topology to algebraic
semantics for logics. The third path involves derivative algebras and has been explored
in particular by Leo Esakia [1,21,2] and the Tbilisi group in logic. The first two paths
give rise to logics extending intuitionistic logic and to modal S4, respectively. In these
cases the logics obtained from minimal topological spaces have proved to be highly
relevant in AI, for non-monotonic reasoning, logic programming and epistemic logic
based on the idea of minimal knowledge. From this point of view, the third path to logics
from minimal topological spaces has not previously been investigated. It gives rise to
the logic wK4f introduced and characterised in this paper that seems a good starting
point for studying the idea of minimal belief, analogous to the minimal knowledge
approach of [8,9] based on S4F .

We conclude by mentioning briefly how these two logics, hence their corresponding
epistemic concepts, can be formally related. There are well-known embedding relations
holding between intuitionistic logic H and S4 and between S4 and wK4. It can be
shown that these relations extend to those logics based on minimal topological spaces.
In fact we get the following picture

HT
G �� S4F

Sp �� wK4f

H

��

G �� S4

��

Sp �� wK4

��

Here HT is again the logic of here-and-there, G is the well-known Gödel translation
and Sp is known as the splitting translation from modal formulas to modal formulas
such that in particular for an atom p, Sp(♦p) = p∨♦p, Sp(�p) = p∧�p (see eg [2]).
Then in particular S4F � ϕ iff wK4f � Sp(ϕ). In other words, we obtain the natural

Minimal Knowledge and Belief via Minimal Topology 285

interpretation of knowledge as truth together with belief. We plan to elaborate on this
in future work and to study how to extend this picture to include the non-monotonic
versions of each of the logics at the top of the diagram. Another future topic is to study
of the exact relations between non-monotonic wK4f and autoepistemic logic as well
as non-monotonic S4F .

References

1. Esakia, L.: The modal logic of topological spaces. Georgian Academy of Sciences, 22 p.
(1976) (Preprint)

2. Esakia, L.: Intuitionistic logic and modality via topology. Ann. Pure & App. Logic 127,
155–170 (2004)

3. Halpern, J.Y., Moses, Y.: Towards a theory of knowledge and ignorance: preliminary report.
In: Apt, K. (ed.) Logics and Models of Concurrent Systems, pp. 459–476. Springer, Heidel-
berg (1985)

4. Kuratowski, R.: Topology, 2nd edn., vol. 1. Academic Press, London (1976)
5. Segerberg, K.: An Essay in Classical Modal Logic. Filosofiska Studier. Uppsala: Filosofiska

Foreningen och Filosofiska Institutionen vid Uppsala Universitet, vol. 13
6. Tarski, A.: Der Aussagenkalkul und die Topologie. Fund. Math. 31, 103–134 (1939)
7. Truszczynski, M.: Embedding Default Logic into Modal Nonmonotonic Logics. In: LPNMR

1991, pp. 151–165 (1991)
8. Schwarz, G., Truszczynski, M.: Modal Logic S4F and the minimal knowledge paradigm. In:

Proc. TARK-IV, pp. 184–198. Morgan Kaufmann, Monterey (1992)
9. Truszczynski, M., Schwarz, G.: Minimal Knowledge Problem: A New Approach. Artif. In-

tell. 67(1), 113–141 (1994)
10. Gelfond, M., Lifschitz, V.: Classical Negation in Logic Programs and Disjunctive Databases.

New Generation Computing 9, 365–385 (1991)
11. Reiter, R.: A logic for default reasoning. Artificial Intelligence 13, 81–132 (1980)
12. Gelfond, M., Lifschitz, V., Przy-musinska, H., Truszcynski, M.: Disjunctive defaults. In:

Second International Conference on Principles of Knowledge Representation and Reasoning,
KR 1991, Cambridge, MA (1991)

13. Lin, F., Shoham, Y.: Epistemic semantics for fixed-points nonmonotonic logics. In: Parikh,
R. (ed.) Proc. of the Third Conf. on Theoretical Aspects of Reasoning about Knowledge, pp.
111–120 (1990)

14. Lifschitz, V.: Minimal Belief and Negation as Failure. Art. Intell. 70, 53–72 (1994)
15. Shoham, Y.: Nonmonotonic logics: meaning and utility. In: Proc. IJCAI 1987. Morgan Kauf-

mann, San Mateo (1987)
16. Truszczynski, M.: The Modal Logic S4F , the Default Logic, and the Logic Here-and-There.

In: Proceedings of the 22nd National Conference on Artificial Intelligence (AAAI 2007).
AAAI Press, Menlo Park (2007)

17. Cabalar, P., Lorenzo, D.: New Insights on the Intuitionistic Interpretation of Default Logic.
In: López de Mántaras, R., Saitta, L. (eds.) ECAI 2004, pp. 798–802. IOS Press, Amsterdam
(2004)

18. Pearce, D.: Equilibrium logic. AMAI 47(1-2), 3–41 (2006)
19. McKinsey, J., Tarski, A.: The algebra of topology. Annals of Mathematics 45, 141–191 (1944)
20. McKinsey, J., Tarski, A.: On Closed Elements in Closure Algebras. Annals of Mathemat-

ics 47, 122–162 (1946)
21. Esakia, L.: Weak transitivity - restitution. In: Logical Studies 2001, vol. 8, pp. 244–255

(2001)
22. Schwarz, G.F.: Minimal model semantics for nonmonotonic modal logics. In: Proceedings

of LICS 1992. IEEE Computer Society Press, Washington (1992)

A Logical Account of Lying

Chiaki Sakama1, Martin Caminada2, and Andreas Herzig3

1 Wakayama University, Japan
sakama@sys.wakayama-u.ac.jp

2 University of Luxembourg, Luxembourg
martin.caminada@uni.lu

3 Université Paul Sabatier, France
herzig@irit.fr

Abstract. This paper aims at providing a formal account of lying – a dishonest
attitude of human beings. We first formulate lying under propositional modal
logic and present basic properties for it. We then investigate why one engages
in lying and how one reasons about lying. We distinguish between offensive and
defensive lies, or deductive and abductive lies, based on intention behind the act.
We also study two weak forms of dishonesty, bullshit and deception, and provide
their logical features in contrast to lying. We finally argue dishonesty postulates
that agents should try to satisfy for both moral and self-interested reasons.

1 Introduction

Lying can be considered to be one of the basic behaviors of human beings. In spite
of its familiarity to most of us, the question of “What is lying?” has been studied by
a number of philosophers (for instance, [5,9,14] and references therein). Surprisingly,
however, the topic has been almost completely ignored in artificial intelligence. There
are several reasons why the study of lying is important in AI. First, lying is a linguistic
behavior inherent to human beings, that requires intelligence and thinking. Studies on
lying can thereby contribute to better understand human intelligence. Second, elucidat-
ing the mechanism of lying opens possibilities to develop computers that lie [16]. For
instance, we can imagine a nurse robot who knows that a patient has a serious cancer
but informs the patient that he/she is not in a serious state. Some potential applications
of lying in AI and knowledge engineering are also addressed in [3,20]. Third, lying is
an act of social interaction. Hence, studying the act in the context of multiagent systems
is necessary for designing intelligent agents. A recent study reports that an intelligent
agent could behave dishonestly to win a debate in formal argumentation systems [4].
Lying has a distinctive feature as a speech act. According to Searle [19], a speech act is
sincere if a speaker utters a believed-true sentence. This basic attitude is not applied to
lying, that is, a liar utters a believed-false sentence. Saint Augustine, who was a Berber
philosopher and theologian, says that “the heart of a liar is said to be double, that is,
twofold in its thinking: one part consisting of that knowledge which he knows or thinks
to be true, yet does not so express it; the other part consisting of that knowledge which
he knows or thinks to be false, yet expresses as true” [2, p.55].

Providing a formal account of lying requires one to overcome various difficulties.
First of all, there is no universally accepted definition of lying and even the definition

T. Janhunen and I. Niemelä (Eds.): JELIA 2010, LNAI 6341, pp. 286–299, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

A Logical Account of Lying 287

in the Oxford English Dictionary is problematic1 [14]. Furthermore, formal logics are
usually employed for formulating the truth of sentences and the correctness of infer-
ences, whereas lies contradict the truth [22]. Thus, a formal account of lying is still an
open and challenging topic in AI.

The purpose of this paper is to provide a logical account of lying. We formulate vari-
ous forms of lies using propositional modal logic and investigate formal properties. We
also characterize other types of dishonesty and compare them with lying. We propose
basic postulates for dishonesty that agents should try to satisfy. The rest of this paper
is organized as follows. Section 2 introduces a modal language for belief and intention
and provides a logical framework of lying. Section 3 investigates different types of lying
and argues their properties. Section 4 formulates bullshit and deception as weaker forms
of dishonesty. Section 5 discusses related issues and Section 6 concludes the paper.

2 Liars’ Logic

2.1 A Simple Logic for Belief and Intention

In this paper, we consider a propositional modal logic of intentional communication [7].
A propositional modal language L0 is built from a finite set of propositional constants
{p, q, r, . . .} on the logical connectives¬, ∨, ∧,⊃,≡, and on two families of modal op-
erators, (Ba)a∈A and (Ia)a∈A, where A is a finite set of agents. Well-formed formulas
(or sentences) in L0 are defined as usual as those belonging to a multi-modal proposi-
tional logic. Sentences in L0 will be denoted by the small Greek letters, and parentheses
are employed as usual to clarify the structure of sentences.� and⊥ represent valid and
contradictory sentences, respectively. The set of all sentences in L0 is denoted by Φ and
Φ� = Φ \ {�, ⊥}. A finite set of sentences is identified with the conjunction of all
sentences included in the set. The intuitive reading of Baφ and Iaφ are that an agent a
believes that φ and intends that φ, respectively. A Kripkean semantics is defined for L0,
although we omit the details here.2 A logic BI0 is defined over L0, that is an extension
of KD45n [11] and has the following axioms and inference rules:

(P) All propositional tautologies.
(KB) Baφ ∧Ba(φ ⊃ ψ) ⊃ Baψ and (KI) Iaφ ∧ Ia(φ ⊃ ψ) ⊃ Iaψ.
(DB) Baφ ⊃ ¬Ba¬φ and (DI) Iaφ ⊃ ¬Ia¬φ.
(4B) Baφ ⊃ BaBaφ and (4IB) Iaφ ⊃ BaIaφ.
(5B) ¬Baφ ⊃ Ba¬Baφ and (5IB) ¬Iaφ ⊃ Ba¬Iaφ.

(MP)
φ φ ⊃ ψ

ψ
, (NB)

φ

Baφ
, (NI)

φ

Iaφ
.

To represent a speech act of an agent, we introduce the unary predicate utterxy

defined over sentences in L0 with x, y ∈ A. An expression utterab(σ) means that an
agent a expresses a sentence σ to another agent b. A language LU

0 is defined as L0

1 The OED definition of lying is: to make a false statement with the intention to deceive.
2 Informally speaking, Baφ (resp. Iaφ) holds iff φ is true in all states of affairs compatible with
a’s current beliefs (resp. intentions).

288 C. Sakama, M. Caminada, and A. Herzig

together with the predicate utterxy. If an agent utters something, he/she intends the
speech act and is aware of his/her utterance. This is expressed by the next axiom:

(UIB) utterab(σ) ⊃ Ia(utterab(σ)) ∧Ba(utterab(σ)).

The system BIU
0 , defined over LU

0 , is the weakest extension of BI0 containing the
axiom (UIB). If a sentence φ is a theorem of BIU

0 , we write � φ. An agent a has
a knowledge base Ka as a finite set of believed-true sentences from LU

0 . Each agent
believes that other agents follow the same logic BIU

0 in their beliefs and intentions.
Thus, BaBbφ ⊃ Ba¬Bb¬φ and Ba(Ibφ ∧ Ib(φ ⊃ ψ)) ⊃ BaIbψ, for instance. Given
two sentences σ and λ in Φ, we write σ / λ if � σ ⊃ λ. In this case, we say that σ
is stronger than or equal to λ (or λ is weaker than or equal to σ). We write σ 0 λ if
σ / λ and λ �/ σ, and say that σ is stronger than λ (or λ is weaker than σ).

2.2 Lying

Lying can be seen as a speech act of an agent (a speaker) towards another agent (a
hearer). For our purpose, we will use a relatively simple definition of lying which seems
to be well-accepted in the literature.

To lie (to another person) is: to make a believed-false statement (to another
person) with the intention that that statement be believed to be true (by the
other person). – [12] and (L6) of [14]

We can then provide a formal definition of lying in LU
0 as follows.

Definition 2.1. (lie) Let a and b be two agents and σ ∈ Φ. Then, define

LIEab(σ)
def
= utterab(σ) ∧Ba¬σ ∧ IaBbσ. (1)

In this case, we say that a lies to b on the sentence σ. σ is also called a lie.

By the definition, a lies to b if a utters a believed-false sentence σ to b with the intention
that σ is believed by b. Some researchers argue that lying does not necessarily require
the use of words [14], but here we consider lying as a statement of a sentence. Note also
that the speaker believes ¬σ, but that the truth of ¬σ is not actually required. That is,“a
person is to be judged as lying or not lying according to the intention of his own mind,
not according to the truth or falsity of the matter itself” [2, p.55]. Lying is not simply
saying something that one believes to be false, but involves an intention to deceive.
Thus, if one says something manifestly false as a joke or a metaphor, it is not a lie.3

Lying on valid or contradictory sentences is meaningless.

Proposition 2.1. � LIEab(�) ⊃ ⊥ and � LIEab(⊥) ⊃ ⊥.

Proof. LIEab(�) implies Ba⊥ that implies ¬Ba� (DB), while� implies Ba� (NB).
Contradiction. Next, LIEab(⊥) implies IaBb⊥, while Bb� implies ¬Bb⊥ (DB) that
implies Ia¬Bb⊥ (NI) then ¬IaBb⊥ (DI). Contradiction. ��

If an agent lies, he/she is aware of his/her dishonest act.

3 Some philosophers argue that an intention to deceive is not a necessary condition of lying,
however [5].

A Logical Account of Lying 289

Proposition 2.2. � LIEab(σ) ⊃ Ba(LIEab(σ)) for any σ ∈ Φ.

Proof. The result holds by Def. 2.1(1) and the axioms (UIB), (4B), and (4IB). ��

Lying to oneself leads to contradiction.4

Proposition 2.3. � LIEaa(σ) ⊃ ⊥ for any σ ∈ Φ.

Proof. LIEaa(σ) implies Ba¬σ ∧ IaBaσ. Ba¬σ implies ¬Baσ (DB), which implies
Ia¬Baσ (NI). On the other hand, IaBaσ implies ¬Ia¬Baσ (DI). Contradiction. ��

Note that when lying, a speaker does in general not care about the belief state of the
hearer. If a speaker a believes that a hearer b believes σ, LIEab(σ) would have the
effect of strengthening the incorrect belief of the hearer. On the other hand, if a believes
that b disbelieves σ, LIEab(σ) might cause belief revision of the hearer.

3 Various Forms of Lying

3.1 Offensive Lie vs. Defensive Lie

One has motives for lying and several reasons are considered behind the act. Here we
consider two typical cases. First, one lies to have a positive (or wanted) outcome that
would not be gained by telling the truth. Second, one lies to avoid a negative (or un-
wanted) outcome that would happen when telling the truth. An example of the first case
is that a salesperson lies about the quality of a product, which leads a customer to make
a (wrong) decision of buying the product. An example of the second case is that a child
lies about his/her good performance in the exam to avoid punishment by his/her parents.
We say that the first case of lying is offensive, while the second case is defensive. A pos-
itive outcome or a negative outcome is an effect expected by a speaker with respect to
the result of reasoning by a hearer. Thus, in offensive/defensive lying a speaker reasons
about what a hearer believes in the context of discourse.

Definition 3.1. (offensive/defensive lie) Let a and b be two agents and σ, φ, ψ ∈ Φ.
Then, define

O-LIEab(σ, φ)
def
= IaBb φ ∧ ¬BaBb(¬σ ⊃ φ) ∧BaBb(σ ⊃ φ) ∧ LIEab(σ). (2)

In this case, a offensively lies to b on σ to have the positive outcome φ. σ is also called
an offensive lie for φ. Next, define

D-LIEab(σ, ψ)
def
= Ia¬Bb ψ∧¬Ba¬Bb(¬σ∧ψ)∧Ba¬Bb(σ∧ψ)∧LIEab(σ). (3)

In this case, a defensively lies to b on σ to avoid the negative outcomeψ. σ is also called
a defensive lie for ψ.

Intuitive meanings of the definition are as follows. In (2), a offensively lies on σ if a has
an intension to make b believe φ. And a disbelieves that the believed-true sentence ¬σ
leads b to believe a positive outcome φ, while a believes that the believed-false sentence

4 “In short, self-deception involves an inner conflict, perhaps the existence of contradiction” [8].

290 C. Sakama, M. Caminada, and A. Herzig

σ does. With these conditions, a lies to b on σ. In (3) a defensively lies on σ if a has
an intension to make b disbelieve ψ. And a considers it possible that b believes that
the believed-true sentence ¬σ and a negative outcome ψ hold at the same time, while
a does not consider it possible that b believes that the believed-false sentence σ and ψ
hold simultaneously. With these conditions, a lies to b on σ. As a special case, a may
lie to b on the sentence φ (resp. ¬ψ) to make b believe φ (resp. disbelieve ψ).

Proposition 3.1. Let a and b be two agents and φ, ψ ∈ Φ.

(i) O-LIEab(φ, φ) ≡ ¬BaBb φ ∧ LIEab(φ).
(ii) D-LIEab(¬ψ, ψ) ≡ ¬Ba¬Bb ψ ∧ LIEab(¬ψ).

Proof. The result (i) directly follows by the definition. (ii) also follows by the fact that
Ia¬Baψ is implied by IaBa¬ψ of LIEab(¬ψ) by (DB), (NI) and (KI). ��

In O-LIEab(φ, φ), the condition ¬BaBb φ means that a has motives for offensive ly-
ing when a disbelieves that b believes the positive outcome φ. In D-LIEab(¬ψ, ψ), the
condition ¬Ba¬Bb ψ means that a has motives for defensive lying when a considers it
possible that b believes the negative outcome ψ. Thus, the definitions of offensive and
defensive lies are stronger than the definition of lies of Definition 2.1. This is due to the
fact that offensive (resp. defensive) lying has additional objectives to have positive out-
comes (resp. avoid negative outcomes), while lying in general is only aimed at making
the hearer believe the uttered statement itself.

Example 3.1. Suppose that a salesperson a is dealing with a customer b, and that a
is requested to provide b with information about the quality of the product. The sales-
person believes ¬high quality and also believes that the customer has the knowledge
base Kb = { high quality ⊃ buy }. When the salesperson has the positive outcome
φ = buy, telling the true belief does not lead b to buy the product. In this case, a offen-
sively lies to b on σ = high quality. Next, suppose that a child a and his/her mother b
talk about examination, and a is requested to provide b with information about the score
and the rank. The child believes ¬(high score ∧ high rank), and also believes that
mother has the knowledge base Kb = {¬ (high score ∧ high rank) ⊃ punish }.
When the child has the negative outcome ψ = punish, telling the true belief leads b to
punish a. In this case, a defensively lies to b on σ = high score ∧ high rank.

When an agent lies to another agent, the success of the act depends on the belief state or
knowledgeability of the hearer. For instance, it is easier to mislead children than adults,
and it is more difficult to mislead experts than novices. We next consider how different
degrees of lies are used depending on a hearer’s belief state that is believed by a speaker.
An agent b is knowledgeable not less than another agent c if Bc φ ⊃ Bb φ holds for any
formula φ ∈ Φ. Suppose that there are three agents a, b and c, and a believes that b is
knowledgeable not less than c. Then, in offensive lying Def.3.1(2), (i)¬BaBb(¬σ ⊃ φ)
implies ¬BaBc(¬σ ⊃ φ), and (ii) BaBb(σ ⊃ φ) does not imply BaBc(σ ⊃ φ). By
(i) if a disbelieves that a positive outcome φ is not gained by telling the believed-true
sentence ¬σ to b, then a also has the same disbelief for c. This means that a’s motive
of offensively lying to c is not less than the motive of offensively lying to b. By (ii)
even if a believes that a lie σ leads b to a positive outcome φ, a does not believe that

A Logical Account of Lying 291

the same lie leads c to φ. This means that, to have a positive outcome φ from c, a has
to craft a lie that is not weaker than σ in general. In case of defensive lying Def.3.1(3),
(iii) ¬Ba¬Bb(¬σ ∧ ψ) does not imply ¬Ba¬Bc(¬σ ∧ ψ), and (iv) Ba¬Bb(σ ∧ ψ)
implies Ba¬Bc(σ ∧ ψ). By (iii) even if a considers it possible that b believes that the
believed-true sentence ¬σ and a negative outcome ψ hold simultaneously, a does not
have the same belief for c. This means that a’s motive of defensively lying to c is not
more than the motive of defensively lying to b. By (iv) if a does not consider it possible
that b believes the believed-false sentence σ and ψ hold simultaneously, then a also has
the same belief for c. This means that, to avoid a negative outcomeψ from c, a can craft
a lie that is not stronger than σ in general. We next formulate the situation.

Let σ be an offensive lie for a positive outcome φ. If σ′ / σ implies σ / σ′ for
any offensive lie σ′ for φ, then σ is called a strongest offensive lie (denoted by σs). By
contrast, if σ / σ′ implies σ′ / σ for any offensive lie σ′ for φ, then σ is called a
weakest offensive lie (denoted by σw). The notion of the strongest/weakest defensive
lies is similarly defined.

Proposition 3.2. Suppose that there are three agents a, b and c, and a believes that b
is knowledgeable not less than c. Let φ and ψ be sentences in Φ. Then,

(i) � (O-LIEab(σw , φ) ∧O-LIEac(λ, φ)) ⊃ ⊥ for any λ ∈ Φ such that σw 0 λ.
(ii) � (D-LIEab(σs, ψ) ∧D-LIEac(λ, ψ)) ⊃ ⊥ for any λ ∈ Φ such that λ 0 σs.

Proof. (i) Suppose that O-LIEab(σw , φ) ∧ O-LIEac(λ, φ) and σw 0 λ hold. As a
believes that b is knowledgeable not less than c, BaBc(λ ⊃ φ) implies BaBb(λ ⊃ φ)
(∗). Next, assume that BaBb(¬λ ⊃ φ) (∗∗). By (∗) and (∗∗), it holds that BaBb φ,
which implies BaBb(¬σw ⊃ φ) (†). As O-LIEab(σw , φ), it holds that ¬BaBb(¬σw ⊃
φ) which contradicts (†). So ¬BaBb(¬λ ⊃ φ) (‡). The facts (∗) and (‡) imply that a
can offensively lie to b on the sentence λ for the outcome φ. As σw is the weakest lie,
σw �0 λ. Contradiction. (ii) is proved in a similar way. ��

Example 3.2. (cont. Example 3.1) Suppose that the salesperson a deals with another
customer c. a notices that c is more cautious than b in making decisions, and believes
that c will buy the product if it is valuable as well as good in quality. But a believes
that the product is neither of these ¬high quality ∧ ¬valuable, and also believes that
Kc = { (high quality ∧ valuable) ⊃ buy } where Bc(Kc) ⊃ Bb(Kc) holds. To
have the positive outcome φ = buy, a has to lie offensively on the sentence λ =
high quality ∧ valuable, which is stronger than σ, to convince c to buy the product.
Next, suppose that a child a has a dialogue with his/her father c. a knows that father
is more generous than mother, and believes that he is only concerned about the score.
But a believes ¬high score, and also believes that Kc = {¬high score ⊃ punish }
where Bc(Kc) ⊃ Bb(Kc) holds. To avoid the negative outcome ψ = punish, a lies
defensively on the sentence λ = high score, which is weaker than σ, to persuade father
not to punish him/her.

3.2 Deductive Lie vs. Abductive Lie

By an offensive lie (resp. a defensive lie), a speaker intends to mislead a hearer to
deduce a wrong conclusion (resp. not to deduce a right conclusion). We call these types

292 C. Sakama, M. Caminada, and A. Herzig

of lies deductive lies. By contrast, a person often lies in order to block another person for
generating assumptions. For instance, suppose a man, say, Sam, who is coming home
late because he is cheating on his wife. Based on the observation “Sam arrives late”,
his wife could perform abduction and one of the possible explanations would be “Sam
cheats on his wife”. Sam, of course, does not want this abduction to take place, so he
lies about a possible other reason, “I had to do overtime at work”. Sam’s hope is that
once his wife has this incorrect information, her abductive reasoning process will stop.
She will no longer continue possible abduction, and will never even be aware of the
possibility of Sam’s cheating on her (if she trusts her husband).

Abduction is the process of forming an explanatory hypothesis from an observation
[18]. Formally, let o be a sentence representing an observation and H a set of sentences
representing a hypothesis. Given a knowledge base K and an observation o, a hypothe-
sis H explains o in K if K∧H � o whereK∧H is consistent. An agent lies to interrupt
abduction (by another agent) that produces an unwanted explanation for him/her. Let
Σa (⊆ Ka) be a set of sentences (called a secret set) which an agent a wants to conceal
from another agent b. Abductive lie is then defined as follows.

Definition 3.2. (abductive lie) Let a and b be two agents and o ∈ Φ \ Σa a sentence
observed by them. Also, let σ ∈ Φ \Σa such that σ �≡ o. Then, define

A-LIEab(σ, o)
def
= Ba o ∧Ba¬Bb(Δ ⊃ o) ∧Ba(Bb(Γ ⊃ o) ∧ ¬Bb¬Γ)

∧ Ba(Bb(σ ⊃ o) ∧ ¬Bb¬σ) ∧
∧

γ∈Σa

Ia¬Bb γ ∧ LIEab(σ) (4)

whereΔ is any subset ofKa\Σa and Γ (⊆ Φ) is a set of sentences such that Γ∩Σa �= ∅.
In this case, we say that the agent a abductively lies to another agent b on the sentence
σ. σ is also said an abductive lie for the observation o.

In (4), Ba o represents that a believes o. Ba¬Bb(Δ ⊃ o) implies Ba¬Bb o, so that a
believes that b requires some explanation once he/she observes o. However, a believes
that b does not explain o by believed-true sentences of a without some secret sentences
(i.e.,Ba¬Bb(Δ ⊃ o)). a believes that b explains o by either using some secret sentences
of a (i.e., Ba(Bb(Γ ⊃ o) ∧ ¬Bb¬Γ) or some believed-false sentence σ of a (i.e.,
Ba(Bb(σ ⊃ o) ∧ ¬Bb¬σ)), but a does not want b’s believing any sentence γ in Σa

(i.e.,
∧

γ∈Σa
Ia¬Bb γ). In this case, a abductively lies to b on σ for explaining o. Note

that � A-LIEab(σ,�) ⊃ ⊥ and � A-LIEab(σ,⊥) ⊃ ⊥ for any σ.

Example 3.3. Suppose that Sam has the knowledge base Ka = { cheat, ¬overtime,
cheat ⊃ late, overtime ⊃ late }, and believes that his wife has the knowledge base
Kb = { cheat ⊃ late, overtime ⊃ late }. Let Σa = {cheat}, that is, Sam wants to
keep his cheating behavior secret. Given the observation o = late, Sam believes that his
wife can abduce Γ = {cheat} as a possible explanation for o. Then, Sam abductively
lies on σ = overtime which explains his late arrival and would stop her abducing the
explanation cheat.

The effect of an abductive lie also depends on the belief state of a hearer. If a be-
lieves that an agent b is knowledgeable not less than another agent c, then the condi-
tion Ba¬Bc(Δ ⊃ o) in A-LIEac(σ, o) holds, while Ba(Bc(Γ ⊃ o) ∧ ¬Bc¬Γ) and

A Logical Account of Lying 293

Ba(Bc(σ ⊃ o) ∧ ¬Bc¬σ) do not necessarily hold. This means that a’s motive of ab-
ductively lying to c is not more than the motive of abductively lying to b. For instance,
if Sam believes that his daughter has the knowledge base Kc = { overtime ⊃ late },
then Ba¬Bc(cheat ⊃ late) and Sam does not need to lie her. When a abductively lies
to c, however, a has to craft a lie that is not weaker than σ in general. IfK ′

c = { cheat ⊃
late }, then Sam has to make the stronger lie λ = overtime ∧ (overtime ⊃ late), for
instance. Given an observation o, the notion of a weakest abductive lie σw is defined in
a way similar to a weakest offensive lie. Then we have the next result.

Proposition 3.3. Suppose that there are three agents a, b and c, and a believes that b
is knowledgeable not less than c. Let o be a sentence in Φ \Σa. Then,
� (A-LIEab(σw, o) ∧A-LIEac(λ, o)) ⊃ ⊥ for any λ ∈ Φ such that σw 0 λ.

Proof. Similar to the proof of Proposition 3.2(1). ��

3.3 What Are the Most Effective Lies?

In deductive lying and abductive lying, a number of candidate lies exist to achieve a
speaker’s goal. Then a question is how good liars select “best lies”. As observed in
Propositions 3.2 and 3.3, a speaker can select different degrees of lies according to
the knowledgeability of a hearer. A stronger lie would be needed to have a positive
outcome from a less knowledgeable hearer, while a weaker lie would be enough to avoid
a negative outcome from the same hearer. A liar normally wants to keep his/her lie as
small as possible. This is because, “The lie, to his immediate advantage, often results
in an overall net loss of freedom in what he can do or say. . . The need to maintain
the deception binds him” [12, p.119]. A stronger lie makes the liar less free, which he
wants to avoid anyway. Besides, lies make the belief state of a hearer deviate from the
objective reality (or, at least from the reality as believed by a speaker) and a stronger
lie would increase such deviation. This is undesirable for a speaker because it increases
the chance of the lie being detected. The best lie is a lie that does not have too much
“collateral damage” on a hearer. We state a guideline for agents to satisfy in lying as the
next postulate. Let λ, σ, o, φ, ψ ∈ Φ� and σ / λ. Then, we have the next postulate.

Postulate I: Never tell an unnecessarily strong lie.
(i) Ba(O-LIEab(σ, φ) ⊃ Bbφ) ∧ Ba(O-LIEab(λ, φ) ⊃ Bbφ) ⊃ ¬O-LIEab(σ, φ).
(ii)Ba(D-LIEab(σ, ψ)⊃¬Bbψ)∧Ba(D-LIEab(λ, ψ)⊃¬Bbψ)⊃¬D-LIEab(σ, ψ).
(iii) Ba(A-LIEab(σ, o) ⊃ Bb o) ∧ Ba(A-LIEab(λ, o) ⊃ Bb o) ⊃ ¬A-LIEab(σ, o).

4 Weak Form of Dishonesty

4.1 Bullshit

Frankfurt [10] studies a category of dishonesty, called bullshit, that is different from
lies. Bullshit is a statement that “is grounded neither in a belief that it is true nor, as a lie
must be, in a belief that it is not true” (ibid., p.33). As an example, consider a financial
consultant paid by the hour to provide advice to his clients. The consultant gives advice
to buy stocks, for instance, but he may or may not believe that buying stocks is the best

294 C. Sakama, M. Caminada, and A. Herzig

strategy (due to the lack of expertise). Bullshit is a quite common phenomenon in daily
life. Frankfurt states a reason for its occurrence as follows: “Bullshit is unavoidable
whenever circumstances require someone to talk without knowing what he is talking
about. Thus the production of bullshit is stimulated whenever a person’s obligations
or opportunities to speak about some topic exceed his knowledge of the facts that are
relevant to that topic” (ibid., p.63). Bullshit can formally be defined as follows.

Definition 4.1. (bullshit) Let a and b be two agents and σ ∈ Φ. Then,

BSab(σ)
def
= utterab(σ) ∧ ¬Baσ ∧ ¬Ba¬σ. (5)

In this case, we say that an agent a bullshits to another agent b on the sentence σ. σ is
also called bullshit (shortly, BS).

In lying Def.2.1(1), the speaker a disbelieves σ but believes ¬σ. When bullshitting
Def.4.1(5), on the other hand, a disbelieves ¬σ either. In other words, a has no belief
with respect to the truth value of σ. So one cannot bullshit about one’s own beliefs.

Proposition 4.1. � BSab(Baσ) ⊃ ⊥ and � BSab(¬Baσ) ⊃ ⊥ for any σ ∈ Φ.

Proof. Both BSab(Baσ) and BSab(¬Baσ) imply ¬BaBaσ ∧ ¬Ba¬Baσ. Here
¬BaBaσ implies ¬Baσ (4B), which implies Ba¬Baσ (NB). This contradicts
¬Ba¬Baσ. ��

Bullshitting on valid or contradictory sentences is meaningless.

Proposition 4.2. � BSab(�) ⊃ ⊥ and � BSab(⊥) ⊃ ⊥.

Proof. Both BSab(�) and BSab(⊥) imply ¬Ba�, but � implies Ba� (NB). ��

Like lying, a bullshitter notices his/her act.

Proposition 4.3. � BSab(σ) ⊃ Ba(BSab(σ)) for any σ ∈ Φ.

There are some differences between lies and BS. First, bullshitting to oneself BSaa(σ)
is possible in general. Second, BSab(σ) does not contradict the belief of the speaker a.
These facts imply that one cannot lie and bullshit on the same sentence.

Proposition 4.4. � LIEab(σ) ∧BSab(σ) ⊃ ⊥ for any σ ∈ Φ.

Proof. LIEab(σ) implies Ba¬σ, while BSab(σ) implies ¬Ba¬σ. ��

Another important difference is that BS does not require the intention of a speaker a
to make a hearer b believe σ. In the above example, the financial consultant has no
interest in making the client believe that buying stocks is the best strategy or not. The
only concern of the consultant is that the client believes that the statement is based on
financial expertise. Since a has no belief with respect to σ, there is a freedom for a
speaker to utter σ or ¬σ. The most effective BS is the one that is coherent with the
speaker’s belief. The choice whether to utter σ or ¬σ is also decided by how likely it
will be for a hearer to believe one of them (given some additional explanation). This is
in contrast to lying where speakers have no freedom to make this choice because one
of these options (either σ or ¬σ) will have consequences they might want to enjoy (or

A Logical Account of Lying 295

which they might want to avoid). A liar usually has an interest in creating a particular
belief at a hearer. This is not always the case for BS, however.

On the other hand, there is BS that accompanies some intention. For instance, sup-
pose a salesperson who is paid on commission basis, but does not really know the prod-
ucts that he is selling. The salesperson would make the claim that a product has a high
quality, without having any knowledge on this. This is also an example of BS. However,
making a client believe that the product has a high quality is preferred to making the
client believe that the product has a low quality. The situation here differs from that of
the financial consultant mentioned above (who is paid by the hour by the client, and
hence has no intrinsic interest to advise to buy stocks or not). Such intentional bullshit
is defined as

I-BSab(σ)
def
= BSab(σ) ∧ IaBbσ. (6)

By contrast, BSab(σ) without IaBbσ is called unintentional. In this paper, we will ig-
nore this difference in cases where it is unimportant. Intentional BS (6) is similar to lies,
so that offensive/defensive or deductive/abductive intentional BS could be considered.
Different from unintentional BS, intentional BS to oneself is inconsistent.

Proposition 4.5. � I-BSaa(σ) ⊃ ⊥ for any σ ∈ Φ.

Proof. Similar to the proof of Proposition 2.3. ��

Next we consider what is best BS. Any BS is dishonest, but the consequences of faking
are generally less severe for a weak bullshitter than for a strong bullshitter. Suppose
a salesperson who bullshits for selling specified products, say high quality, that is
weaker than the bullshit high quality ∧ valuable. If a customer decides to buy the
product, the strong bullshitter would be responsible for the value as well as the quality.
Getting more responsibility is undesirable for a bullshitter anyway. We formulate the
situation for offensive intentional BS. For σ, φ ∈ Φ, let us define

O-BSab(σ, φ)
def
= IaBb φ ∧ ¬BaBb(¬σ ⊃ φ) ∧BaBb(σ ⊃ φ) ∧ I-BSab(σ).

Then we have the next postulate for BS.

Postulate II: Never tell unnecessarily strong BS. Let λ, σ, φ ∈ Φ� and σ / λ. Then,
Ba(O-BSab(σ, φ) ⊃ Bbφ) ∧Ba(O-BSab(λ, φ) ⊃ Bbφ) ⊃ ¬O-BSab(σ, φ).

Similar postulates are considered for defensive or abductive intentional BS. Lies and BS
are two different forms of dishonesty, but lies are considered more sinful than BS.5 This
is because a liar intentionally implants wrong beliefs at the hearer, while a bullshitter
spits out statements, intentionally or not, without knowing if they are true. As a result,
“people do tend to be more tolerant of bullshit than of lies, perhaps because we are less
inclined to take the former as a personal affront” [10, p.50]. This leads us to the next
postulate.

Postulate III: Never lie if you can bullshit your way out of it. Let λ, σ, φ ∈ Φ�.
Then, Ba(O-BSab(σ, φ) ⊃ Bbφ) ∧Ba(O-LIEab(λ, φ) ⊃ Bbφ) ⊃ ¬O-LIEab(λ, φ).

5 Some philosophers consider that bullshit is a class of lies [5, cf. L5].

296 C. Sakama, M. Caminada, and A. Herzig

4.2 Deception

Another form of dishonesty which we consider here is deception. There is no univer-
sally agreed definition of deception [6,13], so we consider the one argued in [1]. Dif-
ferent from lying, there is no untruthfulness condition in deception. That is, a speaker
makes a believed-true statement with the intention that a hearer misuses it to reach a
wrong conclusion. For instance, John, who wants to marry his girlfriend Mary, tells
her that he got a job at a company. Mary then considers that John has a stable in-
come now and would agree to marry him. The company is almost bankrupt, how-
ever, and John believes that he would not get a stable income. But John does not tell
Mary that his company is going bankrupt. In this speech act, John is telling the truth,
while he expects that Mary will reach a conclusion “stable income” which he believes
to be false. Thus, different from lies or BS, a deceiver asserts what he/she believes
true, while, at the same time, he/she conceals something of the truth hoping that a
hearer will make an incorrect inference based on incomplete beliefs.6 Caminada [4]
captures the point as “With deception, one makes use of the nonmonotonic inference
capabilities of the other person in order to implant wrong beliefs, without having to
resort to lying ourselves”. In the above example, John believes that Mary has the belief
“Bm((get job ∧ ¬Bm¬stable) ⊃ stable)”. John then intends to make Mary believe
get job, while withholding ¬stable, which would result in Mary’s believing stable.
This is the effect of default reasoning. Now deception is formulated as follows.

Definition 4.2. (deception) Let a and b be two agents and δ, σ ∈ Φ such that δ �≡ σ.
Then, define

DECab(σ, δ)
def
= utterab(σ) ∧Baσ ∧ IaBbσ ∧ BaBb((σ ∧ ¬Bb¬δ) ⊃ δ) (7)

∧ Ba¬Bb¬δ ∧Ba¬δ ∧ IaBbδ.

In this case, we say that an agent a deceives another agent b on the sentence σ. σ is also
called deception.

In (7), the speaker a utters a believed-true sentence σ with the intention of making a
hearer b believe it (i.e., utterab(σ) ∧Baσ ∧ IaBbσ). a believes that b uses σ to reach a
default conclusion δ (i.e., BaBb((σ ∧ ¬Bb¬δ) ⊃ δ)). a also believes that b disbelieves
the falsity of δ (i.e., Ba¬Bb¬δ), while a believes it (i.e., Ba¬δ). And believing δ by the
hearer b is what the speaker a intends to achieve (i.e., IaBbδ). Note that nonmonotonic-
ity arises in Bb((σ ∧ ¬Bb¬δ) ⊃ δ). Compared with definitions of lies and bullshit, one
can observe that the act of deception is a bit complicated. In fact, “The deceiver takes
a more circuitous route to his success, where lying is an easier and more certain way
to mislead” [1, p.440]. A reason for the complication is due to the fact that deception
works by nonmonotonic reasoning.

Like lying and I-BS, the following properties hold.

Proposition 4.6. � DECab(⊥, δ) ⊃ ⊥ for any δ ∈ Φ.

Proposition 4.7. � DECab(σ, δ) ⊃ Ba(DECab(σ, δ)) for any σ, δ ∈ Φ.

6 Some philosophers call this a “lie of omission” [14].

A Logical Account of Lying 297

Proposition 4.8. � DECaa(σ, δ) ⊃ ⊥ for any σ, δ ∈ Φ.

In contrast to lying and BS, DECab(�, δ) is consistent. In fact, it becomes

DECab(�, δ) = utterab(�) ∧BaBb(¬Bb¬δ ⊃ δ) ∧Ba¬Bb¬δ ∧Ba¬δ ∧ IaBbδ.

In this case, a deceiver utters no meaningful information and just expects a hearer to
reach a default conclusion δ. Different from lying and BS, a deceiver utters believed-
true sentences. This implies that one cannot lie and deceive, nor bullshit and deceive,
on the same sentence.

Proposition 4.9. � LIEab(σ) ∧ DECab(σ, δ) ⊃ ⊥ and � BSab(σ) ∧
DECab(σ, δ) ⊃ ⊥ for any σ, δ ∈ Φ.

As deception accompanies intention, offensive/defensive or deductive/abductive decep-
tion can also be defined. In lying and bullshitting, it is reasonable (and courteous to
a hearer) not to lie and bullshit more than absolutely necessary (Postulates I and II).
In case of deception, on the other hand, this is not necessarily the case. If an agent a
deceives another agent b on the sentence σ ∧ λ, then the deception σ ∧ λ is stronger
than the deception σ. However, providing more information increases the knowledge
of a hearer. For a speaker, providing more information implies concealing less infor-
mation, which alleviates immoral feeling of the speaker. Thus, there is no reason to
prefer the weakest form of deception, so we do not have a postulate mandating it. On
the other hand, deception is considered preferable to lies and BS as a speaker utters a
believed-true sentence. This leads to the following postulate.

Postulate IV: Never lie nor bullshit if you can deceive your way out of it.
Let δ, λ, σ ∈ Φ�. Then,
(i) Ba(DECab(σ, δ) ⊃ Bbδ) ∧Ba(O-LIEab(λ, δ) ⊃ Bbδ) ⊃ ¬O-LIEab(λ, δ).
(ii) Ba(DECab(σ, δ) ⊃ Bbδ) ∧Ba(O-BSab(λ, δ) ⊃ Bbδ) ⊃ ¬O-BSab(λ, δ).

The postulates I–IV are statements that agents should try to satisfy, both for moral
reasons and for self-interested reasons (lower punishments if caught). If we assume that
agents try to satisfy the dishonesty postulates, and that lying is worse than BS, which
is again worse than deception, then one can characterize an agent by the worst level
of dishonesty it is willing to commit in order to achieve a goal. For instance, a lawyer
agent might be willing to deceive (providing only information favorable to his client)
but not to BS nor to lie. So if one detects that an agent is deceiving, one cannot infer that
it is also willing to BS or lie. However, the opposite is the case. If an agent is willing
to lie, then from the dishonesty postulates, it can also be assumed to be willing to BS
or to deceive. So an agent who is caught on deceiving can perhaps still be trusted not to
lie (if trust is the default attitude), but an agent that is caught on lying cannot be trusted
at all anymore (also regarding BS and deception). In multiagent systems if agents have
implemented the dishonesty postulates, then this helps one to reason about the possible
dishonesty of other agents, and about the extent to which they can still be trusted.

5 Discussion

Some attempts have been made to formulate lying using modal logic. O’Neill [17]
provides logical definitions of lies and deception based on the logic of [7]. In contrast

298 C. Sakama, M. Caminada, and A. Herzig

to our formulation with the logic BI0, he uses the logic BI2 which has four different
modalities of belief, intention, common belief, and communication. His primary interest
is to formulate various types of speech acts in an epistemic logic, and he does not
investigate inference mechanisms behind the act of lying and other dishonesty. Different
epistemic approaches are also reported in [22], but they just provide definitions of lies or
deceptive utterances. Bonatti et al. [3] study databases that could lie to users to preserve
security. They introduce a propositional modal logic to reason about databases, secrets,
and users’ beliefs. Their goal is formulating not lying but query answering in secure
databases. Sklar et al. [20] formulate lying with argument-based dialogues. Their goal
is capturing lies as contradictory dialogues, and they do not consider various types of
lying, BS and deception. Caminada [4] provides a comparative study between lies, BS
and deception and shows how these can be formalized using abstract argumentation.
The paper provides philosophical arguments, but no logical theory is given.

This paper considered deductive and abductive lies, while lying can be combined
with other types of inference. For instance, one may devise inductive lies by telling
untrue evidences to make a hearer learn wrong inductive hypotheses. This paper focused
attention in providing an ontology of dishonesty and explained how various forms of
dishonesty are related to each other. It is also important to investigate how one can
learn dishonesty attitudes in a multiagent society. Recent studies show that robots which
compete for foods learn to conceal food information [15]. Staab and Caminada [21]
design and implement an MAS-based software simulator and observe that the incentives
for dishonesty emerge for economical agents to have good performance.

6 Conclusion

We have provided a logical analysis of various concepts of dishonesty as they appear in
the literature in philosophy and elsewhere. The issue of logical foundation of dishon-
esty is a topic that has received little attention until now. Our aim is to analyze this issue
using a relatively simple logical formalization. Although some formal properties were
provided, the strength of the current paper is conceptual rather than purely technical.
The postulates can be seen as having a normative value, and should ideally be imple-
mented for individual agents in multiagent systems. In future work, we elaborate the
formulation and plan to build a formal system based on it.

References

1. Adler, J.E.: Lying, deceiving, or falsely implicating. J. Philosophy 94(9), 435–452 (1997)
2. Augustine, S.: Lying. In: Treatises on Various Subjects, Fathers of the Church, vol. 56,

pp. 45–110 (1952)
3. Bonatti, P.A., Kraus, S., Subrahmanian, V.S.: Foundations of secure deductive databases.

IEEE Transactions on Knowledge and Data Engineering 7(3), 406–422 (1995)
4. Caminada, M.: Truth, lies and bullshit, distinguishing classes of dishonesty. In: Proc. IJCAI

Workshop on Social Simulation (2009)
5. Carson, T.L.: The definition of lying. Noûs 40(2), 284–306 (2006)
6. Chisholm, R.M., Feehan, T.D.: The intent to deceive. Journal of Philosophy 74(3), 143–159

(1997)

A Logical Account of Lying 299

7. Colombetti, M.: A modal logic of intentional communication. Mathematical Social Sci-
ences 38, 171–196 (1999)

8. Demos, R.: Lying to oneself. Journal of Philosophy 57(18), 588–595 (1960)
9. Fallis, D.: What is lying? Journal of Philosophy 106(1), 29–56 (2009)

10. Frankfurt, H.G.: On Bullshit. Princeton Univ. Press, Princeton (2005)
11. Halpern, J., Moses, J.: A guide to completeness and complexity for modal logics of knowl-

edge and belief. Artificial Intelligence 54, 349–379 (1992)
12. Kupfer, J.: The moral presumption against lying. Review of Metaphysics 36, 103–126 (1982)
13. Mahon, J.E.: A definition of deceiving. J. Applied Philosophy 21(2), 181–194 (2007)
14. Mahon, J.E.: Two definitions of lying. J. Applied Philosophy 22(2), 211–230 (2008)
15. Mitri, S., Floreano, D., Keller, L.: The evolution of information suppression in communicat-

ing robots with conflicting interests. Proc. National Academy of Sciences 106(37), 15786–
15790 (2009)

16. Morris, J.: Can computers ever lie? Philosophy Forum 14, 389–401 (1976)
17. O’Neill, B.: A formal system for understanding lies and deceit. In: Jerusalem Conference on

Biblical Economics (2003)
18. Peirce, C.S.: Collected Papers of Charles Sanders Peirce. Harvard University Press,

Cambridge (1958)
19. Searle, J.R.: Speech Acts. Cambridge University Press, Cambridge (1969)
20. Sklar, E., Parsons, S., Davies, M.: When is it okay to lie? A simple model of contradiction

in agent-based dialogues. In: Rahwan, I., Moraı̈tis, P., Reed, C. (eds.) ArgMAS 2004. LNCS
(LNAI), vol. 3366, pp. 251–261. Springer, Heidelberg (2005)

21. Staab, E., Caminada, M.: Assessing the impact of informedness on a consultant’s profit. In:
Proc. 21st Benelux Conf. on AI (BNAIC 2009), Eindhoven, pp. 397–398 (2009)

22. Urchs, M.: Just lying. Logic and Logical Philosophy 15, 67–89 (2006)

Tabling with Answer Subsumption:
Implementation, Applications and Performance

Terrance Swift1 and David S. Warren2

1 CENTRIA — Universidade Nova de Lisboa
2 Stony Brook University, Stony Brook, NY

Abstract. Tabled Logic Programming (TLP) is becoming widely available in
Prolog systems, but most implementations of TLP implement only answer vari-
ance in which an answer A is added to the table for a subgoal S only if A is not
a variant of any other answer already in the table for S. While TLP with answer
variance is powerful enough to implement the well-founded semantics with good
termination and complexity properties, TLP becomes much more powerful if a
mechanism called answer subsumption is used. XSB implements two forms of
answer subsumption. The first, partial order answer subsumption, adds A to a ta-
ble only if A is greater than all other answers already in the table according to a
user-defined partial order. The second, lattice answer subsumption, may join A
to some other answer in the table according to a user-defined upper semi-lattice.
Answer subsumption can be used to implement paraconsistent and quantitative
logics, abstract analysis domains, and preference logics. This paper discusses the
semantics and implementation of answer subsumption in XSB, and discusses per-
formance and scalability of answer subsumption on a variety of problems.

1 Introduction

Tabled Logic Programming (TLP) currently supports a number of applications in agent
frameworks, reasoning over the semantic web, machine learning, and probabilistic logic
programming; and TLP is supported by several Prolog systems, including XSB, YAP,
B Prolog, Ciao, and ALS. However, an important feature called answer subsumption
has been little studied in the literature, and is missing from most TLP systems. Most
TLP systems add an answer A to a table T only if A is not a variant of some other
answer already in T , a technique termed answer variance. While answer variance is
sufficient to allow tabling to compute the well-founded semantics and to terminate for
programs with bounded term-depth, other choices of when and how to add an answer
can be made. Using partial order answer subsumption, A would be added to T only
if A is maximal with respect to other answers in T according to a given partial order
>O. Furthermore if A is added, any answers in T that A subsumes (i.e., is greater
than in >O) are deleted. When using lattice answer subsumption, A itself may not be
added to T , rather the join is taken of A and another answer A′ in T , with A′ being
deleted. Despite its conceptual simplicity, answer subsumption can be a powerful tool.
Partial order answer subsumption allows a table to retain only answers that are maximal
according to a metric or to a preference relation; lattice answer subsumption can form

T. Janhunen and I. Niemelä (Eds.): JELIA 2010, LNAI 6341, pp. 300–312, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Tabling with Answer Subsumption: Implementation, Applications and Performance 301

the basis of multi-valued logics, quantitative logics, and of abstract interpretations for
programs and process logics.

A version of answer subsumption has been available in XSB for over a decade, but
its implementation was never described, and only recently was its implementation opti-
mized and declarations provided to make it easy for programmers to use. [10] described
how lattice answer subsumption can implement Generalized Annotated Programs [6],
but did not provide any details of implementation or benchmarks. Recently, [8] used an-
swer subsumption to implement probabilistic inference, but the benchmark times in that
paper were dominated by the cost of maintaining BDDs that represented probabilistic
explanations. Beyond related work for XSB, the mode-specific tabling of B Prolog can
be seen a restricted form of answer subsumption that allows only min and max over the
Prolog term order, and constrains the modes of aggregated tabled subgoals.

This paper makes two main contributions: first, it describes the implementation of
partial order and lattice answer subsumption in XSB; and second, it analyzes perfor-
mance and demonstrates scalability of answer subsumption for applications in social
network analysis, abstract interpretation, and query justification through multi-valued
logics. The structure of the paper is as follows. Section 2 informally presents the se-
mantics of partial order and lattice answer subsumption. Section 3 then describes the
underlying implementation of answer subsumption using the trie-based tabling data
structures of XSB. Finally, Section 4 analyzes the performance and scalability of an-
swer subsumption in various applications.

2 An Informal Semantics for Answer Subsumption

Terminology and Conventions. Informally, an answer is simply an atom derived via some
fixed-point evaluation of a programP – using tabling or bottom-up evaluation. For sim-
plicity of presentation, we assume that all queries are safe – i.e. that any answer to a query
will be ground (the implementation in XSB allows non-ground answers in certain cases).
Within this paper, answer subsumption is restricted to occur on a single argument of a
predicate; however since answer subsumption is defined for arbitrary terms this restric-
tion does not affect expressibility. For purposes of space, we restrict our description to
definite programs. However, the implementation described in Section 3 supports strati-
fied programs, and so can form the basis of formalisms that use negation such as annotated
or residuated programs [6,1]. Finally, all examples use standard Prolog syntax.

Partial Order Answer Subsumption. For simplicity, our first examples make use of a
shortest-path predicate (Figure 1) that counts the number of edges between two vertices;
more sophisticated uses of answer subsumption are presented in Section 4.

As mentioned above, partial-order answer subsumption retains in a table T only
those answers that are maximal according to a given partial order >O. In the case of the
shortest-path predicate of Figure 1, sp(A1, A2, A3) >O sp(B1, B2, B3) if, A1 = B1,

sp(X,Y,1):- edge(X,Y).
sp(X,Z,N):- sp(X,Y,N1),edge(Y,Z),N is N1 + 1.

Fig. 1. A Shortest Path Predicate

302 T. Swift and D.S. Warren

A2 = B2, and A3 < B3. Note that that minimal distances are maximal in <O, and that
<O is undefined if A3 or B3 is non-numeric. In XSB, partial order answer subsumption
is specified for sp/3 using the declaration

:- table sp(_,_,po(</2)).

In a given state of computation, only those answers that are maximal according to >O

are available for resolution. Thus, for a finite graph with cycles, sp/3 will terminate
using answer subsumption, but not with answer variance. Other partial orders beyond
distance metrics may be useful. For instance, >O may specify a preference ordering
between derived atoms so that answer subsumption provides an alternative to default-
based methods for computing preferences (cf. Section 4.1 for a discussion).

Lattice Answer Subsumption. An upper semi-lattice is a partial order for which any two
elements have a unique least upper bound. Because the ordering for the third argument
of sp/3 is total, it also forms an upper semi-lattice, and so can be computed using lattice
answer subsumption. In XSB lattice answer subsumption for sp/3 is declared as

:- table sp(_,_,lattice(min/3)).

with min/3 defined as min(X,Y,Z):- Z is min(X,Y). Operationally, this
means that whenever an answer sp(A1, A2, A3) is derived, if there is another answer
sp(B1, B2, B3) where A1 = B1 and A2 = B2 the join J3 of A3 and B3 is taken,
and only sp(A1, A2, J3) is available for resolution. As with a partial order, the join
operation ensures termination for shortest path over a finite graph with cycles.

As the following proposition shows, lattice answer subsumption can be modeled
either starting with a lattice, or starting with a function with appropriate properties.

Proposition 1. Let op be an associative, commutative, and idempotent binary function.
Then there is a partial order P , such that P is an upper semi-lattice with join op.

Conversely, if a function does not have the above properties, it is not suitable for lat-
tice answer subsumption. Accordingly the aggregate functions count and sum cannot be
computed using lattice answer subsumption1. Lattice answer subsumption has a variety
of applications: Section 4.3 shows how it is used for social-network analysis and for
an application of multi-valued logics, [10] describes how a similar formalism can im-
plement a quantitative logic, and [8] describes an implementation of probabilistic logic
based on answer subsumption.

Partial Order Answer Subsumption with Abstraction. Computation over an abstract do-
main may require certain maximal answers to be abstracted. In many cases, abstraction
can be modeled by a join operation, but in others the abstraction represents an implicit
induction step in the following sense. Given a set A of answers, it may be detected that
the program computed does not have a finite model. An abstraction operation then is
applied so thatA and its extensions can be symbolically represented by a single answer
A. Using answer subsumption, this abstraction can be taken only if needed during pro-
gram execution. Abstractly, partial order answer subsumption with abstraction uses the
declaration

1 Since count and sum are not idempotent their semantics is based on multi-sets, rather than sets.
Incorporating these as tabling features requires modifying their semantics to be set-based, in a
manner similar to aggregation ASP systems (cf. e.g. [2]) .

Tabling with Answer Subsumption: Implementation, Applications and Performance 303

:- table p(_,_,po(rel/2,abs/3)).

where rel/2 is a partial order, and abs/3 is the abstraction operation. Section 4.2
provides a detailed example of how such an approach is used to analyze a process logic.

Complexity. Consider a ground programP where some predicate p/n is declared to use
lattice answer subsumption with join predicate op/3. Note that any answer to a subgoal
of p/n need be compared to at most one other answer to compute a join. Thus if op/3
has constant cost, lattice answer subsumption adds no overhead in terms of complexity
to evaluatingP . However, for partial order answer subsumption, an answer to a subgoal
of p/n might in principle be compared to all other answers for p/n, which in the worst
case is atoms(P), the number of atoms in P . Accordingly, if rel/2 has constant cost,
the complexity of evaluating P will be size(P)× atoms(P), regardless of whether P
is definite, or is being evaluated using negation over the well-founded semantics.

3 Implementation

Both lattice and partial-order subsumption are implemented through a compiler trans-
lation that introduces specialized code to manipulate answers in the table.

We first describe the implementation of lattice answer subsumption. As discussed,
for simplicity of presentation, we assume that the predicate tabled using answer sub-
sumption returns only ground answers. Consider again the example of shortest path
using min/3 as a join operator (Figure 1), in which the query finds all distances from
a single source – e.g. a query such as sp(a,Y,M). The XSB compiler transforms
sp/3 to the code in Figure 2. The first two subgoals in the body of the transformed
version of sp/3 (line 3) gain access to the table created on the call to sp(a,Y,M);
access in XSB is through the generator choice point for the table, obtained through the
choice point register, Breg (see [9] for details). Cs is a pointer to the table entry for
the current call, and Skel is a term containing the free variables of the query, which

:- table sp/3.
sp(X,Y,M) :-

’_$savecp’(Breg), breg_retskel(Breg,3,Skel,Cs),
(nonvar(M) -> instantiation_error ; true),

5 excess_vars(Skel,[M],[],Vars),
copy_term(t(Vars,Skel,M),t(Vars,OSkel,OM)),
’sp$$’(X,Y,NM),
(’_$$get_answers’(Cs,OSkel,AnsPtr)
-> min(OM,NM,M),

10 M \== OM,
delete_answer(Cs,AnsPtr)

; M = NM).

’sp$$’(X,Y,1) :- edge(X,Y).
15 ’sp$$’(X,Y,N) :- sp(X,Z,N1),e(Z,Y),N is N1+1.

Fig. 2. Example Code for Lattice Answer Subsumption

304 T. Swift and D.S. Warren

for sp(a,Y,M) is the term ret(Y,M). Since tabled answers in XSB contain only
bindings to variables in the call, the free variables are necessary to retrieve answers
from the table. Line 4 throws an error if the argument using answer subsumption is not
a variable, as the code of Figure 2 is not correct in that case. Lines 5 and 6 generate
variants of other terms that will be needed to retrieve answers from the table. In our
example, OSkel is ret(Y,OM) – note that Y is in the call, but OM is free. After this
setup, line 7 calls the original code (transformed to ’sp$$’/3) to derive answers. On
success of ’sp$$’/3 (line 8), a previous answer whose bindings unify with OSkel
is obtained from the table, if it exists. For instance, if the success of sp$$/3 in line 7
bound Y to b, the answer in the table for sp(a,Y,M) that has Y bound to b is obtained
if it exists, binding OM to the third argument of that answer. Note that the use of lattice
answer subsumption, together with the safety assumption ensure that there is at most
one such answer. If the answer does exist, the old value OM is joined with the new NM
from the answer just returned (line 9). If the join differs from the old answer (line 10),
the old answer is deleted (line 12) and the clause succeeds. Further compilation into
byte code ensures that an answer is added to the table whenever a clause of a tabled
predicate succeeds (here, in line 10 or 12). If the joined value M is the same as the value
OM in the old answer, the computation fails in order to search further. If there is no pre-
vious answer in the table (line 12), then the clause succeeds. Note that the setup portion,
(lines 1-6) are executed once per call; lines 8-12 are executed for each answer.

Next we describe the implementation of the same program and query using partial
order answer subsumption. Again the compiler transforms the program to perform the
table manipulations (Figure 3). The first 6 lines of setup are identical to the lattice case;
partial order subsumption differs only in how it treats answers. In lines 8-9 the table is
checked to see if any previous answer is the same as or subsumes the new answer. If
so, then the computation fails. (Note that if the new answer is subsumed by an answer
already in the table, then the table will not contain any answer subsumed by the new
one.) Assuming the new answer is not subsumed by any old answer, lines 10-12 use
findall/3 to collect pointers to all answers subsumed by the new one, and in line

:- table sp/3.
sp(X,Y,M) :-

’_$savecp’(Breg), breg_retskel(Breg,3,Skel,Cs),
(nonvar(M) -> instantiation_error ; true),

5 excess_vars(Skel,[M],[],Vars),
copy_term(t(Vars,Skel,M),t(Vars,OSkel,OM)),
’sp$$’(X,Y,NM),
\+ (’_$$get_answers’(Cs,OSkel,_),

(OM == NM ; ’<’(OM,NM))),
10 findall(AnsPtr,

(’_$$get_answers’(Cs,OSkel,AnsPtr), ’<’(NM,OM)),
AnsPtrs),

(member(AnsPtr,AnsPtrs), delete_answer(Cs,AnsPtr), fail
;

15 M=NM).

Fig. 3. Example Code for Partial Order Answer Subsumption

Tabling with Answer Subsumption: Implementation, Applications and Performance 305

:- table reachable/2.
reachable(S,M) :-

’_$savecp’(Breg), breg_retskel(Breg,2,Skel,Cs),
(nonvar(M) -> instantiation_error ; true),

5 excess_vars(Skel,[M],[],Vars),
copy_term(t(Vars,Skel,M),t(Vars,OSkel,OM)),
’reachable$$’(S,NM),
findall(OM-AnsPtr,’_$$get_answers’(Cs,OSkel,AnsPtr),OldAnswerPtrs),
collect_ans(OldAnswerPtrs,OldAnswers),

10 omega_abs(OldAnswers,NM,AbsM),
\+ (member(OM-_,OldAnswerPtrs),

(OM == AbsM ; omega_gte(OM,AbsM))),
(member(p(OM,AnsPtr),OldAnswerPtrs),
omega_gte(AbsM,OM)), delete_answer(Cs,AnsPtr), fail

15 ;
M=AbsM).

Fig. 4. Example Code for Partial Order Answer Subsumption with Abstraction

13, they are deleted from the table. The new answer is added to the table upon the
clause’s success in line 15.

Finally we describe the transformation for Partial Order Subsumption with
Abstraction. The example transformation for PT Net Reachability (Section 4.2)
is shown in Figure 4. The declaration for this example is assumed to be
:- table reachable(_,po(omega_gte/2,omega_abs/3)). Again the
setup and call in line 7 are the same as the previous cases. On return of a newly com-
puted answer, line 8 collects all old answers and the pointers to them, and line 9 sep-
arates out just the old answers, which are input to the abstraction operator in line 10.
Then in the rest of the code, the abstracted answer is used in place of the computed an-
swer, as follows. First, lines 11-12 check whether the new answer is already subsumed
by an existing answer, in which case the clause fails. Otherwise, lines 13-14 delete all
old answers subsumed by (the possible abstraction of) the new answer. And in line 15,
we return the new (possibly) abstracted answer.

4 Performance and Applications

In this section we benchmark and analyze application TLP programs.2

4.1 Answer Subsumption in Support of Social Network Analysis

The field of Social Network Analysis (SNA) (cf. [13]) studies the behavior of groups
through the relations among their members. In SNA a social network is a graph that is

2 All benchmarks were performed on a MacBook pro laptop, with a 2 Ghz Intel Core Duo CPU
and 2 GB of RAM. Multi-threading was not used for these benchmarks, so only one core was
utilized. All times are in seconds, and all measures of space are in bytes. Table space in XSB
includes storage space for subgoals and answers along with space allocated for copying areas,
answer hash buckets, etc. All benchmark programs are available by anonymous CVS from
xsb.sourceforge.net in the benches directory of the module mttests.

306 T. Swift and D.S. Warren

analyzed to determine measures of connectivity or of balance, partitioned into subcompo-
nents according to an optimality criterion, or analyzed in other ways. Logic programming
offers promise for SNA: it is easy to specify properties of vertices (“male,“lives-in-city”)
and of edges (“father-of”,“exchanges-needles-with”);and SNA properties can be declar-
atively analyzed by TLP or ASP systems. A factor in many types of SNA (e.g. [11]) is the
coherence of a (sub-)graph: a numeric measure based on the shortest paths between all
vertices in the subgroup (the metric for distance may be defined on different edge types,
or their combination).

We begin our benchmarking with the shortest path predicate sp/3 of Figure 1 which
uses lattice answer subsumption. In sp/3, distance between two vertices is defined
simply as the minimal number of edges between them. While there are several well-
known algorithms to determine shortest paths in graphs with non-negative edge weights,
the problem offers excellent scope for analyzing various aspects of answer subsumption.
Table 1 shows the scalability of the goal sp(From,To,Dist) on randomly generated
graphs with N vertices and edges. These graphs are sparse in the sense that they are
largely unconnected: the number of answers is substantially below the N2 answers the
query would return for a fully connected graph. As Table 1 shows, sp/3 scales linearly
in answers up to the amount of core memory available.

The standard algorithm for finding shortest paths to all nodes from a single source
node is Dijkstra’s algorithm [4]. The difference, between that algorithm and the under-
lying algorithm for answer subsumption, is in the scheduling. In Dijkstra’s algorithm,
the next node chosen to expand is the one with shortest distance from the source node.
So the “wave front” of the search is expanded by choosing the nearest non-expanded
node. This tabling algorithm expands the wave front based on the number of edges from
the source, independent of the weights on the edges. For our examples where each edge
is assumed of weight 1, the algorithm corresponds to Dijkstra’s. But with varying edge
weights, answer subsumption (as implemented here) may be suboptimal.

Sparse graphs are unlikely to have many different paths between two vertices: ac-
cordingly Table 1 does not check the efficiency of all aspects of lattice answer sub-
sumption such as accessing previously derived answers to compute a join, and possibly
deleting them. These factors are measured in Table 2, which benchmarks various pred-
icates on graphs of 1000 vertices and N = 2 × 1000, 4× 1000 . . .512 × 1000 edges.
In addition to benchmarking sp/3 with lattice and partial order answer subsumption,
Table 2 measures two new predicates shown in in Figure 5. The first, reach/3 is a
simple transitive closure predicate that does the same work as sp/3 except for answer

Table 1. Scalability of lattice sp/3 on sparse graphs where |edges| = |vertices|

Vertices Time Table Space Answers

25000 1.7 44,146,000 960,588
50000 7.5 198,905,244 4,324,742
75000 12.8 307,611,736 6,683,493

100000 9.8 212,186,848 4,611,563
125000 57.6 1,128,215,852 24,617,754

Tabling with Answer Subsumption: Implementation, Applications and Performance 307

:- table reach/3.
reach(X,Y,1):- edge(X,Y).
reach(X,Z,1):- reach(X,Y,N1),edge(Y,Z), _N is N1 + 1.

:- table sp_del(X,Y,lattice(min/3)).
sp_del(X,Y,D):- edge(X,Y,D).
sp_del(X,Z,D3):- sp_del(X,Y,D1),edge(Y,Z,D2),D3 is D1 + D2

Fig. 5. Predicates for shortest path and transitive closure

Table 2. Comparison of approaches on dense graphs where |edges| = N × |vertices|

Avg. Verts//Node 2 8 32 128 512

sp/3-Lattice
Time 2.3 13.2 52.1 211.9 880
Table Space 26,249,826 41,213,664 41,213,664 41,213,664 41,213,664
Answers 631,509 1,000,000 1,000,000 1,000,000 1,000,000
sp/3-PO
Time 4.1 16.5 56 218.2 890
Table Space 26,249,860 41,213,688 41,214,084 41,214,084 41,214,084
reach/3
Time 0.88 3.47 12.5 53.2 238
Table Space 26,241,796 41,205,624 41,205,624 41,205,624 41,205,624
sp del/3
Time 4.2 104.0 329 845 2392
Table Space 27,198,048 41,203,908 41,290,552 41,322,464 41,345,080
Answers 655,221 999,000 1,000,000 1,000,000 1,000,000
Deletes 281,834 2,416,658 4,917,751 6,960,565 8,407,883

subsumption; the second is a shortest path predicate, sp del/3, for which distance
is a function of weights for each edge. As can be seen from Table 2, once the graphs
are fully connected, sp/3 is linear in the number of edges, regardless of whether a
lattice or partial order is used for answer subsumption. The space required is virtually
the same for both approaches, and the times are also quite similar, indicating that the
worst-case complexity of partial order answer subsumption (Section 2) is not a factor
for these examples.

Tests of reach/3 on the same graphs show a similar growth in times to sp/3 and
virtually the same space. reach/3 is about 3-4 times faster, indicating the overhead
for answer subsumption on this simple example; it should be noted that shortest path
uses answer subsumption extremely heavily, and the overhead for answer subsumption
on most other programs will be much smaller. Profiling of sp/3 shows that no dele-
tions are performed on either the sparse-graph or dense-graph benchmarks. In these ex-
periments, shorter paths are discovered first; when non-optimal paths are derived later,
so that execution of answer subsumption code fails on the comparison in line 10 of
Figure 2, and a deletion need not be performed. To test the cost of deletions, sp del/3

308 T. Swift and D.S. Warren

:- table pref_distance/4.
pref_distance(X,Y,1,_):- edge(X,Y).
pref_distance(X,Z,N,Max):-

pref_distance(X,Y,N1,Max),
edge(Y,Z), N is N1 + 1, N < Max,
tnot(preferred_distance(X,Z,N,Max)). % XSB’s tabled negation

:- table preferred_distance/4.
preferred_distance(X,Y,N,Max):- pref_distance(X,Y,M,Max),M < N.

Fig. 6. A Program to Compute Shortest Path using Negation

was tested on graphs where each edge fact also contains a randomly-generated cost.3

Table 2 shows that deletion imposes overhead in terms of time, but virtually no overhead
in terms of space.

Comparison of answer subsumption to negation. In addition to using answer sub-
sumption, shortest paths can also be computed through negation, as by the predicate
pref distance/4 in Figure 6, which concludes a given path between two vertices
is shortest if no other shorter path is derivable. This approach is similar to a preference-
based approach, where a shorter path is prefered to a longer one. Note that when an-
swer subsumption is not used for shortest path, a program may have an infinite model
if the underlying graph has cycles. To ensure termination, pref distance/4 has as
its fourth argument the maximum diameter of a graph. The need for a maximum dis-
tance, together with the requirement that calls to negative literals be ground, increases
the complexity of determining shortest path. Not surprisingly, experiments show that
pref distance/4 scales poorly compared to the approaches based on answer sub-
sumption. Since many ASP grounders may require users to program shortest path in a
ground manner similar to that of pref distance/3, experiments on ASP grounders
were also performed. The experiments showed poor scalability compared to answer
subsumption. Overall, these results indicate that answer subsumption can play an im-
portant role for ASP grounding, either by implementing answer subsumption within a
grounder, or by using TLP as a grounder as in XSB’s XASP package.

4.2 Answer Subsumption and Abstract Interpretation

Net-style formalisms, such as Petri Nets, Workflow Nets, etc. have been used exten-
sively for process modeling. Reachability is a central problem in analyzing properties
of such nets, to which properties such as liveness, deadlock-freedom, and the existence
of home states can be reduced. However, many interesting net formalisms cannot guar-
antee a finite number of configurations in a given net, so abstraction methods must be
applied for their analysis.

For instance, the lack of finiteness is a problem in analyzing Place/Transition (PT)
Nets. PT nets have no guard conditions or after-effects, and do not distinguish between

3 The graphs used for sp del/3 have different randomly-generate edge relations than those
for sp/3 and so have a different number of answers.

Tabling with Answer Subsumption: Implementation, Applications and Performance 309

s3

t1

s1

s2

t2

t3 s4

t4

Fig. 7. A PT-net and configuration with an infinite number of reachable configurations

:- table reachable(_,po(omega_gte/2,omega_abs/3)).
reachable(InConf,NewConf):-

reachable(InConf,NewConf),
hasTransition(Conf,NewConf).

reachable(InConf,NewConf):- hasTransition(InConf,NewConf).

Fig. 8. Top-level predicate for PT net reachability

token types. However, PT nets do allow a place to hold more than one token, leading to
a potentially infinite number of configurations. This can be seen in the simple network
of Figure 7 (from [3]) in which transitions are denoted by squares and places by circles.
Each transition removes one token from the places that are the sources of its input
edges and adds one token to each place at the target of each of its output edges. Starting
from the configuration in Figure 7, repeated application of transition t1 leads to place
s2 containing an unbounded number of tokens; repeated application of the sequence
t1,t2,t3,t4 leads to place s4 containing an unbounded number of tokens.

Despite such examples, reachability in PT nets is decidable and can be determined
using an abstraction method called ω-sequences, (see e.g. [3]). The main idea in de-
termining ω sequences is to define a partial order ≥ω on configurations as follows. If
configurations C1 and C2 are both reachable, C1 and C2 have tokens in the same set
PL of places, C1 has at least as many tokens in each place as C2, and there exists a
non-empty PLsub ⊆ PL, such that for each pl ∈ Plsub C1 has strictly more tokens
than C2, then C1 >ω C2. When evaluating reachability, if C2 is reached first, and then
C1 was subsequently reached, C1 is abstracted by marking each place in PLsub with
the special token ω which is taken to be greater than any integer. If C1 was reached first
and then C2, C2 is treated as having already been seen.

Tabling combined with partial order answer subsumption requires slightly over 100
lines of code to model reachability in PT nets using ω-sequences. Due to space re-
strictions, the program cannot be fully described here, but the top-level reachability
predicate is shown in Figure 8. Despite its succinctness, it can evaluate reachability
in networks with millions of states in a few minutes. This use of tabling to determine
reachability in PT nets can be seen as a special case of tabling for abstract interpretation
(cf. [5] and other works). However the framework for answer subsumption described
here allows tabling to be used to efficiently perform abstract interpretation within a
general Prolog system

310 T. Swift and D.S. Warren

4.3 Scalability for Multi-valued and Quantitative Logics

The technique of program justification (cf. e.g. [7]) has been used for debugging tabled
programs that cannot be debugged by traditional means. Here, we consider justification
in the context of the Silk system, currently under development at Vulcan, Inc. Silk is
a commercial knowledge representation and rule system built on top of Flora-2, which
is implemented using XSB. One of the salient features of Silk is its default reason-
ing, which is based on a parameterized argumentation theory evaluated under the well-
founded semantics [12]. One issue in using Silk is that knowledge engineers must have
a way of understanding the reasoning of the system, a task complicated by the use of the
well-founded semantics and the intricacies of the argumentation theory. We describe an
experimental approach to justification of Silk-style argumentation theories using multi-
valued logics.

As noted in [12], argumentation theories in Silk are usually extensions of the default
theories of Courteous Logic Programs (CLP) and are based on two user-defined pred-
icates: opposes/2 and overrides/2. Two atoms oppose each other if no model
of a program can contain both atoms: an atom and its explicit negation oppose each
other, but opposition can capture many other types of contradictions. Given two op-
posing atoms, one atom may override the other, and so be given preference. For atoms
A1 and A2, if A1 and A2 are both derivable and oppose each other but neither over-
rides the other, A1 and A2 mutually rebut each other. If in addition A1, say, overrides
A2, A1 refutes A2

4. Within Silk and Flora-2, the compilation of an argumentation the-
ory ensures that rebutted atoms have an undefined truth value, as do atoms that refute
themselves (i.e. if the overrides/2 predicate is cyclic). However, for justification,
it is meaningful to distinguish those facts that are undefined due to a negative loop in
the argumentation theory from those that are undefined due to a negative loop in the
program itself. In addition, it is meaningful to distinguish an atom that is true because
it overrides some other atom, from an atom whose derivation does not depend on the
argumentation theory. Similar distinctions can be made for default false literals leading
to the truth lattice shown in Figure 9.

mutually refuted

bottom

mutually rebutted

default refuted falserefuted true

default falsetrue

top

Fig. 9. A Truth Lattice for a Simplified Version of Courteous Argumentation Theory

An atom-based argumentation theory is added to a program by an easy standard trans-
formation [12]. Each clause H :- B whose head is a defeasable predicate is rewritten as

4 In [12] argumentation theories are built on named rules, here we base them on derived atoms.

Tabling with Answer Subsumption: Implementation, Applications and Performance 311

H :- B, tnot(defeated(H)); clauses for non-defeasible predicates are not altered. To
obtain support for a justification a multi-valued transformation was used instead of the
standard transformation. First, the lattice of Figure 9 was programmed in Prolog for use
by answer subsumption. Next, each clause H :- B whose head was a defeasible predi-
cate was rewritten as H :- B, defeated(H,Reason), where defeated(H,Value)
indicates the truth value of H on the lattice of Figure 9.

Experiments were performed on synthetic programs to compare the implementation
of a Silk argumentation theory using the standard transformation to the new multi-
valued transformation. Synthetic programs were tested containing a large number of
mutually recursive defeasible rules, together with a large proportion of refuted and re-
butted atoms. These tests indicate that the use of lattices may increase the time for total
query evaluation by two to three times, well within an allowable increase for a justifica-
tion system. Surprisingly, the multi-valued transformation of the argumentation theory
sometimes take less table space, due to the space overhead incurred by XSB to maintain
conditional answers (i.e. answers whose truth value is undefined in the well-founded se-
mantics). We stress that these results are preliminary in the sense that the behavior of
the synthetic programs may not resemble that of practical programs that use defeasible
logic. However, the heavy use of defeasibility in the synthetic programs gives reason
to believe that the time overhead may well be much less in practical programs than
observed here. Together the results show that multi-valued logics are a promising ap-
proach for justification of defeasible logics, whether these logics occur as part of Silk
or are used directly in a TLP system such as XSB.

5 Conclusions

This paper has described how answer subsumption can be used for applications in quan-
titative reasoning, abstract interpretation and multi-valued logics. To use answer sub-
sumption, a programmer need only write a join, comparison, or abstraction operation
in Prolog and make the appropriate declarations. As shown in Section 3, the main im-
plementational requirements of answer subsumption are 1) an efficient way to compare
a new answer to appropriate answers in a table; and 2) an efficient way to delete sub-
sumed answers. These features only access table space, so that they can be implemented
by any tabling system, regardless of the engine architecture. Since XSB’s table space
is trie-based, other Prologs with trie-based tabling such as YAP or Ciao may be able to
port XSB’s engine code directly5.

Answer subsumption is restricted to stratified programs in the current version of
XSB. Future work includes the ability to use answer subsumption in non-stratified pro-
grams, and to add program constructs that allow non-idempotent aggregate operations
to be computed, such as sum and count. However, the main work will be incorporating
answer subsumption in applications such as program analysis in compilers, grounders
for ASP solvers, and para-consistent and quantitative programs.

5 A significant amount of low-level C code has been ported from XSB to YAP to support a
different feature termed call subsumption.

312 T. Swift and D.S. Warren

Acknowledgements. The authors would like to thank Prasad Rao who helped implement
the original version of answer subsumption, and Neng-Fa Zhou for a helpful discussion
of tabling declarations.

References

1. Damásio, C.V., Pereira, L.M.: Monotonic and residuated logic programs. In: Benferhat,
S., Besnard, P. (eds.) ECSQARU 2001. LNCS (LNAI), vol. 2143, pp. 748–759. Springer,
Heidelberg (2001)

2. Dell’Armi, T., Faber, W., Ielpa, G., Leone, N., Pfeifer, G.: Aggregate functions in disjunctive
logic programs. In: IJCAI (2003)

3. Desel, J., Reisig, W.: Place/transition Petri nets. In: Reisig, W., Rozenberg, G. (eds.) APN
1998. LNCS, vol. 1491, pp. 122–174. Springer, Heidelberg (1998)

4. Dijkstra, E.: A note on two problems in connexion with graphs. Numerische Mathematik 1,
269–277 (1959)

5. Kanamori, T., Kawamura, T.: Abstract interpretation based on OLDT resolution. JLP 15,
1–30 (1993)

6. Kifer, M., Subrahmanian, V.S.: Theory of generalized annotated logic programming and its
applications. JLP 12(4), 335–368 (1992)

7. Pemmasani, G., Guo, H., Dong, Y., Ramakrishnan, C.R., Ramakrishnan, I.V.: Online justifi-
cation for tabled logic programs. In: Kameyama, Y., Stuckey, P.J. (eds.) FLOPS 2004. LNCS,
vol. 2998, pp. 24–38. Springer, Heidelberg (2004)

8. Riguzzi, F., Swift, T.: Tabling and answer subsumption for reasoning on logic programs with
annotated disjunctions. In: ICLP (2010) (to appear)

9. Sagonas, K., Swift, T.: An abstract machine for tabled execution of fixed-order stratified logic
programs. ACM TOPLAS 20(3), 586 (1998)

10. Swift, T.: Tabling for non-monotonic programming. AMAI 25(3-4), 201–240 (1999)
11. Valente, T., Fujimoto, K.: Bridges: Locating critical connectors in a network. Social Net-

works (2010) (to appear)
12. Wan, H., Grossof, B., Kifer, M., Fodor, P., Liang, S.: Logic programming with defaults and

argumentation theories. In: Hill, P.M., Warren, D.S. (eds.) ICLP 2009. LNCS, vol. 5649,
pp. 432–448. Springer, Heidelberg (2009)

13. Wasserman, S., Faust, K.: Social Network Analysis. Cambridge University Press, Cambridge
(1994)

Embracing Events in Causal Modelling:
Interventions and Counterfactuals in CP-Logic

Joost Vennekens1,�, Maurice Bruynooghe2, and Marc Denecker2

1 Campus De Nayer, Jan De Nayerlaan 5, 2860 Sint-Katelijne-Waver, Belgium
2 Dept. Comp. Sc., K.U. Leuven, Celestijnenlaan 200A, 3001 Heverlee, Belgium

firstname.lastname@cs.kuleuven.be

Abstract. This paper integrates Pearl’s seminal work on probability
and causality with that of Shafer. Using the language of CP-logic, it
transposes Pearl’s analysis of interventions and counterfactuals to the se-
mantic context of Shafer’s probability trees. This gives us definitions that
work not on the level of random variables, but on the level of Humean
events. There are some tangible benefits to our approach: we can ele-
gantly handle counterfactuals in the context of cyclic causal relations,
and are able to consider interventions that are both more fine-grained
and more elaborate than Pearl’s.

1 Introduction

Causal statements implicitly refer to things that happen. For instance, the
statement “syphilis causes paresis” refers to the biological process of syphilis
spirochaetes damaging certain brain cells. It is by means of this process that
patients who at first exhibit only a syphilis infection will eventually come to ex-
hibit paresis as well. The causal statement itself leaves the details of this process
implicit and just asserts its existence: “somehow,” it says, “syphilis causes pare-
sis.” Each causal statement of this form (e.g., dropping a vase causes it to break,
a voltage drop causes an electrical current, being born in Belgium causes Bel-
gian citizenship) implicitly refers to some such implicit process, to some implicit
thing that happens to generate the effect from its cause.

In [9], Shafer recognizes the importance of this dynamic aspect of causality
and introduces a specific term for these implicit things-that-happen: Humean
events. The adjective “Humean” is added to avoid confusion with the technical
meaning that the term “event” has in probability theory. That is, a Humean
event is not a subset of some sigma algebra, nor a set of possible outcomes of
some experiment, but simply, as in everyday language, something that happens.
Following the line of thought from the preceding paragraph, Shafer places this
concept at the centre of his work, using probability trees to model causal systems
as sequences of Humean events. In this context, a random variable (RV), for
instance, is simply something which gets assigned a certain value at some point
in the sequence of events.
� Partially supported by IWT-Vlaanderen.

T. Janhunen and I. Niemelä (Eds.): JELIA 2010, LNAI 6341, pp. 313–325, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

314 J. Vennekens, M. Bruynooghe, and M. Denecker

A different approach is taken by Pearl [7]. His probabilistic causal models
(PCMs) represent the relations between RVs as they hold in stable states of
the domain (i.e., when no more Humean events are happening). His models,
therefore, do not care about which event causes the value of an RV, or when
this happens. For instance, [5] uses the term “event” to refer to an assignment
X = x of values to RVs. Unlike proper Humean events, such assignments are
not things that intrinsically happen at a certain point in time, as part of a
larger sequence of events. Underlying one such an assignment, there may be
many different Humean events, happening at different times, and it may even
depend on the context (i.e., the outcome of previous events) which events are
involved in a particular assignment. For instance, a patient being in hospital
(Hospital = true) may be the result of a car crash yesterday (a Humean event),
but also, if he managed to avoid the crash, of slipping on the stairs this morning
(a different Humean event). Shafer’s account therefore presents a more refined
view on the dynamic aspects of causality than Pearl’s. However, it lacks Pearl’s
thorough treatment of interventions and counterfactuals.

In [10] (and before at JELIA 2006) , we presented a logical language called
CP-logic (the “CP” stands for causal and probabilistic), which offers a succinct
syntax for describing classes of Shaferian probability trees. We will now use this
language to provide the semantics of probability trees with a suitable notion
of interventions. In the same way as Shafer’s account of causality in terms of
Humean events can be seen as a refinement of the RV-based model employed by
Pearl, our account of interventions and counterfactuals in CP-logic will constitute
a useful refinement of the account found in [7].

2 Preliminaries: CP-Logic

We assume familiarity with classical logic and briefly recall CP-logic. For simplic-
ity, we omit function symbols and make the Herbrand assumption of identifying
interpretations with sets of ground atoms. More detail can be found in [10].

A causal probabilistic law, or CP-law for short, is a statement r of the form:

∀x (A1 : α1) ∨ · · · ∨ (An : αn)← φ.

Here, φ is a first-order formula, the Ai are atoms, the αi are non-zero proba-
bilities, and the tuple of variables x contains all free variables in φ and the Ai.
Intuitively, for each x, φ(x) causes some implicit Humean event, which will result
in at most one of the effects Ai(x). For each i, αi is the probability of Ai being
the resulting effect. Therefore, we require

∑
αi ≤ 1. If the equality holds, exactly

one Ai is caused; otherwise, it is possible that the Humean event passes without
any (visible) effect on the state of the world. For mathematical uniformity, we
introduce the notation r= to refer to r itself if the equality holds, and otherwise
to the CP-law: ∀x (A1 : α1) ∨ · · · ∨ (An : αn) ∨ (— : 1−

∑
i αi)← φ. Here, the

dash represents the possibility of there being no (visible) effect. For a CP-law
r, we denote x by vars(r), refer to φ as body(r), to the sequence (Ai, αi)n

i=1 as
head(r), and to (Ai)n

i=1 as headAt(r). We also allow the condition body(r) to be

Embracing Events in Causal Modelling: Interventions and Counterfactuals 315

omitted, which means that the Humean event always happens. We abbreviate
(A : 1)← φ by A← φ. A CP-theory is a finite set of CP-laws.

We now recall the semantics of such a CP-theory. For simplicity, we will
assume that each precondition body(r) is a positive formula. The semantics of
negation can be found in [10].

Our basic semantic construct is a probability tree [9], i.e., a finite tree in which
each edge is labeled with a probability, such that the labels of all edges leaving the
same internal node always sum up to one. Intuitively, such a tree T represents a
probabilistic process: each node is a state of the process and, together, the edges
leaving a node represent a Humean event that causes a probabilistic transition
to one of its children. The root is the initial state and the leaves are final states.
Let us denote by πT the probability distribution that a tree T defines over its
leaves, i.e., for each leaf l, πT (l) is the product of the labels of the edges that
lead to l. We now define which probability trees T correspond to a given set of
CP-laws C. Basically, the events that happen in T should follow the blueprints
given by the CP-laws in C. An occurrence of a CP-law r ∈ C is the result r[x/c]
of replacing the variables x = vars(r) by constants c. The grounding grnd(C)
of C consist of all occurrences of CP-laws r ∈ C that can be thus constructed.
Because we have no function symbols and only a finite set of constants, this
grounding is finite.

Condition 1. Events correspond to occurrences of CP-laws, i.e., there exists a
mapping E from the internal nodes s of T to grnd(C) such that we can label the
nodes and the edges of T as: if E(s) = r[x/c] and head((r[x/c])=) = (Ai, αi)n

i=0,
then the children of s are nodes s0, . . . , sn such that the label lbl(si) = Ai and
lbl((s, si)) = αi. For uniformity, the root is labeled with ‘—’ (“no-effect”).

Condition 2. An occurrence that has already happened cannot happen again.
Formally, let Anc(s) be the ancestors of s (not including s itself), and let R(s)
be the set of occurrences that have not yet happened in s (i.e., R(s) = grnd(C)\
{E(s′) | s′ ∈ Anc(s)}). Then each E(s) must be in R(s).

Finally, we relate the nodes in the tree to the effects and preconditions of the
occurrences. Recall that each node s in a probability tree corresponds to a po-
tential state of the domain. We represent this state by an interpretation (i.e.,
a set of ground atoms) as follows: I(s) =

⋃
t∈Anc(s)∪{s} l(t), where l(t) = {} if

lbl(t) = ‘− ’ and {lbl(t)} otherwise.

Condition 3. The precondition of the occurrence of a CP-law that happens
in a node must be satisfied in its state, i.e., for all internal nodes s: I(s) |=
body(E(s)).

The three conditions above describe when a probability tree unfolds according
to the CP-laws of a theory C. We call such a tree an execution model of C if it
is also complete in the following sense:

Condition 4. T cannot be extended, i.e., for each leaf l and r ∈ R(l), we have
that I(l) �|= body(r).

316 J. Vennekens, M. Bruynooghe, and M. Denecker

While we lack space for an example at this point, Fig. 1 on page 318 show an
execution model for Example 1. By defining a probability distribution πT over
its leaves, an execution model T induces a probabilistic possible world semantics:
the probability πT (S) of an interpretation S is

∑
I(l)=S πT (l). The probability

of a formula φ is then πT (φ) =
∑

S|=φ πT (S). In [10], it was shown that each
execution model T of a CP-theory C defines the same possible world semantics
πT , which we therefore also denote as πC . This result demonstrates one sense
in which causal statements are indeed justified in leaving implicit the Humean
events to which they refer: as long as we are only interested in the final states that
will eventually be reached (and not in any intermediate states), the properties
of these implicit events do not matter.

CP-logic normally distinguishes exogenous from endogenous predicates [10].
Here, however, we will save some space by writing “∀x (Exo(x) : ∗)←” to say
that Exo should really be exogenous, but that we will treat it as an endogenous
predicate caused with some unknown probability ∗. For the examples in this
paper, it is easy to see that the proper treatment of exogenous predicates would
yield the same results.

CP-logic is closely related to Probabilistic Causal Models (PCMs). A PCM
that contains only boolean equations with boolean RVs can easily be translated
to a CP-theory that contains for each PCM equation a single CP-law that prop-
agates the value of the body of the equation to its head. Conversely, CP-theories
can also be translated to PCMs. If the CP-theory contains no cycles (to be dis-
cussed below), then this is trivial. Otherwise, artificial RVs representing common
causes underlying all of the variables in a cycle are needed. See [10] for details.

3 Interventions

The goal of this section is to provide CP-logic with definitions that capture
Pearl’s intuitions about interventions. Let us briefly recall some of the formal
tools used by Pearl. A structural model is a set of structural equations, each of
which defines the value of one RV in terms of the values of some other RVs. A
Probabilistic Causal Model (PCM) consists of a structural model, together with a
probability distribution over the values of its exogenous RVs (i.e., those without
a defining equation). An important restriction is that, given any assignment of
values to the exogenous RVs, this set of equations must have a unique solution.
Typically, this is ensured by requiring an acyclic set of equations.

An intervention in a PCM is of the form do(X = x) with X of a tuple
of endogenous variables and x a tuple of values. Performing this intervention
means replacing the defining equation of each Xi ∈ X by Xi := xi. In a logical
framework, we can view a PCM as an acyclic set of equations A := φ where A
is a ground atom and φ a sentence. An intervention do(A = a) then assigns a
tuple of truth values a ∈ {t, f}n to the tuple of atoms A, while removing their
defining equations. In this paper, we will not consider interventions at the level
of random variables (i.e., atoms) as Pearl does, but look instead at interventions
that add and/or prevent CP-laws to/in a theory. Because CP-logic represents a

Embracing Events in Causal Modelling: Interventions and Counterfactuals 317

causal system in a modular way as a set of causal laws, this kind of intervention
is already built into its semantics.

Definition 1. Let C be a CP-theory. An intervention is a pair (R,A) with R a
subset of C (a preemption) and A a set of laws not in C (an addition). The result
of performing (R,A) on C, denoted C�(R,A), is the CP-theory (C \R) ∪A.

Let r be ∀x (A1 : α1) ∨ · · · ∨ (An : αn) ← φ. For atoms A ⊆ {Ai | 1 ≤ i ≤ n},
let r|−A be this CP-law without the atoms A, i.e.,

r|−Ai
= ∀x

∨
Ai �∈A(Ai : αi) ← φ.

Let r|+Ai
be the CP-law Ai ← φ. An intervention that blocks only the possible ef-

fect Ai can be represented as ({r}, {r|−{Ai}}). At the other extreme, ({r}, {r|+Ai
})

forces the outcome of the event caused by φ to be Ai.
We can use this notion of intervention to simulate Pearl’s interventions. A

Pearl-style intervention Int = do(A0 = t, . . . , Am = t, B0 = f , . . . , Bn = f)
corresponds to a pair (R,A) where R =

⋃n
j≥0{r ∈ C | Bj ∈ headAt(r)} and

A =
⋃n

j≥0{r|
−
{Bj |0≤j≤n} | r ∈ R} ∪

⋃m
i≥0{“Ai ← ”}. Given a PCM P and

its corresponding CP-theory C (as in [10]), performing intervention Int on P
produces the same probability distribution as performing the intervention (R,A)
on P . (Proof omitted because of space restrictions.)

4 Counterfactuals

Let us again start by recalling Pearl’s treatment of counterfactuals. He considers
the following class of statements:

Given X︸ ︷︷ ︸
explanation

,would Y have happened,︸ ︷︷ ︸
prediction

had we done Z︸ ︷︷ ︸
intervention

?

Pearl’s intuition is to read such a statement as: if we do the intervention Z,
will Y then hold, assuming that, insofar as the intervention does not interfere,
whatever lead to X in the first place will still happen in the same way as it
did before? He therefore suggests the following three-step process for evaluating
such statements in a PCM.

Explanation: update the a priori distribution over the exogenous variables by
the observation X .

Intervention: apply the intervention Z to the model.

Prediction: compute the probability of Y in the resulting model, using the a
posteriori distribution given X , i.e., we look at P (Y | do(Z), X).

Again, our goal is to see how we can apply these intuitions in the context of
CP-logic. Let us introduce our approach with an example from [7].

318 J. Vennekens, M. Bruynooghe, and M. Denecker

Example 1. A court might order the death of a prisoner. The probability of this
is p. The execution is to be performed by a two person firing squad. If the court
so decides, the captain of the firing squad orders both of his riflemen to fire.
However, rifleman A is of the nervous type, and might shoot even if not ordered
to. This happens with probability q. If at least one rifleman fires, the prisoner
dies. In CP-logic, this becomes:

(Court : p)← (1)
Capt← Court (2)
Fires(A)← Capt (3)
(Fires(A) : q)← ¬Capt (4)

Fires(B)← Capt (5)
Death← Fires(A) (6)
Death← Fires(B) (7)

Note that (4) contains negation, the semantics of which was not explained in
Section 2 but can be found in [10]. We could also omit ¬Capt from this CP-law;
the only effect would be that Fires(A) might redundantly be caused twice (in
branch l2 of Fig. 1a), which does not change the semantics of this theory.

Pearl considers the counterfactual

–

–

(b) (C�I)l1

Court

Capt

Fires(B)

Death

(c) (C�I)l2

–

–

Fires(A)

Death

–

Court

Capt

Fires(A)

Death

Fires(B)

Death

p1−p

q 1−q

branch l2
�

�branch l1

(a) Original execution model.

Fig. 1. Execution models of example 1

question: “If the prisoner is dead,
what is the probability that he would
still be dead if rifleman A had not
shot?” Intuition puts it at the proba-
bility that the prisoner’s death is due
to the court ordering his execution,
i.e., at P (Court|Death) = p

q(1−p)+p ,
because it is precisely in this case that
the intervention of preventing A from
firing will not save the prisoner (since
B will also fire). We can reach this
conclusion with a CP-logic variant of
Pearl’s three steps, starting from the
execution model T in Fig. 1a.

Explanation: T defines a probabil-
ity distribution πT over its leaves.
Having observed Death, we can up-
date this distribution: because l1 and
l2 are the branches where the prisoner

dies, the a posteriori probability P (l1 | Death) is q(1−p)/n and P (l2 | Death) =
p/n with n = q(1 − p) + p.

Intervention: To prevent A from firing, we apply the intervention that removes
CP-laws (3) and (4). Now, as shown in Fig. 1b, if all the remaining events hap-
pen in the same way as they happened in l1, the prisoner survives; on the other
hand, as Fig. 1c shows, if they happen as they happened in l2, he still dies.

Prediction: Having thus determined that the intervention would have prevented
the prisoner’s death just in case the original executionmodel was actually inbranch

Embracing Events in Causal Modelling: Interventions and Counterfactuals 319

l2 instead of l1, we can now judge the desired probability to be πT (l2 | Death),
which is p/n.

To make this more formal, we need a number of definitions. Let us choose an
execution model T for our theory (it can be shown that the choice does not affect
theoutcome). In the explanation step,we conditionon theobservationX as follows.

Definition 2. For a formula X, we define the conditional probability πT (l | X)
of a leaf l of T given X to be 0 if I(l) �|= X and πT (l)/πT (X) otherwise.

In the intervention step, we consider what would have happened in different
circumstances, under the assumption that all events that are not affected would
still have happened in the same way as they originally happened.

Definition 3. Let l be a leaf of an execution model of a CP-theory C and B(l)
the branch that leads to l. By Cl we denote the CP-theory that fixes the outcome
of all the events that happened in B(l) to the outcome they had in B(l):

Cl = {r ∈ C | r ∈ R(l)} ∪ {r|+H | ∃s ∈ B : lbl(s) = H and E(parent(s)) = r}.

For instance, if we fix the outcomes that occurred in l1:

Cl1 =

⎧⎪⎨⎪⎩ − ←,

Capt← Court,

F ires(A)← Capt,

F ires(A)← ¬Court,
F ires(B)← Capt,

Death← Fires(A),
Death← Fires(B)

⎫⎪⎬⎪⎭
We now define counterfactual probabilities as follows.

Definition 4. Let X,Y be formulas (respectively observation and prediction)
and Z an intervention. The counterfactual probability of Y after Z given X is

Cfl(X,Y, Z) =
∑

l is leaf of T π(C�Z)l(Y) · πT (l | X).

In our example, performing the intervention Z = ({(3), (4)}, {}) on the theory
produces the following C�Z:{

(Court : p)←,

Capt← Court,
F ires(B)← Capt,

Death← Fires(A),
Death← Fires(B)

}
In (C�Z)l1 , the first of these CP-laws reduces to “– ←”, whereas in (C�Z)l2 , it
reduces to “Court ←”. The reader can verify that the branch in Fig. 1b indeed
corresponds to (C�Z)l1 and that Fig. 1c corresponds to (C�Z)l2 . So,
Cfl(Death,Death, Z) = 0 · q(1−p)

q(1−p)+p + 0 + 1 · p
q(1−p)+p .

5 Causal Cycles

Let us now amend the previous example, by adding that each of the two soldiers
will also fire when he hears the guy next to him fire. In CP-logic, this is a pretty
innocuous change; we simply add:

Fires(A)← Fires(B). F ires(B)← Fires(A).

320 J. Vennekens, M. Bruynooghe, and M. Denecker

The only effect of this change is that now two soldiers will fire in circumstances
where previously only one would, which raises the probability of Fires(B) from
p to p + (1− p)q. Because one soldier firing already suffices to kill the prisoner,
however, this does not affect the probability of his death.

The purpose of this section is to demonstrate that such cyclic causality cannot
be adequately handled in Pearl’s framework. To this end, we will examine a
number of ways of trying to do this, and discuss what is wrong with each of
them.

First, let us note that it obviously does not suffice to leave the equation for
Fires(A) untouched and change only the equation for Fires(B) into:

Fires(B) := Captain ∨ Fires(A).

Indeed, when we intervene with Fires(B), for instance by sabotaging his rifle so
that it will go off even without the soldier pulling the trigger, the effect should be
that A also fires, which the current equation for Fires(A) will not accomplish.
One is therefore tempted to also make this change:

Fires(A) := Caption ∨Nervous ∨ Fires(B).

Together with our modification of the equation for Fires(B), however, this
clearly violates the acyclicity restriction. In the appendix to [4], Halpern and
Pearl present a way of lifting this restriction. However, their semantics is not
what is needed for this example: they impose an equilibrium condition, where
every assignment that satisfies all equations is considered possible. Therefore, it
is possible for A to fire for no reason than that B does, and at the same time
for B to fire for no other reason than that A does. Clearly, this is not what we
want for this example: if the soldiers fire, then at least one of them should have
a reason for firing that is not his comrade firing first.

This problem with the semantics of course has consequence for the results that
are produced. For instance, even the tautological counterfactual “given that the
prisoner survived, he would have survived” cannot be deemed true. Moreover, it
also becomes impossible to judge the probability of the prisoner dying any more
accurate than that it must be somewhere in the interval [p + (1− p)q, 1].

The transformation from CP-logic to Bayesian networks given in [10] would
attempt to solve this problem by introducing an intermediate RV BothFire,
replacing the equations for Fires(A) and Fires(B) by:

BothFire := Nervous ∨ Captain
F ires(A) := BothFire

F ires(B) := BothFire

This works insofar as that it generates the right probability distribution for
Death, but it breaks down when intervention come into play. The reason is
of course that this model has removed the asymmetry between Fires(A) and
Fires(B): it no longer has the information that A, and not B, is the soldier who
might fire out of nervousness. Consequently, if we ask: “given that the captain
did not give the order to fire, would B have fired if we had prevented A from

Embracing Events in Causal Modelling: Interventions and Counterfactuals 321

firing?”, then the above model has no way of knowing that the answer should
be “no”.

We are therefore forced into more complicated options, such as including
multiple copies of our original RVs. For instance, we can have Firesi(A) and
Firesi(B) for i ∈ {1, 2}:

Fires2(A) := Fires1(A) ∨ Fires1(B)
Fires2(B) := Fires1(B) ∨ Fires1(A)

Fires1(A) := Captain ∨Nervous

F ires1(B) := Captain

We can think here of the indices as a timestamp for the RVs, which explicitly
encodes the small time delay between hearing your neighbour firing and firing
yourself. In general, for a firing squad of n soldiers, in which a soldier firing causes
his two neighbours to fire too, we would need n copies of each RV, allowing a
“falling domino”-style propagation through the squad. An intervention such as
preventing soldier S from firing should then be interpreted as an intervention
with all RVs Si, i = 1..n.

This solution is correct, but has the downside of blowing up the representation:
simply adding the domino-effect forces us to abandon the original representation
in terms of n RVs, in favour of a new representation in term of n2 RVs. This
is neither concise, nor elaboration tolerant. By contrast, in CP-logic, one just
needs to add the obvious n CP-laws, in terms of the original vocabulary:

Fires(S1)← Fires(S2).
. . .

F ires(Si)← Fires(Si−1) ∨ Fires(Si+1).
. . .

F ires(Sn)← Fires(Sn−1).

In this case, one can still defend the PCM solution as an accurate picture of
reality: even though the problem description does not mention it, the propagation
of shots down the firing line would in fact not be instantaneous, since each
soldier takes some time to fire. However, this is not always possible. Consider,
for instance, a bicycle which has a big and a small gear wheel connected by a
chain. If we turn one of these wheels, the other will turn too. Moreover, this
effect will be instantaneous; there is no perceptible delay between turning one
and seeing the other turn. Again, CP-logic handles this fine:

Turn(Big)← Turn(Small).
Turn(Small)← Turn(Big).

Turn(Big)← Peddle.

The reader can easily check that this behaves correctly in the face of all con-
ceivable interventions (e.g., manually turning a gear wheel, removing the chain,
blocking a gear wheel).

322 J. Vennekens, M. Bruynooghe, and M. Denecker

To represent this system as a PCM, we would need to perform the same trick
as before:

Turn2(Big) := Turn1(Big) ∨ Turn1(Small). (8)
Turn2(Small) := Turn1(Big) ∨ Turn1(Small). (9)
Turn1(Big) := Peddle (10)

However, the newly introduced RVs are now truly artificial: one can no longer
explain the difference between Turn1(Big) and Turn2(Big) in real-world terms,
because, unlike in the firing squad, it cannot be the case that these RVs refer
to the condition of the same gear wheel at different points in time. In this case,
Turn2 will tell us which wheels will turn, while Turn1 has no real-world meaning.
The need to invent artificial RVs in order to model the perfectly intuitive causal
relation between these two gear wheels makes this an inadequate representation.

6 More Interventions

As Pearl’s book explains, one of the reasons for wanting formal definitions of
interventions and their effects is that human experts tend to misjudge such
things. Thanks to Pearl, however, such judgments are no longer needed: all you
need to do is (1) come up with a causal model of the domain, and (2) figure
out how to formulate the intervention you want to consider in terms of the
vocabulary of this causal model. All else, i.e., actually figuring out the effect of
the intervention, can then be left up to the formal definitions.

One obvious limitation of this methodology is that it is of course not neces-
sarily possible to formulate the intervention you want to consider in terms of
the vocabulary of the causal model. In such a case, you cannot blindly let the
definitions do the work, but you must still get actively involved and make some
changes to the original model. While this cannot be avoided, we may hope to
make this need for manual intervention as small as possible. That is, we would
like our causal models and formal tools to allow as many reasonable interven-
tions as possible to be applied “unthinkingly”, without the need to tinker with
the original causal model.

Some examples of reasonable interventions and associated counterfactuals:

– If we were to remove the chain from our bicycle, peddling would still cause
the big gear wheel to turn, but the small wheel would no longer turn with
it. Therefore, given that you originally were peddling, the big wheel would
still have been turning, even if you had removed the chain.

– Suppose we could send soldier A to some additional training, which decreases
his nervousness from q to q/2. If we had done this, the probability of the
prisoner dying would have dropped from p + (1− p)q to p + (1− p) q

2 .
– In the example of the n person firing squad, suppose that A fired out of

nervousness, which caused all other rifleman to fire as well. Would this still
have happened if we had somehow managed to make our soldiers a little
more stress resistant, such that they would only have fired themselves if both
their neighbours fired, instead of at least one?

Embracing Events in Causal Modelling: Interventions and Counterfactuals 323

In CP-logic, each of these three examples corresponds to a straightforward in-
tervention with the original theory, namely:(

{Turn(Big)← Turn(Small), Turn(Small)← Turn(Big)}, {}
)

(
{Fires(A) : q ←}, {Fires(A) :

q

2
←}

)
(
{Fires(Si)← Fires(Si−1) ∨ Fires(Ss+1) | 1 < i < n},

{Fires(Si)← Fires(Si−1) ∧ Fires(Ss+1) | 1 < i < n}
)

Pearl, however, considers only interventions that replace the defining equations
for some RVs X by truth assignments X = x. If we start from the PCMs for
these example as we gave them in the previous section, then none of the three
interventions listed above actually corresponds to such an intervention X = x:

– To remove the effect of the small gear wheel on the big one, Pearl would have
to preempt the equation that defines whether the big wheel turns (equation
(8)). However, this also removes the effect of peddling.

– Because Pearl’s interventions fix RVs to a specific value, they cannot contain
a probability distribution.

– For the same reason, they can also not introduce a new relation between
existing RVs.

In all of these cases, the fix is to somehow already include the intervention that
we wish to perform in the model. For instance, for the second case:

Fires(A) := Captain ∨NervousWithoutT raining ∧ ¬Training
∨NervousWithT raining ∧ Training.

In itself, this is not hard, but for the reasons outlined at the beginning of this
section, the CP-logic way of handling such interventions without changing the
original causal model is preferable.

7 Related Work

Shortcomings of PCMs have already been recognized in the literature. For in-
stance, Hopkins and Pearl [6] join us in observing that: “In structural causal
models, everything is represented as a random variable. Thus, one cannot distin-
guish between an enduring condition (e.g. the man is dead) versus a transitional
event (e.g. the man dies).” They then attempt to fix this and other problems,
by means of Situation Calculus. To us, this seems like overkill. SitCalc is an
expressive action language, which contains many features that go beyond what
is traditionally expressed in a causal model (e.g., preconditions for actions, flu-
ents that might spontaneously change value, and frame axioms for prohibiting
fluents from spontaneously changing values). For typical causal reasoning prob-
lems, these features are not needed: for instance, one is always free to consider

324 J. Vennekens, M. Bruynooghe, and M. Denecker

any intervention (= action) whatsoever, and the value of the fluents is fully
bound by the causal laws. In any case, Hopkins’ approach requires that all “in-
tervenable” properties be represented as SitCalc actions, which means that (1)
it cannot handle causal cycles such as the gear wheels any better than regular
PCMs (Section 5), and (2) it is equally limited in the kind of interventions that
can be considered without changing the original model (Section 6).

The semantics of CP-logic is closely related to the well-founded model con-
struction of logic programming (LP). There are a number of other LP languages
that deal with probability and causality, on which we will now briefly comment.
We discuss only issues related to the specific topic of this paper (interventions
and counterfactuals); for a more general comparison, we refer to [10].

P-log [1] is a language that performs probabilistic reasoning with answer sets.
It comes equipped with a do-operator for performing interventions, which, as
shown in [2], can be used to perform counterfactual reasoning in P-log. Essen-
tially, this do-operator is the same as Pearl’s. Therefore, we could repeat here
the comments made earlier. P-log translates its causal models, together with
interventions and observations, to an ASP program, which is then combined
with an ASP knowledge base. Instead of relying on the do-operator, one can also
update such a program by adding additional ASP rules. These “non-monotonic
updates”, as they are called, provide a much more flexible system for interven-
tions, but they do require knowledge of how the high-level probabilistic construct
are translated into the ASP encoding. A second similarity between P-log and
Pearl is P-log’s coherence criterion, which is similar to Pearl’s condition that an
assignment of values to the exogenous variables should uniquely determine the
values of the endogenous ones. Moreover, like Pearl, Baral et al. suggest ensuring
this criterion by means of an acyclicity condition. The arguments we gave earlier
regarding the advantages of CP-logic when it comes to representing cyclic causal
relations also carry over to P-log.

As shown in [10], Poole’s Independent Choice Logic (ICL) [8] is a sublanguage
of CP-logic, to which the whole logic can be mapped in a polynomial and mod-
ular way. [3] examines interventions (as well as related notions such as actual
causes and explanations) in this logic. However, they arrive at their definitions
by means of a transformation into Pearl’s causal models. This is the opposite of
our approach: they take the fine-grained, event-based representation (restricted
to the acyclic case), compile it into the coarser RV-based representation, and
then do the interventions there. As we have argued above, there are significant
advantages to defining interventions directly on CP-laws.

8 Conclusions

This paper has presented an analysis of interventions and counterfactuals, that
reformulates Pearl’s intuitions in the Shaferian framework of CP-logic. Our treat-
ment has some attractive features: we can elegantly handle cyclic causality and
can deal with several kinds of interventions that, for various reasons, can only
by handled by Pearl at the cost of tinkering with the original model.

Embracing Events in Causal Modelling: Interventions and Counterfactuals 325

Besides these practical advantages, our work also makes philosophical contri-
butions. First, it ties together different approaches to causality from the litera-
ture: we investigate Pearl’s interventions and counterfactuals in Shafer’s seman-
tic context, using the LP-based language of CP-logic to syntactically describe
classes of probability trees.

Second, we also add a touch of clarity to the picture painted by Pearl. His
book considers causal models in two different languages: Bayesian networks and
PCMs. While they are formally very similar—every Bayesian network is easily
transformed into a PCM—they embody views on the nature of causality that
are ontologically quite different: Bayesian networks represent causal relations as
inherently probabilistic, while PCMs express the Laplacian view that causal re-
lations are completely deterministic and uncertainty stems solely from a lack of
knowledge about their “inputs”. Pearl’s book adopts Bayesian networks through-
out the chapters that first introduce the idea of interventions. When eventually
the topic of counterfactuals arises, however, a switch is made to the Laplacian
view of PCMs. It is peculiar that, on the one hand, interventions should be eas-
iest to explain under the assumption that causal relations are inherently proba-
bilistic, while on the other hand, their use for counterfactual reasoning requires
the assumption that causal relations are deterministic. Our paper shows that
CP-logic’s event-based view on causality reconciles these two views: whether a
Humean event happens is deterministic (in any given state of the world), but its
outcome can be probabilistic. In this way, CP-logic can match Bayesian networks
as a natural representation for probabilistic causal relations, while also, as this
paper has shown, surpassing PCMs as a counterfactual reasoning tool.

References

1. Baral, C., Gelfond, M., Rushton, N.: Probabilistic reasoning with answer sets.
Theory and Practice of Logic Programming 9(1) (2009)

2. Baral, C., Hunsaker, M.: Using the probabilistic logic programming language P-log
for causal and counterfactual reasoning and non-naive conditioning. In: Proceedings
of IJCAI (2007)

3. Finzi, A., Lukasiewicz, T.: Structure-based causes and explanations in the inde-
pendent choice logic. In: Uncertainty in Artificial Intelligence, UAI (2003)

4. Halpern, J., Pearl, J.: Causes and explanations: A structural model approach –
part I: Causes. In: Uncertainty in Artificial Intelligence, UAI (2001)

5. Halpern, J., Pearl, J.: Causes and explanations: A structural-model approach. part
I: Causes. The British Journal for the Philosophy of Science 56(4) (2005)

6. Hopkins, M., Pearl, J.: Causality and counterfactuals in the situation calculus. J.
Log. Comput. 17(5), 939–953 (2007)

7. Pearl, J.: Causality: Models, Reasoning, and Inference. Cambridge Press, Cam-
bridge (2000)

8. Poole, D.: The Independent Choice Logic for modelling multiple agents under un-
certainty. Artificial Intelligence 94(1-2), 7–56 (1997)

9. Shafer, G.: The art of causal conjecture. MIT Press, Cambridge (1996)
10. Vennekens, J., Denecker, M., Bruynooghe, M.: CP-logic: A language of probabilistic

causal laws and its relation to logic programming. Theory and Practice of Logic
Programming 9(3), 245–308 (2009)

An Approximative Inference Method for Solving
∃∀SO Satisfiability Problems

Hanne Vlaeminck, Johan Wittocx, Joost Vennekens,
Marc Denecker, and Maurice Bruynooghe

Department of Computer Science, K.U. Leuven

Abstract. The fragment ∃∀SO(ID) of second order logic extended with
inductive definitions is expressive, and many interesting problems, such
as conformant planning, can be naturally expressed as finite domain sat-
isfiability problems of this logic. Such satisfiability problems are compu-
tationally hard (ΣP

2). In this paper, we develop an approximate, sound
but incomplete method for solving such problems that transforms a
∃∀SO(ID) to a ∃SO(ID) problem. The finite domain satisfiability prob-
lem for the latter language is in NP and can be handled by several existing
solvers. We show that this provides an effective method for solving practi-
cally useful problems, such as common examples of conformant planning.
We also propose a more complete translation to ∃SO(FP), existential
SO extended with nested inductive and coinductive definitions.

1 Introduction

Several declarative problem solving frameworks for solving search problems are
based on the computational task of finite model generation. Prominent examples
of such frameworks are Answer Set Programming (ASP) [1] and model expan-
sion [10]. In ASP, finite Herbrand models of an answer set program are computed
[1]. Model expansion (MX) generalizes Herbrand model generation and aims at
computing one or more models of a theory T that expand a finite structure I0

for a (possibly empty) subset of symbols of T . MX can be applied for arbitrary
logics with a model theoretic semantics. In [10], it is shown that MX for first
order logic (MX(FO)) is complete for NP problems (“it captures NP”). This
property is preserved for rich extensions of FO, such as FO extended with in-
ductive definitions (FO(ID)) [5] and with aggregates. By contrast, disjunctive
ASP is complete for ΣP

2 [1]. Formally, MX(FO) is equivalent to the finite do-
main satisfiability problem for existential second-order logic (SAT (∃SO)). An
overview of state-of-the-art ASP and MX(FO(·)) solvers is in found in [6] (here,
FO(·) refers to arbitrary extensions of FO).

As a running example, consider the following dynamic domain:a glass may be
clean or not, and can be cleaned by the action of wiping. This is expressed in the
following FO theory Taction:

∀t : (Clean(t + 1)⇔ Clean(t) ∨Wipe(t)).
∧ Clean(0)⇔ InitiallyClean.

(1)

T. Janhunen and I. Niemelä (Eds.): JELIA 2010, LNAI 6341, pp. 326–338, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

An Approximative Inference Method 327

The bounded planning problem to turn a dirty glass in a clean one in n steps
is expressed by the satisfiability problem of the following ∃SO formula in the
range [0 . . . n] of time points:

∃Wipe, Clean, InitiallyClean : (Taction ∧ ¬InitiallyClean∧ Clean(n)). (2)

For n > 0, this formula is indeed satisfied in the suitable interpretation of
0, n, +/1 and each witness W for its satisfiability provides a plan. E.g., wip-
ing at time point 0 will do the job, as is verified by the witness W for which
WipeW = {0} and CleanW = {1, . . . , n}.

In this paper, we are not interested in NP, but in the next level ΣP
2 of the

polynomial hierarchy. A well-known such problem is finite domain satisfiability
for ∃∀SO: satisfaction in finite interpretations is in ΣP

2 for every ∃∀SO sentence
and is ΣP

2 -hard for some such sentences [8]. The same holds for ∃∀SO(ID). An
interesting ΣP

2 problem is that of conformant planning, which we discuss in detail
in Section 6. Extending our example, suppose that we do not know whether the
object is initially clean or dirty, but still want a plan that is guaranteed to make
it clean, no matter what the initial situation was. This can be formulated as:

∃Wipe ∀InitiallyClean, Clean : (Taction ⇒ Clean(n)). (3)

In words, we need an assignment to the action Wipe such that the goal is satisfied
for every initial situation InitiallyClean and fluent Clean that satisfy the action
theory. Note that instead of a conjunction as in (2), in formula (3) we find an
implication. Indeed, the condition Taction∧Clean(n) does not solve the problem
as there are many interpretations for the Clean predicate that do not satisfy the
action theory, e.g., when InitiallyClean is true and Clean(0) is false.

While ΣP
2 problems can be solved in principle, e.g., by solvers for disjunctive

ASP, in practice they are often too hard. In this paper, we present an approx-
imate method that consists of reducing a ∃∀SO(ID) problem to a ∃SO(ID)
problem. This method is sound but not complete, in the sense that a witness
of the approximating ∃SO(ID) formula is a witness of the ∃∀SO formula, but
not necessarily the other way around. Our method exploits the techniques for
constraint propagation in FO(·) proposed in [17,16]. This propagation operates
on a three-valued structure that approximates all models of an FO theory and
makes it more and more precise. It was shown in [16] that the propagation
process can be captured in a formal FO(ID) inductive definition, and we use
it here to build the ∃SO(ID) formula. This approach has the advantage that
the translation can be automated and that any existing satisfiability solver for
∃SO(ID) or any MX(FO(ID)) solver can be plugged in. Finally, we exploit a
result of [11] to develop a more accurate translation of ∃∀SO(ID) formulas with
inductive definitions to ∃SO(FP), ∃SO with nested least and greatest fixpoint
definitions. Our method is inspired by interpolation in Logic Programming [2,12]
and approximate query answering in locally closed databases [4].

328 H. Vlaeminck et al.

2 Preliminaries

We assume familiarity with standard first order logic (FO) and second order
logic (SO). We define the extensions FO(ID) and FO(FP) of FO, and the cor-
responding extensions of SO as follows. Given is a vocabulary Σ. A rule (over
Σ) is an expression of the form ∀x̄ P (t̄) ← ϕ where P (t̄) is an atomic formula
and ϕ an FO formula. The symbol← is a new connective, called the definitional
implication, to be distinguished from the FO material implication symbol⇐ (or
its more standard inverse ⇒). A definition Δ is a finite set of rules. A predicate
symbol P in the head of a rule of Δ is called a defined predicate; all other pred-
icate and function symbols in Δ are called open symbols or the parameters of
the definition; the set of defined predicates is denoted Def(Δ), the remaining
symbols Open(Δ). An FO(ID) formula is defined using the standard induction
defining an FO formula, augmented with one extra case:

– A definition Δ over Σ is an FO(ID) formula (over Σ)).

FO(ID) formulas are quantified boolean combinations of atoms and definitions.
Notice that rule bodies do not contain definitions, that rules only occur inside
definitions and are not FO(ID) formulas themselves. The satisfaction relation
I |= ϕ of FO(ID) is defined using the standard inductive rules of FO, augmented
with one extra rule:

– I |= Δ if I = (I|Open(Δ))Δ.

where (I|Open(Δ))Δ is the well-founded model of Δ extending the restriction of
I to the open symbols of Δ. Here we use the parameterized version of the well-
founded semantics that was introduced in the context of deductive databases [15];
it defines intensional view predicates (i.e., defined predicates) in terms of a
database of extensional predicates (i.e., a structure defining open symbols).

The formal notion of a definition as defined here is a faithful syntactic for-
malisation of informal inductive definitions as used in mathematics [3].

We now define the logic FO(FP). A rule is called positive in a set of predicate
symbols σ if each predicate of σ has only positive occurrences in rule bodies (i.e.,
is in the scope of an even number of ¬). A fixpoint definition is defined inductively
as either a least fixpoint definition 1S, Δ1, . . . , Δn2 or a greatest fixpoint definition
3S, Δ1, . . . , Δn4, where in both cases S is a set of rules, and Δ1, . . . , Δn are
fixpoint definitions. Define the defined predicates Def(Δ) of a fixpoint definition
Δ inductively, as Def(S)∪Def(Δ1)∪· · ·∪Def(Δn). We require that predicates
of Def(Δ) have only positive occurrences in rule bodies anywhere in Δ, and also
that defined predicates of Δi do not occur in Δj , i �= j. An FO(FP) formula is
defined as in FO with one extra case:

– A fixpoint definition D over Σ is an FO(FP) formula (over Σ).

With each fixpoint definition D, a monotonic operator ΓD can be associated.
This operator is essentially an extension of the standard operator of (unnested)
inductive definitions defined by induction on the subdefinition structure of D.
We then define:

An Approximative Inference Method 329

– I |= Δ (where Δ is a least fixpoint definition) if I is the least fixpoint of ΓΔ.
– I |= ∇ (where ∇ is a greatest fixpoint definition) if I is the greatest fixpoint

of Γ∇.

This notion of fixpoint definition is a syntactic variant of the notion of nested
least and greatest fixpoint expressions, the difference being that predicate sym-
bols are defined instead of fixpoint expressions denoting relations, and a rule-
based syntax is used.

The techniques introduced in the following sections implicitly use concepts
of three-valued logic. We assume familiarity with three-valued interpretations
and (Kleene’s) three-valued truth evaluation. Three-valued interpretations I
assign three-valued relationships to predicate symbols and are used here as
approximations of two-valued interpretations I. The precision order I ≤p I ′
holds if I and I ′ share domain and interpretation of function symbols and
P I(d1, . . . , dn) = P I′

(d1, . . . , dn), for each tuple (d1, . . . , dn) and predicate P/n
such that P I(d1, . . . , dn) �= u. Two-valued interpretations are maximally precise
three-valued interpretations.

We will use a well-known technique to encode three-valued interpretations
by two-valued interpretations of an extended language. In particular, let σ be
a subvocabulary of Σ such that Σ \ σ contains only predicate symbols. Each
three-valued Σ-interpretation I that is two-valued in every symbol of σ can be
encoded as a two-valued Itf of the vocabulary Σtf = (σ ∪ {Qct, Qcf |Q ∈ Σ \ σ}
such that I|σ = Itf |σ and such that (Qct)Itf

= {(d1, . . . , dn)|QI(d1, . . . , dn) = t}
and (Qcf)Itf

= {(d1, . . . , dn)|QI(d1, . . . , dn) = f}. For a formula ϕ in negation
normal form, we denote by ϕct

σ the result of replacing atoms P (t̄) by P ct(t̄) and
negative literals ¬P (t̄) by P cf(t̄), for every P ∈ Σ \ σ. This encoding has the
property that ϕI = t iff (ϕct

σ)Itf

= t.

3 Propagation for FO

Suppose we have a finite three-valued structure I that represents some (incom-
plete) knowledge about the symbols appearing in an FO theory T . We would
now like to know the implications of this knowledge. To find this out, we look
at the set M of all models of T that complete this three-valued structure, i.e.,
M = {M | M |= T and I ≤p M}. Given the partial information I, everything
that is true in all M ∈ M must certainly be true according to T , while every-
thing that is false in all such M must certainly be false according to T . In other
words, we can derive from I the more precise three-valued structure G that is the
greatest lower bound glb≤pM. For instance, let Taction be as in (1) and I the
three-valued interpretation that knows that InitiallyClean is f and Clean(1)
is t. In every model of Taction that extends this I, it is the case that Wipe(0)
holds, and we can figure this out by computing G.

In general, this computation may be too expensive (ΔP
2) to be of practical

use. However, we may still achieve useful results by computing some approxi-
mation M̃ such that I ≤p M̃ ≤p G. For instance, consider again example (1).

330 H. Vlaeminck et al.

If we know that ¬InitiallyClean, we can derive from the second conjunct that
also ¬Clean(0), which, according to the first conjunct, implies in turn that the
only way to achieve Clean(1) is by Wipe(0). Using this idea, [17] developed a
polynomial propagation method to compute such a M̃. This method was imple-
mented as a C++ program, and is now used in, among others, the grounder of
the FO(ID) finite model generator IDP [9].

A recent result in [16] that will prove key to our enterprise here, is that the
propagation process can be captured symbolically by an FO(ID) definition that
defines M̃. This compilation of an FO theory T into an inductive definition
consists of three steps. First, T is rewritten to a theory T ′ containing only
sentences of the form ∀x̄ (P (x̄) ⇔ ϕ). Second, these equivalences are split into
several sentences of the form ∀x̄ (ψ ⇒ L[x̄]), where L is a literal. Finally, these
implications are rewritten to rules of an inductive definition.

Definition 1. An FO sentence ϕ is in equivalence normal form (ENF) if it is
of the form ∀x̄ (P (x̄) ⇔ ψ[x̄]), and ψ is of the form L, (L1 ∧ L2), (L1 ∨ L2),
(∀v L) or (∃v L), where L, L1 and L2 are literals.

For the first step, we assume without loss of generality that T is in negation
normal form and contains only one formula. The theory T ′ in ENF is easily
obtained from T through a process akin to the Tseitin transformation for propo-
sitional logic [14]. Consider the parse-tree of T . For each node ψ[x̄] in this tree
that is not a literal, we introduce a new symbol Aψ/n and add the equivalence
∀x̄(Aψ(x̄)⇔ ψ′) where ψ′ is obtained from ψ by substituting the Tseitin predi-
cates Aφ(ȳ) for non-literal immediate subformulas φ[ȳ] of ψ[ȳ].

Proposition 1. The ENF theory T ′ is linear in the size of T . Also, M is a
model of T iff there exists an expansion M ′ of M to the vocabulary of T ′ such
that M ′ |= T ′ and M ′ |= AT where AT is the Tseitin predicate for T .

In the second step, we rewrite each ENF formula ϕ ∈ T ′ to an equivalent set
T⇒ of implications INF(ϕ) of the form ∀x̄ (ψ ⇒ L[x̄]), where L is a literal. The
idea is that these implications exhaustively enumerate all the inferences that
one could make on the basis of the ENF formula. For instance, if ϕ = φ ∧ ψ,
then Aϕ implies both ϕ and ψ, ϕ ∧ ψ implies Aϕ, ¬ϕ and ¬ψ both imply ¬Aϕ,
¬Aϕ ∧ ϕ implies ¬ψ, and similarly ¬Aϕ ∧ ψ implies ¬ϕ. Table 1 specifies the
corresponding implications for all types of ENF formulas.

The theory T⇒ allows us to characterize the algorithm of [17] in a convenient
way: whenever it has inferred the antecedent of such an implication, it infers
the consequent. This is reminiscent of Stickel’s encoding of clauses in his Prolog
Technology Theorem Prover [13]. In the third step, we encode this propagation
process explicitly in an inductive definition. Given a theory T over Σ and let
σ ⊆ Σ be a set of symbols on which we have full knowledge in the form of a
σ-interpretation I. Assume also that Q̄ = Σ \ σ consists of predicate symbols
only. We can now use the propagation rules in T⇒ to expand I with three-valued
interpretations for the predicates P ∈ Q̄. Recall that three-valued interpretations
can be encoded using predicates P ct and P cf . The propagation process in these

An Approximative Inference Method 331

Table 1. The implications INF(ϕ) for an ENF formula ϕ

ϕ INF(ϕ)

∀x̄ (P (x̄) ⇔ L[x̄])

∀x̄ (P (x̄) ⇒ L[x̄])
∀x̄ (¬L[x̄] ⇒ ¬P (x̄))
∀x̄ (L[x̄] ⇒ P (x̄))
∀x̄ (¬P (x̄) ⇒ ¬L[x̄])

∀x̄ (P (x̄) ⇔ ∀y L[x̄, y])

∀x̄∀y (P (x̄) ⇒ L[x̄, y])
∀x̄ ((∃y ¬L[x̄, y]) ⇒ ¬P (x̄))
∀x̄ ((∀y L[x̄, y]) ⇒ P (x̄))
∀x̄∀y (¬P (x̄) ∧ (∀y′ (y �= y′ ⇒ L[x̄, y′])) ⇒ ¬L[x̄, y])

∀x̄ (P (x̄) ⇔ ∃y L[x̄, y])

∀x̄∀y (P (x̄) ∧ (∀y′ (y �= y′ ⇒ ¬L[x̄, y′])) ⇒ L[x̄, y])
∀x̄ ((∀y ¬L[x̄, y]) ⇒ ¬P (x̄))
∀x̄ ((∃y L[x̄, y]) ⇒ P (x̄))
∀x̄∀y (¬P (x̄) ⇒ ¬L[x̄, y])

∀x̄∀ȳ∀z̄ (P (x̄, ȳ, z̄)

⇔ L1[x̄, ȳ] ∧ L2[x̄, z̄])

∀x̄∀ȳ((∃z̄ P (x̄, ȳ, z̄)) ⇒ L1[x̄, ȳ])
∀x̄∀ȳ∀z̄ (¬L1[x̄, ȳ] ⇒ ¬P (x̄, ȳ, z̄))
∀x̄∀z̄((∃ȳ P (x̄, ȳ, z̄)) ⇒ L2[x̄, z̄])
∀x̄∀ȳ∀z̄ (¬L2[x̄, z̄] ⇒ ¬P (x̄, ȳ, z̄))
∀x̄∀ȳ∀z̄ (L1[x̄, ȳ] ∧ L2[x̄, z̄] ⇒ P (x̄, ȳ, z̄))
∀x̄∀ȳ((∃z̄ (¬P (x̄, ȳ, z̄) ∧ L2[x̄, z̄])) ⇒ ¬L1[x̄, ȳ])
∀x̄∀z̄((∃ȳ (¬P (x̄, ȳ, z̄) ∧ L1[x̄, ȳ])) ⇒ ¬L2[x̄, z̄])

∀x̄∀ȳ∀z̄ (P (x̄, ȳ, z̄)

⇔ L1[x̄, ȳ] ∨ L2[x̄, z̄])

∀x̄∀ȳ∀z̄ (¬L1[x̄, ȳ] ∧ ¬L2[x̄, z̄] ⇒ ¬P (x̄, ȳ, z̄))
∀x̄∀ȳ((∃z̄ (P (x̄, ȳ, z̄) ∧ ¬L2[x̄, z̄])) ⇒ L1[x̄, ȳ])
∀x̄∀z̄((∃ȳ (P (x̄, ȳ, z̄) ∧ ¬L1[x̄, ȳ])) ⇒ L2[x̄, z̄])
∀x̄∀ȳ∀z̄ (L1[x̄, ȳ] ⇒ P (x̄, ȳ, z̄))
∀x̄∀ȳ((∃z̄ ¬P (x̄, ȳ, z̄)) ⇒ ¬L1[x̄, ȳ])
∀x̄∀ȳ∀z̄ (L2[x̄, z̄] ⇒ P (x̄, ȳ, z̄))
∀x̄∀z̄((∃ȳ ¬P (x̄, ȳ, z̄)) ⇒ ¬L2[x̄, z̄])

predicates is described by an inductive definition of predicates P ct and P cf , for
every P appearing in T⇒ but not in σ, i.e., for every symbol of Q̄ and also for
every Tseitin predicate Aϕ.

Definition 2. For a theory T , set of predicates Q̄ such that σ = Σ\Q̄, we define
Approxσ(T) as the inductive definition that contains, for every sentence ∀x̄ (ψ ⇒
L[x̄]) of T⇒ in which L is a literal of a predicate not in σ, the definitional rule
∀x̄(L[x̄]ctσ ← ψct

σ).

Example 1. For the cleaning example, consider the formula T := Taction ⇒
Clean(n). Take σ to be {Wipe, +/1, 0, n}. Then Approxσ(T) defines
InitiallyCleanct, InitiallyCleancf , Cleanct and Cleancf as well as Act

ϕ and Acf

for any introduced Tseitin predicate Aϕ, in particular for the Tseitin predicate
AT that is equivalent to the formula Taction ⇒ Clean(0) and ATaction that is
equivalent to the conjunction of formulas in the cleaning theory (1). Approxσ(T)
then contains amongst others the following definitional rules:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Act
T ← Acf

Taction
∨ Cleanct(n).

Acf
T ← Act

Taction
∧ Cleancf(n).

Act
Taction

← Act
ϕ1
∧Act

ϕ2

Cleanct(t) ← . . .
. . .

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ ,

where ϕ1 and ϕ2 are the two formulas of (1). Wipe is the only open predicate
of this definition. In a given σ-interpretation, the definition will compute what

332 H. Vlaeminck et al.

is certainly true and what is certainly false. E.g., when Wipe(t) is false for all t,
it will compute that both Cleanct(t) and Cleancf(t) are false for all t.

Proposition 2. Given T , Q̄, σ = Σ \ Q̄, a σ-interpretation I, P ∈ Q̄ and a
tuple of domain elements d̄, the algorithm in [17] will derive the literal P (d̄) (re-
spectively ¬P (d̄)) exactly when P ct(d̄) (respectively P cf (d̄)) holds in the unique
model M of the definition Approxσ(T) ∪ {T ct ←} expanding I.

From the correctness of this algorithm, it therefore follows that if P ct(d̄) (or
P cf(d̄)) holds in this model M , then P (d̄) holds (does not hold) in all models of
T that extend I.

4 Approximating ∃∀SO-Satisfiability Problems

Consider the problem whether an ∃∀SO formula ∃P̄∀Q̄ : T is satisfied in some
finite interpretation I of the non-variable symbols of the formula. We call a wit-
ness for its satisfiability an expansion of I to all existentially quantified variables
P̄ that satisfies ∀Q̄ : T . We assume that Q̄ consists only of predicate variables
(while P̄ might include also function variables). We now use the transformation
of the previous section to this formula into a stronger ∃SO(ID) formula, i.e.,
one with less witnesses for P̄ . Take σ to be the set of all symbols in T except
those in Q̄.

Definition 3. For a formula F = ∃P̄∀Q̄ : T , we define APP(F) as the ∃SO
formula ∃P̄∃R̄ : Approxσ(T) ∧ Act

T , where R̄ = {Xct, Xcf |X �∈ σ} (i.e., X a
Tseitin symbol Aφ or a Q ∈ Q̄) and AT is the Tseitin symbol for T .

The intuition here is that for any σ-interpretation I, Approxσ(T) will tell us
what the consequences of this choice are, regardless of the value of the universal
predicates Q̄. If one of these consequences is that the entire FO formula T is
true, then we therefore know that I is a witness for the satisfiability of the entire
formula F .

Proposition 3. For each ∃∀SO formula F of the form ∃P̄∀Q̄ : T , APP(F) is
a sound approximation of F , i.e. if APP(F) is satisfied in interpretation I, then
F is satisfied too. Moreover, if I is a witness for the satisfiability of APP(F),
then I|σ is a witness for the satisfiability of F .

For example, this is the translation of the formula F = ∃P∀Q : P ∨Q :

∃P, Qct, Qcf :

⎧⎪⎪⎨⎪⎪⎩
T ct ← P ∨Qct

T cf ← ¬P ∧Qcf

Qct ← T ct ∧ ¬P
Qcf ← T cf

⎫⎪⎪⎬⎪⎪⎭ ∧ T ct.

If we choose P to be true, then the definition forces T ct to be true and T cf to be
false. Hence, neither Qct nor Qcf become true. In other words, choosing P true

An Approximative Inference Method 333

implies nothing about Q, but it makes the disjunction T = P ∨Q true for each
possible value for Q. This choice for P is therefore a witness for the satisfiability
of APP(F), and it is indeed also a witness for the satisfiability of the original
formula ∃P∀Q : P ∨Q.

This approximation method is sound, but for many applications still too in-
complete. In particular, it will rarely manage to detect satisfiability of formulas
of the form ∃P̄∀Q̄ : (T1 ⇒ T2). This is because it can only derive that an impli-
cation T1 ⇒ T2 holds for all Q̄ by either deriving that T1 is certainly false (i.e.,
false for all Q̄) or that T2 is certainly true (i.e., true for all Q̄). For conformant
planning problems (which are of this form, as we will see further), this will never
be the case. We will illustrate this with our running example. If we have a look
at the definition in example 1, we see that the only way to make Act

T true is if
Acf

Taction
∨ Cleanct(n) is true. However, for a certain choice of Wipe, there are

always interpretations for the fluents (e.g. Clean) for which the action theory
is satisfied, but also for which it is not satisfied (namely, one of many in which
the fluents are simply incorrect for the actions). On the other hand it is also
clear that not in all interpretations of the fluents Clean(n) holds. Thus, we will
never be able to derive that Act

T is true. However, we can make our method more
complete for problems of the form ∃P̄∀Q̄ : (T1 ⇒ T2) by postulating the truth
of T1 while checking T2, as follows.

Definition 4. For an an ∃∀SO formula F of the form ∃P̄∀Q̄ : T1 ⇒ T2, we
define APP⇒(F) as ∃P̄∃R̄ : Δ∧T ct

2), where Δ = Approxσ(T1 ⇒ T2)∪{T ct
1 ←}.

Note that we add T ct
1 as a definitional rule, and T cf

2 as a constraint. If we take T1

to be the trivial formula t, we get back Def. 3 as a special case of this definition.
This approximation method is still sound, as the following proposition states.

Proposition 4. Given a formula F of the form ∃P̄∀Q̄ : T1 ⇒ T2, the ∃SO(ID)
formula APP⇒(F) is a sound approximation of F , i.e. if APP⇒(F) is satisfi-
able, then F is satisfiable too. Moreover, if I is a witness of the satisfiability of
APP⇒(F), then I|σ is a witness for the satisfiability of F .

5 Approximating Definitions

In this section, we extend our approximation method to formulas including def-
initions. We will not consider the general case where definitions may appear at
arbitrary locations in a formula, but instead restrict attention to formulas of the
form ∃P̄∀Q̄ : Δ1 ∧ · · · ∧ Δn ∧ φ ⇒ T2, where the Δi are definitions such that
Def(Δi) ⊆ Q̄ and φ and T2 are FO formulas. This covers the way in which def-
initions are typically used: under the assumption that all predicates indeed are
what the definitions Δi (and the formula φ) say they should be, T2 then states
what properties they should satisfy. For instance, in conformant planning, the
action theory could include a definition of the fluents in terms of the actions that
are performed. By restriction attention to formulas of this form, we avoid the

334 H. Vlaeminck et al.

need for approximation rules that infer that a definition as a whole is certainly
true/false.

A first approach is based on the fact that a model of a definition Δ is also a
model of the FO completion compl(Δ). Let us assume w.l.o.g. that each defined
predicate P of Δi is defined by a single definitional rule ∀x̄ P (x̄) ← φ. Then
compl(Δ) consists of all formulas ∀x̄ P (x̄) ⇔ φ, for each P ∈ Def(Δ). Since
definitions occur only negatively in the ∃∀SO(ID) formula (i.e. in the body of
the implication), it is sound to replace each Δi by the weaker theory compl(Δi).
That is, each witness to ∃P̄∀Q̄ : compl(Δ1) ∧ · · · ∧ compl(Δn) ∧ φ ⇒ T2 is a
witness to ∃P̄∀Q̄ : Δ1 ∧ · · · ∧Δn ∧ φ ⇒ T2. The first formula is ∃∀SO and we
can apply the technique of the previous section.

This method is sound and works fine for non-recursive definitions (where com-
pletion is equivalent with FO(ID) semantics) but in case of recursive(=inductive)
definitions, it might result in unacceptable loss of precision. For illustration, con-
sider the inductive definition {P ← P}. It entails ¬P but this conclusion cannot
be derived from its completion. Indeed, the rules in Approx(P ⇔ P) will ob-
viously fail to derive P cf . As a consequence, the satisfiability of the formula
∀P : {P ← P} ⇒ ¬P could not be detected using the above method (since
∀P : (P ⇔ P)⇒ ¬P is not satisfiable).

As a more complete method, we propose the following. As explained in the
preliminaries, for each three-valued interpretation I of Open(Δ), the definition
Δ has a (three-valued) well-founded model W extending I. This W has the
interesting property that W ≤p M , for every model M of Δ such that I ≤p

M |Open(Δ). Our aim is now to use this well-founded model W to make the
additional propagations.

In [11], it was shown how the computation of the well-founded model extend-
ing a two-valued Open(Δ)-interpretation I can be encoded by a nested fixpoint
expression in FO(FP). The following definition extends this to the case of three-
valued Open(Δ)-interpretations I that we need in this context. Let σ ⊆ Open(Δ)
such that σ contains all function symbols in Δ. Assume that I is three-valued
only on symbols of Open(Δ) \ σ.

Definition 5. For a definition Δ, we define FPσ(Δ) as
⌊
Rct,

⌈
Rcf

⌉ ⌋
where

Rct consists of, the rules
∀x̄(P ct(x̄)← ϕct

σ)

and Rcf consists of the rules

∀x̄(P cf (x̄)← (¬ϕ)ct
σ)

for every definitional rule ∀x̄ P (x̄)← ϕ ∈ Δ.

This FO(FP) expression FPσ(Δ) now does precisely what we want.

Proposition 5. Given Δ, σ and I as specified above, let I ′ be the encoding of
I in terms of the symbols P ct, P cf . Then the unique model of FPσ(Δ) extending
I ′ encodes the well-founded model of Δ extending I.

An Approximative Inference Method 335

In the case of the definition {P ← P}, FP (Δ) is the following definition: 1P ct ←
P ct, 3P cf ← P cf42. This definition has a unique model where P ct = f and
P cf = t. This correctly encodes the well-founded model of the original definition,
and we see that FP (Δ) indeed lets us infer that P has to be false.

On the one hand we can now approximate definitions by its completion. Even
though we already argued that the approximation of the completion on it’s
own is not strong enough in the case of recursive definitions, it still does useful
propagation. E.g. it allows to propagate information from the defined predicates
back to the open predicates. On the other hand we have defined an encoding
of the well-founded model of a definition that allows us to minimize predicates.
Both of these ways to approximate definitions thus have their own use and
we would like to put them together. As defined in the previous section, each
approximating definition Approxσ(F) is a positive definiton. This means that
we can equally see them as a least fixpoint definition of FO(FP). The following
definition then shows how we can put the approximation of the completion of a
definition Δ and the encoding of it’s well-founded model together.

Definition 6. The FO(FP) approximation ApproxFP
σ (Δ) of an FO(ID) def-

inition Δ is the nested least fixpoint definition
⌊
Approxσ(Compl(Δ)) ∪

R′, FPσ(Δ′)
⌋
, where

– Approxσ(Compl(Δ)) is the rule set as defined in the previous section,
– Δ′ is obtained from Δ by replacing all defined predicates P of Def(Δ) by

new symbols P ′.
– R′ are the rules P ct ← P ′ct and P cf ← P ′cf for every defined predicate P

of Δ.

Note that FPσ(Δ′) is nested in ApproxFP
σ (Δ) and is itself a nested definition.

Finally, we now put everything together into an approximation for ∃∀SO(ID).

Definition 7. Let F be an ∃∀SO(ID) formula of the form ∃P̄∀Q̄ : Δ1 ∧ · · · ∧
Δn ∧ φ⇒ T2, where the Δi are definitions and φ and T2 are FO formulas. We
then define APP⇒(F) as the ∃SO(FP) formula

∃P̄ Q̄ : 1Approxσ(φ) ∪Approxσ(T2) ∪ {Act
φ ←} ∪

n⋃
i=1

ApproxFP
σ (Δi)2 ∧ T ct

2 .

Proposition 6. Given an interpretation I interpreting the non-variable symbols
of F . The above defined approximation is sound, i.e. if APP⇒(F) is satisfied
in I, then F is satisfied in I and moreover, the restriction to σ of a witness of
APP⇒(F) is a witness of F .

6 Applications and Related Work

In the literature, many examples can be found of algorithms that perform some
kind of approximate reasoning about the models of a logical theory. Typically,
these algorithms, which are specific to the problem at hand, seem to boil down to
an instantiation of the general methods presented here. We give some examples.

336 H. Vlaeminck et al.

Conformant Planning. In general, a conformant planning problem is a plan-
ning problem in a non-deterministic domain, where, e.g., the initial state is not
fully known. The goal is to come up with a plan that is nevertheless guaranteed
to work. This is a hard problem (determining whether there exists a conformant
plan of length ≤ k is ΣP

2 complete, even if k is assumed to be polynomial in the
size of the problem). Therefore, one typically attempts to solve it approximately.
[12] starts from a description of the planning problem in the action language AL
and then derives from this an Answer Set Prolog program that searches for
solutions in an approximated version of the corresponding transition diagram.

Our method can solve such problems in the following way. Let Taction be
a theory that defines the fluent predicates F̄ in terms of action predicates Ā
and initial state predicates ĪF in the context of a linear time line (possibly a
finite interval). This could be an FO theory or an inductive definition as in
[5]. Let Tprec be a theory describing preconditions ∀x̄∀t : A(x̄, t) ⇒ ΨA[x̄, t] of
each action predicates A. Finally, let the formula G specify the goal that must be
achieved. The problem of conformant planning is then to decide the satisfiability
of the following formula:

∃Ā∀ĪF ∀F̄ : Taction ⇒ Tprec ∧G

In words, there must be a plan (∃Ā), such that no matter how the nondetermin-
istic aspects turn out (∀Ī , F̄), as long as the specification of the effects of the
actions is obeyed (Taction), the plan will be executable (Tprec) and achieve the
goal (G). Applying the method of this paper to this formula yields a incomplete
algorithm: it may not find all solutions, but if it finds one then that solution
is correct. Even though more experiments are needed, preliminary results indi-
cate that this algoritm is comparable to that of [12], both in completeness and
runtime.

Querying and reasoning in open databases. Approximate methods similar
to ours have been used in the context of open databases, databases with CWA
[2,7]. In [4], query answering is considered in the context of databases that are as
a whole incomplete, but that nevertheless contain partial, local forms of closed
world assumption. The goal is to compute certain answers to queries. Because
this task has a high complexity (ΔP

2), approximate methods are presented which
translate an FO query into an approximate FO or FO(FP) query that can be
solved directly against the database tables using standard (polynomial) query
methods. It is shown that these methods often provide optimal solutions.

The method presented in this paper can provide a similar functionality. Let
DB be a set of ground literals, representing an incomplete database. Let Ψ
be a background theory: it may contain integrity constraints, view definitions
(datalog view programs are FO(ID) definitions), local closed world statements in
FO, etc. For a given FO query Q[x̄], the goal is to compute all terms t̄ such that
Q[t̄] holds in all Herbrand models of DB ∪ Ψ . The problem of deciding whether
a tuple t̄ is an answer is the satisfiability problem of ∀R̄(DB ∧ Ψ ⇒ Q[t̄]), and
to this problem our approximate method applies.

An Approximative Inference Method 337

While this allows us to decide whether a tuple t̄ is a certain answer to the
query, it does not yet provide a reasonable method to compute (an approxima-
tion of) all such tuples. This can be done as follows. Consider the definition
Approx(DB ∧Ψ)∪Approx(Q[x̄]), consisting of rules describing propagations al-
lowed by the database and rules defining the predicate symbol Act

Q (AQ being the
Tseitin predicate representing the query Q[x̄]). In the unique Herbrand model
of this definition, the interpretation of this Act

Q contains those tuples for which
our propagation can derive that they certainly satisfy the query—a sound ap-
proximation of the full set of answers. Standard deductive database techniques
or techniques from fixpoint logics can be used to compute this relation in poly-
nomial time.

7 Conclusions and Future Work

Even if a problem is computationally hard in general, specific instances of it
might still be solved efficiently. This is why approximate methods are important:
they cannot solve every instance, but the instances they can solve, they solve
quickly. In computational logic, hard problem arise quite readily. It is therefore
not surprising that the literature contains numerous examples of algorithms that
perform approximate reasoning tasks for various logical formalisms in various
specific contexts. Since many of these algorithms share common ideas, it is a
natural question whether they can be seen as instances of some more general
method for a more general language.

This paper tries to present such a method. We start from the propagation
method for FO(·) developed in [17] and its symbolic expression in [16] and gen-
eralize this to a method for approximating the ΣP

2 -complete ∃∀SO(ID) satisfia-
bility problem by solving an NP problem. Importantly, this is a syntactic method
that transforms the ∃∀SO(ID) formula into either a ∃SO(ID) or a ∃SO(FP)
formula. This affords us the freedom to use any off-the-shelf solver for these
languages to perform the approximative reasoning. Moreover, it also makes it
significantly easier to update the method by adding (or removing) specific prop-
agations.

In detail, the contributions of this paper are that (1) we have extended the
logical representation describing the propagation process to a general method for
approximating SAT (∃∀SO) problems; (2) we have also added approximations
for inductive definitions, using a translation to FO(FP). A final, if somewhat
preliminary, contribution is that we have examined how existing approximation
methods fit into our general framework. In future work, we hope to extend this
analysis, by investigating more thoroughly the relation to these methods, both in
terms of efficiency and completeness. Moreover, we are confident that a further
literature study will reveal more instances of approximation algorithms that are
covered by our results.

338 H. Vlaeminck et al.

References

1. Baral, C.: Knowledge representation, reasoning and declarative problem solving.
Cambridge university press, Cambridge (2003)

2. Baral, C., Gelfond, M., Kosheleva, O.: Expanding queries to incomplete databases
by interpolating general logic programs. J. Log. Program. 35(3), 195–230 (1998)

3. Denecker, M.: The well-founded semantics is the principle of inductive definition.
In: Dix, J., Fariñas del Cerro, L., Furbach, U. (eds.) JELIA 1998. LNCS (LNAI),
vol. 1489, pp. 1–16. Springer, Heidelberg (1998)

4. Denecker, M., Cortés-Calabuig, A., Bruynooghe, M., Arieli, O.: Towards a logi-
cal reconstruction of a theory for locally closed databases. ACM Transactions on
Database Systems (2010) (accepted)

5. Denecker, M., Ternovska, E.: A logic of nonmonotone inductive definitions. ACM
Trans. Comput. Log. 9(2) (2008)

6. Denecker, M., Vennekens, J., Bond, S., Gebser, M., Truszczynski, M.: The second
answer set programming competition. In: Erdem, E., Lin, F., Schaub, T. (eds.)
LPNMR 2009. LNCS, vol. 5753, pp. 637–654. Springer, Heidelberg (2009)

7. Doherty, P., Magnusson, M., Szalas, A.: Approximate databases: a support tool for
approximate reasoning. Journal of Applied Non-Classical Logics 16(1-2), 87–118
(2006)

8. Immerman, N.: Descriptive Complexity. Springer, Heidelberg (1998)
9. Mariën, M., Wittocx, J., Denecker, M.: The IDP framework for declarative problem

solving. In: Search and Logic: Answer Set Programming and SAT, pp. 19–34 (2006)
10. Mitchell, D.G., Ternovska, E.: A framework for representing and solving np search

problems. In: AAAI, pp. 430–435 (2005)
11. Ping, H., De Cat, B., Denecker, M.: Fo(fd): Extending classical logic with rule-

based fixpoint definitions. In: International Conference on Logic Programming,
ICLP 2010 (2010)

12. Son, T.C., Tu, P.H., Gelfond, M., Ricardo Morales, A.: An approximation of action
theories of and its application to conformant planning. In: Baral, C., Greco, G.,
Leone, N., Terracina, G. (eds.) LPNMR 2005. LNCS (LNAI), vol. 3662, pp. 172–
184. Springer, Heidelberg (2005)

13. Stickel, M.E.: A prolog technology theorem prover: Implementation by an extended
prolog compiler. J. Autom. Reasoning 4(4), 353–380 (1988)

14. Tseitin, G.S.: On the complexity of derivation in propositional calculus. In:
Slisenko, A.O. (ed.) Studies in Constructive Mathematics and Mathematical Logic
II. Seminars in Mathematics: Steklov Mathematical Institute, vol. 8, pp. 115–125.
Consultants Bureau, New York (1968)

15. Van Gelder, A.: The alternating fixpoint of logic programs with negation. Journal
of Computer and System Sciences 47(1), 185–221 (1993)

16. Wittocx, J.: Finite Domain and Symbolic Inference Methods for Extensions of
First-Order Logic. PhD thesis, K.U.Leuven (May 2010)

17. Wittocx, J., Mariën, M., Denecker, M.: Approximate reasoning in first-order logic
theories. In: KR, pp. 103–112 (2008)

Horn Contraction via Epistemic Entrenchment

Zhi Qiang Zhuang and Maurice Pagnucco

National ICT Australia and
ARC Centre of Excellence in Autonomous Systems

School of Computer Science and Engineering
The University of New South Wales

Sydney, NSW 2052, Australia
{zqzhuang,morri}@cse.unsw.edu.au

Abstract. Belief change studies the way in which a reasoner should main-
tain its beliefs in the face of newly acquired information. The AGMaccount
of belief change assumes an underlying logic containing classical proposi-
tional logic. Recently, there has been interest in studying belief change,
specifically contraction, under the Horn fragment of propositional logic
(i.e., Horn logic). In this paper we continue this line of research, and pro-
pose a Horn contraction that is based on theEpistemicEntrenchment (EE)
construction of AGM contraction. The standard EE construction refers to
arbitrary disjunctions which are not available in Horn logic. Therefore, we
make use of a Horn approximation technique called Horn strengthening.
An ideal Horn contraction should be as plausible as an AGM contraction.
In other words it should performs identically with AGM contractions when
restricted to Horn logic. We demonstrate that no EE based Horn contrac-
tion satisfies this criterion unless we apply certain restrictions to the AGM
contraction. A representation theorem is proved which identifies the char-
acterising postulates for our Horn contraction.

1 Introduction

Belief change, simply put, studies the way a reasoner should alter its corpus
of beliefs as it acquires new information. The benchmark approach in this area
is the AGM [1] framework, named after its authors, which introduces three
types of belief change: belief expansion where the reasoner simply adds the new
information to its belief corpus; belief revision where the reasoner adds the new
information to its belief corpus but in so doing may remove previously held beliefs
in order to maintain consistency; and belief contraction where the reasoner gives
up some of its beliefs to which it no longer gives credence or to contemplate
other possibilities.

The AGM approach to belief change assumes an underlying logic that includes
classical propositional logic. This paper investigates belief contraction where the
underlying logic is founded on the Horn fragment of propositional logic, that is
Horn logic. A Horn clause is a disjunction of literals consisting of at most one
positive literal, e.g., ¬p ∨ ¬q ∨ r. Horn logic is merely propositional logic but
restricted to Horn clauses and conjunctions of Horn clauses.

T. Janhunen and I. Niemelä (Eds.): JELIA 2010, LNAI 6341, pp. 339–351, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

340 Z.Q. Zhuang and M. Pagnucco

Horn contraction has been studied in [2,3,4]. [2] points out that the topic is
of interest because it gives insight into the belief change process by considering
a weaker underlying logic and because Horn logic has been applied numerous
times in both AI and in databases. Additionally [3] indicates that ideas from
Horn contraction are applicable in repairing ontologies in description logics [5],
as Horn clauses correspond closely to subsumption statements in description
logics and removal of problematic subsumptions can be achieved by a contraction
operation.

Unlike previous approaches which are analogues of the AGM partial meet
contraction (PMC) [1], we develop a Horn contraction that is analogous to the
AGM epistemic entrenchment based contraction (EEC) [6].

K K
.−ϕ

Horn(K) Horn(K .−ϕ)

.−

.−H

Fig. 1.

Ideally, Horn contractions should be as plausible as AGM contractions. Since
we are working with Horn logic, it is reasonable to conclude that a Horn con-
traction is as plausible as an AGM contraction if the two contractions perform
identically in terms of Horn formulas. This idea is illustrated in Figure 1, where
.−H is the Horn contraction and .− is the standard AGM contraction. Given a
belief set K, Horn(K) is the set of all Horn formulas in K and furthermore
if K is associated with an EE-relation ≤ then the corresponding EE-relation
associated with Horn(K) is the Horn subset of ≤. To be more precise, the Horn
contraction .−H which applies to the Horn formulas in a belief set K and a Horn
formula ϕ has the same behaviour as applying (an equivalent)1 AGM contrac-
tion to K by ϕ if the same Horn formulas are returned in both cases. Thus the
following equality is desirable:

Horn(K) .−Hϕ = Horn(K .−ϕ)

However, our investigation shows that in general the equality does not hold for
EE based Horn contractions. It will be clear that the problem lies not in how
the Horn contraction is defined, but in the limited expressiveness of Horn logic.
1 While we are using the term “equivalent” loosely here, this will become clearer later.

Our approach is based on the standard EE construction which imposes an ordering
over the formulas of the underlying language. .− and .−H are considered equivalent
if .− is based on an EE-relation ≤ which orders Horn formulas in exactly the same
way as ≤H on which .−H is based. ≤ otherwise orders the non-Horn formulas only
according to the restrictions of the entrenchment relation.

Horn Contraction via Epistemic Entrenchment 341

We demonstrate that certain restrictions can be applied to the (equivalent) AGM
contraction to make it Horn equivalent to our Horn contraction.

In a more general setting, the problem of adapting the AGM framework to
a wider class of logics is initiated by the work of [7]. They study belief change
in a general logic and give a condition (i.e., Decomposability, see [7] for details)
for the existence of a contraction operator satisfying the Recovery postulate of
AGM. [8] has adopted the method in [7] and applied it to Horn logic, where
they conclude that the condition does not hold in Horn logic so that any Horn
contraction defined does not satisfy Recovery. [9] proposes the postulate of Core-
retaintment and shows that it is equivalent to the Recovery postulate. Since
Horn contraction is not compatible with Recovery we instead investigate the
Core-retaintment property.

2 Technical Preliminaries

We assume a propositional language L, over a set of atoms P = {p, q, . . .},
with standard model-theoretic semantics. Lower case Greek characters ϕ, ψ, . . . ,
denote formulas and upper case Roman characters X, Y, . . . , denote sets of for-
mulas. A Horn clause is a clause with at most one positive atom. A Horn formula
is a conjunction of Horn clauses. A Horn theory is a set of Horn formulas. The
Horn language LH is the restriction of L to Horn formulas. The Horn logic ob-
tained from LH has the same semantics as the propositional logic obtained from
L, but restricted to Horn formulas and Horn derivability.

Classical logical consequence and logical equivalence are denoted by � and
≡ respectively. Cn is the Tarskian consequence operator such that Cn(X) =
{ϕ |X � ϕ}. Logical consequence under Horn logic is denoted by �H and thus the
consequence operator CnH under Horn logic is such that CnH(X) = {ϕ |X �H

ϕ}.
Selman and Kautz [10] proposed a notion of Horn approximation called Horn

strengthening, where they consider a clause as a set of atoms and compare them
by set inclusion.

Definition 1. Given a clause ϕ, its set of Horn strengthenings, denoted by ϕH
is such that ϕH ∈ ϕH iff ϕH is a Horn clause and there is no Horn clause
ϕ

′
such that ϕH ⊂ ϕ

′ ⊆ ϕ. Given a set of clauses {ϕ1, . . . , ϕn}, its set of
Horn strengthenings, denoted by {ϕ1, . . . , ϕn}H is such that {ϕH

1 , . . . , ϕH
n } ∈

{ϕ1, . . . , ϕn}H iff ϕH
i ∈ ϕiH for 1 ≤ i ≤ n.

A Horn strengthening of a non-Horn clause is formed by removing all but one
positive atom. We extend the notion to conjunctions of clauses by treating them
as sets of clauses and applying this definition. We also take the convention that
the Horn strengthening of an arbitrary formula, logically equivalent to a Horn
formula, is the singleton set which contains the Horn formula. For example, let ϕ
be (¬a∨ b)∧ (¬p∨ q ∨ r). Since ¬a∨ b is already Horn, two Horn strengthenings
are obtained for ϕ by removing either q or r from ¬p ∨ q ∨ r, that is ϕH =
{(¬a ∨ b) ∧ (¬p ∨ q), (¬a ∨ b) ∧ (¬p ∨ r)}.

342 Z.Q. Zhuang and M. Pagnucco

3 AGM Contraction

In the AGM framework of belief change, belief states are modelled by sets of
sentences, called belief sets, which are closed under logical deduction. That is, if
K is a belief set then K = Cn(K). Three change operations, namely expansion,
revision and contraction are studied. Expansion is the incorporation of new be-
liefs into the belief set without taking any provisions for maintaining consistency,
thus expansion of K by ϕ, denoted K + ϕ, is simply the deductive closure of
K ∪ {ϕ}. Revision is the incorporation of new beliefs while maintaining consis-
tency of the belief set, thus if the new belief is inconsistent with the original
beliefs, some beliefs need to be dropped. Contraction is required when an agent
has to give up beliefs from its belief set.

AGM provides rationality postulates and specific constructions for the change
operations. The postulates are intended to capture the behaviours of a ratio-
nal agent in expanding, revising, and contracting its beliefs. The constructions
specify, abstractly, how the operation is to be performed. Moreover, AGM shows
that the operator obtained through a particular construction satisfies all the
corresponding postulates and that any operator satisfying the postulates can be
represented by the construction. This kind of formal result is known as a repre-
sentation theorem. Following the AGM tradition, similar theorems are proved to
demonstrate the appropriateness of the change operator defined in this paper.

This paper focuses on belief contraction. AGM contraction is a function from
2L × L to 2L. It is characterised by the following set of postulates.

(K .−1) K .−ϕ = Cn(K .−ϕ). (Closure)
(K .−2) K .−ϕ ⊆ K. (Inclusion)
(K .−3) If ϕ �∈ K, then K .−ϕ = K. (Vacuity)
(K .−4) If �� ϕ, then ϕ �∈ K .−ϕ. (Success)
(K .−5) K ⊆ (K .−ϕ) + ϕ. (Recovery)
(K .−6) If ϕ ≡ ψ, then K .−ϕ = K .−ψ. (Extensionality)
(K .−7) K .−ϕ ∩K .−ψ ⊆ K .−ϕ ∧ ψ. (Conjunction overlap)
(K .−8) If ψ �∈ K .−ϕ ∧ ψ then K .−ϕ ∧ ψ ⊆ K .−ψ. (Conjunction inclusion)

(K .−1)–(K .−6) are known as the basic postulates, and (K .−7)–(K .−8) are known
as the supplementary postulates. In accordance with the basic postulates, con-
traction returns another belief set (K .−1) not implying ϕ unless ϕ is a tautology
(K .−4). Additionally the belief set does not contain any new beliefs (K .−2). If ϕ
is not believed originally then the contraction has no effect (K .−3). Furthermore,
the contraction should be independent of the syntax (K .−6) and remove as little
information from K as possible (K .−5). Detailed explanations of the full set of
postulates can be found in [1,11].

Several constructions for contraction exist, making use of different logical
notions such as remainder sets [1], epistemic entrenchment (EE) [6] and system
of spheres [12].

We review here the construction method via EE. EEC follows the intuition
that when forced to give up beliefs we tend to give up the less preferred. Formally,
an EE-relation is a total pre-order ≤ over the sentences of a belief set and is

Horn Contraction via Epistemic Entrenchment 343

intended to capture the degree of plausibility of a sentence; the more entrenched
the belief, the more reluctant we are to give it up during contraction. The relation
ϕ ≤ ψ represents the situation that ψ is at least as entrenched as ϕ, hence during
a contraction the agent is at least as reluctant to give up ψ as they are to give
up ϕ. Moreover, ϕ < ψ means ϕ ≤ ψ and ψ �≤ ϕ, and ϕ = ψ means ϕ ≤ ψ and
ψ ≤ ϕ. The following constraints are imposed on ≤ for it to capture its intended
meaning.

(EE1) If ϕ ≤ ψ and ψ ≤ χ then ϕ ≤ χ (Transitivity)
(EE2) If ϕ � ψ then ϕ ≤ ψ (Dominance)
(EE3) ϕ ≤ ϕ ∧ ψ or ψ ≤ ϕ ∧ ψ (Conjunctiveness)
(EE4) If K ��⊥ then ϕ �∈ K iff ϕ ≤ ψ for every ψ (Minimality)
(EE5) If ϕ ≤ ψ for every ϕ then � ψ (Maximality)

It follows from (EE1)–(EE5) that ≤ satisfies transitivity and connectivity, in
which tautologies are most entrenched and non-beliefs are least entrenched.

AGM provides two conditions that establish connections between EE-relations
and contraction operators, one of which determines an EE-relation through a
contraction operator, and the other which determines a contraction operator
through an EE-relation. Given a contraction operator .−, an EE-relation ≤ can
be obtained through condition (C ≤):

(C ≤) : ϕ ≤ ψ iff ϕ �∈ K
.−ϕ ∧ ψ or � ϕ ∧ ψ.

The idea is that, in the contraction of ϕ ∧ ψ from K, we are forced to give up
ϕ or ψ (or both). If ϕ is retracted then it must be the case that ψ is at least
as entrenched as ϕ. In the limiting case that ϕ and ψ are tautologies, by (EE2)
they are equally entrenched. Now given an EE-relation≤, a contraction operator
.− can be obtained through condition (C .−):

(C .−) : ψ ∈ K
.−ϕ iff ψ ∈ K and either ϕ < ϕ ∨ ψ or � ϕ.

(C .−) states that belief ψ is retained if it was originally believed (ψ ∈ K) and
there is “sufficient evidence” for retaining it (ϕ < ϕ ∨ ψ) or if it is not possible
to remove ϕ (� ϕ). As pointed out by Gardenförs and Makinson [6], the con-
dition presumes the controversial postulate of Recovery and (C ≤). We already
mentioned in Section 1 that Horn logic does not satisfy Recovery. Recasting this
condition for Horn logic is the main challenge in this paper.

In [6] we find the following representation theorem giving the correctness of
the conditions above.

Theorem 1. If ≤ satisfies (EE1)–(EE5), the contraction .− determined by
(C .−) satisfies (K .−1)–(K .−8) and condition (C ≤). If .− satisfies (K .−1)–(K .−8)
then ≤ determined by (C ≤) satisfies (EE1)–(EE5) and (C .−).

4 Horn Contraction via EE

In this section we construct an EE based Horn contraction (EEHC) which is
an analogue of EEC in the AGM framework. Moreover we identify the set of
postulates that fully characterises the EEHC.

344 Z.Q. Zhuang and M. Pagnucco

4.1 Construction of EEHC

Our EEHC is constructed by adapting the key ingredients of EEC—the EE-
relation, the (C ≤) condition, and the (C .−) condition—to Horn logic. The Horn
EE-relation is like the standard one satisfying (EE1)–(EE5), but contains only
relations between Horn formulas. (C ≤) is already applicable to Horn logic, thus
it requires no adaptation. (C .−) is problematic as it refers to arbitrary disjunc-
tions which may not be Horn formulas. Therefore, a modified condition (HC .−)
is used where non-Horn disjunctions are replaced by their Horn strengthenings.

(HC .−): ψ ∈ H
.−ϕ iff ψ ∈ H and either there exists a Horn strengthening

χ ∈ (ϕ ∨ ψ)H such that ϕ < χ or � ϕ.

Similar to (C .−), a belief ψ is retained if it was originally believed and there
is “sufficient evidence” for retaining it or if it is not possible to remove ϕ. For
the principal case of (C .−), retainment of ψ is determined by the relative en-
trenchment of ϕ and ϕ ∨ ψ; if ϕ ∨ ψ is strictly more entrenched than ϕ then
we have “sufficient evidence” to retain ψ. Since ϕ ∨ ψ may not be a Horn for-
mula, we uses its Horn strengthening (which is the closest Horn approximation
that logically implies ϕ ∨ ψ) in (HC .−). Furthermore, to retain ψ, it suffices to
have only one of the Horn strengthenings being strictly more entrenched than
ϕ. Obviously, another option is to require all Horn strengthenings being strictly
more entrenched than ϕ. However, as long as the minimal change principle is
concerned, the former option which always retains more of the original beliefs
during contraction is more appropriate.

Figure 2 illustrates the contraction of ¬p ∨ r from H = CnH({¬p ∨ q,¬q ∨
r}), while H is associated with EE-relations ≤1,≤2 and ≤3. Each rectangle
represents the formulas in the belief set H and their relative entrenchment.
Clauses in the same level are equally entrenched. Clauses in a level higher are
strictly more entrenched than those in a level lower. For instance with ≤2, we
have ¬p ∨ q = ¬q ∨ r = ¬p ∨ ¬r ∨ q < ¬p ∨ r < ¬p ∨ ¬q ∨ r. Non-beliefs,
tautologies and conjunctions are not shown as their level of entrenchment are
uniquely determined by the clauses shown. The underlined clauses are retained
after the contraction. ¬p∨¬r∨q is retained with all EE-relation as its disjunction
with ¬p ∨ r is a tautology which is most entrenched. With ≤1 only ¬p ∨ ¬r ∨ q
is retained. With ≤2, ¬q ∨ r and ¬p ∨ ¬q ∨ r are also retained. As both of them

¬p ∨ r
¬p ∨ ¬q ∨ r

¬p ∨ q ¬q ∨ r
¬p ∨ ¬r ∨ q

≤1

¬p ∨ ¬q ∨ r

¬p ∨ r

¬p ∨ q ¬q ∨ r
¬p ∨ ¬r ∨ q

≤2

¬p ∨ q
¬p ∨ ¬r ∨ q

¬p ∨ r
¬p ∨ ¬q ∨ r

¬q ∨ r

≤3

Fig. 2. H
.−(¬p ∨ r)

Horn Contraction via Epistemic Entrenchment 345

when disjunct with ¬p∨ r yield ¬p∨¬q∨ r which is already Horn and is strictly
more entrenched than ¬p ∨ r. With ≤3, the disjunction of ¬p ∨ q with ¬q ∨ r is
¬p∨ q ∨ r which has two Horn strengthenings ¬p∨ q and ¬q ∨ r. Since ¬p∨ q is
strictly more entrenched than ¬q ∨ r, ¬p ∨ q is retained.

4.2 Horn Equivalence of EEHC and EEC

As set out in Section 1, the Horn contraction to be defined should be as plausi-
ble as AGM contractions. To be more precise, we want to guarantee that for
any belief set K and Horn formula φ, the Horn contraction of φ from the
Horn subset of K (Horn(K)) yields a resulting belief set (Horn(K) .−Hφ))
that is exactly the Horn subset of the resulting belief set (K .−φ) yielded by
the AGM contraction of φ from K. This can be formalised by the equality:
Horn(K) .−Hϕ = Horn(K .−ϕ). Since (HC .−) is stronger than (C .−), one half of
the equality holds for EEHC:

Proposition 1. Let K be a belief set and ϕ ∈ LH . If .− and .−H are EEC and
EEHC respectively then

Horn(K) .−Hϕ ⊆ Horn(K .−ϕ)

Proof. It suffices to show if ψ ∈ Horn(K) .−Hϕ then ψ ∈ Horn(K .−ϕ). We
sketch the proof for the principal case when ψ ∈ K and �� ϕ. By (HC .−) there is
a χ ∈ (ϕ ∨ ψ)H s.t. ϕ < χ. It follows from χ � ϕ ∨ ψ (Definition 1) and (EE2)
that χ ≤ ϕ ∨ ψ. We have by (EE1) and ϕ < χ that ϕ < ϕ ∨ ψ in which case
ψ ∈ K

.−ϕ follows from (C .−). Finally as ψ ∈ LH , ψ ∈ Horn(K .−ϕ). ��

However, as demonstrated in Figure 3, the other half of the equality does not
always hold for EEHC. Figure 3 illustrates the contraction of ¬p ∨ r from K =
Cn({¬p∨ q,¬q ∨ r}) (with the associated EE-relations ≤1 and ≤2) by EEC and
the contraction of ¬p ∨ r from H = CnH({¬p ∨ q,¬q ∨ r} (with the associated
EE-relation ≤ i.e., ≤1 of Figure 2) by EEHC. H is the Horn subset of K (i.e.,
H = Horn(K)). Horn formulas are entrenched identically in ≤1, ≤2 and ≤.
Non-Horn formula ¬p ∨ q ∨ r is entrenched differently in ≤1 and ≤2. We can
see that the EEC based on ≤1 retains the same Horn formulas as the EEHC
whereas the EEC based on ≤2 retains more Horn formulas than the EEHC.

In fact the equality does not hold for any EE based Horn contraction un-
less certain restriction is applied to the corresponding EE-relation. The rea-
son is straightforward. An EE based Horn contraction is specified by a Horn
EE-relation which is obviously not sufficient to specify an EEC as it does not
contain relations between non-Horn formulas. There may be several standard
EE-relations (such as ≤1, ≤2 in Figure 3) that are identical in terms of Horn
formulas with a Horn EE-relation (such as ≤ in Figure 3) yet are different in
terms of non-Horn formulas. The standard EE-relations give rise to different
EECs and the EE based Horn contraction based on the Horn EE-relation corre-
sponds to only some of the EECs by means of the equality.

In what follows we present under what condition the equality holds for our
EEHC. We can draw intuitions from the contractions in Figure 3. In ≤1, the

346 Z.Q. Zhuang and M. Pagnucco

¬p ∨ r
¬p ∨ ¬q ∨ r

¬p ∨ q ¬q ∨ r
¬p ∨ ¬r ∨ q

≤

¬p ∨ r ¬p ∨ ¬q ∨ r
¬p ∨ q ∨ r

¬p ∨ q ¬q ∨ r
¬p ∨ ¬r ∨ q ¬q ∨ p ∨ r

≤1

¬p ∨ q ∨ r

¬p ∨ r
¬p ∨ ¬q ∨ r

¬p ∨ q ¬q ∨ r
¬p ∨ ¬r ∨ q ¬q ∨ p ∨ r

≤2

Fig. 3. H
.−H(¬p ∨ r) and K .−(¬p ∨ r)

non-Horn clause ¬p ∨ q ∨ r is as entrenched as one of its Horn strengthenings
¬p ∨ r, whereas in ≤2, ¬p ∨ q ∨ r is strictly more entrenched than all its Horn
strengthenings. Moreover the equality holds with ≤1 but not with ≤2. As we
will prove, given a standard EE-relation ≤ and a Horn EE-relation ≤H such
that they are identical in terms of Horn formulas, in ≤ if each non-Horn formula
is equally entrenched to one of its Horn strengthenings, then the EEC based on
≤ is equivalent to the EEHC based on ≤H in terms of Horn formulas. Since the
above condition is a constraint for EE-relations we refer it as (EE6).
(EE6) For each ϕ, there is a ψ ∈ ϕH such that ϕ ≤ ψ.
The formal result is as follows:

Proposition 2. Let K be a belief set with associated EE-relation ≤ and ϕ ∈ LH .
Let .− and .−H be the EEC and the EEHC respectively. If ≤ satisfies (EE6) then

Horn(K) .−Hϕ = Horn(K .−ϕ)

Proof. If � ϕ, the equality holds immediately. So suppose �� ϕ. We already have
by Proposition 1 that Horn(K) .−Hϕ ⊆ Horn(K .−ϕ). It remains to prove if
ψ ∈ Horn(K .−ϕ) then ψ ∈ Horn(K) .−Hϕ. Assumes ψ ∈ Horn(K .−ϕ), we have
by (C .−) that ψ ∈ K and ϕ < ϕ ∨ ψ. Then from (EE6) there is a χ ∈ (ϕ ∨ ψ)H
s.t. ϕ∨ψ ≤ χ. But it follows from (EE1), ϕ < ϕ∨ψ, and ϕ∨ψ ≤ χ that ϕ < χ.
Hence, ψ ∈ Horn(K) .−Hϕ follows from (HC .−). ��

4.3 Characterising Postulates

The following set of postulates as we will show formally characterise our EEHC.

(H .−1) H .−ϕ = CnH(H .−ϕ).
(H .−2) H .−ϕ ⊆ H .
(H .−3) If ϕ �∈ H or � ϕ, then H .−ϕ = H .
(H .−4) If �� ϕ, then ϕ �∈ H .−ϕ.
(H .−5) If ψ ∈ H .−ϕ ∧ ψ then ψ ∈ H .−ϕ ∧ ψ ∧ δ
(H .−6) � ϕ ≡ ψ, then H .−ϕ = H .−ψ.
(H .−7) H .−ϕ ∩H .−ψ ⊆ H .−ϕ ∧ ψ.
(H .−8) If ψ �∈ H .−ϕ ∧ ψ then H .−ϕ ∧ ψ ⊆ H .−ψ.
(H .−9) If ψ ∈ H and ψ �∈ H .−ϕ then ∀χ ∈ (ϕ ∨ ψ)H, χ �∈ H .−ϕ
(H .−10) If ∀χ ∈ (ϕ ∨ ψ)H, χ �∈ H .−ϕ ∧ χ then ψ �∈ H .−ϕ

Horn Contraction via Epistemic Entrenchment 347

Postulates (H .−1), (H .−2), (H .−4), (H .−6)–(H .−8) are the Horn analogues of
the AGM contraction postulates. (H .−3) is the Success postulate but contains
an additional antecedent for capturing the failure property which states the
contraction of a tautology has no effect on the belief set. (H .−5) is the well
know Conjunctive trisection postulate [13,14]. Given the set of AGM postulates,
(H .−5) is derivable from (K .−7), but the proof needs Recovery. (H .−5) is crucial
in showing the completeness of EEHC. (H .−9) and (H .−10) capture the rela-
tionship between a formula in the belief set and the formula to be contracted by
means of their disjunction. (H .−9) states that if ψ is removed in the contraction
by ϕ then so are all Horn strengthenings of φ∨ψ. (H .−10) states that if all Horn
strengthenings of φ∨ψ are removed in the contraction by ϕ2 then so is ψ. These
relationships turn out to be unique in EE based Horn contractions.

We start with a soundness theorem.

Theorem 2. If .− is an EEHC then it satisfies (H .−1)–(H .−10) and the condi-
tion (C ≤).

Proof. We omit the proofs for (H .−1)–(H .−8). By Proposition 3, .− is Horn equiv-
alent to a special case of EEC, so obviously .− satisfies all postulates EEC satisfies
when the postulates are restricted to Horn logic (Recovery is an exception).

(C ≤): (⇒) Suppose that ϕ ≤ ψ whilst ϕ ∈ H
.−ϕ∧ψ; we need to show � ϕ∧ψ.

Since ϕ ∈ H
.−ϕ ∧ ψ we have by (HC .−) that ϕ ∈ H and either � ϕ ∧ ψ or

∃χ ∈ ((ϕ ∧ ψ) ∨ ϕ)H s.t. ϕ ∧ ψ < χ, that is ϕ ∧ ψ < ϕ as by Definition 1 and
(ϕ∧ψ) ∨ϕ ≡ ϕ, we have ((ϕ∧ ψ)∨ϕ)H = ϕH = {ϕ}. But since ϕ ≤ ψ we have
by (EE2) and (EE3) that ϕ ≤ ϕ ∧ ψ, which implies ϕ ∧ ψ �< ϕ. (⇐) Suppose
either ϕ �∈ H

.−ϕ ∧ ψ or � ϕ ∧ ψ, we need to show ϕ ≤ ψ. � ϕ ∧ ψ implies � ψ,
so ϕ ≤ ψ as required by (EE2). Suppose then �� ϕ ∧ ψ. Since ϕ �∈ H

.−ϕ ∧ ψ
and �� ϕ ∧ ψ we have by (HC .−) that either ϕ �∈ H or ∀χ ∈ ((ϕ ∧ ψ) ∨ ϕ)H s.t.
ϕ ∧ ψ �< χ, that is ϕ ∧ ψ �< ϕ (with the same argument as in (⇒)). It follows
from connectivity of ≤ that ϕ ∧ ψ �< ϕ implies ϕ ≤ ϕ ∧ ψ. Finally ϕ �∈ H gives
us ϕ ≤ ψ as required by (EE4) and ϕ ≤ ϕ ∧ ψ also gives us, ϕ ≤ ψ as required
by (EE1), (EE2) and ϕ ∧ ψ � ψ.

(H .−9): Assume ψ ∈ H and ψ �∈ H
.−ϕ, we need to show ∀χ ∈ (ϕ∨ψ)H, χ �∈ H

.−ϕ.
It follows from (HC .−) and ψ �∈ H

.−ϕ that ∀χ ∈ (ϕ ∨ ψ)H, ϕ < χ. Moreover for
all such χ, (ϕ ∨ χ)H ⊆ (ϕ ∨ ψ)H follows from Definition 1. Hence by (HC .−),
χ �∈ H

.−ϕ for all χ.

(H .−10): Suppose ψ �∈ H then ψ �∈ H
.−ϕ follows from (H .−3). So suppose ψ ∈ H .

Assume ∀χ ∈ (ϕ ∨ ψ)H, χ �∈ H
.−ϕ ∧ χ. We have by (C ≤) that ∀χ ∈ (ϕ ∨ ψ)H,

χ ≤ ϕ which implies ϕ �< χ. So ψ �∈ H
.−ϕ follows from (HC .−). ��

Also a completeness theorem can be shown.

2 Conjunctive factoring [1] states either K .−ϕ ∧ ψ = K
.−ϕ, K .−ϕ ∧ ψ = K

.−ψ, or
K

.−ϕ ∧ ψ = K
.−ϕ ∩ K

.−ψ which is satisfied by EEHC. Thus χ ∈ H
.−ϕ implies

χ ∈ H
.−ϕ ∧ χ

348 Z.Q. Zhuang and M. Pagnucco

Theorem 3. If .− satisfies (H .−1)–(H .−10) then .− is an EEHC.

Proof. We need to show
1) EE-relation ≤ determined by (C ≤) and .− satisfies (EE1)–(EE5).
2) .− satisfies (HC .−).

The proof for (EE1)–(EE5) follows exactly as in [15, pages 191–192]. For (HC .−),
we sketch the proof for the principal case when ψ ∈ H and �� ϕ. We prove the
contrapositive for (HC .−) which is: ∀χ ∈ (ϕ ∨ ψ)H, χ ≤ ϕ iff ψ �∈ H

.−ϕ.

(⇒) Assume ∀χ ∈ (ϕ ∨ ψ)H, χ ≤ ϕ. Then we have by (C ≤), χ �∈ H
.−ϕ ∧ χ. So

by (H .−10), ψ �∈ H
.−ϕ.

(⇐) Assume ψ �∈ H
.−ϕ. Then we have by (H .−9), ∀χ ∈ (ϕ ∨ ψ)H, χ �∈ H

.−ϕ. It
then follows from conjunctive factoring [1] and χ �∈ H

.−ϕ that χ �∈ H
.−ϕ ∧ χ.

Hence, we have by (C ≤), ∀χ ∈ (ϕ ∨ ψ)H, χ ≤ ϕ. ��

4.4 Postulate of Core-Retainment

A well known postulate for contraction, namely Core-retainment [9] captures the
intuition that formulas not contributing to the fact that a belief set K implies a
formula ϕ, should be retained in K

.−ϕ. [9] refers to these formulas as the ϕ-cores
of K.

Definition 2. [9] ψ is a ϕ-core of K iff ψ ∈ K and for all X ⊆ K: if ϕ �∈ Cn(X)
then ϕ �∈ Cn(X ∪ {ψ}).
Core-retainment then ensures that if a formula is removed then it must not be
a core.

Core-retainment: If ψ ∈ K and ψ �∈ K
.−ϕ then there is a set X such that

X ⊆ K, ϕ �∈ Cn(X) and ϕ ∈ Cn(X ∪ {ψ})
As shown in [9], given the other AGM postulates, Core-retainment is equivalent
to Recovery. Since Horn logic does not satisfy Recovery, it is tempting to see
how Horn contractions perform against Core-retainment. The Horn contraction
defined in [3] is further refined in [16] in which the authors conclude that their
contraction satisfies Core-retainment. It is not difficult to show that the Horn
contraction from [2] also satisfies Core-retainment. However, this is not the case
for our EEHC. Figure 4 illustrates the contraction of ¬p∨q from H = CnH({¬r∨
s,¬p ∨ q}). Since ¬r ∨ s does not contribute to the implication of ¬p ∨ q in H ,
it is a (¬p ∨ q)-core of H , yet it is discarded.

It turns out that Core-retainment, while not necessary in our approach, is
compatible with it. An important property of cores is pointed out by [9].

Proposition 3. ψ is a ϕ-core of K iff ψ ∈ K and � ϕ ∨ ψ.

This property does not hold in Horn logic. To regain Core-retainment in Horn
contraction it is necessary to force retainment of formulas like ¬r ∨ s which is
a (¬p ∨ q)-core only in Horn logic. The alternative property of cores in Horn
contraction is as follows:

Horn Contraction via Epistemic Entrenchment 349

¬p ∨ q
¬p ∨ ¬r ∨ q

¬p ∨ ¬r ∨ s

¬r ∨ s
¬q ∨ ¬r ∨ s

H = CnH({¬r ∨ s,¬p ∨ q})

Fig. 4. H
.−H(¬p ∨ q)

Proposition 4. Let H be a Horn belief set and ψ, ϕ ∈ L. ψ is a ϕ-core of H iff
ψ ∈ H and one of the following holds:
1). � ϕ ∨ ψ
2). ∀χ ∈ (ψ → ϕ)H either χ � ϕ or χ �∈ H.

The following example illustrates this proposition.

Example 1. Continuing with the contraction in Figure 4. Since �� ¬p∨ q ∨¬r∨ s
condition 1) does not hold, we check condition 2). As (¬r ∨ s) → (¬p ∨ q) ≡
(¬p ∨ q ∨ r) ∧ (¬p ∨ ¬s ∨ q) we have ((¬r ∨ s) → (¬p ∨ q))H = {β1, β2} for
β1 = (¬p ∨ q) ∧ (¬p ∨ ¬s ∨ q) and β2 = (¬p ∨ r) ∧ (¬p ∨ ¬s ∨ q). For β2 we have
β2 �∈ H follows from H �� ¬p ∨ r. For β1 we have β1 � ¬p ∨ q. Hence condition
2) holds and we have ¬r ∨ s is a (¬p ∨ q)-core of H .

(HC .−) is now revised to include the extra condition in Proposition 4.

(HC .−Core): ψ ∈ H
.−ϕ iff ψ ∈ H and one of the following holds:

1). ∃χ ∈ (ϕ ∨ ψ)H s.t. ϕ < χ.
2). ∀χ ∈ (ψ → ϕ)H either χ � ϕ or χ �∈ H .
3). � ϕ.

Note that condition 1) of Proposition 4 is covered by 1) of (HC .−Core). The
modified EEHC now satisfies Core-retainment.

Theorem 4. If ≤ satisfies (EE1)–(EE5) then the contraction .− determined by
(HC .−Core) satisfies (H .−1)–(H .−9), (H .−10C), (H .−C), and (C ≤).

(H .−C) is the core-retainment postulate in Horn logic and (H .−10C) includes in
its antecedent conditions that ψ not be a ϕ-core.

(H .−10C) If ∀χ ∈ (ϕ ∨ ψ)H, χ �∈ H
.−ϕ ∧ χ, and ∃χ ∈ (ψ → ϕ)H s.t. χ �� ϕ and

χ ∈ H then ψ �∈ H
.−ϕ.

5 Related Work and Concluding Remark

The Horn contractions3 studied in [2,3] and [4] are analogues of the AGM PMC.
They differ in the way of adapting the notion of remainder set to Horn logic.
3 Package contraction and base contraction are also studied in these works but we

consider only belief set contraction which is the focus of the current paper.

350 Z.Q. Zhuang and M. Pagnucco

[2] sticks to the original definition of remainder sets. The Horn contraction thus
defined is usually referred to as orderly maxichoice contraction. One property
of PMC is lost when turning to Horn logic. That is, every belief set in between
(by set inclusion) the one returned by the full meet contraction and the one re-
turned by a maxichoice contraction is obtainable by taking intersections of some
remainder sets (i.e., covered by some PMC). In [3], all such belief sets are con-
sidered as appropriate resulting belief sets, so that the notion of remainder sets
is generalised for their Horn contraction to return all appropriate results. Most
recently, [4] adopted the model theoretic way of obtaining remainder sets and
applied it to Horn contraction. The distinguishing feature of their contraction is
that it avoids a triviality result similar to the AGM maxichoice contraction:4

For p not mentioned in H , we have (H .−ϕ) + p � ϕ

[4] also shows that both [2] and [3] suffer from this triviality result.
There is a close connection between PMC and EEC in the AGM framework

[17]. However, this connection is unexplored for Horn contractions and is left as
future work. We believe that such a connection is essential for comparing our
EEHC to the existing ones and for determining the most appropriate form of
Horn contraction. In other aspects, our Horn contraction also avoids the triv-
iality result. However, it can be easily shown any Horn contraction satisfying
Core-retainment suffers from the triviality result and so does our contraction
when amended for satisfying Core-retainment. Through Theorem 3 we find that
in order to characterise our EE based Horn contraction, two extra postulates
(i.e., (H .−9) and (H .−10)) are required, which capture the relative entrenchment
of some closely related Horn clauses during contraction. The existing Horn con-
tractions do not satisfy (H .−9) and (H .−10). The reason is that in defining our
Horn contraction we have in mind the full set of AGM postulates, whereas [3]
and [4] focus only on the basic set of postulates. [2] also works with the full set
of AGM postulates, but restricted to maxichoice contraction.

In this paper we also propose a criterion as depicted in Figure 1 for checking
plausibility of a Horn contraction. Our investigation shows that EE based Horn
contraction fails this criterion due to the inexpressiveness of Horn logic. So it is
interesting to see how the Horn contractions based on remainder sets perform
against this criterion which we also leave for future work.

References

1. Alchourrón, C.E., Gärdenfors, P., Makinson, D.: On the logic of theory change:
Partial meet contraction and revision functions. J. Symb. Logic 50(2), 510–530
(1985)

2. Delgrande, J.P.: Horn clause belief change: Contraction functions. In: Proc. KR
2008, pp. 156–165 (2008)

3. Booth, R., Meyer, T., Varzinczak, I.J.: Next steps in propositional Horn contrac-
tion. In: Proc. IJCAI 2009, pp. 702–707 (2009)

4 It is easy to show their approach avoids the triviality result only when the formula
to be contracted is not a disjunction of negative atoms.

Horn Contraction via Epistemic Entrenchment 351

4. Delgrande, J.P., Wassermann, R.: Horn clause contraction function: Belief set and
belief base approaches. In: Proc. KR 2010 (2010)

5. Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P. (eds.):
The Description Logic Handbook. CUP, Cambridge (2003)

6. Gärdenfors, P., Makinson, D.: Revisions of knowledge systems using epistemic en-
trenchment. In: Proc. TARK 1988, pp. 83–95 (1988)

7. Flouris, G., Plexousakis, D., Antoniou, G.: Generalizing the AGM postulates: pre-
liminary results and applications. In: Proc. NMR 2004, pp. 171–179 (2004)

8. Langlois, M., Sloan, R.H., Szörényi, B., Turán, G.: Horn complements: Towards
Horn-to-Horn belief revision. In: Proc. AAAI 2008, pp. 466–471 (2008)

9. Hansson, S.O.: Belief contraction without recovery. Studia Logica 50(2), 251–260
(1991)

10. Selman, B., Kautz, H.: Knowledge compilation using Horn approximations. In:
Proc. AAAI 1991, pp. 904–909. MIT Press, Cambridge (1991)

11. Gärdenfors, P.: Knowledge in Flux: Modelling the Dynamics of Epistemic States.
MIT Press, Cambridge (1988)

12. Grove, A.: Two modellings for theory change. Journal of Philosophical Logic 17(2),
157–170 (1988)

13. Rott, H.: Preferential belief change using generalized epistemic entrenchment.
JoLLI 1(1), 45–78 (1992)

14. Hansson, S.O.: Changes of disjunctively closed bases. JoLLI 2(4), 255–284 (1993)
15. Hansson, S.O.: A Textbook of Belief Dynamics Theory Change and Database Up-

dating. Kluwer, Dordrecht (1999)
16. Booth, R., Meyer, T., Varzinczak, I., Wassermann, R.: A contraction core for Horn

belief change: Preliminary report. In: Proc. NMR 2010 (2010)
17. Rott, H.: Two methods of constructing contractions and revisions of knowledge

systems. Journal of Philosophical Logic 20(2), 149–173 (1991)

The DMCS Solver for
Distributed Nonmonotonic Multi-Context Systems�

Seif El-Din Bairakdar, Minh Dao-Tran, Thomas Eiter,
Michael Fink, and Thomas Krennwallner

Institut für Informationssysteme, Technische Universität Wien
Favoritenstraße 9-11, A-1040 Vienna, Austria

{bairakdar,dao,eiter,fink,tkren}@kr.tuwien.ac.at

1 Introduction

The DMCS system is an implementation of the equilibrium semantics for heteroge-
neous and nonmonotonic multi-context systems (MCS) [3], which feature contexts with
heterogeneous and possibly nonmonotonic logics. Each context in an MCS comprises
of two parts: a local knowledge base and a set of bridge rules that can access the beliefs
of other contexts and add new information to the knowledge base. In this setting, con-
texts are loosely coupled, and may model distributed information linkage applications;
thus it is natural to have a system that allows for the distributed evaluation of MCS.

In an MCS M = (C1, . . . , Cn), each context Ci is characterized by a knowledge
base kbi and a set of bridge rules bri. In our implementation, each kbi is in DLV syntax
as in [6]. The bri are sets of nonmonotonic rules

p0 ← (c1 : p1), . . . , (cj : pj),not (cj+1 : pj+1), . . . ,not (cm : pm).
where the (ck : pk) are bridge atoms; the index ck refers to a context Cck

and pk

is a possible belief of Cck
; intuitively, the atom is true if pk is in the belief set of

context Cck
. If the body evaluates to true with respect to a belief state, which is a

sequence S = (S1, . . . , Sn) of belief sets Si of Ci, 1 ≤ i ≤ n, then p0 has to be
added to kbi. The semantics of M is then given in terms of stable belief sets (called
equilibria). Partial Equilibria are equilibria in a sub-MCS of M induced by a single
context Ck resp. a collection Ck1 , . . . , Ckj of contexts.

Example 1. Consider an MCS M = (C1, C2), where C1, C2 have answer set programs
in the local knowledge bases; specifically

kb1 = {a1 ← b1;⊥ ← not b1} and br 1 =
{
b1 ← (2 : a2)

}
;

kb2 =
{
a2 ∨ b2 ←

}
and br2 = ∅.

Then S = ({a1, b1}, {a2}) is the only equilibrium of M ; as well as the only partial
equilibrium of M w.r.t. C1. Note that w.r.t. C2, M has two partial equilibria: S(1) =
(ε, {a2}) and S(2) = (ε, {b2}) (here ε means the context is not reachable).

The algorithm in [4] describes a generic distributed procedure for evaluating (partial)
equilibria of multi-context systems. It has been refined with an effective decomposition

� This research has been supported by the Austrian Science Fund (FWF) project P20841 and by
the Vienna Science and Technology Fund (WWTF) project ICT 08-020.

T. Janhunen and I. Niemelä (Eds.): JELIA 2010, LNAI 6341, pp. 352–355, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

The DMCS Solver for Distributed Nonmonotonic Multi-Context Systems 353

dmcsm

dmcsd
at Ck

dmcsd

dmcsd

dmcsd

dmcsc

models
registration

query

(a) System Architecture

dmcsc
dmcsd
at C1

dmcsd
at C2

dmcsm

(b) Components of Ex. 2

Fig. 1. DMCS System Architecture

technique in [1]. Our DMCS system comprises both algorithms and allows for MCS
with contexts that have propositional answer set programs as knowledge bases. Initial
experimental results with the DMCS system were shown in [1,4].

The basic idea for our system [4] is to take the bridge rules and the knowledge base
of a context, compile them to a propositional theory, and use a SAT solver to compute
the models. The distributed algorithms then take care of combining the models and
generate equilibria at the context that initiated the computations.

DMCS is a purely distributed framework written in C++. It uses clasp [5] for local
model building. The system is available at

http://www.kr.tuwien.ac.at/research/systems/dmcs/.

2 System Architecture and Evaluation

The architecture of DMCS is outlined in Figure 1a, which has the following main com-
ponents: (i) a front-end dmcsc for querying the multi-context system; (ii) daemons
dmcsd, where each of them represents a context and interacts with the others; a dae-
mon has four modules, namely Loop Formula, SAT Solver, DMCS, and Network Inter-
face (cf. Figure 2b); and (iii) a component dmcsm holding meta information about the
MCS that has been collected from each context. The system has four stages which are
briefly described as follows:

System start-up. At this stage, all running dmcsd processes register at the dmcsm,
provide their own set of bridge rules, alphabet as well as port and host name (Figure 2a).
With this information, the dmcsm component identifies the topology of the system and
gets ready to answer any question regarding this meta knowledge.

Initialization of dmcsd. Upon initialization, each dmcsd utilizes the Loop Formula
module to transform its local knowledge base and bridge rules into a SAT theory de-
noted by π(Ck) in DIMACS format (see [4] for details). Then, it starts listening for
incoming requests from other daemons, or from queries of dmcsc described next.

Querying the system. When the user wants to know all partial equilibria of the sys-
tem w.r.t. a starting context Ck, she uses dmcsc to pose the query. She may specify

http://www.kr.tuwien.ac.at/research/systems/dmcs/

354 S. Bairakdar et al.

dmcsm

dmcsd
at C1

dmcsd
at Cn

br1Σ1

brn Σn

(a) Start-up

DMCS

SAT Solver

Network
interface

request belief states

request belief states

Loop
Formula

Ck

dmcsmM

belief
states

π(Ck)

Πk

dmcsd at Ck

(b) dmcsd System Architecture

Fig. 2. DMCS System

variables, which will be provided as the initial request to Ck. First, dmcsc inquiries
the dmcsm component about Ck and gets back the connection settings of this context.
Then, dmcsc sends the query to the respective dmcsd representing Ck and waits for
the results.

Evaluating the System. After dmcsc has sent a query to the dmcsd process that rep-
resents the starting context Ck, the daemon computes partial belief states w.r.t. interface
variables and projects unwanted variables away. If Ck needs beliefs from neighboring
contexts, it sends a request to them and awaits their belief states, which will be con-
sistently combined with the local beliefs of Ck. Essentially, those requests look just as
queries sent from dmcsc, and every dmcsd will process them in a uniform manner.
After all neighbors have been addressed, Ck returns the partial equilibria to the client,
who presents them to the user.

The algorithm used in dmcsd is an ASP logic instance of the generic DMCS al-
gorithm presented in [4]. Alternatively, dmcsd may use an adapted version of this
algorithm, DMCSOPT, which exploits dependencies in the MCS, uses economically
small representations of them, and uses minimal interface variables needed for mini-
mizing data transmission (see [1]). Here, query plans Πk w.r.t. Ck are key for guiding
the evaluation process and may be provided by dmcsm.

3 System Usage

For a concrete usage scenario of DMCS, we reconsider the MCS in the example above.

Example 2 (cont’d). In order to evaluate our example, one has to set up a system as
illustrated in Figure 1b, by executing two start up calls, possibly on different machines.

$ dmcsd --context=1 --kb=C1.kb --br=C1.br --manager=HOST:PORT
$ dmcsd --context=2 --kb=C2.kb --br=C2.br --manager=HOST:PORT

The DMCS Solver for Distributed Nonmonotonic Multi-Context Systems 355

The command-line argument --context tells the daemon the context id that it will
represent. The knowledge base and the bridge rule files are provided via --kb and --br,
resp. The --manager option is used to set up the location of the dmcsm component.

To compute equilibria of M w.r.t. context C1, the user queries the dmcsm to get the
connection settings for the dmcsd representing C1 using the following command (the
parameters have the same meaning as above).

$ dmcsc --context=1 --manager=HOST:PORT

After dmcsd at C1 finishes its computations, it delivers the result back to dmcsc.
A list of the equilibria is then enumerated to the user:

({a1,b1}, {a2})
Total Number of Equilibria: 1

It is possible to specify for DMCS a set of atoms of interest; other atoms will then
be discarded. Unless such a set is given, dmcsc will assume its default settings and
proceed with standard operations.

4 Conclusions

The DMCS system is, to the best of out knowledge, the first implementation of a fully
distributed algorithm to evaluate heterogeneous and nonmonotonic multi-context sys-
tems. Other related systems like the one in [7] does not allow cyclic references in bridge
rules, and the system in [2] is based on a query evaluation approach.

The method for computing partial equilibria induced by some context can be easily
extended to compute equilibria of the whole system; this, however, may be of less interest
from the perspective of an individual context (e.g., in a peer-to-peer style evaluation).

Our ongoing work aims at further extending the implementation and optimization,
as well as on dynamic configuration of MCS by instantiating generic bridge rules.

References

1. Bairakdar, S., Dao-Tran, M., Eiter, T., Fink, M., Krennwallner, T.: Decomposition of distributed
nonmonotonic multi-context systems. In: JELIA 2010. Springer, Heidelberg (September 2010)

2. Bikakis, A., Antoniou, G., Hassapis, P.: Strategies for contextual reasoning with conflicts in
ambient intelligence. Knowl. Inf. Syst. (2010) (published online: April 9, 2010)

3. Brewka, G., Eiter, T.: Equilibria in heterogeneous nonmonotonic multi-context systems. In:
AAAI 2007, pp. 385–390. AAAI Press, Menlo Park (July 2007)

4. Dao-Tran, M., Eiter, T., Fink, M., Krennwallner, T.: Distributed nonmonotonic multi-context
systems. In: KR 2010, pp. 60–70. AAAI Press, Menlo Park (May 2010)

5. Gebser, M., Kaufmann, B., Neumann, A., Schaub, T.: Conflict-driven answer set solving. In:
IJCAI 2007, pp. 386–392. AAAI Press, Menlo Park (January 2007)

6. Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S., Scarcello, F.: The dlv sys-
tem for knowledge representation and reasoning. ACM Trans. Comput. Logic 7(3), 499–562
(2006)

7. Serafini, L., Tamilin, A.: Drago: Distributed reasoning architecture for the semantic web. In:
Gómez-Pérez, A., Euzenat, J. (eds.) ESWC 2005. LNCS, vol. 3532, pp. 361–376. Springer,
Heidelberg (2005)

The mcs-ie System for Explaining Inconsistency
in Multi-Context Systems�

Markus Bögl, Thomas Eiter, Michael Fink, and Peter Schüller

Institute of Information Systems
Vienna University of Technology

Favoritenstrasse 11, A-1040 Vienna, Austria
markus.boegl@student.tuwien.ac.at, {eiter,fink,schueller}@kr.tuwien.ac.at

Abstract. The Multi-Context System Inconsistency Explainer allows
for evaluation of semantics and explanation of inconsistencies in systems
where heterogeneous knowledge bases are linked via nonmonotonic rules.
The implementation is based on the dlvhex tool, which is an extension of
answer set programming with external atoms and higher order features.

1 Introduction

Nonmonotonic multi-context systems (MCSs) were introduced in [1], mainly but
not exclusively as an extension of [5,2]. They are a formalism for interlinking
heterogeneous knowledge bases (called contexts), whose semantics is defined via
(possibly non-unique) belief sets, via bridge rules that may be non-monotonic.
For example, (2 : b) ← (1 : a), not(3 : a) expresses that context 2 should add b
to its knowledge base, if context 1 has a in its belief set while context 3 has not.
The semantics of MCSs is then defined in terms of belief states, which contain
one belief set per context, that satisfy a stability condition (called equilibria).

Inconsistency is the absence of such equilibria. An inconsistent MCS yields no
information, therefore our aim is to explain reasons for inconsistency in MCSs
in order to support users in dealing with inconsistency. For this purpose, the
notions of diagnosis and inconsistency explanation were introduced in [3].

A diagnosis (D1, D2) points out a set of bridge rules D1 which must be re-
moved from an MCS M , and a set of bridge rules D2 whose unconditional form
(i.e., α ← for α ← β) must be added to M to restore consistency in M . An
explanation (E1, E2) points out a set of bridge rules E1 which is required in M ,
and a set of bridge rules E2 whose unconditional forms must not be added to
M to ensure inconsistency in M . Diagnoses allow to find overall system repairs,
whereas inconsistency explanations separate individual sources of inconsistency.

A method for evaluating these notions by a rewriting to logic programming
was introduced in [3]. This work describes the MCS Inconsistency Explainer
system mcs-ie, which realizes and extends the implementation concepts of [3].1

� This work was supported by the Vienna Science and Technology Fund (WWTF)
under grant ICT08-020.

1 http://www.kr.tuwien.ac.at/research/systems/mcsie/

T. Janhunen and I. Niemelä (Eds.): JELIA 2010, LNAI 6341, pp. 356–359, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

mcs-ie: Explaining Inconsistency in MCSs 357

extract
D± and EQ ′

⊆-min

calculate E±

dlv

⊆-min

D±, EQ ′

D±
m

E±

D±

EQ ′

D±
m

EQ ′

E±

E±
m

hex

evaluation

dlv answer
sets

mcs-ie input
converter

hex

program
mcs-ie

input file

user
defined
contexts

builtin
contexts

context
input files
(kbi)

refers
to

individual kbi formats

dlvhex Output Rewriter

dlvhex external atom API

data flow
control flow

external
atoms:

Fig. 1. Data flow between mcs-ie components, dlvhex and dlv

Our system uses the dlvhex solver2 and hex programs, which are an extension
of answer set programs (ASPs) with external atoms [4]. We use external atoms
for capturing context semantics, since each context of an MCS can be based on
its own logic, and in general cannot be rewritten to ASPs.

The mcs-ie system provides the following features:

• computation of MCS semantics (output projected equilibria),
• computation of diagnoses, explanations, and their subset-minimal notions,
• support for contexts formalized in ASP (specifically: dlv programs), and
• an API in C++ for integrating user-defined contexts.

2 System Architecture

Figure 1 shows the architecture of the mcs-ie system. It is implemented as a
plugin to dlvhex, therefore dlvhex controls all mcs-ie components.

To analyze inconsistency in an MCS, a master input file which describes the
MCS topology (bridge rules and contexts) must be provided by the user. dlvhex

rewrites the master file into a hex program using the mcs-ie input converter. For
space reasons, we refer to the mcs-ie website for details of this rewriting.1 The
main idea is to guess a diagnosis using auxiliary predicates, to guess a belief state,
and to evaluate bridge rule semantics based on the guesses. Context semantics
are then evaluated using dlvhex external atoms, which may require additional
context input files (e.g., ASP program files, or databases).
2 http://www.kr.tuwien.ac.at/research/systems/dlvhex/

358 M. Bögl et al.

Each answer set of the rewritten hex program describes a diagnosis of the
given MCS and a corresponding equilibrium. The mcs-ie output rewriter compo-
nent extracts this information and converts it into a human readable format (see
the example below). For the conversion of diagnoses to inconsistency explana-
tions the output converter generates an answer set program from the extracted
diagnosis, and evaluates it using dlv. Depending on command-line parameters,1

sets of (subset-minimal) explanations for inconsistency in the MCS are displayed.

3 Example

In the following, we give an example MCS along with its encoding for mcs-ie.
Our MCS is a health care decision support system, which consists of a database

of lab test results C1, a patient record database C2, an ontology C3 for disease
classification, and an expert system C4 suggesting suitable treatments.

The MCS topology is specified in file master.hex, contexts C1, C2, and C4

are realized in corresponding dlv program files:

master.hex: #context(1,"dlv_asp_context_acc", "kb1.dlv").

#context(2,"dlv_asp_context_acc", "kb2.dlv").

#context(3,"ontology_context3_acc", "").

#context(4,"dlv_asp_context_acc", "kb4.dlv").

r1: (3:pneum) :- (2:xraypneum).

r2: (3:marker) :- (2:marker).

r3: (4:need_ab) :- (3:pneum).

r4: (4:need_strong) :- (3:atyppneum).

r5: (4:allow_strong_ab) :- not (1:allergystrong).

kb1.dlv: allergystrong.

kb2.dlv: marker. xraypneum.

kb4.dlv: give_strong v give_weak :- need_ab.

give_strong :- need_strong.

give_nothing :- not need_ab, not need_strong.

:- give_strong, not allow_strong_ab.

Intuitively, C1 and C2 provide information that the patient is allergic to strong
antibiotics, that a certain blood marker is present, and that pneumonia was
detected in an X-ray examination. C4 suggests a treatment which is either a
strong antibiotic, a weak antibiotic, or no medication at all.

Context C3 is implemented in C++ and uses the mcs-ie API. The following
source code (namespaces and includes are omitted) builds into a dlvhex plugin:

DLVHEX_MCSEQUILIBRIUM_PLUGIN(MedExamplePluginContext3,0,1,0)

DLVHEX_MCSEQUILIBRIUM_CONTEXT(Context3,"ontology_context3_acc")

set<set<string> > Context3::acc(

const string& param, const set<string>& input) {

set<set<string> > ret;

set<string> s(input.begin(), input.end());

if(input.count("pneum") == 1 && input.count("marker") == 1)

mcs-ie: Explaining Inconsistency in MCSs 359

s.insert("atyppneum");

ret.insert(s); return ret;

}

void MedExamplePluginContext3::registerAtoms()

{ registerAtom<Context3>(); }

The first two lines creates a dlvhex plugin and an external atom usable in
#context(...). Context semantics is implemented in function acc, which gets
bridge rule heads as input and returns accepted belief sets. Finally, the external
atom is registered in the plugin using registerAtoms.

Roughly, C3 specifies that presence of pneumonia together with a blood
marker (stemming from r2) yields atypical pneumonia in the belief state.

Note that this system is inconsistent, as the expert system concludes that a
patient must be given a special drug, but the patient record states that she is
allergic to that drug, a counter-indication. This inconsistency can be explained
using mcs-ie as follows (assuming the mcs-ie plugin in the current directory):

$ dlvhex --plugindir=./ --ieenable --ieexplain=Dm,Em master.hex

mcs-ie calculates the following output, containing minimal diagnoses plus wit-
nessing equilibria (Dm:EQ:), and minimal inconsistency explanations (Em):

Dm:EQ:({r1},{}):({allergystrong},{marker,xraypneum},{})

Dm:EQ:({r2},{}):({allergystrong},{marker,xraypneum},{pneum},{})

Dm:EQ:({r4},{}):({allergystrong},{marker,xraypneum},{atyppneum,pneum},{})

Dm:EQ:({},{r5}):({allergystrong},{marker,xraypneum},{atyppneum,pneum},{})

Em:({r1,r2,r4},{r5})

Accordingly, deactivating r1, or r2, or r4, or adding r5 unconditionally, will restore
consistency, and there is a single inconsistency involving all rules except for r3.

4 Conclusions

The mcs-ie system may serve as a valuable tool for analyzing inconsistencies
in MCSs. It is geared towards functionality, not (yet) towards efficiency. An
interactive demo is available.1 Future work will be the implementation of further
external atoms, e.g., for accessing DBMS.

References

1. Brewka, G., Eiter, T.: Equilibria in heterogeneous nonmonotonic multi-context sys-
tems. In: AAAI, pp. 385–390 (2007)

2. Brewka, G., Roelofsen, F., Serafini, L.: Contextual default reasoning. In: IJCAI, pp.
268–273 (2007)

3. Eiter, T., Fink, M., Schüller, P., Weinzierl, A.: Finding explanations of inconsistency
in nonmonotonic multi-context systems. In: KR, pp. 329–339 (2010)

4. Eiter, T., Ianni, G., Schindlauer, R., Tompits, H.: A uniform integration of higher-
order reasoning and external evaluations in answer-set programming. In: IJCAI, pp.
90–96 (2005)

5. Giunchiglia, F., Serafini, L.: Multilanguage hierarchical logics, or: How we can do
without modal logics. Artificial Intelligence 65(1), 29–70 (1994)

Coala: A Compiler from Action Languages to ASP

Martin Gebser1, Torsten Grote1, and Torsten Schaub1,2

1 Universität Potsdam, Institut für Informatik, August-Bebel-Str. 89, D-14482 Potsdam
2 Simon Fraser University, Canada, and Griffith University, Australia

Abstract. Action languages allow for compactly describing dynamic domains.
They are usually implemented by compilation, e.g., to Answer Set Programming.
To this end, we developed a tool, called Coala, offering manifold compilation
techniques for several action languages. We provide an overview of the salient
and distinctive features of Coala as well as an experimental comparison of them.

1 Introduction

Action languages provide a compact formal model for describing dynamic domains [1],
being central to many applications like model checking, planning, robotics, etc. More-
over, action languages can be implemented rather efficiently through compilation to
Answer Set Programming (ASP; [2]) or Satisfiability Checking (SAT; [3]). Our system
Coala takes advantage of this by offering a variety of different compilation techniques
for several action languages.

Coala originates from al2asp, constituting the heart of the BioC system [4] used
for reasoning about biological models in action language CTAID [5]: al2asp compiles
CTAID to C, which is in turn mapped to ASP via the transformation in [6]. Coala ex-
tends the capacities of al2asp in several ways. First, it adds certain features of C+ [7]
and provides full support of B [8] (and AL). Second, it offers different compilation
schemes. Apart from a priori bounded encodings using standard ASP systems, Coala
furnishes incremental encodings that can be used in conjunction with the incremental
ASP system iClingo [9]. Moreover, Coala distinguishes among forward and backward
(incremental) encodings, depending on whether trajectories are successively extended
from initial states or whether they are built backwards starting from final states. Third,
Coala supports all action query languages,P ,Q, andR, in [1]. Fourth, Coala allows for
posing LTL-like queries, following [10]. Finally, Coala offers the usage of first-order
variables that are treated by the underlying ASP grounder. Optionally, type checking
for variables can be enabled. Coala is implemented in C++ and can also be used as a
library; it is freely available at [11].

Our general approach is similar to the one taken by DLVK [12] for processing action
languageK. Similarly, CCalc [7] addresses C+ in its generality and maps it to SAT. We
provide in [4] an empirical evaluation comparing al2asp (aka Coala’s bounded encod-
ing of C following [6]) in combination with Gringo and clasp to CCalc and DLVK

on benchmarks expressed in C. Among the three systems, this rudimentary version of
Coala had an edge in terms of robustness, having by far the fewest number of time-
outs. Hence, in what follows we concentrate on the novel features of Coala going well
beyond existing systems.

T. Janhunen and I. Niemelä (Eds.): JELIA 2010, LNAI 6341, pp. 360–364, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Coala: A Compiler from Action Languages to ASP 361

2 Coala at Work

Coala starts with parsing an action description by means of an easily adaptable
bison++-based parser before compiling it into a non-ground logic program. This pro-
gram is grounded by Gringo and optionally extended by further ground facts before
trajectories are generated via clasp. In what follows, we sketch the major compilation
features of Coala illustrated by constructs of C [1].

To begin with, Coala generates via option -e either instance-based or direct encod-
ings. For instance, the dynamic causal law

<caused> -alive <if> hit <after> shoot.

can be mapped onto either the fact caused(neg(alive),hit,true,shoot). or
the rule -fluent_alive(T) :- not -fluent_hit(T), action_shoot(T-1).

While a direct encoding is executable without further additions (cf. [6]), an instance-
based encoding relies on meta-interpretation through an accompanying encoding. Al-
though we do not detail it here, such meta-interpretation is very flexible and thus an
easy way to implement different strategies.

Another major feature of Coala is the usage of incremental ASP solving techniques
(via option -i), as provided by iClingo.1 In this case, an action description is mapped
onto a parametrized threefold logic program B ∪ P [k] ∪ Q[k], among which P [k]
and Q[k] contain a parameter k ranging over positive integers. Program B describes
static knowledge, independent of k. The role of P [k] is to capture knowledge accumu-
lating with increasing k, whereas Q[k] is specific for each value of k. The goal is then
to compute answer sets of program B ∪

⋃
1≤j≤iP [k/j] ∪Q[k/i] for some (minimum)

integer i ≥ 1. In an incremental setting, the above dynamic law is mapped onto

#cumulative t.
-fluent_alive(t) :- not -fluent_hit(t),action_shoot(t-1).

indicating that the rule belongs to P [t]; its ground instances are successively produced
and accumulated in the solver. Similarly, declarations #base. and #volatile t.
indicate whether a rule belongs to B or Q[k], respectively. Unlike this, a non-
incremental setting is guarded by a fixed number of time steps t, provoking repetitive
grounding of rules during iterative deepening search.

A third major feature is Coala’s distinction between forward and backward (incre-
mental) encodings (via option -r), depending on whether trajectories are successively
extended from initial states or whether they are built backwards starting from final
states. This is implemented by means of meta-interpretation. To get an impression, con-
sider the following three “meta-rules”:

1 { holds(F,-t), holds(neg(F),-t) } 1 :- fluent(F).
fire(F,G,P,A,-t) :- caused(F,G,P,A), occurs(A,-t),

holds(P,-t), holds(G,-t+1).
:- fire(F,G,P,A,-t), not holds(F,-t+1).

The first rule aims at guessing a predecessor state (time stamp -t). The second one
determines firing dynamic laws. Third, the integrity constraint ensures that the effects
of firing causal laws are consistent with the successor state (time stamp -t+1).

1 Note that iClingo relies on Gringo and clasp.

362 M. Gebser, T. Grote, and T. Schaub

Moreover, Coala supports LTL-like queries, using next, finally, globally, until, weak
until, and release, viz. X, F, G, U, W, R, and aims at generating counterexam-
ples. For instance, the simple LTL query LTL: X alive. asks whether the fluent
alive is true in the next step in all trajectories. Following [10], this is translated to

ltl_counter_example :- ltl_f_2(0).
ltl_f_2(0) :- -fluent_alive(1).

producing counterexamples in which the complement of alive holds. More complex
LTL formulas require additional auxiliary rules and are omitted here for brevity.

Finally, a typical call of Coala looks as follows:
coala -l b -i bw.alb | cat - bw.stat | iclingo 0

The options ‘-l b -i’ tell Coala that bw.alb is written in B and that it should be
compiled into an incremental ASP program. The latter is then augmented with static
domain knowledge in bw.stat before iClingo is invoked to compute all answer sets
for a minimum number of time steps. The interested reader is directed to [11] for more
details on the language and usage of Coala.

3 Experiments

We conducted experiments in order to evaluate the different compilation techniques
furnished by Coala. To this end, we confined ourselves to action language C and
concentrate on combinations of several Coala options: ‘-n’ enables dedicated han-
dling of classical negation; ‘-i’ produces an incremental encoding for iClingo; ‘-e’
uses meta-interpretation (rather than direct encoding); ‘-r’ uses backward encoding.
The default setting includes none of these features. All experiments were run with
iClingo (2.0.5), using clasp (1.3.2) in its default settings on an Intel Core 2 Duo CPU
at 2.66 GHz running Ubuntu GNU/Linux 9.10 with RAM usage limited to 1.5 GB. All
programs were run sequentially as single threads on one CPU core.

Table 1. Experiments comparing different target compilations of Coala

default -n -i -e -e -i -e -i -r
Benchmark # time stime time stime time stime time stime time stime time stime
blocksworld/b08 16 44.19 20.90 44.31 21.84 4.30 4.23 323.43 69.98 76.83 74.83 112.95 109.78
blocksworld/b09 16 53.56 9.27 55.78 9.58 11.68 11.58 TO TO 283.90 280.33 338.64 332.95
blocksworld/b10 17 88.69 20.53 77.38 11.74 14.69 14.56 TO TO 366.34 361.42 MO MO
blocksworld/b11 18 403.31 276.31 403.78 247.84 117.53 117.37 TO TO TO TO MO MO
blocksworld/b12 19 228.47 160.37 290.91 163.54 69.99 69.81 MO MO MO MO MO MO
ferryman/f03 15 29.38 6.80 29.79 7.26 2.67 2.63 49.84 7.43 7.40 6.99 13.09 12.31
ferryman/f04 17 65.40 14.48 64.00 13.26 3.48 3.44 96.89 14.20 11.84 11.17 26.96 25.71
ferryman/f05 19 132.22 26.67 100.30 26.83 4.36 4.32 170.14 23.46 19.35 18.31 46.27 44.35
ferryman/f06 17 122.92 28.63 120.93 26.29 6.03 5.97 202.99 28.12 26.57 25.26 67.57 65.13
ferryman/f07 19 243.05 54.12 257.18 50.53 18.04 17.96 356.48 48.50 40.12 38.19 138.62 135.09
hanoi/h03 31 85.89 9.77 88.48 10.68 1.83 1.80 50.80 5.01 4.66 4.50 281.18 280.86
hanoi/h04 63 TO TO TO TO 69.51 69.41 TO TO 54.74 54.19 TO TO
yale/y04 18 6.22 0.16 6.14 0.20 10.18 10.14 11.35 0.07 5.13 5.10 16.11 16.08
yale/y05 20 40.91 0.14 35.52 0.79 16.83 16.80 64.19 0.86 40.59 40.56 69.95 69.91
yale/y06 22 132.51 5.88 165.62 4.50 79.05 79.02 87.20 0.34 177.14 177.10 TO TO
yale/y07 24 547.40 0.45 TO TO 205.35 205.31 499.40 22.02 TO TO TO TO
Average (Outs) 176.51 (1) 183.76 (2) 39.72 (0) 307.04 (5) 182.16 (3) 294.46 (6)

Coala: A Compiler from Action Languages to ASP 363

Our results are summarized in Table 1. The first two columns give the respective
benchmark along with its horizon (#). Note that the next three columns use direct en-
codings, while the last three rely upon meta-interpretation. Column time is average CPU
time from three runs per benchmark; stime is average time needed by the solver (in the
final successful run during iterative deepening search; and in total for -i). An entry TO
indicates timeout after 600 seconds, while MO means that the processes were aborted at
1.5 GB RAM consumption. The last row shows the average CPU time (and number of
timeouts) over all benchmarks. In case of timeout, a time of 600 seconds was assumed.

Looking at the global outcome in the last row, we observe that incremental
direct encodings (-i) perform best over all benchmarks (except for h04 and y04). Al-
though worse, the incremental non-direct counterpart (-e -i) performs best on av-
erage among the meta-interpreted encodings. Changing to a more complex backward
encoding (-e -i -r) does not lead to an improvement and yields two more memory
exhaustions than the other meta-interpreted encodings. Pure meta-interpretation (-e),
suffering from a grounding overhead, performs worst, despite of solving one more in-
stance than the backward encoding. No clear difference was observable on the usage of
built-in classical negation (-n), producing more integrity constraints than a dedicated
treatment (default).

All in all, we observe that an incremental approach to action languages is largely
beneficial. The usage of backward encodings may make a difference on particular prob-
lem classes. Although meta-interpretation appears to lead to less efficient encodings, it
offers an easy way to experiment with different strategies.

Acknowledgments. This work was partially funded by BMBF project GoFORSYS and
DFG grant SCHA 550/8-1.

References

1. Gelfond, M., Lifschitz, V.: Action languages. Electronic Transactions on Artificial Intelli-
gence 3(6), 193–210 (1998)

2. Baral, C.: Knowledge Representation, Reasoning and Declarative Problem Solving.
Cambridge University, Cambridge (2003)

3. Biere, A., Heule, M., van Maaren, H., Walsh, T.: Handbook of Satisfiability. IOS, Amsterdam
(2009)

4. Dworschak, S., Grote, T., König, A., Schaub, T., Veber, P.: The system BioC for reasoning
about biological models in C. In: ICTAI 2008, pp. 11–18. IEEE, Los Alamitos (2008)

5. Dworschak, S., Grell, S., Nikiforova, V., Schaub, T., Selbig, J.: Modeling biological networks
by action languages via ASP. Constraints 13(1-2), 21–65 (2008)

6. Lifschitz, V., Turner, H.: Representing transition systems by logic programs. In: Gelfond, M.,
Leone, N., Pfeifer, G. (eds.) LPNMR 1999. LNCS (LNAI), vol. 1730, pp. 92–106. Springer,
Heidelberg (1999)

7. Giunchiglia, E., Lee, J., Lifschitz, V., McCain, N., Turner, H.: Nonmonotonic causal theories.
Artificial Intelligence 153(1-2), 49–104 (2004)

8. Son, T., Baral, C., Nam, T., McIlraith, S.: Domain-dependent knowledge in answer set plan-
ning. ACM Transactions on Computational Logic 7(4), 613–657 (2006)

364 M. Gebser, T. Grote, and T. Schaub

9. Gebser, M., Kaminski, R., Kaufmann, B., Ostrowski, M., Schaub, T., Thiele, S.: Engineering
an incremental ASP solver. In: Garcia de la Banda, M., Pontelli, E. (eds.) ICLP 2008. LNCS,
vol. 5366, pp. 190–205. Springer, Heidelberg (2008)

10. Heljanko, K., Niemelä, I.: Bounded LTL model checking with stable models. Theory and
Practice of Logic Programming 3(4-5), 519–550 (2003)

11. http://potassco.sourceforge.net
12. Eiter, T., Faber, W., Leone, N., Pfeifer, G., Polleres, A.: A logic programming approach to

knowledge-state planning. Artificial Intelligence 144(1-2), 157–211 (2003)

http://potassco.sourceforge.net

DLVMC: Enhanced Model Checking in DLV

Marco Maratea2, Francesco Ricca1, and Pierfrancesco Veltri1

1 Department of Mathematics, University of Calabria, 87036 Rende (CS), Italy
{veltri,ricca}@mat.unical.it

2 DIST, University of Genova, 16145 Genova, Italy
marco@dist.unige.it

Abstract. Stable Model Checking (MC) in Answer Set Programming systems is,
in general, a co-NP task for disjunctive programs. Thus, implementing an efficient
strategy is very important for the performance of ASP systems. In DLV, MC is
carried out by exploiting the SAT solver SATZ, and the result of this operation
also returns (in case the check fails) an ”unfounded set”, as by-product, which is
also used for pruning the search space during answer set computation.

In this paper we report on the integration of a “modern” SAT solver,
MINISAT, in DLV. The integration poses not only technological issues, but also
challenges w.r.t. the ”quality” of the returned unfounded set and w.r.t. the inter-
play with the existing DLV techniques.

1 Introduction

Disjunctive Logic Programming under the answer set semantics, a.k.a., Answer Set
Programming (ASP for short, [1,2]), is a powerful declarative formalism for knowledge
representation and reasoning [3]. ASP is expressive in a precise sense: it allows to solve
any problem belonging to the second level of the polynomial hierarchy. The idea of
ASP is to represent a given computational problem by a logic program, the answer sets
of which correspond to solutions; and, then, to use an answer set solver to find such
solutions [4]. Answer set computation of propositional (i.e., without variables) ASP
programs is carried out in DLV [5], as well as in most ASP systems (like e.g., GnT [6],
Cmodels [7] and CLASPD [8]) by exploiting two main modules: model generator and a
model checker. The first, which is similar to the DPLL procedure [9] for SAT, generates
“candidate” answer sets; the second verifies if such candidates are indeed answer sets.
On the class of non Head-Cycle-Free (HCF) [10] disjunctive programs, stable model
checking is co-NP-complete. To handle this case, DLV exploits a reduction to a satis-
fiability (SAT) problem [11]: verifying if the candidate solution is “stable”, i.e., if it is
an answer set, is reduced to checking the unsatisfiability of a SAT formula φ, built from
the ASP program and the candidate solution. If the formula is satisfiable, then the MC
module of DLV also returns a set of “unfounded” atoms, i.e., a set of atoms which can
be freely assigned to false. Such unfounded set corresponds to the set of atoms assigned
to true in a satisfying interpretation of φ returned by the SAT solver (thus, it is available
for free after a MC call) and is exploited in the model generator of DLV for enhancing
the search together with other techniques like partial checking [11,12,13,14]. In par-
ticular, once a (total) model check fails during the search DLV goes back in the search

T. Janhunen and I. Niemelä (Eds.): JELIA 2010, LNAI 6341, pp. 365–368, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

366 M. Maratea, F. Ricca, and P. Veltri

and performs partial model checks while backtracking, in order to unroll the choices
in current partial interpretations causing the original stability failure. This technique is
combined with another approach, in which DLV speculatively performs partial model
checks while moving forwards (as opposed to backtracking) in the search tree. Those
checks allows to detect in advance (i.e., before reaching a complete assignment) that
the current branch of the search tree is actually inconsistent.

As a matter of fact, DLV performance on non-HCF programs depends on both the
efficiency of the SAT checker employed and the “quality” of the returned “unfounded
set” (in case the candidate solution is not stable).

In this paper, we report on the integration of a “modern” SAT solver, MINISAT, in
DLV, which results in the enhanced system DLVMC . The integration poses not only
technological issues; indeed, modern SAT solvers are significantly different from pre-
vious propositional checkers such as SATZ (which is the SAT solver employed in the
standard version of DLV). The difference is not only in the data structures and/or in the
optimization techniques implemented but also in the termination conditions. A CNF
formula is declared satisfiable if either all variables of the problem have been assigned
(without any conflict) as in MINISAT; or when all clauses have been satisfied, as in
SATZ. The choice of the termination condition clearly affects the nature of the re-
turned assignment, and thus the “quality” of the unfounded set. The branching heuristic
we used within MINISAT by default assigns all variables to false, i.e., it guarantees
to return subset-minimal “minimal” unfounded sets (see, e.g., [15]). Theoretically, im-
posing an ordering to be followed while branching can have significant degradation in
performance [16], but some preliminary experiments shows that this approach can pay
off when exploited in DLV, sometimes by orders of magnitude.

2 System Usage and Options

DLVMC has to be invoked as follows:

./DLVMC -solver <> [-heurm <>] [filename [filename [...]]]

The command line of DLVMC inherits all the options of DLV, and adds some new
options. In more detail: (i) “-solver” indicates the SAT solver to be used for stable
model checking. The two SAT solvers available are SATZ and MINISAT (“satz” and
“minisat” are the specific strings to be specified in place of <>). DLVMC relies on
MINISAT, but the default setting of DLV (i.e., SATZ) can be also selected; and (ii)
“-heurm” specifies the type of heuristic used inside MINISAT, by allowing to em-
ploy heuristics where variables are first assigned negatively, or positively, or randomly
(“neg”, “pos”, “ran” are the specific strings to be specified in place of <>). Negative
first heuristic is the default setting. The option has no effect in case of SATZ.
System Availability. The home page of the system, together with the Linux executables
and the QBF benchmarks used are available at: http://www.mat.unical.it/ ricca/DLVMC.

3 Preliminary Analysis

We have performed a preliminary experimental analysis involving both hard QBF
benchmarks coming from the QBF evaluations, and StrategicCompanies benchmarks.

DLVMC : Enhanced Model Checking in DLV 367

Table 1. Experimental analysis: DLV and DLVMC with (-PC) and without (-noPC), and
CLASPD, on QBF and StrategicCompanies benchmarks

instance DLV -PC DLVMC -PC #MC DLV -noPC DLVMC -noPC CLASPD
qbf1 0.85 0.88 65 0.92 0.96 2.31
qbf2 3.95 3.60 129 4.15 3.86 12.93
qbf3 14.53 14.14 257 15.43 15.17 63.47
qbf4 77.39 70.80 513 82.76 75.65 315.68

x100.0q 1.71 0.97 3 28.12 10.14 4.71
x110.0q 13.79 10.96 12/7 95.26 60.19 279.89
x135.02q 80.00 113.24 12/9 TIME TIME TIME
x145.0q 137.82 51.86 12/7 TIME 992.80 TIME
x150.02q 233.73 49.89 15/8 TIME 876.94 TIME
x150.04q 208.11 76.74 12/7 TIME 984.08 TIME
x165.03q 376.58 842.01 13/8 TIME TIME TIME
x165.04q 286.10 1084.68 12/8 TIME TIME TIME
x170.0q TIME 503.42 −/8 TIME TIME TIME
x170.02q 919.03 475.11 15/7 TIME TIME TIME
x175.01q TIME 763.78 −/8 TIME TIME TIME
x175.04q 816.79 689.10 15/9 TIME TIME TIME
x185.0q TIME 527.99 −/9 TIME TIME TIME

The second ones being the only “hard” benchmarks submitted to the last ASP competi-
tion. All experiments were run on a machine equipped with two Intel Xeon “Woodcrest”
(quad core) processors clocked at 3.GHz with 4MB of Level 2 Cache and 4GB of RAM,
running Debian GNU Linux 4.0. Time measurements have been done using the time
command provided by the system, counting total CPU time for the respective process.
We report the results in terms of execution time for finding one answer set, if any, within
20 minutes (“TIME” otherwise). The virtual memory available to the solvers has been
limited to 512MB. qbf1-qbf4 instances are translation of the bigger MutexP QBF in-
stances. Few StrategicCompanies benchmarks are non solved by any system.

Results are presented in Table 1, where the first column is the instance, the sec-
ond and third columns contain results for DLV with partial check (-PC) employing
SATZ and MINISAT, respectively, the fourth column contains the number of stabil-
ity checks performed (if “DLV -PC” and “DLVMC -PC” perform the same number of
checks there is one number), the fifth and sixth columns are the same as the second and
third, but with partial check disabled (-noPC), and the last column contain results for
CLASPD [8], as reference. “DLV -PC” and “DLVMC -PC” always perform the same
number of stability checks on these benchmarks.

On QBF benchmarks, the advantages of DLVMC over DLV is of around a 10% on
both configurations, i.e., with and without PC: the number of stability checks is here
always the same, and the advantages of DLVMC seem to be due to the efficiency of
MINISAT. All DLV-based versions are much faster than CLASPD. On the Strategic-
Companies benchmarks, the impact of MINISAT is instead much higher: on all but
two instances, “DLVMC -PC” performs much better than “DLV -PC”, solving three
instances more among the biggest showed. Considering the related number of stability

368 M. Maratea, F. Ricca, and P. Veltri

checks, here is very important both the efficiency of MINISAT and the quality of the
returned unfounded sets. As a matter of fact, PC is of fundamental importance for the
efficiency of DLV; nonetheless, the results without MC show an even more significant
and consistent gain for the version with MINISAT, even if the number of stability checks
is the same. CLASPD solves only the two smallest instances of this set.

Acknowledgements. We thank Nicola Leone for fruitful discussion about the topic of
the paper. This work has been partially supported by the Calabrian Region under PIA
(Pacchetti Integrati di Agevolazione industria, artigianato e servizi) project DLVSYS-
TEM approved in BURC n. 20 parte III del 15/05/2009 - DR n. 7373 del 06/05/2009.
Part of this work has been done while the first author has been with the Università degli
Studi e-Campus.

References

1. Gelfond, M., Lifschitz, V.: The Stable Model Semantics for Logic Programming. In:
ICLP/SLP 1988, pp. 1070–1080. MIT Press, Cambridge (1988)

2. Gelfond, M., Lifschitz, V.: Classical Negation in Logic Programs and Disjunctive Databases.
NGC 9, 365–385 (1991)

3. Baral, C.: Knowledge Representation, Reasoning and Declarative Problem Solving. CUP
(2003)

4. Lifschitz, V.: Action Languages, Answer Sets and Planning. In: The Logic Programming
Paradigm – A 25-Year Perspective, pp. 357–373 (1999)

5. Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S., Scarcello, F.: The DLV
System for Knowledge Representation and Reasoning. ACM TOCL 7(3), 499–562 (2006)

6. Janhunen, T., Niemelä, I., Seipel, D., Simons, P., You, J.H.: Unfolding Partiality and Dis-
junctions in Stable Model Semantics. ACM TOCL 7(1), 1–37 (2006)

7. Lierler, Y.: Disjunctive Answer Set Programming via Satisfiability. In: Baral, C., Greco,
G., Leone, N., Terracina, G. (eds.) LPNMR 2005. LNCS (LNAI), vol. 3662, pp. 447–451.
Springer, Heidelberg (2005)

8. Gebser, M., Kaufmann, B., Neumann, A., Schaub, T.: Conflict-driven answer set solving. In:
IJCAI 2007, pp. 386–392 (2007)

9. Davis, M., Logemann, G., Loveland, D.: A Machine Program for Theorem Proving. Com-
munications of the ACM 5, 394–397 (1962)

10. Ben-Eliyahu, R., Dechter, R.: Propositional Semantics for Disjunctive Logic Programs.
AMAI 12, 53–87 (1994)

11. Koch, C., Leone, N., Pfeifer, G.: Enhancing Disjunctive Logic Programming Systems by
SAT Checkers. AI 15(1-2), 177–212 (2003)

12. Leone, N., Rullo, P., Scarcello, F.: Disjunctive Stable Models: Unfounded Sets, Fixpoint
Semantics and Computation. Inf.Comp. 135(2), 69–112 (1997)

13. Pfeifer, G.: Improving the Model Generation/Checking Interplay to Enhance the Evaluation
of Disjunctive Programs. In: Lifschitz, V., Niemelä, I. (eds.) LPNMR 2004. LNCS (LNAI),
vol. 2923, pp. 220–233. Springer, Heidelberg (2003)

14. Janhunen, T., Niemelä, I., Simons, P., You, J.H.: Partiality and Disjunctions in Stable Model
Semantics. In: KR 2000, vol. 12, 15, pp. 411–419 (2000)

15. Giunchiglia, E., Maratea, M.: Solving optimization problems with DLL. In: Proc. of the 17th
European Conference on Artificial Intelligence (ECAI 2006). Frontiers in Artificial Intelli-
gence and Applications, vol. 141, pp. 377–381. IOS Press, Amsterdam (2006)

16. Järvisalo, M., Junttila, T.A., Niemelä, I.: Unrestricted vs restricted cut in a tableau method for
boolean circuits. Annals of Mathemathics and Artificial Intelligence 44(4), 373–399 (2005)

A Dynamic-Programming Based ASP-Solver�

Michael Morak, Reinhard Pichler, Stefan Rümmele, and Stefan Woltran

Institut für Informationssysteme E184/2, Technische Universität Wien
Favoritenstr. 9–11, 1040 Wien, Austria

Abstract. We present a novel system for propositional Answer-Set Pro-
gramming (ASP). This system, called dynASP, is based on dynamic pro-
gramming and thus significantly differs from standard ASP-solvers which
implement techniques stemming from SAT or CSP.

1 Introduction

Answer-Set Programming (ASP, for short) [6,7] is nowadays a well acknowledged
paradigm for declarative problem solving as witnessed by many successful appli-
cations in the areas of AI and KR. Evaluating ASP-programs relies on two steps,
the grounding (which instantiates the variables in the program’s rules) and the
solving process itself which works on ground (i.e. propositional) programs. For
the latter task, many different solvers (see [1] for an overview) exist nowadays,
and also the system presented here falls into this category.

Solving ground programs still is an intractable problem. More precisely, deci-
sion problems for disjunctive programs (DLPs) are located on the second level
of the polynomial hierarchy, but also decision problems defined over disjunction-
free programs — usually called normal programs (NLPs) — are NP- or coNP-
complete. The same complexity as for NLPs holds if a certain restriction on
the usage of disjunction (head-cycle free programs, HCFPs) is assumed. Due to
these intractability results, standard-ASP solvers use techniques stemming from
SAT or CSP, where intractability has been successfully tackled in practice.

Our solver, which we present here, relies on a more theoretical approach to
deal with intractable problems, namely parameterized complexity theory where
the idea is to bound a certain parameter by a constant in order to obtain tractable
fragments for the problems under consideration. One important such parameter
is treewidth, which measures the “tree-likeness” of a graph. For instance, the
problem of deciding ASP consistency (i.e. whether a disjunctive logic program
has at least one answer set) has been shown tractable [3] for programs having
an incidence graph of bounded treewidth. Treewidth is defined over so-called
tree decompositions which in turn can be used by dynamic programming (DP)
methods to solve the considered problem. One such algorithm for disjunctive
ASP has been presented recently [4]. We refer to [4] also for details how concepts
as incidence graphs, treewidth, tree decomposition, etc. are defined in terms of
ASP programs. It is however important to note that such DP algorithms can
� Supported by the Austrian Science Fund (FWF), project P20704-N18.

T. Janhunen and I. Niemelä (Eds.): JELIA 2010, LNAI 6341, pp. 369–372, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

370 M. Morak et al.

Parsing

Ground Program

Preprocessing
Tree Decom-

position Normalization
dynASP

Algorithm

Answer Sets

Fig. 1. Architecture of dynASP

be applied to an arbitrary program as soon as a tree decomposition is found for
that program. The running time of the DP algorithms however heavily depends
on the width of the supplied tree decomposition.

To evaluate this new DP-based approach for ASP, we have implemented two
such methods: one for DLPs, cf. [4]; and another one applicable to HCFPs which
relies on a rather different idea1. Thus, we call our solver dynASP, which first
finds a tree decomposition for the given program, and then uses the aforemen-
tioned DP methods to evaluate the program. This entire process underlying our
approach is hidden from the user. In fact, dynASP presents itself like a standard-
ASP solver.

The main aim of this paper is to announce the release of the first prototype
of our ASP-solver and to present some implementation details as well as some
preliminary experiments. Ongoing and future work will carefully evaluate the
potential of this novel approach for solving ASP programs.

2 Architecture

Figure 1 gives an overview of the overall architecture of the system. Generally
the system works in five discrete steps:

– Parsing DLV-style programs is done via a lex/yacc parser.
– Preprocessing is done after successfully reading the input. This task is

twofold: Firstly, it performs equivalence-preserving transformations for the
provided program (for the moment, this just takes care of some special cases
like tautological and empty rules in order to circumvent problems which
might arise if such rules are present in the later steps; for future versions
this task can be extended to find simplifications in terms of reducing the
tree-width of the program without changing its semantics), second it con-
structs the incidence graph of the program which is then passed to the Tree
Decomposition module.

– For computing the tree decomposition, we use an algorithm based on heuris-
tics [2]. This algorithm does not guarantee to find a tree decomposition of
minimal width. But it usually finds a tree decomposition of width close to
the minimum at comparatively low computational cost. An implementation

1 Basically, the HCFP algorithm follows the ideas underlying a DP algorithm for
weight-constraints programs introduced in [8].

A Dynamic-Programming Based ASP-Solver 371

of this algorithm is freely available from http://www.dbai.tuwien.ac.at/
proj/hypertree/downloads.html.

– Normalization guarantees that the difference between a node and its pre-
decessor in the tree decomposition is at most one variable or rule. Our algo-
rithms require tree decompositions of this particular form.

– The actual algorithm is run. Depending on the supplied program options,
this is either the ASP algorithm for general DLPs or the algorithm for
HCFPs, as described earlier.

3 System Specifics

An executable version of dynASP is available under

http://www.dbai.tuwien.ac.at/research/project/tractability/dynasp/

dynASP is invoked via command line and provides the following options:

dynasp [-b] [-t] [-s <seed>] [-f <file>] -a <alg> -o <output>

-b print benchmark information
-t perform only tree decomposition step
-s seed initialize random number generator with “seed”
-f file the file to read from
-a alg the algorithm to use, one of {sat, minsat, asp, hcfasp}
-o output the output-type, one of {enum, count, yesno}

The benchmark information consists of timing information being printed to the
screen containing information about CPU time used for the tree decomposition,
normalization, algorithm and evaluation steps and of course the overall time.

Depending on whether a file option is given, input is either read from a file
or from standard input. Depending on the algorithm, the input has to be in a
certain format. For the DLP algorithm and its HCF pendant the file has to come
in the core language of dlv [5], i.e. restricted to ground disjunctive programs.
The algorithm and output options specify which algorithm to use and what the
output should be (i.e. enumeration, counting or consistency checking).

dynASP is written in C++ using lex/yacc for parsing the input. In its current
version dynASP has nearly 6700 lines of code written in C++ (including the
tree decomposition functionality). The core algorithm for DLPs has around 600
lines of C++ code, the algorithm for head-cycle-free programs has about 200
more. Certain auxiliary functionality used by both algorithms is implemented in
another 200 lines.

dynASP uses an extensible class structure, allowing for code re-use and easy
implementation of various algorithms based on tree decompositions. Both the
DLP algorithm and the one for head-cycle-free programs are implemented us-
ing this class structure, with the two implementations sharing much of the code
used for consistency checking and answer-set enumeration. To illustrate the abil-
ity to implement other types of algorithms based on tree decompositions, DP
algorithms for SAT and MINSAT have also been implemented using the same
framework, however reading files in DIMACS CNF format.

http://www.dbai.tuwien.ac.at/
proj/hypertree/downloads.html
http://www.dbai.tuwien.ac.at/research/project/tractability/dynasp/

372 M. Morak et al.

4 Discussion

First experiments with our system on logic programs of low treewidth have
resulted in competitive performance compared with state-of-the-art ASP solvers.
The performance of our system is particularly favorable in situations where only
one pass of the tree decomposition is required (i.e., to check consistency or for
counting the answer sets). The evaluation of HCF programs with the dedicated
HCFP algorithm tends to display a better performance than the algorithm for
general programs. However, in its current implementation, our HCFP algorithm
is quite sensitive to the particular form of the tree decomposition. In contrast,
the algorithm for general DLPs is rather robust in this respect. Its performance
is mainly determined by the treewidth. Up to treewidth 5 – 7, this performance
is comparable to that of the DLV system.

Work on our system is ongoing. Major goals for the near future are further
performance improvements, e.g., by introducing better “data structures” or by
simplifying the programs to reduce the treewidth (without changing the seman-
tics of the programs). Eliminating the sensitivity of the HCFP algorithm to the
particular form of the tree decomposition also falls into this category. Moreover,
we plan to extend this framework by implementing further algorithms like e.g.,
for programs with weight/cardinality constraints, as well as support for input in
the SMODELS solver syntax.

References

1. Denecker, M., Vennekens, J., Bond, S., Gebser, M., Truszczynski, M.: The second
answer set programming competition. In: Erdem, E., Lin, F., Schaub, T. (eds.)
LPNMR 2009. LNCS, vol. 5753, pp. 637–654. Springer, Heidelberg (2009)

2. Dermaku, A., Ganzow, T., Gottlob, G., McMahan, B.J., Musliu, N., Samer, M.:
Heuristic methods for hypertree decomposition. In: Gelbukh, A., Morales, E.F. (eds.)
MICAI 2008. LNCS (LNAI), vol. 5317, pp. 1–11. Springer, Heidelberg (2008)

3. Gottlob, G., Pichler, R., Wei, F.: Bounded treewidth as a key to tractability of
knowledge representation and reasoning. In: Proc. AAAI 2006, pp. 250–256. AAAI
Press, Menlo Park (2006)

4. Jakl, M., Pichler, R., Woltran, S.: Answer-set programming with bounded treewidth.
In: Proc. IJCAI 2009, pp. 816–822. AAAI Press, Menlo Park (2009)

5. Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S., Scarcello, F.:
The dlv system for knowledge representation and reasoning. ACM Trans. Comput.
Log. 7(3), 499–562 (2006)

6. Marek, V.W., Truszczyński, M.: Stable Models and an Alternative Logic Program-
ming Paradigm. In: The Logic Programming Paradigm – A 25-Year Perspective, pp.
375–398. Springer, Heidelberg (1999)

7. Niemelä, I.: Logic programming with stable model semantics as a constraint pro-
gramming paradigm. Ann. Math. Artif. Intell. 25(3-4), 241–273 (1999)

8. Pichler, R., Rümmele, S., Szeider, S., Woltran, S.: Tractable answer-set program-
ming with weight constraints: Bounded treewidth is not enough. In: Proc. KR 2010,
pp. 508–517. AAAI Press, Menlo Park (2010)

Author Index

Alferes, José Júlio 182
Arieli, Ofer 11

Bairakdar, Seif El-Din 24, 352
Benferhat, Salem 38
Bögl, Markus 356
Bozzato, Loris 51
Brewka, Gerhard 1
Bruynooghe, Maurice 313, 326

Cabalar, Pedro 64
Caminada, Martin 286
Casini, Giovanni 77
Charalambidis, Angelos 91
Chen, Yin 104
Creignou, Nadia 117
Cruz, Flávio 130

Dao-Tran, Minh 24, 352
Darwiche, Adnan 7
Demri, Stéphane 10
Denecker, Marc 313, 326

Eiter, Thomas 24, 143, 352, 356

Ferrari, Mauro 51
Fink, Michael 24, 143, 156, 352, 356
Fiorentini, Camillo 51
Fiorino, Guido 51

Gebser, Martin 169, 360
Gonçalves, Ricardo 182
Grigore, Radu 195
Grote, Torsten 360
Gutiérrez-Basulto, Vı́ctor 208

Handjopoulos, Konstantinos 91
Herzig, Andreas 286

Janota, Mikoláš 195
Janssens, Gerda 260

Kimmig, Angelika 260
Klarman, Szymon 208
Koutras, Costas D. 221
Krennwallner, Thomas 24, 352
Krötzsch, Markus 234

Lagrue, Sylvain 38
Lifschitz, Vladimir 247

Mantadelis, Theofrastos 260
Maratea, Marco 365
Marques-Silva, Joao 195
Morak, Michael 369

Pagnucco, Maurice 339
Pearce, David 156, 273
Pichler, Reinhard 369

Ricca, Francesco 365
Rocha, Ricardo 130, 260
Rondogiannis, Panos 91
Rümmele, Stefan 369

Sabuncu, Orkunt 169
Sakama, Chiaki 286
Schaub, Torsten 169, 360
Schmidt, Johannes 117
Schüller, Peter 356
Straccia, Umberto 77
Swift, Terrance 300

Thomas, Michael 117

Uridia, Levan 273

Veltri, Pierfrancesco 365
Vennekens, Joost 313, 326
Vlaeminck, Hanne 326

Wadge, William W. 91
Wan, Hai 104
Warren, David S. 300
Weinzierl, Antonius 143
Wittocx, Johan 326
Woltran, Stefan 117, 369

Yahi, Safa 38
Yang, Fangkai 247

Zamansky, Anna 11
Zhang, Yan 104
Zhou, Yi 104
Zhuang, Zhi Qiang 339
Zikos, Yorgos 221

	Title Page
	Preface
	Organization
	Table of Contents
	I Invited Talks
	Nonmonotonic Tools for Argumentation
	Introduction
	Abstract Dialectical Frameworks
	Application: Reconstructing Carneades

	Relax, Compensate and Then Recover: A Theory of Anytime, Approximate Inference
	Counter Systems for Data Logics

	II Regular Papers
	Similarity-Based Inconsistency-Tolerant Logics
	Introduction
	Preliminaries
	Denotational Semantics
	Many-Valued Matrices
	Non-deterministic Matrices
	Possible-Worlds Semantics

	Inconsistency-Tolerant Logics
	Similarity-Based Reasoning
	Inconsistency Tolerance by Matrix Semantics
	Inconsistency Tolerance by Nmatrices
	Inconsistency Tolerance by Possible Worlds

	Conclusion

	Decomposition of Distributed Nonmonotonic Multi-Context Systems
	Introduction
	Preliminaries
	Decomposition of Nonmonotonic MCS
	Nonmonotonic MCS Evaluation with Query Plans
	Implementation and Experimental Results
	Related Work and Conclusion

	Bridging Possibilistic Conditional Knowledge Bases and Partially Ordered Bases
	Introduction
	Brief Refresher on Inference from Partially Ordered Belief Bases
	Notations
	Qualitative Possibility Distribution
	Inference from Totally Pre-ordered Inconsistent Belief Bases
	Inference from Partially Pre-ordered Belief Bases

	Possibilistic Handling of Conditional Assertions
	On the Relation between Conditional Bases and Partially Ordered Belief Base
	Preliminary Results
	From Conditional Bases to Partially Ordered Bases
	From Partially Ordered Bases to Conditional Bases
	Compatible Bases vs. Compatible Distributions

	Complexity of Compatible-Based Inclusion Inference
	Conclusion

	A Decidable Constructive Description Logic
	Introduction
	Syntax and Semantics
	The Tableau Calculus TK
	Completeness and Termination
	Related Works and Conclusions

	A Normal Form for Linear Temporal Equilibrium Logic
	Introduction
	Linear Temporal Here-and-There (THT)
	Linear Temporal Equilibrium Logic (TEL)
	Reduction to Temporal Logic Programs
	Discussion and Related Work
	Conclusions

	Rational Closure for Defeasible Description Logics
	Introduction
	Propositional Rational Closure
	Rational Closure in DLs
	Conclusions

	Extensional Higher-Order Logic Programming
	Introduction
	Algebraic Complete Lattices
	The Higher-Order Language H: Syntax
	The Semantics of H
	The Semantics of Types
	The Semantics of Expressions
	Herbrand Interpretations

	Minimum Herbrand Model Semantics
	Proof Procedure
	Basic Expressions
	Substitutions and Unifiers
	SLD Resolution
	Soundness and Completeness of SLD-resolution

	Conclusions

	dl2asp: Implementing Default Logic via Answer Set Programming
	Introduction
	Preliminaries
	Reiter's Default Logic
	Answer Set Programming

	From Default Logic to Answer Set Programming
	Implementation
	Experimental Results
	Application to Fair Division Problem
	Conclusions and Future Work

	Sets of Boolean Connectives That Make Argumentation Easier
	Introduction
	Preliminaries
	Argumentation
	The Complexity of Verification
	The Complexity of Existence and Dispensability
	The Complexity of Relevance
	Discussion and Conclusion

	Retroactive Subsumption-Based Tabled Evaluation of Logic Programs
	Introduction
	Tabled Evaluation in YapTab
	Retroactive Call Subsumption
	External Pruning
	Internal Pruning

	Implementation Details
	Experimental Results
	Conclusions and Further Work

	Preference-Based Inconsistency Assessment in Multi-Context Systems
	Introduction
	Preliminaries
	Filtering and Comparing Diagnoses
	Filtering Diagnoses
	Comparing Diagnoses

	MCS-Realization
	Filters
	Preference Orders and CP-Nets

	Discussion
	Related Work and Conclusion

	A Logical Semantics for Description Logic Programs
	Introduction
	Preliminaries
	Logical Semantics
	Equivalence Concepts
	HEX Programs
	Conclusion

	An Incremental Answer Set Programming Based System for Finite Model Computation
	Introduction
	Background
	Approach
	Interpreting Terms
	Interpreting Clauses
	Extracting Models
	Breaking Symmetries
	Soundness and Completeness

	System
	Experiments
	Discussion
	Input Theory
	Theory-Independent iASP Program
	Theory-Dependent iASP Program

	Parametrized Logic Programming
	Introduction
	Parametrized Normal Logic Programs
	Language
	Semantics
	Particular Cases

	MKNF
	Conclusions

	Counterexample Guided Abstraction Refinement Algorithm for Propositional Circumscription
	Introduction
	Preliminaries
	Minimal Models
	Closed World Reasoning

	Problems
	Computing Entails-Min
	Computing Free-For-Negation
	Constructing and Refining Abstraction
	Finding Models

	Computing Free-For-Negation-All
	Evaluation
	Summary and Future Work

	ALCALC: A Context Description Logic
	Introduction
	Overview
	Roadmap
	Preliminaries: DL ALC

	Adding Context Structures: From ALC to (Kn)ALC
	Syntax and Semantics
	Complexity

	Describing Contexts: From (Kn)ALC to ALCALC
	Syntax and Semantics
	Complexity and Expressiveness

	Contextual Ontologies — Example
	Conclusions and Future Work

	Stable Belief Sets Revisited
	Introduction
	Background Material
	A Digression: Regular and Classical Modal Logics
	RM-Stable Theories
	RE-Stable Theories
	REw-Stable Theories
	REp-Stable Theories

	Related Work - Future Research

	Efficient Inferencing for OWL EL
	Introduction
	Preliminaries
	Instance Checking for SROEL(n,x)
	Classification of SROEL(n,x) Knowledge Bases
	Minimal Arities of Materialisation Calculi
	Summary and Conclusions

	Translating First-Order Causal Theories into Answer Set Programming
	Introduction
	Background: Translating Propositional Causal Theories into ASP
	Propositional Causal Theories
	McCain's Translation
	Eliminating Strong Negation
	Rules as Formulas
	Translating Arbitrary Definite Theories
	Ferraris's Translation

	Review: Causal Theories and Stable Models in a First-Order Setting
	First-Order Causal Theories
	Operator SM

	Translating First-Order Causal Theories
	A First-Order Counterpart of McCain's Translation
	A First-Order Counterpart of Ferraris's Translation

	Proof Outlines
	Conclusion

	Preprocessing Boolean Formulae for BDDsin a Probabilistic Context
	Introduction
	ProbLog
	From Tries to BDDs
	Depth Breadth Trie
	Experimental Results
	Conclusions and Future Work

	Minimal Knowledge and Belief via Minimal Topology
	Introduction
	The Modal Logic wK4f
	Finite, Rooted, Weakly-Transitive and One-Step Kripke Frames
	Connection with Minimal Topological Spaces
	Minimal Belief and Non-Monotonic wK4f
	Conclusions

	A Logical Account of Lying
	Introduction
	Liars' Logic
	A Simple Logic for Belief and Intention
	Lying

	Various Forms of Lying
	Offensive Lie vs. Defensive Lie
	Deductive Lie vs. Abductive Lie
	What Are the Most Effective Lies?

	Weak Form of Dishonesty
	Bullshit
	Deception

	Discussion
	Conclusion

	Tabling with Answer Subsumption: Implementation, Applications and Performance
	Introduction
	An Informal Semantics for Answer Subsumption
	Implementation
	Performance and Applications
	Answer Subsumption in Support of Social Network Analysis
	Answer Subsumption and Abstract Interpretation
	Scalability for Multi-valued and Quantitative Logics

	Conclusions

	Embracing Events in Causal Modelling: Interventions and Counterfactuals in CP-Logic
	Introduction
	Preliminaries: CP-Logic
	Interventions
	Counterfactuals
	Causal Cycles
	More Interventions
	Related Work
	Conclusions

	An Approximative Inference Method for Solving SO Satisfiability Problems
	Introduction
	Preliminaries
	Propagation for FO
	Approximating SO-Satisfiability Problems
	Approximating Definitions
	Applications and Related Work
	Conformant Planning.
	Querying and reasoning in open databases.

	Conclusions and Future Work

	Horn Contraction via Epistemic Entrenchment
	Introduction
	Technical Preliminaries
	AGM Contraction
	Horn Contraction via EE
	Construction of EEHC
	Horn Equivalence of EEHC and EEC
	Characterising Postulates
	Postulate of Core-Retainment

	Related Work and Concluding Remark

	System Descriptions
	The DMCS Solver for Distributed Nonmonotonic Multi-Context Systems
	Introduction
	System Architecture and Evaluation
	System Usage
	Conclusions

	The mcs-ie System for Explaining Inconsistency in Multi-Context Systems
	Introduction
	System Architecture
	Example
	Conclusions

	Coala: A Compiler from Action Languages to ASP
	Introduction
	Coala at Work
	Experiments

	DLVMC: Enhanced Model Checking in DLV
	Introduction
	System Usage and Options
	Preliminary Analysis

	A Dynamic-Programming Based ASP-Solver
	Introduction
	Architecture
	System Specifics
	Discussion

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

