

Lecture Notes in Computer Science 6305
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Rainer Keller Edgar Gabriel
Michael Resch Jack Dongarra (Eds.)

Recent Advances in
the Message Passing
Interface

17th European MPI Users’ Group Meeting, EuroMPI 2010
Stuttgart, Germany, September 12-15, 2010
Proceedings

13

Volume Editors

Rainer Keller
Michael Resch
High Performance Computing Center Stuttgart (HLRS)
70569 Stuttart, Germany
E-mail: {keller, resch}@hlrs.de

Edgar Gabriel
University of Houston, Parallel Software Technologies Laboratory
Houston, TX 77204, USA
E-mail: gabriel@cs.uh.edu

Jack Dongarra
University of Tennessee
Department of Electrical Engineering and Computer Science
Knoxville,TN 37996, USA
E-mail: dongarra@cs.utk.edu

Library of Congress Control Number: 2010933611

CR Subject Classification (1998): C.2.4, D.1.3, C.2.5, F.2, C.4, D.2, D.4,

LNCS Sublibrary: SL 2 – Programming and Software Engineering

ISSN 0302-9743
ISBN-10 3-642-15645-2 Springer Berlin Heidelberg New York
ISBN-13 978-3-642-15645-8 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

springer.com

© Springer-Verlag Berlin Heidelberg 2010
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper 06/3180

Preface

Parallel Computing is at the verge of a new era. Multi-core processors make
parallel computing a fundamental skill required by all computer scientists. At
the same time, high-end systems have surpassed the Petaflop barrier, and sig-
nificant efforts are devoted to the development of hardware and software tech-
nologies for the next-generation Exascale systems. To reach this next stage,
processor architectures, high-speed interconnects and programming models will
go through dramatic changes. The Message Passing Interface (MPI) has been
the most widespread programming model for parallel systems of today. A key
questions of upcoming Exascale systems is whether and how MPI has to evolve
in order to meet the performance and productivity demands of Exascale systems.

EuroMPI is the successor of the EuroPVM/MPI series, a flagship confer-
ence for this community, established as the premier international forum for re-
searchers, users and vendors to present their latest advances in MPI and message
passing system in general. The 17th European MPI users group meeting was held
in Stuttgart during September 12-15, 2010. The conference was organized by the
High Performance Computing Center Stuttgart at the University of Stuttgart.
The previous conferences were held in Espoo (2009), Dublin (2008), Paris (2007),
Bonn (2006), Sorrento (2005), Budapest (2004), Venice (2003), Linz (2002), San-
torini (2001), Balatonfured (2000), Barcelona (1999), Liverpool (1998), Krakow
(1997), Munich (1996), Lyon (1995) and Rome (1994).

The main topics of the conference were message-passing systems – especially
MPI, performance, scalability and reliability issues on very large scale systems.

The Program Committee invited five outstanding researchers to present lec-
tures on different aspects of high-performance computing and message passing
systems: William Gropp presented “Does MPI Make Sense for Exascale Sys-
tems?,” Jan Westerholm presented “Observations on MPI Usage in Large-Scale
Simulation Programs,” Jack Dongarra presented “Challenges of Extreme Scale
Computing,” Jesus Labarta presented “Detail at Scale in Performance Analy-
sis,” and Rolf Hempel presented “Interactive Visualization of Large Simulation
Datasets.”

The conference also included a full-day tutorial on “Advanced Performance
Tuning of MPI Applications at High Scale with Vampir” by Wolfgang Nagel and
Matthias Müller, and the 9th edition of the special session: “ParSim 2010: Cur-
rent Trends in Numerical Simulation for Parallel Engineering Environments.”

In all, 41 full papers were submitted to EuroMPI, out of which 28 were
selected for presentation at the conference, along with 5 posters. Each paper had
between three and five reviews, guaranteeing that only high-quality papers were
accepted for the conference. The program provided a balanced and interesting
view on current developments and trends in message passing. Three papers were

VI Preface

selected as outstanding contributions to EuroMPI 2010 and were presented at a
plenary session:

– “Load Balancing Regular Meshes on SMPs with MPI,” by Vivek Kale and
William Gropp,

– “Adaptive MPI Multirail Tuning for Non-uniform Input/Output Access,”
by Stéphanie Moreaud, Brice Goglin and Raymond Namyst

– “Using Triggered Operations to Offload Collective Communication Opera-
tions,” by Scott Hemmert, Brian Barrett and Keith Underwood.

The Program and General Chairs would like to sincerely thank everybody
who contributed to making EuroMPI 2010 a success, by submitting papers,
providing a review, by participating or sponsoring the event.

September 2010 Michael Resch
Rainer Keller

Edgar Gabriel
Jack J. Dongarra

Organization

EuroMPI 2010 was organized by the High-Performance Computing Center
Stuttgart (HLRS), of the University of Stuttgart, Germany, in association with
the Innovative Computing Laboratory (ICL) of the University of Tennessee,
Knoxville.

Program Committee Chairs

General Chair Jack J. Dongarra, (UTK)
Program Committee Chair Michael Resch (HLRS)
Program Committee Co-chairs Rainer Keller (HLRS / ORNL)

Edgar Gabriel (University of Houston)
Local Organizing Committee Chair Stefan Wesner (HLRS)
Tutorials Wolfgang Nagel (ZIH)

Matthias Müller (ZIH)

Program Committee

Richard Barrett Sandia! National Laboratories, USA
Gil Bloch Mellanox, Israel
Ron Brightwell Sandia National Laboratories, USA
George Bosilca University of Tennesse, USA
Franck Cappello INRIA, France
Barbara Chapman University of Houston, USA
Jean-Christophe Desplat ICHEC, Ireland
Yiannis Cotronis University of Athens, Greece
Frederic Desprez INRIA, France
Erik D’Hollander Ghent University, Belgium
Jack J. Dongarra University of Tennessee, USA
Edgar Gabriel University of Houston, USA
Javier Garcia Blas Universidad Carlos III de Madrid, Spain
Al Geist Oak Ridge National Laboratory, USA
Michael Gerndt Technische Universität München, Germany
Ganesh Gopalakrishnan University of Utah, USA
Sergei Gorlatch Universität Münster, Germany
Andrzej Goscinski Deakin University, Australia
Richard L. Graham Oak Ridge National Laboratory, USA
William Gropp University of Illinois Urbana-Champaign, USA
Thomas Herault INRIA/LRI, France
Josh Hursey Indiana University, USA
Torsten Hoefler Indiana University, USA

VIII Organization

Yutaka Ishikawa University of Tokyo, Japan
Tahar Kechadi University College Dublin, Ireland
Rainer Keller HLRS, Universität Stuttgart,

Germany / ORNL, USA
Stefan Lankes RWTH Aachen University, Germany
Alexey Lastovetsky University College Dublin, Ireland
Andrew Lumsdaine Indiana University, USA
Ewing Rusty Lusk Argonne National Laboratory, USA
Tomas Margalef Universitat Autonoma de Barcelona, Spain
Jean-Francois Mehaut IMAG, France
Bernd Mohr Forschungszentrum Jülich, Germany
Raymond Namyst University of Bordeaux, France
Rolf Rabenseifner HLRS, Universität Stuttgart, Germany
Michael Resch HLRS, Universität Stuttgart, Germany
Casiano Rodriquez-Leon Universidad de la Laguna, Spain
Robert Ross Argonne National Laboratory, USA
Martin Schulz Lawrence Livermore National Laboratory, USA
Stephen F. Siegel University of Deleware, USA
Bronis R. de Supinski Lawrence Livermore National Laboratory, USA
Jeffrey Squyres Cisco, Inc., USA
Rajeev Thakur Argonne National Laboratory, USA
Jesper Larsson Träff University of Vienna, Austria
Carsten Trinitis Technische Universität München, Germany
Jan Westerholm Abo Akademi University, Finland
Roland Wismüller Universität Siegen, Germany
Joachim Worringen International Algorithmic Trading GmbH,

Germany

External Reviewers

Mats Aspnäs
Michael Browne
Alejandro Calderon
Anthony Chan
Wei-Fan Chiang
Gilles Civario
Carsten Clauss
Javier Cuenca
Robert Dew
Kiril Georgiev
Brice Goglin
David Goodell
Haowei Huang
Lei Huang
Florin Isaila

Emmanuel Jeannot
Christos Kartsaklis
Philipp Kegel
Jayesh Krishna
Pierre Lemarinier
Guodong Li
Diego Rodriguez Martinez
Alastair McKinstry
Dominik Meiländer
Gara Miranda-Valladares
Jan Pablo Reble
Justin Rough
Lucas Mello Schnorr
Adam Wong

Organization IX

Sponsors

We would like to thank the following companies for their kind support:

– Cisco
– Cray
– IBM
– Microsoft
– NEC

Table of Contents

Large Scale Systems

A Scalable MPI Comm split Algorithm for Exascale Computing 1
Paul Sack and William Gropp

Enabling Concurrent Multithreaded MPI Communication on Multicore
Petascale Systems . 11

Gábor Dózsa, Sameer Kumar, Pavan Balaji, Darius Buntinas,
David Goodell, William Gropp, Joe Ratterman, and Rajeev Thakur

Toward Performance Models of MPI Implementations for Understanding
Application Scaling Issues . 21

Torsten Hoefler, William Gropp, Rajeev Thakur, and
Jesper Larsson Träff

PMI: A Scalable Parallel Process-Management Interface for
Extreme-Scale Systems . 31

Pavan Balaji, Darius Buntinas, David Goodell, William Gropp,
Jayesh Krishna, Ewing Lusk, and Rajeev Thakur

Run-Time Analysis and Instrumentation for Communication Overlap
Potential . 42

Thorvald Natvig and Anne C. Elster

Efficient MPI Support for Advanced Hybrid Programming Models 50
Torsten Hoefler, Greg Bronevetsky, Brian Barrett,
Bronis R. de Supinski, and Andrew Lumsdaine

Parallel Filesystems and I/O

An HDF5 MPI Virtual File Driver for Parallel In-situ
Post-processing . 62

Jerome Soumagne, John Biddiscombe, and Jerry Clarke

Automated Tracing of I/O Stack . 72
Seong Jo Kim, Yuanrui Zhang, Seung Woo Son, Ramya Prabhakar,
Mahmut Kandemir, Christina Patrick, Wei-keng Liao, and
Alok Choudhary

MPI Datatype Marshalling: A Case Study in Datatype Equivalence 82
Dries Kimpe, David Goodell, and Robert Ross

XII Table of Contents

Collective Operations

Design of Kernel-Level Asynchronous Collective Communication 92
Akihiro Nomura and Yutaka Ishikawa

Network Offloaded Hierarchical Collectives Using ConnectX-2s
CORE-Direct Capabilities . 102

Ishai Rabinovitz, Pavel Shamis, Richard L. Graham,
Noam Bloch, and Gilad Shainer

An In-Place Algorithm for Irregular All-to-All Communication with
Limited Memory . 113

Michael Hofmann and Gudula Rünger

Applications

Massively Parallel Finite Element Programming . 122
Timo Heister, Martin Kronbichler, and Wolfgang Bangerth

Parallel Zero-Copy Algorithms for Fast Fourier Transform and
Conjugate Gradient Using MPI Datatypes . 132

Torsten Hoefler and Steven Gottlieb

Parallel Chaining Algorithms . 142
Mohamed Abouelhoda and Hisham Mohamed

MPI Internals (I)

Precise Dynamic Analysis for Slack Elasticity: Adding Buffering
without Adding Bugs . 152

Sarvani Vakkalanka, Anh Vo, Ganesh Gopalakrishnan, and
Robert M. Kirby

Implementing MPI on Windows: Comparison with Common
Approaches on Unix . 160

Jayesh Krishna, Pavan Balaji, Ewing Lusk, Rajeev Thakur, and
Fabian Tillier

Compact and Efficient Implementation of the MPI Group Operations . . . 170
Jesper Larsson Träff

Characteristics of the Unexpected Message Queue of MPI
Applications . 179

Rainer Keller and Richard L. Graham

Table of Contents XIII

Fault Tolerance

Dodging the Cost of Unavoidable Memory Copies in Message Logging
Protocols . 189

George Bosilca, Aurelien Bouteiller, Thomas Herault,
Pierre Lemarinier, and Jack J. Dongarra

Communication Target Selection for Replicated MPI Processes 198
Rakhi Anand, Edgar Gabriel, and Jaspal Subhlok

Transparent Redundant Computing with MPI . 208
Ron Brightwell, Kurt Ferreira, and Rolf Riesen

Checkpoint/Restart-Enabled Parallel Debugging . 219
Joshua Hursey, Chris January, Mark O’Connor, Paul H. Hargrove,
David Lecomber, Jeffrey M. Squyres, and Andrew Lumsdaine

Best Paper Awards

Load Balancing for Regular Meshes on SMPs with MPI 229
Vivek Kale and William Gropp

Adaptive MPI Multirail Tuning for Non-uniform Input/Output
Access . 239

Stéphanie Moreaud, Brice Goglin, and Raymond Namyst

Using Triggered Operations to Offload Collective Communication
Operations . 249

K. Scott Hemmert, Brian Barrett, and Keith D. Underwood

MPI Internals (II)

Second-Order Algorithmic Differentiation by Source Transformation of
MPI Code . 257

Michel Schanen, Michael Förster, and Uwe Naumann

Locality and Topology Aware Intra-node Communication among
Multicore CPUs . 265

Teng Ma, George Bosilca, Aurelien Bouteiller, and Jack J. Dongarra

Transparent Neutral Element Elimination in MPI Reduction
Operations . 275

Jesper Larsson Träff

XIV Table of Contents

Poster Abstracts

Use Case Evaluation of the Proposed MPIT Configuration and
Performance Interface . 285

Carsten Clauss, Stefan Lankes, and Thomas Bemmerl

Two Algorithms of Irregular Scatter/Gather Operations for
Heterogeneous Platforms . 289

Kiril Dichev, Vladimir Rychkov, and Alexey Lastovetsky

Measuring Execution Times of Collective Communications in an
Empirical Optimization Framework . 294

Katharina Benkert and Edgar Gabriel

Dynamic Verification of Hybrid Programs . 298
Wei-Fan Chiang, Grzegorz Szubzda, Ganesh Gopalakrishnan, and
Rajeev Thakur

Challenges and Issues of Supporting Task Parallelism in MPI 302
Márcia C. Cera, João V.F. Lima, Nicolas Maillard, and
Philippe O.A. Navaux

Author Index . 307

A Scalable MPI Comm split Algorithm for

Exascale Computing

Paul Sack and William Gropp

University of Illinois at Urbana-Champaign

Abstract. Existing algorithms for creating communicators in MPI pro-
grams will not scale well to future exascale supercomputers containing
millions of cores. In this work, we present a novel communicator-creation
algorithm that does scale well into millions of processes using three tech-
niques: replacing the sorting at the end of MPI Comm split with merg-
ing as the color and key table is built, sorting the color and key table
in parallel, and using a distributed table to store the output communi-
cator data rather than a replicated table. This reduces the time cost of
MPI Comm split in the worst case we consider from 22 seconds to 0.37
second. Existing algorithms build a table with as many entries as pro-
cesses, using vast amounts of memory. Our algorithm uses a small, fixed
amount of memory per communicator after MPI Comm split has finished
and uses a fraction of the memory used by the conventional algorithm
for temporary storage during the execution of MPI Comm split.

1 Introduction

The Message Passing Interface Forum began developing the message-passing in-
terface (MPI) standard in early 1993. MPI defines a communication interface
for message-passing systems that includes support for point-to-point messag-
ing, collective operations, and communication-group management. The crux of
communication-group management is the communicator : a context in which a
group of processes can exchange messages.

In 1993, the fastest supercomputer in the Top 500 was a 1024-processor Think-
ing Machines system that could sustain nearly 60 Gigaflops [6]. In the June 1997
list, the 7264-processor Intel ASCI Red system broke the Teraflop barrier. In
early 2010, the fastest supercomputer was a Cray system with 224,000 cores at
1.8 Petaflops, and a Blue Gene system ranked fourth has nearly 300,000 cores
achieves nearly 1 Petaflop. If scaling trends continue, supercomputers with mil-
lions of cores will achieve Exaflop performance. Current methods for managing
communicators in MPI do not perform well at these scales – in space or in time
– and programmers cannot program their way around using communicators.

In this work, we first examine the state of the art in section 2 and identify the
communicator-creation functions that are not inherently unscalable. In section 3,
we propose novel communicator-creation algorithms that do scale to million-core
supercomputers. In section 4, we detail our evaluation methodology and present
our results. In section 5, we discuss future work. We conclude in section 6.

R. Keller et al. (Eds.): EuroMPI 2010, LNCS 6305, pp. 1–10, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

2 P. Sack and W. Gropp

2 Background

MPI programs start with one communicator, MPI COMM WORLD, that contains
every process in the program. It is common to form smaller communicators
containing a subset of all the processes. MPI provides two ways to do this:

– MPI Comm create: processes must enumerate all the members of the new
communicator.

– MPI Comm split: processes specify a color; processes whose colors match be-
come the members of new communicators.

MPI Comm create requires as input a table specifying membership in the new
communicator for every process in the old communicator. Only one communi-
cator is created per call (in MPI 2.1), and ranks can not be reordered. Each
process in the old communicator must call this function with the same table,
whether or not the process is included in the new communicator.

This algorithm scales poorly as the memory and computation costs scale lin-
early with the size of of the input communicator.

MPI Comm split requires only a color and a key as input. (The key is used
to reorder ranks in new communicators.) It is more versatile, since it can create
many communicators in one call, can reorder ranks, and does not require the
programmer to build a large table to specify communicator membership. The
ranks in the new communicator are assigned by sorting the keys and using the
ranks in the old communicator as a tie-breaker.

We examined the implementation of MPI Comm split in two widely-used open-
source MPI implementations: MPICH [4, 5] and OpenMPI [3], which is derived
from LAM-MPI. Unfortunately, MPI Comm split scales equally poorly in these
current MPI implementations, which operate as follows:

1. Each process builds a table containing the colors and keys of all the other
processes using MPI Allgather.

2. Each process scans the table for processes whose colors match.
3. Each process sorts the keys of processes whose colors match.

MPICH makes use of “recursive doubling” to build the table [10]. In the first
step, each process exchanges its color and key information with the process whose
rank differs only in the last bit. In the second step, each process exchanges its
color and key table (now containing two entries) with the process whose rank
only differs in the second-last bit. This continues, and in the final step, each
process exchanges a table containing P/2 entries with the process whose rank
differs only in the first bit.

Open MPI uses an operation similar to recursive doubling to build the table.
In the first step, process pi send data to process pi+1 mod P and receives data from
pi−1 mod P . In the following steps, process pi sends data to process pi+2 mod P ,
then pi+4 mod P , and so on, while receiving data from pi−2 mod P , then pi−4 mod P .
We assume the use of recursive doubling in the rest of this paper, but it makes
little difference in the analysis which is used.

A Scalable MPI Comm split Algorithm for Exascale Computing 3

In both implementations, after the tables are built, the tables are scanned for
entries with matching colors, and then those entries are sorted by key.

This algorithm incurs a memory and communication cost of Θ(n), and a
computation cost dominated by the sorting time: O(n lg n). Only the entries in
the table whose colors match are sorted, so for smaller output communicators
the computation cost can be much less.

As we will show, the sorting phase of MPI Comm split consumes a significant
amount of time at larger scales. Further, the table requires vast amounts of
memory. Every entry has at minimum three fields: hardware address or rank
in the source communicator; color; and key. Using 32-bit integers for each field,
this requires 192 Megabytes per process per communicator in a 16-million node
system, which is clearly unreasonable. This is especially problematic because
per-core performance is growing far more slowly than the number of cores in
modern microprocessors [9], and we can only expect memory per-core to grow
as quickly as performance per-core for weak scaling.

3 Scalable Communicators

While the memory problem is more concerning, we first present one facet of our
solution to the poor performance scaling of MPI Comm split.

3.1 Better Performance through Parallel Sorting

As mentioned, much of the time in MPI Comm split is spent in sorting the color
and key table. In state-of-the-art algorithms, every process sorts the entire table.
Our proposal is to sort this table in parallel. The simplest and least-effective
way to do this is to have each process sort its table at each step in the recursive
doubling operation before exchanging tables with another process. In effect, at
each stage, each process merges the sorted table it already has with the sorted
table it receives from its partner process for that stage. This turns the O(n lg n)
sort problem into lg n merge operations of size 2, 4, 8, . . . , n/4, n/2, an O(n)
problem.

This gives us an O(lg n) speedup. In the final step, all n processes are merging
identical tables. In the second-to-last step, two groups of n/2 processes merge
identical tables. To do away with this redundant computation, we adapt a par-
allel sorting algorithm to this problem.

Cheng et al present one parallel sorting algorithm [1]. Their algorithm begins
with an unsorted n-entry table distributed among p processes. At the conclusion
of the algorithm, the table is sorted, and the entries in the the ith process’s table
have global rank [(i − 1)n

p , in
p).

In brief, their algorithm works as follows:

1. Each process sorts its local table.
2. The processes cooperate to find the exact splitters between each process’s

portion of the final sorted table using an exact-splitter algorithm [7].

4 P. Sack and W. Gropp

3. The processes forward entries from their input subtables to the correct des-
tination process’s subtable using the splitters.

4. Each process merges the p pre-sorted partitions of their subtable.

In step 1, each process takes O(n
p lg n

p) time to sort its subtable. However, we
use recursive doubling and merging to generate the inputs, thus we need not sort
the subtable. Recursive doubling up to the beginning of the parallel sort, where
each process has a table with n

p elements, takes O(n
p) time.

In step 2, exact splitters are found after lg n rounds in which the distance
between the estimate of the splitter and the correct splitter exponentially de-
cays. Each round has an execution-time cost of O(p + lg n

p), for a total time
O(p lg n + lg2 n).

In step 3, each process exchanges at most n
p entries with other processes. (For

random input keys and ranks, the number of entries is expected to be n
p × p−1

p .)
Thus, the time complexity for the exchange is O(n

p).
In step 4, each process recursively merges the p partitions of its subtable in

lg p stages, merging p partitions into p/2 partitions in the first stage, then p/2
partitions into p/4 partitions, and so on, for a cost of O(n

p lg p).
At the conclusion of the parallel sort, the p processes use recursive doubling

to build full copies of the table.
The total time spent in the parallel sort is O(n

p) + O(p lg n + lg2 n) + O(n
p) +

O(n
p lg p) = O(p lg n + lg2 n + n

p lg p). There is no closed-form expression for p in
terms of n that minimizes time. If O(1) < p < O(n

lg n), then, asymptotically, the
parallel sort will take less time than the lg p stages of merging in the conventional
algorithm with merging.

The time spent in the final recursive-doubling stage to build full copies of the
table is O(n).

The amount of communication is more than that in a conventional recursive-
doubling implementation due to the communication incurred in finding the split-
ters and exchanging table entries between sorting processes. Even so, we observe
performance improvements with a modest number of sorting processes.

3.2 Less Memory Usage with Distributed Tables

For an application to scale to millions of processes, each process must only
exchange point-to-point messages with a small number of unique processes (e.g.,
lg n processes for MPI Allgather). Thus, most of the entries in a communicator
table are unnecessary.

We propose a distributed table, in which the processes in a communicator
are arranged in a distributed binary tree, sorted by rank. At first, each process
only knows the identities of its parent and two children. When it wishes to
communicate with another process, it asks its children to find the address of the
target process if the target rank is in the process’s subtree, otherwise it asks
its parent to find the address. The child or parent process then forwards the
request around the tree until the target process is found. A message containing

A Scalable MPI Comm split Algorithm for Exascale Computing 5

the address of the target process is returned along the same path that the target
process was found.

To make this efficient, each process maintains a cache of recently accessed
processes. The process-finding messages also contain the rank and address of
every process along the way, and these are added to the cache. Future lookups
first search for the target in the cache, then search for the target’s ancestors
in the cache to attempt to skip as many hops along the path to the target
as possible. This also allows us to take advantage of locality in cache lookups:
processes whose ranks are close to each other are close to each other in the tree
most of the time1.

Using this strategy, after groups of p processors sort the color and rank tables,
they do not have to exchange their subtables so that each has a full copy. Instead,
they only have to find the new rank for each of the p processes in the group
and the address of their parents: a quick operation. This transforms the O(n)
recursive-doubling exchange at the end of the sort into an O(p lg n

p) lookup.
Overall, we reduce the memory usage from an n-entry table per process to a

n
p -entry table per process during the operation of MPI Comm split. The memory
needed for each communicator is reduced from a n-entry table for n-member
communicators to a small fixed-size cache.

4 Evaluation

There are no systems yet with millions of processors, nor simulators available
to simulate millions of processes, we look at a partial simulation. All but the
parallel-sort with distributed tables algorithm entail each of n processes receiving
an n-entry table to sort. This requires simulating n2/flit-size flits.

BigNetSim can simulate up to 2.5 million network events/second using 128
processors [2]. Every hop in the network counts as an event. Thus, one experi-
mental data point would require simulating billions of events and take months.

Instead, we use an approach that is likely very inaccurate, but favors existing
algorithms in its inexactitude. We fully implement the parallel-sort phase of the
algorithm using 2 through 64 processes. The recursive-doubling exchanges, and
the sorting and merging in the conventional algorithm we simulate using only
2 processes. These two processes exchange, merge, or sort the correct amount
of sorted or unsorted data with each other at each iteration in each phase of
MPI Comm split. In the correct algorithm, each process would exchange data
with another unique process at each level in the recursive-doubling algorithm.

We do not capture the effect of network contention. Network contention
would have the greatest effect during the final stages of the conventional algo-
rithm, when every process exchanges messages on the order of several to tens of
Megabytes. Not modeling network contention favors the conventional algorithm
in our evaluation.
1 In the worst case, the process at the root of the tree is lg n hops away from the two

processes whose ranks are one away from the root’s rank. The average case is much
better than this.

6 P. Sack and W. Gropp

0
5

10
15

20

Time: simple algorithms

Communicator size (ranks)

S
ec

on
ds

● ● ● ● ● ● ● ● ● ● ●
●

●

●

●

sort at end
merge after each stage
communication only

16K 64K 256k 1M 4M 16M 64M

0
5

10
15

20

Fig. 1. The total execution time of the conventional algorithm, the conventional algo-
rithm with merging after each step, and the communication time for both

In our evaluation, we generate one new communicator containing all the pro-
cesses in the input communicator. The keys are randomly-generated. Later, we
discuss how the results are likely to change for smaller communicators.

The experiments are run on blueprint, a system composed of 120 POWER5+
nodes, each with 16 1.9 GHz Power 5 cores. The nodes are connected with
Federation switches. In all of our tests, we use only one core per node to better
simulate a million-core system. We use merge and sort functions from the C++
STL, and compile with IBM XLC at optimization level -O4.

Each configuration was run 5 times and the mean is shown. The scale of the
standard error was too small to appear on our graphs.

Speedup data for our two parallel-sort MPI Comm split variations are reported
relative to to the conventional MPI Comm split variation with merging after each
step.

In Figure 1, we see the execution time for the conventional MPI Comm split as
implemented in MPICH and Open MPI, along with the time spent in commu-
nication for both. The time for one MPI Comm split call is reduced by a factor
of four simply by replacing the O(n lg n) sort at the end with an O(n) (total)
merge after each step.

Figure 2 shows the speedup if we sort the color and key table in parallel and
then continue using recursive doubling to create a full copy of the new tree. At
best, we get a 2.7x advantage over serial sort.

The speedups presented thus far would be less if network contention in a real
system significantly hinders the performance of MPI Comm split; these optimiza-
tions reduce computation costs only.

Figure 3 shows the speedup if we sort in parallel and build the communica-
tor as a distributed tree. We get performance benefits of up to 14x using 64
sorting processors. Compared to the sort-at-the-end MPICH and Open MPI
implementation, our algorithm is 60x faster. The parallel sort with distributed

A Scalable MPI Comm split Algorithm for Exascale Computing 7

Speedup (full table)

Communicator size (ranks)

●
●

● ● ● ● ● ● ● ● ● ● ●

0
1

2
3

4

0
1

2
3

4

64K 256K 1M 4M 16M 64M

●

Sorters

64
32
16
8
4
2

Speedup (full table)

Number of sorting processors

●

●

●

● ●

●

2 4 8 16 32 64

0
1

2
3

4

0
1

2
3

4

●

Communicator size (M)

128
64
32

16
8
4

Fig. 2. The speedup of using a parallel-sort with conventional communicator tables

Speedup (tree communicators)

Communicator size (ranks)

● ● ● ● ● ● ● ● ● ● ● ● ●

0
4

8
12

16

0
4

8
12

16

64K 256K 1M 4M 16M 64M

●

Sorters

64
32
16
8
4
2

Speedup (tree communicators)

Number of sorting processors

●

●

●

●
●

●

2 4 8 16 32 64

0
4

8
12

16

0
4

8
12

16

●

Communicator size (M)

128
64
32

16
8
4

Fig. 3. The speedup of using a parallels-sort with distributed-tree communicators

communicators algorithm significantly reduces the amount of communication
and network contention, so we expect the speedups on real systems to be better.

As argued above, our experiments are quite inaccurate since we are not per-
forming a full-system simulation. More important than a single-performance
number is the analysis of where the time goes. Table 1 gives a breakdown of
the time spent in each operation for the parallel-sort algorithm with distributed
tables.

The breakdown matches expectations perfectly. The collect rows show the
time spent in the recursive-doubling stage before the parallel sort. As expected,
it is proportional to the size of each sorting process’s subtable: i.e., the num-
ber of processors in the MPI Comm split call divided by the number of sorting
processes.

8 P. Sack and W. Gropp

Table 1. Breakdown of time in MPI Comm split with parallel sorting and distributed
tree communicators

Communicator Operation Sorting processors
size 2 4 8 16 32 64

collect 0.16 0.08 0.03 0.02 0.01 0.00
splitters 0.00 0.00 0.01 0.01 0.03 0.08

8M exchange 0.05 0.03 0.02 0.01 0.01 0.01
merge 0.06 0.06 0.04 0.03 0.02 0.01
total 0.27 0.17 0.10 0.07 0.06 0.10

collect 0.32 0.16 0.08 0.03 0.02 0.01
splitters 0.00 0.00 0.01 0.01 0.03 0.08

16M exchange 0.10 0.06 0.03 0.02 0.01 0.01
merge 0.13 0.13 0.09 0.05 0.03 0.02
total 0.55 0.35 0.20 0.12 0.09 0.11

collect 0.64 0.32 0.16 0.08 0.03 0.02
splitters 0.00 0.00 0.01 0.02 0.03 0.08

32M exchange 0.20 0.12 0.07 0.04 0.02 0.01
merge 0.25 0.26 0.19 0.11 0.07 0.04
total 1.09 0.70 0.42 0.24 0.15 0.15

collect 1.29 0.64 0.32 0.16 0.08 0.03
splitters 0.00 0.00 0.01 0.02 0.03 0.08

64M exchange 0.44 0.24 0.13 0.07 0.04 0.02
merge 0.51 0.52 0.38 0.24 0.14 0.08
total 2.24 1.41 0.84 0.48 0.28 0.22

collect 2.58 1.29 0.64 0.32 0.16 0.08
splitters 0.00 0.00 0.01 0.02 0.03 0.08

128M exchange 0.80 0.48 0.27 0.14 0.07 0.04
merge 1.01 1.05 0.77 0.49 0.29 0.17
total 4.39 2.82 1.69 0.97 0.56 0.37

The splitters rows show the time spent in calculating the median-of-medians.
The number of iterations in the exact-splitter algorithm increases as the loga-
rithm of the size of the problem per process. (The distance between the chosen
splitter and the exact splitter exponentionally decreases as a function of the it-
eration count.) The time spent per iteration is dominated by a term linear with
the number of sorting processes. The time spent in this stage is insignificant
until we scale to 32 or more sorting processes.

The exchange rows show the time spent exchanging elements between sorting
processes once the exact splitters are found. With p sorting processes, on average,
we expect p − 1 out of every p entries on each process will be exchanged. Thus,
this term grows as the size of each sorting process’s subtable.

The merge rows show the time spent merging the p partitions of each process’s
subtable together. In the first iteration, p

2 pairs of n
p2 -entry subtables are merged,

in the second iteration, p
4 pairs of 2n

p2 -entry subtables are merged, and so on, for

A Scalable MPI Comm split Algorithm for Exascale Computing 9

a total cost of O(n
p lg p) in lg p iterations. We observe that the times for 2 or 4

sorting processes are the same, since the lg p term doubles as the n
p term halves.

5 Discussion and Future Work

As we increase the number of sorting processors, the speedup improves for large
communicators more than for small communicators (and even degrades with 64
sorting processes and an 8-million process communicator). This is expected due
to parallel-sorting overheads, and, in particular, the amount of time spent in the
exact splitter algorithm. In the future, we plan to experiment with non-exact
splitters. One way is to stop the splitter algorithm when the splitter is good
enough. The distance between the test splitter and the exact splitter decreases
as the logarithm of the number of iterations of the exact splitter algorithm. We
may also choose an inexact splitter based on oversampling, e.g., the algorithm
in [8], in which each of the p sorting processes nominates p− 1 splitters, and the
best p − 1 of all the nominated splitters are used.

We experimented with the case where we take one very large input commu-
nicator and create a very large output communicator of the same size but a
different rank order. The conventional algorithm collects the entire color and
rank table and then only sorts the entries whose color matches that of the de-
sired new communicator. Thus, when the size of the output communicators is
much smaller, the performance for the conventional algorithm will not be nearly
as bad as that shown here.

However, observe that ignoring the sort cost, the conventional algorithm still
spends nearly 2 seconds just in communication time for a 128 million-process
input communicator, and that is in our highly-optimistic simulation model. Our
parallel algorithm with 128 sorting processes takes 0.37 seconds, including the
sort. Moreover, our algorithm does not need 128 million entries worth of tempo-
rary storage in each process.

0.37 seconds or less for one MPI Comm split call may not sound like much, but
since our experimental methodology does not properly model network contention
and latency, the true cost on a large system might be much more. Thus, we intend
to experiment with optimizing our algorithm for small output communicators.
One possibility is to not merge the tables during the parallel reduction and rather
than sort the table in parallel, we could have each of the sorting processes scan its
subtable for entries that match any of the sorting processes new communicators.
Just those entries would be exchanged, and each sorting process would then sort
just those entries whose colors match.

6 Conclusion

Existing algorithms for creating MPI communicators do not scale to exascale
supercomputers containing millions of cores. They use O(n) memory and take
up to O(n lg n) time in an n-process application, whereas per-core performance
and memory are expected to increase sub-linearly in the future.

10 P. Sack and W. Gropp

Our work proposes three techniques that solve the time and space scalability
problem: merging after each step in the MPI Allgather phase, sorting in parallel,
and using distributed rather than replicated tables.

These techniques together reduce the time complexity to O(p lg n + lg2 n +
n
p lg p), where we have groups of p sorting processes, and reduce the memory foot-
print p-fold. In our experiments, this reduces the cost of MPI Comm split from
over 22 seconds for the largest problem to just 0.37 seconds, a 60x reduction.

Acknowledgments. This work was supported in part by the U.S. Department of
Energy under contract DE-FG02-08ER25835 and by the National Science Foundation
under grant #0837719.

References

1. Cheng, D.R., Edelman, A., Gilbert, J.R., Shah, V.: A novel parallel sorting algo-
rithm for contemporary architectures. Submitted to ALENEX 2006 (2006)

2. Choudhury, N., Mehta, Y., Wilmarth, T.L., Bohm, E.J., Kalé, L.V.: Scaling an
optimistic parallel simulation of large-scale interconnection networks. In: WSC
2005: Proceedings of the 37th conference on Winter simulation,Winter Simulation
Conference, pp. 591–600 (2005)

3. Gabriel, E., Fagg, G.E., Bosilca, G., Angskun, T., Dongarra, J.J., Squyres, J.M.,
Sahay, V., Kambadur, P., Barrett, B., Lumsdaine, A., Castain, R.H., Daniel, D.J.,
Graham, R.L., Woodall, T.S.: Open MPI: Goals, concept, and design of a next
generation MPI implementation. In: Proceedings, 11th European PVM/MPI Users’
Group Meeting, Budapest, Hungary, September 2004, pp. 97–104 (2004)

4. Gropp, W., Lusk, E., Doss, N., Skjellum, A.: A high-performance, portable im-
plementation of the MPI message passing interface standard. Parallel Comput-
ing 22(6), 789–828 (1996)

5. Gropp, W.D., Lusk, E.: User’s Guide for mpich, a Portable Implementation of
MPI. Mathematics and Computer Science Division. Argonne National Laboratory
(1996), ANL-96/6

6. Meuer, H., Strohmaier, E., Dongarra, J., Simon, H.: TOP500 Supercomputing Sites
(2010), http://top500.org (accessed March 24, 2010)

7. Saukas, E.L.G., Song, S.W.: A note on parallel selection on coarse grained multi-
computers. Algorithmica 24, 371–380 (1999)

8. Shi, H., Schaeffer, J.: Parallel sorting by regular sampling. J. Parallel Distrib.
Comput. 14(4), 361–372 (1992)

9. Sutter, H.: The free lunch is over: A fundamental turn toward concurrency in
software. Dr. Dobb’s Journal 30(3) (March 2005)

10. Thakur, R., Gropp, W.: Improving the performance of collective operations in
mpich. In: Dongarra, J., Laforenza, D., Orlando, S. (eds.) EuroPVM/MPI 2003.
LNCS, vol. 2840, pp. 257–267. Springer, Heidelberg (2003)

http://top500.org

Enabling Concurrent Multithreaded MPI

Communication on Multicore Petascale Systems

Gábor Dózsa1, Sameer Kumar1, Pavan Balaji2, Darius Buntinas2,
David Goodell2, William Gropp3, Joe Ratterman4, and Rajeev Thakur2

1 IBM T. J. Watson Research Center, Yorktown Heights, NY 10598
2 Argonne National Laboratory, Argonne, IL 64039

3 University of Illinois, Urbana, IL 61801
4 IBM Systems and Technology Group, Rochester, MN 55901

Abstract. With the ever-increasing numbers of cores per node on HPC
systems, applications are increasingly using threads to exploit the shared
memory within a node, combined with MPI across nodes. Achieving
high performance when a large number of concurrent threads make MPI
calls is a challenging task for an MPI implementation. We describe the
design and implementation of our solution in MPICH2 to achieve high-
performance multithreaded communication on the IBM Blue Gene/P.
We use a combination of a multichannel-enabled network interface, fine-
grained locks, lock-free atomic operations, and specially designed queues
to provide a high degree of concurrent access while still maintaining
MPI’s message-ordering semantics. We present performance results that
demonstrate that our new design improves the multithreaded message
rate by a factor of 3.6 compared with the existing implementation on the
BG/P. Our solutions are also applicable to other high-end systems that
have parallel network access capabilities.

1 Introduction

Because of power constraints and limitations in instruction-level parallelism,
computer architects are unable to build faster processors by increasing the clock
frequency or by architectural enhancements. Instead, they are building more and
more processing cores on a single chip and leaving it up to the application pro-
grammer to exploit the parallelism provided by the increasing number of cores.
MPI is the most widely used programming model on HPC systems, and many
production scientific applications use an MPI-only model. Such a model, how-
ever, does not make the most efficient use of the shared resources within the node
of an HPC system. For example, having several MPI processes on a multicore
node forces node resources (such as memory, network FIFOs) to be partitioned
among the processes. To overcome this limitation, application programmers are
increasingly looking at using hybrid programming models comprising a mixture
of processes and threads, which allow resources on a node to be shared among
the different threads of a process.

With hybrid programming models, several threads may concurrently call MPI
functions, requiring the MPI implementation to be thread safe. In order to

R. Keller et al. (Eds.): EuroMPI 2010, LNCS 6305, pp. 11–20, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

12 G. Dózsa et al.

achieve thread safety, the implementation must serialize access to some parts
of the code by using either locks or advanced lock-free methods. Using such
techniques and at the same time achieving high concurrent multithreaded per-
formance is a challenging task [2,3,10].

In this paper, we describe the solutions we have designed and implemented
in MPICH2 to achieve high multithreaded communication performance on the
IBM Blue Gene/P (BG/P) system [4]. We use a combination of a multichannel-
enabled network interface, fine-grained locks, lock-free atomic operations, and
message queues specially designed for concurrent multithreaded access. We eval-
uate the performance of our approach with a slightly modified version of the
SQMR message-rate benchmark from the Sequoia benchmark suite [8]. Although
implemented on the BG/P, our techniques and optimizations are also applicable
to other high-end systems that have parallel network access capabilities.

The rest of this paper is organized as follows. Section 2 provides a brief back-
ground of thread safety in MPI and MPICH2 and the architecture of the Blue
Gene/P system. Section 3 describes the design and implementation of our so-
lutions in detail. Performance results are presented in Section 4, followed by
conclusions in Section 5.

2 Background

We provide a brief overview of the semantics of multithreaded MPI communica-
tion, the internal framework for supporting thread safety in MPICH2, and the
hardware and software architecture of the Blue Gene/P system.

2.1 MPI Semantics for Multithreading

The MPI standard defines four levels of thread safety: single, funneled, serialized,
and multiple [6]. We discuss only the most general level, MPI THREAD MULTIPLE,
in which multiple threads can concurrently make MPI calls.

MPI specifies that when multiple threads make MPI calls concurrently, the
outcome will be as if the calls executed sequentially in some order. Blocking
MPI calls will block only the calling thread and will not prevent other threads
from running or executing MPI functions. As a result, multiple threads may
access and modify internal structures in the MPI implementation simultaneously,
thus requiring serialization within the MPI library to avoid race conditions.
Logically global resources, such as allocation/deallocation of objects, context
ids, communication state, and message queues, must be updated atomically.

Implementing thread safety efficiently in an MPI implementation is a chal-
lenging task. The most straightforward approach is to use a single global lock,
which is acquired on entry to an MPI function and held until the function re-
turns, unless the function is going to block on a network operation. In that case,
the lock is released before blocking and then reacquired after the network op-
eration returns. The main drawback of this approach is that it permits little
concurrency in operations.

MPI_THREAD_MULTIPLE

Enabling Concurrent Multithreaded MPI Communication 13

Optimizations for accessing queues, such as lock-free methods, often require
single-reader/single-writeraccess,which can be a limitation. Since message queues
are on the critical path, using simpler (classical) approacheswith locks can add sig-
nificant overhead. Also, locks or lock-free atomic updates themselves are expen-
sive, even in the absence of contention, because of memory-consistency require-
ments (typically, some data must be flushed to main memory, an action that costs
hundreds of cycles in latency).

A further complication is introduced by the feature in MPI that allows “wild-
card” (MPI ANY SOURCE) receives that can match incoming messages from any
sender. For any receive (or for matching any incoming message), this feature re-
quires two logical queues to be searched atomically—receives expecting a specific
sender and receives permitting any sender—in a manner that maintains MPI’s
message-ordering semantics. This requirement makes it difficult to allow for con-
currency even in programs written to match receives with specific senders, which
in the absence of MPI ANY SOURCE could be implemented efficiently with sepa-
rate queues for separate senders. MPI ANY SOURCE implies a shared queue that
all threads must check and atomically update, thereby limiting concurrency.

2.2 Framework for Supporting Thread Safety in MPICH2

Thread safety in MPICH2 is implemented by identifying regions of code where
concurrent threads may access shared objects and marking them with macros
that provide an appropriate thread-safe abstraction, such as a named critical
section. For example, updates to message queues are protected by the MSGQUEUE
critical section. Most MPI routines, other than a few that are intrinsically thread
safe and require no special care, also establish a function-level critical section
(ALLFUNC). Different granularities of thread safety (coarse-grained versus fine-
grained locks or critical sections) are enabled by simply changing the definitions
of these macros in a header file. For example, the simple global lock is imple-
mented by defining the ALLFUNC critical section to acquire and release a global
lock and defining the other macros as no-ops. Finer-grained locking is enabled
by reversing these definitions, that is, defining the ALLFUNC critical section as a
no-op and defining the other named critical sections appropriately.

MPI objects are reference counted internally. This task must be done atomi-
cally in a multithreaded environment. The reference-count updates are handled
by a macro that can be defined to use a simple update (in the case of the single
global lock), processor-specific atomic-update instructions, or a reference-count
critical section.

In the few instances where using these macros is not convenient, we use C-
preprocessor #ifdefs directly. Since this approach makes the code harder to
maintain, however, we try to avoid it and instead rely as much as possible on a
careful choice of abstractions with a common set of definitions. Using carefully
chosen abstractions makes it easier to switch from a coarse-grained, single-lock
approach to a finer-grained approach that permits greater concurrency.

MPI_ANY_SOURCE
MPI_ANY_SOURCE
MPI_ANY_SOURCE

14 G. Dózsa et al.

2.3 Blue Gene/P Hardware and Software Overview

The IBM Blue Gene/P is a massively parallel system that can scale up to 3 PF/s
of peak performance. Each node of the BG/P has four 850 MHz embedded Pow-
erPC 450 cache-coherent cores on a single ASIC and can achieve a peak floating-
point throughput of 13.6 GF/s per node. The nodes are connected with three
networks that the application may use: a 3D torus network, which is deadlock
free and provides reliable delivery of packets; a collective network, which imple-
ments global broadcast and global integer arithmetic operations; and a global
interrupt network for fast barrier-synchronization operations. Each node has a
direct memory access (DMA) engine to facilitate injecting and receiving packets
to and from the torus network. This feature allows the cores to offload packet
management and enables better overlap of communication and computation.

The MPI implementation on the BG/P is based on MPICH2 [7] and is layered
on top of a lower-level messaging library called the Deep Computing Messaging
Framework (DCMF) [5]. DCMF provides basic message-passing services that
include point-to-point operations, nonblocking one-sided get and put operations,
and an optional set of nonblocking collective calls. MPICH2 is implemented on
the BG/P via an implementation of the internal MPID abstract device interface
on top of DCMF, called dcmfd. The currently released version supports the
MPI THREAD MULTIPLE level of thread safety by using the simple, unoptimized
approach of a single global lock.

The DMA engine on each node supports 32 injection FIFOs and 8 reception
FIFOs per core, an important feature for the work described in this paper. The
operating system on the node supports a maximum of four threads, in other
words, at most 1 thread per core. Although this limit is much smaller than what
is allowed on commodity multicore/SMP platforms, those platforms typically do
not offer sufficient parallelism at the network-hardware level that concurrently
communicating threads could exploit. On such systems, the MPI implementation
would need to serialize accesses to network hardware and operating-system re-
sources and thus would not result in scalable multithreaded communication per-
formance. A commodity-cluster node would need at least four NICs to provide a
level of network parallelism comparable to a BG/P node. Therefore, despite the
relatively modest number of threads allowed on a BG/P node, the parallelism
in the network hardware makes it an interesting platform for studying how to
optimize multithreaded MPI communication.

3 Enabling Concurrent Multithreaded MPI
Communication on BG/P

To achieve high-performance multithreaded MPI communication on the BG/P,
we redesigned multiple layers of the communication-software stack. We enhanced
both DCMF and MPICH2 to support multiple communication channels between
pairs of processes, such that communication from multiple threads on different
channels can take place concurrently. We also modified the data structures and
algorithms used to implement message queues in MPICH2 in order to enable

dcmfd
MPI_THREAD_MULTIPLE

Enabling Concurrent Multithreaded MPI Communication 15

message-queue manipulations in parallel on a channel basis. In the following
subsections, we describe all these optimizations.

3.1 Multichannel Extensions to DCMF

In the existing design of DCMF, only one abstract DMA device is instanti-
ated per MPI process. This single DMA device allocates one injection/reception
FIFO group and provides a single access point for the underlying DMA hardware
resources. We extended DCMF to have multiple DMA devices that allocate mul-
tiple injection/reception groups for each MPI process. For example, in BG/P’s
SMP mode, where a program runs with one process and up to four threads on
each node, four DMA devices are instantiated that allocate four injection and re-
ception groups. In BG/P’s dual mode, with two MPI processes with two threads
each per node, each process instantiates two DMA devices. Multiple threads
of an MPI process can access these DMA software devices independently and
in parallel. DCMF encapsulates DMA devices into software abstractions called
channels. A channel assigns a mutex to control access to a particular DMA
device.

API Changes. To allow threads to lock channels, we added two new calls to
the DCMF API: DCMF Channel acquire and DCMF Channel release. The rest
of the API remained unchanged. In particular, we did not add new arguments for
DCMF Send to specify a send channel. Instead, the new DCMF Channel acquire
call saves the ID of the locked channel in thread-private memory. Subsequent
calls to send functions use this thread-private information to post messages to the
DMA device currently locked by the executing thread. Send function calls specify
the same DMA group ID for both injection and reception of a message; that is, by
locking a channel, the sender thread implicitly also defines the reception channel
at the destination for outgoing messages.

This approach to extending the API has the advantage that it requires mini-
mal changes in upper levels of software that call DCMF. It has the drawback of
limited flexibility, however; for example, it cannot specify different send and re-
ceive channels for a particular message. We plan to explore a more full-featured
API that provides greater flexibility.

Progress Engine. The generic DMA progress engine in DCMF ensures that
pending outgoing and incoming messages are processed. We extended the progress
engine to supportmultiple channels. Ideally, each channel is advancedby a separate
thread, which results in fully parallel progress of the DMA devices. For instance,
in the SMP mode, four MPI threads can run on the four cores and make progress
on only their corresponding channels. This scheme, however, assumes that all four
MPI threads are always active; that is, all of them issue DCMF advance calls even-
tually, so that pending messages are processed at some point on every channel. If
all the threads are not active, this fully parallel progress approach may fail. For
instance, a multithreaded MPI application may enter a global barrier by issuing
MPI Barrier calls from threads running on different cores on the different nodes.

DCMF_Channel_acquire
DCMF_Channel_release
DCMF_Send
DCMF_Channel_acquire
MPI_Barrier

16 G. Dózsa et al.

Only one thread will call the barrier function on each node, and the other threads
may be simply blocked (or not even started yet) until the global barrier completes.
This situation can lead to a deadlock if a barrier message arrives at a node on a
channel that is not advanced by the thread executing the barrier call.

In order to comply with MPI progress semantics, each thread must eventually
make progress on every channel. For thread safety, we also need to prevent
multiple threads from accessing the same channel simultaneously. A call to the
DMA progress engine causes progress by attempting to lock a channel; if the
lock succeeds, the DMA device of the channel is advanced and the channel
is unlocked. Making progress on multiple channels instead of just one channel
implies higher overhead, which can hurt message latency on the low-frequency
BG/P cores. However, it must be done at least occasionally in order to satisfy
MPI progress semantics. For this purpose, we use an internal parameter (say, n)
to decide how often a thread will attempt to advance other channels. A thread
will normally advance only its own channel; but on every nth call to the progress
function, it will also try to advance other channels. Thus, all threads can make
independent parallel progress most of the time, while still guaranteeing MPI
progress semantics.

3.2 Exploiting Multiple Channels in MPICH2

The current MPI 2.2 standard does not directly translate the notion of multiple
communication channels into a user-visible concept. For the upcoming MPI-3
standard, Marc Snir has proposed extending MPI to support multiple “end-
points” per process [9], which would map cleanly to our definition of channels.
Until such explicit support becomes part of the standard, however, MPI can take
advantage of multiple channels only in an application-transparent fashion, that
is, by using multiple channels internally without exposing them to the user.

We modified the dcmfd device in MPICH2 to select and acquire an appropriate
channel by calling DCMF Channel acquire(channel) immediately before issuing
a DCMF send call. After the send call completes, the channel is released. We
calculate the channel for a particular message by means of a simple hash function:
channel = (source + dest) mod num channels. Selecting the channel based on
the source and destination ranks in this manner has the following desirable
implications:

– Messages sent on a given communicator from a particular source to the same
destination process travel over the same channel. This feature makes it easy
for us to support MPI’s non-overtaking message-ordering semantics, which
require that messages from the same source to the same destination appear
in the order in which they were sent.

– Messages sent to a particular destination node from different sources are
distributed among the available reception channels. This feature enables in-
coming messages to be received in parallel.

Truly parallel processing of incoming messages at the MPI level also requires
support for parallel message matching, as described below.

dcmfd
DCMF_Channel_acquire(channel)

Enabling Concurrent Multithreaded MPI Communication 17

3.3 Parallel Receive Queues

MPICH2 has two receive queues implemented via linked lists: a queue of receives
posted by the application and a queue of unexpected messages, namely, messages
that were received before the application posted the matching receive. When an
application posts a receive, the unexpected-message queue is first searched for a
matching message. If none is found, the receive is enqueued on the posted-receive
queue. Similarly, when a message is received from the network, the posted-receive
queue is first searched for a matching receive. If none is found, the message is
enqueued on the unexpected queue.

We parallelized the receive queues by providing a separate pair of posted- and
unexpected-receive queues for each source rank. In this case, an additional queue
is needed to hold posted wildcard receives (source=MPI ANY SOURCE). When a
message is received from the network and a matching receive is not found in the
posted-receive queue for the corresponding channel, the progress engine checks
the wildcard queue. If the wildcard queue is not empty, the progress engine
acquires the wildcard-queue lock and searches the queue for a match. If a match
is not found, the message is enqueued on the channel’s unexpected queue.

A complication is introduced when a posted wildcard receive is followed by
a non-wildcard receive with a matching tag. Since MPI’s message-ordering se-
mantics require that the wildcard receive be matched first and since MPICH2’s
progress engine first searches the channel-receive queues, we queue the non-
wildcard receive in the wildcard queue. When the wildcard receive is matched
and removed from the wildcard queue, we move the non-wildcard receive into
its channel queue.

4 Performance Results

node0

node1

node2

node3

node4

Fig. 1. Communication pattern of the
Neighbor Message Rate Benchmark

Currently, there is no canonical bench-
mark suite or application to measure mul-
tithreaded messaging efficiency of MPI.
Also, the MPI THREAD MULTIPLE mode is
often not efficiently supported by exist-
ing MPI implementations, which in turn
deters applications from using it. The
commonly used NAS Parallel Benchmarks
(NPB) [1] are not multithreaded. The
multi-zone variants of the NAS Paral-
lel Benchmarks (NPB-MZ) [11] do use
MPI+threads via OpenMP, but they use
only the MPI THREAD FUNNELED level of
thread safety.

We chose message rate as a metric to measure messaging performance. We
used a slightly modified version of the SQMR Phloem microbenchmark from
the Sequoia benchmark suite [8]. Specifically, the original SQMR code runs

MPI_ANY_SOURCE
MPI_THREAD_MULTIPLE
MPI_THREAD_FUNNELED

18 G. Dózsa et al.

 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1
 1.1
 1.2
 1.3
 1.4

 0 1 2 3 4

m
es

sa
ge

-r
at

e
(M

M
P

S
)

threads

Optimized stack
Default stack

Fig. 2. Message rate performance of
default and optimized software stacks
on BG/P

 0

 1

 2

 3

 4

 5

 6

 7

 8

 1 2 3 4

m
es

sa
ge

-r
at

e
(M

M
P

S
)

threads

MPICH2
DCMF

Fig. 3. Message rates with the opti-
mized stack when using MPI versus di-
rect DCMF

single-threaded MPI processes; we adapted it for multithreaded processes
running in MPI THREAD MULTIPLE mode.

The modified benchmark, which we call the Neighbor Message Rate Bench-
mark, measures the aggregate message rate for N threads in a single MPI pro-
cess, each sending to and receiving from a corresponding peer process on a sep-
arate node, as shown in Figure 1. Each iteration of the benchmark involves each
thread posting 12 nonblocking receives and 12 nonblocking sends from/to the
peer thread, followed by a call to MPI Waitall to complete the requests. Each
thread executes 10 warm-up iterations before timing 10,000 more iterations. We
used zero-byte messages in order to minimize the impact of data-transfer times
on the measurements. The benchmark reports the total number of messages sent
(in millions) divided by the elapsed time in seconds. We evaluate our solution
based on the overall message rate of the “root” process and the scaling of the
message rate with the number of threads.

We ran the benchmark on the BG/P and varied the number of threads from
1 to 4. We also ran it in the MPI THREAD SINGLE mode to determine the best
achievable performance for a single thread without any locking overhead. Fig-
ure 2 shows the results with the default production BG/P software stack and
with our optimized DCMF and MPICH2. (The case with 0 threads represents the
MPI THREAD SINGLE mode.) The performance with the optimized stack is much
better than with the default stack where the message rate actually decreases with
the number of threads. With 4 threads, the message rate with optimized stack
is 3.6 times higher than with the default stack. Scaling is not perfect though; we
observe an average 10% degradation per thread from linear scaling.

To locate the source of this scaling degradation and to measure the MPI over-
head in general, we also implemented a DCMF version of the Neighbor Message
Rate Benchmark, which directly makes DCMF calls. Figure 3 shows the results
of running both the MPI and DCMF versions of the benchmark with our op-
timized stack. The performance with direct DCMF is much higher than with
MPI. We believe this difference is because DCMF is a much simpler, lower-level

MPI_THREAD_MULTIPLE
MPI_Waitall
MPI_THREAD_SINGLE
MPI_THREAD_SINGLE

Enabling Concurrent Multithreaded MPI Communication 19

API. MPI’s message-ordering and matching semantics as well as the notion of
communicators, etc., make it more difficult to optimize for multithreading.
Nonetheless, the magnitude of the difference suggests room for further opti-
mization, which we plan to investigate. Locking overhead for dynamic channel
selection and receive-queue management for message matching are two areas that
we specifically plan to optimize further. We also expect that the new proposal
for multiple endpoints in MPI-3 [9] will help alleviate some of the bottlenecks at
the MPI level.

5 Conclusions

Running MPI applications in fully multithreaded mode is becoming a significant
issue as a result of the increasing importance of hybrid programming models
for multicore high-end systems. We have presented a solution to achieve high
messaging performance in MPICH2 when multiple threads make MPI calls con-
currently. We use a combination of a multichannel-enabled network interface,
fine-grained locks, lock-free atomic operations, and message queues specifically
designed for concurrent multithreaded access. We introduce the “channel” ab-
straction as the unit of parallelism at the network-interface level and show how
MPICH2 can take advantage of channels in a user-transparent way. Applying our
optimizations on the Blue Gene/P messaging stack, we demonstrate a factor of
3.6 improvement in multithreaded MPI message rate. Furthermore, the message
rate scales reasonably with the number of MPI threads in our optimized stack,
as opposed to the default stack where the aggregate message rate decreases with
multiple threads. We plan to investigate further optimizations to improve MPI
performance compared with native DCMF performance.

The proposed solutions and optimizations for defining and managing multiple
network “channels” are also applicable to other high-end systems with parallel
network access capabilities. Implementation details will, of course, differ as they
depend on the particular messaging software stack, but the techniques we have
described for providing access to multiple network channels from concurrent
MPI threads and managing progress on multiple channels in parallel should be
directly applicable.

Acknowledgments. This work was supported in part by the U.S. Government
contract No. B554331; the Office of Advanced Scientific Computing Research, Office
of Science, U.S. Department of Energy, under contract DE-AC02-06CH11357 and DE-
FG02-08ER25835; and by the National Science Foundation under grant #0702182.

References

1. Bailey, D., Harris, T., Saphir, W., Wijngaart, R.V.D., Woo, A., Yarrow, M.: The
NAS parallel benchmarks 2.0. NAS Technical Report NAS-95-020, NASA Ames
Research Center, Moffett Field, CA (1995)

20 G. Dózsa et al.

2. Balaji, P., Buntinas, D., Goodell, D., Gropp, W., Thakur, R.: Fine-grained mul-
tithreading support for hybrid threaded MPI programming. International Journal
of High Performance Computing Applications 24(1), 49–57 (2010)

3. Gropp, W., Thakur, R.: Thread safety in an MPI implementation: Requirements
and analysis. Parallel Computing 33(9), 595–604 (2007)

4. IBM System Blue Gene solution: Blue Gene/P application development ,
http://www.redbooks.ibm.com/redbooks/pdfs/sg247287.pdf

5. Kumar, S., Dozsa, G., Almasi, G., Heidelberger, P., Chen, D., Giampapa, M.E.,
Blocksome, M., Faraj, A., Parker, J., Ratterman, J., Smith, B., Archer, C.J.: The
Deep Computing Messaging Framework: Generalized scalable message passing on
the Blue Gene/P supercomputer. In: Proceedings of the 22nd International Con-
ference on Supercomputing, pp. 94–103. ACM Press, New York (2008)

6. Message Passing Interface Forum: MPI: A Message-Passing Interface Standard,
Version 2.2 (September 2009), http://www.mpi-forum.org

7. MPICH2, http://www.mcs.anl.gov/mpi/mpich2
8. Sequoia benchmark codes, https://asc.llnl.gov/sequoia/benchmarks/
9. Snir, M.: MPI-3 hybrid programming proposal, version 7,

http://meetings.mpi-forum.org/mpi3.0 hybrid.php
10. Thakur, R., Gropp, W.: Test suite for evaluating performance of multithreaded

MPI communication. Parallel Computing 35(12), 608–617 (2009)
11. Wijngaart, R.V.D., Jin, H.: NAS parallel benchmarks, multi-zone versions. NAS

Technical Report NAS-03-010, NASA Ames Research Center, Moffett Field, CA
(2003)

http://www.redbooks.ibm.com/redbooks/pdfs/sg247287.pdf
http://www.mpi-forum.org
http://www.mcs.anl.gov/mpi/mpich2
https://asc.llnl.gov/sequoia/benchmarks/
http://meetings.mpi-forum.org/mpi3.0_hybrid.php

Toward Performance Models of MPI

Implementations for Understanding
Application Scaling Issues

Torsten Hoefler1, William Gropp1, Rajeev Thakur2, and Jesper Larsson Träff3

1 University of Illinois at Urbana-Champaign, IL, USA
{htor,wgropp}@illinois.edu

2 Argonne National Laboratory, Argonne, IL, USA
thakur@mcs.anl.gov

3 Dept. of Scientific Computing, University of Vienna, Austria
traff@par.univie.ac.at

Abstract. Designing and tuning parallel applications with MPI, par-
ticularly at large scale, requires understanding the performance impli-
cations of different choices of algorithms and implementation options.
Which algorithm is better depends in part on the performance of the
different possible communication approaches, which in turn can depend
on both the system hardware and the MPI implementation. In the ab-
sence of detailed performance models for different MPI implementations,
application developers often must select methods and tune codes without
the means to realistically estimate the achievable performance and ratio-
nally defend their choices. In this paper, we advocate the construction
of more useful performance models that take into account limitations on
network-injection rates and effective bisection bandwidth. Since collec-
tive communication plays a crucial role in enabling scalability, we also
provide analytical models for scalability of collective communication al-
gorithms, such as broadcast, allreduce, and all-to-all. We apply these
models to an IBM Blue Gene/P system and compare the analytical per-
formance estimates with experimentally measured values.

1 Motivation

Performance modeling of parallel applications leads to an understanding of their
running time on parallel systems. To develop a model for an existing application
or algorithm, one typically constructs a dependency graph of computations and
communications from the start of the algorithm (input) to the end of the algo-
rithm (output). This application model can then be matched to a machine model
in order to estimate the run time of the algorithm on a particular architecture.

Performance models can be used to make important early decisions about
algorithmic choices. For example, to compute a three-dimensional Fast Fourier
Transformation (3d FFT), one can either use a one-dimensional decomposition
where each process computes full planes (2d FFTs) or a two-dimensional decom-
position where each process computes sets of pencils (1d FFTs). If we assume

R. Keller et al. (Eds.): EuroMPI 2010, LNCS 6305, pp. 21–30, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

22 T. Hoefler et al.

an N3 box and P processes, the 1d decomposition only requires a single parallel
transpose (alltoall) and enables the use of more efficient 2d FFT library calls (for
example, FFTW) but is limited in scalability to P ≤ N . A 2d decomposition
scales up to P ≤ N2 processes but requires higher implementation effort and
two parallel transpose operations going on in parallel on subsets of the processes
[6]. Thus, the best choice of distribution mostly depends on the communication
parameters and the number of processes.

Application designers typically have a basic understanding and expectation of
the performance of some operations on which they base their algorithmic deci-
sions. For example, most application developers would assume that transmitting
a message of size S has linear costs in S and that broadcasting a small mes-
sage to P processes would take logarithmic time in P . Such simple assumptions
of performance models, or general folklore, often guide application models and
algorithm development.

One problem with this approach is that inaccuracies in the model often do
not influence the medium-scale runs in which they are verified but have signifi-
cant impact as the parameters (S or P) grow large. One particular example is
that several application models assume that broadcast or allreduce scale with
Θ(Sb log(P)) (e.g., [3,17]) while, as demonstrated in Section 4, a good MPI
implementation would implement a broadcast or allreduce with Θ(S + log(P))
[5,13,21]. Generally speaking, performance models for middleware libraries such
as MPI depend on the parameters of the network (e.g., bandwidth, latency,
topology, routing) and the implemented algorithms (e.g., collective algorithms,
eager and rendezvous protocols) and are thus hard to generalize.

In this paper, we advocate the importance of communication models for MPI
implementations at large scale. We contend that such models should be supplied
by each MPI implementation to allow users to reason about the performance. We
sketch a hierarchical method to derive communication models of different accu-
racies so that an implementer can trade off the effort to derive such a model with
the accuracy of the model. We provide guidance for MPI modeling by demon-
strating that simple asymptotic models can be very helpful in understanding
the communication complexity of a parallel application. We also mention some
pitfalls in modeling MPI implementations.

2 Previous Work and a General Approach to Modeling

Designing a performance model for MPI communication is a complex task. Nu-
merous works exist that model the performance of a particular MPI implemen-
tation on a particular system [20,19,15,1,16]. Other works focus on modeling
particular aspects of MPI, such as collective communication [15,18,11].

Those works show that accurate models are only possible in very limited cases
and require high effort. Handling the whole spectrum, even for a particular MPI
implementation on one particular system, is very challenging. In the extreme case,
such a model would require the user to consider all parameters of a parallel ap-
plication run that are (intentionally) outside the scope of MPI (e.g., process-to-
node mappings or contention caused by traffic from other jobs). However, many

Toward Performance Models of MPI Implementations 23

of those parameters may have little influence on a useful model and might thus
be abstracted out. In this work, we build upon common modeling methodologies
from previous work and design a hierarchy of models that allows one to trade-off
design effort for accuracy. Our work is intended to encourage and guide MPI im-
plementers to specify performance characteristics of each implementation. Below
we present different approaches at different levels of detail.

Asymptotic Model. A useful first approximation of communication perfor-
mance is to give the asymptotic time complexity of the communication op-
erations. We use the standard O, Θ, and o notation for asymptotic models.
Asymptotic models can often be deduced with relativey little effort and allow
assumptions about the general scalability, but do not allow for absolute state-
ments because the constants remain unspecified. For example, an MPI imple-
mentation could state that the implemented broadcast scales with TBC(S, P) =
Θ(S + log(P)).

Dominant term exact model. Sometimes it might be possible (or desirable)
to indicate that the significant terms are known, while lower-order terms are
either not known or do not play a role asymptotically. An optimal broadcast al-
gorithm that fully exploits the bandwidth of the underlying (strong) interconnect
could thus be specified as having running time TBC(S, P) = Θ(log(P))+βS [13]
in contrast to merely efficient broadcast algorithms with the same asymptotic
performance TBC(S, P) = Θ(S+log(P)), but in reality behaving as TBC(S, P) =
Θ(log(P)) + 2βS [5].

Bounded (Parametrized) Model. It is often possible to specify some of the
constants for the asymptotic model and thus allow absolute statements. Such
constants often depend on many parameters, and it might be infeasible to specify
all of them (e.g., process-to-node mapping or contention). Thus, we propose to
specify parameterized upper and lower bounds (e.g., for the worst-possible and
best-possible mappings) for those costs. Such models allow the user to make
absolute statements about parallel algorithms under worst and best conditions.
For example, Equation (2) gives such an estimate for point-to-point messages
under congestion.

Exact (Parametrized) Model. It might be possible to define exact models
for operations in some specified settings (for example, dedicated network links).
This is the most accurate technique in our hierarchy and most convenient for
the application developer. For example, the cost of a barrier on a BlueGene/P
(BG/P) is TBAR = 0.95μs [7], independent of P .

Parameter Ranges. Implementations might adapt the communication algorithms
based on the input parameters. For example, point-to-point communications are
often implemented with two protocols, eager and rendezvous, depending on the
size of the message. Implementers can simply specify different models for different
parameter regions as shown in Equation (1).

In the remainder of the paper, we discuss a modeling strategy for point-
to-point operations (Section 3) and collective operations (Section 4). We show

24 T. Hoefler et al.

common pitfalls that are often ignored and demonstrate their influence in prac-
tice. We focus on developing guidelines for modeling, similar to the guidelines
for performance measurement in [8]. To illustrate the techniques and to demon-
strate the importance of certain aspects of modeling, we use a BG/P system
as an example where we find it helpful. However, we do not specify a complete
communication model for BG/P.

3 The Deficiency of Current Point-to-Point Models

The asymptotic model for point-to-point communication is typically T (S) =
Θ(S). A good parametrized model could be the LogGP model [2]. The simpler
latency-bandwidth model T = α + Sβ is covered by setting g = 0, β = G to
the time to transmit a single byte, and α = L + 2o to the start-up overhead.
Those models are well understood and thus not further discussed. Figure 1(a)
shows an example for an accurate congestion-free point-to-point communication
on BG/P. The simple point-to-point model would have three components (we
use a piecewise linear latency-bandwidth model):

T (S) =

⎧
⎪⎨

⎪⎩

4.5μs + 2.67ns/B · S : S ≤ 256B

5.7μs + 2.67ns/B · S : 256B < S ≤ 1024B

9.8μs + 2.67ns/B · S : 1024B < S

(1)

However, for modeling real applications such models suffer from the following
shortcomings:

Overlap and Progress. A point-to-point model should cover the ability of the
MPI library to overlap computation and communication. The LogGP model
provides the parameter o to model the per-message overhead; however, this might
not be sufficient if the overhead grows with the message size. An additional
parameter, for example, O for the overhead per byte, could be introduced to
capture those effects [15]. Such a model and its derivation are well understood,
and we omit details for brevity.

 1

 10

 100

 1000

 1 8 64 512 4096 32768
 0

 10

 20

 30

 40

 50

La
te

nc
y

[u
s]

R
el

at
iv

e
E

rr
or

 [%
]

Message Size [B]

Measurement
T(S)

Model Error

(a) Latency Model.

 0

 500

 1000

 1500

 2000

 2500

 0 50 100 150 200 250 300

La
te

nc
y

[u
s]

Stride

Benchmark

(b) 16 kiB with different strides.

Fig. 1. Example Models for Latency and Datatypes on BlueGene/P

Toward Performance Models of MPI Implementations 25

Synchronization. For some applications, it is important to know about the syn-
chronization properties of messages. MPI implementations typically use receiver
buffering for small messages and, for large messages, a rendezvous protocol that
delays the sender until the receiver is ready. This effect can be modeled easily
and is covered by the parameter S in the LogGPS model [12].

Datatypes. MPI offers a rich set of primitives to define derived datatypes for
sending and receiving messages. As these datatypes can reach high complex-
ities, the time to gather all the data from memory can vary significantly for
different datatypes. Figure 1(b) shows the influence of the stride in a simple vec-
tor datatype when sending 16 kiB MPI CHAR data. The contiguous case takes
53μs, while a stride of 1 increases the latency to 1292μs due to the ≈ 214 memory
accesses. The memory hierarchy in modern computer systems makes modeling
datatypes complex; however, one can often provide a worst case that is bound
by the slowest memory. In our example, the worst-case (2090μs) is reached at a
stride of 128 when the buffer exceeds the L3 cache on BG/P.

Matching Queue Length. The length of the matching queue can dramatically in-
fluence performance as shown in Figure 2(a). We represent the worst-case over-
head of a matching queue with R outstanding messages on BG/P as Tmatch(R) ≤
100ns · R. A simple 27-point stencil would cause a traversal of an average of 13
requests, adding Tmatch(13) = 1.3μs to the latency before the right message is
matched.

Topology (Mapping.) The network topology and the process-to-node mapping
is also of crucial importance [4]. Information about topology and potentially
the mapping is needed for an accurate point-to-point model. For a torus, for
example, one could simply multiply the latency with the number of hops. We
note that L in the LogP model, by definition, represents the upper bound (i.e.,
the maximum latency between any two endpoints).

Congestion. Point-to-point models often ignore network congestion, which might
be problematic for certain communication patterns. Even networks with full
bisection bandwidth are not free of congestion [10]. One way to model congestion
would be to define the effective bisection bandwidth (formally defined in [10]) as
upper bound for 1/G.

 0

 50

 100

 150

 200

 250

 300

 350

 0 500 1000 1500 2000 2500 3000

La
te

nc
y

[u
s]

Number of Outstanding Requests

Benchmark
Model

(a) Matching Queue.

 0

 50

 100

 150

 200

 250

 300

 0 8192 16384 24576 32768

E
ffe

ct
iv

e
B

is
ec

tio
n

B
an

dw
id

th
 [M

iB
/s

]

Number of Nodes

Effective Bisection Bandwidth
Worst-case bound

(b) Congestion.

Fig. 2. Example Models for Matching and Congestion on BlueGene/P

26 T. Hoefler et al.

It is now clear that Equation (1) represents the ideal case: free of congestion,
minimal queue lengths, consecutive memory accesses, and an optimal mapping.
We will now present an example model for congestion in the general case. First,
since we know the upper bound to the bandwidth (Equation (1)), we derive the
lower bound, that is, the maximum congestion possible. For this purpose, we
assume a cubic allocation on a 3-d torus (k-ary 3-cube) network of size Nx =
Ny = Nz = k, and (ideal) adaptive routing along shortest paths. Per convention,
nodes are identified by three digits ranging from 0 . . . k−1. In order to cause the
maximum congestion in the network, we choose pairs with maximum distance.
In a k-ary 3-cube, the maximum distance between two nodes is d3 = 3 · �k/2�.
We assume that each node can inject into all of its six links simultaneously
and present the following simple argument: Each node injects six packet streams
along the shortest paths to a node at distance d3 (such a pattern can be generated
by connecting each node at coordinate xyz with another node at distance �k/2�
in each dimension). Since each stream occupies d3 links, a total of 6 ·k3 ·d3 = 9k4

links would be needed for a congestion-free routing (WLOG, we assume that k
is even). Now, we assume that the traffic is spread evenly across the 6 · k3 total
(unidirectional) links in the steady state of our ideal adaptive routing. This
results in a congestion of 3/2k = O(3

√
P) per link. Thus, the model presented in

Equation (1) must be corrected to reflect congestion on P processes, for example
for S > 1024B:

9.8μs + 2.67ns/B · S ≤ T (S, P) < 9.8μs + 2.67ns/B · S · 3/2
3
√

P (2)

Upper and lower bounds for the other characteristics can be derived similarly. It
is sometimes important to determine the average case congestion/bandwidth, for
example, to estimate the scalability of pseudo-random communication patterns
as found in many parallel graph computations. The effective bisection band-
width [10] is a good average-case metric and can be measured by benchmarking
a huge number of bisection communications between random subsets of pro-
cesses. Figure 2(b) shows the effective bisection bandwidth as benchmarked on
BG/P. The figure also shows the bandwidth bound for the worst-case mapping
(2/3

−3
√

P · 374.5MiB/s) assuming ideal routing.

4 Performance Models for Collective Communication

Models for collective communication are of crucial importance for analyzing the
scalability of parallel applications. Collective models are often simpler to use
than accurate point-to-point models because the algorithms are fixed. Thus, pa-
rameters such as topology, synchronization, congestion, and the matching queue
can usually be hidden from the user. Asymptotic bounds can often be derived
easily from the implementation. A “high quality” MPI implementation should
make such statements.

More accurate parametrized models can be specified with a simple extension of
point-to-point models as proposed by Xu [22]. Here, one would simply model all
parameters, such as L and G in the simplified model, as dependent on the number

Toward Performance Models of MPI Implementations 27

of processes in the collective and the operation type. An all-to-all communication
could be expressed as Ta2a = α(P) + S · β(P). In a network with full effective
bisection bandwidth, one could set β(P) = G. Startup overheads in α would
likely scale linearly in P (α = Ω(P)) for larger messages. However, such models
that allow arbitrary functions as parameters in the general case (even tables)
are often hard to use to analyze scaling in practice.

Another good method for modeling collective algorithms that build upon
point-to-point methods is to construct the model from point-to-point models
[11,18,9]. Note that we do not prescribe a specific model rather than a method-
ology to design such models. Some special networks or topologies might require
the addition of terms to describe certain effects (e.g., contention in a torus net-
work). If significant effects are too complex to describe in such a model (e.g.,
process-to-node mappings) then the upper and lower bounds (best and worst
case) should be given.

Process-to-Node Mapping. The process-to-node mapping often plays a role in
the performance of collective communication. For instance, the performance of
rooted collectives, such as broadcast, can depend on the position of the root
and the network topology. This is especially important for multi-core systems.
Also, on BG/P the performance varies by the type of allocation. For example,
for broadcast, performance was degraded to half for non-cubic allocations.

Datatypes. A similar discussion as for point-to-point models applies. Let us
discuss three example models for MPI Bcast, MPI Allreduce, and MPI Alltoall on
BG/P. We do this by comparing theoretical bounds based on first principles
gathered from the documentation [7] with benchmarked performance on MPI -
COMM WORLD on full allocations. Models for collective communications on
other communicators and non-cubic allocations could be derived with a similar
method. All benchmarks used the synchronous BG/P hardware barrier to start
the operation on all processes, measured the time for a single execution, and
report the average time.

Small Data. First, we look at operations with a single integer (8 bytes), where
the specialized collective network is used. The bandwidth of the collective net-
work is 824 MiB/s [7]. IBM, however, did not release latency numbers for this
network; thus, we resort to numerical methods for deriving a model.

For the broadcast time, we assume TBC(P, 8) = αT + βBC
T log2(P) for the

collective tree network. αT models the startup overhead and βT models the cost
(latency) per stage of the tree. With a small broadcast on two processes, we
determined αT = 13μs and βBC

T = 0.31μs from a large run with P = 32, 000.
For allreduce, we used a similar model and determined βSUM

T = 0.37μs (the
difference of 60ns is most likely caused by the higher overhead of the Integer
sum): TARE(P, 8) = αSUM

T + βSUM
T log2(P). We found that for P ≤ 4, 096,

the time is a constant 17.77μs, which seems to indicate some other constant
overhead in the implementation that probably overlaps with the communication
in the tree network.

28 T. Hoefler et al.

 0.1

 1

 10

 100

 512 1024 2048 4096 8192 16384 32768
 15.5

 16

 16.5

 17

 17.5

 18

 18.5

 19
A

llt
oa

ll
La

te
nc

y
[m

s]

A
llr

ed
uc

e,
 B

ca
st

 L
at

en
cy

 [u
s]

Number of Nodes

Alltoall
Allreduce

Bcast

(a) 8 Byte per process.

 100

 1000

 10000

 100000

 512 1024 2048 4096 8192 16384 32768

La
te

nc
y

[m
s]

Number of Nodes

Alltoall
Allreduce

Bcast

(b) Constant 960 MiB total.

Fig. 3. Small data (8 Byte process) and large data (960 MiB) scaling for different
collective operations

For alltoall, the implementation simply sends to all peer processes [7]; thus,
we assume TA2A(P, 8) = α + g(P − 1). As noted in Section 3, α = L + 2o,
and we determined g = 0.84μs for P = 32, 000. The model functions and the
measurement results are shown in Figure 3(a) as points and lines, respectively.

Large Data. For the large-data collectives, we communicated the maximum
possible buffer size of 960MiB on BG/P (for alltoall, 960MiB/P per process).

Large-data broadcasts use all six links of the Torus network and the deposit-
bit feature for communication. The maximum effective bandwidth would be 6 ·
374.5MiB/s = 2247MiB/s and is shown as a line in Figure 3(b). The broadcast
would need at least TBC(P, 8) to reach all endpoints. We thus extend our broad-
cast model with a bandwidth term: TBC(P, S) = αT +βBC

T log2(P)+ 2.67
6

ns/B ·S.
Large allreduces use the same message pattern as broadcast, but each stage

is slower because of the reduction operation. An experiment showed that the
allreduces takes TARE(P, 9.6 · 108) = 2.68 · TBC(P, 9.6 · 108).

Let us now recapitulate an argument for the best-case alltoall bandwidth
assuming ideal adaptive routing. As stated before, alltoall is implemented by
simply sending from all processes to all other processes (in some order). We thus
assume that all messages hit the network at the same time and are either limited
by the injection at the endpoints or by the congestion in the network. Lam et al.
showed bounds for one- and two-dimensional tori in [14]. We model the time with
LogGP: TA2A = (P − 1)g +SG · max{P−1

6 , C(P)} and a congestion factor C(P)
(we assume g > o WLOG). For alltoall, we assume that all messages contribute
to the worst-case congestion in the network. On a k3 grid (for odd k, WLOG),
those messages occupy different numbers of links, depending on their Euclidean
distance, with a maximum of d3 = 3(k−1)

2 . Let d = d1 = k−1
2 , then the total

number of occupied links is

N(k) ≤ k3 · 2
d∑

x=0

2
d∑

y=0

2
d∑

z=0

(x + y + z) = k312d (d + 1)3 = O(k7).

Toward Performance Models of MPI Implementations 29

With a total of 6k3 links in the torus, the congestion per link (assuming ideal
routing) C(k) ≤ N(k)/6k3 = 2d(d + 1)3 = O(k4) and with k3 = P , C(P) ≤
3
√

P (3√
P/2 + 1)3 = O(P 3

√
P). Thus the lower bound for a bandwidth-bound

alltoall on a torus would be:

TA2A ≥ g(P − 1) + SG
3
√

P (3√P/2 + 1)3.

Figure 3(b) shows the bound and benchmark results for alltoall. This analysis
indicates that potential for further optimization exists in BG/P’s alltoall im-
plementation. Faraj et al. suggest that increasing the number of FIFOs would
mitigate the problem [7].

5 Summary and Conclusions

In this work, we describe the importance of analytic performance models for
MPI implementations. Such models and their accuracy become more important
in the context of algorithm and application design and validation on very large
(petascale or exascale) systems. We argue that MPI implementers should supply
analytic models with an MPI library in order to allow users to make algorithmic
decisions and analyze scalability.

We described a hierarchy of modeling approaches that allow the designer
to trade accuracy against effort, and we argue that asymptotic models would
already provide important hints to application developers. We demonstrate how
simple performance models can be developed, discuss common pitfalls, and show
how to address those issues with examples on the BG/P architecture.

Performance is the main motivator for parallelization, and thus, performance
modeling is most important in the context of MPI. Our work motivates a dis-
cussion of performance models in the MPI community and provides some initial
guidance towards more useful modeling for MPI.

Acknowledgments. This work was supported in part by the Office of Advanced
Scientific Computing Research, Office of Science, U.S. Department of Energy, under
contract DE-AC02-06CH11357 and DE-FG02-08ER25835, and by the Blue Waters
sustained-petascale computing project, which is supported by the National Science
Foundation (award number OCI 07-25070) and the state of Illinois.

References

1. Al-Tawil, K., Moritz, C.A.: Performance modeling and evaluation of MPI. Journal
of Parallel and Distributed Computing 61(2), 202–223 (2001)

2. Alexandrov, A., Ionescu, M.F., Schauser, K.E., Scheiman, C.J.: LogGP: Incorpo-
rating long messages into the LogP model for parallel computation. Journal of
Parallel and Distributed Computing 44(1), 71–79 (1997)

3. Barker, K.J., Davis, K., Kerbyson, D.J.: Performance modeling in action: Perfor-
mance prediction of a Cray XT4 system during upgrade. In: Proceedings of the
2009 IEEE Intl. Symp. on Parallel&Distributed Processing, pp. 1–8 (2009)

4. Bhatelé, A., Bohm, E., Kalé, L.V.: Topology aware task mapping techniques: An
API and case study. SIGPLAN Not. 44(4), 301–302 (2009)

30 T. Hoefler et al.

5. Chan, E., Heimlich, M., Purkayastha, A., van de Geijn, R.A.: Collective communi-
cation: theory, practice, and experience. Conc. & Comp. 19(13), 1749–1783 (2007)

6. Eleftheriou, M., Fitch, B.G., Rayshubskiy, A., Ward, T.J.C., Germain, R.S.: Scal-
able framework for 3D FFTs on the Blue Gene/L supercomputer: implementation
and early performance measurements. IBM J. Res. Dev. 49(2), 457–464 (2005)

7. Faraj, A., Kumar, S., Smith, B., Mamidala, A., Gunnels, J.: MPI collective com-
munications on the Blue Gene/P supercomputer: Algorithms and optimizations.
In: 17th IEEE Symposium on High-Performance Interconnects, pp. 63–72 (2009)

8. Gropp, W., Lusk, E.L.: Reproducible measurements of mpi performance charac-
teristics. In: Margalef, T., Dongarra, J., Luque, E. (eds.) PVM/MPI 1999. LNCS,
vol. 1697, pp. 11–18. Springer, Heidelberg (1999)

9. Hoefler, T., Janisch, R., Rehm, W.: Parallel scaling of Teter’s minimization for
Ab Initio calculations . In: HPC Nano 2006 in conjunction with the Intl. Confer-
ence on High Performance Computing, Networking, Storage and Analysis, SC 2006
(November 2006)

10. Hoefler, T., Schneider, T., Lumsdaine, A.: Multistage Switches are not Crossbars:
Effects of Static Routing in High-Performance Networks. In: Proc. of IEEE Intl.
Conf. on Cluster Computing, October 2008. IEEE Computer Society Press, Los
Alamitos (2008)

11. Hoefler, T., Cerquetti, L., Mehlan, T., Mietke, F., Rehm, W.: A practical approach
to the rating of barrier algorithms using the LogP model and Open MPI. In: Proc.
of the Intl. Conf. on Parallel Proc. Workshops (ICPP 2005), June 2005, pp. 562–569
(2005)

12. Ino, F., Fujimoto, N., Hagihara, K.: LogGPS: A Parallel Computational Model for
Synchronization Analysis. In: PPoPP 2001: Proc. of ACM SIGPLAN symposium
on Principles and practices of parallel programming, pp. 133–142 (2001)

13. Jia, B.: Process cooperation in multiple message broadcast. Parallel Comput-
ing 35(12), 572–580 (2009)

14. Lam, C.C., Huang, C.H., Sadayappan, P.: Optimal algorithms for all-to-all per-
sonalized communication on rings and two dimensional tori. J. Parallel Distrib.
Comput. 43(1), 3–13

15. Mart́ınez, D.R., Cabaleiro, J.C., Pena, T.F., Rivera, F.F., Blanco, V.: Accurate
analytical performance model of communications in MPI applications. In: 23rd
IEEE Intl. Symp. on Parallel and Distributed Processing (IPDPS), pp. 1–8 (2009)

16. Moritz, C.A., Frank, M.: LoGPC: Modeling network contention in message-passing
programs. IEEE Trans. on Par. and Distrib. Systems 12(4), 404–415 (2001)

17. Mudalige, G.R., Vernon, M.K., Jarvis, S.A.: A plug-and-play model for evaluating
wavefront computations on parallel architectures. In: IEEE International Sympo-
sium on Parallel and Distributed Processing, pp. 1–14 (2008)

18. Pjesivac-Grbovic, J., Angskun, T., Bosilca, G., Fagg, G.E., Gabriel, E., Dongarra,
J.J.: Performance Analysis of MPI Collective Operations. In: 4th Intl. Workshop
on Perf. Modeling, Evaluation, and Optimization of Par. and Distrib. Syst. (2005)

19. Rodŕıguez, G., Badia, R.M., Labarta, J.: Generation of simple analytical models
for message passing applications. In: Danelutto, M., Vanneschi, M., Laforenza, D.
(eds.) Euro-Par 2004. LNCS, vol. 3149, pp. 183–188. Springer, Heidelberg (2004)

20. Touriño, J., Doallo, R.: Performance evaluation and modeling of the Fujitsu
AP3000 message-passing libraries. In: Amestoy, P.R., Berger, P., Daydé, M., Duff,
I.S., Frayssé, V., Giraud, L., Ruiz, D. (eds.) Euro-Par 1999. LNCS, vol. 1685, pp.
183–187. Springer, Heidelberg (1999)

21. Träff, J.L., Ripke, A.: Optimal broadcast for fully connected processor-node net-
works. Journal of Parallel and Distributed Computing 68(7), 887–901 (2008)

22. Xu, Z., Hwang, K.: Modeling communication overhead: MPI and MPL performance
on the IBM SP2. IEEE Parallel Distrib. Technol. 4(1), 9–23 (1996)

PMI: A Scalable Parallel Process-Management

Interface for Extreme-Scale Systems�

Pavan Balaji1, Darius Buntinas1, David Goodell1, William Gropp2,
Jayesh Krishna1, Ewing Lusk1, and Rajeev Thakur1

1 Argonne National Laboratory, Argonne, IL 60439, USA
2 University of Illinois, Urbana, IL 61801, USA

Abstract. Parallel programming models on large-scale systems require
a scalable system for managing the processes that make up the execution
of a parallel program. The process-management system must be able to
launch millions of processes quickly when starting a parallel program
and must provide mechanisms for the processes to exchange the infor-
mation needed to enable them communicate with each other. MPICH2
and its derivatives achieve this functionality through a carefully defined
interface, called PMI, that allows different process managers to interact
with the MPI library in a standardized way. In this paper, we describe
the features and capabilities of PMI. We describe both PMI-1, the cur-
rent generation of PMI used in MPICH2 and all its derivatives, as well
as PMI-2, the second-generation of PMI that eliminates various short-
comings in PMI-1. Together with the interface itself, we also describe a
reference implementation for both PMI-1 and PMI-2 in a new process-
management framework within MPICH2, called Hydra, and compare
their performance in running MPI jobs with thousands of processes.

1 Introduction

While process management is an integral part of high-performance computing
(HPC) systems, it has historically not received the same level of attention as
other aspects of parallel systems software. The scalability of process manage-
ment is not much of a concern on systems with only a few hundred nodes. As
HPC systems get larger, however, systems with thousands of nodes and tens of
thousands of processing cores are becoming common; indeed, the largest systems
in the world already use hundreds of thousands of processing cores. For such sys-
tems, a scalable design of the process-management infrastructure is critical for
various aspects such as launching and management of parallel applications, de-
bugging utilities, and management tools. A process-management system must,
� This work was supported in part by the Office of Advanced Scientific Computing

Research, Office of Science, U.S. Department of Energy, under Contract #DE-AC02-
06CH11357; by the DOE grant #DE-FG02-08ER25835; and by the National Science
Foundation under grant #0702182.

R. Keller et al. (Eds.): EuroMPI 2010, LNCS 6305, pp. 31–41, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

32 P. Balaji et al.

of course, start and stop processes in a scalable way. In addition, it must pro-
vide mechanisms for the processes in a parallel job to exchange the information
needed to establish communication among them.

Although the growing scale of HPC systems requires close interaction between
the parallel programming library (such as MPI) and the process manager, an
appropriate separation between these two components is necessary. This sepa-
ration not only allows for their independent development and improvement but
also keeps the parallel programming library generic enough to be used with any
process-management framework. At the same time, these two components must
share sufficient information so as to allow the parallel programming library to
take advantage of specific characteristics of the system on which it is running.

With these requirements in mind, we initially designed PMI, a generic process-
management interface for parallel applications. In this paper, we start by describ-
ing the first generation of PMI (PMI-1). PMI-1 is widely used in MPICH2 [1]
and other MPI implementations derived from it, such as MVAPICH2 [4], Intel
MPI [6], SiCortex MPI [12], and Microsoft MPI [7] (for the programming library
side) as well as in many process-management frameworks including MPICH2’s
internal process managers (Hydra, MPD, SMPD, Gforker, Remshell), and other
external process managers such as SLURM [15], OSC mpiexec [9], and OSU
mpirun [13] (for the process-manager side).

While extremely successful, PMI-1 has several limitations, particularly when
applied to modern HPC systems. These limitations include issues related to
scalability for large numbers of cores on a single node and efficient interac-
tion with hybrid programming models that combine MPI and threads, amongst
others. Building on our experiences with PMI-1, we recently designed a second-
generation interface (PMI-2) that overcomes the shortcomings of PMI-1. The
second part of the paper describes this new interface and a reference imple-
mentation of both PMI-1 and PMI-2 in a new process-management framework
within MPICH2, called Hydra [5]. We also present performance results com-
paring PMI-2’s capabilities to that of PMI-1 and other process-management
interfaces on system scales of nearly 6,000 processes.

2 Requirements of a Process-Management Interface

In this section we provide a brief overview of what is required of a process-
management interface for scalable parallel process management on large systems.

2.1 Decoupling the Process Manager and the Process-Management
Interface

In our model, process management comprises three primary components: (1) the
parallel programming library (such as MPI), (2) the PMI library, and (3) the
process manager. These components are illustrated in Figure 1 with examples
of different MPI libraries, PMI libraries, and process managers.

PMI: A Scalable Parallel Process-Management Interface 33

Communication

Subsystem

MPD mpiexec
OSC

Hydra

MPICH2 MVAPICH2 Intel−MPI SCX−MPI

SMPD PMISLURM PMISimple PMI BG/L PMI

OSU
mpirunSLURM SMPD

PMI Wire Protocol (Implementation Specific)

PMI API

PMI Library

Process Managers

MPI (or other)
Libraries

Microsoft
MPI

Fig. 1. Interaction of MPI and the process manager through PMI

The process manager is a logically centralized process (but often a distributed
set of processes in practice) that manages (1) process launching (including start-
ing/stopping processes, providing the environment information to each process,
stdin/out/err forwarding, propagating signals) and (2) information exchange
between processes in a parallel application (e.g., to set up communication chan-
nels). Several process managers are available (e.g., PBS [8], SUN Grid En-
gine [14], and SSH), that already provide such capabilities.

The PMI library provides the PMI API. The implementation of the PMI
library, however, might depend on the system itself. In some cases, such as for
IBM Blue Gene/L (BG/L) [3], the library may use system-specific features to
provide PMI services. In other cases, such as for processes on a typical commodity
cluster, the PMI library can communicate with the process manager over a
communication path (e.g. TCP). While the PMI library can be implemented in
any way that the particular implementation prefers, in both PMI-1 and PMI-
2 there is a predefined “wire protocol” where data is exchanged through the
sockets interface. The advantage of using this protocol is that any application
that uses the PMI API with the predefined PMI wire protocol is compatible
with any PMI process manager implementation that accepts the wire protocol.

We note that the PMI API and the PMI wire protocol are separate entities. An
implementation may choose to implement both, or just one of them. For example,
the PMI library on BG/L provides the PMI API but does not use the sockets-
based wire protocol. Thus, the library is compatible with any programming
model using the PMI API, but it is not compatible with process managers that
accept the sockets-based PMI wire protocol.

2.2 Overview of the First-Generation PMI (PMI-1)

Processes of a parallel application need to communicate with each other. Es-
tablishing this communication typically requires publishing a contact address,
which may be an IP address, a remotely accessible memory segment, or any

34 P. Balaji et al.

other interconnect-specific identifier. Since the process manager knows where all
the processes are, and because it is (probably) managing some communication
with the processes to handle standard I/O (stdin, stdout, and stderr), it is nat-
ural to have the process-management system also provide the basic facilities for
information interchange. This is the key feature of our process-management in-
terface, PMI—a recognition that these two features are closely related and can
be effectively provided through a single service.

While PMI itself is generic for any parallel programming model and not just
MPI, for ease of discussion we consider only the MPI programming model here. In
the case of MPI, PMI deals with aspects such as providing each MPI process with
information about itself (such as its rank) as well as about the other processes
in the application (such as the size of MPI COMM WORLD). Furthermore, each PMI
process manager that launches parallel applications is expected to maintain a
database of all such information. PMI defines a portable interface that allows the
MPI process to interact with the process manager by adding information to the
database (“put” operations) and querying information added by other processes
in the application (“get” operations). The PMI functions are translated into the
appropriate wire protocol by the PMI provider library and exchanged with the
process manager. Most of the database is exchanged by using “key-value” pairs.
Together with “put” and “get” operations, PMI also provides collective “fence”
operations that allow efficient, collective data-exchange capabilities (the use of
fence is described in more detail in Section 2.3).

As an example interaction between the MPI library, the PMI library, and the
process manager, consider a parallel application with two processes, P0 and P1,
where P0 wants to send data to P1. In this example, during MPI initialization,
each MPI process adds to the PMI database information about itself that other
processes can use to connect to it. When P0 calls an MPI Send to P1, the MPI
library can look up information about P1 from the PMI database, connect to P1
(if needed) by using this information, and send the data.

2.3 PMI Requirements for the Process Manager

In designing the process-management interface, there are two primary require-
ments for the process manager. First, a careful separation of features is needed
to enable layering on a “native” process manager with the lowest possible over-
head. This requirement arises because many systems already have some form
of a process manager (often integrated with a resource manager) that is tightly
tied to the system. A portable PMI must make effective use of these existing
systems without requiring extra overhead (e.g., requiring no additional processes
beyond what the native system uses). For example, an interface that requires
asynchronous processing of data or interrupts to manage data might cause ad-
ditional overhead for applications even when they are not interacting with the
PMI services; this can be a major issue on large-scale systems. Second, a scalable
data-interchange approach for the key-value system is needed.

This second requirement has a number of aspects. Consider a system in which
each process in a parallel job starts, creates a “contact id,” and wishes to make

MPI_COMM_WORLD

PMI: A Scalable Parallel Process-Management Interface 35

it available to the other processes in the parallel job. A simple way to do this is
for the process to provide the data to central server, for example, by adding the
data expressed as a (key,value) pair into a simple database. If all p processes do
this with a central server, the time complexity is O(p); the time for all processes
to extract just a single value is also O(p). This approach is clearly not scalable.
Using multiple servers instead of a single one helps, but it introduces other
problems.

Our solution in PMI is to provide a collective abstraction, permitting the use
of efficient collective algorithms to provide more scalable behavior. In this model,
processes put data into a key-value space (KVS). They then collectively perform
a fence operation. Following completion of the fence, all processes can perform
a get operation against the KVS. Such a design permits many implementations.
Most important, the fence step, which is collective over all processes, provides
an excellent opportunity for the implementation to distribute the data supplied
by the put operations in a scalable manner. For example, a distributed process
manager implementation with multiple processes can use this opportunity to
allow these processes to share their local information with each other.

3 Second-Generation PMI (PMI-2)

While the basic design of PMI-1 was widely adopted by a large number of PMI
libraries and process managers, as we move to more advanced functionality of
MPI as well as to larger systems, several limitations of PMI-1 have become clear.
The second-generation PMI (PMI-2) addresses these limitations.

The complete details of the PMI-2 interface (including function names), and
wire protocol are available online [10,11]. To avoid dilution, we do not explicitly
mention them in this paper. Instead, we describe the major areas in which PMI-2
improves on PMI-1.

Lack of Query Functionality: PMI-1 provides a simple key-value database
that processes can put values into and get values from. While the process man-
ager is best equipped to understand various system-specific details, PMI-1 does
not allow it to share this information with the MPI processes. In other words, the
process manager itself cannot add system-specific information to the key-value
database; thus MPI processes cannot query such information from the process
manager through PMI-1.

An example issue created by this limitation occurs on multicore and multipro-
cessor systems, where the MPI implementation must determine which processes
reside on the same SMP node (e.g., to create shared-memory segments or for
hierarchical collectives). Each process gathers this information by fetching the
contact information for all other MPI processes and determining which contact
addresses are local to itself. While this approach is functional, it is extremely
inefficient because it results in O(p) PMI get operations for each MPI process
(O(p2) total operations).

PMI-2 introduces the concept of job attributes, which are predefined keys
provided by the process manager. Using such keys, the process manager can pass

36 P. Balaji et al.

system-specific information to the MPI processes; that is, these keys are added
into the key-value database directly by the process manager with system layout
information, allowing each MPI process to get information about the layout of all
MPI processes in a single operation. Further, since the process manager knows
that such attributes are read-only, it can optimize their storage by caching copies
on local agents, thus allowing the number of PMI requests to be reduced from
O(p2) (in the case of PMI-1) to nearly zero (in the case of PMI-2)1.

Database Information Scope: PMI-1 uses a flat key-value database. That is,
an MPI process cannot restrict the scope of a key that it puts into the database;
all information is global. Thus, if some information needs to be local only to
a subset of processes, PMI-1 provides no mechanism for the MPI processes to
inform the process manager about it. For example, information about shared-
memory keys is relevant only to processes on the same node; but the process
manager cannot optimize where such information is stored or replicated.

To handle this issue, PMI-2 introduces “scoping” of keys as node-level and
global (further restriction of the scope is not supported in PMI-2, in favor of
simplicity as opposed to generality). For example, keys corresponding to shared
memory segments on a node can be restricted to a node-level scope, thus allowing
the process manager to optimize retrieval.

Hybrid MPI+Threads Programs: PMI-1 is not thread safe. Therefore, in
the case of multithreaded MPI programs, the MPI implementation must protect
calls to PMI-1 by using appropriate locking mechanisms. Such locking is often
coarse-grained and serializes communication between the PMI library and the
process manager. That is, until the PMI library sends a query to the process
manager and gets a response for it (a round-trip communication), no other thread
can communicate over the same socket. PMI-2 functions are thread-safe. Thus,
multiple threads can communicate with the server in a more fine-grained manner,
thereby pipelining requests better and improving performance.

Dynamic Processes: Each process group in PMI-1 maintains a separate
database, and processes are not allowed to query for information across databases.
For dynamically spawned processes, this is a severe limitation because it requires
such processes to manually exchange their database information and load them
into their individual databases. This procedure is cumbersome and expensive (with
respect to both performance and memory usage). PMI-2 recognizes the concept of
a “job” that can contain multiple applications connected to each other or where
one is spawned from another. This allows such jobs to share database information
without the need to explicitly replicate it.

Fault Tolerance: PMI-1 does not specify any mechanism for respawning pro-
cesses when a fault occurs. Note that this is different from spawning an MPI-2 dy-
namic process, since such a process would form its own process group (MPI COMM
WORLD) and not just replace a process in the existing process group.PMI-2 provides

1 The read-only attributes still need to be fetched, which causes the number of requests
with PMI-2 to be non-zero.

MPI_COMM_WORLD
MPI_COMM_WORLD

PMI: A Scalable Parallel Process-Management Interface 37

a conceptof respawningprocesses,where anewprocess essentially replaces the orig-
inal process within the same process group.

PMI-2 has been implemented as part of a new process-management framework
in MPICH2, called Hydra [5].

4 Experimental Evaluation and Analysis

In this section, we present the results of several experiments that compare the
performance of PMI-2 with that of PMI-1.

4.1 System Information Query Functionality

As described in Section 3, PMI-1 provides only a simple key-value database that
processes can put values into and get values from, so a process manager cannot
provide system specific information to the MPI processes. Thus, in order to
determine which processes reside on the same SMP node, O(p2) PMI operations
are required. With PMI-2’s job attributes, this reduces to nearly zero.

This behavior is reflected in the launch time of MPI applications. Figure 2(left)
shows this behavior for a simple MPI application (that just calls MPI Init and
MPI Finalize) with PMI-1 and PMI-2 on a 5760-core SiCortex system. As shown
in the figure, the overall launch time increases rapidly with system size for PMI-1.
With PMI-2, on the other hand, the time taken is significantly less. Figure 2(right)
shows further analysis of the two PMI implementations with respect to the num-
ber of PMI requests observed by the process manager. This figure illustrates the
reason for the performance difference between the implementations: PMI-1 has
several orders of magnitude more PMI requests than does PMI-2.

4.2 Impact of Added PMI Functionality over the Native Process
Manager

As described in Section 2.3, some systems already have a process manager (often
integrated with a resource manager) that is tightly tied to the system. While

Fig. 2. Process launching on a 5760-core SiCortex system: (left) launch time and (right)
number of PMI requests

38 P. Balaji et al.

Fig. 3. Runtime impact of separate PMI server daemons: (left) absolute runtime; and
(right) percentage variance in runtime

some process managers might natively provide PMI functionality, others do not.
An efficient implementation of the PMI interface must make effective use of
such “native process managers” without requiring extra overhead (for example,
by requiring heartbeat operations that wake up additional processes, thus dis-
turbing the core computation). In this section, we evaluate this “noise impact”
on 1600-cores of the SiCortex system using Class C NAS parallel benchmarks in
two modes: (1) using the native process manager on the system, SLURM, that
already provides PMI-1 services, and (2) using the Hydra process manager that
internally uses SLURM for process launching and management, but separately
provides PMI services on top of it using an extra process daemon.

As shown in Figure 3, the impact of having additional PMI services (legend
“Hydra”) on top of the native process manager (legend “SLURM”) on the sys-
tem does not add any significant overhead. Figure 3(left) shows the impact on
runtime, where there is no perceivable overhead. Figure 3(right) shows the per-
centage difference between the highest and lowest execution times noticed on a
large number of runs of the application. Again, in most cases this difference is
close to 0%, with a maximum of 0.5% for the EP application.

The primary reason for such lack of overhead is that the PMI design com-
pletely relies on synchronous activity, and thus there is no asynchronous waking
of PMI service daemons. That is, once the initialization is complete, unless the
MPI process sends a PMI request, there is no additional overhead.

4.3 Performance of Multithreaded MPI Applications

With an increasing number of cores on each node, researchers are studying ap-
proaches for using MPI in conjunction with threads, in which case MPI functions
might be called from multiple threads of a process. Since PMI-1 is not thread
safe, all PMI calls must be protected by coarse-grained external locks; thus, only
one thread can communicate with a process manager at a given time. PMI-2,
on the other hand, is thread-safe, allowing for multiple threads to communicate
with the process manager in a fine-grained manner.

PMI: A Scalable Parallel Process-Management Interface 39

Fig. 4. Multithreading Performance

In this experiment, we measure the
concurrency of PMI operations by us-
ing a benchmark that continuously
publishes and unpublishes services to
the process manager2. With PMI-1,
each thread obtains a lock, sends a
publish request and waits for a re-
sponse from the process manager be-
fore releasing the lock. With PMI-2,
each PMI request contains a thread
ID; so the PMI library can send one
request and release the lock (allowing
other threads to send requests) even before it gets its response. When the pro-
cess manager responds to the publish requests, it sends back the original thread
ID with the response, allowing it to be forwarded to the appropriate thread.

The impact of such threading capability is illustrated in Figure 4. As shown
in the figure, the average time taken by each PMI request for PMI-1 does not
reduce with increasing number of threads since all requests are serialized (the
total amount of work is fixed, but shared between all the threads). With PMI-
2, however, when multiple threads make concurrent PMI requests, all requests
are pipelined in a fine-grained manner, allowing for better concurrency. Thus
the average PMI latency perceived by each thread would be lesser. We notice
that for the single-threaded case, PMI-2 has additional overhead compared with
PMI-1. This result is unexpected and is being investigated.

4.4 Comparison with Alternative Process Management Frameworks

Fig. 5. Job launch time comparison with alter-
native process managers

In this section, we compare an
implementation of the PMI-2 in-
terface with an alternate process-
management framework, Open-
RTE. OpenRTE [2] (ORTE) is
the process-management system
used in Open MPI. It is designed
to provide robust and transpar-
ent support for parallel process
management. Like PMI, it in-
cludes a system of (key,value)
pairs that are exchanged be-
tween the MPI processes and
the process-management system.
Figure 5 compares launch time of MPI applications for the Hydra implementa-
tion of PMI-2 and OpenRTE. As shown in the figure, PMI-2 performs slightly
better than ORTE3 on this 796-core commodity cluster.
2 These operations are used in MPI Publish name and MPI Unpublish name.
3 Open MPI v1.4.1 was used for the measurements presented here.

40 P. Balaji et al.

5 Related Work

Improvements to the process-management framework for parallel programming
models is not a new research topic. However, most efforts have focused on im-
proving the process manager itself with respect to how it launches and manages
processes. The OSC mpiexec [9], OSU mpirun (also known as SceLA) [13], and
SLURM [15] are examples of such work. OSC mpiexec is a process manager for
MPI applications that internally uses PBS [8] for launching and managing jobs.
It is a centralized process manager that communicates using multiple process-
management wire protocols, including PMI-1. OSU mpirun is based on SSH;
it uses a hierarchical approach to launch processes and interacts with PMI-1.
SLURM [15] differs from other process managers primarily in that it provides
an entire infrastructure that launches and manages processes; it also provides its
own PMI-1 implementation to interact with the processes. While all these im-
plementations seek to improve process management on large-scale systems, our
work differs in that none of these implementations study the requirements and
limitations of the interface between the MPI library and the process manager,
which is the PMI API and the wire protocol.

ORTE provides a mechanism for MPI processes to interact with the integrated
process manager. However, it does not explicitly decouple these functionalities,
as do PMI and its associated wire protocol.

In summary, our work differs from other process-management systems with
respect to its capabilities and underlying architecture. At the same time, PMI-2
provides a complementary contribution to those systems in that it can be used
with them simultaneously.

6 Concluding Remarks

We presented a generic process-management interface, PMI, that allows different
process-management frameworks to interact with parallel libraries such as MPI.
We first described PMI-1, which is currently used in MPICH2 and all its deriva-
tives. We then described PMI-2, the second generation of PMI that eliminates
various shortcomings in PMI-1 on modern HPC systems, including scalability
issues for large multi-core systems and interaction with hybrid MPI-and-threads
models. Our performance results demonstrate significant advantages of PMI-2
compared with PMI-1.

References

1. Argonne National Laboratory: MPICH2, http://www.mcs.anl.gov/research/
projects/mpich2

2. Castain, R., Woodall, T., Daniel, D., Squyres, J., Barrett, B., Fagg, G.: The Open
Run-Time Environment (OpenRTE): A transparent multi-cluster environment for
high-performance computing. In: Di Martino, B., Kranzlmüller, D., Dongarra, J.
(eds.) EuroPVM/MPI 2005. LNCS, vol. 3666, pp. 225–232. Springer, Heidelberg
(2005)

http://www.mcs.anl.gov/research/projects/mpich2
http://www.mcs.anl.gov/research/projects/mpich2

PMI: A Scalable Parallel Process-Management Interface 41

3. Gara, A., Blumrich, M., Chen, D., Chiu, G., Coteus, P., Giampapa, M., Haring,
R., Heidelberger, P., Hoenicke, D., Kopcsay, G., Liebsch, T., Ohmacht, M., Stein-
macherBurow, B., Takken, T., Vranas, P.: Overview of the Blue Gene/L system
architecture. IBM Journal of Research and Development 49(2/3) (2005)

4. Huang, W., Santhanaraman, G., Jin, H., Gao, Q., Panda, D.: Design of high per-
formance MVAPICH2: MPI2 over InfiniBand. In: Proceedings of the sixth IEEE
International Symposium on Cluster Computing and the Grid, Singapore Manage-
ment University, Singapore, May 16–19 (2006)

5. Hydra process management framework, http://wiki.mcs.anl.gov/mpich2/
index.php/Hydra Process Management Framework

6. Intel MPI, http://software.intel.com/en-us/intel-mpi-library/
7. Microsoft MPI: http://msdn.microsoft.com/en-us/library/bb524831VS.85.

aspx
8. PBS: Portable batch system , http://www.openpbs.org
9. OSC Mpiexec, http://www.osc.edu/∼djohnson/mpiexec

10. PMI-2 API ,http://wiki.mcs.anl.gov/mpich2/index.php/PMI v2 API
11. PMI-2 Wire Protocol , http://wiki.mcs.anl.gov/mpich2/index.php/PMI v2

Wire Protocol
12. SiCortex Inc., http://www.sicortex.com
13. Sridhar, J., Koop, M., Perkins, J., Panda, D.K.: ScELA: Scalable and Extensible

Launching Architecture for Clusters. In: Sadayappan, P., Parashar, M., Badrinath,
R., Prasanna, V.K. (eds.) HiPC 2008. LNCS, vol. 5374, pp. 323–335. Springer,
Heidelberg (2008)

14. Sun Grid Engine , http://www.sun.com/software/sge/
15. Yoo, A.B., Jette, M.A., Grondona, M.: SLURM: Simple Linux utility for resource

management. In: Feitelson, D.G., Rudolph, L., Schwiegelshohn, U. (eds.) JSSPP
2003. LNCS, vol. 2862, pp. 44–60. Springer, Heidelberg (2003)

http://wiki.mcs.anl.gov/mpich2/index.php/Hydra_Process_Management_Framework
http://wiki.mcs.anl.gov/mpich2/index.php/Hydra_Process_Management_Framework
http://software.intel.com/en-us/intel-mpi-library/
http://msdn.microsoft.com/en-us/library/bb524831VS.85.aspx
http://msdn.microsoft.com/en-us/library/bb524831VS.85.aspx
http://www.openpbs.org
http://www.osc.edu/~djohnson/mpiexec
http://wiki.mcs.anl.gov/mpich2/index.php/PMI_v2_API
http://wiki.mcs.anl.gov/mpich2/index.php/PMI_v2_Wire_Protocol
http://wiki.mcs.anl.gov/mpich2/index.php/PMI_v2_Wire_Protocol
http://www.sicortex.com
http://www.sun.com/software/sge/

Run-Time Analysis and Instrumentation for

Communication Overlap Potential

Thorvald Natvig and Anne C. Elster

Norwegian University of Science and Technology(NTNU)
Sem Sælands vei 9, NO-7491 Trondheim, Norway

{thorvan,elster}@idi.ntnu.no

Abstract. Blocking communication can be runtime optimized into non-
blocking communication using memory protection and replacement of
MPI functions. All such optimizations come with overhead, meaning
no automatic optimization can reach the performance level of hand-
optimized code.In this paper, we present a method for using previously
published runtime optimizers to instrument a program, including mea-
sured speedup gains and overhead.The results are connected with the
program symbol table and presented to the user as a series of source
code transformations. Each series indicates which optimizations were
performed and what the expected saving in wallclock time is if the opti-
mization is done by hand.

Keywords: MPI Overlap Communication Instrumentation Analysis.

1 Introduction

For point-to-point communication, MPI [1] offers two methods of communica-
tion; blocking and non-blocking. Blocking communication is the easiest to use,
as communication is complete by the time the function call returns. When using
blocking communication, all communication time is overhead, and this limits
effective speedup.

Non-blocking communication offers an alternative, where control immediately
returns to the program, while the communication operation is performed asyn-
chronously. The program must not reference the data area until communication
is complete, which makes this method of communication harder to use correctly.
If the programmer forgets to explicitly wait for communication to finish be-
fore accessing data, the program may read unreceived data or write to unsent
data, causing data corruption. Often, these problems do not appear in small test
runs, but only appear when the application is scaled to larger problem sizes on
a larger number of nodes. However, non-blocking communication allows overlap
both between inidividual communication requests and with computation, greatly
reducing the effective overhead of parallelization.

1.1 Previous Work

We have previously shown that it is possible to run-time optimize applications
by turning blocking communication into non-blocking communication, using

R. Keller et al. (Eds.): EuroMPI 2010, LNCS 6305, pp. 42–49, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Run-Time Analysis and Instrumentation for Communication 43

memory protection to ensure data integrity [2]. We have also demonstrated how
real-time network performance can be modeled and how the tradeoff between
optimization savings and optimization overhead can be quickly decided at run-
time [3]. The work presented here builds directly on these, extendig the run-time
analysis of function calls and presenting the result to the user as potential source
code transformations.

Itzkovitz and Schuster [4] introduce the idea of mapping the same physical
memory multiple times into the virtual address space of a process in order to
reduce the number of page protection changes.

Keller et.al [5] have integrated Valgrind memory checking with Open MPI.
This does datatype analysis and parameter validation, but has higher overhead
than our method presented here. It also does no direct overlap analysis.

Danalis et.al have developed ASPhALT [6], a tool that does automatic trans-
formation at the compiler level, but only for specific recognized problems.

Breakpad [7] is a crash reporter utility, which includes the tools we use for
extracting uniform symbol tables from many different platforms.

1.2 Outline

Section 2 details our run-time method for communication analysis and perfor-
mance measurements. Section 3 shows how this information is post-processed to
predict wallclock savings from manual optimization. Section 4 shows an example
of performance optmization results. Sections 5 and 6 present our future work and
conclusions.

2 Instrumentation Method

We inject a small library into the application using LD PRELOAD, which in-
tercepts all MPI and memory allocation function calls the application performs.
When the application allocates memory, it is allocated from a shared pool which
is physically mapped twice in memory. This allows us to manipulate the mem-
ory protection seen by the application, while simultaneously having a private,
non-protected view of the same physical memory.

For all function calls, we record a context. The context is the calling address,
the parameters for the function and the three previous stack return addresses.
This ensures that the context is fairly unique to a single execution point in the
application, even if the MPI functions are wrapped inside other functions in the
application. A series of related calls (such as multiple send/recieve in a border
exchange phase) are called a chain. Our injected library keeps track of contexts
and chains in memory.

2.1 Startup

On application startup, we perform a number of quick benchmarks. We time
memory protection overhead for various memory sizes. On some architectures
this is very cheap, while on others it can be prohibitively expensive. However,
we need to know the magnitude of this overhead to give accurate speedup
predictions.

44 T. Natvig and A.C. Elster

We also benchmark the point-to-point bandwidth of all the nodes for transfers
up to 512kB to have a baseline prediction of request transfer time between any
two nodes. The transfer time is linear with transfer size beyond 512kB for most
systems.

2.2 Sends and Receives

When an MPI send request is issued by the application, our library will intercept
the call and protect the application-visible memory of the request with read-only
protection. We then start the request as a non-blocking request, operating on our
private, non-protected view of the memory. The memory protection will ensure
that the application does not alter the request until the transfer is finished. We
note the context of the call and append it to the current chain.

When an MPI receive request is issued by the application, the call is likewise
intercepted, and the application-visible memory is protected no-access. The re-
quest is then started as a non-blocking request on our private view of the memory
and, exactly as for read requests, we note the context and append it to the cur-
rent chain.

Any number of send requests are allowed to operate in parallel. When a receive
request is issued on pages which already have active requests, the request buffer
address and data type are analyzed. If the requests only have overlapping pages,
but no actual overlapping cells, the call is started non-blocking as above. This
is especially common for non-contigous datatypes, which can have interleaving
cells without actually sharing any. When requests do overlap, we mark this as the
end of the current chain. This means that we wait for all non-blocking requests
to finish, unprotect the associated memory and start this receive request as a
non-blocking request. The request will begin a new chain.

Note that we also intercept collective communication functions. As long as
their buffer area does not overlap a non-blocking request, they are performed
but otherwise ignored. Non-blocking collective communication will unfortunately
not be available until MPI 3.0.

2.3 Page Faults

If the application accesses memory a page fault will occur. This typically occurs
at the end of a communication phase when the application accesses data to
compute. We handle this page fault, checking if the faulting address is one we
have protected. If it is not, we restore the original page fault handler and allow
the crash mechanism of the application to handle it. If it is, we mark the end
of the current chain, wait for all requests to finish and unprotect the memory
before allowing the application to finish.

2.4 Other Function Calls

We also intercept OS function calls, such as file reads, socket sends etc. While
no non-blocking improvement is made, we need to ensure that their buffer area
does not overlap any request we have made non-blocking.

Run-Time Analysis and Instrumentation for Communication 45

Similarily, we intercept functions such as MPI Pack(), which operate on buffers
with datatypes. This allows us to analyze if the actual memory cells overlap or just
the pages. As in the above, overlapping cells indicate the end of the chain, whereas
overlapping pages without overlapping cells are ignored.

2.5 Performance Measurements

If the same chain of contexts is observed multiple times, we start performing
speedup measurements. This is done by alternating function calls between two
modes.

For both modes, the memory for the entire chain is protected when the first
request in the chain is seen, with the most restrictive access of any request in the
chain. This ensures that there will, ideally, be only two page protection calls; at
the start of the chain and at the end. If we have mis-detected the chain and the
application does not follow the pattern we expect, our library will identify this
on the next function call or page fault. It will then unprotect the memory and
mark the chain as broken.

In the first mode, MPI function calls are performed exactly as they are orig-
inally written. This gives us the original communication time for a chain of
requests. In the second mode, all functions are optimized to their non-blocking
versions. This gives a real-world measurement of the effect of overlapping mul-
tiple communication requests. Both values are recorded as part of the chain.

We also measure the time between the end of a chain and the start of the next
request to have an estimate of the compute time between each chain of requests.

2.6 Non-blocking Verification

If the application already uses non-blocking MPI function calls, the memory areas
for these functions are protected similarly to the blocking calls. The memory is not
unprotected until all the non-blocking operations have been MPI Wait()ed for.

This allows our method to verify race conditions from non-blocking commu-
nication, which is important if our recommendations are implemented in the
original application.

3 Post-processing and Presentation

Once the application calls MPI Finalize, we start our analysis pass. The list of
contexts and chains are stored in shared memory, and an external application is
started to analyze them. The use of an external application allows the injected
library to stay lightweight.

3.1 Chain Merges

We analyze chains which follow each other with little or no appliction compu-
tation between them. If the first chain ended because of a receive request that
overlaps memory areas, we scan the second chain for any requests that do not
overlap the terminating receive request’s memory. If found, these are noted as
code that could be reordered and moved into the first chain.

46 T. Natvig and A.C. Elster

3.2 Expected Savings

All chains are analyzed for their expected wallclock time savings, which our
measurements have hopefully revealed. For chains which have not been seen
sufficiently many times, we have no relevant performance measurements, so we
use the network measurements to estimate the non-blocking performance.

Each chain’s savings is then multiplied by the number of times it is called,
and results are presented in the order of most savings first. By default, transfor-
mations need to yield at least a 5% overall speedup to be reported.

3.3 Code Parser

Our analysis tool uses the symbol files for the application to find the correlation
between calling address and program source code line. A source code parser will
then open the relvant source code file and read the corresponding lines.

With the exception of the request pointer parameter, most blocking to non-
blocking transformations have identical parameters. Our analysis tool will de-
clare an array of requests at the start, rewrite the blocking communication func-
tions to non-blocking, and use MPI Waitall() at the end of the chain.

It should be noted that our code parser is not a full syntax tree parser, and fails
if it encounters macros that expand to commas or other unusual code constructs.
In this case, it simply reports the speedup it achieved.

The ”before” and ”after” results are presented to the user along with an
explanation of what the transform does.

3.4 Scalability Analysis

Our analysis tool will dump the chains to disc when it is done. It can optionally
be informed about the base problem size, which will be noted in the file. A number
of such analysis passes, with varying problem sizes, constitute an analysis set.

Once a sufficiently large set has been obtained, the analysis can be switched
to projection mode. In this mode, the analyzer will work on theoretical problem
sizes. This is done by curve fitting the data size of the various requests to the
problem size, and similarily curve fitting the execution time of each compute
phase to the problem size.

We can extrapolate the expected wallclock time for any problem size, and our
analysis tool supports prioritizing improvement areas based on the extrapolated
results rather than actual measurements. This allows quick benchmarking on
small problem sizes in a few minutes, with the goal to improve wallclock time
for large problem sizes which take hours or days to compute.

4 Results

The majority of development of the instrumentation was done on 2D and 3D
code, but we’ve chosen to include a 1D border exchange here so the output will fit
in the paper. Here is an example of output when applied to such an application:

Run-Time Analysis and Instrumentation for Communication 47

Example of Analysis Output

/* Chain #2, seen 11713 times: 60.3us per chain, 0.7 sec total savings.

* Please change line 72-78 from

*/

MPI_Sendrecv(& local[1 * g], g, MPI_FLOAT, prev, 0,

& local[(l+1) * g], g, MPI_FLOAT, next, 0,

MPI_COMM_WORLD, &a);

MPI_Sendrecv(& local[l * g], g, MPI_FLOAT, next, 0,

& local[0 * g], g, MPI_FLOAT, prev, 0,

MPI_COMM_WORLD, &b);

/* to */

MPI_Request req_72[4];

MPI_Status status_72[4];

MPI_Isend(& local[1 * g], g, MPI_FLOAT, prev, 0, MPI_COMM_WORLD, &req_72[0]);

MPI_Irecv(& local[(l+1) * g], g, MPI_FLOAT, next, 0, MPI_COMM_WORLD, &req_72[1]);

MPI_Isend(& local[l * g], g, MPI_FLOAT, next, 0, MPI_COMM_WORLD, &req_72[2]);

MPI_Irecv(& local[0 * g], g, MPI_FLOAT, prev, 0, MPI_COMM_WORLD, &req_72[3]);

MPI_Waitall(4, req_72, status_72);

*(&a) = status_72[1];

*(&b) = status_72[3];

We’ve trimmed the output slightly, removing the per-transfer scalability anal-
ysis as well as the marker for the code-line which triggered the end of chain. The

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 0 100 200 300 400 500 600 700 800 900 1000 1100

S
pe

ed
up

Problem size

Estimated
Measured

Predicated

Fig. 1. Speedup predictions for the optimized code, measured optimized code and
scalability-extrapolated results

48 T. Natvig and A.C. Elster

transformed code aims to be functionally identical to the original code, including
the assignment of MPI status variables.

Figure 1 shows the speedup of the original test program on various problem
sizes, comparing the estimated and real speedup of the transformations. Also
shown is the speedup for large problem sizes, estimated using only problem sizes
n ≤ 256. What is not clear from the graph is that the wallclock time predictor
mispredicts the actual completion time for sizes of n > 768. These sizes are
large enough that the computation no longer fits in L2 cache, which makes the
computation phase more expensive. As this affects all implementations equally,
the effect is not clear when looking only at speedup.

Please note that speedup of 2D and 3D cases are better, as there are more
simultaneous requests which potentially reduce the effect of latency even more.
Please see our previously published papers for optimization results of the under-
lying technique.

5 Current and Future Work

Our overlap analysis currently only does analysis for the problem size actually
tried. There might be rounding or interpolation errors which cause overlap states
to change as the problem size changes. Hence, while we know that the transfor-
mations presented to the user are safe for the specific problem size, we cannot
guarantee they are safe for any problem size.

It would be interesting to do the entire analysis as a Valgrind module. This
should enable more suggestions for code reordering. It would also allow us to
switch from chain termination to waiting for only the request that is needed.
This should allow larger overlap of computation and communication.

As it is, our code parser only works with C code. It would be interesting to
extend this to use Open64 and hence work with a lot more languages.

The scalability predictor currently ignores the number of nodes, and assumes
it will remain constant with the problem size as the only variable. This is natu-
rally not the case for most applications, and it should be extended to cover runs
both with varying number of nodes and varying problem sizes.

6 Conclusion

We have developed a method for run-time analysis of potential communication
overlap improvements, with presentation of these to the user as transformations
that are easily applied to their application source code. Each transformation
includes the potential speedup of the application, an analysis of scalability, and
also includes suggestions to replace the original code.

Acknowledgments. Thanks to NTNU and NOTUR for access to the com-
putational clusters we have performed this work on. Thanks to Jan Christian
Meyer and Dr. John Ryan for constructive feedback.

Run-Time Analysis and Instrumentation for Communication 49

References

1. Message Passing Interface Forum: MPI: A Message-Passing Interface Standard, UT-
CS-94-230 (1994)

2. Natvig, T., Elster, A.C.: Automatic and transparent optimizations of an ap-
plication’s MPI communication. In: K̊agström, B., Elmroth, E., Dongarra, J.,
Waśniewski, J. (eds.) PARA 2006. LNCS, vol. 4699, pp. 208–217. Springer, Hei-
delberg (2007)

3. Natvig, T., Elster, A.C.: Using context-sensitive transmission statistics to predict
communication time. In: PARA (2008)

4. Itzkovitz, A., Schuster, A.: MultiView and MilliPage – fine-grain sharing in page-
based DSMs. In: Proceedings of the third USENIX symposium on operating system
design and implementation (1999)

5. Keller, R., Fan, S., Resch, M.: Memory debugging of MPI-parallel Applications in
Open MPI. In: Proceedings of ParCo 2007 (2007)

6. Danalis, A., Pollock, L., Swany, M.: Automatic MPI application transformation with
ASPhALT. In: Parallel and Distributed Processing Symposium (2007)

7. Google: Breakpad - An open-source multi-platform crash reporting system,
http://code.google.com/p/google-breakpad/

http://code.google.com/p/google-breakpad/

Efficient MPI Support for Advanced Hybrid

Programming Models

Torsten Hoefler1,�, Greg Bronevetsky2, Brian Barrett3,
Bronis R. de Supinski2, and Andrew Lumsdaine4

1 University of Illinois at Urbana-Champaign, Urbana, IL, USA
htor@illinois.edu

2 Lawrence Livermore National Laboratory, Center for Applied Scientific Computing,
Livermore, CA, USA

{bronevetsky1,bronis}@llnl.gov
3 Sandia National Laboratories, Albuquerque, NM, USA

bwbarre@sandia.gov
4 Indiana University, Open Systems Lab, Bloomington, IN, USA

lums@cs.indiana.edu

Abstract. The number of multithreaded Message Passing Interface
(MPI) implementations and applications is increasing rapidly. We dis-
cuss how multithreaded applications can receive messages of unknown
size. As is well known, combining MPI Probe/MPI Recv is not thread-
safe, but many assume that trivial workarounds exist. We discuss those
workarounds and show how they fail in practice by either limiting the
available parallelism unnecessarily, consuming resources in a non-scalable
way, or promoting global deadlocks. In this light, we propose two funda-
mentally different efficient approaches to enable thread-safe messaging
in MPI-2.2: fine-grained locking and matching outside of MPI. Our ap-
proaches provide thread-safe probe and receive functionality, but both
have deficiencies, including performance limitations and programming
complexity, that could be avoided if MPI would offer a thread-safe
(stateless) interface to MPI Probe. We propose such an extension for the
upcoming MPI-3 standard, provide a reference implementation, and
demonstrate significant performance benefits.

1 Introduction

Current processor trends are leading to an abundance of clusters composed of
multi-core nodes. While the Message Passing Interface (MPI [1]) remains a viable
programming model to use all processors in these systems, multi-core systems
naturally lead to increased use of shared memory programming models based on
threading. Hybrid MPI/threaded programs can decrease the surface to volume
ratio between MPI processes, which can result in more efficient use of the inter-
connection network [2]. Thus, these hybrid programs are becoming increasingly
common [3]. As a result, it is critical for MPI to support the model well.

� The first author performed most of this work at Indiana University.

R. Keller et al. (Eds.): EuroMPI 2010, LNCS 6305, pp. 50–61, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Efficient MPI Support for Advanced Hybrid Programming Models 51

MPI-2 includes a mechanism to request a level of thread support. Previously,
most hybrid programs could conform to theMPI THREAD FUNNELED level.With
the increase in hybrid programs, applications that use shared memory task paral-
lelism and, thus, require MPI THREAD MULTIPLE support, are more likely. This
trend not only motivates the implementation of that support [4] but also an exam-
ination of how well the MPI standard supports those programs. We find that the
support is generally sufficient [5] although one glaring weakness exists: The seman-
tics of probing for messages (e.g., in order to receive messages of unknown size) does
not interact properly with realistic uses in threaded programs.

In this work, we discuss the issue of receiving messages of unknown size in
multithreaded MPI programs. We explain the problem and show why obvious
approaches to its solution are not feasible. We then discuss two elaborate tech-
niques that would work with MPI-2.2. Despite the complex implementation of
such techniques, which could be done in a library, we show that all proposed solu-
tions limit performance significantly. Finally, we discuss an addition to the MPI
standard that would enable the desired functionality. We describe a reference
implementation, discuss issues in the context of hardware-optimized implemen-
tations, and present benchmark results which show the benefits of this approach.

2 Multithreaded MPI Messaging

We discuss several options for MPI version 2.2 to receive messages of unknown
size in multithreaded environments. Unknown size messages in MPI are received
with the sequence of probe (determine the size), malloc (reserve buffer), and
receive (receive message). We investigate the issue of false matching, in which
two threads perform a probe, malloc and a subsequent receive concurrently. Two
actions happen concurrently if they happen completely independently (e.g., with-
out synchronization or code flow dependencies) so that they could interleave in
any way. Assume that two threads, A and B, perform a probe, malloc, and re-
ceive, denoted by Ap, Am, Ar and Bp, Bm, Br respectively. If those calls happen
concurrently, then they could interleave as the series: Ap, Bp, Bm, Br, Am, Ar

that leads to incorrectly matching a message in thread B that was probed in
thread A. We show that simple workarounds either limit parallelism unnecessar-
ily or require structural changes to the application. Therefore, we propose two
more sophisticated approaches and advocate for extensions or changes to the
MPI standard to improve support for probing in threaded environments.

Separating Threads with Tags or Communicators. False matching could
be avoided by using different virtual channels to address each thread in each
process. A virtual channel in MPI is uniquely identified by the tuple (c, s, τ)
(communicator, source, tag) on the receiver side and (c, r, τ) (communicator,
receiver, tag) on the sender side. False matching can be avoided by using dif-
ferent tags (or communicators) for each thread. However, one would need t · p
communicators (or tags) in order to address all threads in an MPI universe
with p processes, each with t threads. This mechanism is not scalable (binds

52 T. Hoefler et al.

Ω(p) resources) and not flexible enough for many applications. For example,
a multithreaded master in a master/worker implementation can no longer use
automatic load-balancing in which any idle thread probes and receives the next
message to arrive. Similarly, a reentrant library that calls MPI with a variable
(not predetermined) number of threads cannot use tag-based thread-addressing.
Thus, such thread-addressing schemes seem unsuitable for most applications.

2.1 A Fine-Grained Locking Mechanism

Clearly, with MPI’s matching semantics, coarse-grained locking (e.g., protecting
the access to probe/malloc/recv at the communicator) overly limits parallelism.
For example, a probe/receive pair with tag=4 and src=5 does not conflict with
a probe/receive pair with tag=5 and src=5. However, another probe/receive
pair with tag=4, src=5 would conflict with the first pair. Thus, we could lock
each possible (communicator, source, tag) tuple separately. In the following, we
assume that each lock is associated with a specific communicator and we limit
the discussion to (source, tag) pairs.

One could arrange locks for (source, tag) pairs in a two-dimensional matrix.
However, storing a max(source) ·max(tag) matrix in main memory is infeasible.
A sparse matrix representation with a hash table or map [(source, tag) → lock]
seems much more efficient.

We show a simple locking strategy that minimizes the critical region with a
nonblocking receive in Listing 1. However, this strategy does not cover wildcard
receives.

lock map(src,tag)
probe(src, tag, comm, stat)
buf = malloc(get_count(stat)*sizeof(datatype))
irecv(buf, get_count(stat), datatype, src, tag, comm, req)
unlock map(src,tag)
wait(req)

Listing 1. Simple (limited) receive locking protocol

Probe/receive pairs with wildcards must be performed mutually exclusively
within a set of channels. Thus, if a wildcard is used, we must lock a full row or
column of the matrix. If both fields are wildcards, we must lock the whole matrix.
As a result, we consider four (source, tag) cases in order to implement a fine-
grain locking strategy: (1) (int,int), (2) (any src,int), (3) (int,any tag), and (4)
(any source,any tag). We denote any src or any tag with an asterisk (*) in the
following. In order to support each case fully, we need a sparse two-dimensional
(src, tag) and thread-safe data structure with the following operations:

(un)lock(x,y) acquires/releases (x,y)
(un)lock(x,*) acquires/releases all entries on src x
(un)lock(*,y) acquires/releases all entries on tag y
(un)lock(*,*) acquires/releases the whole matrix

Efficient MPI Support for Advanced Hybrid Programming Models 53

Our sparse two-dimensional locking protocol differentiates among these four
cases, using three levels of locks: A two-dimensional map of locks for all points
(source, tag), two one-dimensional maps of locks for each source and tag line,
and one lock for the whole matrix. It uses lists of held locks per (source, tag)
pair, for each source and each tag and for the whole matrix. Listing 2 shows a
possible algorithm that implements a sparse two-dimensional locking structure.
The code shown in Listing 2 is a critical region that is protected with locks itself!

if (source != MPI_ANY_SOURCE and tag != MPI_ANY_TAG)
check if either whole matrix, source, tag, (source, tag) is locked
if (nothing is locked)

lock (source, tag) and increase usage count of source, tag, matrix
if (source != MPI_ANY_SOURCE and tag == MPI_ANY_TAG)
check if either whole matrix or source is locked
check if any_source or some tag for source is in use
if (nothing is locked/used)

lock source and increase usage count of source and matrix
if (source == MPI_ANY_SOURCE and tag != MPI_ANY_TAG)
check if either whole matrix or tag is locked
check if any_tag or if some source for tag is in use
if (nothing is locked/used)

lock tag and increase usage count of tag and matrix
if (source == MPI_ANY_SOURCE and tag == MPI_ANY_TAG)
check if whole matrix is locked or in use
if (nothing is locked/used)

lock matrix

Listing 2. Function to lock the 2d sparse map. Unlock is equivalent

However, while this local locking scheme ensures correct and parallel message
reception, it can unexpectedly influence global synchronization. For example,
rank 0 sends two messages to rank 1 in which sending of the second message
depends on a reply to the first message. The first message has tag 1, and the
second message has tag 2. The receiver, rank 1, has two threads A and B. Thread
A receives from channel (0, 2) and thread B from channel (0, any tag). Thread
A sends the needed reply after the message is received. We show pseudo-code
for rank 0 in Listing 3 and for rank 1 in Listing 4.

A:
send(..., 1, 1, comm)
recv(..., 1, 1, comm)
send(..., 1, 2, comm)
...

Listing 3. Rank 0

A:
probe/recv(0, 2, comm)

B:
probe/recv(0, ANY_TAG, comm)
send(..., 0, 1, comm)

Listing 4. Rank 1

This program must terminate in a correct MPI implementation that supports
MPI THREAD MULTIPLE. However, if A locks (0, 2) first and enters MPI Probe

54 T. Hoefler et al.

then B cannot lock (0, any tag). Thus, ranks 0 and 1 cannot proceed and the
presented algorithm can cause spurious deadlocks.

In general, a receive with an explicit (integer) source and tag can block
ones with wildcards, for example, receiving on channel (0, 1) blocks receives
on (any src, 1), (0, any tag), and (any src, any tag). Thus, wildcard probes and
receives must dominate more specific ones, which requires that MPI Probe has
not yet been called for the more specific one. Since MPI calls cannot be aborted,
we must poll with multiple probes/receives. Only the most general probe/receive
(any src, any tag) is allowed to block. We can implement the required polling
with the same two-dimensional locking scheme to enable maximum concurrency.
Listing 5 shows the polling (nonblocking) algorithm.

while(!stat)
lock 2d_sparse_map(src,tag) /* see previous listing */
iprobe(src, tag, comm, stat)
if(stat)

buf = malloc(get_count(stat)*sizeof(datatype))
irecv(buf, get_count(stat), dtatype, src, tag, comm, req)

unlock 2d_sparse_map(src,tag)
if(stat) wait(req)

Listing 5. Polling receive locking protocol

We note that requiring polling is a fundamental problem that prevents an
efficient implementation of many multithreaded implementations.

Most parallel MPI applications only use a subset of the possible parameter
combinations during a program run. For example, an application might not use
any src or any tag at all, which enables the use of the simple locking scheme
described in Listing 1. Other applications might use any tag in all probes and
receives, and enable a much simpler, one-dimensional locking of source (even
though this limits possible parallelism).

Table 1 lists all combinations and possible optimizations. An x in the column
any src or any tag means that any src or any tag is used during the program run.
An x in “direct” indicates that at least one call does not use any src and any tag.

Table 1. Possible parameter combinations

Scenario any src any tag Specific Strategy

1 - - x simple 2d, blocking

2 - x - simple 1d, blocking

3 - x x 2d lock, polling

4 x - - simple 1d, blocking

5 x - x 2d lock, polling

6 x x - 2d lock, polling

7 x x x 2d lock, polling

Efficient MPI Support for Advanced Hybrid Programming Models 55

For example, under scenario 4, all calls use any src as an argument and thus a
simple one-dimensional locking scheme can be used. Scenario 7, the most general
one under which a program run could use all combinations, requires the polling
scheme (Listing 5). Different scenarios can be defined for each communicator.
Thus, performing all calls with various wildcards on distinct communicators
simplifies locking requirements but might lead to other problems as discussed in
the introduction.

Further, although most applications only use a subset of the possible parame-
ter combinations, which allows for a specialized implementation, a library-based
solution must provide the general implementation. Similarly, an implementa-
tion of language bindings such as MPI.NET [6] must assume the general case
(scenario 7) so using the fine grained locking approach likely entails a high cost.

2.2 Matching Outside of MPI

If polling is infeasible, we can instead perform MPI source/tag matching outside
of the MPI library in order to provide correct threaded semantics for MPI -
Probe. This solution uses a helper thread that repeatedly calls MPI Probe with
any src and any tag. When MPI Probe returns, the thread allocates a message
buffer, into which it then receives the probed message with MPI Irecv. The as-
sociated MPI Request is stored in a data structure for use when an application
thread issues a matching receive operation. This data structure is similar to the
two-dimensional locking structure from Listing 2. For each (source, tag) pair
(including wildcards) it maintains the count of threads that are waiting to re-
ceive a messages with that pair as well as two lists of messages. The first list
tracks “expected” messages – newly arrived messages that match this (source,
tag) pair and have been matched to waiting threads but not yet been picked up
by those threads. The second list tracks “unexpected” messages – newly arrived
messages for which a receiver thread has not yet been identified. Since all such
messages match four different (source, tag) pairs (including wildcards), each is
placed into four such lists, one for every pair. The data structure maintains a
lock and a condition variable for each pair to synchronize access to the count
and the message lists.

This method can also take advantages of the previously described matching
lock mechanism. However, it requires implementation of the complete matching
semantics in a thread-safe way (including thread synchronization) on top of MPI
and introduces additional buffering, which is clearly suboptimal. The implemen-
tation would also require eager and rendezvous protocols for performance reasons
and would also lose potential optimizations such as matching in hardware. Thus,
such an implementation is highly undesirable from a user’s perspective.

3 Extending the MPI Standard: Matched Probe

We have discussed issues with tread-safe matching in MPI and pointed at a
problem in the specification. We have shown that all simple workarounds are
either infeasible or incorrect (deadlock). Although our two mechanisms support

56 T. Hoefler et al.

correct semantics of MPI Probe in threaded environments, they are nontrivial
and limit either performance or concurrency significantly in the general case
(any src and any tag possible). Thus, a general library implementation, as is
required for new language bindings, cannot limit those scenarios and must pay
the cost of general support. Further, both mechanisms duplicate work that an
MPI implementation performs internally and limit hardware offload capabilities.

For these reasons, we must modify the MPI standard to eliminate the need
to use these mechanisms, which would entail deprecating the existing probe op-
erations. One possible solution would replace those operations with thread-safe
versions that return a request that the application can later complete (in the
original thread or not, but under application control) [7]. While in MPI-2.2,
matching is done in probe and then again in receive, we decouple matching and
receiving. We propose to add two new calls, mprobe and mrecv (and their non-
blocking versions) to the MPI standard. We sketch the proposal here; a detailed
version is available elsewhere [7]. The proposed mprobe returns a message han-
dle that identifies a message (which is then unavailable in any other matching
context). The proposed mrecv can then receive such a matched message. List-
ing 6 shows an example for thread-safe matching with a matched probe.

MPI_Message msg; MPI_Status status;
/* Match a message */
MPI_Mprobe(MPI_ANY_SOURCE, MPI_ANY_TAG, MPI_COMM_WORLD, &msg, &status);

/* Allocate memory to receive the message */
int count; MPI_get_count(&status, MPI_BYTE, &count);
char* buffer = malloc(count);

/* Receive this message. */
MPI_Mrecv(buffer, count, MPI_BYTE, &msg, MPI_STATUS_IGNORE);

Listing 6. Matched probe example

This mechanism reduces the user burden and minimizes the total number of
locks required. We also enable efficient hardware matching and eager protocols.
We discuss an implementation and possible issues in the following.

3.1 A Reference Implementation of Matched Probe

The matched probe proposal has been implemented as a proof of concept using
Open MPI. Open MPI provides two mechanisms for message matching: One in
which matching occurs inside the MPI library (used with network APIs such
as Open Fabrics, TCP, and shared memory) and one in which matching occurs
either in hardware or in a lower-level library (used with network APIs such as
Myrinet/MX and Portals). The implementation of matched probe presented in
this paper is based on MPI-level message matching. Issues with hardware level
matching are discussed in Section 3.2.

The matched probe implementation does not significantly change the message
matching and progression state machine of Open MPI. It adds an exit state from

Efficient MPI Support for Advanced Hybrid Programming Models 57

Fig. 1. High-level state diagram of MPI receive matching

message matching (MPROBE in addition to PROBE and RECV), and adds
an entry point back into the state machine. Open MPI tracks all unexpected
messages (those that the matched probe operation can impact) as a linked list
of message fragment structures, which includes source and tag. Communicators
are separate channels and use separate lists. The list of unexpected messages is
walked in an identical fashion for a probe and a receive. However, the fragment
is removed from the unexpected message list and processed in the receive case.

In the case of matched probe, the message fragment is removed from the
unexpected message list (similar to a receive). It is then stored in the MPI -
Message structure returned to the user. When the user calls MPI Mrecv or MPI -
Imrecv, the message fragment is retrieved from the MPI Message structure that
the user provided and the normal receive state machine is started from the point
right after message matching.

3.2 Low-Level Message Matching

The previously described implementation of Matched Probe for MPI-level
matching, while straightforward, will not work if the lower level communica-
tion API provides message matching (such as Portals on the Cray XT line,
Myrinet/MX, TPorts on Quadrics, and PSM on Qlogic). In these cases, the
message matching state engine is not exposed to the MPI implementation, and
may be executed on NIC hardware. In these cases, we must extend the interface
of the lower-level API to support Matched Probe, likely with an implementa-
tion of similar complexity to the Open MPI implementation. Likewise, firmware
based hardware matching (TPorts and Accelerated Portals), adding entry points
out-of and back in-to the firmware state machine should be straightforward.

Hardware assisted matching presents a more complicated situation. Hardware
designs would require modifications to support a matched probe. In addition,
carrying the extra state to restart the state machine for a partially matched
message could be cumbersome in hardware. However, since these designs are not
in use, such designs have no bearing on the practical cost of this MPI extension.

58 T. Hoefler et al.

Thus, adoption of our extension requires a trade off between the benefits of
making future designs of this type compatible our extension.

4 Performance Evaluation

We use two benchmarks that assess the performance and concurrency of the
different mechanisms for thread-safe message reception. Both benchmarks and
the two-dimensional locking (Section 2.1) are integrated in the publicly avail-
able Netgauge tool [8]. The benchmarks were run on Sif at Indiana Univer-
sity. Sif consists of Xeon L5320 1.86 GHz CPUs with a total of 8 processing
cores per node running Linux 2.6.18 connected with Myrinet 10G. We used
Open MPI revision 229731 using the TCP transport layer, configured with
--enable-mpi-thread-multiple.

4.1 Receive Message Rate

Our first benchmark compares the message receive rate at a multithreaded re-
ceiving process with two-dimensional locking (2D, cf. Section 2.1) and matching
outside MPI (OUT, cf. Section 2.2) for MPI-2.2 and the new matched probe
(MPROBE, cf. Section 3) mechanism. In this test, 8 processes send to process
0, which uses 8 threads to receive the messages. Each process i sends its mes-
sages with tag i and each thread j either receives messages from process j + 1
or any src, with tag j + 1 or any tag.

0.
00

0.
05

0.
10

0.
15

Datasize [bytes]

O
pe

ra
tio

ns
 p

er
 s

ec
on

d
[m

ill
io

n]

1 2 4 8 32 128 512 2048 8192 65536

2D OUT MPROBE

(a) directed

0.
00

0.
05

0.
10

0.
15

Datasize [bytes]

O
pe

ra
tio

ns
 p

er
 s

ec
on

d
[m

ill
io

n]

1 2 4 8 32 128 512 2048 8192 65536

2D OUT MPROBE

(b) any,any

Fig. 2. Message rate of different options for Open MPI on Sif

Figure 2 shows the different message rates achieved by the two locking
schemes and wrong matching with 8 processes sending to 8 threads on process 0.
Figure 2(a) shows results for directed (i.e., neither any src nor any tag) and Fig-
ure 2(b) shows any (any src and any tag). The OUT and 2D implementations
exploit knowledge of which wildcard pattern (any,any or directed) to expect
(cf. Table 1). Both figures show significant performance differences between the

1 Available at: http://svn.open-mpi.org/svn/ompi/tmp-public/bwb-mprobe

Efficient MPI Support for Advanced Hybrid Programming Models 59

approaches for small message-sizes. The rate of larger messages is bandwidth-
bound and thus similar for all approaches. The two-dimensional locking scheme
is faster than the matching outside of MPI, which must copy each message.
However, our matched probe implementation outperforms both approaches and
achieves the highest message rates.

4.2 Threaded Roundtrip Time

Our threaded roundtrip time (RTT) benchmark measures the time to transmit n
messages between two processes with t threads each. It is thus somewhat similar
to the overhead benchmark proposed by Thakur et al. [9]. Process 0 synchronizes
its t threads with pthread barrier wait before each thread j ∈ {0..t−1} sends
n messages with tag j to process 1. The t threads at process 1 receive and send
n messages from/to process 0 and each thread in process 0 receives n messages.
The receives either use a specific tag j ∈ {0..t − 1} or any tag and a specific
source s ∈ {0, 1} or any src.

Figure 3 shows the latency overhead of the different locking schemes. For the
any,any case in Figure 3(a), the current implementation of MProbe results in
higher latency than both the 2D locking and matching outside MPI schemes.
Latency increases mainly due to 2d-locking and outside MPI locking only using
a single lock (cf. Table 1) based on the knowledge that only any,any receives are
used while the matched probe implementation in MPI must handle the general
case. As an aside, this example demonstrates the potential of additional info
objects in MPI in which users could specify such constraints.

Figure 3(b) shows the latencies for the directed case (using integer tag and
src values). For small messages, Mprobe is faster than 2-d locking due to the
explicit removal from the queue (it only needs to be locked once). The outside
MPI version is even faster for small messages because it receives the messages
immediately and the copy overhead is low. However, for large messages, the copy
overheads are dominating.

20
50

10
0

20
0

50
0

Datasize [bytes]

La
te

nc
y

[m
ic

ro
se

co
nd

s]

1 2 4 8 32 128 512 2048 8192 65536

OUT 2D MPROBE

(a) any,any

20
50

10
0

20
0

50
0

Datasize [bytes]

La
te

nc
y

[m
ic

ro
se

co
nd

s]

1 2 4 8 32 128 512 2048 8192 65536

OUT 2D MPROBE

(b) directed

Fig. 3. Latency of different options for Open MPI on Sif

60 T. Hoefler et al.

In Open MPI itself, there are two sources of unnecessary latency in the cur-
rent MProbe implementation that we could remove with further development:
creation of an additional request structure and an additional call to the progress
engine. The extra request structure results in a small overhead, approximately
10 ns. The significant latency hit is from the additional progress engine calls,
which could probably be mitigated through additional optimization. The issue
is exacerbated by the high cost of entering Open MPI’s progress engine when
multithreaded support is enabled.

5 Summary and Conclusions

In this paper we describe the problem of receiving messages of unknown size
in threaded environments. We show that often assumed simple solutions to the
problem either introduce significant overheads or may lead to spurious deadlocks.
We propose two advanced protocols to solve the problem in MPI-2.2. However,
both protocols add various overheads to the critical paths. We then propose an
extension of the MPI-3 standard that solves the matching problems. We show
a reference implementation in Open MPI and discuss issues that might arise in
hardware implementations.

Our performance analysis shows the benefits with regard to the message rates
of the matched probe approach over the other protocols. We also analyze laten-
cies for a multithreaded ping-pong benchmark. This analysis demonstrates that
protocols on top of MPI can take advantage of special domain knowledge (only
any,any calls), which serves as another good example for adding user assertions
to the MPI standard.

Acknowledgments. The authors thank all members of the MPI Forum that
were involved in the discussions about matched probes, Douglas Gregor (Ap-
ple), and the anonymous reviewers. Sandia National Laboratories is a multi-
program laboratory operated by Sandia Corporation, a Lockheed Martin Com-
pany, for the United States Department of Energy’s National Nuclear Secu-
rity Administration under contract DE-AC04-94AL85000. This work was par-
tially performed under the auspices of the U.S. Department of Energy by
Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
(LLNL-CONF-434306).

References

1. MPI Forum: MPI: A Message-Passing Interface Standard. Version 2.2 (2009)
http://www.mpi-forum.org/docs/mpi-2.2/mpi22-report.pdf

2. Itakura, K., Uno, A., Yokokawa, M., Ishihara, T., Kaneda, Y.: Scalability of Hybrid
Programming for a CFD Code on the Earth Simulator. Parallel Comput. 30, 1329–
1343 (2004)

3. Rabenseifner, R.: Hybrid Parallel Programming on HPC Platforms. In: Proc. of the
Fifth European Workshop on OpenMP, EWOMP 2003, Aachen, Germany (2003)

http://www.mpi-forum.org/docs/mpi-2.2/mpi22-report.pdf

Efficient MPI Support for Advanced Hybrid Programming Models 61

4. Gropp, W.D., Thakur, R.: Issues in Developing a Thread-Safe MPI Implementation.
In: Mohr, B., Träff, J.L., Worringen, J., Dongarra, J. (eds.) PVM/MPI 2006. LNCS,
vol. 4192, pp. 12–21. Springer, Heidelberg (2006)

5. Balaji, P., Buntinas, D., Goodell, D., Gropp, W., Thakur, R.: Toward Efficient
Support for Multithreaded MPI Communication. In: European PVM/MPI Users’
Group Meeting, pp. 120–129 (2008)

6. Gregor, D., Lumsdaine, A.: Design and Implementation of a High-Performance MPI
for C# and the Common Language Infrastructure. In: Proceedings of PPoPP 2008,
New York, NY, USA, pp. 133–142 (2008)

7. Gregor, D., Hoefler, T., Barrett, B., Lumsdaine, A.: Fixing Probe for Multi-
Threaded MPI Applications (Revision 4). Technical report, Indiana University
(2009)

8. Hoefler, T., Mehlan, T., Lumsdaine, A., Rehm, W.: Netgauge: A Network Perfor-
mance Measurement Framework. In: Perrott, R., Chapman, B.M., Subhlok, J., de
Mello, R.F., Yang, L.T. (eds.) HPCC 2007. LNCS, vol. 4782, pp. 659–671. Springer,
Heidelberg (2007)

9. Thakur, R., Gropp, W.: Test Suite for Evaluating Performance of MPI Implemen-
tations That Support MPI THREAD MULTIPLE. In: Cappello, F., Herault, T.,
Dongarra, J. (eds.) PVM/MPI 2007. LNCS, vol. 4757, pp. 46–55. Springer, Heidel-
berg (2007)

An HDF5 MPI Virtual File Driver for Parallel

In-situ Post-processing

Jerome Soumagne1,3, John Biddiscombe1, and Jerry Clarke2

1 Swiss National Supercomputing Centre (CSCS), SCR Department,
Galleria 2, Via Cantonale, 6928 Manno, Switzerland

2 US Army Research Laboratory (ARL), CIS Directorate,
Aberdeen Proving Ground, MD, USA

3 INRIA Bordeaux Sud-Ouest, HiePACS Research Team,
351 cours de la Liberation, 33405 Talence, France

Abstract. With simulation codes becoming more powerful, using more
and more resources, and producing larger and larger data, monitoring
or post-processing simulation data in-situ has obvious advantages over
the conventional approach of saving to – and reloading data from – the
file system. The time it takes to write and then read the data from
disk is a significant bottleneck for both the simulation and subsequent
post-processing. In order to be able to post-process data as efficiently
as possible with minimal disruption to the simulation itself, we have
developed a parallel virtual file driver for the HDF5 library which acts
as an MPI-IO virtual file layer, allowing the simulation to write in parallel
to remotely located distributed shared memory instead of writing to disk.

Keywords: Distributed Shared Memory, Parallel Systems, Large Scale
Post-processing, Virtual File Layer.

1 Introduction

The HDF5 library [1] already provides the user with several different file drivers,
which are the core pieces of code responsible for the transfer of user controlled
memory onto disk. They act as an abstraction layer between the high level
HDF5 API and the low level file system API. The drivers provided by the HDF5
package include the core (memory based), sec2 (posix compliant serial IO),
mpio (parallel file IO) and stream drivers. The stream driver [3] has been created
for the purpose of providing live access to simulation data by transfer to remote
grid servers or via sockets to a waiting application. The mpio driver uses an
HDF5 layer on top of MPI-IO to write data in parallel to the file system –
our driver emulates this behaviour but instead routes the data in parallel to a
Distributed Shared Memory (DSM) buffer over multiple TCP connections using
either an MPI or a socket based protocol. Compared to other systems such as
ADIOS [11] which defines a common API interface to a number of IO libraries
(including HDF5), we instead use the existing HDF5 interface, making it possible
for a large number of existing applications to switch to our framework with a
simple (one line) code change and link to our H5FDdsm library.

R. Keller et al. (Eds.): EuroMPI 2010, LNCS 6305, pp. 62–71, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

An HDF5 MPI Virtual File Driver for Parallel In-situ Post-processing 63

The original DSM implementation (upon which this work is based), referred to
as the Network Distributed Global Memory (NDGM), was created by Clarke [6],
it was used for CFD code coupling between applications modelling fluid-structure
interactions [8] using very different models (and hence partitioning schemes) to
represent that domain. Since the DSM can be considered as a flat memory space,
one of the principle advantages that it provides is that coupled simulations do not
need to be aware of the parallel domain decomposition used by the other partners
in the simulation/analysis. Separate codes may write their data using any HDF5
structures suitable for the representation, providing the other coupled processes
are able to understand the data and read it with their own partitioning scheme.
This effectively abstracts the data model used by either partner away and leaves
the HDF5 API as the mediator between the coupled applications. The original
NDGM implementation supported the transfer of data between processes using
only a single channel of serial MPI based traffic and therefore had a limited
capacity. Our new DSM based virtual file driver (VFD) allows very high speed
parallel transfer of data directly between coupled simulations, or a simulation
and a post-processing application such as ParaView [10] – for which we have
created a custom plugin which allows full control of the visualization of live data.
Our design is intended to address three principal objectives: require minimal
modification to existing HDF enabled simulation codes; be portable enough to
allow use on the widest range of systems; provide excellent performance.

2 Architecture

The distributed shared memory (DSM) model operates such that by using the
common HDF5 API, data is transparently sent (across the network) to the DSM
which is distributed among several nodes and is seen by the simulation writing
data as a uniform memory space (figure 1). The current implementation allo-
cates an identical memory buffer on each participating DSM host/server node,
however, this is simply a reflection of the fact that the systems used for hosting
consist of homogeneous arrays of nodes and is not a fundamental restriction.

free space

allocated space

local length 2*(local length) (N−1)*(local length)

addresses divided among N processes

start = 0 eoa = end of allocated

size marker

...

end = eof = total length

of DSM = N*(local length)

Fig. 1. DSM overview : The DSM memory spans the hosting nodes and is divided
equally among them, as the simulation requests space to write datasets into, the al-
located space grows to fill the available memory. Once the host process has read the
contents, the space may be freed by wiping the objects from the memory.

64 J. Soumagne, J. Biddiscombe, and J. Clarke

2.1 A Streaming MPI Virtual File Layer

The DSM driver itself is derived from the core and the mpio drivers. The core
driver as defined in the HDF5 library allows files to be written in memory instead
of disk, whilst the mpio driver uses MPI-IO to write files in parallel and gives
support to the user for collective/independent IO operations – as defined in the
MPI specification. Since HDF5 metadata must be synchronized across processes,
it is necessary to have collective calls for all operations which modify metadata.
These include calls to file, group and dataset creation, during which, processes
share information about the position, size and layout of datasets within the
file. The actual writing of data may be done independently from any process
since (providing processes are not reading back data written by other nodes) the
sending of information into the file has no effect upon the other nodes.

2.2 Operating Modes

The DSM uses a client/server model where the simulation writing the data is
the client and the nodes receiving the data are the server. However, the DSM
VFD itself is linked directly to the HDF5 library in the form of an object which
is capable of operating either as client or server depending solely on a single
configuration flag. This means that there is considerable flexibility in how the
DSM is managed – depending on how the DSM is configured, the storage and
transfer of memory may take several forms:

1. The DSM memory is allocated on the remote machine which is receiving the
simulation data; the receiving machine may be a visualization cluster with
fat memory nodes intended for exactly this kind of purpose. When data is
written, it is transferred across the network and the read process on the
remote machine operates directly on the local DSM network. This is the
default operating mode.

2. The DSM memory buffer resides on the same machine as the simulation
(thereby increasing memory usage on that machine); data is written imme-
diately into memory and transfers across the network are only initiated when
the remote machine makes read requests.

3. Both simulation and DSM may reside on the same machine; this means that
only a single network is traversed and the DSM is used as a convenient means
of interfacing the partner codes. In this configuration, the DSM is symmetric
with data transfer into the DSM initiated from the simulation and read by
the coupled process.

It is important to note that whether the DSM operates as a client or server in
either of the above operating modes, is transparent and (generally) unknown
to the actual applications running. They only see an HDF5 file and perform
write/read operations exactly as if they were using a local disk system and
have no knowledge of the internal/external transfers which are taking place
underneath.

An HDF5 MPI Virtual File Driver for Parallel In-situ Post-processing 65

2.3 Communication

We define two communicators, one called intracommunicator which handles
data locally between processes defining the DSM, and the other called inter-
communicator which handles the transmission of data over the network between
the coupled applications. The intracommunicator will usually be the same as
the MPI COMM WORLD for whichever application is hosting the DSM, though if
the application uses only a subset of nodes for IO, it will be the communicator
defined by those nodes. The intercommunicator however, can be created either
by joining the (IO involved) communicators of the connected applications, or by
the use of another protocol such as a socket based connection.

2.4 Synchronization

As with any distributed shared memory system, processes involved in the dis-
tributed memory interface need to share information and therefore, all write and
read operations need a synchronization mechanism in order to keep coherency
of the memory. When the simulation has finished writing data, it may send a
signal, via the DSM VFD driver to the remote application to say that trans-
fer is complete – however, though this is permitted in our implementation, it
breaks compatibility with the simple HDF5 based API within which we wish to
operate. We have therefore added hooks into certain HDF5 API calls which can
be used to signal events to the DSM. Specifically, we note that the majority of
applications with which we are working, compute time steps of data in discrete
steps and after writing the results to disk, close the file before beginning the next
operation. We therefore intercept calls to H5Fclose and the driver sets a flag in-
side the DSM (using the intercommunicator) that can be read to indicate that
the data within the DSM is ready and valid. Once the host DSM begins read
operations, further writes can be blocked until the flag is cleared and the DSM
is available again. In this way, the simulation writes data, resumes computation
and providing the coupled application does not block further writes, overlapped
processing may take place within each application.

2.5 Distribution Strategies

It is evident from figure 1, that a simple allocation of space using a flat/linear
memory model requires a careful matching of the size of the DSM buffer created
to the expected amount of data sent into it. A very large DSM buffer combined
with small data transfers will result in the majority of traffic being routed to
a single low rank node on the DSM server. One can see from figure 2 that as
the amount of data sent to the DSM increases and the number of nodes being
utilized rises, the bandwidth increases accordingly, this is discussed further in
section 4. The current implementation makes use of fixed size buffer allocations
on each DSM node, however we intend to implement a more sophisticated allo-
cation making use of virtual addresses to data offsets, which will allow datasets
to be placed on different nodes even if they would normally fit on the first node.

66 J. Soumagne, J. Biddiscombe, and J. Clarke

In fact if the HDF5 chunking interface is used (whereby datasets are broken into
pieces prior to their allocation within the file), a mechanism already exists to
achieve exactly this goal, and we shall implement different methods for alloca-
tion of chunks between host nodes by manipulating the chunk start addresses
individually.

3 Implementation

The implementation of the driver is designed to place the majority of the bur-
den of operations on the DSM host. The default mode of operation is that the
simulation is client and has no additional computational or other burden placed
upon it, other than the send of data to the remote DSM which takes the place
of the send to disk. The DSM host however must perform servicing operations
and handle data requests for write and read operations.

3.1 DSM Service Thread

The request mechanism is implemented using posix threads, all the nodes host-
ing the DSM have two threads. The first thread is the normal application thread
which will perform whatever computation of post-processing is required. The
second ”service thread” receives IO requests and responds to them within the
VFD/DSM buffer code itself. On first initialization, the DSM service thread en-
ters a wait state where it remains until the simulation VFD is first initialized,
at this point a connection is established between the two codes and an inter-
communicator is created to handle the parallel transfer of data between nodes.
Upon reception of a (remotely issued) data write, the DSM service thread places
the data into memory. Once the simulation has finished writing, either by issuing
an H5Fclose or a specific IO completed call (via the DSM API), the DSM sets
its internal state flag to indicate data ready and allows IO requests from the
local application. During local reads, remote access is blocked and any incom-
ing data writes will be delayed until reading has completed. The DSM therefore
performs a ping-pong type operation between remote and local machines as it
handles requests. Asynchronous parallel read/write modifications are not per-
mitted, though this would be possible if both local and remote applications were
sharing an MPI communicator and the file was opened and modified collectively
by both applications (this would be infeasible for the majority of cases since
collective operations require knowledge about the specific data which one can
assume would not be worthwhile to exchange).

MPI intercommunicator The MPI inter-communicator is intended to be
used when the simulation code and the DSM are on the same machine, or
on machines that have compatible MPI process managers. To establish the
connection between the applications we make use of the MPI Comm connect,
MPI Comm accept set of functions. Unfortunately, some large machines such as
the Cray XTTM series or IBM Blue Gene R© are unable to use this communicator

An HDF5 MPI Virtual File Driver for Parallel In-situ Post-processing 67

as they do not support the spawn set of functions defined in the MPI spec-
ification. For the same reason, the MPI Comm join function which also allows
applications to share communicators cannot be used on these machines.

Sockets intercommunicator To allow our driver to be used on machines
without full MPI support, we have introduced the socket intercommunicator
which uses a single socket to initialize the connection between both applications,
then creates additional sockets to link every node of one application to every
node of the other. Many OS implementations currently limit the number of open
socket connections to around 1024, placing a (configurable) limit on the number
that can be maintained at any given time. A future solution will be to manage
connections created on the fly. The main advantage currently given by this inter-
communicator is that it does not depend on the MPI implementation used within
the connected applications, therefore it is possible to create connections between
any combination of cluster or machine.

Additional intercommunicator modules may be developed and added to
the driver, which will allow future versions to take advantage of other low level
connection libraries - such as those used in recent MPI distributions which are
optimized for very large numbers of processes and hybrid shared/distributed
memory architectures. Portability to any machine requires only the inclusion of
a communication module suitable for the target platform.

3.2 Configuration of the DSM

When writing in parallel using the HDF5 API, it is necessary to select a parallel
file driver from within the application code, the only one currently available
is the mpio driver, which would normally be selected by setting a file access
property list using the function:

herr_t H5Pset_fapl_mpio(hid_t fapl_id, MPI_Comm comm,
MPI_Info info)

To use the dsm driver from C (1) or Fortran90 (2):

(1) herr_t H5Pset_fapl_dsm(hid_t fapl_id, MPI_Comm comm,
void *dsmBuffer)

(2) h5pset_fapl_dsm_f(prp_id, comm, hdferr)
INTEGER(HID_T) prp_id
INTEGER comm, hdferr

Setting the dsmBuffer variable to NULL in (1), or using (2) instruct the
H5FDdsm library to auto-allocate and manage a singleton DSM for the user.
The communicator comm is used as the intercommunicator. If the DSM is con-
figured by the user application, then it may be supplied as the dsmBuffer pa-
rameter (currently C interface only). If the connected processes share a file sys-
tem, the DSM server can write all configuration details to a location specified
in a H5FD DSM CONFIG PATH environment variable; settings are then picked up

68 J. Soumagne, J. Biddiscombe, and J. Clarke

automatically by the client process on initialization. Parameters which can be
configured (either via the configuration file or in code) are:

1. If host, how much DSM memory should be allocated per node (or in total);
2. If using MPI intercommunicator, the port name given by MPI_Comm_accept;
3. If using socket intercommunicator, the host and port number used in the

socket binding operation.

4 Performance

To measure write bandwidth and to emphasize the current distribution strategy,
the DSM is fixed at 5GB each on 8 post-processing host nodes – giving a total
memory size of 40GB. The number of processes writing to the DSM is varied
(from 1 to 32), and a variable size of dataset is written using simple lists of
double precision particle positions N ×{x, y, z}, ranging from 1 ·103 up to 5 ·107

particles per node. The maximum data size is given by 32×3×8×5·107 = 36GB.
Results are shown in figures 2 using MPICH2 between two clusters on an SDR
Infiniband link. Also shown is the result of 64 nodes writing 2.5 · 107 particles
(36GB).

As mentioned in section 2.5, the current performance is representative of
the linear distribution strategy used. With the DSM size fixed, writing a small
amount of data sends everything to the first process (low address range). Match-
ing the DSM size to the amount of data to be written makes use of the network
to all DSM nodes. The right side of figure 2 shows that when the full 36GB
of data is written the nodes show a relatively even distribution of data – and
this is when the maximum bandwidth is achieved – corresponding to the highest
points of figure 2 (left). In this test the 8 nodes used are connected to the host
application via an SDR Infiniband switch with individual links rated at 10Gb/s,
and we obtain a peak bandwidth close to 3GB/s.

For a second test, matching the DSM size to the data written, the DSM
performs much better than a parallel file system (GPFS or Lustre). Figure 3
shows the performance achieved on two different types of machine with different
communication systems. Generally speaking, the more DSM nodes used (and
hence network links), the higher the overall bandwidth. Using MVAPICH2 on a
QDR Infiniband interface (therefore using RDMA) for the inter-communication
gives better results than the socket inter-communicator. On the other hand, as
shown in figure 3 (right), using a socket inter-communicator on a Cray XT5
machine scales well as more nodes are used to saturate the network. In fact
both machines used for the test are multi-core machines, which complicates the
relationship between node counts writing and receiving data. In this test, the
receiving nodes were allocated exclusively (8 receive links active), but sending
processes used 12 cores per node, so maximum traffic would not be expected
until much more than 8×12 = 96 nodes are sending. The increasing performance
mirrors existing results from HDF5 studies [5, 12], where bandwidth continues
to increase until the network is saturated – which depends, in the case of DSM
traffic, on the number of links to host nodes available. A parallel file system on

An HDF5 MPI Virtual File Driver for Parallel In-situ Post-processing 69

 0

 500

 1000

 1500

 2000

 2500

 3000

1e+03 1e+04 1e+05 1e+06 1e+07

D
at

a
w

rit
e

ra
te

 (
M

B
yt

es
/s

)

Number of written particles per MPI process (3 arrays of double)

1 process
2 processes
4 processes
8 processes

16 processes
32 processes
64 processes

1K

10K

100K

1M

10M

100M

1G

5G

0 1 2 3 4 5 6 7

W
rit

te
n

D
at

a
(B

yt
es

)

DSM Process ID

1e+03
1e+04

1e+05
1e+06

2.5e+07
5e+07

Fig. 2. (Left) Write speed test from a regular cluster to DSM distributed among 8
post-processing nodes with a fixed DSM buffer size of 40GB. (Right) The amount of
data received on each of the 8 DSM host nodes is shown, when 32 processes write N
particles – the high rank nodes are only active with the largest data writes.

 0

 2000

 4000

 6000

 8000

 10000

 12000

16 32 64

D
at

a
w

rit
e

ra
te

 (
M

B
yt

es
/s

)

Number of MPI processes used for writing to the DSM

Parallel File System (GPFS)
Infiniband QDR (Socket)

Infiniband QDR (MVAPICH2 over Gen2)

 0

 2000

 4000

 6000

 8000

 10000

 12000

16 32 64 128 256 512

D
at

a
w

rit
e

ra
te

 (
M

B
yt

es
/s

)

Number of MPI processes used for writing to the DSM

Parallel File System (Lustre)
SeaStar2+ Interconnect (Socket)

Fig. 3. (Left) Write test with a 20GB DSM distributed among 8 post-processing nodes
on a regular cluster. (Right) Write test with a 20GB DSM distributed among 8 post-
processing nodes on a Cray XT5 machine (in production mode).

the other hand will have a fixed number of service nodes which once saturated,
cannot be exceeded. The Lustre filesystem (20 OSS nodes) used here was in
regular production mode and the results therefore reflect typical usage.

5 Application: Integration of the DSM Interface within
ParaView

Whilst the original design of the DSM based VFD was intended for code coupling,
it works equally well for post-processing and visualization. We have therefore
integrated the DSM host into a plugin for the widely used ParaView package
which enables automatic display and analysis of data from any simulation making
use of the HDF5 driver. To better support visualization of diverse simulation
data, we have integrated into the plugin several readers which accept HDF5 data,
including a reader based on Xdmf, the eXtensible Data Model and Format [7].

70 J. Soumagne, J. Biddiscombe, and J. Clarke

We have also enabled the generation of XML descriptions of the data (required
by Xdmf to create topological connectivity from the raw HDF5 arrays) from
a simple template which can be supplied by the user and which is filled in by
helper code inside the DSM after data has arrived. The plugin checks for data
ready synchronization messages and automatically updates the active pipelines
in the ParaView GUI so that the visualization and any user generated analyses
automatically track the ongoing simulation.

6 Related Work and Discussion

Asynchronous IO has been shown to offer significant improvements in perfor-
mance [4] on large simulations by reducing the need for processes to wait until
the filesystem is ready. ADIOS is able to issue non blocking writes, leaving the
application free to perform overlapped IO and computation (at the expense of
double-buffered memory). ADIOS goes further, by allowing the use of server
side services such as DataStager [2], and DART [9] which schedule and prioritize
RDMA requests using asynchronous IO so that network traffic is optimized and
data may be directed either to the file system, or to an awaiting application.
Whilst our library does not offer the range of features/flexibility of these sys-
tems, it does achieve high throughput by removing the filesystem bottleneck and
allow the simulation to overlap computation with post-processing in the DSM
server application. Providing the server does not lock the DSM by reading whilst
the simulation is waiting to write, the performance is limited only by the under-
lying network and number of links between the two. DataStager offers a solution
to the need for collective dataset creation by the scheduling of transfers ordered
by rank so that file offsets are known when the domain decomposition is not
straightforward. Such a facility is not available within HDF5 and is a potential
bottleneck for very large process counts.

7 Conclusion and Future Work

We have developed a parallel MPI streaming driver based on a distributed mem-
ory buffer which provides an easy way to couple applications already using the
HDF5 API. It performs much better than file systems when used with dedicated
links and is ideally suited for in-situ visualization and post-processing of data,
rather than saving to disk and post-processing off-line. To improve performance
of writes when the data size is significantly smaller than the DSM buffer, we
shall take advantage of the HDF5 chunking interface and virtual addressing to
distribute packets of data more evenly between host nodes, improving network
efficiency. An additional improvement will be to allow dynamic resizing of the
DSM buffer on individual nodes and enabling pointer sharing between the DSM
storage and the post-processing code so that duplication of memory is reduced
when reading. For computational steering, a second channel/buffer will be added
so that it becomes possible to send commands back to the simulation code, mak-
ing use of the same HDF5 read/write API.

An HDF5 MPI Virtual File Driver for Parallel In-situ Post-processing 71

Acknowledgments. This work is supported by the “NextMuSE” project
receiving funding from the European Community’s Seventh Framework Pro-
gramme (FP7/2007-2013) under grant agreement 225967.

References

1. Hierarchical Data Format (HDF5), http://hdf.ncsa.uiuc.edu/
2. Abbasi, H., Wolf, M., Eisenhauer, G., Klasky, S., Schwan, K., Zheng, F.:

Datastager: scalable data staging services for petascale applications. In: HPDC
2009: Proceedings of the 18th ACM international symposium on High performance
distributed computing, pp. 39–48. ACM, New York (2009)

3. Allen, G., Benger, W., Dramlitsch, T., Goodale, T., Christian Hege, H., Lanfer-
mann, G., Merzky, A., Radke, T., Seidel, E.: Cactus Grid Computing: Review of
Current Development (2001)

4. Borrill, J., Oliker, L., Shalf, J., Shan, H.: Investigation of leading HPC
I/O performance using a scientific-application derived benchmark. In: Lumpe,
M., Vanderperren, W. (eds.) SC 2007, pp. 1–12. ACM, New York (2007),
doi:10.1145/1362622.1362636

5. Chilan, C.M., Yang, M., Cheng, A., Arber, L.: Parallel I/O Performance Study with
HDF5, a Scientific Data Package. Tech. rep., National Center for Supercomputing
Applications, University of Illinois, Urbana-Champaign (2006)

6. Clarke, J.A.: Emulating Shared Memory to Simplify Distributed-Memory Program-
ming. IEEE Comput. Sci. Eng. 4(1), 55–62 (1997)

7. Clarke, J.A., Mark, E.R.: Enhancements to the eXtensible Data Model and Format
(XDMF). In: HPCMP-UGC 2007: Proceedings of the 2007 DoD High Performance
Computing Modernization Program Users Group Conference, pp. 322–327. IEEE
Computer Society Press, Washington (2007)

8. Clarke, J.A., Namburu, R.R.: A Generalized Method for One-Way Coupling of
CTH and Lagrangian Finite-Element Codes With Complex Structures Using the
Interdisciplinary Computing Environment. Tech. rep., US Army Research Labora-
tory, Aberdeen Proving Ground, Md. (November 2004), ARL-TN-230

9. Docan, C., Parashar, M., Klasky, S.: DART: a substrate for high speed asyn-
chronous data IO. In: HPDC 2008: Proceedings of the 17th international sympo-
sium on High performance distributed computing., pp. 219–220. ACM, New York
(2008), doi:10.1145/1383422.1383454

10. Henderson, A.: ParaView Guide, A Parallel Visualization Application. Kitware Inc.
(2005), http://www.paraview.org

11. Lofstead, J.F., Klasky, S., Schwan, K., Podhorszki, N., Jin, C.: Flexible IO and
integration for scientific codes through the adaptable IO system (ADIOS). In:
CLADE 2008: Proceedings of the 6th international workshop on Challenges of
large applications in distributed environments, pp. 15–24. ACM, New York (2008)

12. Yang, M., Koziol, Q.: Using collective IO inside a high performance IO software
package - HDF5. Tech. rep., National Center for Supercomputing Applications,
University of Illinois, Urbana-Champaign (2006)

http://hdf.ncsa.uiuc.edu/
http://www.paraview.org

Automated Tracing of I/O Stack�

Seong Jo Kim1, Yuanrui Zhang1, Seung Woo Son2, Ramya Prabhakar1,
Mahmut Kandemir1, Christina Patrick1, Wei-keng Liao3, and Alok Choudhary3

1 Department of Computer Science and Engineering
Pennsylvania State University, University Park, PA, 16802, USA

2 Mathematics and Computer Science Division
Argonne National Laboratory, Argonne, IL, 60439, USA

3 Department of Electrical Engineering and Computer Science
Northwestern University, Evanston, IL 60208, USA

Abstract. Efficient execution of parallel scientific applications requires
high-performance storage systems designed to meet their I/O require-
ments. Most high-performance I/O intensive applications access multiple
layers of the storage stack during their disk operations. A typical I/O re-
quest from these applications may include accesses to high-level libraries
such as MPI I/O, executing on clustered parallel file systems like PVFS2,
which are in turn supported by native file systems like Linux. In order to
design and implement parallel applications that exercise this I/O stack,
it is important to understand the flow of I/O calls through the entire
storage system. Such understanding helps in identifying the potential
performance and power bottlenecks in different layers of the storage hi-
erarchy. To trace the execution of the I/O calls and to understand the
complex interactions of multiple user-libraries and file systems, we pro-
pose an automatic code instrumentation technique, which enables us to
collect detailed statistics of the I/O stack. Our proposed I/O tracing tool
traces the flow of I/O calls across different layers of an I/O stack, and
can be configured to work with different file systems and user-libraries.
It also analyzes the collected information to generate output in terms of
different user-specified metrics of interest.

Keywords: Automated code instrumentation, Parallel I/O, MPI-IO,
MPICH2, PVFS2.

1 Introduction

Emerging data-intensive applications make significant demands on storage sys-
tem performance and, therefore, face what can be termed as I/O Wall, that
is, I/O behavior is the primary factor that determines application performance.
Clearly, unless the I/O wall is properly addressed, scientists and engineers will
not be able to exploit the full potential of emerging parallel machines when
� This work is supported in part by NSF grants 0937949, 0621402, 0724599, 0821527,

0833126, 0720749, 0621443, 0724599, and 0833131 and DOE grants DEAC02-
06CH11357, DE-FG02-08ER25848, DE-SC0002156, and DESC0001283.

R. Keller et al. (Eds.): EuroMPI 2010, LNCS 6305, pp. 72–81, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Automated Tracing of I/O Stack 73

•Application segment pp g
to be instrumented
•Metrics of interest

Tracing
•Locations of library
sources

Instrumented

Tracing
Records

Output
Code Statistics

Fig. 1. Our automated I/O tracing tool takes as input the application program, I/O
stack information and a configuration file which captures the metrics of interest, lo-
cations of target sources, and a description of the region of interest in the code. It
automatically generates and runs instrumented code, and finally collects and analyzes
all the statistics on the fly.

running large-scale parallel applications from bioinformatics, climate prediction,
computational chemistry, and brain imaging domains.

The first step in addressing the I/O wall is to understand it. Unfortunately,
this is not trivial as I/O behavior today is a result of complex interactions
that take place among multiple software components, which can be referred to,
collectively, as I/O Stack. For example, an I/O stack may contain an application
program, a high-level library such as MPI-IO [8], a parallel file system such as
PVFS [3], and a native file system such as Linux. A high-level I/O call in an
application program flows through these layers in the I/O stack and, during this
flow, it can be fragmented into multiple smaller calls (sub-calls) and the sub-
calls originating from different high-level calls can contend for the same set of
I/O resources such as storage caches, I/O network bandwidth, disk space, etc.
Therefore, understanding the I/O wall means understanding the flow of I/O calls
over the I/O stack.

To understand the behavior of an I/O stack, one option is to let the applica-
tion programmer/user to instrument the I/O stack manually. Unfortunately, this
approach (manual instrumentation) is very difficult in practice and extremely
error prone. In fact, tracking even a single I/O call may necessitate modifications
to numerous files and passing information between them.

Motivated by this observation, in this work, we explore automated instru-
mentation of the I/O stack. In this approach, as shown in Figure 1, instead
of instrumenting the source code of applications and other components of the
I/O stack manually, an application programmer specifies what portion of the
application code is to be instrumented and what statistics are to be collected.
The proposed tool takes this information as input along with the description
of the target I/O stack and the source codes of the application program and
other I/O stack software, and generates, as output, an instrumented version of
the application code as well as instrumented versions of the other components

74 S.J. Kim et al.

(software layers) in the I/O stack. All necessary instrumentation of the com-
ponents in the I/O stack (application, libraries, file systems) are carried out
automatically.

A unique aspect of our approach is that it can work with different I/O stacks
and with different metrics of interest (e.g., I/O latency, I/O throughput, I/O
power). Our experience with this tool is very encouraging so far. Specifically,
using this tool, we automatically instrumented an I/O-intensive application and
collected detailed performance and power statistics on the I/O stack.

Section 2 discusses the related work on code instrumentation and profiling.
Section 3 explains the details of our proposed automated I/O tracing tool. An
experimental evaluation of the tool is presented in Section 4. Finally, Section 5
concludes the paper with a summary of the planned future work.

2 Related Work

Over the past decade many code instrumentation tools that target different ma-
chines and applications have been developed and tested. ATOM [24] inserts probe
code into the program at compile time. Dynamic code instrumentation [1,2,17],
on the other hand, intercepts the execution of an executable at runtime to in-
sert user-defined codes at different points of interest. HP’s Dynamo [1] monitors
an executable’s behavior through interpretation and dynamically selects hot in-
struction traces from the running program.

Several techniques have been proposed in the literature to reduce instrumen-
tation overheads. Dyninst and Paradyn use fast breakpoints to reduce the over-
heads incurred during instrumentation. They both are designed for dynamic
instrumentation [12]. In comparison, FIT [5] is a static system that aims re-
targetability rather than instrumentation optimization. INS-OP [15] is also a dy-
namic instrumentation tool that applies transformations to reduce the overheads
in the instrumentation code. In [27], Vijayakumar et al. propose an I/O tracing
approach that combines aggressive trace compression. However, their strategy
does not provide flexibility in terms of target metric specification. Tools such
as CHARISMA [20], Pablo [23], and TAU (Tuning and Analysis Utilities) [19]
are designed to collect and analyze file system traces [18]. For the MPI-based
parallel applications, several tools, such as MPE (MPI Parallel Environment) [4]
and mpiP [26], exist. mpiP is a lightweight profiling tool for identifying com-
munication operations that do not scale well in the MPI-based applications. It
reduces the amount of profile data and overheads by collecting only statisti-
cal information on MPI functions. Typically, the trace data generated by these
profiling tools are visualized using tools such as Jumpshot [28], Nupshot [14],
Upshot [11], and PerfExplorer [13].

Our work is different from these prior efforts as we use source code analysis
to instrument the I/O stack automatically. Also, unlike some of the existing
profiling and instrumentation tools, our approach is not specific to MPI or to a
pre-determined metric; instead, it can target an entire I/O stack and work with
different performance and power related metrics.

Automated Tracing of I/O Stack 75

3 Our Approach

3.1 High-Level View of Automated Instrumentation

Our goal is to provide an automated I/O tracing functionality for parallel appli-
cations that exercise multiple layers of an I/O stack, with minimal impact to the
performance. To this end, we have implemented in this work an automated I/O
tracing tool that, as illustrated in Figure 1, comprises three major components:
code instrumenter, execution engine, and data processing engine.

As shown in Figure 1, the code instrumenter consists of the parser, the probe
selector, and the probe inserter. In this context, a probe is a piece of code being
inserted into the application code and I/O stack software (e.g., in the source
codes of MPI-I/O and PVFS2), which helps us collect the required statistics.
The code instrumenter takes as input the application program, high level I/O
metrics of interest written in our specification language, and the target I/O stack
(which consists of the MPI library and PVFS2 in our current testbed).

The parser parses I/O metrics of interest from the configuration file, extracts
all necessary information to instrument the I/O stack in a hierarchial fashion
from top to bottom, and stores it to be used later by other components of the
tool. After that, the probe selector chooses the most appropriate probes for the
high-level metrics specified by the user. Finally, the probe inserter automatically
inserts the necessary probes into the proper places in the I/O stack. Note that,
depending on the target I/O metrics of interest, our tool may insert multiple
probes in the code. Table 1 lists a representative set of high-level metrics that
can be traced using our tool.

Table 1. Sample high-level metrics that can be traced and collected using the tool

I/O latency experienced by each I/O call in each layer (client, server, or disk) in the stack
Throughput achieved by a given I/O read and write call
Average I/O access latency in a given segment of the program
Number of I/O nodes participating in each collective I/O
Amount of time spent during inter-processor communication in executing a collective I/O call
Disk power consumption incurred by each I/O call
Number of disk accesses made by each I/O call

The execution engine compiles and runs the instrumented I/O stack, and
generates the required trace. Finally, the data processing engine analyzes the
trace log files and returns statistics based on the user’s queries. The collected
statistics can be viewed from different perspectives. For example, the user can
look at the I/O latency/power breakdown at each server or at each client. The
amount of time spent by an I/O call at each layer of the target I/O stack can
also be visualized.

3.2 Technical Details of Automated Instrumentation

In this section, we discuss details of the code instrumenter component of our
tool. Let us assume, for the purpose of illustration, that the user is interested

76 S.J. Kim et al.

-A [application.c, application]
-L [$MPICH2, $PVFS2, ClientMachineInfo, $Log]
-O [w]
-C [100-300]
-S [4, <3 max>, <3 max>, <3 max>, <3 max>, <3 max>]
-T [4, <3, mpi.0.log , mpi.1.log, mpi.2.log>, <3, client.0.log, client.1.log, client.2.log>,

<3, server.0.log, server.1.log,server.2.log>, <3, disk.0.log, disk.1.log,disk.2.log>]
-Q [latency, inclusive, all, list:, list:*, list:*, list:*]
-P [App;common;App-probe1;-l main;before]
-P [App;common;App-probe2;-l MPI_Comm_rank;after]
-P [App;common;App-Start-probe;-l MPI_File_read;before]
-P [App;common;App-Start-probe4;-l MPI_File_write;before]
-P [MPI;latency;MPI-Start-probe;-n 74;$MPICH2/mpi/romio/mpi-io/read.c]
-P [MPI;latency;MPI-End-probe;-n 165;$MPICH2/mpi/romio/mpi-io/read.c]
-P [MPI;latency;MPI-Start-probe;-n 76;$MPICH2/mpi/romio/mpi-io/read_all.c]
-P [MPI;latency;MPI-End-probe;-n 118;$MPICH2/mpi/romio/mpi-io/read_all.c]
-P [MPI;latency;MPI-End-probe;-n 73;$MPICH2/mpi/romio/mpi-io/write.c]
-P [MPI;latency;MPI-End-probe;-n 168;$MPICH2/mpi/romio/mpi-io/write.c]
-P [MPI;latency;MPI-Start-probe;-n 75;$MPICH2/mpi/romio/mpi-io/write_all.c]
-P [MPI;latency;MPI-End-probe;-n 117;$MPICH2/mpi/romio/mpi-io/write_all.c]
-P [MPI;latency;MPI-probe;-n 62;$MPICH2/mpi/romio/mpi-io/adio/ad_pvfs2_read.c]
-P [MPI;latency;MPI-probe;-n 295;$MPICH2/mpi/romio/mpi-io/adio/ad_pvfs2_write.c]
-P [PVFSClient;latency;Client-Start-probe;-n 372;$PVFS2/client/sysint/sys-io.sm]
-P [PVFSClient;latency;Client-End-probe;-n 397;$PVFS2/client/sysint/sys-io.sm]
-P [PVFSClient;latency;Client-probe;-n 670;$PVFS2/client/sysint/sys-io.sm]
-P [PVFSServer;latency;.Server-Start-probe;-n 153;$PVFS2/server/io.sm]
-P [PVFSServer;latency;.Server-End-probe;-n 5448;$PVFS2/io/job/job.c]
-P [PVFSServer;latency;.Disk-start-probe;-n 1342;$PVFS2/io/flow/flowproto-bmi-trove/flowproto

-multiqueue.c]
-P [PVFSServer;latency;.Disk-end-probe1;-n 1513;$PVFS2/io/flow/flowproto-bmi-trove/flowproto-

multiqueue.c]
-P [PVFSServer;latency;.Disk-end-probe2;-n 1513;$PVFS2/io/flow/flowproto-bmi-trove/flowproto-

multiqueue.c]

Fig. 2. An example configuration file

in collecting statistics about the execution latency of each I/O call in each layer
of the I/O stack, that is, the amount of time spent by an I/O call in MPI-I/O,
PVFS2 client, PVFS2 server, and disk layers. A sample configuration file that
captures this request is given in Figure 2. This file is written in our specification
language, and Table 2 describes the details of each parameter in the configuration
file. Let us now explain the contents of this sample configuration file.

Table 2. Flags used in a configuration file

Parameter Description
-A Application file name or path
-L Path for I/O libraries
-O Operation of interest
-C Code segment of interest to trace
-S I/O stack specification
-T Tracing file location generated by our tool
-Q Metric of interest
-P Probe name and inserting location

In this example, the user
wants to collect the execu-
tion latency of MPI-IO write
operations (indicated using
-O[w]) that occur between
lines 100 to 300 of an applica-
tion program called, applica-
tion.c. Also, the user specifies
three I/O stack layers, which
are MPI-IO, PVFS2 client,
and PVFS2 server (below the

application program). Finally, the user describes the trace log file names and
their locations for the data processing engine. Based on the target metric of in-
terest, that is latency, the most appropriate latency probes can be automatically
inserted into the designated places in the probe specification.

Automated Tracing of I/O Stack 77

IOCallIDs

IOCallIDs

IOCallIDs

IOCallIDs

IOCallIDs

IOCallIDs

*IOCallIDs *IOCallIDs

*IOCallIDs)

Fig. 3. Illustration of inserting probes into the application program and I/O stack
components by our code instrumenter. Application′, MPICH2′, PVFS2 Client′, and
PVFS2 Server′ represent the instrumented I/O stack.

Figure 3 illustrates how the code instrumenter works. It takes as an input
the user configuration file along with MPI-IO and PVFS2. The parser parses
this configuration file and extracts all the information required by the other
components such as the probe inserter and the data processing engine. Based on
the specified target metric, i.e., the execution latency of MPI write operations
in all the layers including MPI-IO, PVFS2 client, PVFS2 server, and disk, the
probe selector employs only the write-related latency probes, which helps to
minimize the overheads associated with the instrumentation. Then, following
the call sequence of MPI write function, from the MPI-IO library though the
PVFS2 client to the PVFS2 server in Figure 3, the probe inserter selectively
inserts the necessary probes into the start point and the end point of each layer
described in the configuration file.

After the instrumentation, the probe inserter compiles the instrumented code.
During the compilation, it also patches a small array structure, called IOCal-
lID, to the MPI-IO and PVFS2 functions to be matched for tracing. IOCallIDs
contain information about each layer such as the layer ID and the I/O type.
When IOCallIDs are passed from the MPI-IO layer to the PVFS2 client layer,
the inserted probe extracts the information from them and generates the log files
with the latency statistics at the boundary of each layer.

Note that a high-level MPI-IO call can be fragmented into multiple small
sub-calls. For example, in two-phase I/O [6], which consists of an I/O phase and
a communication phase, tracing an I/O call across the layer boundaries in the
I/O stack is not trivial. In our implementation, each call has a unique ID in the
current layer and passes it to the layer below. This help us to connect the high-
level call to its sub-calls in a hierarchical fashion. It also helps the data processing
engine (see Figure 1) to combine the statistics coming from different layers in a

78 S.J. Kim et al.

�������	
��

��������	
�� �

���	
�� ����	
�� � ���	
�� �

�������	

�������	��

��������������

������������

�������	
���

 ��

���
 �������
 �������
 �

���
 ����
 � ���
 �

�������	

�������	��

������������

���������������

Fig. 4. Computation of I/O latency and I/O throughput metrics

systematic way (for example, all the variables that hold latency information at
different layers are associated with each other using these IDs).

In the PVFS2 server layer, our tool uses a unique structure, called
flow desciptor, to perform the requested I/O operations from the PVFS2 client.
The probe inserted into the start point in the server layer extracts the infor-
mation in the IOCallIDs passed from the PVFS2 client and packs it into the
flow descriptor. Since the flow descriptor is passed to the entire PVFS2 server,
the probe in the server extracts the necessary information from it to collect the
latency related statistics without much complexity.

The execution engine runs the instrumented code and generates the trace
log files in each layer. Finally, the data processing engine analyzes all the trace
log files and collects the execution I/O latency induced by each MPI operation
in each layer. The I/O latency value computed at each layer is equal to the
maximum value of the I/O latencies obtained from different layers below it.
However, the computation of I/O throughput value is additive, i.e., the I/O
throughput computed at any layer is the sum of I/O throughputs from different
sub-layers below it. Figure 4 illustrates the computation of these metrics. To
compute the I/O power, we use the power model described in [9].

4 Evaluation

To demonstrate the operation of our tracing tool, we ran a benchmark program us-
ing three PVFS2 servers and three PVFS2 clients on a Linux cluster that consists
of 6 dual-core processor nodes, AMD Athlon MP2000+, connected through Ether-
net and Myrinet. Each node of this system runs a copy of PVFS2 and MPICH2. To
measure disk power consumption per I/O call, we used the disk energy model [9]
based on the data sheets of the IBM Ultrastar 36Z15 disk [25]. Table 3 gives the
important metrics used to calculate power consumption.

Table 3. Important disk parameters for
power calculation

Parameter Default Value
Disk drive module IBM36Z15

Storage capacity (GB) 36.7
Maximum disk speed (RPM) 15000

Active power consumption (Watt) 13.5
Idle power consumption (Watt) 10.2

In our evaluation, we used the
FLASH I/O benchmark [7] that simu-
lates the I/O pattern of FLASH [29].
It creates the primary data structures
in the FLASH code and generates
three files: a checkpoint file, a plot file
for center data, and a plot file for cor-
ner data, using two high-level I/O li-
braries: PnetCDF [16] and HDF5 [10].

The in-memory data structures are 3D sub-blocks of size 8x8x8 or 16x16x16. In
the simulation, 80 of these blocks are held by each processor and are written to

Automated Tracing of I/O Stack 79

 0

 20

 40

 60

 80

 100

 5 6 7 8 9 10 11 12 13 14 15 16 17

L
a

te
n

c
y

 (
m

s
e

c
)

MPI-IO Call ID

Client 0 193.3

nxb=8 nyb=8 nyz=8

mpi-log client 0 server 0 server 1 server 2

Fig. 5. Latency of Client 0 using PnetCDF

 0

 50

 100

 150

 200

 5 6 7 8 9 10 11 12 13 14 15 16 17

L
a

te
n

c
y

 (
m

s
e

c
)

MPI-IO Call ID

Server 0
nxb=8 nyb=8 nyz=8

mpi-log 0
client 0

server 0
mpi-log.1

client 1
server 0

mpi-log 2
client 2

server 0

Fig. 6. Latency of Server 0 using PnetCDF

 0

 2

 4

 6

 8

 10

 12

 5 6 7 8 9 10 11 12 13 14 15 16 17

B
a
n

d
w

id
th

 (
M

B
/s

e
c
)

MPI-IO Call ID

Server 0
nxb=8 nyb=8 nyz=8

Client 0

Client 1

Client 2

Fig. 7. Disk throughput of Server 0 using
PnetCDF

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 5 6 7 8 9 10 11 12 13 14 15 16 17

P
o

w
e

r
C

o
n

s
u

m
p

ti
o

n
 (

J
o

u
le

)

MPI-IO Call ID

Server 0
nxb=8 nyb=8 nyz=8Client 0

Client 1
Client 2

Fig. 8. Power consumption of Server 0 us-
ing PnetCDF

three files with 50 MPI File write all function calls. We used the sub-blocks of
size 8x8x8. nxb, nyb, and nyz in Figures 5 through 9 represent these sub-block
sizes.

First, Figure 5 shows the I/O latencies experienced by each MPI-IO call from
Client 0’s perspective when PnetCDF is used. MPI-IO calls 6-17 are shown with
latencies (in milliseconds) taken in mpi-log, Client 0, Server 0, Server 1, and
Server 2, from left to right. We see that MPI-IO call 16 takes 193.3 milliseconds
in mpi-log, but only 32 milliseconds in Server 1. In this experiment, some of
the MPI-IO calls (0-5, 18-45) calls are directed to the metadata server to write
header information of each file. These calls were not recorded in the I/O server
log file. Figure 6, on the other hand, plots the latencies observed from Server 0’s
perspective. The three bars for every call ID represent cumulative latencies from
each client (Client 0, Client 1 and Client 2 from left to right). Further, each bar
also gives a breakdown of I/O latency (in milliseconds) taken for the request to
be processed in the MPI-IO, PVFS client, and PVFS server layers, respectively.
From this result, one can see, for example, that Client 1 and Client 2 spend less
time than Client 0 in the Server 0 as far as call ID 16 is concerned. These two
plots in Figure 5 and Figure 6 clearly demonstrate that our tool can be used to
study the I/O latency breakdown, from both clients’ and server’s perspectives.

80 S.J. Kim et al.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 1 2 3 4 5 6 7 8 9 10 11 12 13

L
a
te

n
c
y
 (

m
s
e
c
)

MPI-IO Call ID

Client 0
nxb=8 nyb=8 nyz=8

mpi-log client 0 server 0 server 1 server 2

Fig. 9. Latency of Client 0 using HDF5

Figure 7 illustrates the I/O through-
put in Server 0. One can observe from
this plot the detailed I/O throughput
patterns of different clients regarding
this server. Comparing Figure 6 with
Figure 7, one can also see that the
bottleneck I/O call in the application
code depends on whether I/O latency
or I/O throughput is targeted. Fig-
ure 8, on the other hand, presents the
power consumption results for Server
0. We see that most of the power is
consumed by I/O call 15, and except for this call, power consumptions of Client
0 and Client 1 are similar on this server.

Our final set of results are given in Figure 9 and depict the I/O latency values
observed from Client 0’s viewpoint when using HDF5, instead of PnetCDF.
Overall, these sample set of results clearly show that our tool can be used to
collect and analyze detailed latency, throughput, and power statistics regarding
the I/O stack.

5 Concluding Remarks and Future Work

Performing code instrumentation manually is often difficult and could be error-
prone. Hence, we propose an automatic instrumentation technique that can be
used to trace and analyze scientific applications using high level I/O libraries
like PnetCDF, HDF5, or MPI I/O over file systems like PVFS2 and Linux. The
tracing utility uses existing MPI I/O function calls and therefore adds minimum
overhead to the application execution. It takes target high level metrics like I/O
latency, I/O throughput and I/O power as well as a description of the target I/O
stack as input and analyzes the collected information to generate output in terms
of different user-specified metrics. As our future work, we plan to extend our
analysis to other available I/O benchmarks, such as S3D-IO [22] and GCRM [21],
to characterize their I/O behavior. We also plan to investigate techniques for
dynamic code instrumentation that makes use of information available at run-
time to generate/restructure code for data optimization.

References

1. Bala, V., et al.: Dynamo: A transparent dynamic optimization system. In: PLDI
(2000)

2. Bruening, D.L.: Efficient, transparent, and comprehensive runtime code manipu-
lation. PhD thesis, MIT, Cambridge, MA, USA (2004)

3. Carns, P.H., et al.: PVFS: A parallel file system for linux clusters. In: Proceedings
of the Annual Linux Showcase and Conference (2000)

4. Chan, A., et al.: User’s guide for MPE: Extensions for MPI programs (1998)

Automated Tracing of I/O Stack 81

5. De Bus, B., et al.: The design and implementation of FIT: A flexible instrumenta-
tion toolkit. In: Proceedings of PASTE (2004)

6. del Rosario, J.M., et al.: Improved parallel I/O via a two-phase run-time access
strategy. SIGARCH Comput. Archit. News 21(5), 31–38 (1993)

7. Fisher, R.T., et al.: Terascale turbulence computation using the flash3 application
framework on the IBM Blue Gene/L system. IBM J. Res. Dev. 52(1/2) (2008)

8. Gropp, W., et al.: MPI — The Complete Reference: the MPI-2 Extensions, vol. 2.
MIT Press, Cambridge (1998)

9. Gurumurthi, S., et al.: DRPM: Dynamic speed control for power management in
server class disks. In: ISCA (2003)

10. HDF (Hierarchical Data Format) , http://www.hdfgroup.org
11. Herrarte, V., Lusk, E.: Studying parallel program behavior with upshot. Technical

Report ANL–91/15, Argonne National Laboratory (1991)
12. Hollingsworth, J.K., et al.: MDL: A language and compiler for dynamic program

instrumentation. In: Malyshkin, V.E. (ed.) PaCT 1997. LNCS, vol. 1277, Springer,
Heidelberg (1997)

13. Huck, K.A., Malony, A.D.: PerfExplorer: A Performance Data Mining Framework
For Large-Scale Parallel Computing. In: SC (2005)

14. Karrels, E., Lusk, E.: Performance analysis of MPI programs. In: Workshop on
Environments and Tools For Parallel Scientific Computing (1994)

15. Kumar, N., et al.: Low overhead program monitoring and profiling. In: Proceedings
of PASTE (2005)

16. Li, J., et al.: Parallel netCDF: A high-performance scientific I/O interface. In: SC
(2003)

17. Luk, C.-K., et al.: Pin: Building customized program analysis tools with dynamic
instrumentation. In: PLDI (2005)

18. Moore, S., et al.: Review of performance analysis tools for MPI parallel programs.
In: Cotronis, Y., Dongarra, J. (eds.) PVM/MPI 2001. LNCS, vol. 2131, p. 241.
Springer, Heidelberg (2001)

19. Moore, S., et al.: A scalable approach to MPI application performance analysis.
In: Di Martino, B., Kranzlmüller, D., Dongarra, J. (eds.) EuroPVM/MPI 2005.
LNCS, vol. 3666, pp. 309–316. Springer, Heidelberg (2005)

20. Nieuwejaar, N., et al.: File-access characteristics of parallel scientific workloads.
IEEE Transactions on Parallel and Distributed Systems 7, 1075–1089 (1996)

21. Randall, D.A.: Design and testing of a global cloud-resolving model (2009)
22. Sankaran, R., et al.: Direct numerical simulations of turbulent lean premixed com-

bustion. Journal of Physics: Conference Series 46(1), 38 (2006)
23. Simitci, H.: Pablo MPI Instrumentation User’s Guide. University of Illinois. Tech.

Report (1996)
24. Srivastava, A., Eustace, A.: ATOM: A system for building customized program

analysis tools. In: PLDI (1994)
25. Ultrastar, I.: 36Z15 Data Sheet (2010), http://www.hitachigst.com/hdd/ultra/

ul36z15.htm
26. Vetter, J., Chambreau, C.: mpiP: Lightweight, scalable MPI profiling (2010),

http://mpip.sourceforge.net/
27. Vijayakumar, K., et al.: Scalable I/O tracing and analysis. In: Supercomputing

PDSW (2009)
28. Zaki, O., et al.: Toward scalable performance visualization with jumpshot. Int. J.

High Perform. Comput. Appl. 13(3), 277–288 (1999)
29. Fryxell, B., et al.: FLASH: Adaptive Mesh Hydrodynamics Code. The Astrophys-

ical Journal Supplement Series 131 (2000)

http://www.hdfgroup.org
http://www.hitachigst.com/hdd/ultra/ul36z15.htm
http://www.hitachigst.com/hdd/ultra/ul36z15.htm
http://mpip.sourceforge.net/

MPI Datatype Marshalling: A Case Study in

Datatype Equivalence

Dries Kimpe1,2, David Goodell1, and Robert Ross1

1 Argonne National Laboratory, Argonne, IL 60439
2 University of Chicago, Chicago, IL 60637

{dkimpe,goodell,rross}@mcs.anl.gov

Abstract. MPI datatypes are a convenient abstraction for manipulating
complex data structures and are useful in a number of contexts. In some
cases, these descriptions need to be preserved on disk or communicated
between processes, such as when defining RMA windows. We propose
an extension to MPI that enables marshalling and unmarshalling MPI
datatypes in the spirit of MPI_Pack/MPI_Unpack. Issues in MPI datatype
equivalence are discussed in detail and an implementation of the new
interface outside of MPI is presented. The new marshalling interface
provides a mechanism for serializing all aspects of an MPI datatype:
the typemap, upper/lower bounds, name, contents/envelope information,
and attributes.

1 Introduction

Since its inception, MPI has provided datatypes to describe the location of data in
memory and files for communication and I/O. These datatypes are a flexible and
powerful abstraction, capable of efficiently expressing extremely sophisticated
data layouts. While MPI offers facilities to simply and efficiently transmit, store,
and retrieve data described by these datatypes, however, it does not provide any
direct mechanism to transmit the datatype description itself.

We originally set out to develop a library capable of marshalling MPI
datatypes. We define marshalling to be the act of generating a representation of
an MPI datatype that can be used to recreate an “equivalent” datatype later,
possibly in another software context (such as another MPI process or a postpro-
cessing tool). Such functionality is useful in many cases, such as the following:

– Message logging for fault-tolerance support
– Self-describing archival storage
– Type visualization tools
– Argument checking for collective function invocations
– Implementing “one-sided” communication, where the target process does not

necessarily know the datatype that will be used
– Message or I/O tracing for replay in a tool or simulator.

When viewed in the abstract or from the perspective of a particular use case,
datatype marshalling appears to be a well-defined problem with a number of

R. Keller et al. (Eds.): EuroMPI 2010, LNCS 6305, pp. 82–91, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

MPI Datatype Marshalling: A Case Study in Datatype Equivalence 83

direct solutions. As we considered the problem from several different angles,
however, we consistently came up with different, sometimes incompatible, re-
quirements. These requirements stem from the lack of a clear definition for
“equivalent” MPI datatypes.

The rest of this paper is organized as follows. In Section 2 we discuss the
thorny issue of MPI datatype equivalence. In Section 3 we present the design
and implementation of our datatype marshalling library. In Section 4 we briefly
evaluate the time and space performance of our implementation. In Section 5 we
discuss related work, and our conclusions in Section 6.

2 MPI Datatype Equivalence

Pragmatically, two MPI datatypes might generally be considered equivalent
when one can be substituted for another in MPI operations. However, datatypes
are characterized by several independent dimensions that may constitute a con-
crete definition of equivalence.

The MPI standard [5] provides one definition for datatype equivalence (MPI-
2.2 §2.4):

Two datatypes are equivalent if they appear to have been created with
the same sequence of calls (and arguments) and thus have the same
typemap. Two equivalent datatypes do not necessarily have the same
cached attributes or the same names.

Capturing the extent of the type is critical in cases where a count ≥ 1 is used.
Section 4.1.7 states that MPI_Type_create_resized does the following:

Returns in newtype a handle to a new datatype that is identical to old-
type, except that the lower bound of this new datatype is set to be lb, and
its upper bound is set to be lb + extent. Any previous lb and ub markers
are erased, and a new pair of lower bound and upper bound markers are
put in the positions indicated by the lb and extent arguments.

If one sensibly interprets this as stating that MPI_Type_create_resized’s effect
is to insert MPI_LB and MPI_UB markers into the typemap,1 then the MPI standard
definition provides an adequate definition for point-to-point, collective, one-sided
(RMA), and I/O operations. If the typemaps match, then the MPI operations
will access the same data items.2

In explanation, consider two types, A and B, with identical typemaps but dif-
fering extents, EA and EB. The code to create these types is shown in Listing 1.
If MPI_Send is invoked with count = 2 and alternately with A and B, different
data will be sent (Figure 1). The typemap for B must incorporate the MPI_UB

defined by the resize.
1 It is interesting that MPI_LB and MPI_UB, while deprecated for being error-prone to

use, are extremely helpful in understanding the equivalence of datatypes.
2 The implicit pad (ε) used in an MPI executable is intended to mimic the alignment

behavior of the compiler used. This can vary based on architecture, compiler, and
compiler flags, and it is not explicitly captured in the typemap.

84 D. Kimpe, D. Goodell, and R. Ross

1 MPI_Aint lb, extent;
2 MPI_Datatype A, B;
3 MPI_Type_vector(2, 1, 2, MPI_BYTE, &A);
4 MPI_Type_get_extent(A, &lb, &extent);
5 MPI_Type_create_resized(A, 0, extent+1, &B);

Listing 1. MPI Code to Create MPI Datatypes A and B

0 1 2

A0

3 4 5

A1

0 1 2 3

B0

4 5 6 7

B1

Fig. 1. A and B used in MPI_Send with count = 2. (shaded boxes indicate transmitted
bytes)

We note that no facility for comparing datatypes is provided in the MPI
standard, as it is for comparing communicators (i.e., MPI_Comm_compare). This
omission complicates the construction of external libraries that would marshal
datatypes, as it is impossible to detect equivalent datatypes without dissecting
the datatype via the envelope and contents calls.

In many contexts, several additional characteristics besides the typemap may
determine the semantic equivalence of two types. These include the type names,
construction sequence, and attribute values.

2.1 Type Name Equivalence

The name associated with an MPI datatype may be changed by the MPI_Type_

set_name routine. This information is not considered in the MPI standard’s def-
inition of type equivalence. For example, a type used to represent the layout
of a dataset in a file may be named by that dataset’s name. In some cases, an
application or library may not consider two types to be equivalent unless the
types’ names are also equivalent.

2.2 Constructor Equivalence

The MPI-2 standard introduced two functions and a handful of constants that to-
gether provide a form of type introspection. The MPI_Type_get_envelope function
returns the “combiner” used to create the type. Combiner examples include MPI_

COMBINER_VECTOR, MPI_COMBINER_RESIZED, and MPI_COMBINER_NAMED, corresponding
to MPI_Type_vector, MPI_Type_create_resized, and a named predefined datatype
such as MPI_INT. The complementary function, MPI_Type_get_contents, returns
information sufficient to recreate the call to the combiner routine, such as the in-
put datatypes, counts, and indices. The MPI standard requires that “the actual

MPI Datatype Marshalling: A Case Study in Datatype Equivalence 85

arguments used in the creation call for a datatype can be obtained,” including
zero-count arguments. This requirement goes beyond the MPI standard’s defini-
tion of equivalence, as elements with a zero count do not appear in the typemap
of the constructed datatype.

Other than a heavyweight, noncomposable scheme involving the MPI profiling
interface (PMPI_* functions), the envelope and contents routines are the only
available mechanisms for determining the make-up of an MPI datatype. Thus,
any external scheme for marshalling datatypes will use this interface.

2.3 Attribute Equivalence

MPI provides attributes to allow applications and libraries to attach process-
local information to communicator, window, and datatype objects. We limit our
discussion of attributes to datatypes. An attribute attached to a datatype ob-
ject is a (key,value) pair, with exactly one value for a given key. Keys are integer
values, allocated in a process-local context via MPI_Type_keyval_create and deal-
located by MPI_Type_keyval_free. Attribute values are void pointers3 and can
be queried/set/deleted with the MPI_Type_{get,set,delete}_attr functions.

Creating a keyval both reserves a key for later use and associates a set of
function pointers with that key. The corresponding function pointer is invoked
by the MPI implementation when types are copied (via MPI_Type_dup) or deleted
(via MPI_Type_free) as well as when attributes themselves are explicitly replaced
or deleted. These function pointers are responsible for copying underlying at-
tribute values and cleaning up associated storage according to the semantics of
that attribute’s usage.

For example, the MPITypes library [8] uses attributes to cache high-perfor-
mance dataloop [9] representations of MPI datatypes on the datatypes them-
selves. This strategy allows the MPITypes library to avoid recomputing the
dataloop representation on every use. The dataloop information could be stored
externally, without the use of the attribute code, but the attribute system pro-
vides two advantages. First, if a type is duplicated via MPI_Type_dup, the dataloop
representation can be trivially copied, or shared and reference counted. Second,
the dataloop can be easily freed when the type is freed. Otherwise the MPITypes
library has no easy means to identify when a type is no longer in use; hence, it
must use an external caching scheme with bounded size and an eviction policy,
or memory usage will grow without bound.

Two MPI datatypes that are equivalent modulo their attributes may or
may not be semantically equivalent, depending on the particular usages of
those attributes. Consider the case of marshalling a type, t1 followed by un-
marshalling the obtained representation into a second type, t2. If the mar-
shalling system näıvely fails to preserve attributes during this round trip, any
attributes, such as the dataloop from the MPITypes example, must be recal-
culated for t2 when accessed later. If the attribute value is essential for correct
operation and cannot be recalculated, erroneous program behavior may occur.

3 Attribute values are address-sized integers (KIND=MPI_ADDRESS_KIND) in Fortran.

86 D. Kimpe, D. Goodell, and R. Ross

1 int MPIX_Type_marshal(const char *typerep, MPI_Datatype type,
2 void *outbuf, MPI_Aint outsize, MPI_Aint *num_written);
3 int MPIX_Type_marshal_size(const char *typerep, MPI_Datatype type,
4 MPI_Aint *size);
5 int MPIX_Type_unmarshal(const char *typerep, void *inbuf,
6 MPI_Aint insize, MPI_Datatype *type);

Listing 2. Marshalling and Unmarshalling Function Prototypes

Therefore, any complete MPI datatype marshalling solution should provide the
capability to also marshal a datatype’s attributes. Section 3 details one approach
to maintaining attributes despite serialization.

3 MPI Datatype Marshalling

Listing 2 shows the function prototypes of the marshalling and unmarshalling
functions. We modeled our prototypes on those of the packing and unpacking
functions (MPI_Type_{un}pack) defined by the MPI standard. MPIX_Type_marshal_
size returns an upper bound for the space required to marshal the given type.
MPIX_Type_unmarshal reconstructs the datatype. If the type passed to MPIX_Type_

marshal was a named type, such as MPI_INT, the same named type will be returned
when unmarshalling. The committed state of the returned datatype is undefined,
and the user is responsible for freeing the type if it is not a built-in type.

The representation parameter allows the user to choose which encoding will
be used to marshal the type definition. Our library currently defines three type
representations: internal, external, and compressed.

A datatype marshalled by using “internal” representation can be unmar-
shalled only by a process of the same parallel program as the marshalling pro-
cess. As such, datatypes using “internal” encoding cannot be stored on disk to
be retrieved later. The main advantage of using “internal” encoding is that it
enables MPI library specific optimizations. For example, an MPI implementa-
tion could use its internal type description as the “internal” encoding, avoiding
repeated calls to the MPI type construction and introspection functions to mar-
shal and unmarshal a datatype. In addition, any optimizations performed by
MPI_Type_commit could be captured and stored as well, making sure these opti-
mizations don’t need to be repeated for the unmarshalled type.

Similar to the “external32” data representation in MPI-IO, the “external”
type representation has a well-defined layout ensuring the marshalled type can
be unmarshalled by an MPI program using another MPI implementation. The
“external” format is described in Section 3.1. The “compressed” format reduces
the space consumed by a marshalled type at the expense of additional computa-
tion to marshal and unmarshal the type. The “compressed” type representation
is described in Section 3.4.

MPI Datatype Marshalling: A Case Study in Datatype Equivalence 87

(a) MPI type (b) external encoding

Fig. 2. External datatype encoding

3.1 External Type Representation

We chose to use the eXternal Data Representaion standard (XDR) [10] to
portably store a datatype description. The “external” type format follows a
top-down model: the MPI datatype is first broken down into its combiner and
associated data. For example, the type shown in Figure 2 has a top-level combiner
of MPI_COMBINER_CONTIGUOUS. The combiner is converted into an integer by using
a lookup table.4 The integer is stored in XDR encoding. MPI_Type_contiguous has
two more parameters: a base type and a count describing how many times the
base type is to be repeated. The count is stored using XDR. Next, the process
repeats but this time for the base type, essentially descending into the datatype.
Since no cycles are possible in MPI datatypes, this process will eventually end
at a leaf node of the datatype. As all derived datatypes are ultimately built
from predefined types, this leaf node must be a named predefined type or un-
named Fortran predefined type. Named types are marshalled simply by storing
the code for a MPI_COMBINER_NAMED, followed by an integer identifying the named
type, ending the recursion.

In general, each MPI datatype constructor will be marshalled to a combiner
and zero or more integers, addresses, and MPI datatypes. By defining a portable
way to store the combiner, integers, and addresses (which is provided by XDR),
and the set of named datatypes, using recursion, any MPI datatype can be
portably marshalled and unmarshalled.

3.2 Marshalling Type Names

Marshalling type names is relatively straightforward. The name can easily be
obtained using MPI_Type_get_name, and stored using the XDR representation for
character strings. When unmarshalling, any name found in the data stream is
reattached to the type handle using MPI_Type_set_name.

3.3 Marshalling Attributes

As discussed in Section 2.3, supporting marshalling and unmarshalling of at-
tributes is desirable and can often simplify libraries or optimize type handling.
4 This conversion is done because the actual value of MPI_COMBINER_CONTIGUOUS is not

specified by the MPI standard and thus might differ between MPI implementations.
The same is true for the value of the named datatypes. Such link-time constants
may not be used as labels in a C-language switch statement.

88 D. Kimpe, D. Goodell, and R. Ross

Marshalling and unmarshalling attributes is not straightforward, however, as
there is no easy way to obtain the attributes associated with a datatype. The
MPI standard does not provide a function capable of retrieving the set of at-
tributes associated with a particular handle.

In addition, attributes have a user-defined meaning and cannot be portably
interpreted by a library. MPI_Type_dup, which must copy attributes to the new
handle, faces similar issues. The solution adopted by the standard requires that
when a new keyval is registered, two function pointers are provided. One is called
when an attribute needs to be copied, and one is called when an attribute needs
to be destructed (for example, when the object it is associated with is freed).

For each keyval that needs to be marshalled, a call to MPI_Type_register_

marshalled_keyval must be made. Since keyvals have limited process local scope,
their actual value cannot be marshalled. Instead, the library associates each
keyval with a canonical name. When unmarshalling the attribute, this mapping
is used to retrieve the correct local keyval for the attribute.

Listing 3 presents the C binding function prototypes for our proposed at-
tribute marshalling interface. It closely mirrors the datatype marshalling in-
terface; the corresponding function will be called by the datatype marshalling
system when a type is marshalled or unmarshalled.

In order to store attributes, the “external” representation described in Sec-
tion 3.1 is extended by following the type description with an integer indicat-
ing the number of attributes that follow in the data stream. Each attribute
is stored by storing its canonical name, followed by the data provided by its
MPIX_Type_marshal_function. Note that this data is not modified in any way by

1 /* provides upper bound on buffer size */
2 typedef int MPIX_Type_marshal_attr_size_function(int keyval,
3 const char *canonical_name, const char *typerep,
4 MPI_Datatype type, MPI_Aint *size);
5 /* Marshals attribute value specified by keyval/canonical_name into
6 outbuf. Sets ((*num_written)=0) if outsize isn’t big enough. */
7 typedef int MPIX_Type_marshal_attr_function(int keyval,
8 const char *canonical_name, const char *typerep,
9 MPI_Datatype type, void *outbuf, MPI_Aint outsize,

10 MPI_Aint num_written);
11 /* responsible for setting attribute on type */
12 typedef int MPIX_Type_unmarshal_attr_function(
13 const char *canonical_name, const char *typerep,
14 MPI_Datatype type, void *inbuf, MPI_Aint insize);
15 int MPIX_Type_register_marshalled_keyval(int keyval,
16 const char *canonical_name,
17 MPIX_Type_marshal_attr_size_function *marshal_size_fn,
18 MPIX_Type_marshal_attr_function *marshal_fn,
19 MPIX_Type_unmarshal_attr_function *unmarshal_fn);

Listing 3. Attribute Marshalling Function Prototypes

MPI Datatype Marshalling: A Case Study in Datatype Equivalence 89

the library and is stored as opaque XDR data. Therefore, the user is responsible
for serializing the attribute in a portable fashion.

3.4 Compression

A given base type might be used multiple times in constructing a derived
datatype. For example, the type shown in Figure 2 contains multiple copies
of a type composed out of two doubles. The marshalled representation of
the complete type, C, should ideally contain only one copy. Unfortunately,
there is no easy way to detect reuse of types. According to the MPI stan-
dard, MPI_Type_get_contents returns handles to datatypes that are equiva-
lent to the datatypes used to construct the type. There is no guarantee that
the returned handle will be the same as the handle used in constructing the
datatype.

Therefore, our library relies on a non-type-specific compression function (zlib)
to remove duplicate datatypes from the marshalled representation. Compression
can be requested by passing “compressed” as the requested encoding to the
marshalling functions.

4 Evaluation

We evaluated the marshalling and unmarshalling functions for a number of MPI
datatypes, using both “external” and “compressed” representations. We timed
10,000 iterations for each operation and reported the mean time per iteration.
Table 1 shows the results.

The first type evaluated (“named”) refers to any predefined MPI datatype.
As each predefined type is treated equally by the library, the numbers listed
are valid for any predefined type. The second type tested (“indexed”) is an
MPI_Type_indexed type selecting three contiguous regions from a byte array. The
third type is a complex derived datatype we captured from the HDF5 [3] storage
library. This type was created to describe the on-disk access pattern used when
accessing 5000 bytes of a dataset stored in the HDF5 file.5 This particular type
is 12 type constructors deep.

As expected, more complicated types take additional space and time to mar-
shal. The named and indexed types are cheaply serialized in the “external” for-
mat. In the case of the complex type, the “compressed” format consumes ≈ 8.6
times less space but takes ≈ 6.4 times as long to marshal.

Our marshalling implementation is currently a prototype and has not been ex-
tensively optimized. We expect that marshalling and unmarshalling times could
be reduced further with additional effort. The data presented in Table 1 are
intended to provide a rough idea of marshalling performance.

5 The exact type can be found in the MPITypes distribution [7] as test/very_deep.c.

90 D. Kimpe, D. Goodell, and R. Ross

Table 1. Evaluation of marshalling and unmarshalling time and space consumption in
the prototype implementation

Type

External Compressed

Size (B) Time (μs) Size (B) Time (μs)

Marshal Unmarshal Marshal Unmarshal

Named 8 < 1 < 1 14 76 1
Indexed 40 1 4 30 79 3
Complex 824 23 33 95 147 34

5 Related Work

One focus of research in MPI datatypes has been the detection of mismatched
datatypes passed to MPI communication functions. Gropp introduced the idea of
using hashes for this purpose and defined a hashing function that maps the type
signature into an integer tuple [2]. Langou et al. extended this idea, propos-
ing alternative hashing schemes and examining the performance of these ap-
proaches [4]. Falzone et al used this approach in a library for detecting user
errors in the use of MPI collective communication calls [1], building on a simpler
scheme first presented by Träff et al. [11]. These hashes can be used, for instance,
to reference a datatype in a local cache, allowing a remote entity to query if a
datatype is already represented in the cache.

Another focus has been in the efficient processing of MPI datatypes. Ross et
al. describe the implementation of datatype processing used in MPICH2 [9] and
an external library for processing MPI datatypes [8]. The approach used is sim-
ilar to the one first described by Träff et al. [12]. Recently, Mir and Träff stud-
ied transpacking, or moving data between datatype representations [6]. These
approaches generally rely on a simplified, underlying datatype representation
with a type signature identical to the original user datatype. When these repre-
sentations are available, they allow marshalling of a simplified description of a
datatype, if envelope and contents information is not needed.

The Hierarchical Data Format version 5 (HDF5) [3] provides functionality
similar to the MPI datatypes (called datasets in HDF5), splitting the definition
of a dataset into a dataspace that describes the organization of elements and a
datatype that describes a single element, similar to an MPI struct. HDF5 stores
these descriptions persistently in HDF5 files, but it does not present an interface
for marshalling these descriptions to users.

6 Conclusions and Future Work

In this paper we have discussed the notion of MPI datatype equivalence, arguing
that the definition put forth in the standard is appropriate only for a cer-
tain set of use cases. We have identified a number of other interpretations, and we

MPI Datatype Marshalling: A Case Study in Datatype Equivalence 91

have provided an API and a library of functions that enable marshalling of MPI
datatypes in order to meet various levels of equivalence.

We intend to release this functionality for general use in the MPITypes li-
brary [8,7]. We also plan to investigate using a combination of MPI attribute
caching and datatype hashing techniques [4] to optimize the case when types
are repeatedly serialized. Issues in the design and implementation of “internal”
marshalling schemes also merit further study. We intend to propose this interface
for the MPI-3 standardization process.

Acknowledgments. This work was supported by the U.S. Department of En-
ergy, under Contract DE-AC02-06CH11357.

References

1. Falzone, C., Chan, A., Lusk, E., Gropp, W.: A portable method for finding user
errors in the usage of MPI collective operations. International Journal of High
Performance Computing Applications 21(2), 155–165 (2007)

2. Gropp, W.: Runtime checking of datatype signatures in MPI. In: Dongarra, J.,
Kacsuk, P., Podhorszki, N. (eds.) PVM/MPI 2000. LNCS, vol. 1908, pp. 160–167.
Springer, Heidelberg (2000)

3. HDF5, http://hdf.ncsa.uiuc.edu/HDF5/
4. Langou, J., Bosilca, G., Fagg, G., Dongarra, J.: Hash functions for datatype sig-

natures in MPI. In: Di Martino, B., Kranzlmüller, D., Dongarra, J. (eds.) Eu-
roPVM/MPI 2005. LNCS, vol. 3666, pp. 76–83. Springer, Heidelberg (2005)

5. Message Passing Interface Forum: MPI: A Message-Passing Interface Standard
Version 2.2 (September 2009), http://www.mpi-forum.org/docs/docs.html

6. Mir, F.G., Träff, J.L.: Constructing MPI input-output datatypes for efficient
transpacking. In: Lastovetsky, A., Kechadi, T., Dongarra, J. (eds.) EuroPVM/MPI
2008. LNCS, vol. 5205, pp. 141–150. Springer, Heidelberg (2008)

7. MPITypes library, http://www.mcs.anl.gov/mpitypes/
8. Ross, R., Latham, R., Gropp, W., Lusk, E., Thakur, R.: Processing MPI datatypes

outside MPI. In: Ropo, M., Westerholm, J., Dongarra, J. (eds.) Recent Advances
in Parallel Virtual Machine and Message Passing Interface. LNCS, vol. 5759, pp.
42–53. Springer, Heidelberg (2009)

9. Ross, R., Miller, N., Gropp, W.: Implementing fast and reusable datatype pro-
cessing. In: Dongarra, J., Laforenza, D., Orlando, S. (eds.) EuroPVM/MPI 2003.
LNCS, vol. 2840, pp. 404–413. Springer, Heidelberg (2003)

10. Srinivasan, R.: XDR: External data representation standard (1995)
11. Träff, J., Worringen, J.: Verifying collective MPI calls. In: Kranzlmüller, D., Kac-

suk, P., Dongarra, J. (eds.) EuroPVM/MPI 2004. LNCS, vol. 3241, pp. 18–27.
Springer, Heidelberg (2004)

12. Träff, J.L., Hempel, R., Ritzdorf, H., Zimmermann, F.: Flattening on the fly: Effi-
cient handling of MPI derived datatypes. In: Margalef, T., Dongarra, J., Luque, E.
(eds.) PVM/MPI 1999. LNCS, vol. 1697, pp. 109–116. Springer, Heidelberg (1999)

http://hdf.ncsa.uiuc.edu/HDF5/
http://www.mpi-forum.org/docs/docs.html
http://www.mcs.anl.gov/mpitypes/

Design of Kernel-Level Asynchronous Collective

Communication

Akihiro Nomura and Yutaka Ishikawa

Dept. of Computer Science, Graduate School of Information Science and Technology,
The University of Tokyo

7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan
nomura@il.is.s.u-tokyo.ac.jp,
ishikawa@is.s.u-tokyo.ac.jp

Abstract. Overlapping computation and communication, not only
point-to-point but also collective communications, is an important tech-
nique to improve the performance of parallel programs. Since the current
non-blocking collective communications have been mostly implemented
using an extra thread to progress communication, they have extra over-
head due to thread scheduling and context switching. In this paper, a new
non- blocking communication facility, called KACC is proposed to pro-
vide fast asynchronous collective communications. KACC is implemented
in the OS kernel interrupt context to perform non-blocking asynchronous
collective operations without an extra thread. The experimental results
show that the CPU time cost of this method is sufficiently small.

Keywords: Non-blocking collective communication, Linux kernel.

1 Introduction

In parallel applications, the performance and efficiency of communications of-
ten dominate the performance of the whole calculation. In addition to blocking
point-to-point communication APIs in the MPI (Message Passing Interface) [5],
some APIs for non-blocking communication, such as MPI Isend and MPI Irecv,
are defined. Non-blocking communication allows calculations to continue during
communication. This enables the MPI processes to overlap between calculation
and communication.

MPI also defines collective communication APIs, such as MPI Reduce and
MPI Bcast, to perform the conventional sets of communications easily and ef-
ficiently. The users of the MPI library do not need to know what is going on
during the collective communication. The MPI library offers the most efficient
algorithms for the requested collective communication with regard to the commu-
nication size, topology, and other information. Both APIs are used to efficiently
perform the communication.

In the current version of MPI, due to the lack of non-blocking collective com-
munication APIs, users must implement non-blocking communications in order
to perform the collective communications asynchronously. For example, in the

R. Keller et al. (Eds.): EuroMPI 2010, LNCS 6305, pp. 92–101, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Design of Kernel-Level Asynchronous Collective Communication 93

HPL [8] implementation, a non-blocking version of MPI Bcast was implemented,
but it is hard to maintain the code due to the complexity of the collective al-
gorithms and a mixture of communication and computation routines. Further-
more, the code might be inefficient in some topologies because the broadcast
algorithm is based on some assumed network topology. Thus, the introduction
of non-blocking collective communication APIs to the MPI standard has been
discussed.

In the next version of the MPI standard, MPI 3.0, non-blocking collective
communication APIs are to be introduced. There is a reference implementation
of those APIs, LibNBC [2, 3]. In the implementation, non-blocking communi-
cation operations are implemented using threads for communication progress.
The thread implementation has two limitations. Firstly, if an extra thread that
performs communications is introduced, it consumes CPU resources due to the
overhead of both task scheduling and context switching. For example, if an MPI
application runs on an eight-core cluster in which each process runs on each
CPU core, sixteen threads are created. Eight threads are for processes, and the
other eight threads are for communication progress. This means that the execu-
tion of those threads is multiplexed. Secondly, since the timing of communica-
tion progress depends on the task scheduling in the operating system, it is not
guaranteed that the progress thread runs immediately when the communication
processing is ready when a message arrives.

In this paper, a new non-blocking collective communication facility, called
KACC, is designed and implemented to overcome the limitations described
above. KACC is implemented in the OS kernel interrupt context in order to per-
form the non-blocking collective operations without an extra thread. Since the
communication progress is handled when a message arrives, there is no delay in
the progress, and no extra context switching overhead is introduced. The facility
has been implemented as a kernel module with a user-level library in the Linux
kernel. KACC is evaluated by a benchmark which uses non-blocking broadcast
algorithm. The benchmark reveals how much the non-blocking broadcast oper-
ation contributes to overlapping communication and computation. Four imple-
mentations of the non-blocking broadcast operation are considered: a tree-based
broadcast operation written in MPI, a non-blocking point-to-point operation; a
tree-based broadcast operation written in KACC; a pipeline-based broadcast op-
eration written in the threads; and a pipeline-based broadcast operation written
in KACC.

The CPU waste time depends how often the application program examines
the completion of the non-blocking operations. The results of the benchmarks
show that 97 % of CPU time is lost in LibNBC, while only 31.8 % of CPU time
is lost in KACC during a high frequency of examinations. The total execution
time of non-blocking collective operation is also improved. The result shows that
the execution time in KACC is 79 to 101% of that in LibNBC.

94 A. Nomura and Y. Ishikawa

2 Issues

Implementation of non-blocking collective communications is not trivial due to
progressions. Most of the implementations of collective communications consist
of the set of point-to-point communications that are connected by data depen-
dencies. Progression is the procedure to connect these point-to-point communica-
tions. The MPI library must issue the communication when all of the dependent
communications are completed in order to continue collective communication.
Two implementations have been introduced so far: thread implementation and
explicit progression.

Thread Implementation. The straightforward solution to this problem is
creating a thread for communication and performing progression in this thread.
An example of this method is used in the LibNBC implementation [3]. The
advantage of this method is that the communication will execute asynchronously
to computation that runs on another thread. Theoretically, the communication
thread runs independently from the computation thread, and the progression is
always executed at the appropriate timing.

However, the real situation is different due to the limitation of the number of
CPU cores. The user usually spawns the same number of MPI processes as the
number of CPU cores, because the user often assumes that all cores can be used
for computation. In this situation, if the MPI library makes the communication
thread, the number of active threads exceeds the number of cores. This results
in frequent context switches among these threads. If the context switches are
performed by the operating system, and the OS does not know about the de-
pendencies among these threads, then the timing of context switches might not
be optimal. This will result in waste of CPU time and delay of communications.

Explicit Continuation. Another way to implement non-blocking communica-
tions instead of creating communication threads is to implement the progressions
in the MPI library, that is, the progression of collective communications is only
done within the MPI functions, such as MPI Test and MPI Wait, when invoked
by the application program. This method does not create any threads, and thus
the context switching problem does not happen.

On the other hand, the progression is not processed if the application does
not call any MPI functions. This results in no overlapping computation and
communication, that is, although a non-blocking collective communication has
been posted, the communication does not progress during the computation. If the
program waits for the completion of the non-blocking collective communication
by issuing MPI Wait when computation is completed, the progression starts. If
the user calls the progression too frequently to avoid missing progression timing,
this results in a loss of CPU time.

This kind of explicit progression method is used in some MPI applications.
For example, in the Linpack benchmark program, non-blocking broadcast is im-
plemented using non-blocking send and receive primitives. For example, during
local computation, Linpack polls whether the broadcast has been completed
using the MPI Test primitive.

Design of Kernel-Level Asynchronous Collective Communication 95

3 Design

In order to solve both the frequent context switching and false asynchronization
problems at the same time, the KACC facility is designed and implemented in
this paper. In KACC, the progression routine is implemented as an OS kernel’s
soft-interrupt handler. In this method, the number of threads does not increase,
because the progression routine does not have a thread context, and it is called at
the appropriate time by the kernel interrupt handler instead of the OS scheduler.

3.1 Collective Algorithm Design

Splitting the collective algorithm from the kernel module is important to design
new collective algorithms. However, it becomes a security hole if the program bi-
naries described in the user-level program can be passed to kernel space directly.
Instead of sending binary, a data structure, called a CAD (Collective Algorithm
Design) structure, is introduced to describe the collective algorithms. The MPI
library creates the CAD structure and passes the structure to the kernel module.

Collective communication algorithms can be mapped to directed acyclic graphs
which shows dependencies among the point-to-point and reductive operations [6,
3]. In the CAD structure, collective algorithms are expressed using these graph
structures instead of the binary program. There are three types of nodes: SEND,
RECV, and CALC. The SEND and RECV nodes represent communication. These nodes
contain information required for communication: address of data, data size, rank
of sender or receiver, and tag information to match the messages. The CALC
node represents calculation in the MPI reduction function, such as MPI Sum and
MPI Max. This node contains information about the reductive calculation oper-
ator, memory address, size, and data type. The edges between nodes denote
dependencies between each operation.

A CAD, describing a collective algorithm, is created and executed using the
following API:

– InitCAD(): creates new CAD
– MakeSendNode(), MakeRecvNode(), MakeCalcNode(): creates CAD nodes

for SEND, RECV and CALC, respectively
– ConnectNode(A, B): marks the dependency edges from node A to node B

START and END nodes are pre-defined
– IssueCAD(): tells the system to start communication
– QueryCAD(): queries to system whether the operation has been completed

An example of a CAD structure, representing a non-blocking broadcast al-
gorithm, is shown in Figure 1. This structure is generated at rank 1 by the
user-level code shown in Figure 2. Note that in this broadcast implementation,
each SEND/RECV node sends/receives a fragment of the message. The message
is stored in the addr memory area that is defined as an array for simplicity.
In the code shown in Figure 2, a data structure to store CAD tree is allocated
by InitCAD in line 2 at first. Then, RECV and SEND nodes for each fragment
are created by MakeRecvNode and MakeSendNode. Each RECV/SEND node has

96 A. Nomura and Y. Ishikawa

START

SEND[0]→#2

SEND[1]→#2

RECV[0]←#0

RECV[1]←#0

…

…

R0:

R1:

S0:

S1:

SEND[1]→#2

SEND[n]→#2

END

RECV[n]←#0

…

…

…

Rn:

Sn:

Fig. 1. CAD tree example

1 /* Initializing CAD Tree */
2 cad = InitCAD();
3 /* Making R0 and S0 Node */
4 rn = MakeRecvNode(cad, addr[0], fragsize, 0);
5 ConnectNode(cad, START, rn);
6 sn = MakeSendNode(cad, addr[0], fragsize, 2);
7 ConnectNode(cad, rn, sn);
8 ConnectNode(cad, sn, END);
9 /* Making R1 and S1 Node */

10 rn = MakeRecvNode(cad, addr[1], fragsize, 0);
11 ConnectNode(cad, START, rn);
12 sn = MakeSendNode(cad, addr[1], fragsize, 2);
13 ConnectNode(cad, rn, sn);
14 ConnectNode(cad, sn, END);
15
16 /* Making Rn and Sn Node */
17 rn = MakeRecvNode(cad, addr[n], fragsize, 0);
18 ConnectNode(cad, START, rn);
19 sn = MakeSendNode(cad, addr[n], fragsize, 2);
20 ConnectNode(cad, rn, sn);
21 ConnectNode(cad, sn, END);
22 /* Issuing CAD Tree */
23 req = IssueCAD(cad);

Fig. 2. Code generating CAD Tree

corresponding SEND/RECV node which is created by the code in corresponding
rank. After that, each SEND/RECV nodes and special START and END nodes are
connected using ConnectNode to form dependencies shown in Figure 1. Finally,
the CAD tree is fixed and sent to the KACC system using IssueCAD in line 23.
The progression routine, which will be introduced in the following section, starts
communication in CAD tree at this time. The user can query the completion of
issued CAD using QueryCAD.

4 Implementation

4.1 Structure of KACC System

As shown in Figure 3, the KACC facility consists of three layers: the CAD API,
the Progress Engine (PE), and the point-to-point (P2P) communication inter-
face. The latter two layers are implemented inside the Linux kernel as a kernel
module. The CAD API described in the previous section is implemented as a
user-level library. Using the API, the CAD structure is created in a special mem-
ory area shared by MPI processes and the kernel module, so that no structure
copy between the user and kernel memory spaces is required.

The Progress Engine (PE) plays two roles. The first role, invoked at the user-
level, is to start communication between the CAD structures and to report its
progress. The second role, invoked by the P2P communication interface, is to
perform the communication algorithm on the CAD structure. The latter role is
implemented as a tasklet in the Linux kernel, that is, it runs under the kernel
context triggered by the interrupt routine. Thus, the implementation of KACC
does not have threads.

Design of Kernel-Level Asynchronous Collective Communication 97

MPI Middleware

CAD API

Progress Engine

TCPO IB MX

MPI Application
NBC Request

Communication Schedule

CAD data

Message Request

P2P Layer

KACC
User-space

Kernel-space

TCPOpenIB MX

EthernetInfiniband Myrinet

I/O Request

P2P Layer

Kernel I/O Layer

Fig. 3. Structure of KACC facility

The Linux tasklet runs on the same core as the tasklet is scheduled on. If
the network interrupts always trigger one specific core, all of the PE routine is
executed on that core and fully serialized. In order to avoid this serialization and
balance the PE tasklets among CPU cores, we use inter-processor interrupts(IPI)
to schedule them on arbitrary core. This method enables each PE event to be
executed simultaneously and reduces total execution time. On the other hand,
CPU time loss increases due to IPI costs.

The point-to-point (P2P) layer offers communication APIs to the PE layer.
The P2P APIs are independent from the network devices and are similar to
MPI’s non-blocking point-to-point communication APIs. The difference between
them is the notification method of completion. The P2P layer invokes PE’s call-
back routine immediately after completion, instead of offering a polling interface
of completion. Thus, the PE’s routine is always called at the appropriate timing.

In the current implementation, only the kernel-mode non-blocking TCP has
been implemented in the P2P layer, since the recent interconnect devices often
have an IP interface [7,4]. It is possible to implement the P2P layer using native
APIs for Myrinet or InfiniBand instead of using IP compatibility layer of these
interfaces. The interface between PE and P2P layer is message-oriented, it will
fit nicely to the message-oriented communication in Myrinet MX. If we use the
native implementation, the communication will be faster and the CPU time loss
will be smaller.

Currently, the network connection used in P2P layer is established indepen-
dently from connection of MPI library in order to distinguish KACC’s traffic
from other traffics. We are planning to implement communication device in-
terface for MPICH2 or other MPI implementations. This interface also provides
point-to-point non-blocking communication API and all communications in MPI
programs are executed by KACC facility.

98 A. Nomura and Y. Ishikawa

5 Evaluation

The performance of KACC facility is compared to the other implementation,
LibNBC, using a non-blocking broadcast communication in this section. A
benchmark program is designed based on the HPL benchmark [8] in order to
show how much the non-blocking operation contributes to overlapping commu-
nication and computation. The benchmark is named the HPL codelet because it
is not a real Linpack benchmark, but is a code snippet from HPL that performs
broadcast communication and calculation simultaneously. In this benchmark,
after issuing a non-blocking broadcast operation, the fixed amount of calcula-
tion is computed repeatedly until the broadcast operation is completed, that is,
at every end of calculation, the completion of the operation is examined. The
calculation is the matrix multiplication whose size is specified at the run time
so that the examination frequency of completion is programmable.

Four implementations of the non-blocking broadcast communication have
been carried out. The first implementation is the original HPL non-blocking
broadcast communication implementation, using MPI point-to-point operations,
whose communication algorithm is based on a binary tree, which will be denoted
as MPI Tree. The second implementation is the same algorithm written using
KACC, which will be denoted as KACC Tree. The third implementation is the
version used in the LibNBC’s library, that is based on pipeline processing, which
will be denoted as LibNBC Pipeline. The fourth implementation is the same al-
gorithm as LibNBC but written in KACC, which will be denoted as KACC
Pipeline.

The execution time of the benchmark was measured for the four implemen-
tations. The experimental environment consists of eight computing nodes con-
nected by a 1Gbps Ethernet. Each computing node has two dual-core 2GHz
Opteron CPUs; thus, there are 32 cores in this cluster. MPICH2/TCP 1.0.6 [1]
is used as the base MPI environment.

The percentage of CPU time spent for communication is estimated by com-
paring the number of calculation to the ideal number of calculations without
communication. The effect of the frequency of examining the completion of the
communication operation is revealed by varying both computation and commu-
nication lengths. For the granularity of the computation, two different matrix
sizes for calculation are considered: 40 × 40 matrices for coarse-grained testing
and 4 × 4 matrices for fine-grained testing.

The results of CPU time loss are shown in Figures 4 and 5. In order to show the
cost of tasklet load-balancing by IPI, the CPU time loss in KACC without load-
balancing is also shown in graph (b) of each figures. In the coarse-grainedworkload
shown in Figure 4, the frequency of polling is less, and thus, in this case, the CPU
is not consumed by polling communication activity. However, in LibNBC, 28.3 to
57.3% of CPU time is always spent for the communication thread, and, therefore,
the effect from the communication computation overlap is relatively small. On
the other hand, in the same pipeline algorithm with KACC facility, the CPU time
spent for communication is limited to about half of the case with LibNBC, and
about half of the CPU time is due to the cost from IPI handling.

Design of Kernel-Level Asynchronous Collective Communication 99

40

50

60

70

80

90

100

U
 t

im
e

lo
ss

 r
at

io
 [

%
]

MPI Tree
KACC Tree
LibNBC Pipeline
KACC Pipeline

0

10

20

30

1E+02 1E+03 1E+04 1E+05 1E+06 1E+07 1E+08

C
P

U

Message Size [Bytes]

(a) With load balancing using IPI

40

50

60

70

80

90

100

U
 t

im
e

lo
ss

 r
at

io
 [

%
]

MPI Tree
KACC Tree
LibNBC Pipeline
KACC Pipeline

0

10

20

30

1E+02 1E+03 1E+04 1E+05 1E+06 1E+07 1E+08

C
P

U

Message Size [Bytes]

(b) Without load balancing using IPI

Fig. 4. CPU time loss during broadcast with coarse-grained workload

40

50

60

70

80

90

100

U
 t

im
e

lo
ss

 r
at

io
 [

%
]

MPI Tree
KACC Tree
LibNBC Pipeline
KACC Pipeline

0

10

20

30

1E+02 1E+03 1E+04 1E+05 1E+06 1E+07 1E+08

C
P

U

Message Size [Bytes]

(a) With load balancing using IPI

40

50

60

70

80

90

100

U
 t

im
e

lo
ss

 r
at

io
 [

%
]

MPI Tree
KACC Tree
LibNBC Pipeline
KACC Pipeline

0

10

20

30

1E+02 1E+03 1E+04 1E+05 1E+06 1E+07 1E+08

C
P

U

Message Size [Bytes]

(b) Without load balancing using IPI

Fig. 5. CPU time loss during broadcast with fine-grained workload

When the granularity of computation is fine as shown in Figure 5, the fre-
quency of tests for the communication’s completion is high. In this case, 97.0%
of the CPU time is lost to the communication thread in LibNBC. On the other
hand, KACC’s CPU loss rate is limited to 31.8% even if load-balancing using IPI
is enabled. This result shows that the users can continue calculation effectively
during collective communication under the KACC facility.

The ratio of total execution time in broadcast on KACC compared to normal
MPI tree and LibNBC pipeline implementations is shown in Figure 6. If the ratio
is smaller than 1, corresponding method is faster than the compared case, MPI
Tree or LibNBC Pipeline. In the best case, it took 2.15 milliseconds for 12.5kB
broadcast in MPI and 1.19 milliseconds in the same algorithms with KACC
facility and thus execution time ratio is calculated as 0.55. Similarly, it took 22.6
milliseconds for 1.25MB broadcast in LibNBC and 17.9 milliseconds in the same
algorithms with KACC facility and execution time ratio is calculated as 0.79.
For various communication size and workload granularity, the execution time in
the KACC is 55 to 98% of that in MPI implementation and 79 to 101% of that
in LibNBC except for small message size. However, if the message size is small,

100 A. Nomura and Y. Ishikawa

0.8

0.9

1

1.1

1.2

1.3

ec
u

ti
o

n
 T

im
e

R
at

io

KACC / MPI Tree
KACC / LibNBC Pipeline

0.5

0.6

0.7

1E+02 1E+03 1E+04 1E+05 1E+06 1E+07 1E+08

E
xe

Message Size [Bytes]

(a) With a coarse-grained workload

0.8

0.9

1

1.1

1.2

1.3

ec
u

ti
o

n
 T

im
e

R
at

io

KACC / MPI Tree
KACC / LibNBC Pipeline

↑
3.65

↑
3.34

0.5

0.6

0.7

1E+02 1E+03 1E+04 1E+05 1E+06 1E+07 1E+08

E
xe

Message Size [Bytes]

(b) With a fine-grained workload

Fig. 6. Total execution time ratio in non-blocking broadcast

KACC implementation is slower than normal MPI or LibNBC implementation.
We have to improve the performance of small messages in the future.

6 Conclusions

Non-blocking collective operations have been proposed and implemented. If non-
blocking collective operations are performed asynchronously with the main com-
putation, the communication latency can be hidden, and more time can be made
available for computation. However, these implementations are not always scaled
due to the extra cost of asynchronous communication management using threads.

This paper proposed the KACC facility, which performs collective communi-
cations in the OS kernel’s interrupt context. Since non-blocking collective op-
erations are performed in the kernel interrupt context, no extra threads are
introduced. Furthermore, a collective operation is progressed immediately when
a message for the operation arrives. These two features contribute to the appli-
cation program spending more CPU time in computation.

A benchmark was used to test four different implementations, including the
thread implementation in LibNBC [2,3], of the non-blocking broadcast operation.
The results show that the thread implementation, LibNBC, consumes almost half
of the CPU when less frequent polling of completion is requested or 97% of CPU
time when frequent polling is performed, while KACC consumes only 10 to 30%
of CPU time for both cases while keeping its execution time up to 79 to 101%
of that in LibNBC.

There are four limitations in the current implementation. Firstly, the user-
defined operations have not yet been considered. The execution of operations
must be safe in terms of security. There are two potential approaches to this
problem: interpreter and thread approaches. In the interpreter approach, the
function is compiled to virtual machine code, and this code is interpreted in the
kernel. Another approach is to introduce a thread for executing the operations.
In this approach, an extra thread is created. However, unlike the thread for

Design of Kernel-Level Asynchronous Collective Communication 101

communication progress, the extra thread is only activated during the operation
of collectives, and the overhead is expected to be small.

Secondly, the current implementation has not yet been optimized for the intra-
node communication, since intra-node communications are handled by the TCP
connections. If messages are directly copied by the memory copy operation,
performance is improved.

Thirdly, the P2P layer supports only TCP in the current implementation.
Porting to other hardware, such as InfiniBand and Myrinet, is being considered.

Fourthly, the current implementation is slow if the messages are small. Improv-
ing the performance for small messages is strongly needed. We may recommend
not to use non-blocking collective communications if the message size is small.
In this case, we should show reasonable method to determine the threshold of
message size to use non-blocking collective communications.

References

1. Argonne National Laboratory: MPICH2: High-performance and widely portable
MPI, http://www.mcs.anl.gov/research/projects/mpich2/

2. Hoefler, T., Lumsdaine, A.: Design, Implementation, and Usage of LibNBC. Tech.
rep., Open Systems Lab, Indiana University (August 2006)

3. Hoefler, T., Lumsdaine, A., Rehm, W.: Implementation and Performance Analysis
of Non-Blocking Collective Operations for MPI. In: Proceedings of the 2007 In-
ternational Conference on High Performance Computing, Networking, Storage and
Analysis, SC 2007. IEEE Computer Society/ACM (November 2007)

4. Kashyap, V.: IP over InfiniBand (IPoIB) Architecture. RFC 4392 (Informational)
(April 2006), http://www.ietf.org/rfc/rfc4392.txt

5. MPI Forum: Message passing interface, http://www.mpi-forum.org/
6. MPI Forum: MPIplans - an alternative for all other collectives proposals?

https://svn.mpi-forum.org/trac/mpi-forum-web/wiki/MPIplans
7. Myricom, Inc.: IP over myrinet, http://www.myri.com/scs/documentation/mug/ip/
8. Petitet, A., Whaley, R.C., Dongarra, J., Cleary, A.: HPL - a portable implementa-

tion of the high-performance linpack benchmark for distributed-memory computers,
http://www.netlib.org/benchmark/hpl/

http://www.mcs.anl.gov/research/projects/mpich2/
http://www.ietf.org/rfc/rfc4392.txt
http://www.mpi-forum.org/
https://svn.mpi-forum.org/trac/mpi-forum-web/wiki/MPIplans
http://www.myri.com/scs/documentation/mug/ip/
http://www.netlib.org/benchmark/hpl/

Network Offloaded Hierarchical Collectives

Using ConnectX-2’s CORE-Direct Capabilities

Ishai Rabinovitz1, Pavel Shamis1, Richard L. Graham2,
Noam Bloch1, and Gilad Shainer3

1 Mellanox Technologies, Inc.
{ishai,pasha,noam}@mellanox.co.il

2 Oak Ridge National Laboratory (ORNL)
rlgraham@ornl.gov�

3 Mellanox Technologies, Inc.
shainer@mellanox.com

Abstract. 1As the scale of High Performance Computing (HPC) sys-
tems continues to increase, demanding that we extract even more paral-
lelism from applications, the need to move communication management
away from the Central Processing Unit (CPU) becomes even greater.
Moving this management to the network, frees up CPU cycles for com-
putation, making it possible to overlap computation and communication.
In this paper we continue to investigate how to best use the new CORE-
Direct support added in the ConnectX-2 Host Channel Adapter (HCA)
for creating high performance, asynchronous collective operations that
are managed by the HCA. Specifically we consider the network topology,
creating a two-level communication hierarchy, reducing the MPI Barrier
completion time by 45%, from 26.59 microseconds, when not considering
network topology, to 14.72 microseconds, with the CPU based collective
barrier operation completing in 19.04 microseconds. The nonblocking
barrier algorithm has similar performance, with about 50% of that time
available for computation.

Keywords: InfiniBand, Offload, Collectives, Hierarchy.

1 Introduction

System-area network characteristics on any HPC system have a large impact on
the performance of applications running on them, equally important to that of
� Research sponsored by the Office of Advanced Scientific Computing Research’s FAS-

TOS program; U.S. Department of Energy, and performed at ORNL, which is man-
aged by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725. The HPC
Advisory Council (http://www.hpcadvisorycouncil.com) provided computational
resource for testing and data gathering.

1 Research sponsored by the Office of Advanced Scientific Computing Research’s FAS-
TOS program; U.S. Department of Energy, and performed at ORNL, which is man-
aged by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725. The HPC
Advisory Council (http://www.hpcadvisorycouncil.com) provided computational re-
source for testing and data gathering.

R. Keller et al. (Eds.): EuroMPI 2010, LNCS 6305, pp. 102–112, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

http://www.hpcadvisorycouncil.com

Network Offloaded Hierarchical Collectives 103

the CPU and the attached storage. However, much more attention has been fo-
cused on improving CPU capabilities, with a relatively modest effort put into im-
proving network hardware capabilities. Since the need for computational power
continues to grow and CPU speeds are remaining essentially constant, top end
system core counts are expected to continue their rapid growth, and even accel-
erate given energy consumption constraints, as we move towards exascale class
computing [16]. Core counts of the top-ten systems on the Top500 list [5] in
November 2009 reached an average of 134,893, and are expected to reach about
10,000,000 cores to provide an exascale computing environment [16]. To make ef-
fective use of such systems, a more balanced system design is needed. Enhancing
network capabilities, performance, and scalability is required.

Improving network performance, the performance of point-to-point (PTP)
communications and collective communications needs be addressed. These in-
clude addressing network specific issues such as reducing latency (PTP and col-
lective), increasing network bandwidth, and increasing message rates. Because
of their absolute performance and scalability, collective communications are of-
ten the limiting factor for achieving good application scalability. The ordered
communication patterns used by high performance implementation of collective
algorithms present an application scalability challenge, as a delay in entering a
particular stage of the algorithm propagates through the rest of that particular
collective operation. The reason for such delays may be classified as application or
system effects. Application load imbalance, with different application processes
entering a collective operation at different times are a cause for such delays.
System activity, also known as system noise [21], which displaces application
processes from the CPU also delays the participation of the displaced processes
in the collective operation, further posing a scalability challenge. In addition, be-
cause CPU cycles are used in managing network communications, taking away
compute CPU cycles from the application, progressing network communication
also tends to hamper application scalability.

CORE-Direct functionality, recently added to the InfiniBand ConnectX-2
HCAs by Mellanox Technologies [2], provides comprehensive hardware support
for offloading a sequence of data-dependent communications to the network.
This allows moving some of the network processing from the CPU to the net-
work, freeing up CPU cycles for computation. It also supports asynchronous
collective communications, such as the pending MPI [19] nonblocking collective
operations, providing some of the support needed from the network for a more
balanced system design.

The major contributions described in this paper include the first implemen-
tation of asynchronous hierarchical InfiniBand blocking and nonblocking barrier
algorithms, which can be fully offloaded to the network. We briefly describe the
new InfiniBand CORE-Direct capabilities, and a hierarchical design used to im-
prove collective (barrier) performance. We present the results of numerical stud-
ies, designed to understand the characteristics of this new approach, as applied
to blocking and nonblocking barrier algorithm, presenting both timing data, as

104 I. Rabinovitz et al.

well as the results of computation and communication overlap experiments. We
finish with a discussion of these results.

2 Related Work

Several authors have investigated using the HCA to offload collective communi-
cation management from the CPU. Analyses of HCA-based broadcast algorithms
are available in references [6,26]. Generally, these all tend to use HCA-based
packet forwarding as a means of improving performance of the broadcast opera-
tion. Some of the benefits of offloading barrier, reduce, and broadcast operations
to the HCA are described in references [8,7,20], and [26,25]. These show that
barrier and reduce operations can benefit from reduced host involvement, effi-
cient communication processing, and are more tolerant to process skew. Keeping
the data transfer paths relatively short in multi-stage communication patterns
is appealing, as it offers a favorable payback for moving this work to the net-
work. Our recent work [12,13] has started to investigate the new support for
offloading collective operation management to the network using the CORE-
Direct technology introduced in ConnectX-2. We have shown good blocking and
nonblocking barrier performance, and about 80% CPU availability while exe-
cuting a non-blocking barrier. Amongst all the previous HCA-based collective
implementations, only the efforts from Quadrics [4] for Elan 3/4 and IBM [11]
for Blue Gene have been widely used.

Others studies have shown that the CPU may be used in support of asyn-
chronous collective operation progress. Sancho et. al [22] have dedicated several
CPU’s to processing collective communications to improve their performance and
scalability. Hoefler et. al [15,14] have implemented nonblocking collectives, and
investigated ways to minimize CPU overhead for progressing these collectives.
Our approach for supporting both blocking and non-blocking collective oper-
ations is aimed at avoiding CPU involvement altogether in progressing these
operations.

Much of the work on collective communication hierarchies occurs in the con-
text of grid computing, aimed primarily at handling clusters connected by a
relatively low-performance network, with limited connectivity, which is typified
by the work described in [17,23]. In the context of HPC, most of the work on
hierarchical collectives has been exploiting the low-latency shared memory com-
munication available between processes on a given host [24]. For example, LA-
MPI [10], Open MPI [9], MVAPICH [3], and MPICH2 [27] have such support.
The key idea behind these implementations is the use of a two-level commu-
nication hierarchy, to maximize the utilization of the higher performing shared
memory communication at one level, and minimize network communications at
another level, by restricting it to one rank within the shared memory domain,
also known as the local leader.

Since our goal it to develop high-performance asynchronous collective oper-
ations, we will explore the characteristics of hierarchical collectives whose pro-
gression is fully offloaded to the HCA. As such, we will take advantage of the

Network Offloaded Hierarchical Collectives 105

the on-host hierarchy, but will use the CORE-Direct capabilities, rather than
shared memory communication.

3 Overview of Technical Approach

A detailed description of ConnectX-2’s CORE-Direct design and how this is
used to implement collective operations is provided elsewhere [12,13], so we will
provide only a brief description of these here, and then describe the new design
features studied in this paper. We describe a hierarchical approach for offload-
ing the collective operations, both blocking and nonblocking, that provides full
network hardware support for collective communication management. This also
provides a large performance boost relative to previous CORE-Direct algorithms.

The CORE-Direct functionality is an extension of the InfiniBand Architec-
ture (IBA) [1] specification. IBA is designed for interconnecting compute nodes,
Input/Output (I/O) nodes and storage devices in a system area network. It
defines a communication architecture from the switch-based network fabric to
transport layer communication interface for inter-processor communication. Pro-
cessing nodes and I/O nodes are connected as end-nodes to the fabric by two
kinds of channel adapters: HCA and Target Channel Adapters.

Send Work Queue Entries (WQEs) are interpreted and processed by the HCA,
which sends data on behalf of this WQE using either send/receive or Remote
Direct Memory Access (RDMA) capabilities. Received data is delivered in the
order in which it is sent. Send/receive packets are delivered to the appropri-
ate Queue Pair (QP), and are matched up with the appropriate receive WQE.
RDMA data is delivered directly to the address specified in the send operation
producing a receive completion queue entry if immediate data mode is used.
Completion of a WQE results in a Completion Queue Entry being posted to a
Completion Queue (CQ), where the CQ can be polled for completions.

The IBA defines several communication tasks, these include send, receive,
read, write, and atomic tasks. CORE-Direct adds hardware support for cross QP
synchronization operations - wait, send enable, and receive enable tasks. Wait
takes as an argument a completion queue and the number of completion tasks to
wait for, and can be used to order communications taking place using different
QP’s. Information about completed tasks consumed by a wait task may not be
obtained from a completion queue, and must be inferred from QP completion
ordering, with receive buffers being consumed in the order in which they are
posted. If a single completion queue was used for more than a single receive
queue, there is no way to correctly identify the source of the arriving data, as
there is no ordering of completion events from different sources. Send enable and
receive enable tasks activate an already posted send or receive task, respectively,
allowing the HCA to process these tasks. This provides the ability to delay
activation of the send or receive tasks until after the tasks preceding the enable
tasks in their queues have been executed. The Multiple Work Request (MWR) is
a list of InfiniBand communication tasks which the driver posts, in order, to the
queues specified by the individual work requests. These tasks include the send,

106 I. Rabinovitz et al.

receive, RDMA write and synchronization tasks. An MWR completion entry is
posted after the task that is marked with the flag MQE WR FLAG SIGNAL
is processed by the HCA. The MWR may be used to chain a series of network
tasks, and, once posted, the HCAs progress the communication, without using
the CPU.

The Management Queue (MQ) is set up to handle MWRs. When an MQ is
created, a completion queue is also created, thus imposing a one-to-one mapping
of MQ onto MQ Completion queue. When an MWR is posted to the MQ, the
driver posts the individual work requests in-order to the specified QP’s with no
interleaving of individual tasks from different MWR’s. Wait tasks are posted
either to the QP specified in the task, or if a NULL queue is specified, the wait
task is posted to the MQ. The send/receive tasks are posted to the specified
QPs. The driver will also generate additional tasks, based on the structure of
the user’s MWR. When a send/receive task in the MWR follows a wait task that
is posted to the MQ the send/receive task is posted to the specified QP, but is
not enabled for send/receive, and it cannot be processed by the HCA until it is
enabled. In addition, a send/receive-enable task is posted to the MQ after the
wait task, which will cause the corresponding send/receive task to be enabled
after the wait task completes.

Collective operations can employ the hardware defined tasks and the multiple
work request functionality. To achieve this, each process in the communicator
creates an MWR that describes its local portion of the collective communica-
tion pattern, with the necessary synchronization operations (e.g., wait or enable
tasks). The MWR is posted to the management queue to initiate the collective
operations, with the completion-queue being polled for completion. For exam-
ple, the MWR task list for a four process recursive doubling barrier operations
is provided in Table 1.

The initial implementation of the collective operations showed the benefit of
reducing the number of queue pairs used to implement these collective opera-
tions. However, they did not consider cluster topology in the algorithms, that is
it did not take into account optimizations for ranks sharing the services of the
same HCA. We have developed network topology aware collective operations
taking into account processes that share the use of a given HCA. Processes shar-
ing an HCA are grouped in one hierarchy, with a local-leader from each group
participating in the second-level inter-host hierarchy. The local traffic uses a
small number of QP’s, reducing pressure on HCA resources, and also avoids

Table 1. MWR task list for each rank participating in a four process recursive doubling
barrier

proc 0 proc 1 proc 2 proc 3

send to 1 send to 0 send to 3 send to 2

recv wait from 1 recv wait from 0 recv wait from 3 recv wait from 2

send to 2 send to 3 send to 0 send to 1

recv wait from 2 recv wait from 3 recv wait from 0 recv wait from 1

Network Offloaded Hierarchical Collectives 107

generating traffic to the switch, while using the CORE-Direct capabilities. Also,
the number of inter-host messages is reduced, putting less pressure on the net-
work. In many implementations of hierarchical collective operations, on-host
communication use shared memory, using CPU cycles to progress the shared
memory phase of the algorithm. However, in this approach, all communications
take place using the ConnectX-2 CORE-Direct capabilities, thus still making it
possible to offload all phases of a given collective operation, freeing the CPU for
computation. For example, a barrier collective operation may be implemented as:
1) on-host communication, with fan-in to the local-leader, 2) off-host recursive
doubling algorithm amongst the local-leaders, and 3) on-host, fan-out from the
local leader. In the current implementation, we use linear all-to-one fan-in, and
one-to-all fan-out communication patterns. For a non-power-of-two local-leader
recursive doubling algorithm we pair the “excess” ranks with a single rank in the
set of ranks that is the largest power-of-two smaller than the size of the off-host
group. This is described in detail in [12,13].

4 Experimental Setup

The performance was measured on an eight node, dual socket, quad-core, 3.00
Gigahertz Intel Xeon Quad-core X5472 with 32 gigabytes of memory. Red Hat
Enterprise Linux Server 5.1 is used, kernel version 2.6.18-53.el5, a dual port
quad data rate ConnectX-2 HCA, and a 36-port QDR switch running Mellanox
firmware version 2.7.650. This is pre-release firmware, and provides the first
working implementation of the new MQ capability. Platform availability con-
strained the scale of the experiments.

The prototype offloaded IB collectives are implemented within version 1.5 of
the Open MPI code base, as a new collective module. To measure raw barrier
time, we measure the completion time of a tight loop over barrier calls, and
report the average time for the MPI rank 0. Similarly, for the nonblocking col-
lectives we loop over nonblocking barrier initiation and barrier completion. To
measure the overlap characteristics of these collective operations, we modify the
ideas introduced in the COMB [18] benchmark, adapting them for collective
operations. We measure communication-computation overlap by initiating the
collective operation, executing a work loop, and then waiting for collective opera-
tion completion. The work loop starts at about 10 percent of the raw completion
time, and is incremented in steps of about 10 percent up to about approximately
100 percent of raw completion time. The work loop is created by looping over
the “nop” assembler instruction. The later is used to consume processor time,
thus simulating the CPU being utilized for computation.

5 Benchmark Results

We have measured the performance of a number of different barrier operations
in the range of eight to 64 processes on an eight node cluster system, with
each host having the same number of MPI ranks in each measurement. Figure 1

108 I. Rabinovitz et al.

 5

 10

 15

 20

 25

 30

 8 16 24 32 40 48 56 64

T
im

e
P

er
 B

ar
rie

r
O

pe
ra

tio
n

(u
se

c)

Number of Processes

MQ−Hierarchical
MQ
PtP

PtP − SM hierarchy

Fig. 1. MPI Barrier performance, in micro-seconds per call, as a function of number
of processes, and algorithm type. The algorithms include IB network offload with local
host optimization, generic IB network offload, IB point-to-point RDMA based, and IB
point-to-point with shared-memory local host optimization.

shows the results of measuring the performance of MPI Barrier() with the origi-
nal recursive-doubling offload algorithm [12](labeled MQ), in which each rank is
treated identically. The performance ranges from 5.65 to 26.59 microseconds per
iterations over the range of measurements. The performance of the hierarchical
offloaded barrier (labeled MQ-Hierarchical), the new algorithm being described
in this paper, is in the range of 5.68 to 14.72 microseconds. We also measured
the performance of the barrier algorithm using a point-to-point implementation

 5

 10

 15

 20

 25

 30

 8 16 24 32 40 48 56 64

T
im

e
P

er
 B

ar
rie

r
O

pe
ra

tio
n

(u
se

c)

Number of Processes

Barrier MQ−Hierarchical
Barrier MQ

NB−Barrier MQ−Hierarchical
NB−Barrier MQ

 15

 20

 25

 30

 35

 40

 45

 10 20 30 40 50 60 70 80

T
im

e
P

er
 B

ar
rie

r
O

pe
ra

tio
n

(u
se

c)

Percent of Time In Work Loop

MQ IB Hierarchy
MQ

Fig. 2. Barrier performance data. Left: Blocking and nonblocking barrier latency (in
micro-seconds) as a function of number of processes, and algorithm type. The algo-
rithms used include IB network offload with IB offload local host optimization. Right:
Nonblocking barrier completion time available for computation. Hierarchical IB and
”flat” algorithms used. Available work time is reported as the percent of iteration
time.

Network Offloaded Hierarchical Collectives 109

being progressed by the CPU (labeled PtP), with the performance ranging from
5.90 to 24.80 microseconds. Finally, we used a shared memory optimization for
point-to-point based technique (labeled PtP - SM hierarchy), and measured the
performance of the MPI Barrier() algorithm in the range of 6.02 to 23.26 mi-
croseconds.

Figure 2 compares the performance of the blocking MPI barrier, to that of a
nonblocking barrier implementation, for both the hierarchical and the uniform
approach. As this figure shows, the performance of the blocking and nonblocking
barriers are essentially the same.

Figure 2 shows the overlap capabilities of the nonblocking algorithms at a
count of 64 processes. As the figure shows, about 50% of the 14.72 microseconds
to run the hierarchical collective barrier algorithm can be used for computation
without impacting the performance of the nonblocking barrier. The uniform
barrier algorithm completes in 26.59 microseconds with about 70% of the time
available for computation.

6 Discussion and Summary

As the results in Figure 1 show, using the network hierarchy reduces the barrier
at 64 nodes by almost 12 microseconds, or about 45%, which is a large reduction
in latency. The main reason for this reduction is the reduced number of queues
per process, reducing the pressure on HCA resources. With the original uniform
algorithm, each process opens six QP’s, one MQ, one send completion queue,
six receive completion queues, and one MQ completion queue, for a total of 168
queues per host. However in the hierarchical queue approach, each local leader
opens three QP’s for inter-node communication, seven QP’s for intra-node com-
munications, one MQ, one send completion queue, 10 receive completion queues,
and one MQ completion queue. All other processes have only one QP, one MQ,
one send CQ, one receive CQ, and one MQ completion queue. This gives a total
of 67 queues per host, or a reduction of about 60% in the number of queues per
host. This is believed to be the primary reason for the improved performance of
the barrier algorithm, based on earlier work [12] studying the performance of the
MPI Barrier() collective operation as a function of QPs. We also experimented
with rank layout, with the ranks involved in the first three levels of the recursive
doubling algorithm sharing the same HCA, and by distributing the ranks across
nodes in a round-robin manner, where the amount of local communication varies
from rank to rank, but observed very little impact on performance. This is not
surprising given the relatively small difference in performance of the off-host and
on host communication using InfiniBand. We measured the two process on-host
recursive doubling barrier to be 1.40 microseconds, and 1.78 microseconds for
the off-host barrier, or about four tenths of a microsecond difference. This leads
us to believe that this performance has little impact on the overall measured
barrier function performance.

We further studied the barrier algorithm to understand how the time is dis-
tributed between the off-host communications and the on-host communication

110 I. Rabinovitz et al.

for the 64 rank barrier operation. The eight rank barrier operation completes
in 5.68 microseconds, and uses the same inter-host communication pattern used
by the 64 rank barrier, implying that the on-host portion of the algorithm, the
initial fan-in to the local leader and the final fan-out from the local leader, ac-
count for about nine microseconds. We believe the on-host portion of the barrier
algorithm, which is independent of the number of nodes being used, can be
improved, and be closer to one microsecond that one can obtain with a CPU
based algorithm using shared memory communications. However, since this hier-
archical approach fully offloads collective management to the HCA, it is able to
proceed while the CPU is being used for computation, where high-performance
shared memory implementations are polling based, and do not allow for effective
communication and computation overlap.

This particular algorithm scales very well, as we only need to add three queues
per node, one QP and one receive completion queue, to double the size of the
cluster, compared with three queues per process, or 24 queues per node for
this particular host configuration. Similarly, scaling this system out to sixteen
thousand processes requires only 101 queues. This algorithmic approach and
the CORE-Direct technology provide needed system level capabilities for good
application scalability.

As the results in Figure 2 show, the performance of the blocking and non-
blocking barrier algorithms are essentially identical. This is not surprising given
that they differ slightly in completion implementation, with the blocking bar-
rier polling for completion as part of the barrier function, but the nonblocking
barrier implementation polls for completion through the request object.

We studied the overlap capabilities of only the fully offloaded nonblocking
barrier algorithms, as we have already shown [13] that those implementations
which rely on the CPU for collective management are not well suited to overlap-
ping communication with computation. We see from Figure 2 the hierarchical
algorithm allows for about 50% overlap of computation with communication,
which is less than the roughly 75% that could be overlapped with the original
nonblocking barrier implementation. However, when converting this to time lost
to overhead, the implementation of the hierarchical algorithm uses a bit more
than seven microseconds of processing time, as does that of the original imple-
mentation. The nonblocking barrier is the collective operations equivalent of zero
byte point-to-point ping-pong measurements, as no user data is involved, and the
performance is determined by hardware and software latency effects. As such,
this is the collective operation that is expected to provide the smallest overlap
capabilities. While these overlap capabilities can be very helpful for applications,
we will continue to investigate what may be done to lower the CPU overhead
used in setting up the nonblocking collective operation, and then completing it.

To summarize, we have developed new hierarchical blocking and nonblock-
ing barrier algorithms that use the CORE-Direct capabilities introduced in
ConnectX-2, and have greatly improved the performance of the barrier algo-
rithms using these capabilities, while maintaining the ability to fully offload
the management of these collectives to the HCA. The new barrier algorithm

Network Offloaded Hierarchical Collectives 111

also outperforms the point-to-point algorithm using InfiniBand with the CPU
progressing the collective operation. While there is significant improvement in
performance using these techniques, more work is needed to further reduce the
overhead, thus continuing to improve the barrier implementations.

References

1. InfiniBand Trade Association, http://www.infinibandta.org/specs
2. Mellanox Technologies, http://www.mellanox.com/
3. Mvapich, http://mvapich.cse.ohio-state.edu/
4. Quadrics, http://www.quadrics.com/
5. Top 500 Super Computer Sites, http://www.top500.org/
6. Bhoedjang, R.A.F., Ruhl, T., Bal, H.E.: Efficient Multicast on Myrinet Using Link-

Level Flow Control. In: 27th ICPP (1998)
7. Buntinas, D., Panda, D.K.: NIC-Based Reduction in Myrinet Clusters: Is It Ben-

eficial. In: SAN-2002 Workshop (in conjunction with HPCA) (February 2003)
8. Buntinas, D., Panda, D.K., Sadayappan, P.: Fast NIC-Level Barrier over

Myrinet/GM. In: Proceedings of IPDPS (2001)
9. Garbriel, E., et al: Open MPI: Goals, Concept, and Design of a Next Generation

MPI Implementation. In: Proceedings, 11th European PVM/MPI Users’ Group
Meeting (2004)

10. Graham, R.L., et al.: A Network-Failure-tolerant Message-Passing System for
Terascale Clusters. In: Proceedings of ICS (June 2002)

11. Kumar, S., et al: The deep computing messaging framework: generalized scalable
message passing on the blue gene/P supercomputer. In: ICS 2008: Proceedings of
the 22nd annual international conference on Supercomputing, pp. 94–103. ACM,
New York (2008)

12. Graham, R.L., Poole, S., Shamis, P., Bloch, G., Bloch, N., Chapman, H., Kagan,
M., Shahar, A., Rabinovitz, I., Shainer, G.: ConnectX-2 InfiniBand Management
Queues: First investigation of the new support for network offloaded collective
operations. Accepted for the 10th IEEE/ACM International Symposium CCGrid
(2010)

13. Graham, R.L., Poole, S., Shamis, P., Bloch, G., Bloch, N., Chapman, H., Ka-
gan, M., Shahar, A., Rabinovitz, I., Shainer, G.: Overlapping Computation and
Communication: Barrier Algorithms and ConnectX-2 Core-DIRECT Capabilities.
Accepted to CAC (2010)

14. Hoefler, T., Lumsdaine, A.: Optimizing non-blocking Collective Operations for
InfiniBand. In: Proceedings of the 22nd IPDPS (April 2008)

15. Hoefler, T., Lumsdaine, A., Rehm, W.: Implementation and Performance Analysis
of Non-Blocking Collective Operations for MPI. In: SC 2007: Proceedings of the
SC 2007, pp. 1–10. ACM, New York (2007)

16. Dongarra, J., et al.: The International Exascale Software Project: a Call To Coop-
erative Action By the Global High-Performance Community. Int. J. High Perform.
Comput. Appl. 23(4), 309–322 (2009)

17. Kielmann, T., Hofman, R.F.H., Bal, H.E., Plaat, A., Bhoedjang, R.A.F.: Mag-
PIe: MPI’s collective communication operations for clustered wide area systems.
SIGPLAN Not. 34, 131–140 (1999)

18. Lawry, W., Wilson, C., Maccabe, A.B., Brightwell, R.: Comb: a portable bench-
mark suite for assessing mpi overlap. In: 2002 IEEE International Conference on
Cluster Computing, pp. 472–475 (2002)

http://www.infinibandta.org/specs
http://www.mellanox.com/
http://mvapich.cse.ohio-state.edu/
http://www.quadrics.com/
http://www.top500.org/

112 I. Rabinovitz et al.

19. Message Passing Interface Forum. MPI: A Message-Passing Standard (June 2008)
20. Moody, A., Fernandez, J., Petrini, F., Panda, D.: Scalable NIC-based Reduction

on Large-Scale Clusters. In: SC 2003 (November 2003)
21. Mraz, R.: Reducing the Variance of Point to Point Transfers in the IBM 9076

Parallel Computer. In: Proceedings of the 1994 ACM/IEEE conference on Super-
computing, pp. 620–629 (November 1994)

22. Sancho, J.C., Kerbyson, D.J., Barker, K.J.: Efficient Offloading of Collective Com-
munications in Large-Scale Systems. In: IEEE International Conference on Cluster
Computing, pp. 169–178 (2007)

23. Steffenel, L.A., Mounié, G.: A Framework for Adaptive Collective Communications
for Heterogeneous Hierarchical Computing Systems. J. Comput. Syst. Sci. 74(6),
1082–1093 (2008)

24. Tipparaju, V., Nieplocha, J., Panda, D.: Fast Collective Operations Using Shared
and Remote Memory Access Protocols on Clusters. In: Proceedings of the IPDPS
(2003)

25. Yu, W., Buntinas, D., Graham, R.L., Panda, D.K.: Efficient and Scalable Barrier
over Quadrics and Myrinet with a New NIC-Based Collective Message Passing
Protocol. In: CAC Workshop, in Conjunction IPDPS 2004 (April 2004)

26. Yu, W., Buntinas, D., Panda, D.K.: High Performance and Reliable NIC-Based
Multicast over Myrinet/GM-2. In: Proceedings of the IPDPS 2003 (October 2003)

27. Zhu, H., Goodell, D., Gropp, W., Thakur, R.: Hierarchical Collectives in MPICH2.
In: Proceedings of the 16th European PVM/MPI Users’ Group Meeting on Recent
Advances in Parallel Virtual Machine and Message Passing Interface, pp. 325–326.
Springer, Heidelberg (2009)

An In-Place Algorithm for Irregular All-to-All

Communication with Limited Memory

Michael Hofmann� and Gudula Rünger

Department of Computer Science
Chemnitz University of Technology, Germany

{mhofma,ruenger}@cs.tu-chemnitz.de

Abstract. In this article, we propose an in-place algorithm for irregular
all-to-all communication corresponding to the MPI Alltoallv operation.
This in-place algorithm uses a single message buffer and replaces the
outgoing messages with the incoming messages. In comparison to exist-
ing support for in-place communication in MPI, the proposed algorithm
for MPI Alltoallv has no restriction on the message sizes and displace-
ments. The algorithm requires memory whose size does not depend on
the message sizes. Additional memory of arbitrary size can be used to
improve its performance. Performance results for a Blue Gene/P system
are shown to demonstrate the performance of the approach.

Keywords: All-to-all, Irregular communication, In-place, Limited mem-
ory, MPI.

1 Introduction

The amount of the memory required to solve a given problem can be one of the
most important properties for algorithms and applications in parallel scientific
computing. Since main memory is a limited resource, even for distributed mem-
ory parallel computers, the memory footprint of an application decides whether
a certain problem size can be processed or not. Examples are parallel applica-
tions that use domain-decomposition techniques, e.g. mesh-based algorithms or
particle codes. Adaptive or time-dependent solutions often require periodical re-
distributions of the workload and its associated data. This may require irregular
communication based on MPI Alltoallv where individual messages of arbitrary
size are exchanged between processes. Even though the redistribution step may
require only a small part of the runtime, it can significantly reduce the maxi-
mum problem size if a second fully-sized buffer has to be kept available only for
receiving data during this step.

MPI communication operations commonly use separate send and receive
buffers. MPI version 2.0 has introduced “in place” buffers for many intracom-
municator collective operations using the MPI IN PLACE keyword. The result-
ing in-place communication operations use only a single message buffer and
� Supported by Deutsche Forschungsgemeinschaft (DFG).

R. Keller et al. (Eds.): EuroMPI 2010, LNCS 6305, pp. 113–121, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

114 M. Hofmann and G. Rünger

replace the outgoing messages with the incoming messages. Support for an in-
place MPI Alltoallv operation was introduced in the MPI version 2.2 [1], but
only with the restriction that counts and displacements of the messages to be
sent and received are equal. In this article, we present an algorithm for an in-
place MPI Alltoallv operation with arbitrary counts and displacements. This
in-place algorithm requires memory whose size does not depend on the message
sizes. If additional memory is available, it can be used to speed up the in-place
algorithm. The algorithm is described in the context of all-to-all communication,
but can directly be adapted to many-to-many or sparse communication. We have
implemented the algorithm and present performance results for a Blue Gene/P
system using up to 4096 processes to demonstrate the efficiency of our approach.

The rest of this paper is organized as follows. Section 2 presents related work.
Section 3 introduces the in-place algorithm for the MPI Alltoallv operation.
Section 4 shows performance results and Section 5 concludes the paper.

2 Related Work

Optimizations of MPI communication operations usually address latency and
bandwidth results. Interconnection topologies and other architecture-specific
properties are the subject of performance improvements, especially for high scal-
ing parallel platforms [2]. Specific MPI implementations as well as the MPI spec-
ification itself are analyzed with respect to future scalability requirements [3].
Here, the memory footprint of an MPI implementation becomes an important
optimization target.

Efficient data redistribution is a common problem in parallel computing. Espe-
cially data parallel programming models like High Performance Fortran provide
support for flexible distributions of regular data structures to different proces-
sors. In this context, numerous algorithms for efficient redistributions of block-
cyclic data distributions have been proposed (e.g. [4,5,6]). Algorithms for irreg-
ular data redistribution with limited memory have received less attention. Pinar
et al. have proposed algorithms for data migration in the case of limited memory
based on sequences of communication phases [7]. Siegel et al. have implemented
various algorithms for data redistribution with limited memory in the MADRE
library [8]. In [9], they have provided a modification to prevent livelocks in the
basic algorithm of Pinar et al. In [10], we have proposed a fine-grained data
distribution operation in MPI and provided several implementation variants in-
cluding an in-place implementation based on parallel sorting.

3 An In-Place Algorithm for MPI Alltoallv

The MPI Alltoallv operation is one of the most general collective communi-
cation operations in MPI. With p participating processes, each process sends p
individual messages to the other processes and receives p messages from them.
For each process, the sizes of the messages to be sent and received are given by
arrays scounts[1. . .p] and rcounts[1. . .p]. Additional arrays sdispls[1. . .p] and

An In-Place Algorithm for Irregular All-to-All Communication 115

rdispls[1. . .p] specify displacements that determine the locations of the messages.
The standard MPI Alltoallv operation uses separate send and receive buffers.
Therefore, the locations of all messages are non-overlapping and all messages
can be sent and received independently from each other.

The in-place MPI Alltoallv operation uses a single buffer for storing the
messages to be sent and received. This leads to additional dependencies for
sending and receiving the messages. A message cannot be received until there is
enough free space available at the destination process. Furthermore, a message
cannot be stored at their target location if this location is occupied by a message
that has to be sent (in advance). A trivial solution for this problem uses an
intermediate buffer to receive the messages. This requires additional memory
whose size depends on the size of the messages. The proposed in-place algorithm
solves this problem using additional memory of a size independent from the
message sizes.

3.1 Basic Algorithm

The algorithm is described from the perspective of a single process. We assume
that all messages consist of data items of the same type and that the buffers
used to store the messages are arrays of this type. Let Si denote the set of indices
belonging to the data items of the message to be sent to process i for i = 1, . . ., p.
Let Ri denote the set of indices of the locations where the incoming data items
from process i should be stored. The initial index sets can be calculated from the
given counts and displacements. We assume that the initial send index sets Si are
disjoint. The same applies to the initial receive index sets Ri. The messages are
sent and received in several partial submessages and the index sets are updated
as the algorithm proceeds. Even though the buffer can be seen as a large array,
only the locations given by the initial index sets are accessible.

The in-place algorithm is based on the basic algorithm of Pinar et al. [7,9]
and consists of a sequence of communication phases. In each phase the following
steps are performed. (1) The number of data items that can be received in free
space from every other process is determined. (2) These numbers are sent to the
corresponding source processes. This represents an exchange of request messages
between all processes that still have data items left to be exchanged with each
other. (3) The data items are transferred. The algorithm terminates when all
data items are exchanged. Algorithm 1 shows the basic algorithm adapted to our
notation. Additionally, our algorithm includes procedures for the initialization of
the index sets (line 2), for determining the items that can be received in free space
(line 4), and for updating the index sets at the end of each communication phase
(line 11). A description of these procedures is given in the following subsections.
Exchanging the request messages (lines 5–7) and the data items (lines 8–10) can
be implemented with non-blocking communication.

Siegel et al. have shown that the basic algorithm will neither deadlock nor
livelock, provided there is additional free space on every process used to receive
data items [9]. This is independent from the actual size of the additional free
space and from the particular strategy that determines how free space is used

116 M. Hofmann and G. Rünger

Algorithm 1. Basic algorithm of the in-place MPI Alltoallv operation.
1: let recv[1. . .p] and send[1. . .p] be arrays of integers
2: init the index sets Si and Ri for i = 1, . . ., p (see Sect. 3.2)
3: while (

∑
i |Si| +

∑
i |Ri| > 0) do

4: recv[1. . .p] = determine the number of data items to be received (see Sect. 3.3)
5: exchange requests
6: → send recv[i] to process i for all i with |Ri| > 0
7: → receive send[i] from process i for all i with |Si| > 0
8: exchange data items
9: → send send[i] items at indices Si to process i for all i with send[i] > 0

10: → receive recv[i] items at indices Ri from process i for all i with recv[i] > 0
11: update the index sets (see Sect. 3.4)
12: end

to receive data items (line 4). The proof for deadlock-freedom applies to the
basic algorithm and is independent from our modifications. The original proof
for livelock-freedom assumes that all locations that become free (during the
algorithm) can be used as free space. However, for the MPI Alltoallv operation,
only locations given by the initial index sets Ri can be used as free space. All
locations that become free and do not belong to the initial index sets Ri cannot
be used as free space. The original proof can be modified to distinguish between
the usable and not-usable free locations, leading to the same result.

The additional available memory is used to create auxiliary buffers that are
independent from the input buffer. These auxiliary buffers provide the additional
free space that is required for the successful termination of the basic algorithm.
The usage of the auxiliary buffers is independent from the rest of the algorithm
and described in Sect. 3.5.

3.2 Initializing the Index Sets

The initial send index sets Si are defined according to the given send counts and
displacements: Si = {sdispls[i], . . ., sdispls[i] + scounts[i] − 1}. We assume that
the indices of Si are lower than the indices of Si+1 for i = 1, . . ., p−1. Otherwise,
a local reordering of the index sets is necessary. The receive index sets Ri are
initialized analogously. Each send index set Si is split into a finite number of
disjoint subsets S1

i , . . . , Sni

i with Si = S1
i ∪ . . . ∪ Sni

i . The splitting is performed
at the positions given by the lowest and highest indices of the receive index
sets. Each subset created contains contiguous indices and is either disjoint from
all receive index sets or completely overlapped by one of the receive index sets.
There are at most 2p possible splitting positions, since each receive index set
provides two splitting positions. Thus the p initial send index sets can be split
in at most p+2p subsets. We define two functions to specify how the send index
subsets and the receive index sets overlap each other. A send subset is assigned
a matching receive set and vice versa using the functions rmatch and smatch.
For a send subset Sk

i �= ∅, k ∈ {1, . . . , ni}, the matching receive set rmatch(Sk
i)

corresponds to the receive set Rj that overlaps with Sk
i . If there exists no such

An In-Place Algorithm for Irregular All-to-All Communication 117

Fig. 1. Examples for initialization (left) and update (right) of send and receive index

sets. Arrows indicate matching sets, e.g. S2
i → Rj corresponds to rmatch(S2

i) = Rj .

receive set then rmatch(Sk
i) = ∅. For a given receive set Rj , the matching send

subset smatch(Rj) corresponds to the send subset Sk
i �= ∅ such that i and k are

minimal and Sk
i is overlapped by Rj . If there exists no such send subset then

smatch(Rj) = ∅. Figure 1 (left) shows an example for this initialization.

3.3 Determine the Number of Data Items to Be Received

For each message, the data items are received from the lowest to the highest
indices. The number of data items that can be received from process j in free
space at locations given by Rj is determined from the matching send subset of
Rj and is stored in recv[j].

recv[j] =

{
|Rj | if smatch(Rj) = ∅

min{x|x ∈ smatch(Rj)} − min{x|x ∈ Rj} otherwise

If no matching send subset exists, then all remaining data items from process
j can be received. Otherwise, the number of data items that can be received is
limited by the matching send subset smatch(Rj). The lowest index of this subset
corresponds to the lowest location of Rj that is not free. In addition to the data
items that can be received in the input buffer, the free space that is available in
the auxiliary buffers is used to receive additional data items.

3.4 Updating the Index Sets

The data items of the messages are sent and received from the lowest to the high-
est indices. All index sets are updated when the data items of the current phase
are sent and received. Each receive set Rj is updated by removing the recv[j]
lowest indices, since they correspond to the data items that were previously re-
ceived. Similarly, the send[i] lowest indices are removed from the send subsets
S1

i , . . . , Sni

i . Sending data items to other processes creates free space at the local
process. However, only contiguous free space available at the lowest indices of a
receive set can be used to receive data items in the next communication phase.
For each receive set Rj , the free space corresponding to its indices is joined at
its lowest indices. This is achieved by moving all data items that correspond to
send subsets Sk

i with rmatch(Sk
i) = Rj towards the highest indices of Rj (the

index values of Sk
i are shifted accordingly). After that, data items from process

118 M. Hofmann and G. Rünger

j that are stored in the auxiliary buffers are moved to the freed space and Rj is
updated again. Finally, the functions rmatch and smatch are adapted and for
each send set Si the value of |Si| is computed according to its updated subsets
(only |Si| is required in Algorithm 1). Figure 1 (right) shows an example for this
update procedure. The costs for updating the index sets depend on the number
of data items that have to be moved. In the worst case, all data items of the
remaining send subsets have to be moved during the update procedure in every
communication phase.

3.5 Using Auxiliary Buffers

Additional memory of arbitrary size a is used to create auxiliary buffers on each
process. These buffers are used to receive additional data items while their tar-
get locations are still occupied. The efficient management of the auxiliary buffers
can have a significant influence on the performance. We use a static approach
to create a fixed number of b auxiliary buffers, each of size a

b . Data items from
process j can be stored in the (j mod b)-th auxiliary buffer using a first-come,
first-served policy. This static partitioning of the additional memory allows a
more flexible utilization in comparison to a single auxiliary buffer, but prevents
fragmentation and overhead costs (e.g., for searching for free space). More ad-
vanced auxiliary buffer strategies (e.g., with dynamic heap-like allocations) can
be subject of further optimizations.

4 Performance Results

We have performed experimental results for a Blue Gene/P system to investigate
the performance of the proposed in-place algorithm for MPI Alltoallv. The
implementation uses the standard MPI Alltoallv operation for exchanging the
request messages, because using non-blocking communication for this exchange
has caused performance problems for large numbers of processes (≥ 1024). In-
place communication usually involves large messages that occupy a significant
amount of main memory. Unless otherwise specified, each process uses 100MB
data that is randomly partitioned into blocks and sent to other processes. Results
for the platform-specific MPI Alltoallv operation are obtained using a separate
(100MB) receive buffer.

Figure 2 (left) shows communication times for different numbers of processes
p depending on the number of auxiliary buffers b. The total size of additional
memory used for the auxiliary buffers is 1 MB. Increasing the number of auxil-
iary buffers leads to a significant reduction in communication time, especially for
large numbers of processes. Choosing the number of auxiliary buffers depending
on the total number of processes shows good results for various values of p. For
the following results we continue to use b = p

8 . Figure 2 (right) shows communi-
cation times for different sizes of additional memory (in % with respect to the
total message size of 100MB) depending on the number processes. Increasing
the additional memory up to 10% leads to a significant performance improve-
ment. A further increase up to 100% shows only small differences. This can be

An In-Place Algorithm for Irregular All-to-All Communication 119

 1

 10

 100

1 2 4 8 16 p/16 p/8 p/4 p/2 p

C
om

m
un

ic
at

io
n

tim
e

(in
 s

)

Number of auxiliary buffers

p = 16
p = 64

p = 256
p = 1024
p = 4096

 0.01

 0.1

 1

 10

 100

 1 4 16 64 256 1024 4096

Number of processes

0.1% additional memory
1% additional memory

10% additional memory
100% additional memory

platform-specific MPI_Alltoallv

Fig. 2. Communication times for in-place MPI Alltoallv depending on the number of
auxiliary buffers (left) and with different sizes of additional memory (right)

attributed to the static auxiliary buffer strategy. With 100% additional memory,
the sizes of the auxiliary buffers exceed the sizes of the messages to be received.
This leads to an insufficient utilization of the additional memory. However, even
with an optimal auxiliary buffer strategy there can be differences in performance
in comparison to a platform-specific MPI Alltoallv operation that includes op-
timizations for the specific system architecture [2]. For the following results we
continue to use 1% additional memory (1 MB).

Figure 3 (left) shows communication times for different total message sizes
depending on the number of processes. The communication time with small
messages strongly depends on the number of processes, while for large messages
it increases more slowly. Figure 3 (right) shows the time spend on different parts
of the in-place algorithm depending on the number of processes. The major part
of the communication time is spent for exchanging the data items. The costs for
exchanging the request messages are comparably small, but they increase with
the number of processes. The costs for updating the index sets are also rather
small. However, these costs strongly depend on the actual data redistribution

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 1 4 16 64 256 1024 4096

C
om

m
un

ic
at

io
n

tim
e

(in
 s

)

Number of processes

0.1 MB
1 MB

10 MB
100 MB
200 MB
400 MB

 0.001

 0.01

 0.1

 1

 10

 100

16 64 256 1024 4096

Number of processes

exchange request messages
exchange data items

update index sets
total

Fig. 3. Communication times for in-place MPI Alltoallv with different total message
sizes (left). Times spend in the different parts of in-place MPI Alltoallv (right).

120 M. Hofmann and G. Rünger

 0.1

 1

 10

 100

 1 4 16 64 256 1024 4096

C
om

m
un

ic
at

io
n

tim
e

(in
 s

)

Number of processes

full all-to-all
50% sparse all-to-all
10% sparse all-to-all
5% sparse all-to-all
1% sparse all-to-all

 0.01

 0.1

 1

 10

 100

 1 4 16 64 256 1024 4096

Number of processes

platform-specific MPI_Alltoallv
in-place MPI_Alltoallv

BPH in MADRE
LCE in MADRE

Fig. 4. Communication times for in-place MPI Alltoallv for sparse data redis-
tribution schemes (left). Comparison of communication times for platform-specific
MPI Alltoallv, in-place MPI Alltoallv and two MADRE algorithms (right).

problem. If the number of communication phases increases and a large number
of data items need to be moved for each update, the total time of the in-place
MPI Alltoallv operation can be dominated by the local data movements.

Figure 4 (left) shows communication times for different sparse data redistri-
bution schemes depending on the number of processes. For the sparse all-to-all
communication, each process sends messages only to a limited number of random
processes. The results show that the performance of the in-place algorithm is al-
most independent from the actual number of messages. Figure 4 (right) shows
communication times for the platform-specific MPI Alltoallv operation, the in-
place algorithm, and for the Basic Pinar-Hendrickson algorithm (BPH) and the
Local Copy Efficient algorithm (LCE) from the MADRE library [11] depending
on the number of processes. MADRE and its in-place algorithms are designed
to redistribute an arbitrary number of equal-sized (large) blocks according to a
given destination rank and index for each block. To compare these algorithms to
the MPI Alltoallv operation, we increase the data item size up to 16KB and
treat each data item as a separate block in MADRE. Additional free blocks are
used to provide the additional memory to the MADRE algorithms. There is a
general increase in communication time for the MADRE algorithms depending
on the number of processes. In comparison to that, the results for the platform-
specific MPI Alltoallv operation and the in-place algorithm are more stable.
The communication time of the in-place algorithm is within a factor of three of
the platform-specific MPI Alltoallv operation.

5 Summary

In this paper, we have proposed an in-place algorithm for MPI Alltoallv that
performs data redistribution with limited memory. The size of required memory
is independent from the message sizes and depends only linearly on the number of
processes a single process has messages to exchange with. Additional memory can
be used to improve the performance of the implementation. It is shown that the

An In-Place Algorithm for Irregular All-to-All Communication 121

size of the additional memory and its efficient usage has a significant influence on
the performance, especially for large numbers of processes. Performance results
with large messages demonstrate the good performance of our approach.

Acknowledgments. The measurements are performed at the John von Neu-
mann Institute for Computing, Jülich, Germany.
http://www.fz-juelich.de/nic

References

1. MPI Forum: MPI: A Message-Passing Interface Standard Version 2.2. (2009)
2. Almási, G., Heidelberger, P., Archer, C.J., Martorell, X., Erway, C.C., Moreira,

J.E., Steinmacher-Burow, B., Zheng, Y.: Optimization of MPI collective commu-
nication on BlueGene/L systems. In: Proc. of the 19th annual Int. Conf. on Super-
computing, pp. 253–262. ACM Press, New York (2005)

3. Balaji, P., Buntinas, D., Goodell, D., Gropp, W., Kumar, S., Lusk, E., Thakur, R.,
Träff, J.L.: MPI on a Million Processors. In: Ropo, M., Westerholm, J., Dongarra, J.
(eds.) Recent Advances in Parallel Virtual Machine and Message Passing Interface.
LNCS, vol. 5759, pp. 20–30. Springer, Heidelberg (2009)

4. Thakur, R., Choudhary, A., Ramanujam, J.: Efficient Algorithms for Array Redis-
tribution. IEEE Trans. Parallel Distrib. Syst. 7(6), 587–594 (1996)

5. Walker, D.W., Otto, S.W.: Redistribution of block-cyclic data distributions using
MPI. Concurrency - Practice and Experience 8(9), 707–728 (1996)

6. Lim, Y., Bhat, P., Prasanna, V.: Efficient Algorithms for Block-Cyclic Redistribu-
tion of Arrays. Algorithmica 24, 298–330 (1999)

7. Pinar, A., Hendrickson, B.: Interprocessor Communication with Limited Memory.
IEEE Trans. Parallel Distrib. Syst. 15(7), 606–616 (2004)

8. Siegel, S.F., Siegel, A.R.: MADRE: The Memory-Aware Data Redistribution En-
gine. Int. J. of High Performance Computing Applications 24, 93–104 (2010)

9. Siegel, S.F., Siegel, A.R.: A Memory-Efficient Data Redistribution Algorithm. In:
Ropo, M., Westerholm, J., Dongarra, J. (eds.) Recent Advances in Parallel Virtual
Machine and Message Passing Interface. LNCS, vol. 5759, pp. 219–229. Springer,
Heidelberg (2009)

10. Hofmann, M., Rünger, G.: Fine-Grained Data Distribution Operations for Particle
Codes. In: Ropo, M., Westerholm, J., Dongarra, J. (eds.) Recent Advances in
Parallel Virtual Machine and Message Passing Interface. LNCS, vol. 5759, pp. 54–
63. Springer, Heidelberg (2009)

11. Siegel, S.F., Siegel, A.R.: MADRE: The Memory-Aware Data Redistribution En-
gine, Version 0.4 (2010), http://vsl.cis.udel.edu/madre/

http://www.fz-juelich.de/nic
http://vsl.cis.udel.edu/madre/

Massively Parallel Finite Element Programming

Timo Heister1, Martin Kronbichler2, and Wolfgang Bangerth3

1 NAM, University of Göttingen, Germany
heister@math.uni-goettingen.de

2 Department of Information Technology, Uppsala University, Sweden
martin.kronbichler@it.uu.se

3 Department of Mathematics, Texas A&M University
bangerth@math.tamu.edu

Abstract. Today’s large finite element simulations require parallel al-
gorithms to scale on clusters with thousands or tens of thousands of
processor cores. We present data structures and algorithms to take ad-
vantage of the power of high performance computers in generic finite
element codes.

Existing generic finite element libraries often restrict the paralleliza-
tion to parallel linear algebra routines. This is a limiting factor when
solving on more than a few hundreds of cores. We describe routines
for distributed storage of all major components coupled with efficient,
scalable algorithms. We give an overview of our effort to enable the mod-
ern and generic finite element library deal.II to take advantage of the
power of large clusters. In particular, we describe the construction of a
distributed mesh and develop algorithms to fully parallelize the finite
element calculation. Numerical results demonstrate good scalability.

Keywords: Finite Element Software, Parallel Algorithms, Massively
Parallel Scalability.

1 Introduction

Modern computer clusters have up to tens of thousands of cores and are the
foundation to deal with large numerical problems in finite element calculations.
The hardware architecture requires software libraries to be specifically designed.

This has led to a significant disparity between the capabilities of current
hardware and the software infrastructure that underlies many finite element
codes for the numerical simulation of partial differential equations: there is a large
gap in parallel scalability between the specialized codes designed to run on those
large clusters and general libraries. The former are hand-tailored to the numerical
problem to be solved and often only feature basic numerical algorithms such as
low order time and spatial discretizations on uniform meshes. On the other
hand, most general purpose finite element libraries like deal.II [4,5] presently
do not scale to large clusters but provide more features, such as higher order
finite elements, mesh adaptivity, and flexible coupling of different elements and
equations, and more.

R. Keller et al. (Eds.): EuroMPI 2010, LNCS 6305, pp. 122–131, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Massively Parallel Finite Element Programming 123

By developing parallel data structures and algorithms we enable deal.II to
perform numerical simulations on massively parallel machines with a distributed
memory architecture. At the same time, by implementing these algorithms at a
generic level, we maintain the advanced features of deal.II.

While we describe our progress with deal.II in [3], the generic algorithms
developed here are applicable to nearly any finite element code. The modifica-
tions to deal.II discussed in this paper are a work in progress but will become
available soon as open source. In Section 3 we describe the data structures and
algorithms for the parallelization of finite element software. We conclude with
numerical results in Section 4. The parallel scalability is shown using a Poisson
problem and we present results for a more involved mantle convection problem.

2 Related Work

Finite element software has long been packaged in the form of libraries. A cur-
sory search of the internet will yield several dozen libraries that support the cre-
ation of finite element applications to various degrees. While most of these are
poorly documented, poorly maintained, or both, there are several widely used
and professionally developed libraries. Most of these, such as DiffPack [6,14],
libMesh [12], Getfem++ [17], OOFEM [16], or FEniCS [15] are smaller than the
deal.II library but have similar approaches and features.

To the best of our knowledge, none of these libraries currently support mas-
sive parallel computations. What parallel computation they support is similar
to what is available in publicly available releases of deal.II: meshes are either
statically partitioned or need to be replicated on every processor, only linear
solvers are fully distributed. While this allows for good scaling of solvers, the
replication of meshes on all processors is a bottleneck that limits overall scala-
bility of parallel adaptive codes to a few dozen processors. The reason for this
lack of functionality is the generally acknowledged difficulty of fully distributing
the dynamically changing, complex data structures used to describe adaptive fi-
nite element meshes. A particular complication is the fact that all of the widely
used libraries originate from software that predates massively parallel compu-
tations, and retrofitting the basic data structures in existing software to new
requirements is nontrivial in all areas of software design.

The only general framework for unstructured, fully parallel adaptive finite
element codes we are aware of that scales to massive numbers of processors
is ALPS, see [7]. Like the work described here, ALPS is based on the p4est
library [8]. On the other hand, ALPS lacks the extensive support infrastructure
of deal.II and is not publicly available.

3 Massively Parallel Finite Element Software Design

In order for finite element simulations to scale to a large number of processors,
the compute time must scale linearly with respect to the number of processors

124 T. Heister, M. Kronbichler, and W. Bangerth

and the problem size. Additionally, local memory consumption should only de-
pend on the local, not the global, problem size. The former requires minimizing
global communication. The latter requires distributed data structures, where
only necessary data is stored locally.

Thus, our focus is on the primary bottlenecks to parallel scalability: the mesh
handling, the distribution and global numbering of the degrees of freedom, and
the numerical linear algebra. See [3] for the technical details concerning the
implementation with deal.II.

3.1 Distributed Mesh Handling

The computational mesh is duplicated on each processor in most generic finite
element libraries, if they support distributed parallel computing at all. This is not
feasible for massively parallel computations because the generic description of a
mesh involves a significant amount of data for each cell which is then replicated
on each processor, resulting in huge memory overhead.

Each processor only needs to access a small subset of cells. Most parts of the
replicated global mesh are unnecessary locally. We will say that the processor
“owns” this required subset of cells. In addition, a processor also needs to store
cells touching the cells it owns, but that are in fact owned by neighboring ma-
chines. These neighboring cells are called ghost cells. Information about ghost
cells is needed for several reasons, most obviously because continuous finite ele-
ments share degrees of freedom on the lines and vertices connecting cells. Ghost
cells are also needed for adaptive refinement, error estimation, and more.

Since deal.II only supports hexahedral cells, we restrict the discussion to
that type of meshes. The active cells in h-adaptive finite element methods are
attained from recursively refining a given “coarse” mesh. Thus, one also stores
the hierarchy of refinement steps. We distinguish between three different kinds
of information for mesh storage:

1. The coarse mesh consists of a number of coarse cells describing the domain.
We assume that the coarse mesh only consists of a relatively small number of
cells compared to the number of active cells in the parallel computation, say
a few tens of thousands; it can be stored on each processor. The refinement
process starts with the coarse mesh.

2. Refinement information can be stored in a (sparse) octree (a quadtree in two
spatial dimensions) of refinement flags for each coarse cell. Each flag either
states that this cells has been refined into eight (four in two dimensions)
children or that it is an active cell if not.

3. Active cells are those on which the finite element calculation is done. Typical
finite element programs attach a significant amount of information to each
cell: vertex coordinates, connectivity information to faces, lines, corners, and
neighboring cells, material indicators, boundary indicators, etc. We include
the ghost cells here, but we set a flag to indicate that they to belong to a
different machine.

We can store the coarse mesh (1.) on each machine without a problem. For the
refinement information (2.) we interface to an external library called p4est, see

Massively Parallel Finite Element Programming 125

[8]. This library handles the abstract collection of octrees describing refinement
from the coarse mesh and handles coarsening, refinement, and distribution of
cells. Internally p4est indexes all terminal cells in a collection of octrees with
a space filling curve. This allows rapid operations and scalability to billions of
cells. For partitioning the space filling curve is cut into equally sized subsets,
which ensures a well balanced workload even during adaptive refinement and
coarsening. p4est allows queries about the local mesh and the ghost layer. With
this information deal.II recreates only the active cells and the ghost layer.
Because we chose to recreate a local triangulation on each machine, most of the
finite element library works without modification, e.g. implementation of finite
element spaces. However, we need a completely new method for creating a global
enumeration of degrees of freedom. This is discussed next.

3.2 Handling of Degrees of Freedom

The finite element calculation requires a global enumeration of the degrees of
freedom. The difficulty lies in the fact that every machine only knows about a
small part of the mesh. The calculation of this numbering involves communica-
tion between processors. Additionally, the numbering on the ghost layer and the
interface must be available on each machine. This is done in a second step.

Like all cells, each degree of freedom is owned by a single processor. All de-
grees of freedom inside a cell belong to the machine that owns the cell. The
ownership of degrees of freedom on the interface between cells belonging to dif-
ferent machines is arbitrary, but processors that share such an interface need
to deterministically agree who owns them. We assign such degrees of freedom
to the processor with the smaller index.1 The following algorithm describes the
calculation and communication to acquire a global enumeration on the machines
p = 0, . . . , P − 1:

1. Mark all degrees of freedom as invalid (e.g. −1).
2. Loop over the locally owned cells and mark all degrees of freedom as valid

(e.g. 0).
3. Loop over the ghost cells and reset the indices back to invalid if the cell is

owned by a processor q < p. Now only indices that are owned locally are
marked as valid.

4. Assign indices starting from 0 to all valid DoFs. This is done separately
from the previous steps, because otherwise all neighbors sharing a degree of
freedom would have to be checked for ownership. We denote the number of
distributed DoFs on machine p with np.

5. Communicate the numbers np to all machines and shift the local indices by
∑p−1

q=0 nq

Now all degrees of freedom are uniquely numbered with indices between 0 and
N =

∑P−1
q=0 nq. Next we must communicate the indices of degrees of freedom

1 This rule is evaluated without communication. Assigning all degrees of freedom on
one interface to the same processor also minimizes the coupling in the system matrix
between the processors, see [3].

126 T. Heister, M. Kronbichler, and W. Bangerth

on the interface to the ghost layer and on the ghost layer itself. Each machine
collects a packet of indices to send to its neighbors. Indices of a cell are sent to
a neighbor if a ghost cell owned by that neighbor touches the cell. Indices on
the interface may not be known at this point because they might belong to a
third machine. As these communications are done concurrently there is no way
to incorporate this information in this step. So we do this communication step
twice: in the first round every machine receives all indices on its own cells, and
after the second round every machine knows every index on the own cells and
the ghost cells. There is no global communication required in these two steps.

3.3 Efficient Indexing

A subset I of the indices {0, . . . , N} is managed on each processor p. Each
processor also needs to have the indices of degrees of freedom on the interface
owned by another machine and indices on the ghost layer. Algebraic constraints
induced by hanging nodes, solution vectors and other data structures need to
access or store information for those indices. We typically look at three different
subsets of indices:

1. The locally owned indices Il.o. as described earlier. Following the algorithm
outlined in the previous step, this is initially a contiguous range of np indices.
However, we may later renumber indices, for example to in a block-wise way
to reflect the structure of a partial differential equation in the linear system.

2. The locally active indices Il.a. defined as the locally owned indices as well as
the other indices on the interface. This is no longer a contiguous range.

3. The locally relevant indices Il.r., which also includes the indices on the ghost
cells.

We need an efficient data structure to define these subsets. If we store some
information for each index in Il.r., we would like to put that information into a
contiguous memory location of #Il.r. elements. To access the information of an
index i ∈ Il.r., we need to find its position in the list Il.r. (in other words, the
number of indices j ∈ Il.r. with j < i). This query is performed repeatedly, and
thus it should be optimized.

We create a data structure of K sorted, disjoint, contiguous, intervals [bk, ek)
for defining the subset I ⊂ {0, . . . , N} as Ĩ =

⋃K
k=0[bk, ek). Other libraries often

go for a simpler description of this subset as a list of numbers, but this means
more entries are stored because of the large contiguous subranges. Thus the
important queries are slower. We also store the number pk =

∑k−1
κ=0(eκ − bκ) =

pk−1 + (ek−1 − bk−1) of indices in previous intervals with each interval [bk, ek).
This allows us to do queries like the one above in O(log2 K) operations.

3.4 Numerical Linear Algebra

The linear system can be stored with the global numbering of the degrees of free-
dom. There are existing, extensively tested, and widely used parallel libraries like
PETSc, see [1,2] and Trilinos, see [11,10] to handle the linear system. They sup-
ply row-wise distributed matrices, vectors and algorithms, like iterative Krylov

Massively Parallel Finite Element Programming 127

solvers, and preconditioners. deal.II, like most other finite element libraries,
has interfaces to these libraries. We have tested both PETSc and Trilinos solvers
up to many thousand cores and obtain excellent scaling results (see below).

The linear system is assembled on the local cells. Matrix and vector values
for rows on different machines are sent to the owner using point-to-point com-
munication. The linear system is subsequently solved in parallel.

3.5 Summary of Finite Element Algorithms

The building blocks of a distributed finite element calculation are described
above. In an actual implementation, additional technical details must be ad-
dressed. To perform adaptive mesh refinement, an error estimate is needed to
decide which cells to refine, solutions must be transferred between meshes, and
hanging nodes must be handled. Hanging nodes come from degrees of freedom
on interfaces between two cells on different refinement levels. For finite element
systems with several components, like velocity, pressure, and temperature with
different elements as used in Section 4, the global indices must be sorted by
vector components. See [3] for details.

3.6 Communication Patterns

Because of the complex nature and algorithmic diversity of the operations out-
lined above it is difficult to analyze the MPI communication patterns appearing
in the code.

The distribution of the mesh given by p4est has an interesting property: the
number of neighbors for each processor (number of owners of the ghost cells)
is bounded by a small number independent of the total problem size and the
number of processors2. Most communication necessary in our code is therefore
in the form of point-to-point messages between processors and a relatively small
number of their neighbors, which results in optimal scaling.

Further efficiency is gained by hiding the latency of communication where pos-
sible: MPI communication uses non-blocking transfers and computations proceed
while waiting for completion instead of leaving processors idle.

The amount of MPI communication within deal.II (outside that handled
by p4est) consists of the parts described in section 3 and was created with the
massive parallel implementation in mind. Exchanging degrees of freedom on the
ghost cells is consequently done with neighbors only and is effectively hidden
using non-blocking transfers. Other algorithms using communication, like error
estimation and solution transfer, behave similarly. All other communication is
done inside the linear algebra package.

As in all good finite element codes, the majority of compute time in our
applications is spent in the linear solvers. For massively parallel applications,
either PETSc or Trilinos provides this functionality. Limiting factors are then
the speed of scalar product evaluations and matrix-vector products. The former
2 The number of neighbors in all experiments is always smaller than fifty, but much

lower for typical meshes. This seems to be a property of the space filling curve.

128 T. Heister, M. Kronbichler, and W. Bangerth

is a global reduction operation, it only consists of scalar data. On the other
hand, matrix-vector products require this sort of communication but do not
require the global reduction step. Furthermore, matrix-vector products are often
not the most difficult bottleneck because communication can be hidden behind
expensive local parts of the product. In summary, good scalability in the linear
algebra is achieved if a low latency network like InfiniBand is available, as it is
on most current high performance clusters.

4 Numerical Results

4.1 Scalability Test

We start by testing a Poisson equation in 2 and 3 dimensions with adaptive and
global refinement, respectively. In Figure 1 we show the weak scalability from 8
to 1000 processors with about 500,000 degrees of freedom per processor on the
three dimensional unit cube. We measure computation times for different parts
of the program and average memory consumption on each machine. All parts but
the solver (BiCGStab preconditioned with an algebraic multigrid) scale linearly.
Figure 2 shows individual iterations in a fully adaptive refinement loop for a
two dimensional Poisson equation on 1024 processors (left). The problem size
increases over several refinement cycles from 1.5 million to 1.5 billion degrees of
freedom. The right panel shows strong scalability starting from 256 and going to
4096 processors for the same cycle with a fixed problem size within the adaptive
iteration loop. We have excellent scalability with respect to problem size and the
number of processors. The memory consumption is nearly constant even when
the problem size increases by over a factor of one hundred.

4.2 Results for a Mantle Convection Problem

Our second test case is a more complicated problem modeling thermal convection
in the Earth’s mantle. Details and motivation for the discretization and solver
choices are given in [13] and [9].

In the Earth’s mantle, fluid flow is strongly dominated by viscous stresses and
is driven (among other factors) by temperature differences in the material, while

Fig. 1. 3D Poisson Problem, regular refinement, 500,000 degrees of freedom per pro-
cessor. Left: Weak scaling up to 1016 processors. Right: Average peak memory for the
same data.

Massively Parallel Finite Element Programming 129

Fig. 2. 2D Poisson Problem, fully adaptive. Left: Weak scaling on 1024 processors.
Right: Strong scaling, problem size of around 400 million DoFs.

Fig. 3. 2D mantle convection. Left: snapshot of the temperature for a fixed time step
and a zoom. Right: Solution times on 512 processors with overview (top) and detailed
functions (bottom).

inertia is negligible at realistic velocities of a few centimeters per year. Thus the
buoyancy-driven flow can be described by the Boussinesq approximation:

− ∇ · (2ηε(u)) + ∇p = −ρ β T g,

∇ · u = 0, (1)
∂T

∂t
+ u · ∇T − ∇ · κ∇T = γ.

Here, u, p, T denote the three unknowns in the Earth’s mantle: velocity, pres-
sure, and temperature. The first two equations form a Stokes system for velocity
and pressure with a forcing term stemming from the buoyancy through the

130 T. Heister, M. Kronbichler, and W. Bangerth

temperature T . The third is an advection-diffusion equation. Let η be the vis-
cosity of the fluid and κ the diffusivity coefficient for the temperature (both
assumed to be constant here for simplicity), ε(u) = 1

2 (∇u+(∇u)T) denotes the
symmetrized gradient, ρ is the density, β is the thermal expansion coefficient,
g is the gravity vector, and γ describes the external heat sources. Fig. 3, left,
shows a snapshot from the evolution of the turbulent mixing within the Earth’s
mantle.

In figure 3, right, we present timing of seven adaptive refinement steps for a
single fixed time step. We observe good scalability; the solver itself scales better
than linearly due to the relatively fine mesh for the two dimensional solution
and because the solution on the coarser meshes is reused as a starting guess.

5 Conclusions

We present a general framework for massively parallel finite element simulation.
The results are convincing, showing that even complex problems with more than
a billion unknowns can be solved on a large cluster of machines. The develop-
ments in deal.II outlined here make the maximum solvable problem size two
orders of magnitude larger than previously possible.

There are several reasons for the good scalability results. Most importantly
the workload is distributed evenly, because every processor has roughly the same
number of locally active cells. In addition the algorithms described in section 3
introduce no significant overhead in parallel. This includes the total memory
usage. As described in section 3.6 most of the communication is restricted to the
neighbors.

Acknowledgments. Timo Heister is partly supported by the German Research
Foundation (DFG) through GK 1023. Martin Kronbichler is supported by the
Graduate School in Mathematics and Computation (FMB). Wolfgang Bangerth
was partially supported by Award No. KUS-C1-016-04 made by King Abdul-
lah University of Science and Technology (KAUST), by a grant from the NSF-
funded Computational Infrastructure in Geodynamics initiative through Award
No. EAR-0426271, and by an Alfred P. Sloan Research Fellowship.

The computations were done on the Hurr3 cluster of the Institute for Applied
Mathematics and Computational Science (IAMCS) at Texas A&M University.
Hurr is supported by Award No. KUS-C1-016-04 made by King Abdullah Uni-
versity of Science and Technology (KAUST).

References

1. Balay, S., Buschelman, K., Eijkhout, V., Gropp, W.D., Kaushik, D., Knepley, M.G.,
Curfman McInnes, L., Smith, B.F., Zhang, H.: PETSc users manual. Technical
Report ANL-95/11 - Revision 3.0.0, Argonne National Laboratory (2008)

3 128 nodes with 2 quad-core AMD Shanghai CPUs at 2.5 GHz, 32GB RAM, DDR
Infiniband, running Linux, OpenMPI, gcc 4.

Massively Parallel Finite Element Programming 131

2. Balay, S., Buschelman, K., Gropp, W.D., Kaushik, D., Knepley, M.G.,
Curfman McInnes, L., Smith, B.F., Zhang, H.: PETSc Web page (2009),
http://www.mcs.anl.gov/petsc

3. Bangerth, W., Burstedde, C., Heister, T., Kronbichler, M.: Algorithms and Data
Structures for Massively Parallel Generic Finite Element Codes (in preparation)

4. Bangerth, W., Hartmann, R., Kanschat, G.: deal.II Differential Equations Analysis
Library, Technical Reference, http://www.dealii.org

5. Bangerth, W., Hartmann, R., Kanschat, G.: deal.II — a General Purpose Ob-
ject Oriented Finite Element Library. ACM Transactions on Mathematical Soft-
ware 33(4), 27 (2007)

6. Bruaset, A.M., Langtangen, H.P.: A comprehensive set of tools for solving partial
differential equations; DiffPack. In: Dæhlen, M., Tveito, A. (eds.) Numerical Meth-
ods and Software Tools in Industrial Mathematics, pp. 61–90. Birkhäuser, Boston
(1997)

7. Burstedde, C., Burtscher, M., Ghattas, O., Stadler, G., Tu, T., Wilcox, L.C.: Alps:
A framework for parallel adaptive pde solution. Journal of Physics: Conference
Series 180(1), 012009(2009)

8. Burstedde, C., Wilcox, L.C., Ghattas, O.: p4est: Scalable algorithms for parallel
adaptive mesh refinement on forests of octrees. Submitted to SIAM Journal on
Scientific Computing (2010)

9. Heister, T., Kronbichler, M., Bangerth, W.: Generic finite element programming
for massively parallel flow simulations. In: Eccomas 2010 Proceedings (submitted,
2010)

10. Heroux, M.A., Bartlett, R.A., Howle, V.E., Hoekstra, R.J., Hu, J.J., Kolda, T.G.,
Lehoucq, R.B., Long, K.R., Pawlowski, R.P., Phipps, E.T., Salinger, A.G., Thorn-
quist, H.K., Tuminaro, R.S., Willenbring, J.M., Williams, A., Stanley, K.S.: An
overview of the Trilinos project. ACM Trans. Math. Softw. 31, 397–423 (2005)

11. Heroux, M.A., et al: Trilinos Web page (2009), http://trilinos.sandia.gov
12. Kirk, B., Peterson, J.W., Stogner, R.H., Carey, G.F.: libMesh: A C++ Library

for Parallel Adaptive Mesh Refinement/Coarsening Simulations. Engineering with
Computers 22(3-4), 237–254 (2006)

13. Kronbichler, M., Bangerth, W.: Advanced numerical techniques for simulating
mantle convection (in preparation)

14. Langtangen, H.P.: Computational Partial Differential Equations: Numerical Meth-
ods and Diffpack Programming. Texts in Computational Science and Engineering.
Springer, Heidelberg (2003)

15. Logg, A.: Automating the finite element method. Arch. Comput. Methods
Eng. 14(2), 93–138 (2007)

16. Patzák, B., Bittnar, Z.: Design of object oriented finite element code. Advances in
Engineering Software 32(10–11), 759–767 (2001)

17. Renard, Y., Pommier, J.: Getfem++. Technical report, INSA Toulouse (2006),
http://www-gmm.insa-toulouse.fr/getfem/

http://www.mcs.anl.gov/petsc
http://www.dealii.org
http://trilinos.sandia.gov
http://www-gmm.insa-toulouse.fr/getfem/

Parallel Zero-Copy Algorithms for Fast Fourier

Transform and Conjugate Gradient Using MPI
Datatypes

Torsten Hoefler and Steven Gottlieb�

National Center for Supercomputing Applications
University of Illinois at Urbana-Champaign, Urbana, IL, USA

{htor,sgottlie}@illinois.edu

Abstract. Many parallel applications need to communicate non-
contiguous data. Most applications manually copy (pack/unpack) data
before communications even though MPI allows a zero-copy specifica-
tion. In this work, we study two complex use-cases: (1) Fast Fourier
Transformation where we express a local memory transpose as part of
the datatype, and (2) a conjugate gradient solver with a checkerboard
layout that requires multiple nested datatypes. We demonstrate signifi-
cant speedups up to a factor of 3.8 and 18%, respectively, in both cases.
Our work can be used as a template to utilize datatypes for application
developers. For MPI implementers, we show two practically relevant ac-
cess patterns that deserve special optimization.

1 Introduction

The Message Passing Interface (MPI) offers a mechanism called derived datatypes
(DDT) to specify arbitrary memory layouts for sending and receiving messages.
This mighty mechanism allows the integration of communication into the parallel
algorithm and data layout and thus is likely to become an important part of ap-
plication development and optimization. Not only do DDTs save implementation
effort by providing an abstract and versatile interface to specify arbitrary data
layouts, but they also provide a portable high-performance abstraction for data
accesses. It is easy to show that datatypes are complete in that any permutation
from a layout on the sender to a layout on the receiver can be expressed (different
DDTs at sender and receiver are allowed as long as the type maps [1] match).

Zero-copy refers to a mechanism to improve application performance by avoid-
ing copies in the messaging middleware. Several low-level communication APIs,
such as InfiniBand [2] or DCMF [3] allow direct copies from a user-buffer on the
sender to a user-buffer at the receiver. We extend this definition into the appli-
cation space and argue that the specification of derived datatypes is necessary
to enable zero-copy algorithms, i.e., no explicit buffer pack/unpack, for paral-
lel applications. It has been shown that non-contiguous data can be transferred
without additional copies using InfiniBand [4].
� On leave from Indiana University, Bloomington, IN, USA.

R. Keller et al. (Eds.): EuroMPI 2010, LNCS 6305, pp. 132–141, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Parallel Zero-Copy Algorithms for Fast Fourier Transform 133

Many applications require sending data from non-contiguous locations, so we
would expect that many MPI applications use datatypes to specify their com-
munications. However, on the contrary, implementations of the DDT mechanism
in MPI have been suboptimal so that manual packing and unpacking of data
often yielded higher performance. In the last years, implementations have much
improved [4,5,6,7,8] but the folklore about low performance still remains. Indeed,
the number of success stories is low and limited to application benchmarks with
relatively simple datatype layouts [9].

In this work, we demonstrate two complex use-cases for DDTs in parallel ap-
plications. The first example shows how to express the local transpose operations
in a parallel Fast Fourier Transformation (FFT). The second example shows a
complex 4-d stencil code with checkerboard layout.

2 Fast Fourier Transformations

Fast Fourier Transforms (FFT) have numerous applications in science and engi-
neering and are among the most important algorithms today. One-dimensional
(1-d) FFTs accept an array of N complex numbers as input and produce an array
of size N as output. FFTs can also be done in place with negligible additional
buffering. Such 1-d FFTs can be expressed as several multi-dimensional FFTs
and application of so called twiddle factors [10, §12]. Such a decomposition is
often used to parallelize FFTs because applying the twiddle factors is a purely
local operation. Naturally multi-dimensional FFTs are also very important in
practice, for example, 2-d FFTs for image analysis and manipulation and 3-d
FFTs for real-space domains. Such n-d FFTs can be computed by performing
1-d FFTs in all n dimensions.

2.1 A Typical Parallel FFT Implementation

We discuss a typical parallel implementation of a Nx × Ny 2-d FFT with MPI.
We assume that the array is stored in x-major order and distributed along the
x dimension such that each process has Nx/P y-pencils. Figure 1 illustrates
the whole procedure for a 4 × 4 FFT on two processes (0 and 1). Each process

(all−to−all)

1,1 1,2 2,1 2,2 1,3 1,4 2,3 2,4

3,1 3,2 4,44,34,1 4,2 3,3 3,4

3,1 3,2 3,3 3,4 4,1 4,2 4,3 4,4

1,2 1,41,31,1
1−d FFT

2,42,2 2,32,1

1−d FFT

4,44,33,3 3,41,3 1,4 2,3 2,4

1,1 1,2 2,1 2,2 3,1 3,2 4,1 4,2

(all−to−all)
 transpose

1,1 1,2 2,1 2,2 1,3 1,4 2,3 2,4

3,1 3,2 4,44,34,1 4,2 3,3 3,4

to: 0

to: 0

to: 1

to: 1

0

1

local pack
1−d FFT 1−d FFT

0

1

1,3

1,1 2,1 3,1 4,24,1 1,2 3,22,2

2,3 3,3 2,41,4 4,44,3 3,4

1−d FFT 1−d FFT

1−d FFT 1−d FFT

local pack
local unpack transpose

from: 0

from: 0

from: 1

from: 1

local unpack

1,2 1,41,31,1 2,42,2 2,32,1

3,1 3,2 3,3 3,4 4,1 4,2 4,3 4,4

A

B

C D

E

F

Fig. 1. Parallel two-dimensional FFT on two processes. The steps are explained below

134 T. Hoefler and S. Gottlieb

holds two 4-element y-pencils in its local memory. The elements are shown with
(x, y) indices in contiguous memory locations (left→right) in the figure. The two
processes are drawn vertically and separated by a dashed line. The steps needed
to transform the array and return it in the original layout are:

1. perform Nx/P 1-d FFTs in y-dimension (Ny elements each)
2. pack the array into a sendbuffer for the all-to-all (A)
3. perform global all-to-all (B)
4. unpack the array to be contiguous in x-dimension (each process has now

Ny/P x-pencils) (C)
5. perform Ny/P 1-d FFTs in x-dimension (Nx elements each)
6. pack the array into a sendbuffer for the all-to-all (D)
7. perform global all-to-all (E)
8. unpack the array to its original layout (F)

Thus, in order to transform the two-dimensional data, it is rearranged six times.
Each rearrangement is effectively a copy operation of the whole data. However,
four rearrangements (pack and unpack) are related to the global transpose op-
eration. Since MPI datatypes are complete, we can fold all pack and unpack
operations into the communication and thus avoid the explicit copy for packing
the data.

2.2 Constructing the Datatypes

We assume that the basic element is a complex number. A datatype for com-
plex numbers can simply be created with MPI Type contiguous with two double
elements.

The send-datatype can be constructed with MPI Type vector because each y-
pencil is logically cut into P pieces that need to be redistributed to P processes.
Thus, the blocklength is Ny

P . Each process typically holds Nx

P pencils, thus, there
are a total of Nx

P such blocks. The stride between the blocks is one complete y-
pencil of length Ny. The basic vector datatype is shown in Figure 2(a). Sending
a single element of this datatype would transmit {(1,1),(1,2),(2,1),(2,2)}. The
problem is now that the comb-shaped datatypes that need to be sent are inter-
leaved as shown in Figure 2(b). Thus, one can’t just sent two of those datatypes
(as this would gather two contiguous combs instead of two interleaved combs).

1,1

block 0

2,4

block 1

} }

blocklengthblocklength

1,2 1,3 1,4 2,1 2,2 2,3

stride

(a) MPI Type vector

1,1 2,41,2 1,4 2,1 2,2 2,3

To: 0

1,3

extent

blocklength

To: 1

(b) MPI Type create resized

Fig. 2. Visualization of the send datatype creation

Parallel Zero-Copy Algorithms for Fast Fourier Transform 135

3,1 3,2 4,1 4,21,1 1,2 2,1 2,2

1,1 2,1 3,1 4,1 4,21,2 3,22,2

} }

blocklength

from rank 0 from rank 1
unpack

blocklength

stride

(a) MPI Type vector

3,1 3,2 4,1 4,21,1 1,2 2,1 2,2

1,1 2,1 3,1 4,1 4,21,2 3,22,2

from rank 0

blocklength

from rank 1

from: 0
from: 1

(b) MPI Type create resized, contiguous

Fig. 3. Visualization of the receive datatype creation

MPI allows the user to change the extent of a datatype in order to allow such in-
terleaved accesses. In our example we use MPI Type create resized to change the
extent to Ny

P times the base-size as shown in Figure 2(b). The resulting datatype
can be used as input to MPI Alltoall by sending count=1 to each process.

Performing the unpack on the receiver is slightly more complex because the
data arrives in non-transposed form from the sender. Thus, the receiver does not
only need to unpack the data but also transpose each block locally. This can also
be expressed in a single derived datatype. The top of Figure 3(a) shows how the
data-stream arrives at the receiver (process 0) and the bottom the desired layout
after unpack. Like in the sender-case, we create a MPI Type vector datatype.
However, the blocklength is now one element because we need to transpose the
array locally. We have Nx

P blocks with a stride of Nx between them. The newly
created comb-shaped type captures one incoming y-contribution of one process.
To capture all, we need to create a contiguous datatype with Ny

P elements. We
have to change the extent to 1 with MPI Type create resized as for the send
datatype. Figure 3(b) shows the final datatypes for our example. Those types
can be used as the receive type in MPI Alltoall with count=1 per process (note
that the send- and receive-types in MPI Alltoall do not have to be identical as
long as the type-map matches).

By using both created datatypes, we can effectively eliminate steps A, C, D,
and F in Figure 1 which leads to a zero-copy FFT. An optimized MPI imple-
mentation would stream the data items directly from the send buffers into the
receive buffers and apply the correct permutation (local transpose). This should
lead to significant performance improvements over the state of the art because
it avoids four explicit copies of the whole 2-d array. Higher-dimensional FFTs
can be treated with similar principles.

2.3 Experimental Evaluation

We used two systems for our performance evaluation, Odin at Indiana Univer-
sity and Jaguar at the Oak Ridge National Laboratory. Odin consists of 128
compute nodes with dual-CPU dual-core Opteron 1354 2.1 GHz CPUs running
Linux 2.6.18 and are connected with SDR InfiniBand (OFED 1.3.1). We used

136 T. Hoefler and S. Gottlieb

 1

 10

 4 8 16 32 64 128 256 512
 1

 1.5

 2

 2.5

 3

 3.5

 4

T
im

e
[s

]

S
pe

ed
up

Number of Processors

no types
recvtype

sendtype
send+recvtype

Speedup

(a) Odin (N=8000).

 0.1

 1

 10

 16 32 64 128 256 512 1024 2048
 1

 1.2

 1.4

 1.6

 1.8

 2

T
im

e
[s

]

S
pe

ed
up

Number of Processors

no types
recvtype

sendtype
send+recvtype

Speedup

(b) Jaguar (N=20000).

Fig. 4. Strong-scaling of a 2-d FFT with and without zero-copy (MPI Datatypes)

Open MPI 1.4.1 (openib BTL) and g++ 4.1.2 for our evaluation. Jaguar (XT-4)
comprises 150152 2.1 GHz Opteron cores in quad-core nodes connected with a
Torus network (SeaStar). Jaguar runs Compute Node Linux 2.1 and the Cray
Message Passing Toolkit 3. All software was compiled with -O3 -mtune=opteron
on both systems.

In all experiments, we ran one warmup round (using the same buffers as for
the actual run). We repeated each run three times (in the same allocation) and
found a maximum deviation of 4%. We report the smallest measured time for
the complete parallel 2-d FFT of the three runs. The overhead to create the
derived datatypes is included in the measurements that use derived datatypes.

Figure 4 shows the results for a strong-scaling N × N 2-d FFT on Odin and
Jaguar. Using derived datatypes improves the performance of parallel FFTs on
both systems by more then a factor of 1.5. The improvement typically grows
with the number of processes as local FFTs get smaller. The anomaly at P=200
on Odin (Figure 4(a)) is reproducible. Datatypes also improved parallel scaling
on Jaguar as shown in Figure 4(b) where the traditional FFT stopped scaling
at 1024 processes and the version using derived datatypes scaled up to 2048
processes.

The performance of derived datatypes is system dependent and might as
well not result in any speedup if the implementation performs a complete lo-
cal pack/unpack. We found only one system, BlueGene/P, where the datatype
implementation is slowing down the FFT significantly (up to 40%). The simple
representation of the constructed vector datatype should not introduce signifi-
cant overhead. This might point at an optimization opportunity or performance
problem of the MPI implementation on BlueGene/P.

3 MIMD Lattice Computation Collaboration Application

The MIMD Lattice Computation (MILC) Collaboration studies Quantum Chro-
modynamics (QCD) the theory of the strong interaction [11]. Their suite of ap-
plications, known as the MILC code is publicly available for the study of lattice

Parallel Zero-Copy Algorithms for Fast Fourier Transform 137

QCD. This group regularly gets one of the largest allocations of computer time
at NSF supercomputer centers. One application from the code suite, su3 rmd,
is part of the SPEC CPU2006 and SPEC MPI benchmarks. It is also used to
evaluate the performance of the Blue Waters computer to be built by IBM.

Lattice QCD approximates space-time as a finite regular hypercubic grid of
points in four dimensions. The physical quarks are represented by 3-component
complex objects at each point of the grid. The variables that describe the gluons,
the carriers of the strong force are represented by 3×3 unitary matrices residing
on each ‘link’ joining points of the grid. Currently, grids as large as 643 × 192
are in use. Much of the floating point work is involved in multiplying the 3 × 3
matrices together or applying the matrix to a 3-component vector. Routines
for these basic operations are often optimized by assembly code or compiler
intrinsics.

The code is easily parallelized by domain decomposition. Once that is done,
the program must be able to communicate with neighboring processes that
contain off-node neighbors of the points in its local domain. The MILC code
abstracts all the communication into a small set of routines: start gather,
wait gather, and cleanup gather. These routines are all contained in a single
file specific to the message passing library available on the target computer.

The MILC code allows very general assignments of grid points to the processes.
At startup, a list of local grid points that need off-node neighbors for their
computation is created for each direction ±x, ±y, ±z, ±t. There is one list
corresponding to each other process that contains any needed neighbors for a
particular direction. There are also similar lists for all the local grid points whose
values will need to be sent to other processes. At the time a gather is called, the
lists containing data that must be sent to other processes are processed and for
each grid point in a list the value of the data to be gathered is copied (packed)
into a buffer. The buffer is then sent to the neighboring process. The index list is
used to allow for arbitrary decompositions of the grid; however, in practice, the
most common data layout is just to break up the domain into hyperrectangular
subdomains with checker boarding as described below. It is for this case that
we have implemented derived datatypes to avoid copying the data to a buffer
before sending it to the destination process. The receive portion does not require
datatypes because the computation uses indirect addressing for all grid points.
The index list of local grid points with remote data dependencies is set (once
during initialization) to point to the correct element in the receive buffer.

3.1 Data Layout and Datatype Construction

The code consists of several computation phases that perform different tasks.
There are compilation flags that allow timing and printing performance infor-
mation for each phase. In this work, we will concentrate on the conjugate gradient
(CG) solver since that routine takes the vast majority of the time in production
runs. Checkerboarding, or even-odd decomposition is used in the iterative solver.
A grid point is even (odd) if the sum of its coordinates is even (odd). Thus, the
grid points are stored in memory so that all even sites are stored before the odd

138 T. Hoefler and S. Gottlieb

sites. If the coordinates of a point are denoted (x, y, z, t), the data is stored so
that x is incremented first, then y is incremented, then z and finally t. That
means that the edge of the domain in t is (almost) contiguously stored. If the
local domain is of size Lx × Ly × Lz × Lt, there are Lx × Ly × Lz/2 even sites
stored contiguously and the same number of odd sites stored contiguously. Note
that our current implementation of datatypes requires that each of the local
dimensions is even. During the CG solver, we are usually only transferring one
checkerboard at a time. (In other phases of the code, we operate on all grid
points, so we also define datatypes for even-and-odd gathers. These are defined
with MPI Type hvector in the code example. The blocks of even and odd sites are
identical patterns separated by the number of even sites on each process. This is
converted to bytes by multiplying by the size of the object.) If we need to fetch
values from the z-direction, however, the points are not all stored contiguously.
For each value of t, there are Lx × Ly/2 contiguous sites in each checkerboard.
The datatype defined for the gathers in the z-direction consists of Lt repetitions
of such contiguous data. For the gathers in the y-direction, there are Lz × Lt

regions of Lx/2 contiguous sites. Listing 1 shows parts of the datatype layout
routine which is called during initialization.

/* the basic elements */
MPI_Type_contiguous(6, MPI_FLOAT, &su3_vect_dt);
MPI_Type_contiguous(12, MPI_FLOAT, &half_wilson_vector_mpi_t);
MPI_Type_contiguous(18, MPI_FLOAT, &su3_matrix_mpi_t);

/* 48 field types, 3 for su3_vector, half_wilson_vector, and su3_matrix,
2 for even and even and odd, 8 for directions */

MPI_Datatype neigh_dt_ddt[3][2][8];

/* t-direction, even points */
MPI_Type_contiguous(Lx · Ly · Lz/2, su3_vect_dt, &neigh_dt_ddt[0][0][3]);
/* t-direction, even and odd points */
MPI_type_hvector(2,1,sizeof(su3_vector)*even_sites, neigh_dt_ddt[0][0][3],
&neigh_dt_ddt[0][1][3]);

/* z-direction, even points */
MPI_Type_vector(Lt, Lx · Ly/2, Lx · Ly · Lz/2, su3_vect_dt,
&neigh_dt_ddt[0][0][2]);

/* z-direction, even and odd points */
MPI_type_hvector(2,1,sizeof(su3_vector)*even_sites, neigh_dt_ddt[0][0][2],
&neigh_dt_ddt[0][1][2]);

...

Listing 1. Datatype Example for the Up Direction and su3 vector. MILC uses 48
different data layouts for sending.

Parallel Zero-Copy Algorithms for Fast Fourier Transform 139

Three other issues are simplified in the code example. We do not show code
for negative directions or for gathers of matrices and pairs of vectors. We show
the basic definitions for half wilson vector mpi t and su3 matrix mpi t, but
not the corresponding definitions of field neigh dt[{1,2}][][]. Further, for
the CG routine, we also need to gather from sites three grid points away in each
direction. These require contiguous blocks three times as long and merely require
changing some factors of 1/2 to 3/2.

3.2 Experimental Evaluation

We now present performance results comparing the version the datatype version
with the original pack/unpack version. We chose a weak scaling problem of size
Lx = Ly = Lz = Lt = 4 per process which is similar to the Petascale benchmark
problem that will be used to verify the Blue Waters machine on > 3 · 105 cores.
We ran each benchmark multiple times and report the average performance of
all CG phases.

 250

 300

 350

 400

 450

 500

 550

 8 16 32 64 128 256

P
er

fo
rm

an
ce

 p
er

 P
ro

ce
ss

 [M
F

lo
p/

s]

Number of Processors

Open MPI DDT
Open MPI no DDT

(a) Odin.

 100

 200

 300

 400

 500

 600

 700

 800

 900

 8 16 32 64 128 256 512 1024 2048 4096

P
er

fo
rm

an
ce

 p
er

 P
ro

ce
ss

 [M
F

lo
p/

s]

Number of Processors

Cray MPI DDT
Cray MPI no DDT

(b) Jaguar.

Fig. 5. Weak-scaling MILC run with a 44 lattice per process

Figure 5 shows the performance in MFlop/s of runs on Odin and Jaguar. The
CG solver requires global sums in addition to the nearest neighbor gathers. These
sums are the biggest impediment to scaling since the global sum time is expected
to increase as the logarithm of the number of processes. For a fixed local grid
size, i.e., weak scaling, the time for the global sum will eventually dominate the
time for the work that must be done on each process. This is reflected in the
decreasing performance is the number of processors is increased beyond 16. The
sharp dropoff between 8 and 16 is due to the fact the one additional direction
has off-node neighbors. Most other parts of the code do not require global sums.
We see a speedup up to 18% by using derived datatypes on Odin while we see
no benefit, indeed an average performance penalty of 3% on Jaguar.

The performance degradation on Jaguar is surprising because the data access
of the MPI Type vector definition of the used datatype can be easily expressed
as two loops [5,7] while the original MILC packing routine traverses an array of

140 T. Hoefler and S. Gottlieb

indices which adds more pressure to the memory subsystem. This points at pos-
sible optimization opportunities in Cray’s MPI because the simple structure of
the datatype should, even in a simple implementation, not introduce significant
overheads.

4 Conclusions

We demonstrated two applications that can take significant advantage of using
MPI’s derived datatype mechanism for communication. Such techniques essen-
tially enable parallel zero-copy algorithms and even allows one to express ad-
ditional local transformations (as demonstrated for FFT). Performance results
of FFT and a CG solver show improvements up to a factor of 3.8 and 18%
respectively. However, we also found performance degradation, which indicate
optimization opportunities in the MPI libraries on BlueGene/P and Jaguar sys-
tems, in some cases.

We expect that our results will influence two groups: (1) application develop-
ers are encouraged to use MPI datatypes to simplify and optimize their code,
and (2) MPI implementers should use the presented algorithms as examples for
practically relevant access patterns that might benefit from extra optimizations.
The source code of both applications is publicly available and can be used for
evaluating datatype implementations.

Acknowledgments. The authors want to thank Bill Gropp (UIUC), Jeongnim Kim

(UIUC), Greg Bauer (UIUC), and the anonymous reviewers for helpful comments. This

work is supported by the Blue Waters sustained-petascale computing project, which is

supported by the National Science Foundation (award number OCI 07-25070) and the

state of Illinois.

References

1. MPI Forum: MPI: A Message-Passing Interface Standard. Version 2.2 (2009)
http://www.mpi-forum.org/docs/mpi-2.2/mpi22-report.pdf

2. The InfiniBand Trade Association: Infiniband Architecture Specification , Release
1.2. InfiniBand Trade Association vol.1(2003)

3. Kumar, S., et al.: The deep computing messaging framework: generalized scalable
message passing on the blue gene/p supercomputer. In: ICS 2008: Proceedings of
the 22nd annual international conference on Supercomputing, pp. 94–103. ACM,
New York (2008)

4. Santhanaraman, G., Wu, J., Huang, W., Panda, D.K.: Designing zero-copy mes-
sage passing interface derived datatype communication over infiniband: Alternative
approaches and performance evaluation. Int. J. High Perform. Comput. Appl. 19,
129–142 (2005)

5. Träff, J.L., Hempel, R., Ritzdorf, H., Zimmermann, F.: Flattening on the fly: Ef-
ficient handling of mpi derived datatypes. In: Proceedings of the 6th European
PVM/MPI Users’ Group Meeting on Recent Advances in Parallel Virtual Machine
and Message Passing Interface, London, UK, pp. 109–116. Springer, Heidelberg
(1999)

http://www.mpi-forum.org/docs/mpi-2.2/mpi22-report.pdf

Parallel Zero-Copy Algorithms for Fast Fourier Transform 141

6. Gabriel, E., Resch, M., Rühle, R.: Implementing and benchmarking derived
datatypes in metacomputing. In: HPCN Europe 2001: Proc. of the 9th Intl. Confer-
ence on High-Performance Computing and Networking, London, UK, pp. 493–502.
Springer, Heidelberg (2001)

7. Gropp, W., Lusk, E., Swider, D.: Improving the performance of mpi derived
datatypes. In: Proceedings of the Third MPI Developer’s and User’s Conference,
pp. 25–30. MPI Software Technology Press (1999)

8. Byna, S., Gropp, W., Sun, X.H., Thakur, R.: Improving the performance of mpi
derived datatypes by optimizing memory-access cost. In: IEEE International Con-
ference on Cluster Computing, p. 412 (2003)

9. Lu, Q., Wu, J., Panda, D., Sadayappan, P.: Applying MPI Derived Datatypes to
the NAS Benchmarks: A Case Study. In: Proc. of the Intl. Conf. on Par. Proc.
Workshops (2004)

10. Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical recipes
in C: the art of scientific computing, 2nd edn. Cambridge University Press, Cam-
bridge (1992)

11. Bernard, C., Ogilvie, M.C., DeGrand, T.A., DeTar, C.E., Gottlieb, S.A., Kras-
nitz, A., Sugar, R., Toussaint, D.: Studying Quarks and Gluons On Mimd Parallel
Computers. International Journal of High Performance Computing Applications 5,
61–70 (1991)

Parallel Chaining Algorithms

Mohamed Abouelhoda and Hisham Mohamed

Center for informatics sciences, Nile University,
Smart Village, Giza, Egypt

mabouelhoda@nileuniversity.edu.eg,
hisham.mohamed@nileu.edu.eg

Abstract. Given a set of weighted hyper-rectangles in a k-dimensional
space, the chaining problem is to identify a set of colinear and non-
overlapping hyper-rectangles of total maximal weight. This problem is
used in a number of applications in bioinformatics, string processing,
and VLSI design. In this paper, we present parallel versions of the chain-
ing algorithm for bioinformatics applications, running on multi-core and
computer cluster architectures. Furthermore, we present experimental
results of our implementations on both architectures.

Keywords: Chaining Algorithms, Bioinformatics, Sparse Dynamic
Programming.

1 Introduction

Given a set of hyper-rectangles in a k-dimensional space, each associated with a
certain weight, the chaining problem is to determine a chain of colinear and non-
overlapping hyper-rectangles such that the total weight of the included hyper-
rectangles is maximum. Figure 1 shows an example of some blocks in 2D space
and an example of an optimal chain with highest score. These blocks can also be
represented in parallel coordinates, where the coordinates are drawn as parallel
lines and the intervals making up a block in each coordinate are connected by
lines, see Figure 1(right).

The chaining algorithms, which solve the chaining problem, are per se of theo-
retical interest, because they provide a polynomial time solution to the maximum
clique problem for trapezoid graphs. In practice, these algorithms have been
used to solve the channel routing problem in VLSI design [6], and the longest
common increasing subsequence problem [2] in string processing. In the bioinfor-
matics domain, the chaining algorithms have received much more attention due
to their use in many applications in computational comparative genomics. For
example, they are used to speed up the alignment of multiple genomes [7,4,11],
cDNA/EST mapping [10], and the comparison of restriction maps [8].

In all these bioinformatics applications, the blocks represent regions of simi-
larity in the given genomes and an optimal chain approximates optimal align-
ment of the given genomic sequences. In Figure 1, the x1 and x2 correspond
to two genomes, and the seven blocks correspond to regions of similarity be-
tween them. The chain of the blocks b1, b3, and b7 are the alignment anchors,

R. Keller et al. (Eds.): EuroMPI 2010, LNCS 6305, pp. 142–151, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Parallel Chaining Algorithms 143

2
x

1
x

2
x

1
x

o

t

b6

b3

b4

b5

b3

b4 b5

b3 b6

Line sweep

b1

b1

b7

b2 b7

b2

b7

b2

Fig. 1. Left: Representation of a set of 2D blocks. The origin (0) and terminus (t) are
unit area blocks. An edge connects two blocks, if they are colinear and non-overlapping
(not all edges are drawn). The blocks b2 and b3 are colinear and non-overlapping.
The blocks b1 and b3 are non-overlapping but not colinear. The chain of b2, b3, and
b7 represents an optimal chain. The line sweep at the start point of b7 searches for
the block with maximum score (which is b3) in the highlighted region. Right: Parallel
coordinate representation of the blocks (upper part) and optimal chain (lower part).
The intervals making up a block are represented by thick lines on the coordinates and
a thin line connects the one on x1 to that on x2.

and the regions between the blocks correspond either to mismatches or gaps
(insertions/deletions).

Sequential chaining algorithms were first introduced in [5] under the name
sparse dynamic programming to speed up the alignment of two sequences. This
technique was then generalized in [12,9,1] to multiple genomic sequences under
the name of chaining, which became more common in bioinformatics. For k = 2,
the chaining problem can be solved in O(m log m) time and O(m) space, where
m is the number of blocks. (It takes O(m log log m) time if the blocks are given
sorted w.r.t. one of the coordinates.) For k > 2, the problem is solved in sub-
quadratic time based on range maximum queries (RMQ), which is a substantial
improvement over the quadratic graph based algorithm.

The exponentially increasing amount of biological data requires much faster
algorithms to compare more and longer genomes. In this paper, we introduce
parallel chaining algorithms for the multicore and computer cluster architectures.
To the best of our knowledge, our work is the first that addresses this issue
from theoretical as well as practical point of view. This is not a straightforward
task because the chaining algorithms are based on the line sweep paradigm and
range maximum queries, which requires careful parallelization strategies to yield
practical results.

This paper is organized as follows: In Section 2, we review the sequential
chaining algorithms. In Section 3, we introduce our parallel chaining algorithms.

144 M. Abouelhoda and H. Mohamed

Section 4 contains implementation details and experimental results. Conclusions
are in Section 5.

2 Review of Sequential Chaining Algorithms

We use the term block, denoted by b, to refer to a hyper-rectangle in a k di-
mensional space (Nk). A block can be defined by the pair (beg(b), end(b)), where
beg(b) = (beg(b).x1, .., beg(b).xk) and end(b) = (end(b).x1, .., end(b).xk) are its
two extreme corner points (beg(b).xi < end(b).xi, ∀i ∈ [1..k]). Equivalently, it
can be defined by the k-tuple ([beg(b).x1..end(b).x1], . . . , [beg(b).xk..end(b).xk]),
where each component is an interval on the xi axis, 1 ≤ i ≤ k. With each block,
we associate an arbitrary weight b.weight, which can be, e.g., its area or perime-
ter. For ease of presentation, we consider the point 0=(0, . . . , 0) (the origin) and
t = (t1, . . . , tk) (the terminus) as blocks with unit side-length and weight zero.
We will also assume that each block b has beg(b).xi > 0 and each block b′ has
end(b′).xi < ti, for all i ∈ [1..k].

Definition 1. The relation � on the set of blocks is defined as follows: b′ � b iff
end(b′).xi < beg(b).xi, ∀i ∈ [1..k]. If b′ � b, we say that b′ precedes b. The blocks
b′ and b are colinear and non-overlapping if either b′ precedes b or b precedes b′.

In other words, the blocks b and b′ are colinear with b′ � b, if b′ starts and ends
in the region ([0..beg(b).x1−1], . . . , [0..beg(b).xk−1]); Figure 1 shows an example.

Definition 2. The score of a chain of blocks b1 �b2 � .. �bt is Σi=t
i=1bi.weight.

Given a set of blocks, an optimal chain is the highest scoring chain among all
possible chains that start with 0 and ends with t.

The chaining problem can be solved using the recurrence

b.score = b.weight + max{b′.score|b′ � b}, (1)

where b.score denotes the maximum score of all chains ending with the block b.
The geometric based solution for this recurrence is based on the line sweep

paradigm and range maximum queries (RMQ) to find the block b′ � b that max-
imizes the score at b. This solution works as follows:

The start and end points of the blocks are sorted w.r.t. their x1 coordinate
and are processed in this order to simulate a line (hyper-plane in N

k) that sweeps
the points w.r.t. their x1 coordinate. All end points are initialized as inactive. If
an end point of block b is scanned by the sweeping line, it becomes active (and so
does the respective block) with score b.score. (For short, we might speak of the
score of a point to mean the score of the respective block.) While scanning the
start point of a block b, we search for the block b′ that maximizes Recurrence 1
among the active blocks by means of RMQs.

Because all the points (representing the blocks) are given in advance, we use
a semi-dynamic data structure D supporting RMQ with activation to manipulate
the points. In this data structure, we store the (k−1)-dimensional end point

Parallel Chaining Algorithms 145

(end(b).x2, .., end(b).xk) of each block b and attach the score of a block to it.
That is, we ignore the first dimension and reduce the RMQ dimension by one.
This is correct, because the points are scanned w.r.t. x1 coordinate and any
previously scanned and activated block b′ should satisfy end(b′).x1 < beg(b).x1.
Figure 1 shows an example where a start point is scanned and searches for an
end point with maximum score.

The complexity of this algorithm depends on the complexity of the RMQ
supported by D. If D is implemented as a range tree, then it takes
O(m logk−2 m log log m) time and O(m logk−2 m) space. If it is implemented as
a kd -tree, then it takes O(m2− 1

k−1) time and O(m) space. (Activation of a point
takes O(logk−2 m log log m) and O(log m) time using the range tree and kd -tree,
respectively) However, the kd -tree is superior to the range tree in practice due
to its linear space and the programming tricks used for the semi-dynamic points
[3]. For more details on this algorithm, we refer the reader to [1].

3 Parallelization of Chaining Algorithms

Our parallelization strategy works on different levels of increasing complexity:
1) space decomposition, 2) anti-chain decomposition, and 3) wavefront decompo-
sition.

3.1 Space Decomposition

As expected, profiling results of the sequential chaining program revealed that
the RMQ’s take most of the chaining time. Hence, we present a space division
strategy of 2 levels to reduce this time.

Bucket division: The set of the end points are divided into equal size buck-
ets BUK1, .., BUKPb

, such that the points in BUKi occur before the points
in BUKi+1 w.r.t. x2. Note that each bucket BUKi is defined over the region
([0..∞], [Li.x2..Li+1.x2], .., [0, ∞]), where Li is a line (hyper-plane) separating
the points in BUKi from BUKi+1. Figure 2 (left) shows an example of the space
divided into three buckets.

Hierarchical division: The d-dimensional points are first divided into two equal
sets w.r.t. to dimension y1. The y1 component of the median point represents
a line that splits the point set into two subsets in the space. The point in each
subset is then divided w.r.t. dimension y2, then the resulting subsets are further
divided into dimension y3, and so on. After division w.r.t. yd, the subsets are
divided again with respect to y1, and so on. After yd divisions, the space is
divided into disjoint hyper-rectangles, each containing equal number of points.
The well-informed reader can easily figure out that this division strategy is the
one used in the kd -tree.

Putting all together, the set of end points are first divided into Pbuk buckets.
Then each bucket is further split hierarchically into Ph sub-buckets. On each sub-
bucket, we construct the RMQ data structure. In fact, this division can be regarded

146 M. Abouelhoda and H. Mohamed

as parallelizing the search over kd -tree, where the tree is split into multiple
subtrees. Algorithm 1 describes a parallel version of the chaining algorithm based
on this idea.

Algorithm 1
1. Sort all start and end points of the m blocks in ascending order w.r.t. their x1 coordinate and

store them in the array points.
2. For each block b, create the point (end(b).x2, .., end(b).xk) and store it in a list Temp
3. Create Pd = Pbuk × Ph sub-buckets over the set of points in Temp
4. Create a data structure Di for each sub-bucket i; the point in each Di is initialized as inactive
5. for 1 ≤ i ≤ 2m
6. if (points[i] is a start point)
7. determine the block b with beg(f).x1 = points[i]
8. for 1 ≤ j ≤ Pd

9. qj := RMQDj
([0..beg(b).x2−1], .., [0..beg(b).xk−1])

10. determine the block bj corresponding to qj

11. maxscore=max{b1.score, b2.score, .., bj .score}
12. b.score = b.weight + maxscore
13. connect the block bj whose score = maxscore to b
14. else \� it is an end point �\
15. determine the block b with end(b).x1 = points[i] and the Dj containing end(b).x1

16. activate end(b) in Dj with score b.score

In Algorithm 1, the for loop in lines 8-10 can run in parallel over the differ-
ent data structures D1, .., Dj . Thus, the time complexity is O(m logk−2(m

Pd
) log

log(m
Pd

) + mPd) time using the range tree and O(m(m
Pd

)1−
1
k + mPd) time using

the kd -tree, assuming Pd = Ph×Pbuk processors.
In this algorithm, the point set is still scanned in sequential order which re-

duces the amount of parallelization. To improve this, we introduce two additional
strategies for parallelization of the outer for loop in Algorithm 1.

3.2 Anti-chain Decomposition

Definition 3. A point p is said to be dominating q, if q.xi < p.xi, ∀i ∈ [1..k].
Two points p and q are called anti-dominant if neither p dominates q nor q
dominates p.

Lemma 1. Two blocks b1 and b2 with beg(b1).x1 < beg(b2).x1 cannot belong to
the same chain (hence, called antichains) if 1) the points beg(b1) and beg(b2) are
anti-dominant or 2) the points beg(b1) and end(b2) are anti-dominant.

Proof. It follows from the non-overlapping and collinearity relation of
Definition 1.

Corollary 1. Consecutive start points points[j], .., points[j +r] in the list points
of Algorithm 1 belong to antichain blocks. Furthermore, consecutive end points
points[j′], .., points[j′ + r′] in the same list are antichain blocks.

Parallel Chaining Algorithms 147

2
x

1
x

2
x

1
xo

b6

b5

b4

b3

o

b6

b3

b4

b5

t t

b1

D1

D2

D3

b1

Line sweep

Line sweep 1

Line sweep 3

Line sweep 2

BUK1

BUK3

BUK2

b7

b2b2

b7

Fig. 2. Left: Space is divided into three buckets highlighted in different colors. A single
sweep line scans all the points. Right: Multiple sweep lines work on different strips.
(strips overlaid on the buckets). Lower strips lead the higher ones.

Based on this corollary, we can process multiple blocks in parallel either in
searching for the best block or for activation. (For activation, the end points
should be in different buckets to avoid race conditions.) For example, the blocks
b1 and b2 in Figure 2 are antichains that can be processed in parallel. Algorithm
2 shows how the antichain properties can be implemented.

Algorithm 2
1. Sort all start and end points of the m blocks in ascending order w.r.t. their x1 coordinate and

store them in the array points.
2. For each block b, create the point (end(b).x2, .., end(b).xk) and store it in a list Temp.
3. Create Pd = Pbuk × Ph sub-buckets over the set of points in Temp,
4. Create a data structure Di for each sub-bucket i; the point in each Di is initialized as inactive
5. while i ≤ 2m (i is initialized with zero)
6. Lookahead to determine consecutive start points Slist = points[i], points[i + 1], .., points[r]
7. i = r + 1
8. foreach point in Slist

9. determine the respective block b and attach it to the highest scoring block as in Algorithm 1
10. Lookahead to determine consecutive end points Elist = points[i], points[i + 1], .., points[r′]
11. i = r′ + 1
12. foreach point in Elist

activate the respective block b in the respective data structure Dj as in Algorithm 1

The Lookahead function takes total O(m) time and can be implemented in ad-
vance to determine the locations of consecutive start/end points; i.e., determine
where a start point is followed by an end point or vice versa in the array points.
Let ms denote the number of these locations, and let mp denote the maximum
number of consecutive points that can be processed in parallel. Then the time
complexity of the algorithm becomes O(ms

mp

Pa
(TD)), where TD is the time for

RMQ search given in Algorithm 1, and Pa is the number of used processors.

148 M. Abouelhoda and H. Mohamed

The number of antichain blocks is very high in genome comparison due to
repeats. (E.g., about 50% of the human genome is composed of repeats.) A
region that is repeated two times in one genome and matches one region in the
other genome makes 2 antichain blocks arranged on a line parallel to one axis.
In Figure 1, the blocks b1 and b2 represent repeats in the genome corresponding
to x2.

3.3 Wavefront Decomposition

In our algorithms so far, a single sweep line visits all the start and end points
of the blocks existing in different space divisions. Now we briefly discuss the use
of multiple sweep lines in different space divisions, hence the name wavefront
decomposition.

We create Ps sets (called strips), each containing an almost equal number of
blocks. These strips are constructed with respect to the x2 coordinate of the
blocks’ start points. Roughly, we can assume that the strip borders are overlaid
on that of the buckets defined in Subsection 3.1. We say that a start point
of a block b is computable, if all the blocks b′ � b are processed. We then
assign each strip to a processor that runs the line-sweep procedure described in
Algorithm 2. But each processor stops the line sweep at a start point if it is not
yet computable and waits until the status changes. (The computability can be
checked by checking status array declaring the position of the line sweep in each
strip.) The effect of this waiting can be visualized in Figure 2 (Right), where
the line sweep of strip i is leading that of strips j > i, assuming bottom up
numbering of the strips. Algorithm 3 shows how to implement this idea.

Algorithm 3
1. Sort all start and end points of the m blocks in ascending order w.r.t. their x1 coordinate and

store them in the array points.
2. Divide the array points into Ps sub-arrays points1, points2, ..,pointsPs

of equal size.
3. For each block b, create the point (end(b).x2, .., end(b).xk), and store it in a list Temp
4. Create Pd = Pbuk × Ph sub-buckets over the set of points in Temp
5. Create a data structure Di for each sub-bucket i; the point in each Di is initialized as inactive
6. foreach sub-array pointsi

7. while i ≤ |pointsi| (i is initialized with zero)
10. Lookahead to determine consecutive start points Slist = points[i], points[i + 1], .., points[r]
11. i = r + 1
12. foreach point in Slist

13. determine the respective block b
14. wait until b is computable and do the following
15. attach it to the highest scoring block as in Algorithm 1
16. Lookahead to determine consecutive end points Elist = points[i], points[i + 1], .., points[r′]
17. i = r′ + 1
18. foreach point in Elist

29. determine the respective block b
20. wait until b is computable and do the following
21. activate the respective block b in the respective data structure Dj as in Algorithm 1

Parallel Chaining Algorithms 149

The for loop at line 6 can run in parallel to simulate the multiple sweep
lines in the different strips, as discussed above. The complexity of this algorithm
depends on the number of strips. Assuming Ps processors are assigned to handle
the strips, the complexity becomes O(ms

Ps

mp

Pa
(TD)), where TD is the time for

parallel RMQ search.

4 Implementation and Experimental Results

4.1 Implementation

The algorithms presented in this paper were implemented to run on computer
cluster using MPI and to run on multicore computer using OpenMP. We used the
kd -tree for answering RMQ’s, because it is superior to the range tree in its linear
space consumption and query time. Theoretically, the total number of proces-
sors in our algorithm is Pd +Pa +Ps, where Pd is the processors for parallel RMQ
(space division), Pa is for anti-chain parallelization, and Ps is for wavefront de-
composition. But practically, we have a limited number of processors. Therefore,
some of the tasks have to be scheduled over the available processors.

Implementation on computer cluster: In the experiments presented here, we used
the following simple strategy to assign jobs to the available cluster nodes. We set
Pd = Pcluster , where Pcluster is the number of cluster nodes. We created Ps =
Pcluster/2 strips. The data to be transfered among the nodes includes, status
of computability among blocks in different strips, regions of the RMQs, points of
highest scores, and points to be activated. For higher dimensions, such amount
of data increases the communication time and dramatically affects the overall
running time. To overcome this, we used a strategy where we broadcast the blocks
to all the nodes. Hence, it is enough that the nodes exchange only references to
the points rather than the points themselves This also applies for the region
of an RMQ, because it is defined by a start point, and this saves the transfer of
status information. The cost of broadcasting is O(Tcom(m log Pcluster)), where
Tcom is the communication time and Pcluster is the number of cluster nodes. For
handling antichain parallelization, the processing of the consecutive start/end
points is queued and dispatched to the cluster nodes. The experimental results
given below is based on this implementation.

Implementation on multicore architecture: In the experiments presented here,
we created nb buckets for parallel RMQ such that nb = Pcore, where Pcore is the
number of available cores. In OpenMP, we created ns strips and assigned them to
different threads. The RMQ’s are scheduled (pooled) over all available cores using
nested threads. Note that for a block in strip i ∈ [1..ns], it is enough to launch
only i RMQ’s in the strips/buckets [1..i], because the higher buckets are already
out of the query range. This means that the threads handling the lower strips
need to launch less number of RMQ’s, and these finish before those associated with
higher strips. This might leave some cores non-busy. But the antichain blocks
are processed by means of other threads as well; hence all the cores are busy.

150 M. Abouelhoda and H. Mohamed

Table 1. Times and speed up of chaining on multicore machine and a computer
cluster. The column titled ”dataset” contains subsets of the genomes mentioned in the
text, the number of genomes involved is given in the prefix of the dataset name. The
column titled ”blocks” contains the number of generated blocks. The last dataset ” 5
Bacteria v2” is generated with less number of blocks. The column titled ”seq.” contains
the sequential time in minutes. The numbers in the sub-tables ”Cores” and ”Nodes”
contain the speed up for multicore and computer cluster architectures, respectively.

Dataset blocks seq.

5 Bacteria 1058749 15m

6 Bacteria 2035732 18m

9 Bacteria 2381401 51m

5 Bacteria v2 715381 2m

Cores
2 4 6 8

1.6 2.7 2.8 4.1

1.4 2.4 3 4.6

1.6 3.2 5.3 6.5

1.3 1.4 1.5 1.7

Nodes
2 4 6 8 10

1.4 2.1 2.3 2.9 3.5

1.4 2.1 2.5 3 3.7

1.4 3.0 4.4 5.7 8.5

1.1 1.3 1.4 1.5 1.5

4.2 Experimental Results

Our experiments ran on an 8 cores DELL PowerEdge machine, each with 2.5 GHz
CPU and 512KB cache. The machine has 64GB RAM. Our computer cluster is
composed of 10 compute nodes of the same specifications. The switch connecting
the nodes is 1 Gigabit Ethernet.

We used biological sequences composed of 9 bacterial genomes, and the pro-
gram Multimat [7] was used to compute regions of similarity which make up
the blocks (block side-length at least 13): The genomes are of the bacteria M.
Tuberculosis H37Rv (4.26MB), M. KMS (5.54MB), C. Muridarum (1.03MB), M.
Tuberculosis CDC1551 (4.25MB), M. Avium (4.7 MB), M. MCS (5.51MB), M.
Smegmatis MC2 (6.75MB), M. Ulcerans Agy99 (5.44MB), and M. Tuberculosis
F11 (4.27MB).

Table 1 shows instances of the chaining problem with different number of
genomes and different number of blocks. It also shows the sequential running
times and the speed up (sequential time/parallel time) for these data sets and
over increasing number of cores and cluster nodes.

In general, the computer cluster implementation is slower than that of mul-
ticore due to the communication time. One possible interpretation is that the
more decomposition of the kd -tree, the faster the search time, which leads to
finer granularity and domination of the communication time. We also note that
the higher the number of genomes (i.e., the higher the RMQ dimension), the more
speed up and better scalability. This can be explained by the fact that the search
time increases with the RMQ dimension, which leads to coarser granularity.

5 Conclusions

In this paper, we presented parallel chaining algorithms using a three-levels strat-
egy. The parallelization of these algorithms is challenging, because the algorithm
is based on the line sweep paradigm and range maximum queries.

We performed limited experiments to verify our approach using MPI and
OpenMP for computer cluster and multicore architectures, respectively. The

Parallel Chaining Algorithms 151

experimental results showed practical improvement over the sequential algo-
rithms. In future work, we will conduct more experiments using larger machines
with more cores and nodes to address the assignment of processors to the differ-
ent parallelization levels we introduced, i.e., we will address how many processors
are assigned to handle parallel RMQ’s, how many handle antichain parallelization,
and how many handle strips, optimizing the usage of available cores and nodes.
We will also address the scalability of the chaining algorithms in more details,
and investigate the usage of MPI on a single multicore machine, and compare
the results to that of OpenMP.

Variations of the chaining algorithm discussed in [1] can be easily parallelized
in the same way with the same time complexity, because these variations just
depend on different weighting and scoring of blocks. In an extended version of
our paper, we will address these variations in more details.

Acknowledgments. We thank the anonymous reviewers for the valuable
comments that helped us improve this paper. We also thank Mohamed Zahran
for profile analysis. This work was supported by a grant from ITIDA, Nile
University, and Microsoft CMIC.

References

1. Abouelhoda, M.I., Ohlebusch, E.: Chaining algorithms and applications in com-
parative genomics. J. Discrete Algorithms 3(2-4), 321–341 (2005)

2. Baker, B., Giancarlo, R.: Longest common subsequence from fragments via sparse
dynamic programming. In: Bilardi, G., Pietracaprina, A., Italiano, G.F., Pucci, G.
(eds.) ESA 1998. LNCS, vol. 1461, pp. 79–90. Springer, Heidelberg (1998)

3. Bently, J.L.: K-d trees for semidynamic point sets. In: Proc. of 6th Annual ACM
Symposium on Computational Geometry, pp. 187–197 (1990)

4. Deogen, J.S., Yang, J., Ma, F.: EMAGEN: An efficient approach to multiple genome
alignment. In: Proc. of Asia-Pacific Bioinf. Conf., pp. 113–122 (2004)

5. Eppstein, D., Galil, Z., Giancarlo, R., Italiano, G.F.: Sparse dynamic programming.
J. Assoc. Comput. Mach. 39, 519–567 (1992)

6. Felsner, S., Müller, R., Wernisch, L.: Trapezoid graphs and generalizations, geom-
etry and algorithms. Discrete Applied Mathematics 74(1), 13–32 (1997)

7. Höhl, M., Kurtz, S., Ohlebusch, E.: Efficient multiple genome alignment. Bioinfor-
matics 18(Suppl. 1), 312–320 (2002)

8. Myers, E.W., Huang, X.: An O(n2 log n) restriction map comparison and search
algorithm. Bulletin of Mathematical Biology 54(4), 599–618 (1992)

9. Myers, E.W., Miller, W.: Chaining multiple-alignment fragments in sub-quadratic
time. In: Proc. of SODA, pp. 38–47 (1995)

10. Shibuya, S., Kurochkin, I.: Match chaining algorithms for cDNA mapping. In:
Benson, G., Page, R.D.M. (eds.) WABI 2003. LNCS (LNBI), vol. 2812, pp. 462–
475. Springer, Heidelberg (2003)

11. Treangen, T., Messeguer, X.: M-GCAT: Interactively and efficiently constructing
large-scale multiple genome comparison frameworks. BMC Bioinformatics 7, 433
(2006)

12. Zhang, Z., Raghavachari, B., Hardison, R.C., et al.: Chaining multiple-alignment
blocks. J. Computional Biology 1, 51–64 (1994)

Precise Dynamic Analysis for Slack Elasticity:

Adding Buffering without Adding Bugs�

Sarvani Vakkalanka, Anh Vo, Ganesh Gopalakrishnan, and Robert M. Kirby

School of Computing, Univ. of Utah, Salt Lake City, UT 84112, USA

Abstract. Increasing the amount of buffering for MPI sends is an ef-
fective way to improve the performance of MPI programs. However, for
programs containing non-deterministic operations, this can result in new
deadlocks or other safety assertion violations. Previous work did not pro-
vide any characterization of the space of slack elastic programs: those for
which buffering can be safely added. In this paper, we offer a precise char-
acterization of slack elasticity based on our formulation of MPI’s happens
before relation. We show how to efficiently locate potential culprit sends in
such programs: MPI sends for which adding buffering can increase overall
program non-determinism and cause new bugs. We present a procedure
to minimally enumerate potential culprit sends and efficiently check for
slack elasticity. Our results demonstrate that our new algorithm called
POEMSE which is incorporated into our dynamic verifier ISP can effi-
ciently run this new analysis on large MPI programs.

1 Introduction

A common myth is that if an MPI program does not deadlock under zero buffer-
ing for the sends, it will not deadlock under increased buffering. This myth has
been expressed in many places [3,4,6]. Previous work [10,16] shows that while
deterministic message passing programs enjoy this property, non-deterministic
ones do not: they can exhibit new deadlocks or new non-deadlock safety viola-
tions when buffering is added. Those programs unaffected by increased buffering
are called slack elastic [10]. Therefore, any developer wanting to improve MPI
program performance by increasing runtime buffering needs to first make sure
that the program is slack elastic.

Importance of detecting slack inelasticity: It is expected that MPI will continue
to be an API of choice for at least another decade for programming large-scale
scientific simulations. Large-scale MPI implementations must be formally verified
to avoid insidious errors suddenly cropping up during field operation. Of all the
formal verification methods applicable to MPI, dynamic methods have shown the
most promise in terms of being able to instrument and analyze large programs.
Examples range from scalable semi-formal approaches such as [5] that analyze
large MPI programs for specific properties such as deadlocks, and formal dynamic
partial order reduction methods such as in our ISP tool [18,19,20,21].
� Supported in part by Microsoft, NSF CNS-0935858, CCF-0903408.

R. Keller et al. (Eds.): EuroMPI 2010, LNCS 6305, pp. 152–159, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Precise Dynamic Analysis for Slack Elasticity 153

A relatively neglected aspect of previous MPI program formal analysis meth-
ods is how buffering affects correctness. A dynamic verifier for MPI must not
only verify a given MPI program on a given platform – it must also ideally verify
it across all future platforms. In other words, these tools must conduct verifi-
cation for safe portability. Users of an MPI program must be allowed to switch
to an MPI runtime that employs aggressive buffer allocation strategies or port
the program to a larger machine and increase the MP_EAGER_LIMIT environment
variable value without worrying about new bugs; for instance:
• Some MPI runtimes [7] perform credit-based buffer allocation where a program
can perceive time-varying eager limits. This can create situations where the eager
limit varies even for different instances of the same MPI send call.
• Future MPI programs may be generated by program transformation systems
[2], thus creating ‘unusual’ MPI call patterns. Therefore, simple syntactic rules
that guard against slack inelastic behavior are insufficient.
• Misunderstanding about buffering are still prevalent. Here are examples: If you
set MP_EAGER_LIMIT to zero, then this will test the validity of your MPI calls
[4]. A similar statement is made in [6]. The paper on the Intel Message Checker
[3] shows this as the recommended approach to detect deadlocks.

Past work [10,16] did not offer a precise characterization of slack elastic pro-
grams nor a practical analysis method to detect its violation. Many important
MPI programs (e.g., MPI-BLAST [12], and ADLB [9]) exploit non-deterministic
receives and probes to opportunistically detect the completion of a previous task to
launch new work. Therefore, avoiding non-determinism is not a practical option,
as it can lead to code complexity and loss of performance. We offer the first precise
characterization and an efficient dynamic analysis algorithm for slack inelasticity.
• We describe a new dynamic analysis algorithm called POEMSE that can ef-
ficiently enumerate what we term potential culprit sends. These are MPI sends
occurring in an MPI program to which adding buffering can increase the overall
program non-determinism. This increased non-determinism potentially results
in unexplored behaviors and bugs.
• We search for potential culprit sends over the graphs defined by MPI’s happens
before. We also contribute this happens-before relation (a significant extension of
the intra happens-before [21]) as a new result. As we shall show, happens-before
incorporates MPI’s message non-overtaking and wait semantics.
• The new version of ISP containing POEMSE is shown to perform efficiently on
non-trivially sized MPI programs. Given the limited amount of space, we opt to
present our results intuitively, with some background § 2, present the POEMSE
algorithm § 3, and results § 4. Formal details are presented in [17].

2 Motivating Examples

We begin with the familiar ‘head to head’ sends example Figure 1(a). To save
space and leave out incidental details of MPI programming, we adopt the fol-
lowing abbreviations (explained through examples). We prefer to illustrate our
ideas using non-blocking send/receive operations just to be able to discuss the

154 S. Vakkalanka et al.

effects of buffering on MPI_Waits. We use S0,0(1) to denote a non-blocking send
(MPI_Isend) targeting process 1 (P1). The subscript 0, 0 says that this is send
number 0 of P0 (counting from zero). Without loss of generality, we assume all
these communication requests carry the same tag, happen on the same com-
municator, and communicate some arbitrary data. Also, any arbitrary C state-
ment including conditionals and loops may be placed between these MPI calls.
We use W0,1(h0,0) to denote the MPI_Wait corresponding to S0,0(1). Similarly,
R0,2(0) stands for an MPI_Irecv sourcing P0, and W0,3(h0,2) is its correspond-
ing MPI_Wait. It is clear that this example will deadlock under zero buffering
but not under infinite buffering. This is a well-known MPI example underlying
almost all “zero buffer” deadlock detection tests mentioned earlier.
Deadlock Detection by Zeroing Buffering is Inconclusive: The MPI pro-
gram in Figure 1(b) will deadlock when either S0,0 or S1,0 or both are buffered.
There is no deadlock when both S0,0 and S1,0 have buffering.

P0 P1

S0,0(1) S1,0(0)
W0,1(h0,0) W1,1(h1,0)
R0,2(0) R1,2(0)
W0,3(h0,2) W1,3(h1,2)

(a) Zeroed buffering
finds deadlocks)

P0 P1 P2

S0,0(1) S1,0(2) R2,0(∗)
W0,1(h0,0) W1,1(h1,0) W2,1(h2,0)
S0,2(2) R1,2(0) R2,2(0)
W0,3(h0,2) W1,3(h1,2) W2,3(h2,2)

(b) Zeroed buffering misses deadlocks

Fig. 1. Where zeroing buffering helps, and where it does not

If both S0,0(1) and S1,0(2) have zero buffering, their corresponding MPI_Wait
operations W0,1(h0,0) and W1,1(h1,0) remain blocked until (at least) the cor-
responding receives are issued. Of the two sends, only S1,0(2) can proceed by
matching R2,0(∗) (standing for a wildcard receive, or a receive with argument
MPI_ANY_SOURCE). This causes the waits W1,1(h1,0) to unblock, allowing R1,2(0)
to be posted. This allows S0,0(1) to complete and hence W0,1(h0,0) will return,
allowing S0,2(2) to issue. Since W2,1(h2,0) has unblocked after R2,0(∗) matches,
R2,2(0) can be issued, and then the whole program finishes without deadlocks.
Now, if S0,0(1) were to be buffered, the following execution can happen: First,
S0,0(1) can be issued. The corresponding wait, i.e. W0,1(h0,0) can return regard-
less of whether P2 has even posted its R2,0(∗). This can now result in S0,2(2) to
be issued, and this send competes with S1,0(2) to match with R2,0(∗). Suppose
S0,2(2) is the winner of the competition, i.e. it matches R2,0(∗). This now leads
to a deadlock with respect to R2,2(0) because the only process able to satisfy
this request is P0, but unfortunately this process has no more sends.
Neither Zero Nor Infinite Buffering Helps: In the example of Figure 1(b),
even if all sends are given infinite buffering, we will run into the deadlock with
respect to R2,2(0) described earlier. This may give us the impression that either
zero buffering or infinite buffering will catch all deadlocks. This is not so! The
example in Figure 2(a) will not deadlock when none of the sends are buffered or

Precise Dynamic Analysis for Slack Elasticity 155

(a) Specific buffering causes deadlock (b) Slack Inelasticity modeled as
Happens-before path breaking

Fig. 2. More Buffering-related Deadlocks

all the sends are buffered. However, it will deadlock only when (i) S0,0 is buffered
and (ii) both S1,0 and S2,4 are not buffered, as detailed in § 3.

There is one common simple explanation for all the behaviors seen so far.
To present that, we now introduce, through examples, the happens before (HB)
relation underlying MPI that we have discovered. We adapt Lamport’s happens-
before [8] – widely used in programming to study concurrency and partial order
semantics – for MPI (for full explanations, please see [17,21]). We will now use
Figure 2(b), which essentially redraws Figure 1(b) with the HB edges added,
to illustrate the precedences MPI happens-before. There is a HB edge between:
(i) Every non-blocking send/receive and its wait. This can be seen in Figure 2(b)
as the solid arrows from, say S0,0(1) to W0,1(h0,0). (ii) MPI waits and their
successive instructions. We show this as, for example, W2,1 to R2,2. Notice that
W1,1 to R1,2 and W0,1 to S0,2 are also HB ordered; these are shown dotted
because they happen to fall on a HB path (HB-path) which we highlight via
dotted edges. (iii) Collective operations (including barriers) and their successive
MPI instructions, two non-blocking sends targeting the same destination (MPI
non-overtaking), and two receives sourcing from the same source (exhaustive list
is available [17]).

So far we introduced intra HB; the rule for inter HB is roughly as follows: if two
instructions can match, their successors are in the inter HB relation with respect
to each other. For example, since S0,0 and R1,2 can match in the execution of
this program under zero-buffering, we have an inter HB edge from S0,0 to W1,3
and another from R1,2 to W0,1. (These happen to be shown dotted because they
lie on the HB-path.)
Now, here is what buffering of S0,0 does
• It allows W0,1 to return early (since the message is buffered, this wait can return
early – or it becomes a no-op). Now consider the dotted path from R2,0(∗) to
S0,2(2). Before buffering was added to S0,0, this path had all its edges. When

156 S. Vakkalanka et al.

buffering was added to S0,0 thus turning W0,1 in effect to a no-op, we broke this
HB-path.
• We show that when a send (such as S0,2(2)) and a receive (such as R2,0(∗)) do
not have an HB-path separating them, they become concurrent [17]. We saw this
earlier because as soon as we buffered S0,0, S0,2(2) became a competing match to
R2,0(∗). The potential culprit send is S0,0 because it was by buffering this that
we made S0,2(2) and R2,0(∗) match, thus increasing the overall non-determinism
in the program.
• Therefore the POEMSE algorithm is (detailed in § 3 but briefly now): (i) execute
under zero buffering; (ii) build the HB-paths separating potential competing
sends such as S0,2 with wildcard receives such as R2,0(∗); (iii) locate potential
culprit sends such as S0,0 (if any) that can break HB-paths thus making these
new sends match a wildcard receive, increasing non-determinism; (iv) if the
increased non-determinism leads to bugs, the potential culprit sends are actual
culprit sends.

In this example buffering S0,0 indeed lead to a deadlock, and so we located
an actual culprit send. Hence, this program is not slack elastic!

3 The POEMSE Algorithm

The POEMSE algorithm is an extension of the POE algorithm [18,19,20,21].
We present POEMSE at a high level using the examples in Figure 1(a) first,
Figure 1(b) next, and then that in Figure 2(a) last. All formal details are in [17].

We run the program as per our POE algorithm under zero buffering for all
sends. Running the example in Figure 1(a) instantly reveals the deadlock, al-
lowing the user to fix it. For Figure 1(b), POE will simply run through the code
without finding errors in the first pass. Being a stateless dynamic verifier, ISP
only keeps a stack history of the current execution. The happens-before graph
is built as in Figure 2(b). Next, ISP unwinds the stack history. For each wild-
card receive encountered, it will find out which sends could have matched should
other sends (potential culprit sends) have buffering. In our case, it will find that
S0,2(2) could have matched R2,0(∗) if we were to break the HB-path by buffering
S0,0 as said before.

Coming to Figure 2(a), when POEMSE initially executes forward, it runs the
whole program under zero buffering. It would find that R2,0(∗) matched S1,0(2),
and R2,6(∗) matched S2,4(2). Then stack unwinding proceeds as follows:
• When R2,6(∗) is popped from the stack, POEMSE will try to force another
sender to match the wildcard receive R2,6(∗). It does not find any culprit sends
that can be buffered to make it happen. This is clear because if another send
were to match R2,6(∗), it has to come from P1 (MPI’s non-overtaking). However,
there is no such sender.
• Thus, POEMSE will unwind more, finally popping R2,0(∗). At this point,
POEMSE will find that the culprit send of S0,0(1) indeed works, because buffering
this send immediately turns W0,1 into a no-op, breaking the HB-path S0,0(1) →
W0,1 → S0,2(2) → R2,0(∗) at W0,1 → S0,2(2).

Precise Dynamic Analysis for Slack Elasticity 157

Table 1. ParMETISb is ParMETIS∗ w. slack; ParMETIS∗ is ParMETIS modified to
use wildcards

Number of interleavings
(notice the extra necessary POEMSE POE
interleavings of POEMSE)

sendbuff.c 5 1
sendbuff-1a.c 2 (deadlock caught) 1
sendbuff2.c 1 1
sendbuff3.c 6 1
sendbuff4.c 3 1
Figure 2(a) 4 (dl caught) 2 (dl missed)
ParMETISb 2 1

Overhead of POEMSE on
ParMETIS / ParMETIS∗

(runtime in seconds POEMSE POE
(x) denotes x interleavings)

ParMETIS (4procs) 20.9 (1) 20.5 (1)
ParMETIS (8procs) 93.4 (1) 92.6 (1)

ParMETIS∗ 18.2 (2) 18.7(2)

• Now POEMSE will replay forward from this stack frame, initially giving no
buffering at all to subsequent sends. This will cause a head-to-head deadlock
between S1,0(2) trying to send to P2 and S2,4(1) trying to send to P1.
• If we were to buffer S1,0(2), this head-to-head deadlock will disappear. This
is why we may need to buffer some sends (culprit sends) and not buffer other
sends (head-to-head deadlock inducing sends).
In [17], we explain all these details, provides actual pseudo-codes and mathe-
matical proofs. Here are additional facts:
• In general, we may find multiple potential culprit sends. More than one might
need to be buffered to break an HB-path. However, it is also important to break
HB-paths in a minimal fashion –i.e., giving a “flood of buffering” is not a good
idea because we can mask later head-to-head deadlocks. Thus POEMSE always
allocates buffering for potential culprit sends only.
• It is only for deadlock checking that we need these precautions. All non-
deadlock safety violations can be checked with infinite buffering, which is simu-
lated as follows: we malloc as much buffer space as the message the MPI send
is trying to send, and copy away the data into it, and nullify MPI_Wait. Thus,
ISP when running POEMSE really converts MPI waits into no-ops.

4 Results and Conclusions

We first study variants of the examples in Figure 1, Figures 1(b) and 2(a) (called
sendbuff). These examples explore POEMSE’s capabilities to detect the different
matchings as well as deadlocks. For each of the sendbuff variants, POEMSE
correctly discovers the minimal number of send operations to be buffered in

158 S. Vakkalanka et al.

order to enable other sends to match with wildcard receives. We also reproduced
our example in Figure 2(b) as sendbuff-1a.c, where our algorithm indeed caught
the deadlock at the second interleaving, where S0,2(2) is matched with R2,0(∗).

Next we study large realistic examples that show that POEMSE adds virtually
no overheads. We used ParMETIS [14,15], a hypergraph partition library (14K
LOC of MPI/C), as a benchmark for measuring the overhead of POEMSE (shown
in Table 1 as ParMETIS (xprocs) where x is the number of processes that we
ran the benchmarks with. ParMETIS∗ is a modified version where we rewrote
a small part of the algorithm using wildcard receives. In most of our benchmarks
where no additional interleavings are needed, the overhead is less than 3%, even
in the presence of wildcard receives, where the new algorithm has to run extra
steps to make sure we have covered all possible matchings in the presence of
buffering.

Finally, we study large examples with slack inelastic patterns inserted into
them. This is reflected in Table 1 as ParMETIS b where we rewrote the al-
gorithm of ParMETIS again, this time not only to introduce wildcard receives,
but also to allow the possibility of a different order of matching that can only be
discovered by allowing some certain sends to be buffered. Our experiment shows
that POEMSE successfully discovered the alternative matching during the second
interleaving. POEMSE has handled all the large examples previously handled by
POE with only negligible overhead in practice.

The POEMSE algorithm in our actual ISP tool handles over 60 widely used
MPI functions, and hence is practical for many large MPI programs.

4.1 Concluding Remarks

In addition to MPI, MCAPI [11], CUDA [1], and OpenCL [13] include the same
kind of non-blocking calls and waits discussed here. Programmers worry about
the cost (the amount of memory) tied up by buffering. Memory costs and memory
power consumption already outweigh those figures for CPUs. Thus one likes to
allocate buffer space wisely.

Non-deterministic reception is an essential construct for optimization. Unfor-
tunately non-deterministic reception and buffering immediately leads to slack
variant behaviors. The code patterns that cause slack inelastic behaviors are not
that complex – meaning, they can be easily introduced.

We propose the POEMSE algorithm that detects such behaviors based on an
MPI-specific happens-before relation. It works by first locating all minimal sets
of non-blocking message send operations that must be buffered, so as to enable
other message send operations to match wildcard receives; and subsequently
running the dynamic analysis over all such minimal send sets. The overhead of
these steps is negligible in practice. A promising avenue of future research is to
detect slack inelastic behaviors during the design of new APIs.

Acknowledgments. We thank Grzegorz Szubzda and Subodh Sharma for their
valuable contributions, and Bronis R. de Supinski for his encouraging remarks.

Precise Dynamic Analysis for Slack Elasticity 159

References

1. Compute Unified Device Architecture (CUDA), http://www.nvidia.com/object/
cuda get.html

2. Danalis, A., Pollock, L., Swany, M., Cavazos, J.: Mpi-aware compiler optimizations
for improving communication-computation overlap. In: ICS 2009 (2009)

3. DeSouza, J., Kuhn, B., de Supinski, B.R., Samofalov, V., Zheltov, S., Bratanov,
S.: Automated, scalable debugging of mpi programs with Intel Message Checker.
In: SE-HPCS 2005 (2005)

4. http://www.hpcx.ac.uk/support/FAQ/eager.html
5. Hilbrich, T., de Supinski, B.R., Schulz, M., Müller, M.S.: A graph based approach

for MPI deadlock detection. In: ICS 2009, pp. 296–305 (2009)
6. http://www.cs.unb.ca/acrl/training/general/ibm parallel programming/

pgm3.PDF
7. PE MPI buffer management for eager protocol, http://publib.boulder.ibm.

com/infocenter/clresctr/vxrx/index.jsp?topic=/com.ibm.cluster.pe431.
mpiprog.doc/am106 buff.html

8. Lamport, L.: Time, clocks, and the ordering of events in a distributed system.
Commun. ACM 21(7), 558–565 (1978)

9. Lusk, R., Pieper, S., Butler, R., Chan, A.: Asynchronous dynamic load balancing,
http://unedf.org/content/talks/Lusk-ADLB.pdf

10. Manohar, R., Martin, A.J.: Slack elasticity in concurrent computing. In: Jeuring,
J. (ed.) MPC 1998. LNCS, vol. 1422, pp. 272–285. Springer, Heidelberg (1998)

11. http://www.multicore-association.org
12. http://www.mpiblast.org
13. OpenCL: Open Computing Language, http://www.khronos.org/opencl
14. ParMETIS - Parallel graph partitioning and fill-reducing matrix ordering. http://

glaros.dtc.umn.edu/gkhome/metis/parmetis/overview
15. Schloegel, K., Karypis, G., Kumar, V.: Parallel static and dynamic multi-constraint

graph partitioning. Concurrency and Computation: Practice and Experience 14,
219–240 (2002)

16. Siegel, S.F.: Efficient verification of halting properties for MPI programs with wild-
card receives. In: Cousot, R. (ed.) VMCAI 2005. LNCS, vol. 3385, pp. 413–429.
Springer, Heidelberg (2005)

17. Vakkalanka, S.: Efficient Dynamic Verification Algorithms for MPI Applications.
PhD Dissertation (2010), http://www.cs.utah.edu/Theses

18. Vakkalanka, S., DeLisi, M., Gopalakrishnan, G., Kirby, R.M.: Scheduling consider-
ations for building dynamic verification tools for MPI. In: Parallel and Distributed
Systems - Testing and Debugging (PADTAD-VI), Seattle, WA (July 2008)

19. Vakkalanka, S., DeLisi, M., Gopalakrishnan, G., Kirby, R.M., Thakur, R., Gropp,
W.: Implementing efficient dynamic formal verification methods for MPI programs.
In: Lastovetsky, A., Kechadi, T., Dongarra, J. (eds.) EuroPVM/MPI 2008. LNCS,
vol. 5205, pp. 248–256. Springer, Heidelberg (2008)

20. Vakkalanka, S., Gopalakrishnan, G., Kirby, R.M.: Dynamic Verification of MPI
Programs with Reductions in Presence of Split Operations and Relaxed Orderings.
In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 66–79. Springer,
Heidelberg (2008)

21. Vakkalanka, S., Vo, A., Gopalakrishnan, G., Kirby, R.M.: Reduced execution se-
mantics of mpi: From theory to practice. In: Cavalcanti, A., Dams, D.R. (eds.) FM
2009. LNCS, vol. 5850, pp. 724–740. Springer, Heidelberg (2009)

http://www.nvidia.com/object/cuda_get.html
http://www.nvidia.com/object/cuda_get.html
http://www.hpcx.ac.uk/support/FAQ/eager.html
http://www.cs.unb.ca/acrl/training/general/ibm_parallel_programming/pgm3.PDF
http://www.cs.unb.ca/acrl/training/general/ibm_parallel_programming/pgm3.PDF
http://publib.boulder.ibm.com/infocenter/clresctr/vxrx/index.jsp?topic=/com.ibm.cluster.pe431.mpiprog.doc/am106_buff.html
http://publib.boulder.ibm.com/infocenter/clresctr/vxrx/index.jsp?topic=/com.ibm.cluster.pe431.mpiprog.doc/am106_buff.html
http://publib.boulder.ibm.com/infocenter/clresctr/vxrx/index.jsp?topic=/com.ibm.cluster.pe431.mpiprog.doc/am106_buff.html
http://unedf.org/content/talks/Lusk-ADLB.pdf
http://www.multicore-association.org
http://www.mpiblast.org
http://www.khronos.org/opencl
http://glaros.dtc.umn.edu/gkhome/metis/parmetis/overview
http://glaros.dtc.umn.edu/gkhome/metis/parmetis/overview
http://www.cs.utah.edu/Theses

Implementing MPI on Windows: Comparison

with Common Approaches on Unix�

Jayesh Krishna1, Pavan Balaji1, Ewing Lusk1,
Rajeev Thakur1, and Fabian Tillier2

1 Argonne National Laboratory, Argonne, IL 60439
2 Microsoft Corporation, Redmond, WA 98052

Abstract. Commercial HPC applications are often run on clusters that
use the Microsoft Windows operating system and need an MPI imple-
mentation that runs efficiently in the Windows environment. The MPI
developer community, however, is more familiar with the issues involved
in implementing MPI in a Unix environment. In this paper, we discuss
some of the differences in implementing MPI on Windows and Unix,
particularly with respect to issues such as asynchronous progress, pro-
cess management, shared-memory access, and threads. We describe how
we implement MPICH2 on Windows and exploit these Windows-specific
features while still maintaining large parts of the code common with the
Unix version. We also present performance results comparing the per-
formance of MPICH2 on Unix and Windows on the same hardware. For
zero-byte MPI messages, we measured excellent shared-memory latencies
of 240 and 275 nanoseconds on Unix and Windows, respectively.

1 Introduction

Historically, Unix (in its various flavors) has been the commonly used operating
system (OS) for high-performance computing (HPC) systems of all sizes, from
clusters to the largest supercomputers. In the past few years, however, Microsoft
Windows has steadily increased its presence as an operating system for running
HPC clusters, particularly in the commercial arena. Commercial applications
in areas such as computational fluid dynamics, structural analysis, materials,
industrial design and simulation, seismic modeling, and finance run on Windows
clusters. Windows has also made inroads at the very high end of the spectrum.
For example, the Dawning 5000A cluster at the Shanghai Supercomputer Center
with 30,720 cores and running Windows HPC Server 2008 achieved more than
200 TF/s on LINPACK and ranked 10th in the November 2008 edition of the
Top500 list [16].

Since the vast majority of HPC applications use MPI as the programming
model, the use of Windows for HPC clusters requires an efficient MPI imple-
mentation. Given the historical prevalence of Unix in the HPC world, however,
� This work was supported in part by a grant from Microsoft Corp. and in part by

the Office of Advanced Scientific Computing Research, Office of Science, U.S. De-
partment of Energy, under Contract DE-AC02-06CH11357.

R. Keller et al. (Eds.): EuroMPI 2010, LNCS 6305, pp. 160–169, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Implementing MPI on Windows 161

the MPI developer community tends to have more expertise in implementing
and tuning MPI on Unix platforms. In this paper, we discuss some of the issues
involved in implementing MPI on Windows and how they differ from commonly
used approaches for Unix. We particularly focus on issues such as asynchronous
progress, process management, shared-memory access, and threads.

The MPICH implementations of MPI (both the older MPICH-1 and the cur-
rent MPICH2 implementations) have supported both Unix and Windows for
many years. Here we describe how we implement MPICH2 to support both
Unix and Windows efficiently, taking advantage of the special features of Win-
dows while still maintaining a largely common code base. We also present per-
formance results on the Abe cluster at the National Center for Supercomputing
Applications (NCSA, University of Illinois), where we ran MPICH2 with Unix
and Windows on the same hardware.

The rest of this paper is organized as follows. In Section 2, we provide an
overview of MPICH2 and its internal architecture. In Section 3, we discuss some
of the differences in implementing MPI on Windows and Unix. Performance
results are presented in Section 4. We discuss related work in Section 5 and
conclude in Section 6 with a brief look at future work.

2 Background

ROMIO

S
oc

k

Application

MPICH2

CH3 Device ...BG

ADI3

MPE
MPI

PVFS ...GPFS XFS

N
em

es
is

S
C

T
P

S
S
H

M

S
H

M

CH3

. .
 .

.

TCP IB/iWARP PSM MX

Cray

Support for High-speed Networks

– 10-Gigabit Ethernet iWARP, Qlogic PSM,
InfiniBand, Myrinet (MX and GM)

Extended to support proprietary platforms

– BlueGene, Cray, SiCortex

Distribution with ROMIO MPI/IO library

Profiling and visualization tools (MPE, Jumpshot)

ADIO

MPD

SMPD

Gforker

P
M

I

P
M

P
I

Nemesis Interface

GM

Jumpshot

Hydra

Fig. 1. MPICH2 architecture

MPICH2 [8] is a high-
performance and widely port-
able implementation of MPI. It
supports the latest official ver-
sion of the MPI standard, MPI
2.2 [7]. MPICH2 has a modu-
lar architecture that is designed
to make it easy to plug in new
network devices, process man-
agers, and other tools (see Fig-
ure 1). This design enables any-
one to port MPICH2 easily and
efficiently to new platforms.

A key feature of MPICH2 is a scalable, multinetwork communication subsys-
tem called Nemesis [3]. Nemesis offers very low-latency and high-bandwidth com-
munication by using efficient shared memory operations, lock-free algorithms,
and optimized memory-copy routines. As a result, MPICH2 achieves a very low
shared-memory latency of around 240–275 ns. We have developed an efficient
implementation of Nemesis for Windows.

An MPI library typically requires thread services (e.g., thread creation, mu-
tex locks), shared-memory services (for intranode communication), internode
communication services (e.g., TCP/IP sockets), and OS process-management
services. The APIs for these features can differ among operating systems and
platforms. For portability, MPICH2 uses an internal abstraction layer for these

162 J. Krishna et al.

services, which can be implemented selectively on different OS platforms.
MPICH2 also includes a portable library for atomic operations, called OPA
(Open Portable Atomics) [14], which provides OS-independent atomic primi-
tives, such as fetch-and-increment and compare-and-swap. In addition, we have
developed a runtime system that can launch MPI jobs on clusters with any flavor
of Unix or Windows.

As a result, MPICH2 can run efficiently on both Windows and Unix operating
systems while maintaining a largely common code base.

3 Implementing MPI on Windows versus Unix

From the MPI perspective, Windows and Unix are just different OS flavors,
providing similar operating system services. However, a high-performance imple-
mentation of MPI on the two OS flavors can differ significantly. These differences
can make building a widely portable, high-performance library a huge challenge.
In this section, we discuss some of the functionality differences between the two
operating systems and the corresponding challenges and benefits.

3.1 Asynchronous Progress

Windows supports an asynchronous model of communication, in which the user
initiates an operation and the operating system ensures progress on the operation
and notifies the user when the operation is completed. In Nemesis on windows we
provide asynchronous internode communication by using an I/O completion ob-
ject, exposed by the OS as a completion port, with TCP/IP sockets. To initiate
communication, Nemesis posts a request to the kernel for the operation and waits
for a completion event. When the request is completed, the kernel queues a com-
pletion packet on the completion port associated with the I/O completion object.

MPI implementations on Unix systems typically use nonblocking progress to
implement internode communication using TCP/IP sockets. In this case, the
library polls for the status of a socket and processes the requested/pending
operation. Nonblocking progress differs from asynchronous progress, in which the
OS performs the requested operation on the user’s behalf. Nonblocking progress
is typically implemented on Unix systems by using the POSIX poll system call.

Nonblocking progress is generally inefficient compared with asynchronous
progress because of deficiencies in poll. It also requires the MPI implemen-
tation to do more work than with asynchronous progress where some work is
offloaded to the operating system. The poll system call requires the set of socket
descriptors to be polled to be contiguous in memory. This restriction increases
bookkeeping and reduces scalability of libraries that allow for dynamic connec-
tions or that optimize memory allocated for the socket descriptors by dynam-
ically expanding it. When poll returns, indicating the occurrence of an event,
the user must search through the entire set of descriptors to find the one with the
event. Some operating systems provide event-notification mechanisms similar to

poll
poll
poll
poll

Implementing MPI on Windows 163

completion ports on Windows, for example, epoll in Linux and kqueue in BSD.
However, these mechanisms are not widely portable across the various flavors of
Unix. In Nemesis, we use an asynchronous internode communication module for
Windows and a nonblocking internode communication module for Unix systems.

Another MPI feature that can take advantage of asynchronous services is gen-
eralized requests, which allow users to define their own nonblocking operations
that are represented by MPI request objects. MPI specifies that the user is re-
sponsible for causing progress on generalized requests. On Unix, the user may
be required to use an external thread. Windows allows users to register callback
functions with asynchronous OS calls; this mechanism allows a user library to
use generalized requests without needing an external thread to cause progress
on the operations.

3.2 Process Management

Process management in MPI typically involves providing a mechanism to launch
MPI processes and setting the appropriate runtime environment for the processes
to be able to connect to each other.

Launching MPI Jobs. On Unix systems that do not have an external job
launcher, MPI process managers typically use fork to launch processes locally
and network protocols such as SSH to launch processes remotely. These network-
protocol agents assume the existence of a standalone daemon process on each
node that can interact with the remote protocol agent. Since Windows does
not natively provide a network-protocol mechanism similar to SSH, we need a
distributed process-management framework with standalone manager daemons
on each Windows node.

When launching MPI jobs, the remote MPI processes must be launched with
the user’s credentials. When using a network protocol such as SSH, the protocol
provides this service. On Windows, however, the process-manager daemon must
do this job. In MPICH2, we have implemented a process manager, called SMPD,
that provides process-management functionalities to MPI jobs on both Windows
and Unix systems. On Windows, the standalone SMPD daemon impersonates the
user launching the job by using the user’s credentials. Where available, SMPD
can also use technologies such as Active Directory and the job scheduler in
Windows HPC Server 2008 to manage user credentials and launch MPI jobs.

Managing MPI Processes. Once the MPI processes are launched, the process
manager is responsible for managing them. It must provide information to the
processes so that they can connect to each other; handle stdin, stdout, and
stderr; and handle termination and shutdown. SMPD provides these features
using a communication protocol that is independent of the data model used
by the individual nodes of a cluster. This allows users to run MPI jobs on a
heterogeneous cluster containing both Unix and Windows nodes.

epoll
kqueue
fork
stdin
stdout
stderr

164 J. Krishna et al.

3.3 Intranode Communication

MPI implementations typically use some form of shared-memory communication
for communicating between MPI processes running on a single node. Nemesis uses
lock-free shared-memory queues for improving scalability and reducing overhead
for intranode communication [3]. The use of these queues reduces the intranode
communication latency for small messages and is particularly effective when the
communicating processes share CPU data caches. When they do not, however, the
performance often degrades.

An MPI implementation can also use OS services that allow users to trans-
fer data directly between the memories of two processes. This approach can
improve performance for large-message transfers among processes that do not
share a cache. A variety of standard and nonstandard methods for doing so are
available on Unix [2]. Windows provides an OS service for directly accessing the
address space of a specified process, provided the process has appropriate secu-
rity privileges. For small messages, however, we observed that this service has
more overhead than the lock-free shared-memory queues in Nemesis. Therefore,
we use the remote-copy method only for large messages in Nemesis on Windows.

3.4 Threads

The MPI standard clearly defines the interaction between user threads and MPI
in an MPI program [5]. The user can request a particular level of thread support
from the MPI implementation, and the implementation can indicate the level
of thread support provided. On both Windows and Unix, MPICH2 supports
the MPI_THREAD_MULTIPLE level, which allows any user thread to make MPI
calls at any time. This feature requires some thread-locking mechanisms in the
implementation in order to make it thread safe.

Unix platforms typically use a POSIX threads (Pthreads) library, whereas
Windows has its own version of threads. MPICH2 uses an OS-independent
thread-abstraction layer that enables it to use different threads libraries and
thread-locking mechanisms portably. The default version of MPICH2 uses a
global lock to control access to an MPI function from multiple threads. A thread
calling an MPI function tries to obtain this global lock and then releases the
lock after completing the call or before blocking on an OS request. When a
lock is released, a thread waiting for the global lock gets access to the lock and
performs progress on its MPI communication. We are also developing a more
efficient version of MPICH2 that supports finer-grained locks [1].

4 Experimental Evaluation and Analysis

In this section, we evaluate the different strategies discussed in the paper and
compare the results. We ran all tests on the Abe cluster at NCSA, which has both
Unix and Windows nodes. Each node consists of 2 quad-core Intel 64 (Clover-
town) 2.33 GHz processors with a 2x4 MB L2 cache, 4x32 K L1 cache, and 8 GB

MPI_THREAD_MULTIPLE

Implementing MPI on Windows 165

RAM. The Unix nodes ran Linux 2.6.18 and used Intel C/C++ 10.1 compilers.
The Windows nodes were installed with Windows Server 2008 HPC Edition SP2
and the Visual Studio 2008 compilers. On both Unix and Windows, we com-
piled MPICH2 with aggressive optimization and disabled error checking of user
arguments. The interconnection network used was gigabit Ethernet.

4.1 Asynchronous Progress

We compared asynchronous and nonblocking progress by calculating the amount
of overlap of communication and computation with the two strategies. To mea-
sure the performance of nonblocking progress on Windows, we implemented a
version of Nemesis that uses the select system call since it is more portable
across various versions of Windows than poll. The default version of Nemesis
on Windows uses asynchronous progress with I/O completion ports.

0

5

10

15

20

25

30

35

40

45

50

0 4 16 64 256

Message Size (bytes)

L
a

te
n

c
y

 (
μ

s
)

MPI time (iocp) Compute time (iocp)

MPI time (select) Compute time(select)

Fig. 2. Time spent in the MPI library
(MPI time) and time available for user
computation (Compute time) when using
asynchronous progress (iocp) versus non-
blocking progress (select) on Windows for
internode communication

We measured communication la-
tency and bandwidth by using an
MPI version of the popular Net-
PIPE benchmark [11], called NetMPI,
which performs a nonblocking receive,
a blocking send, and an MPI_Wait
multiple times in a loop. We modi-
fied the benchmark to perform several
nonblocking sends and receives at a
time and used MPI_Testall to test
for their completion without block-
ing. Between calls to MPI_Testall,
we performed some computation for
≈250 ns. The less time spent by the
MPI implementation in MPI_Testall,
the more time available to the user to
perform computation.

Figure 2 shows the breakdown of
the time spent within the MPI library
and the time available for the user’s computation when sending a message by
using asynchronous progress versus nonblocking progress. As expected, asyn-
chronous progress results in less time being spent within the MPI library and
more time available for user computation. The reason is that with asynchronous
progress the MPI library delegates the reading/writing of data from/to TCP/IP
sockets to the OS, whereas with nonblocking progress the library polls for events
and then performs the read/write. When I/O is delegated to the OS, the library
has little work to do and quickly returns to the application.

4.2 Intranode Communication

In this experiment, we compared the intranode communication performance us-
ing lock-free shared-memory queues and direct remote-memory access for large

select
poll
MPI_Wait
MPI_Testall
MPI_Testall
MPI_Testall

166 J. Krishna et al.

messages. We also compare the intranode performance of MPICH2 on Windows
and Unix for small and large messages. We used the Ohio State University (OSU)
microbenchmarks [15] to measure latency and bandwidth in all cases.

0

1000

2000

3000

4000

5000

6000

7000

1 4 16 64 256 1K 4K 16K 64K 256K 1M 4M

Message Size (bytes)

B
a

n
d

w
id

th
 (

M
B

/s
)

shm (shared cache) shm (no shared cache)
rrvm (shared cache) rrvm (no shared cache)

Fig. 3. Intranode communication band-
width using shared-memory queues (shm)
versus direct copy (rrvm) on Windows

We have implemented a read
remote virtual memory (RRVM)
module in Nemesis that performs
remote memory access for large
messages (≥16 KB) on Windows.
Figure 3 shows the intranode com-
munication bandwidth when using
lock-free shared-memory queues ver-
sus RRVM on Windows. We consid-
ered two cases, one where the com-
municating processes shared a 4 MB
L2 cache and another case where the
processes were launched on cores that
do not share a data cache. We observe
that the shared-memory queues per-
form better than the RRVM module
for some message sizes when the pro-
cesses share a data cache. However the RRVM module delivers a better overall
performance because it performs significantly better when the processes don’t
share a cache.

The jagged graph in the shared-cache case is because at 16 KB, the double-
buffering scheme used for communication runs out of L1 cache. The performance
again improves from 128 KB because Nemesis switches to a different protocol
that allows pipelining of messages. The bandwidth then drops at 2 MB because
the double-buffering scheme runs out of L2 cache. We will investigate whether
tuning some parameters in Nemesis can help smoothen the curve.

Figure 4 shows the intranode communication latency for small messages and
bandwidth for large messages on Windows and Unix. The latency results on
the two operating systems are excellent (240 ns on Unix and 275 ns on Win-
dows for zero-byte MPI messages) and comparable (only ≈35 ns apart for small
messages). For small messages, we use lock-free shared-memory queues for in-
tranode communication on both systems. Therefore, we observe a performance
degradation on both Unix and Windows for small messages when the commu-
nicating processes do not share a cache. For large messages, the bandwidth on
Unix degrades substantially when the processes do not share a cache, whereas
on Windows the performance is good in both cases because of the use of direct
copy.

4.3 Internode Communication

We also studied MPI internode communication performance using TCP on both
Windows and Unix. We measured the latency and bandwidth for internode com-
munication by using the OSU microbenchmarks. Figure 5 shows the results.

Implementing MPI on Windows 167

0

0.5

1

1.5

2

2.5

3

0 1 2 4 8 16 32 64 128 256 512 1K

Message Size (bytes)

L
a

te
n

c
y

 (
μ

s
)

windows (shared cache) windows (no shared cache)
unix (shared cache) unix (no shared cache)

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

1 4 16 64 256 1K 4K 16K 64K 256K 1M 4M

Message Size (bytes)

B
a

n
d

w
id

th
 (

M
B

/s
)

windows (shared cache) windows (no shared cache)
unix (shared cache) unix (no shared cache)

Fig. 4. Intranode communication latency and bandwidth on Windows and Unix

0

20

40

60

80

100

120

140

0 1 2 4 8 16 32 64 128 256 512 1024

Message Size (bytes)

L
a

te
n

c
y

 (
μ

s
)

unix windows

0

20

40

60

80

100

120

140

1 4 16 64 256 1K 4K 16K 64K 256K 1M 4M

Message Size (bytes)

B
a

n
d

w
id

th
 (

M
B

/s
)

windows unix

Fig. 5. Internode MPI communication latency and bandwidth on Windows and Unix
using Nemesis over TCP/IP

We observe that, in these experiments, MPICH2 on Unix performs better than
MPICH2 on Windows, with respect to both latency and bandwidth. We are in-
vestigating the cause of the difference, but we expect that further tuning and
optimization of the Nemesis TCP module for Windows will eliminate the perfor-
mance gap. We note that these microbenchmarks measure only point-to-point
communication performance, whereas overall application performance depends
also on the scalability of the underlying communication subsystem and the abil-
ity to overlap communication with computation. We expect the Windows version
to have good overall application performance because the asynchronous model
with completion ports is scalable and supports overlap. To verify this, we plan
to conduct experiments with applications as described in Section 6.

4.4 Cost of Supporting Thread Safety

The MPI library incurs some overhead to support multiple user threads.
To measure this overhead, we modified the OSU micro-benchmark to use
MPI_Init_thread instead of MPI_Init and measured the latency for intranode

MPI_Init_thread
MPI_Init

168 J. Krishna et al.

communication with MPI_THREAD_SINGLE and MPI_THREAD_MULTIPLE. Note that,
in both cases, the program has only one thread, but in one case support for multi-
threading is disabled and in the other it is enabled, requiring the implementation
to acquire thread locks in case multiple threads make MPI calls.

Figure 6 shows the overhead as the percentage increase in latency over the
MPI_THREAD_SINGLE case when multithreading is enabled. We observe that the
overhead is significantly lower on Windows than on Unix. The Unix version uses
Pthread mutex locks for thread safety; the Windows version uses intraprocess
locks (critical sections). We note that, on Windows, we initially used interprocess
thread locks (mutexes), but their performance was much worse. By switching
to intraprocess locks (critical sections), the performance improved significantly.
Intraprocess locks are sufficient for Nemesis because it uses lock-free shared-
memory queues for interprocess communication.

5 Related Work

0

20

40

60

80

100

120

0 1 2 4 8 16 32 64 128 256 512 1024

Message Size (bytes)

L
a

te
n

c
y

 O
v

e
rh

e
a

d
 (

%
)

windows unix

Fig. 6. Overhead in intranode MPI com-
munication latency on Windows and Unix
when multithreading is enabled

Although MPI implementations have
traditionally been developed on Unix,
several MPI implementations are now
available on Windows. Microsoft and
Intel have developed MPI implemen-
tations for Windows [6,10], which
are both derived from MPICH2.
DeinoMPI [4] is another implementa-
tion of MPI, derived from MPICH2,
for Windows. In addition, Open
MPI has recently added support for
Windows [13]; and MPI.NET [9]
is an implementation that provides
C# bindings for Microsoft’s .NET
environment.

6 Conclusions and Future Work

We have discussed several issues in implementing MPI on Windows and com-
pared them with approaches on Unix. We have also discussed how we imple-
mented MPICH2 to exploit OS-specific features while still maintaining a largely
common code base. Performance results with both Windows and Unix on the
same hardware demonstrate that the performance of MPICH2 on both operating
systems is comparable. We observed some difference in internode communication
performance, which we plan to investigate and optimize on Windows. MPICH2
takes advantage of the asynchronous communication features in Windows, which
enable applications to overlap communication with computation.

Windows HPC Server 2008 introduced a new low-latency RDMA network
API, called Network Direct [12], that enables applications and libraries to use

MPI_THREAD_SINGLE
MPI_THREAD_MULTIPLE
MPI_THREAD_SINGLE

Implementing MPI on Windows 169

the advanced capabilities of modern high-speed networks, such as InfiniBand.
We plan to implement a Nemesis module for Network Direct and study the
performance of MPICH2 with high-speed networks on Windows. We also plan
to evaluate application-level performance with MPICH2 on Windows, including
commercial MPI applications at large scale.

References

1. Balaji, P., Buntinas, D., Goodell, D., Gropp, W., Thakur, R.: Fine-grained mul-
tithreading support for hybrid threaded MPI programming. International Journal
of High Performance Computing Applications 24(1), 49–57 (2010)

2. Buntinas, D., Goglin, B., Goodell, D., Mercier, G., Moreaud, S.: Cache-efficient,
intranode, large-message MPI communication with MPICH2-Nemesis. In: Proc. of
the 2009 International Conference on Parallel Processing, pp. 462–469 (2009)

3. Buntinas, D., Mercier, G., Gropp, W.: Design and evaluation of Nemesis, a scal-
able, low-latency, message-passing communication subsystem. In: Proc. of 6th
IEEE/ACM Int’l Symp. on Cluster Computing and the Grid (CCGrid) (May 2006)

4. Deino MPI, http://mpi.deino.net/
5. Gropp, W., Thakur, R.: Thread safety in an MPI implementation: Requirements

and analysis. Parallel Computing 33(9), 595–604 (2007)
6. Intel MPI, http://software.intel.com/en-us/intel-mpi-library/
7. Message Passing Interface Forum: MPI: A Message-Passing Interface Standard,

Version 2.2 (September 2009), http://www.mpi-forum.org
8. MPICH2 – A high-performance portable implementation of MPI, http://www.

mcs.anl.gov/mpi/mpich2
9. MPI.NET: A high performance MPI library for.NET applications, http://osl.

iu.edu/research/mpi.net/
10. Microsoft MPI, http://msdn.microsoft.com/en-us/library/bb524831(VS.85).

aspx
11. NetPIPE: A network protocol independent performance evaluator, http://www.

scl.ameslab.gov/netpipe/
12. Network Direct: A low latency RDMA network API for Windows.

http://msdn.microsoft.com/en-us/library/cc9043(v=VS.85).aspx
13. Open MPI, http://www.open-mpi.org
14. Open Portable Atomics library,

https://trac.mcs.anl.gov/projects/openpa/wiki
15. OSU Micro-Benchmarks (OMB),

http://mvapich.cse.ohio-state.edu/benchmarks/
16. Top500 list (November 2008), http://www.top500.org/lists/2008/11

http://mpi.deino.net/
http://software.intel.com/en-us/intel-mpi-library/
http://www.mpi-forum.org
http://www.mcs.anl.gov/mpi/mpich2
http://www.mcs.anl.gov/mpi/mpich2
http://osl.iu.edu/research/mpi.net/
http://osl.iu.edu/research/mpi.net/
http://msdn.microsoft.com/en-us/library/bb524831(VS.85).aspx
http://msdn.microsoft.com/en-us/library/bb524831(VS.85).aspx
http://www.scl.ameslab.gov/netpipe/
http://www.scl.ameslab.gov/netpipe/
http://msdn.microsoft.com/en-us/library/cc9043(v=VS.85).aspx
http://www.open-mpi.org
https://trac.mcs.anl.gov/projects/openpa/wiki
http://mvapich.cse.ohio-state.edu/benchmarks/
http://www.top500.org/lists/2008/11

Compact and Efficient Implementation of the

MPI Group Operations

Jesper Larsson Träff

Department of Scientific Computing, University of Vienna
Nordbergstrasse 15C, A-1090 Vienna, Austria

traff@par.univie.ac.at

Abstract. We describe a more compact representation of MPI process
groups based on strided, partial sequences that can support all group
and communicator creation operations in time proportional to the size
of the argument groups. The worst case lookup time (to determine the
global processor id corresponding to a local process rank) is logarith-
mic, but often better (constant), and can be traded against maximum
possible compaction. Many commonly used MPI process groups can be
represented in constant space with constant lookup time, for instance
the process group of MPI COMM WORLD, and all consecutive subgroups of
this group, but also many, many others). The representation never uses
more than one word per process, but often much less, and is in this
sense strictly better than the trivial, often used representation by means
of a simple mapping array. The data structure and operations have all
been implemented, and experiments show very worthwhile space sav-
ings for classes of process groups that are believed to be typical of MPI
applications.

1 Introduction

Among the fundamental abstractions of the Message-Passing Interface (MPI)
[10,7] are the notions of process group and communicator. A process group is a
set of consecutively ranked processes that are mapped to a set of distinct pro-
cessors, such that no two processes map to the same processor. A communicator
has an associated process group (two, for the case of inter-communicators), and
processes within this group can communicate without interference from com-
munication on other communicators. Process groups are local objects that are
created and maintained by the individual processors. In MPI a process group
is simply a(n ordered) list of the different processors [m0, m1, . . . , mp−1] of the
group. Each mi is a global processor id (an index or a pointer, for instance), and
p is called the size of the group. The index i, 0 ≤ i < p, of processor mi in a
process group is called the (group) local rank of the processor.

For the efficient implementation of MPI a fast mapping π : {0, . . . p − 1} →
{0, . . . , m − 1} from local ranks to global ids for any given process group is
needed. MPI implementations typically represent this mapping by an array as-
sociated with the process group that maps directly from local to global rank.

R. Keller et al. (Eds.): EuroMPI 2010, LNCS 6305, pp. 170–178, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Compact and Efficient Implementation of the MPI Group Operations 171

This implementation which requires p words of storage for a group of size p is
not scalable in space, and will run into problems on very large systems with
limited memory per processor (relative to the number of processors) [1]. It is
therefore relevant to investigate more space efficient group representations that
still allow fast lookup and can support the MPI group manipulation operations
as well. The problem was considered in [3], which described limited solutions
for restricted cases of group operations for the OpenMPI implementation [4].
Very recently, much more thorough, scalable communicator and group imple-
mentations were presented in [6], which proposes and evaluates both local, more
compact group representations as well as means for sharing group representa-
tions among processes. For the local representations a framework is given making
it possible to use several different representations with various tradeoffs between
compactness and lookup time. The paper also investigates alternative definitions
of an MPI process group facility, that can be more amenable to compact and
shared implementations. The present paper in contrast develops one possible,
local representation based on strided sequences in detail.

We describe a simple representation of groups based on finding and compact-
ing strided (arithmetic) partial sequences in the processor lists. We aim to show
that this in many cases give good compaction (down to constant space for many
common application groups), that is only in some cases offset by non-constant,
logarithmic in the worst case, lookup time. The contention is that many MPI ap-
plications creates subgroups with a regular, partially strided structure, and the
representation are well suited to such cases. Application studies are needed to
determine to what extent this claim is well founded. Other compaction schemes
may have properties that make them good in other situations.

The representation can support explicit, eager algorithms for all of the MPI
group constructor operations, taking only m bits of extra work space for all
(except one) of these operations. The solution is a general representation of ar-
rays, and does not exploit the special (injective) properties of the process to
processor mapping. Better solutions by exploiting such properties or the spe-
cific group operations that need to be supported in MPI are definitely possible.
Succinct representations of permutations and other objects have been studied
in [8,9,2]. In [5] a scheme for representation of functions with constant time
lookup and compression close to the entropy of the sequence of function values
is given. This looks as theoretically desired for MPI, however, it is not clear
what the actual compression will be for the relative regular maps that may
arise in MPI applications, also not whether construction times are acceptable
for supporting the group constructors; implementation results are not available.
We note that since the number of possible process rank to processor id maps is
m!/(m − p)!, the number of bits required to distinguish between these maps is
Θ(log(m!/(m − p)!)) = Θ(m log m).

2 Process Group Operations

The MPI standard defines a number of local operations on process groups for
constructing new groups out of old ones [7, Section 6.3]. A group consisting of all

172 J.L. Träff

started processors (in some externally defined order) is initially associated with
the communicator MPI COMM WORLD, and all other groups are built from this (bar
new processors that can be added by dynamic process management).

We outline a more or less standard, eager, explicit implementation of the
group operations that in all cases except one takes only m extra bits of work
space. Each group operation allocates and deallocates an m-bit array.

Let G, G1, G2 be process groups, and assume they are represented in such a
way that it is possible to scan through the processors in the prescribed order
in linear time in the size of the group. The new group is constructed by list-
ing its processors in order. From this a (compact) representation of the group
needs to be constructed eagerly, preferably without having to explicitly expand
(uncompact) any the processor lists.

– MPI Group size(G) and MPI Group rank(G) return the size of the group and
the local rank of the calling processor in the group (if belonging, MPI PROC -
NULL otherwise). For the latter each group constructor needs to record the
new local rank of the calling processor.

– MPI Group union(G1, G2) is the group (list) consisting of the processors of
G1 (in the order of G1) followed by the processors in G2 that are not in G1.
The union is computed by scanning through the processors of G2 setting bit
mj in the work array, next scanning through G1 resetting bit mi, then listing
the processors of G1 in order followed by the processors of G2 in order for
which the corresponding bit mj is still set.

– MPI Group intersection(G1, G2) is the group (list) consisting of the processors
of G1 (in the order of G1) that are also in G2. This is computed by scanning
through the processors of G1 resetting bit mi in the work array, next scanning
through G2 setting bit mj , then listing the processors of G1 in order for which
the corresponding bit mi is set.

– MPI Group difference(G1, G2) is the group (list) consisting of the processors
of G1 that are not in G2. This is computed by scanning through the pro-
cessors of G1 setting bit mi in the work array, next scanning through G2
resetting bit mj , then listing the processors of G1 in order for which the
corresponding bit mi is still set.

– MPI Group incl(G, L) is the group (list) consisting of the processors with local
rank in the list L (without repetitions) in that order. The group is computed
by simply listing the processors in G in the order [mL[0], mL[1], . . . , mL[n−1]]
where n is the length of L.

– MPI Group excl(G, L) is the group (list) consisting of the processors of G that
are not in L in the order of G. This is computed by first scanning through the
processors of G setting bit mi, then scanning through L resetting each bit
mL[i], then listing the processors of G in order for which the corresponding
bit mi is still set.

– MPI Group range incl(G, n, R) is the group formed by inclusion of the ranks
given implicitly by the n ranges R. Each range is a triple (f, s, l) of first
(local) rank f , stride s and last rank l which defines a list of local ranks
f, f + s, f + 2s, . . . f + � l−f

s �s.

Compact and Efficient Implementation of the MPI Group Operations 173

– MPI Group range exclG, n, R) is the group formed by exclusion of the ranks
given implicitly by the n ranges R.

– MPI Group translate ranks(G1, L, G2) is the list the local ranks in G2 of the
processors with local ranks in L of G1 in the order of L (if existing, oth-
erwise MPI PROC NULL). For translation an m-sized integer array is needed.
First all global ranks of G1 with local rank in L are marked as untranslated
MPI PROC NULL in the array. Scanning through G2 all mj are marked with
their local rank j in the array. Scanning through L the local rank in G2 (or
MPI PROC NULL) can be found at index mL[i] of G1 in the array.

– MPI Group compare(G1, G2) compares the two groups for identity (same pro-
cessors in the same order) or similarity (same processors, different order).
Identity is checked by scanning both groups in parallel and checking whether
the processors occur in the same order. For similarity, scan through G1 and
set the corresponding bits mi, then scan through G2 and reset the bits mj .
Scanning again through G1 if all bits mi are now reset, G1 is a subgroup of
G2. If similarly G2 is a subgroup of G1, the two groups are similar.

In each of the operations (except for MPI Group translate ranks the m-bit work
array is allocated (m-integer work array for the translation operation), but no
potentially expensive initialization is needed. This is taken care of by the scans
through the groups, so that the time complexity is determined only by the size
of the group arguments. For a compact representation of groups with processors
[m0, . . . , mp−1] with the property that the next element of the sequence mi+1
can be produced after mi in constant time without having to explicitly expand
the whole list of processors (which would take time and p words of space) the
MPI group operations can be implemented with m bits of work space, and time
in most cases proportional to the size of the group arguments. Only for some of
the operations taking a list L of group ranks (e.g. MPI Group incl) the lookup
time per group member needs to be factored in. The representation developed
in the next section has this property.

The m-bit work array obviously can be saved if the inverse mapping π−1
G is

also available for each of the groups. To keep the work array small, processors
mi are best represented by indices (into an array of processor descriptions of
size m) and not pointers to arbitrary memory locations. We finally note that no
sorted lists of processor ids are needed.

3 Compact Representation of Mappings

We now give a general, fairly straightforward method for compact representation
of arrays with certain regularities with worst case logarithmic lookup time (by
binary search). For arrays without the considered regularities lookup time will
be constant, and the representation will not take more than p words (plus small
constant extra space). In other words, the space consumption will never be worse
than the trivial implementation by a mapping array, and considerably better for
arrays of strided ranges without compromising lookup time too much. For many

174 J.L. Träff

somewhat regular arrays the representation will have both fast lookup time and
take considerably less than linear, often constant space. The compaction is based
on identifying runs (non-standard use of the term) in the sequence of processors
of the form m + di for i = 0, . . . , l − 1. Theoretically better results can surely be
achieved by considering and exploiting the fact that groups are represented by
injective mappings, which is not done here.

Consider a group with processor indices [m0, m1, . . . , mp−1]. The sequence of
processor indices is partitioned into r not necessarily maximal runs of the form
mi + jdi for 0 ≤ j < li where li is the length of the run. The number of such
runs is at most �p/2�. We can assume w.l.o.g. that the length of each run is
either 2 or greater than 5 (break runs shorter than 6 into runs of length 2; it
does not matter that this may change the sequence of runs). The ith such run
is represented by the pair [mi, di] and its length li. The sequence of processor
indices in a group [m0, . . . , m1, . . . , mr−1, . . . , mp−1] can thus be represented by
the sequence of runs

[m0, d0] [m1, d1,] . . . [mr−1, dr−1]
k0 k1 . . . kr−1 kr

(1)

and the sequence of corresponding run lengths. In (1) ki is the group local rank of
the first processor in the run starting with mi. Instead of storing the run lengths
explicitly, we use the sequence of first local ranks [k0, k1, . . . kr−1, kr] with kr = p
being the start index of a virtual last run. The length of run i is then simply
li = ki+1 − ki. The global rank (processor index) of local rank i can now be
computed by first finding (by binary search) the run j with kj ≤ i < kj+1, and
then computing mj + (i − kj)dj . This gives a compaction down to three times
the number of identified runs (mi, di, ki for run i), with lookup time that is
logarithmic in the number of runs. In the worst case of �p/2� runs this is �3/2p�,
and thus worse than the trivial array representation. Also in this case, lookup
time is O(log p).

To improve both compaction (to linear in the worst case) and lookup time we
need a more compact representation of the lookup sequence [k0, k1, . . . , kr]. We
achieve this by representing supersequences of runs of the same length by only
the index ri of the first run in the original sequence (1), and as before the group
local rank ki of the first processor in the first run of the supersequence. Lookup
is again accomplished by binary search for an index j with kj ≤ i < kj+1. The
run index is then found as

s = rj + �(i − kj)/li�

and the corresponding processor as

ms + ds�(i − kj) mod li�

where lj = kj+1−kj

rj+1−rj
is the length of the runs in the supersequence of runs from

rj to rj+1. This is illustrated in (2).

Compact and Efficient Implementation of the MPI Group Operations 175

run length k1−k0
r1−r0

︷ ︸︸ ︷
[m0, d0] [m1, d1,] . . .

run length k2−k1
r2−r1

︷ ︸︸ ︷
[m2, d2] . . . [mr−1, dr−1]

k0 k1 . . . kg−1 kg

r0 r1 . . . rg−1 rg

(2)

Because either all runs have length two or are longer than 5, the space needed for
both the encoding of the runs (two words) and the search structure (two words
per supersequence of same length runs) the total space consumed is at most p
words. A sequence longer than 5 saves enough space to store also the search
indices for the previous supersequence. The search times is likewise improved to
logarithmic in the number of supersequences.

For the worst case of �p/2� runs of length two, there is only one superse-
quence. Thus the lookup-time for “random” arrays where all runs are of length
two is constant, since no binary search is needed. Likewise, the lookup time of
arrays that can be represented by a few supersequences or runs will be constant.
An important case is MPI COMM WORLD which is in most MPI implementations
represented by a single (m + i) run.

In the worst case where short and longer runs are alternating without rep-
etition lookup time will still be O(log p). At the cost of less compression, runs
can be restricted to being either of length two or very long, e.g. O(p/ log p),
which improves lookup time correspondingly, e.g. O(log log p). It is important
that the division into runs can be done greedily online as the mi’s are becoming
known, but this is trivially possible. A first run is started by setting m = m0 and
d = m1 − m0. Each time a new mi is given, extend the length of the previous
run by one if mi = mi−1 + d, otherwise close the run and start a new one. If the
run being closed is shorter than 5 (but longer than two), split the previous run
into runs of length two. It is likewise important (for the MPI group construction
operations) to note that the sequences of mi’s can be listed in linear time. For
this the index of the current run and its length need to be maintained while com-
puting the mi processor ids one after another. This is necessary and sufficient
for the implementation of the group operations as explained in Section 2.

The sequences of first processor ids mi and corresponding factors di for the
runs are stored as two separate arrays. These can again be (recursively) com-
pressed by the above technique, exploiting regularities in either sequence, and
is important for achieving compact representation of some common MPI groups
(see next section).

4 Experimental Evaluation

The group operations, a lookup operation, and iterator constructs to scan
through all processors of a group in sequence have been implemented as out-
lined in the previous sections. Here we evaluate only the compression scheme
by counting the space consumption and the number of operations involved in
looking up all processors for a sample of groups constructed using the MPI group

176 J.L. Träff

operations. The aim is to show that many commonly encountered MPI groups
can indeed be represented in constant space and with constant time lookup, that
no groups use more than the claimed p words (plus a small constant), and that
lookup times are even in the worst case tolerable.

For each individual lookup for some local group rank i we count the number
of needed dereferencings (when an address has been dereferenced it is assumed
cached, and not counted again for that operation). We perform a lookup for
all ranks, and list the total number of such dereferencing operations and the
average number per lookup operation. In the experiment we set p equal to a
million processors [1].

Table 1. Lookup operation counts for various process groups

Lookup operation count
Group Space 1-Level space Total Average

MPI COMM WORLD 16 6 2 000 000 2.00
Reverse MPI COMM WORLD 16 6 2 000 000 2.00
SMP local roots union 16 20 2 000 000 2.00
SMP reverse nodes 16 250004 2 000 000 2.00
Worst case alternating 750016 1000004 17 951 472 17.95
Linear increasing 4260 5656 10 560 038 10.56
Exponentially increasing 78 82 5 288 652 5.29
Random 1000018 1000004 2 000 000 2.00

The groups considered are the initial MPI COMM WORLD group, these processors
in reverse order (created by MPI Group incl), a group of all processors in some
random order, groups where the distances in processor id between rank i and
rank i + 1 increase linearly and exponentially, respectively, a worst case group
where short and long runs alternate, and groups created for SMP clusters. For
the latter it is assumed that processors are divided into processor nodes of size
8. First, a group is formed by the union of first all processors with local rank
0 on their SMP node, then local rank 1, followed by local rank 2, and so forth.
This is the local roots union group. Second, a group is formed by the processors
on the last SMP node, the next to last SMP node, down to the processors on the
first SMP node. This is the reverse nodes group. All groups have size 1,000,000.

The results are shown in Table 4. We list the space consumption in words
with the full recursive compaction scheme, and with the scheme where only
compaction of the original processor sequence is performed (no compaction of
the mi and the di sequence, referred to as “1-level space” in the table), the
total number of dereferencing operations for accessing all processor ids, and
the average number of such operations per lookup. The table shows that space
consumption cannot be any worse than the trivial implementation by means of
an array, at the cost of two instead of one array dereferencing operation. For the
simple, very regular groups considered here, space can, especially by applying the
scheme recursively, be reduced to constant (16 words for the SMP reverse nodes
group, down from 250004), and with lookup time that might only for the worst

Compact and Efficient Implementation of the MPI Group Operations 177

case alternating group be problematic. This, as explained, can be improved (at
the cost of up to p words in total) by accepting only runs of a certain minimum
length (e.g. p/ log p).

These synthetic results must of course be complemented by results with real
applications with nontrivial use of group and communicator operations, but to
asses the compaction that can be achieved in practice, and to estimate how much
the sometimes increased lookup times affect overall application time.

5 Compact Binary Search

There are techniques for compressing the ordered array used for binary search,
while still allowing efficient search in logarithmic time with little extra overhead.
We sketch such an improvement here that reduces the space by a factor of two.
We assume the ordered array R of process ranks stores w-bit integers.

Let u < w be some number of prefix bits. Create a new array R′ with the
integers as in R (in the same order), but with the u-bit prefix for each entry
chopped off. Refer to the sequences of numbers with the same prefix as the
blocks. The space needed for R′ is then p(w − u) bits. We assume that all blocks
are non-empty; the case where some blocks are empty can be catered for, but is
not described here.

Construct a lookup table of size 2u (log2 p) bit pointers that for each prefix
points to the beginning of its block. To search for a rank i we first find the
block for the u-bit prefix of i by table lookup, and then do binary search for
the (w − u)-bit suffix of i in this block. The return index for i is computed by
adding the block index (from the table lookup) to the found index within the
block. The total space for this variant is p(w − u) + 2u(log2 p) bits.

Assume now for the MPI case that p, m ≤ 2w are (say) at most 224. Instead of
storing the process ranks in an array of 32-bit numbers, this can now be done with
an array of 16-bit numbers plus the lookup table of 28 = 256 pointers, which saves
almost half the space with little extra overhead for the lookup. The idea can be
generalized, but is only sketched here, and has not (yet) been implemented.

6 Concluding Remarks

We described a simple method to represent arrays in a more compact (space
efficient) fashion at the cost of a non-constant worst-case dereferencing time.
The method supports linear time iteration through the array, and is therefore
immediately suited to eager implementation of the MPI group operations. We
gave such an implementation, and showed that many common process groups
can indeed be represented in constant space and with constant lookup time. The
methods presented here may therefore be a first step toward space efficient, and
thus more scalable representation of MPI objects like process groups as well as
other, similar mappings used for representation of hierarchical communication
systems. We hope that this will be of relevance to MPI implementations and
stimulate further research in this direction. Some highly relevant theoretical re-
sults were mentioned, that may have practical merit to the specific MPI related

178 J.L. Träff

problems dealt with here. Practically, it would be interesting to see how this
improvement affects the memory footprint of MPI libraries on applications cre-
ating a non-trivial amount of groups and communicators. A further interesting
issue for MPI and other parallel processing interfaces is whether process to pro-
cessor mappings need always be represented explicitly, and whether interfaces
and operations can be defined that allow faster (implicit) group operations with
much less space. This issue was also taken up in [6].

References

1. Balaji, P., Buntinas, D., Goodell, D., Gropp, W., Kumar, S., Lusk, E., Thakur, R.,
Träff, J.L.: MPI on a million processors. In: Ropo, M., Westerholm, J., Dongarra, J.
(eds.) Recent Advances in Parallel Virtual Machine and Message Passing Interface.
LNCS, vol. 5759, pp. 20–30. Springer, Heidelberg (2009)

2. Barbay, J., Navarro, G.: Compressed representations of permutations, and appli-
cations. In: 26th International Symposium on Theoretical Aspects of Computer
Science (STACS). Dagstuhl Seminar Proceedings, vol. 9001, pp. 111–122 (2009)

3. Chaarawi, M., Gabriel, E.: Evaluating sparse data storage techniques for MPI
groups and communicators. In: Bubak, M., van Albada, G.D., Dongarra, J., Sloot,
P.M.A. (eds.) ICCS 2008, Part I. LNCS, vol. 5101, pp. 297–306. Springer, Heidel-
berg (2008)

4. Gabriel, E., Fagg, G.E., Bosilca, G., Angskun, T., Dongarra, J.J., Squyres, J.M.,
Sahay, V., Kambadur, P., Barrett, B., Lumsdaine, A., Castain, R.H., Daniel, D.J.,
Graham, R.L., Woodall, T.S.: Open MPI: Goals, concept, and design of a next
generation MPI implementation. In: Kranzlmüller, D., Kacsuk, P., Dongarra, J.
(eds.) EuroPVM/MPI 2004. LNCS, vol. 3241, pp. 97–104. Springer, Heidelberg
(2004)

5. Hreinsson, J.B., Krøyer, M., Pagh, R.: Storing a compressed function with constant
time access. In: Fiat, A., Sanders, P. (eds.) ESA 2009. LNCS, vol. 5757, pp. 730–
741. Springer, Heidelberg (2009)

6. Kamal, H., Mirtaheri, S.M., Wagner, A.: Scalability of communicators and groups
in MPI. In: ACM International Symposium on High Performance Distributed Com-
puting, HPDC (2010)

7. MPI Forum. MPI: A Message-Passing Interface Standard. Version 2.2 (September
4, 2009), www.mpi-forum.org

8. Munro, J.I., Raman, R., Raman, V., Rao, S.S.: Succinct representations of per-
mutations. In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.)
ICALP 2003. LNCS, vol. 2719, pp. 345–356. Springer, Heidelberg (2003)

9. Munro, J.I., Rao, S.S.: Succinct representations of functions. In: Dı́az, J.,
Karhumäki, J., Lepistö, A., Sannella, D. (eds.) ICALP 2004. LNCS, vol. 3142,
pp. 1006–1015. Springer, Heidelberg (2004)

10. Snir, M., Otto, S.W., Huss-Lederman, S., Walker, D.W., Dongarra, J.: MPI: The
Complete Reference. MIT Press, Cambridge (1996)

www.mpi-forum.org

Characteristics of the Unexpected Message

Queue of MPI Applications

Rainer Keller and Richard L. Graham

Oak Ridge National Laboratory
{keller,rlgraham}@ornl.gov�

Abstract. High Performance Computing systems are used on a regular
basis to run a myriad of application codes, yet a surprising dearth of
information exists with respect to communications characteristics. Even
less information is available on the low-level communication libraries,
such as the length of MPI Unexpected Message Queues (UMQs) and the
length of time such messages spend in these queues. Such information
is vital to developing appropriate strategies for handling such data at
the library and system level. In this paper we present data on the com-
munication characteristics of three applications GTC, LSMS, and S3D.
We present data on the size of their UMQ, the time spend searching the
UMQ and the length of time such messages spend in these queues. We
find that for the particular inputs used, these applications have widely
varying characteristics with regard to UMQ length and show patterns
for specific applications which persist over various scales.

1 Introduction

The Message Passing Interface (MPI) [5] is the ubiquitous parallel programming
paradigm for large-scale parallel applications. For current PetaFlop comput-
ers such as RoadRunner at LANL, Jugene in Juelich or the current leader in
the Top500 list, JaguarPF at ORNL, MPI is the standard for communication.
With ever-increasing machine sizes, the requirements with regard to scalability
in terms of resource usage for the application as well as libraries change. Here, the
requirements on the MPI library itself is no different; sparse resources should be
used conservatively, communication algorithms should take advantage of hard-
ware capabilities and network topologies and data-structures and algorithms
adapt to different usages in applications. Therefore it would be helpful for MPI-
developers, system designers and application developers alike to quantitatively
and qualitatively understand the communication characteristics and specifically
the characteristics of the most crucial data structures, the unexpected message
queue (from hereon UMQ) of large-scale applications. This paper provides this
data for applications running with input data sets important to the Oak Ridge
Leadership Computing Facility (OLCF). To produce this data, a new tracing

� This work was supported by the U.S. Department of Energy and performed at
ORNL, managed by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725.

R. Keller et al. (Eds.): EuroMPI 2010, LNCS 6305, pp. 179–188, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

180 R. Keller and R.L. Graham

library is developed based on the Peruse [8] specification to gather UMQ usage
information from the Open MPI [6] library.

This paper is organized as follows: Sec. 2 gives an overview of the tracing
library developed and the methodology used to gather the performance data.
Section 3 introduces the applications used for this study and shows the MPI-
internal data gathered for these applications. In Sec. 4 the related work is pre-
sented. Finally Sec. 5 concludes the paper.

2 Design and Implementation

The MPI standard does not impose any restrictions on the communication mech-
anisms or protocols of the implementation; however it requires the library to

– match messages between a given pair of processes in order, based on the
message envelope, which consists of the (src, dest, tag, communicator)-
tuple,

– progress and finish either one or both calls of a pair of MPI Send/ MPI Recv
once they have matched, regardless of other communication in the system,

– complete a message transfer, in case the matching receive has been posted;
which may require buffering of messages.

This internal buffering of application messages cannot be traced using the usual
PMPI-based tools. Apart from the communication characteristics such as num-
ber of point-to-point calls, source-destination traffic, little is known of these
internal characteristics, especially when running at scale.

Understanding the characteristics of the UMQ is of importance for applica-
tion developers, MPI library developers, as well as system designers trying to
provision resources for communications. Unexpected receives generally consume
more resources on the receive side than expected receives [11]. The nature and
order of magnitude of these resources depends on the MPI implementation, and
the strategy each implementation chooses for handling such data. For example,
header only data my be kept at the receiver so that it can be retrieved from the
source once the match is made, or one may decide to store both header data and
payload. Payloads may be stored in scarce network buffers, or may be copied to
other buffers. In addition, unexpected messages go through the matching logic
both when they arrive and a match is attempted against pre-posted receives, and
potentially each time a new relevant receive is posted, until they are matched.
From the user’s perspective, understanding their application specific communi-
cation characteristics gives them the option to change their application to reduce
library memory usage, and the matching costs. Application and system design-
ers often optimize their designs for the common use case, so understanding the
communication characteristics of real applications is invaluable. This helps in
informing both matching and memory management strategies

In order to expose internals of the MPI implementation, the Peruse speci-
fication [8] has been defined and subsequently implemented in Open MPI [9].
Peruse offers a mechanism to query and select events in a portable way, and

Characteristics of the Unexpected Message Queue of MPI Applications 181

allows an MPI implementation to only provide events that do not limit the im-
plementation or otherwise introduce excessive overhead. Furthermore it allows
an application or tracing library to hook callbacks into these Peruse-specified
events, which are invoked when the event is triggered in the MPI library. This
offers a low-overhead way to trace the messages traverse through the MPI stack.

In this paper we introduce a new library based on the Peruse interface. The
library is intended to be easy to use, have low overhead and scale with the appli-
cation. These requirements were met in the following way: The library provides
hooks for MPI Init and MPI Finalize for C and Fortran, such that the appli-
cation programmer may just link to the library and be able to gather statistics.
These are saved or output by the wrapper of the MPI Finalize call. Further-
more it provides a small API in C and Fortran to customize the gathering and
outputing of the data gathered, e. g. the data may be written multiple times dur-
ing the execution, or the statistics may be reset to differentiate between parts of
the code. The last requirement was met by taking care not to introduce bottle-
necks, e. g. collective reduction functions are provided to reduce the information
printed, and the whole UMQ data gathered may be written to disk using col-
lective parallel MPI I/O. A tricky part proved to provide the proper MPI Info
hints to the MPI I/O implementation to aggregate the writes. Further details of
the implementation are described in [10].

3 Application Measurement

In our study, we concentrate on three codes important to Oak Ridge National
Laboratory. The following describes the applications and measurements done on
them. If not otherwise noted, all libraries and applications have been compiled
with the Portland Group Compiler PGI-9.0.4 with compiler options -fastsse,
-Mipa=fast,inline and instruction scheduling for the AMD hex-core processor
on JaguarPF -tp=istanbul-64. The developer trunk r22760 of Open MPI was
used.

Gyrokinetic Toroidal (GTC). The Gyrokinetic Toroidal Code (GTC) is a
3-D particle-in-cell code [12] to simulate the transport in fusion plasmas such as
the tokamak fusion reactor ITER. The code is one of the benchmark codes used
within the compute centers NCCS and NERSC. Similar to the studies in [14],
we weakly scale the input up to 8192 processes on the Cray XT5 at ORNL,
JaguarPF. For this experiment however, we turned off the data diagnosis code,
which writes the 3D domain to one file per process. Due to memory constraints
at scale, all runs were done with only 4 processes per node.

Locally-Self-Consistent Multiple-Scattering (LSMS). The Locally Self-
consistent Multiple-Scattering (LSMS) Code [13] simulates the interactions be-
tween electrons and atoms in magnetic materials. LSMS has been under
development at ORNL since 1994 and was used to study large numbers of atoms,
in ensembles of up to 10k atoms. Using the so-called Wang-Landau (WL-LSMS)
scheme for work distribution, the code may scale up to the whole machine size of

182 R. Keller and R.L. Graham

JaguarPF; this work received the Gordon Bell Prize at SC 2009 [4]. WL-LSMS
distributes chunks of electron configurations to groups of locally optimizing lsms-
processes using non-blocking point-to-point communication. For this paper, the
communication due to this work distribution however is not of interest, as it
is very coarse grained and sends only a few bytes. Rather the communication
requirements of the main kernel is of interest, which applies density functional
theory to the relativistic wave equation for electron behavior. Therefore, to ex-
amine the communication behavior of the most time-consuming part, in this
paper lsms main has been employed without the Wang-Landau method.

The first test-case used consists of a standard benchmark for LSMS. Here a
system of iron atoms in a body-centered cubic crystal structure in which the
iron atoms are equally spaced, with a cut-off radius of 12.5Bohr. The system
is weakly scaled up to 4096 processes, doubling the amount of Fe atoms. To
reduce the overall time, the number of evaluated energy points and number of
iterations is reduced.

S3D. The S3D code is a highly scalable direct numerical solver (DNS) for the
fully compressible Navier-Stokes equations with detailed chemistry [7], developed
at Sandia National Laboratories. It has been scaled to the full machine size of
JaguarPF. The input data-set used was 253 grid points per processor and weakly
scaled. The chemical reaction was enabled and the 8th order spatial derivative
was used. As for GTC the saving of intermediate files, such as restart files were
turned off.

Maximum Length of UMQ. As the first comparison, Fig. 1 shows the max-
imum length of the UMQ. The left column shows the maximum length of the
UMQ as the number of processes is scaled up, as well as the shortest maximum
length of UMQ1 with both lines stating the rank of the process above the line.
The right column shows the length of the UMQ over the ranks for the largest
test-case run with each application. As the vertical axis takes into account the
value of the single-most process with the longest UMQ, which in this case is
always process with rank zero, the axis seems to be coarse grained, but better
shows the relation of distribution versus highest value. The reason process zero
has in almost all cases, the longest UMQ is due to being the root in collective
communication which uses the same underlying communication mechanisms and
adds to the pressure on the UMQ resources.

One may see that different codes have different communication characteris-
tics. For GTC the length of the UMQ is bounded to 24 even for the largest run
(once the file output was turned off), while the length of LSMS’ increases linearly
with the number of processes run. This is due to the communication pattern of
the distribution of the so-called τ -Matrix, a 322 matrix of double-complex data
(overall 16 kB) to all of the neighbors within the cut-off radius: first the data
to send is assembled, then sent using non-blocking MPI Isend, while internal
matrices are solved and saved, and finally the buffers used in the matrix multi-
plication are overwritten with the data received in a non-blocking MPI Irecv.
1 The lower bound of all processes’ maximum length of UMQ in a run.

Characteristics of the Unexpected Message Queue of MPI Applications 183

 0

 5

 10

 15

 20

 25

 10 100 1000 10000

Le
ng

th

Processors

Maximum UMQ for GTC

Max. UMQ length (Overall)

0

0

0

0

0

0

0
0

0
Shortest max. UMQ length

9 24 9
44 68 164 316

268

430

6

8

10

12

14

16

18

20

22

24

0 1000 2000 3000 4000 5000 6000 7000 8000

Le
ng

th

Process

Maximum UMQ of gtc with 8192 processes

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 10 100 1000 10000

Le
ng

th

Processors

Maximum UMQ for LSMS (JaguarPF)

Max. UMQ length (Overall)

4 0 0
0

0

0

0

0

Shortest max. UMQ length

2 61 20 201 109 732 360 1309 500

1000

1500

2000

2500

3000

3500

0 500 1000 1500 2000 2500 3000 3500 4000

Le
ng

th

Process

Maximum UMQ of lsms with 4096 processes

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 100 1000 10000 100000

Le
ng

th

Processors

Maximum UMQ for S3D

Max. UMQ length (Overall)

0

1024

0

0

0
Shortest max. UMQ length

542 1405 33 5 49

0

20

40

60

80

100

120

140

160

0 2000 4000 6000 8000 10000 12000 14000 16000 18000

Le
ng

th

Process

Maximum UMQ of S3D with 18000 processes

Fig. 1. Maximum length of UMQ and distribution of length at the largest case

184 R. Keller and R.L. Graham

Table 1. Statistical values of the length of the UMQ over all processes

Application Size Min Median Max Mean Std. Dev.

GTC 2048 4 7 13 7 1.34
GTC 4096 3 7 12 6 1.65
GTC 8192 5 8 24 8.2 1.52

LSMS 1024 49 121 1022 122 42.43
LSMS 2048 97 241 2010 249 73.52
LSMS 4096 192 504 3906 522 169.31

S3D 6000 1 4 144 8 12.79
S3D 9600 1 4 156 9 12.86
S3D 18000 0 4 168 9 12.86

Therefore, in the current version of the code, messages may aggregate on the
UMQ, while the matrix multiplication is being performed. This part of the code
is currently being rewritten.

Furthermore Figure 1 shows patterns in the length of the UMQ. These pat-
terns are most visible for GTC with its shorter maximum UMQ length, but are
also visible with S3D. For GTC, this pattern may be explained with the actual
physical domain – a toroid. Due to page constraints all information cannot be
shown here. The statistical parameters of the maximum length of UMQ for the
largest test-case are given in Table 1. As one may see, the mean and median do
not differ much for GTC, with a low standard deviation, while S3D has a vary-
ing maximum UMQ with large standard deviation, while LSMS has the longest
maximum UMQ with large standard variation and process zero having an over
7 times longer UMQ than the mean UMQ length.

Search Time of UMQ. Another interesting statistical analysis is the time
spent in each process searching the UMQ. This event is triggered, when a MPI
Recv is posted and the UMQ is not empty. Figure 2 shows the results again
only for the largest test run for all three applications. This is measured by
mpistat using the events PERUSE COMM SEARCH UNEX Q BEGIN and PERUSE
COMM SEARCH UNEX Q END. Here the search time is aggregated for each process,
i. e. only the total time spent searching the UMQ is plotted. Again, the results
are very different for every application and the statistical data is presented in
Table 2. As may be seen the characteristics on relation between median and
mean are similar to the previous table.

While GTC with its short UMQ also exhibits a low total search time with an
even distribution among the processes, LSMS with its rather long max. UMQ,
shows a high total time spent searching the UMQ (max. of 4.6 s). However, it
is very unevenly distributed. In fact, of the 4096 processes 3738 processes have
a total search time smaller than the mean total search time (0.247 s), aka the
remaining 358 of the processes search longer in the UMQ. In comparison to the
overall statistics (see Table 2) this reduces the mean search time to 0.107 s and
reduces the std. deviation to 0.0159.

Characteristics of the Unexpected Message Queue of MPI Applications 185

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 1000 2000 3000 4000 5000 6000 7000 8000

T
im

e
[s

]

Process

Total search time of UMQ of gtc over 8192 processes

0

100

200

300

400

500

0 0.1 0.2 0.3 0.4 0.5

N
um

be
r

of
 p

ro
ce

ss
es

 in
 b

in

Total search time

Histogram of gtc: Total search time of UMQ with 8192 processes

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 500 1000 1500 2000 2500 3000 3500 4000

T
im

e
[s

]

Process

Total search time of UMQ of lsms over 4096 processes

0

500

1000

1500

2000

2500

3000

3500

4000

0 1 2 3 4 5

N
um

be
r

of
 p

ro
ce

ss
es

 in
 b

in

Total search time

Histogram of lsms: Total search time of UMQ with 4096 processes

0.0002

0.0004

0.0006

0.0008

0.001

0.0012

0.0014

0 2000 4000 6000 8000 10000 12000 14000 16000 18000

T
im

e
[s

]

Process

Total search time of UMQ of S3D over 18000 processes

0

2000

4000

6000

8000

10000

12000

0 0.0005 0.001 0.0015 0.002

N
um

be
r

of
 p

ro
ce

ss
es

 in
 b

in

Total search time

Histogram of S3D: Total search time of UMQ with 18000 processes

Fig. 2. Total time spent per process searching the UMQ at the largest case

186 R. Keller and R.L. Graham

Table 2. Statistical values of total search time in UMQ over all processes

Application Size Min Median Max Mean Std. Dev.

GTC 2048 0.002413 0.038883 0.143237 0.042010 0.019658
GTC 4096 0.002598 0.063949 0.221349 0.068989 0.028306
GTC 8192 0.004523 0.176509 0.427667 0.179208 0.074060

LSMS 1024 0.010401 0.017356 0.150949 0.025008 0.025214
LSMS 2048 0.030489 0.034856 0.591989 0.064125 0.097730
LSMS 4096 0.090373 0.104260 4.603960 0.246608 0.477655

S3D 6000 0.000017 0.000067 0.001229 0.000081 0.000079
S3D 9600 0.000022 0.000092 0.001323 0.000118 0.000112
S3D 18000 0.000032 0.000110 0.001577 0.000144 0.000132

Table 3. Statistical values of the time messages stayed in UMQ for process 0

Application Size Min Median Max Mean Std. Dev.

GTC 2048 0.000001 0.039768 0.471423 0.067976 0.078905
GTC 4096 0.000002 0.032429 0.841412 0.091685 0.123482
GTC 8192 0.000001 0.000030 2.648100 0.033560 0.110619

LSMS 1024 0.000003 1.408290 3.867880 1.547093 1.311374
LSMS 2048 0.000002 0.012800 9.030230 3.233932 3.763306
LSMS 4096 7.786120 10.165600 12.459800 10.026571 1.234413

S3D 6000 0.000022 0.022476 0.063193 0.019889 0.010769
S3D 9600 0.000035 0.019729 0.183491 0.076856 0.081038
S3D 18000 0.000027 0.064833 0.168463 0.065595 0.036252

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0 100 200 300 400 500 600 700 800 900 1000

T
im

e
[s

]

Unexpected msg. number

Time msg spent on UMQ for process with rank 0 of GTC with 2048 processes

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 100 200 300 400 500 600 700 800 900 1000

T
im

e
[s

]

Unexpected msg. number

Time msg spent on UMQ for process with rank 0 of GTC with 4096 processes

Fig. 3. Time messages spent on UMQ for first 1000 messages on process 0 of GTC for
2048 and 4096 processes

Another artifact that may be seen for S3D at all scales: Process ranks larger
than a certain critical rank all have higher total search times, as may be seen in
Fig. 2 at the bottom.

Characteristics of the Unexpected Message Queue of MPI Applications 187

Time Messages Spent on UMQ. The time messages spent on the UMQ is
again highly dependent on the application. In Fig. 3 we show the results for
the GTC application with 2048 and 4096 processes for process with rank zero.
Again a pattern is visible. Few messages stay very long on the UMQ (up to
0.471 s for the 2048 process and 0.841 s for the 4096 process case), while the
majority of messages stay only shortly on the UMQ. This diagram however is
over-exaggerating, as the statistics show in Table 3: the mean time is a lot lower
than as might be expected from the graph.

4 Related Work

Much work has been published focusing on the scaling behavior of large-scale
parallel applications, fewer papers exist which focus on the communication re-
quirements of these applications. However, very few papers have focused on the
internals of the MPI-libraries unexpected message queue handling. In [3] and [2],
the authors research the collective and point-to-point communication require-
ments of the NAS parallel Benchmarks [1] and three applications (LAMMPS,
CTH and ITS) for job sizes of up to 64 processes. Similar to our work, the method
allows the analysis of the length of the UMQ, but does not state the length mes-
sages stayed in the UMQ. Additionally, the papers provide the posted receive
queues, and the average search depth in the UMQ until successfully matching
a message, which is currently not yet possible in our implementation. Both of
these papers show similar application-specific characteristics, however the scale
here is rather limited.

5 Conclusion

Little is known of the buffer requirements of relevant applications at scale. This
paper presents a library, that allows the in-depth analysis of the unexpected
message queue (UMQ) behavior even at scale. The library provides reduced out-
put of the main numbers such as maximum length of the UMQ, total & longest
time a message stayed on the UMQ and the overall as well as the longest time
processes spent searching the UMQ. Additionally, the complete data gathered
may be saved for each statistic. The paper shows, that applications have vary-
ing characteristics on the usage of the UMQ and that process with rank 0 has
the longest UMQ. This tool helps find scalability bottlenecks, as shown with
LSMS. Furthermore applications show certain patterns which may be used as
fingerprint to detect application behavior in subsequent work.

Acknowledgments. The authors would like to thank Ramanan Sankaran,
Markus Eisenbach and Joshua Ladd for providing the applications, test-cases
and the valuable discussions.

188 R. Keller and R.L. Graham

References

1. Bailey, D.H., et al: The NAS parallel benchmark. Technical report, NAS Applied
Research Branch (1994)

2. Brightwell, R., Goudy, S., Rodrigues, A., Underwood, K.D.: Implications of ap-
plication usage characteristics for collective communication offload. International
Journal of High-Performance Computing and Networking – Special Issue: Design
and Performance Evaluation of Group Communication in Parallel and Distributed
Systems (IJHPCN) 4(3/4), 104–116 (2006)

3. Brightwell, R., Underwood, K.D.: An analysis of NIC resource usage for offloading
MPI. In: Parallel and Distributed Processing Symposium, International, vol. 9, p.
183a (2004)

4. Eisenbach, M., Zhou, C.-G., Nicholson, D.M.C., Brown, G., Larkin, J.M.,
Schulthess, T.C.: A scalable method for ab initio computation of free energies in
nanoscale systems. In: SC, Portland, Oregon, USA, November 14-20. ACM, New
York (2009)

5. Message Passing Interface Forum. MPI: A Message-Passing Interface Standard,
Version 2.2 (September 2009)

6. Gabriel, E., et al.: Open MPI: Goals, concept, and design of a next generation
MPI implementation. In: Kranzlmüller, D., Kacsuk, P., Dongarra, J. (eds.) Eu-
roPVM/MPI 2004. LNCS, vol. 3241, pp. 97–104. Springer, Heidelberg (2004)

7. Hawkes, E.R., Sankaran, R., Sutherland, J.C., Chen, J.H.: Direct numerical sim-
ulation of turbulent combustion: fundamental insights towards predictive models.
Journal of Physics 16, 65–79 (2005)

8. Jones, T., et al: MPI Peruse – an MPI extension for revealing unexposed imple-
mentation information. Internet (May 2006), http://www.mpi-peruse.org

9. Keller, R., Bosilca, G., Fagg, G., Resch, M.M., Dongarra, J.J.: Implementation and
usage of the PERUSE-interface in open MPI. In: Mohr, B., Träff, J.L., Worringen,
J., Dongarra, J. (eds.) PVM/MPI 2006. LNCS, vol. 4192, pp. 347–355. Springer,
Heidelberg (2006)

10. Keller, R., Graham, R.L.: MPI queue characteristics of large-scale applications. In:
Cray User Group (May 2010) (Submitted for publication)

11. Koop, M.J., Sridhar, J.K., Panda, D.K.: TupleQ: Fully-asynchronous and zero-
copy MPI over InfiniBand. In: International Parallel and Distributed Processing
Symposium (IPDPS), pp. 1–8 (May 2009)

12. Lin, Z., Hahm, T.S., Lee, W.-L.W., Tang, W.M., White, R.B.: Turbulent transport
reduction by zonal flows: Massively parallel simulations. Science 281, 1835–1837
(1998)

13. Wang, Y., Stocks, G.M., Shelton, W.A., Nicholson, D.M.C., Temmerman, W.M.,
Szotek, Z.: Order-n multiple scattering approach to electronic structure calcula-
tions. Phys. Rev. Lett. 75(11), 2867–2870 (1995)

14. Wu, X., Taylor, V.: Using processor partitioning to evaluate the performance of
MPI, OpenMP and hybrid parallel applications on dual- and quad-core Cray XT4
systems. In: Cray User Group Conference, May 4–7 (2009)

http://www.mpi-peruse.org

Dodging the Cost of Unavoidable Memory

Copies in Message Logging Protocols

George Bosilca1, Aurelien Bouteiller1, Thomas Herault1,2, Pierre Lemarinier1,
and Jack J. Dongarra1,3

1 University of Tennessee, TN, USA
2 Universite Paris-Sud, INRIA, France

3 Oak Ridge National Laboratory, TN, USA
{bosilca,bouteiller,herault,lemarinier,dongarra}@eecs.utk.edu

Abstract. With the number of computing elements spiraling to hun-
dred of thousands in modern HPC systems, failures are common events.
Few applications are nevertheless fault tolerant; most are in need for a
seamless recovery framework. Among the automatic fault tolerant tech-
niques proposed for MPI, message logging is preferable for its scalable
recovery. The major challenge for message logging protocols is the per-
formance penalty on communications during failure-free periods, mostly
coming from the payload copy introduced for each message. In this pa-
per, we investigate different approaches for logging payload and compare
their impact on network performance.

1 Introduction

A general trend in High Performance Computing (HPC), observed in the last
decades, is to aggregate an increasing number of computing elements [1]. This
trend is likely to continue as thermic issues prevent frequency increase to progress
at Moore’s law rate, leaving massive parallelism, with hundred of thousands of
processing units, as the only solution to feed the insatiable demand for com-
puting power. Unfortunately, with the explosion of the number of computing
elements, the hazard of failures impacting a long-living simulation becomes a
major concern. Multiple solutions, integrated to middleware like MPI [2], have
been proposed to allow scientific codes to survive critical failures, i.e. permanent
crash of a computing node. Non-automatic fault tolerant approaches, where the
middleware puts the application in charge of repairing itself, have proven to be,
at the same time, very efficient in term of performance, but extremely expensive
in terms of software engineering time [3]. As a consequence, only a small number
of targeted applications are able to benefit from the capability of modern leader-
ship computing centers; the typical workload of HPC centers suggests that most
scientists still have to scale down their jobs to avoid failures, outlining the need
for a more versatile approach.

Automatic fault tolerant approaches, usually based on rollback-recovery, can
be grouped in two categories: coordinated or uncoordinated checkpointing mech-
anisms. Coordinated checkpointing relies on a synchronization of the checkpoint-
ing wave, an often blocking protocol, and a rollback of every process, even in the

R. Keller et al. (Eds.): EuroMPI 2010, LNCS 6305, pp. 189–197, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

190 G. Bosilca et al.

event of a single failure, which leads to a significant overhead at large scale [4].
Uncoordinated checkpointing let individual processes checkpoint at any time. As
a benefit, checkpoint interval can be tailored on a per-node basis, and the recov-
ery procedure effectively sandboxes the impact of failures to the faulty resources,
with limited non disruptive actions from the neighboring processes.

However, the stronger resiliency of uncoordinated checkpointing comes at the
price of more complexity, to solve the problems posed by orphan and in-transit
messages. Historically, research on message logging have mostly focused on han-
dling the costly orphan messages, by introducing different protocols (optimistic,
pessimistic, causal). Recent works have nevertheless tremendously decreased the
importance of the protocol choice [5], leading the once negligible overhead in-
curred by in-transit messages to now dominate. The technique considered as the
most efficient today to replay in-transit messages is called sender-based message
logging: the sender keeps a copy of every outgoing message. Although sender-
based logging requires only a local copy, done in memory, and could theoretically
be overlapped by actual communication over the network, it has appeared ex-
perimentally to remain a significant overhead.

The bandwidth overhead of the sender-based copy is now standing alone in the
path of ubiquitous automatic and efficient fault tolerant software. In this article,
we consider and compare multiple approaches to reduce or overlap this cost to a
non-measurable overhead in the Open MPI implementation of message logging:
Open MPI-V [6]. The rest of the paper is organized as follow: in section 2, we
discuss the other approaches that have been taken, then we present the Open
MPI architecture, and the different approaches to create copy of messages locally
in section 3, that we compare on different experimental platforms in section 4,
to conclude in section 5.

2 Related Works

Most of the existing works on message logging have focused on reducing the
number of events to be logged: [7], the bottleneck of disk I/O was the main
challenge in Message Logging, and the proposed solution consisted in reducing
the generality of the targeted application to accept only behaviors that can be
tolerated without logging messages. Other works [8,9] reduced the kind of failures
that can be tolerated to increase the asynchrony of the logging requirements,
thus hoping to recover the I/O time with more computation. However, these
approaches still require logging of messages, and the data can be passed back to
the user application only when it has been copied completely.

To the best of our knowledge, no previous work has studied how the message
payload should be logged by the sender, and how this level could be optimized.
Many works have recently considered the more general issue of copying memory
regions in multicore systems using specific hardware [10,11], or how the mem-
ory management can play a significant role in the communication performance
[12,13]. However, the interactions between simultaneously transferring the data
to the Network Interface Card and obtaining an additional copy in the applica-
tion space has not been addressed.

Dodging the Cost of Unavoidable Memory Copies 191

3 Strategies for Sender-Based Copies

Open MPI [14] is an open source implementation of the MPI-2 standard. It
includes a generic message logging framework, called the PML V, that can be
used for debugging [15] and fault tolerance [5]. One of the fault tolerant methods
of the PML V is the pessimist message logging protocol. In this protocol, two
mechanisms are used: event logging and sender-based message logging. The event
logging mechanism defuse the threat on recovery consistency posed by orphan
messages, those who carry a dependency between the non deterministic future of
the recovering processes and the past of the survivors. The outcome of every non
deterministic event is stored on a stable remote server; upon recovery, this list is
used to force the replay to stay in a globally consistent state. In this paper, we
focus our efforts on improving the second mechanism, message payload copy, thus
we do not modify the event logging method. The necessity of the sender-based
message logging comes from in-transit messages, i.e. messages sent in the past of
the survivors but not yet received by the recovering processes. Because only the
failed processes are restarted, messages sent in the past from the survivors can
not be regenerated. The sender-based message logging approach keeps a memory
copy of every outgoing message on the sender, so that any in-transit message is
either regenerated (because the sender also failed and therefore is replaying the
execution as well), or is readily available.

There are mostly two parameters governing the payload logging: 1) the back-
end storage system, and 2) the copy strategy from the user memory to the
backend storage system. We have designed three backend storages: a) a file that
is mapped in memory, b) heap memory as backend, allocated using memory
mapping of private anonymous memory, and c) a dummy backend storage, that
does not implement message logging, but provides us a mean to measure the
overhead due only to the copy itself. We have also designed three copy methods:
a) a pack method, that copy the message in one go into the backend space, b)
a convertor method, that chops the copy of the message according to the Open
MPI pipeline, and c) a thread method, that creates an independent thread re-
sponsible of doing the copies. In the following, we describe with more details
these strategies.

Backend Storage
Memory Mapped file. It should be noted that there is no necessity for the log to
be persistent: if a process crashes, it will restart in its own history, and recreate
the messages that have been logged after the last checkpoint (still, messages
preceding the last checkpoint must be saved with the checkpoint image, because
they are part of the state of the process). However, a file backend is natural,
because the volume of message to be logged can be significant, and this should
not reduce the amount of memory available for the application. Mapping the
backend file into memory is the most convenient way of accessing it.

We designed this backend file as a growing storage space, on which we open a
moving window using the mmap system call. When the window is too small to
accept a new message (we use windows of 256 MB, unless some message exceed

192 G. Bosilca et al.

the size of the window), we wait that all messages are logged (depending on the
copying method, described later), make the file grow if necessary, and move the
window entirely to a free area of the file.

Heap Memory. If the amount of memory available on the machine is large enough
to accept at the same time the application and the copy of the messages payload
(up to garbage collection time), then the payload logging can be kept in memory.
This second method uses anonymous private memory allocated with the mmap
system call to create such a backend for our message logging system.

Dummy Storage. In order to measure independently the overhead introduced
by the copy method itself, we also designed a Dummy Storage that does not
really implement message logging: after a message is logged, the pointer to store
the message payload is moved back to the beginning of the same memory area,
reallocated if the size of the message is larger than the largest message seen until
the call. When messages are sent often, the pages related to this area will most
likely be present in the TLB, and for very short messages, it is even possible that
the area itself remains in the CPU cache between two emissions. Though this
storage cannot be considered as a backend storage for message logging, it helps
us evaluate the overheads of the copy methods themselves, without considering
other parameters like TLB misses and pages fault.

Copy Method
Pack. The Pack method consists in copying the payload of the message using
the memcpy libc call, from the user space to the backend storage space, when
the PML V intercepts the message emission for the first time. This interception
can happen just after the message has been given to the network card for short
messages, or just after the first bytes of the message have been given to the
network card, and the network card cannot send more without blocking for
longer messages.

Conv. When converting the user data to a serialized form usable by the network
cards, the Open MPI data type engine can introduce a pipeline, to send multiple
messages of a predetermined maximal size on the network cards, instead of
sending a very large single message. Up to four messages can be given to the
network card simultaneously, which will send one after the other. The data type
engine tries to keep this pipeline as filled as possible, to ensure that the network
card has always something to send. Using the Conv method, PML V intercepts
each of these, and introduces the message payload copy at this time. This is what
the Conv (short for convertor) method does: if the pipeline is enabled, each time
a chunk of data is copied from the user data to the network card, the PML V
copies the same amount of bytes from the user data to the backend storage. The
size of the chunks in the pipeline is a parameter of this method.

Thread. The last copying method is based on a thread. A copying thread is
created during the initialization. This thread waits on a queue for copies. When
this queue is not empty, the thread pops the first element of the queue, and
copies the whole user memory onto the backend storage, using the memcpy libc

Dodging the Cost of Unavoidable Memory Copies 193

call. When a message emission is intercepted by the PML V, if the message
is short, it is copied as for the Pack method. If the message is long enough
and could not be sent to the network in one go, a copy request is created and
pushed at the end of the request queue. When the application returns from
the MPI call, it synchronizes with the copy thread, and waits that the related
messages have been entirely logged before returning from the MPI call, to ensure
message integrity. To ensure a fair comparison, at constant hardware resources,
this thread is pinned on the same core as the MPI process that produces the
message.

4 Experimental Evaluation

The Dancer cluster is a small 8 node cluster, each node based on a Intel Q9400
2.5Ghz quad core processor, with 4GB of memory. All nodes are connected using
a dual Gigabit Ethernet links, and four feature an additional Myricom MX10G.
Linux 2.6.31.2 (CAoS NSA 1.29) is deployed. The software is compiled using gcc
4.4 with -O3 flags, and uses the trunk of Open MPI (release 21423) modified to
include the different logging techniques presented in Section 3. For every run, we
forced Open MPI to use only the high-speed Myricom network of dancer using
the MCA parameters: -mca btl mx,self. All latency and bandwidth measure-
ments were obtained using the MPI version of the NetPIPE-3.7 benchmark [16].
NetPIPE evaluates latency and bandwidth by computing three times the aver-
age value on a varying number of iterations, and taking the best value of the
three evaluations.

Figure 1 presents the reference latency (Fig. 1(a)) and bandwidth (Fig. 1(b))
of Open MPI on the specified network, and of the memory bus of the machines
used. These figures are presented here as a absolute reference of peak perfor-
mance achievable without message logging. A first observation is that the high
memory bandwidth and low latency compared to the High-Speed network card
should enable a logging in memory with little performance impact for messages

 0.001

 0.01

 0.1

 1

 10

 100

 1 2 4 8 1
6

 3
2

 6
4

 128
 256

 512
 1

k
 2

k
 4

k
 8

k
 16k

 32k
 64k

L
at

en
cy

 (
u

s)

Message size (bytes)

MX node01 <-> node02
Memcpy node01

(a) Latency

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 1 2 4 8 1
6
 3

2
 6

4
 128

 256
 512

 1
k
 2

k
 4

k
 8

k
 16k

 32k
 64k

128k
256k

512k
 1M 2M 4M 8M

B
an

d
w

id
th

 (
G

b
/s

)

Message size (bytes)

MX node01 <-> node02
Memcpy node01

(b) Bandwidth

Fig. 1. Reference MPI MX NetPIPE performance between two dancer nodes compared
to memcopy

194 G. Bosilca et al.

-90

-80

-70

-60

-50

-40

-30

-20

-10

0

1

4

 1
6

 6
4

 256
 1

k
 4

k
 16k

 64k
256k

 1M 4M

B
an

d
w

id
th

 R
ed

u
ct

io
n

 (
%

)

Message Size (Bytes)

Thread (CPU-bound)
Convertor (512k pipeline)

Pack method (memcpy)

(a) Ideal Storage Memory

-90

-80

-70

-60

-50

-40

-30

-20

-10

0

1

4

 1
6

 6
4

 256
 1

k
 4

k
 16k

 64k
256k

 1M 4M
B

an
d

w
id

th
 R

ed
u

ct
io

n
 (

%
)

Message Size (Bytes)

(b) Anonymous Memory

-90

-80

-70

-60

-50

-40

-30

-20

-10

0

1

4

 1
6

 6
4

 256
 1

k
 4

k
 16k

 64k
256k

 1M 4M

B
an

d
w

id
th

 R
ed

u
ct

io
n

 (
%

)

Message Size (Bytes)

(c) File Map

Fig. 2. NetPIPE MX bandwidth between two dancer nodes, according to the storage
method

of less than 1MB. For larger messages, the bandwidth of the memory bus will
become a bottleneck for the logging, and unless the time taken to transfer the
message on the network can be recovered by the logging mechanism, overheads
are to be expected.

A few characteristics of the underlying network and the Open MPI imple-
mentation can moreover be observed from these two figures: one can clearly see
the gaps in performance for messages of 4KB (default size of the MX frame),
and 32KB (change of communication protocol from eager to rendez-vous in the
Open MPI library). In the rest of the paper, all other measurement will be pre-
sented relative to the bandwidth performance of the high-speed network card,
to highlight the overheads due to message logging.

Each of the first figures grouped under Figure2 consider a specific storage
medium, and compare for a given medium the overheads of the different logging
methods as function of the message size.

First, we consider Figure 2(a) that uses as a storage medium the “Ideal”
Storage. As described in Section 3, the Ideal storage uses a single memory area
to log all the messages (thus overriding existing log with new messages). The goal
of this experiment is to demonstrate the overheads due to the copy itself (and
when it happens) without other effects, like page faults, etc... One can see that
the logging method has no significant impact up to (and excluding) messages of
4KB. At 4KB, the Thread method suffers a huge overhead that decreases the
performance by 80%, while the other methods suffer a lower overhead.

A single MX frame is of 4KB (on this platform). Thus, for messages of 4KB
of payload, or more, multiple MX frames are necessary to send the message (this
is true for messages of 4KB of payload too, since the message header must also
be sent). When the message fits in a single frame, the logging thread can be
scheduled while the message circulates on the network and is handled by the
receiving peer. When the message doesn’t fit in a single MX frame, the Open
MPI engine requires scheduling to ensure the lowest possible latency. Since both
threads are bound on the same core, they compete for the core, and the relative
performances decrease.

Dodging the Cost of Unavoidable Memory Copies 195

-90

-80

-70

-60

-50

-40

-30

-20

-10

0

1

4

 1
6

 6
4

 256
 1

k
 4

k
 16k

 64k
256k

 1M 4M

B
an

d
w

id
th

 R
ed

u
ct

io
n

 (
%

)

Message Size (Bytes)

Ideal Memory Storage
Anonymous Memory Map

File Storage (mmap)

(a) Pack Method

-90

-80

-70

-60

-50

-40

-30

-20

-10

0

1

4

 1
6

 6
4

 256
 1

k
 4

k
 16k

 64k
256k

 1M 4M
B

an
d

w
id

th
 R

ed
u

ct
io

n
 (

%
)

Message Size (Bytes)

(b) Convertor Method

-90

-80

-70

-60

-50

-40

-30

-20

-10

0

1

4

 1
6

 6
4

 256
 1

k
 4

k
 16k

 64k
256k

 1M 4M

B
an

d
w

id
th

 R
ed

u
ct

io
n

 (
%

)

Message Size (Bytes)

(c) Thread Method

Fig. 3. NetPIPE MX bandwidth between two dancer nodes, according to the copy
method

On one hand, when the number of frames needed for a single message is low,
the MPI thread and the logging thread must alternate with a high frequency
on the core (since the MPI call exits only when the message has been sent
and logged). On the other hand, when the number of frames needed is high,
the thread that is scheduled on the CPU can either log the whole message in
one quantum, or use all available frames in the MX NIC to send as much data
as possible in one go. Thus, when the number of frames increases, the relative
overhead due to the logging thread decreases.

The pack method decreases almost linearly with the message size, since all
copies are made sequentially after the send. Because the network is eventually
saturated, the relative overhead reaches a plateau. The Convertor method uses
a pipeline of 512KB. Thus, until messages are 512KB long, it behaves similarly
as the Pack method. The difference is due to a slightly better cache re-use from
the Pack method that send the message, then logs it, instead of first logging it
during the pack operation, then sending it on the network. When the messages
size is larger than the pipeline threshold, the Convertor method introduces some
parallelism (although not as much as the Thread method), that is used to recover
the communication time with logging time.

The other two figures (2(b) and 2(c)) demonstrate a similar behavior before
4K, although the overheads begin to be notifiable a little sooner for all methods
when logging on a File. This is due to file system overheads (inodes and free
blocks accounting), and memory management (TLB misses) when more pages
are needed to log the messages. When the file system is effectively used (messages
of 4MB and 8MB end up consuming all available buffer caches of the file system),
a high variability in the relative overhead becomes observable (Figure 2(c)).

These phenomenon are more observable on the second group of three figures
under Fig. 3. These figures consider each a specific logging method, and expose
the impact of the medium on the overheads due to a logging method, as func-
tion of the message size. As can be seen, using a mmaped file as a storage space
introduces the highest overhead, significantly higher than the overhead due to

196 G. Bosilca et al.

in-memory storage, even when the kernel buffers of the file system are large
enough to hold this amount of data. This is due to accounting in the file system
(free blocks lists, inodes status), forced synchronization of the journaling infor-
mation, and a conservative policy for the copy of the data to the file system.

The difference of overhead between an anonymous memory map (in the heap
of the process virtual memory), and the Ideal storage space is mainly due to
TLB misses introducing additional page reclaims. This cost is unavoidable to
effectively log the messages, but it is small for small messages, and amortized
for very large messages. As a consequence, logging should happen in memory
as long as the log can be kept small enough to fit there, and the system should
resort to mmaped files only when necessary.

Figures 2(b) and 2(c) lead us to the conclusion that an hybrid approach, with
different thresholds depending on the storage medium, and on the message size,
should be taken: up to messages of 2KB, the method has little influence, however
after this, the Pack or the convertor methods should be preferred up to messages
of 128KB. For messages higher than 128KB, the use of an asynchronous thread,
even if it must share the core with the application thread, is the preferred method
of logging.

5 Conclusion

In this paper, we studied three techniques to log the payload of messages in a
sender-based approach, in the Open MPI PML V framework that implement
message logging fault-tolerance. Because the copying of the message payload
must be achieved before the corresponding MPI emission is complete (either
when the blocking send function exits, or when the corresponding wait operation
exits), copying this payload is a critical efficiency bottleneck of any message
logging approach.

One of the techniques proposed is to use an additional thread to process
the copying asynchronously with the communication; a second uses the pipeline
installed by the Open MPI communication engine to interlace transmissions
towards the network, and copies in memory; the third simply copy the payload
after it has been sent, and before the completion of the communication at the
application level.

We also demonstrated that the medium used to store the payload has a signif-
icant impact on the performances of the payload logging process. We concluded
that depending on the medium for storage, and the message size, different strate-
gies should be chosen, advocating for a hybrid approach that will have to be
tuned specifically for each hardware.

References

1. Meuer, W.H.: The top500 project: Looking back over 15 years of supercomputing
experience. Informatik-Spektrum 31(3), 203–222 (2008)

2. The MPI Forum: MPI: a message passing interface. In: Supercomputing 1993:
Proceedings of the 1993 ACM/IEEE conference on Supercomputing, pp. 878–883.
ACM Press, New York (1993)

Dodging the Cost of Unavoidable Memory Copies 197

3. Fagg, G.E., Gabriel, E., Bosilca, G., Angskun, T., Chen, Z., Pjesivac-Grbovic, J.,
London, K., Dongarra, J.J.: Extending the MPI specification for process fault toler-
ance on high performance computing systems. In: Proceedings of the International
Supercomputer Conference (ICS) 2004, Primeur (2004)

4. Lemarinier, P., Bouteiller, A., Herault, T., Krawezik, G., Cappello, F.: Improved
message logging versus improved coordinated checkpointing for fault tolerant MPI.
In: IEEE International Conference on Cluster Computing (Cluster 2004). IEEE CS
Press, Los Alamitos (2004)

5. Bouteiller, A., Ropars, T., Bosilca, G., Morin, C., Dongarra, J.: Reasons to be
pessimist or optimist for failure recovery in high performance clusters. In: IEEE
(ed.): Proceedings of the 2009 IEEE Cluster Conference, New Orleans, Louisiana,
USA (2009)

6. Bouteiller, A., Bosilca, G., Dongarra, J.: Redesigning the message logging model for
high performance. In: Proceedings of the International Supercomputer Conference
(ISC 2008), Dresden, Germany. Wiley, Chichester (2008) (to appear)

7. Strom, R.E., Bacon, D.F., Yemini, S.: Volatile logging in n-fault-tolerant dis-
tributed systems. In: Society, I.C. (ed.) Proceedings of the Eighteenth International
Symposium on Fault Tolerant Computing (1988)

8. Strom, R.E., Yemini, S.: Optimistic recovery: an asynchronous approah to fault-
tolerance in distributed systems. In: Proceedings of the 14th International Sympo-
sium on Fault-Tolerant Computing. IEEE Computer Society Press, Los Alamitos
(1984)

9. Manivannan, D., Singhal, M.: A low-overhead recovery technique using quasi-
synchronous checkpointing. In: International Conference on Distributed Comput-
ing Systems, p. 100 (1996)

10. Vaidyanathan, K., Chai, L., Huang, W., Panda, D.K.: Efficient asynchronous mem-
ory copy operations on multi-core systems and i/oat. In: CLUSTER 2007: Proceed-
ings of the 2007 IEEE International Conference on Cluster Computing, Washing-
ton, DC, USA, pp. 159–168. IEEE Computer Society Press, Los Alamitos (2007)

11. Goglin, B.: Improving message passing over ethernet with i/oat copy offload in
open-mx. In: Proceedings of the 2008 IEEE International Conference on Cluster
Computing, pp. 223–231. IEEE, Los Alamitos (2008)

12. Stricker, T., Gross, T.: Optimizing memory system performance for communication
in parallel computers. In: ISCA 1995: Proceedings of the 22nd annual international
symposium on Computer architecture, pp. 308–319. ACM, New York (1995)

13. Geoffray, P.: Opiom: Off-processor i/o with myrinet. Future Generation Comp.
Syst. 18(4), 491–499 (2002)

14. Gabriel, E., Fagg, G.E., Bosilca, G., Angskun, T., Dongarra, J.J., Squyres, J.M.,
Sahay, V., Kambadur, P., Barrett, B., Lumsdaine, A., Castain, R.H., Daniel, D.J.,
Graham, R.L., Woodall, T.S.: Open MPI: Goals, concept, and design of a next
generation MPI implementation. In: Proceedings of 11th uropean PVM/MPI Users’
Group Meeting, Budapest, Hungary, pp. 97–104 (2004)

15. Bouteiller, A., Bosilca, G., Dongarra, J.: Retrospect: Deterministic replay of mpi
applications for interactive distributed debugging. In: Proccedings of the 14th Eu-
ropean PVM/MPI User’s Group Meeting (EuroPVM/MPI), pp. 297–306 (2007)

16. Snell, Q.O., Mikler, A.R., Gustafson, J.L.: Netpipe: A network protocol indepen-
dent performance evaluator. In: IASTED International Conference on Intelligent
Information Management and Systems (1996)

Communication Target Selection for Replicated

MPI Processes

Rakhi Anand, Edgar Gabriel, and Jaspal Subhlok

Department of Computer Science, University of Houston
{rakhi,gabriel,jaspal}@cs.uh.edu

Abstract. VolpexMPI is an MPI library designed for volunteer comput-
ing environments. In order to cope with the fundamental unreliability of
these environments, VolpexMPI deploys two or more replicas of each MPI
process. A receiver-driven communication scheme is employed to elimi-
nate redundant message exchanges and sender based logging is employed
to ensure seamless application progress with varying processor execution
speeds and routine failures. In this model, to execute a receive operation, a
decision has to be made as to which of the sending process replicas should
be contacted first. Contacting the fastest replica appears to be the op-
timal local decision, but it can be globally non-optimal as it may slow-
down the fastest replica. Further, identifying the fastest replica during
execution is a challenge in itself. This paper evaluates various target se-
lection algorithms to manage these trade-offs with the objective of min-
imizing the overall execution time. The algorithms are evaluated for the
NAS Parallel Benchmarks utilizing heterogeneous network configurations,
heterogeneous processor configurations and a combination of both.

1 Introduction

Idle desktops have been successfully used to run sequential and master-slave task
parallel codes, most notably under Condor [1] and BOINC [2]. The distributed,
heterogeneous and unreliable nature of these volunteer computing systems make
the execution of parallel applications highly challenging. The nodes have varying
compute, communication, and storage capacity and their availability can change
frequently and without warning. Further, the nodes are connected with a shared
network where available latency and available bandwidth can vary. Because of
these properties, we refer to such nodes as volatile and parallel computing on
volatile nodes is challenging.

The most popular approach for dealing with unreliable execution environ-
ments is to deploy a checkpoint-restart based mechanisms, as has been done
(among others) by MPICH-V [3], OpenMPI [4] or RADIC-MPI [5]. A smaller
number of projects are using replication based techniques, such as P2P-MPI [6]
or rMPI [7]. We have recently introduced VolpexMPI [8], an MPI library which
tackles the challenges mentioned above by deploying two or more copies of each
MPI process, and utilizes a receiver based communication model with a sender
side message logging. The design of VolpexMPI avoids an exponential increase

R. Keller et al. (Eds.): EuroMPI 2010, LNCS 6305, pp. 198–207, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Communication Target Selection for Replicated MPI Processes 199

in the number of messages with increasing degree of replication by ensuring that
exactly one physical message is transmitted to each receiving process for each
logical receive operation. On each process, a priority list of the available replicas
corresponding to every other communicating process is maintained. Clearly, the
ordering of processes in this list will have a fundamental impact on the overall
performance of the application. We refer to this problem throughout this paper
as the target selection problem.

This paper evaluates five different approaches for target selection: a process
team based approach as described in [8], a network performance based approach,
an algorithm based on the virtual time stamps of the messages, a timeout based
algorithm, and a hybrid approach deploying both network parameters as well as
virtual time stamps. The algorithms are evaluated for the NAS Parallel Bench-
marks for heterogeneous network configurations, heterogeneous processor con-
figurations and a combination of both.

The remainder of the paper is organized as follows: section 2 gives a brief
overview of VolpexMPI. Section 3 describes the five target-selection algorithms
in detail. The algorithms are than evaluated for various hardware configurations
in section 4. Finally, section 5 summarizes the results and presents the ongoing
work.

2 VolpexMPI

VolpexMPI is an MPI library designed to deal with the heterogeneity, unrelia-
bility and the distributed nature of volunteer computing environments. The key
features of VolpexMPI are:

1. Controlled redundancy: A process can be initiated as two (or more) replicas.
The fundamental goal for the execution model is to have the application
progress at the speed of the fastest replica of each process.

2. Receiver based direct communication: The communication framework sup-
ports direct node to node communication with a pull model: the sending
processes buffer data objects locally and receiving processes contact one of
the replicas of the sending process to get the data object.

3. Distributed sender based logging: Messages sent are implicitly logged at the
sender and are available for delivery to process instances that are lagging
due to slow execution or recreation from a checkpoint.

The receiver based communication scheme along with the distributed sender
based message logging allows a receiver process to contact any of the existing
replicas of the sender MPI rank to request a message. Since different replicas
can be in different execution states, a message matching scheme is employed to
identify which message is being requested by a receiver. For example, it is not
sufficient for process zero to request a message with a particular tag on commu-
nicator MPI COMM WORLD from process one, if the application would send, over its
lifetime, multiple messages with this particular signature. To distinguish between
the different incarnations of each message, VolpexMPI deploys a virtual times-
tamp to each message by counting the number of messages exchanged between

200 R. Anand, E. Gabriel, and J. Subhlok

pairs of processes. This virtual timestamp along with the tuple [communicator
id, message tag, sender rank, receiver rank] uniquely identifies each message for
the entire application execution. These timestamps are also used to monitor the
progress of individual process replicas for resource management.

The overall sequence of operations for a point-to-point communication is as
follows: Upon calling MPI Send, the sending process only buffers the content of
a message locally, along with the message envelope, which includes the virtual
timestamp, in addition to the usual elements used for message matching. In case
any of the replicas of the receiver process requests this particular message, the
sender process will reply with the corresponding data.

The receiving process polls a potential sender and waits for the data item.
Note, that there are two possibilities that have to be handled if a sender process
does not currently have a matching message. First, the data might not be avail-
able yet, because the sender process lags the receiving process. This scenario is
recognized by the sender by comparing the virtual time stamp of the request
message with the most recent message having the same tuple [tag, communica-
tor, sender rank, receiver rank]. In this case, the library will simply postpone
the reply until the request message is available.

The second scenario is that the message is not available anymore, e.g., because
the circular buffer used for sender side message logging has already overwritten
the corresponding data item. This scenario only occurs, if the replica of the
receiver process is lagging significantly behind the sender process. In this case
the sender process will not be able to comply with the request. As of now we
are not handling this situation. Thus, the lagging replica keeps on waiting for a
particular message. However, there are various ways in which such a scenario can
be handled, such as a time-out based mechanism, or an explicit reply indicating
the inability to comply with the request. The long-term goal is to coordinate the
size of the circular buffer with checkpoints of individual processes, which will
allow guaranteed restarts with a bounded buffer size.

As different replicas of an MPI rank can be at significantly different stages of
the execution, each process has to be able to prioritize the available replicas for
each MPI rank. This is discussed in the next section.

3 Target Selection Algorithms

In order to meet the goal that the progress of an application correspond to the
fastest replica for each process, the library has to provide an algorithm which
allows a process to generate an order in which to contact the sender replicas. This
is the main functionality provided by the target-selection module. The algorithm
utilized by the target-selection module has to handle two seemingly contradicting
goals: on one hand, it would be beneficial to contact the “fastest” replica from
the performance perspective. On the other hand, the library does not want to
slow-down the fastest replica by making it handle significantly larger number
of messages, especially when a message is available from another replica. The
specific goal, therefore, is to determine a replica which is “close” to the execution
state of the receiver process.

Communication Target Selection for Replicated MPI Processes 201

The team based approach, the original algorithm implemented in
VolpexMPI [8], divides the processes into teams at startup, with one replica of
each process in every team. Processes communicate within their own teams and
contact a process from another team only in case of failure. Since processes are
communicating exclusively within a team, fast processes are bound to communi-
cate with slow processes, causing the application to execute at the speed of slow
processes. A slow process can be defined as a process running on a slow internet
connection, having a slow processor speed, or busy in some other work. Thus,
in order to advance application at the speed of fast processes, there should be
a mechanism where each process can select their communicating partner. How-
ever, team based approach does not provide any such mechanism. In order to
solve this problem, different algorithms based on network performance, timeout,
virtual timeout, and hybrid approach were developed and implemented.

Network Performance Based Target Selection. Two key elements of network
performance are latency and bandwidth. These parameters are used to establish
an order among the replicas of an MPI rank on each process. For this, each
process will use all of the known replicas of an MPI processes in a round-robin
fashion for regularly occurring communication and time the operations. After
receiving a fixed number of messages from each replica of the same rank, the
receiver process calculates the latency and bandwidth corresponding to each
sender process. Priority for the future is based on these parameters.

Note, that the algorithm has the ability to restart the evaluation process after
a certain period of time, e.g. a certain number of messages to that process, or
in case the estimated bandwidth value to the currently used replica changes
significantly compared to the original evaluation. An important disadvantage of
this approach is that, if one of the replicas used has an extremely slow network
connectivity, the evaluation step will bring the fast running processes also to the
speed of the slowest one for the duration of the evaluation.

Timeout Based Target Selection. In this approach, each process waits for the
reply from a replica for a limited time. If the requested data is not available
within the predefined time frame, the process switches to another replica and
requests the same message. A technical challenge is how to deal with the data of
the original abandoned replicas, since the user level message buffer should not be
overwritten by that process anymore. Thus, the library has to effectively cancel
the original request before moving to the next replica. If the data from the first
(slow) replica comes in, the data will be placed into the unexpected message
queue of the library instead of the user buffer, and can safely be purged from
there. For this, VolpexMPI maintains a list of items that need to be removed
from the unexpected message queue(s).

One drawback for this algorithm is that it is difficult to define a reasonable
value for the timeout. If the timeout value is too small, processes change their
target too frequently, whereas if the timeout value is large, processes will continue
communication with slow processes for too long. Therefore, setting the correct
threshold value plays a very important role. Another disadvantage is that all slow

202 R. Anand, E. Gabriel, and J. Subhlok

processes will try to contact fast processes making them handle more requests
which may slow down the fast processes.

Virtual Time Stamp Based Target Selection. This algorithm employs the virtual
timestamps of messages to compare the state of sender and receiver processes. As
explained in section 2, a virtual timestamp is the message number for communi-
cation between a pair of processes. Each sender process attaches its most recent
timestamp for the same message type, i.e. message with same tuple [communi-
cator id, message tag, sender rank, receiver rank] when replying to a receiver
request. The receiver compares the timestamps from different senders to deter-
mine the execution state of the processes.

The overall approach starts by using the teams as created by the team-based
algorithm. If the difference between the timestamps of two processes exceeds a
certain threshold value, a process can decide to switch to another replica for
that particular rank. Ultimately, it will choose the replica closest to its own
execution state. Similarly to the timeout based approach, the major difficulty in
this algorithm is to decide on good values for the threshold, i.e. when to switch
to next replica. This threshold value must not be too small to avoid frequent
change in targets, nor too large to avoid long detection time of slow targets.

Hybrid Target Selection. This algorithm combines the network based algorithm
and virtual timestamp based algorithm. Each process first sends a message to
each replica and decides the preferred target based on the best network param-
eters. In order to determine the best target, pairwise communication is initiated
during the initialization of the application. As a result each process is commu-
nicating with fastest communicating replica. This might make the fast running
processes to slow down, since it has to serve potentially multiple instances of
each MPI process. In a second step, the virtual timestamp based approach is
used to separate slow replicas from faster ones, i.e., if a process is lagging far
behind the sender process it changes its target to the slower one. The result is
a reduced communication volume to faster processes. In the long term we en-
vision the first step to be replaced by a more sophisticated process placement
strategy of the mpirun, which can utilize proximity information obtained from
the BOINC server and from internet metrics as presented in [9].

4 Performance Evaluation

This section describes the experiments with VolpexMPI library and the results
obtained.The tests presented here have been executed on a regular dedicated
cluster, in order to achieve reproducible results and understand characteristics
of our algorithm. The cluster is composed of 29 compute nodes, 24 of them
having a 2.2GHz dual-core AMD Opteron processors, and 5 nodes having two
2.2GHz quad-core AMD Opteron processors. Each node has 1GB main memory
per core and network connected by 4xInfiniBand as well as a 48 port Linksys
GE switch. For the subsequent analysis, only the Gigabit Ethernet interconnect
has been utilized.

Communication Target Selection for Replicated MPI Processes 203

The NAS Parallel Benchmarks(NPBs) are executed for 8 process and the
problem size B. For each target selection algorithm we record and compare the
results obtained to the numbers obtained with the team based approach, the
original target selection algorithm presented in [8]. Tests have been executed
using two replicas per MPI process, henceforth denoted as double-redundancy,
and three replicas per MPI process, also called triple redundancy runs. Note,
that for triple redundancy runs only CG, EP and IS benchmarks have been
executed. BT and SP would require 9 processes for that particular, which due
to restrictions on the network configuration could not be executed. The triple
redundancy tests of FT failed due to the memory requirement for each process.

4.1 Results for Heterogeneous Network Configurations

In this set of experiments we explore, the cluster switch has been configured
such that the link bandwidth to eight nodes has been decreased from Gigabit
Ethernet(1Gb/s) to Fast Ethernet (100Mb/s), creating a heterogeneous network
configuration. For the double redundancy tests, processes have been distributed
such that no two replicas of the same MPI rank are on same network, i.e. if
process 0,A is on Fast Ethernet then process 0,B is on Gigabit Ethernet. Fur-
thermore, all teams contain processes that use the Gigabit Ethernet and the Fast
Ethernet network. For the triple redundancy tests, one team of processes is being
executed on a single 8-core node, creating a third hierarchy level with respect to
the quality of communication. Similarly to the double redundancy tests, teams
have been initiated such that each process has one replica on each of the three
hierarchy levels, and all teams contain some processes from all three hierarchy
levels. The challenge for the algorithms are to modify the original teams pro-
vided at startup such that (ideally) one set of replicas only contain processes on
fast nodes, and the other one only consists of slow nodes.

Fig. 1 shows the results obtained with all implemented algorithms for dou-
ble(x2)(left) and triple(x3)(right) redundancy. The results indicate, that the ex-
ecution time for the network based algorithm is almost equal to the execution
time of the team based algorithm. The main reason for this somewhat surprising
behavior is that in some instances the algorithm identifies the wrong replicas as

Fig. 1. Comparison of all target selection algorithms for heterogeneous networks

204 R. Anand, E. Gabriel, and J. Subhlok

being the ’fastest’ target. This happens if a fast process could not send response
to the asking process because it is waiting itself for the result from a slow pro-
cess, and which will falsify the measurements. Consider a simple example, where
process 0,A and 1,B are running on fast nodes and processes 0,B and 1,A are
running on slow nodes. In a situation when process 0,A sends a request for a
message to 1,B, and 1,B is in turn waiting for a message from 0,B, its reply to
process 1,A might be delayed. Note, that for artificial test case the algorithm
worked as expected. However, for more realistic applications/benchmarks such as
the ones used here, the MPI processes are too tightly coupled together in terms
of send and receive operations, and the network performance based approach
does not provide good performance results.

Next, we document the results for timeout based algorithm. The results for
this algorithm are almost similar to the results obtained from network based
algorithm for very similar reasons. As explained in section 3, the threshold value
plays an important role in the overall performance of the algorithm. For the
results presented here, we used a threshold value of 0.5 seconds for the double
redundancy tests and 1.0 seconds for triple redundancy tests. We did perform
experiments with various other threshold values, with lower values resulting in
frequent switching of targets and higher threshold values preventing any process
from switching to another replica.

Similarly to the other two algorithms, the virtual timestamp based algorithm
does not show for the double and triple redundancy runs any difference to the
team based approach, which is due to the fact that the synchronized commu-
nication patterns used in most of the NAS parallel benchmarks does not allow
processes to ’drift apart’. Thus, the speed of fast processes is reduced due to the
communication taking place with slow process and the application advances with
the speed of slow processes. Note furthermore, that this algorithm in theory is
designed to handle varying processor speeds and not necessarily varying network
parameters for homogeneous processor configuration, and thus the result is not
entirely unexpected.

Finally, the results obtained by using the hybrid approach in which processes
are first grouped according to the network parameters and lagging processes
are identified in a second step, is showing the best performance overall. The
overall execution time is matching the performance that the same application
would achieve when using Gigabit Ethernet network connections only. Thus, this
algorithm is a significant improvement over the team-based approach utilized
in [8]. Analyzing the results of this algorithm reveal, that the main difference
comes from the fact, that the network parameters are not determined by timing
the regularly occurring MPI messages of the application, but by introducing a
pair-wise communication step that is executed in MPI Init.

4.2 Results for Heterogeneous Processor Configurations

In order to analyze the behavior of the algorithms for systems comprised of
heterogeneous processor, the frequency of 9 nodes has been reduced to 1.1 GHz,
while all other nodes are running at full frequency, i.e 2.2 GHz. All nodes are

Communication Target Selection for Replicated MPI Processes 205

Fig. 2. Comparison of all algorithms for heterogeneous processor configurations

connected through Gigabit Ethernet, in order to eliminate network influences.
Again we mixed the nodes running on slow frequency and nodes running on full
frequency and compared the performances of different algorithms implemented.

Figure 2 shows the results obtained for this setting for all algorithms. The
network based algorithm, timeout based algorithm and virtual timestamp based
algorithm using double redundancy(left) runs are similar as discussed in the
previous paragraph for similar reasons. In contrary to the previous section, the
results obtained with the hybrid algorithm does not show any performance gain
over other algorithms. This is due to the fact, that the network itself does not
expose any hierarchies in this scenario, and therefore the pre-sorting of replicas
and teams does not occur. In fact, nodes are grouped together without any
proper order i.e each team consist of few processes running on slow nodes and
other processes running on fast nodes.

4.3 Results for Combinations of Heterogeneous Network and
Processor Configurations

For the last set of experiments, the network connection to 8 of the 29 nodes has
been once again reduced to Fast Ethernet. Furthermore, the frequency of the
same 8 nodes has been reduced to 1.1 GHz while all other nodes are running
at full speed. Similarly to the previous tests, teams have been initiated such
that each process has one replica on a slow and on a fast node, and all teams
contain some processes from all three hierarchy levels. For the triple redundancy
runs, a third configuration consisting of 8 processes running at full frequency,
but located on a single 8-core processor are interleaved with the other two sets.

Figure 3 shows the results obtained for the double and triple redundancy runs.
The results are similar to the results obtained in the previous sections, with the
network based algorithm, timeout based algorithm and virtual timestamp based
algorithm not being able to correctly identify the optimal configuration.

The hybrid approach however gives the performance numbers similar to the
results as if all processes are running on fast nodes. Also, for triple redundancy
runs where all processes from each initial team are mixed, the hybrid algorithm
is clearly able to group processes as if all three teams are executing on separate

206 R. Anand, E. Gabriel, and J. Subhlok

Fig. 3. Comparison of all algorithms for combination of heterogeneous network and
processor configurations

Table 1. Performance Results for redundancy 3 runs on different networks

Volpex Team A Volpex Team B Volpex Team C

CG 87.93 67.69 184.29

IS 3.56 8.15 23.82

EP 29.69 29.72 117.83

networks: Team A on shared memory, Team B on Gigabit Ethernet, and Team
C on Fast Ethernet. This fact is highlighted by the results shown in table 1,
which details the execution time observed by each individual team as identified
by the hybrid target selection algorithm.

5 Summary

In this paper we presented and evaluated five different approaches for the target
selection problem. The algorithms have been evaluated for the NAS Parallel
Benchmarks for heterogeneous network configurations, heterogeneous processor
configurations and a combination of both. The analysis reveals that the hybrid
target selection algorithm shows a significant performance benefit over other
algorithms for most (common) scenarios.

The ongoing work in this project includes a full evaluation of the new target
selection method in a volunteer computing environment with a wider range of
applications. On the algorithmic level we envision the initial placement to be
driven by a more sophisticated process that can utilize proximity information
obtained from the BOINC server and from internet metrics as presented in [9].

Acknowledgments. Partial support for this work was provided by the Na-
tional Science Foundation’s Computer Systems Research program under Award
No. CNS-0834750. Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the authors and do not necessarily reflect
the views of the National Science Foundation.

Communication Target Selection for Replicated MPI Processes 207

References

1. Thain, D., Tannenbaum, T., Livny, M.: Distributed computing in practice: the con-
dor experience. Concurrency - Practice and Experience 17(2-4), 323–356 (2005)

2. Anderson, D.: BOINC: A system for public-resource computing and storage. In:
Fifth IEEE/ACM International Workshop on Grid Computing (November 2004)

3. Bouteiller, A., Cappello, F., Herault, T., Krawezik, G., Lemarinier, P., Magniette,
F.: MPICH-V2: a fault tolerant MPI for volatile nodes based on pessimistic sender
based message logging. In: SC 2003: Proceedings of the 2003 ACM/IEEE conference
on Supercomputing, Washington, DC, USA, p. 25. IEEE Computer Society, Los
Alamitos (2003)

4. Hursey, J., Squyres, J.M., Mattox, T.I., Lumsdaine, A.: The design and implemen-
tation of checkpoint/restart process fault tolerance for Open MPI. In: Proceed-
ings of the 21st IEEE International Parallel and Distributed Processing Symposium
(IPDPS). IEEE Computer Society Press, Los Alamitos (March 2007)

5. Duarte, A., Rexachs, D., Luque, E.: An Intelligent Management of Fault Tolerance
in Cluster Using RADICMPI. In: Mohr, B., Träff, J.L., Worringen, J., Dongarra, J.
(eds.) PVM/MPI 2006. LNCS, vol. 4192, pp. 150–157. Springer, Heidelberg (2006)

6. Genaud, S., Rattanapoka, C.: Large-scale experiment of co-allocation strategies for
peer-to-peer supercomputing in P2P-MPI. In: IEEE International Symposium on
Parallel and Distributed Processing, IPDPS 2008, pp. 1–8 (2008)

7. Ferreira, K., Riesen, R., Oldfield, R., Stearly, J., Laros, J., Redretti, K., Korden-
brock, T., Brightwell, R.: Increasing fault resiliency in a message-passing environ-
ment. Technical report, Sandia National Laboratories (2009)

8. LeBlanc, T., Anand, R., Gabriel, E., Subhlok, J.: VolpexMPI: an MPI Library for
Execution of Parallel Applications on Volatile Nodes. In: Ropo, M., Westerholm,
J., Dongarra, J. (eds.) Recent Advances in Parallel Virtual Machine and Message
Passing Interface. LNCS, vol. 5759, pp. 124–133. Springer, Heidelberg (2009)

9. Xu, Q., Subhlok, J.: Automatic clustering of grid nodes. In: Proceedings of the 6th
IEEE/ACM Workshop on Grid Computing, Seattle, WA (November 2005)

Transparent Redundant Computing with MPI

Ron Brightwell, Kurt Ferreira, and Rolf Riesen

Sandia National Laboratories�

Albuquerque, NM USA
{rbbrigh,kbferre,rolf}@sandia.gov

Abstract. Extreme-scale parallel systems will require alternative
methods for applications to maintain current levels of uninterrupted
execution. Redundant computation is one approach to consider, if the
benefits of increased resiliency outweigh the cost of consuming addi-
tional resources. We describe a transparent redundancy approach for
MPI applications and detail two different implementations that provide
the ability to tolerate a range of failure scenarios, including loss of ap-
plication processes and connectivity. We compare these two approaches
and show performance results from micro-benchmarks that bound worst-
case message passing performance degradation. We propose several en-
hancements that could lower the overhead of providing resiliency through
redundancy.

Keywords: Fault tolerance, Redundant computing, Profiling interface.

1 Introduction

It is widely accepted that future extreme-scale parallel computing systems will
require alternative methods to enable applications to maintain current levels
of uninterrupted execution. As the component count of future multi-petaflops
systems continues to grow, the likelihood of a failure impacting an application
grows as well. Current methods of providing resiliency for applications, such as
checkpoint/restart, will become ineffective, largely due to the overhead required
to checkpoint, restart, and recover lost work. As such, the research community
is pursuing several alternative approaches aimed at providing the ability for an
application to survive in the face of failures and to continue to make efficient
computational progress.

One of the fundamental approaches for masking errors and providing fault
tolerance is redundancy. Replicating state and repeating operations occurs in
many parts of modern computing systems; e.g., RAID has become common-
place. In order for redundancy to be viable for parallel computing, the potential
performance degradation has to be offset by significant benefits. An important
consideration for existing parallel computing systems and applications is the

� Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed
Martin Company, for the United States Department of Energy’s National Nuclear
Security Administration under contract DE-AC04-94AL85000.

R. Keller et al. (Eds.): EuroMPI 2010, LNCS 6305, pp. 208–218, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Transparent Redundant Computing with MPI 209

amount of invasiveness that will be required to provide fault tolerance. Incre-
mental approaches that minimize modifications to applications, system software,
and hardware are more likely to be adopted.

We are exploring approaches to providing redundancy for MPI applications.
We are seeking to answer several important research questions: a) Can we employ
redundant computing with MPI transparently? b) What missing functionality,
if any, is needed? c) What is the worst-case overhead? d) Are there any possible
software or hardware enhancements that could reduce this overhead?

In this paper, we present two approaches for providing transparent redun-
dancy for MPI applications. Both of these approaches double the number of
processes in the application but use different schemes for recognizing failed pro-
cesses and lost messages.

2 Implementation

We implemented redundant computing as a library that resides between an ap-
plication and an MPI implementation. The rMPI library is described in detail
in [1]. Here we provide only a brief description and highlight the parts which are
relevant for the remainder of this paper.

2.1 Design Choices

Future, large-scale machines where redundant computing may be of advantage [2]
will have many nodes and will run MPI between these nodes to achieve the desired
performance and scalability. Therefore, we implemented rMPI using the profiling
interface of MPI. This provides us with portability across MPI implementations.

The second reason for implementing rMPI at the profiling layer is that we
wanted to have a mechanism that is transparent to the application. Other than
at job submission time when a user requests additional nodes for redundant
computing, the application is not aware of the mechanism. It only sees, and
interacts with, the active ranks and is unaware of the additional ranks and
communication behind the scenes.

Using rMPI, we start an application on n . . . 2n nodes. During MPI Init()

we set up a new communicator for the first n active nodes and substitute that
communicator whenever the application uses MPI COMM WORLD. Any nodes beyond
n become redundant nodes for active nodes in a one-to-one fashion. Each re-
dundant node performs the exact same computation as its active partner. The
rMPI library ensures that it sees the same MPI behavior as the active node.
That means if the active node is rank x, then the redundant node will also
be rank x. The rMPI library performs the necessary translations to the actual
ranks used by the underlying MPI library. Both nodes would send to rank y,
even though there might be actually two nodes that have been assigned rank y.

Maintaining consistency for receives using MPI ANY SOURCE or MPI ANY TAG re-
quires a consistency protocol between active and redundant nodes. For example,
MPI guarantees message order between node pairs, but rMPI must make sure

210 R. Brightwell, K. Ferreira, and R. Riesen

that the message order seen on an active node is the same on its redundant node.
Otherwise, computation on these two nodes could diverge.

2.2 Mirror Protocol

We started implementing rMPI with a straightforward protocol called mirror .
As the name implies, it duplicates every message an application sends by trans-
mitting it first to the original destination and then one more time to the desti-
nation’s redundant partner, if it exists.

Each receiver posts two receives into the same buffer for every application
receive, if the sending node has a redundant partner that will also send. When
nodes fail, rMPI is notified and stops sending to disabled nodes or posting re-
ceives for messages that will no longer be sent.

Fig. 1. In the mirror protocol each
sender transmits the user messages
twice and additional consistency pro-
tocol exchanges are needed in the case
of MPI ANY SOURCE

Figure 1 illustrates the process. As long
as either the active node or its redundant
partner are still alive, the application can
continue. Only when both nodes in a bun-
dle die, or a node without a redundant
partner dies, will the application be inter-
rupted and must restart.

Mirroring message order on two in-
dependent nodes in case of a MPI ANY -

SOURCE receive requires that only one node
post the receive, and informs the second
node of the actual receive order so it can
post specific tag- and source-field receives
to duplicate that order. If any MPI ANY -

SOURCE receives are pending, the second
node must queue all subsequent receives,
without letting the MPI implementation
see them, until all current MPI ANY SOURCE receives have been satisfied.

2.3 Parallel Protocol

The mirror protocol consumes a lot of bandwidth when an application sends
many large messages. To reduce this overhead we designed a second protocol
named parallel . It is illustrated in Figure 2. Other than short protocol messages,
rMPI only sends the original application messages between nodes. However, a
larger number of protocol messages are now needed because the sender and its
redundant partner must ensure that each of the destinations receive one copy of
the message.

If one of the sender fails, the other must take over and send the additional
copy. The parallel protocol somewhat resembles a transaction protocol where the
two sending partners must ensure that both receivers get exactly one copy each
of the application message. While this works well for large application messages
where the overhead of a few additional short messages makes little difference, it

Transparent Redundant Computing with MPI 211

is a problem for applications which send a lot of short messages. In that case the
message rate that can be achieved by the application is reduced.

2.4 Issues

Fig. 2. Message flow in the parallel
protocol

Initially we did not know whether trans-
parent redundant computing could be
achieved at the MPI level. We have
shown [1] that it is possible, with rela-
tively minor demands on the RAS sys-
tem. Applications experience a perfor-
mance impact that is in general less than
10%. Of course, micro-benchmarks clearly
show the overhead present in the two pro-
tocols we have described.

While moving lower than MPI in the
networking stack is not necessary, doing
so may have advantages. The purpose of
this paper is to further narrow the issues
with our current prototype of rMPI and propose new solutions. To start, we list
some issues that we have identified:
1. No redundant I/O. MPI-I/O and standard I/O are not currently handled by

rMPI.
2. Missing integration with a RAS system. There is no standard way of doing

this, but rMPI needs to know which nodes are alive, and the MPI imple-
mentation needs to survive the disappearance of individual nodes.

3. rMPI is an almost full re-implementation of the underlying MPI library.
4. Collective operations are reduced to point-to-point transmissions eliminating

many of the optimization efforts performed by the underlying MPI library.
5. Mirroring message order on independent nodes for MPI ANY SOURCE receives

causes consistency protocol overhead.
6. Delayed posting of MPI ANY SOURCE receives can increase the number of un-

expected messages.
7. The mirror protocol consumes twice the bandwidth that the application

needs and increases latency for small messages.
8. The parallel protocol is more frugal in its bandwidth consumption, but limits

message rate.
In this paper we want to address items 3 through 8 and propose some ideas
that could improve the performance of rMPI and limit some of its other short-
comings. In particular, we are interested in exploiting an intelligent network
interface controller (NIC) and router designs to off-load some rMPI function-
ality. Furthermore, it would be interesting to design a solution that combines
intra-node communication among the cores of a node with the necessary inter-
node communication to reach redundant nodes which should be, for reliability
purposes, physically as far away as possible inside the machine. The following
sections describe our measurements and solutions.

212 R. Brightwell, K. Ferreira, and R. Riesen

3 Results

In this section, we present the performance impact of our two protocols using
a latency, bandwidth, and a message rate microbenchmark. Latency and band-
width tests are from the OSU MPI benchmark suite(OMB) [3] while the message
rate test is from the Sandia MPI microbenchmark suite. Due to the protocols
special handling of MPI ANY SOURCE, we created another microbenchmark similar
to the OMB latency test which uses wild-card receives.

We conducted our tests on the Cray Red Storm system at Sandia National
Laboratories. Each data points corresponds to the mean of five runs with error
bars shown. In each of the following plots native refers to the performance of
the benchmark without the rMPI library. Base for each of the protocols refers
to performance with the rMPI library linked in but no redundant nodes used.
The parallel and mirror lines are the performance of the application with a full
set of replica nodes. Dashed lines show the overhead of keeping these replicas
consistent.

Figures 3 and 4 illustrate the performance impact of the protocols on both
bandwidth and message rate. Bandwidth in Figure 3 behaves as expected from
the protocol descriptions in the previous section. The mirror protocol achieves
about half of the observed bandwidth of native and the parallel protocol reaches
nearly native bandwidth for large messages but for smaller messages the in-
creased protocol message traffic hinders achievable bandwidth. Similarly, Fig-
ure 4 shows that for smaller messages mirror is able to achieve a higher message
rate than parallel (with mirror’s rate around half of that of native), but as mes-
sage size increases parallel’s rate approaches to within 10% of native.

B
an

dw
ith

D
iff

er
en

ce
 to

 n
at

iv
e

Message size

Native
Base

Base %
Mirror

Mirror %
Parallel

Parallel %

0.0 B/s

200.0 MB/s

400.0 MB/s

600.0 MB/s

800.0 MB/s

1.0 GB/s

1.2 GB/s

1.4 GB/s

1.6 GB/s

1.8 GB/s

2.0 GB/s

1 B
10 B

100 B

1 kB
10 kB

100 kB

1 M
B

10 M
B

100 M
B

0 %

20 %

40 %

60 %

80 %

100 %

Fig. 3. Bandwidth measurements for the two protocols compared to native and base-
line. Native is the benchmark without rMPI, base has rMPI linked in but does not use
redundant nodes.

Transparent Redundant Computing with MPI 213

M
es

sa
ge

 R
at

e
(m

sg
s/

se
c)

D
iff

er
en

ce
 to

 n
at

iv
e

Message size

Native
Base

Base %
Mirror

Mirror %
Parallel

Parallel %

0.0 s

50.0 ks

100.0 ks

150.0 ks

200.0 ks

250.0 ks

300.0 ks

350.0 ks

400.0 ks

1 B
10 B

100 B

1 kB
10 kB

100 kB

1 M
B

10 M
B

0 %

20 %

40 %

60 %

80 %

100 %

Fig. 4. Message rate measurements

We examine the protocols’ impact on application latency next. Figure 3 shows
the results of the latency microbenchmark without MPI ANY SOURCE receives, and
Figure 3 repeats the experiment with MPI ANY SOURCE receives. Again, latency for
parallel is significantly lower than mirror. This is due to the fact that mirror must
either wait for both messages to arrive or receive one of the messages and cancel
the other before proceeding. Each of these operations require much more time
than the one receive that the parallel protocol must wait for. Note in Figure 3
that this difference in performance between the two protocols is smaller when
an MPI ANY SOURCE receive is posted. This is because the overhead is dominated
by the consistency protocol to enforce message order on the redundant nodes.

La
te

nc
y

D
iff

er
en

ce
 to

 n
at

iv
e

Message size

Native
Mirror Base

Mirror Base %

Mirror
Mirror %

Parallel Base

Parallel Base %
Parallel

Parallel %

4.0 us

6.0 us

8.0 us

10.0 us

12.0 us

14.0 us

16.0 us

18.0 us

20.0 us

1 B
10 B

100 B

1 kB
10 kB

0 %

20 %

40 %

60 %

80 %

100 %

Fig. 5. Latency without MPI ANY SOURCE for the two protocols

214 R. Brightwell, K. Ferreira, and R. Riesen

La
te

nc
y

D
iff

er
en

ce
 to

 n
at

iv
e

Message size

Native
Mirror Base

Mirror Base %

Mirror
Mirror %

Parallel Base

Parallel Base %
Parallel

Parallel %

0.0 s

5.0 us

10.0 us

15.0 us

20.0 us

25.0 us

30.0 us

1 B
10 B

100 B

1 kB
10 kB

0 %

20 %

40 %

60 %

80 %

100 %

120 %

140 %

160 %

Fig. 6. Latency with MPI ANY SOURCE for the two protocols

These microbenchmark results show that parallel is better for bandwidth and
latency sensitive applications, and mirror has the advantage of having a higher
achievable message rate for smaller messages and places less demand on RAS
system functionality [1]. In either case, it is clear that the performance of both
protocols could be improved with some additional support from both the under-
lying hardware and the MPI implementation.

4 Accelerating Redundant Computing

In Section 2.4 we identified issues with the current implementation of rMPI and
in Section 3 we measured some additional properties that are affected by the
rMPI implementation and the protocols it uses. We are now ready to address
issue items 3 through 8 from our list on page 211.

4.1 Integrating rMPI into an MPI Implementation

While implementing rMPI as a layer between the application and the MPI im-
plementation allowed for quick prototyping, it has performance and code mainte-
nance drawbacks that can be addressed by moving rMPI inside an existing MPI
implementation. For example, this approach would allow for providing fully op-
timized collective operations.

4.2 Bandwidth and Latency Consumption

The mirror protocol sends each application message twice. Since the messages are
identical, save for the different destinations, it would make sense to let the NIC
duplicate the message and send two copies out, potentially reducing bandwidth
consumption on the local NIC- to-memory connections. An even better approach
would be to have the first router where the two message paths diverge, do this

Transparent Redundant Computing with MPI 215

task. The message would have to be flagged as a redundant message and contain
the address of, or routes to, both destinations. This mechanism would be an
incremental increase in complexity inside a router or NIC. It would help the
parallel protocol when it is operating in degraded mode.

Currently, rMPI operates below the collective operations and uses the MPI
implementation underneath as a point-to-point transport layer. This leads to
poor collective performance as can be seen in Figure 7. This figure shows the
consistency protocol overhead for a barrier operation for both mirror and par-
allel. Similar slowdown can be seen for other collective operations [1]. Instead,
rMPI should make use of the provided and optimized collective operations, and,
for example, use one broadcast operation to deliver data to all nodes – active
and redundant. This would help both protocols to take advantage of topology
optimized MPI features.

La
te

nc
y

P
er

ce
nt

 D
iff

er
en

ce

Nodes

native
mirror

mirror %
parallel

parallel %

0 us

100 us

200 us

300 us

400 us

500 us

600 us

700 us

4 8 16 32 64 128
256

512
1024

2048

0 %

100 %

200 %

300 %

400 %

500 %

600 %

700 %

Fig. 7. MPI Barrier() performance for the two protocols compared to native

4.3 Message Order Semantics in Case of MPI ANY SOURCE

Both protocols suffer when an application posts receives with the MPI ANY SOURCE

or MPI ANY TAG marker. We cannot post the receive on the redundant node until
we know in which order the message arrived at the active node. This causes
overhead due to processing of unexpected messages. In addition, rMPI latency
is degraded because of the protocol overhead to agree on a message order.

Implementation issues with MPI ANY SOURCE are well known and some
researchers have advocated forbidding it, saying that well-written applications
do not need it. rMPI can avoid most of the overhead when an application does
not use MPI ANY SOURCE, since both nodes in a pair can detect the use of MPI ANY -

SOURCE. However, the fundamental problem remains for a fully compliant MPI
implementation. (rMPI currently handles MPI ANY SOURCE properly, but does not
support message receives with both MPI ANY SOURCE and MPI ANY TAG specified.)

216 R. Brightwell, K. Ferreira, and R. Riesen

One option we have not evaluated yet, is a modification to the parallel pro-
tocol. In Figure 2, instead of node A’ sending the redundant message, node B
could send a copy to node B’. That way node B could control the message order
B’ sees. A redundant node would get all of its messages from its active partner.
When sending, a protocol is needed to let the redundant node know that the
message has been sent and that the redundant node can skip the transmission.
If the active receiver (B in the example) fails, the active sender (A) would trans-
mit to the redundant receiver (B’). If the active sender (A) fails, the redundant
sender (A’) would start sending to the active receiver (B).

We have not implemented this variation of the parallel protocol because we be-
lieve it would not significantly improve performance, and few high-performance
applications use MPI ANY SOURCE in the critical path.

4.4 Use of One-Sided Operations

It might be possible to use one-sided operations to accelerate data delivery when
MPI ANY SOURCE is used. This method would be useful for larger messages; tem-
porary buffers and memory copies can be used for short messages. The active
receiving node would inform the redundant receiver about the message order and
let the redundant node get the data in the appropriate order using a pull pro-
tocol. This method would increase latency slightly, since the get request needs
to be sent, and, depending on the architecture, a confirmation that the data has
been picked up. This small overhead can be easily amortized for larger messages
and the overhead to copy short messages into the correct user buffers is small.

5 Related Work

Although redundancy is one of the fundamental approaches to masking errors
and providing resiliency, it has not been extensively explored or deployed in high-
performance computing (HPC) environments. Since HPC applications can scale
to consume any of the available resources in a system (e.g., compute power, mem-
ory), the cost of duplicating resources for resiliency has been perceived as being
too high – especially given the reliability levels of current large-scale systems.
However, there are several characteristics of future systems that are motivating
the community to explore alternative approaches to resiliency. Recently, redun-
dant computation has been suggested as a possible path [4,5] to resiliency, and
the increasing probability of soft errors in future systems has also lead some to
argue that higher levels of redundancy will also be needed [6].

There are several prior and ongoing research projects that are exploring re-
siliency and fault tolerance for MPI applications [7,8,9,10,11]. The MPI-3 Fo-
rum is also considering enhancements to the standard to enable fault-tolerant
applications.

Most similar to rMPI is P2P-MPI [12,13] which provides fault tolerance for
grid applications through replication. In contrast to rMPI, P2P-MPI does not
ensure consistency when wild-cards are used. In addition, P2P-MPI is tied to

Transparent Redundant Computing with MPI 217

Java and requires a number of grid based services and protocols, which make this
library inappropriate for an HPC environment. Furthermore, the failure analysis
of P2P-MPI focuses on the probability of failures in the presence of replication,
while in this work we focus on the impact of MTTI for the application which
we believe is a more useful metric [2]. The approach we describe in this paper is
very different from the other work on providing resiliency in the context of MPI
applications, mostly due to the assumption that the cost of using resources for
redundant computation will be acceptable for future large-scale systems.

There is some precedent for paying the resource cost of redundancy in high-
performance computing. In [14] IBM describes a flow control protocol designed
to efficiently manage limited buffer space for MPI unexpected messages on their
BG/L system. Even though the network is reliable, an acknowledgment-based
flow control protocol is used to ensure that unexpected messages do not overflow
the limited amount of available memory on a node. This protocol can potentially
slowdown all applications, but the authors argue that a factor of two increase in
runtime is acceptable: “Nevertheless, the main conclusion is that the overhead
is never more than twice the execution time without memory problems, which is
not a hight [sic] price to pay to make your application run without problems.”

References

1. Ferreira, K., Riesen, R., Oldfield, R., Stearley, J., Laros, J., Pedretti, K., Brightwell,
R., Kordenbrock, T.: Increasing fault resiliency in a message-passing environment.
Technical report SAND2009-6753, Sandia National Laboratories (2009)

2. Riesen, R., Ferreira, K., Stearley, J.: See applications run and throughput jump:
The case for redundant computing in HPC. In: 1st International Workshop on
Fault-Tolerance for HPC at Extreme Scale, FTXS 2010 (2010)

3. Network-Based Computing Laboratory, Ohio State University: OSU MPI bench-
marks, OMB (2010), http://mvapich.cse.ohio-state.edu/benchmarks/

4. Schroeder, B., Gibson, G.A.: Understanding failures in petascale computers. Jour-
nal of Physics: Conference Series 78(1), 188–198 (2007)

5. Zheng, Z., Lan, Z.: Reliability-aware scalability models for high performance com-
puting, In: Proceedings of the IEEE conference on Cluster Computing (2009)

6. He, X., Ou, L., Engelmann, C., Chen, X., Scott, S.L.: Symmetric active/active
metadata service for high availability parallel file systems. Journal of Parallel and
Distributed Computing (JPDC) 69(12), 961–973 (2009)

7. Fagg, G.E., Dongarra, J.: FT-MPI: Fault tolerant MPI, supporting dynamic ap-
plications in a dynamic world. In: Proceedings of the 7th European PVM/MPI
Users’ Group Meeting on Recent Advances in Parallel Virtual Machine and Mes-
sage Passing Interface, pp. 346–353 (2000)

8. Gropp, W., Lusk, E.: Fault tolerance in message passing interface programs. Inter-
national Journal of High Performance Computing Applications 18(3) (2004)

9. Bouteiller, A., Cappello, F., Herault, T., Krawezik, G., Lemarinier, P., Magniette,
F.: MPICH-V2: a fault tolerant MPI for volatile nodes based on pessimistic sender
based message logging. In: Proceedings of the ACM/IEEE International Conference
on High Performance Computing and Networking (2003)

10. Hursey, J., Squyres, J., Mattox, T., Lumsdaine, A.: The design and implementation
of checkpoint/restart process fault tolerance for Open MPI. In: Proceedings of the
IEEE International Parallel and Distributed Processing Symposium (2007)

http://mvapich.cse.ohio-state.edu/benchmarks/

218 R. Brightwell, K. Ferreira, and R. Riesen

11. Santos, G., Duarte, A., Rexachs, D., Luque, E.: Providing non-stop service for
message-passing based parallel applications with RADIC. In: Luque, E., Margalef,
T., Beńıtez, D. (eds.) Euro-Par 2008. LNCS, vol. 5168, pp. 58–67. Springer, Hei-
delberg (2008)

12. Genaud, S., Rattanapoka, C.: P2P-MPI: A peer-to-peer framework for robust exe-
cution of message passing parallel programs on grids. J. Grid Comput. 5(1), 27–42
(2007)

13. Genaud, S., Jeannot, E., Rattanapoka, C.: Fault-management in P2P-MPI. Int. J.
Parallel Program. 37(5), 433–461 (2009)

14. Farreras, M., Cortes, T., Labarta, J., Almasi, G.: Scaling MPI to short-memory
MPPs such as BG/L. In: Proceeding of the International Conference on Supercom-
puting, pp. 209–218 (2006)

Checkpoint/Restart-Enabled Parallel Debugging

Joshua Hursey1, Chris January2, Mark O’Connor2, Paul H. Hargrove3,
David Lecomber2, Jeffrey M. Squyres4, and Andrew Lumsdaine1

1 Open Systems Laboratory, Indiana University
{jjhursey,lums}@osl.iu.edu�

2 Allinea Software Ltd.
{cjanuary,mark,david}@allinea.com

3 Lawrence Berkeley National Laboratory
PHHargrove@lbl.gov��

4 Cisco Systems, Inc.
jsquyres@cisco.com

Abstract. Debugging is often the most time consuming part of software
development. HPC applications prolong the debugging process by adding
more processes interacting in dynamic ways for longer periods of time.
Checkpoint/restart-enabled parallel debugging returns the developer to
an intermediate state closer to the bug. This focuses the debugging pro-
cess, saving developers considerable amounts of time, but requires paral-
lel debuggers cooperating with MPI implementations and checkpointers.
This paper presents a design specification for such a cooperative rela-
tionship. Additionally, this paper discusses the application of this design
to the GDB and DDT debuggers, Open MPI, and BLCR projects.

1 Introduction

The most time consuming component of the software development life-cycle is
application debugging. Long running, large scale High Performance Computing
(HPC) parallel applications compound the time complexity of the debugging
process by adding more processes interacting in dynamic ways for longer periods
of time. Cyclic or iterative debugging, a commonly used debugging technique,
involves repeated program executions that assist the developer in gaining an
understanding of the causes of the bug. Software developers can save hours
or days of time spent debugging by checkpointing and restarting the parallel
debugging session at intermediate points in the debugging cycle. For Message
Passing Interface (MPI) applications, the parallel debugger must cooperate with
the MPI implementation and Checkpoint/Restart Service (CRS) which account
for the network state and process image. We present a design specification for this
cooperative relationship to provide Checkpoint/Restart (C/R)-enabled parallel
debugging.
� Supported by grants from the Lilly Endowment; National Science Foundation EIA-

0202048; and U.S. Department of Energy DE-FC02-06ER25750ˆA003.
�� Supported by the U.S. Department of Energy under Contract No. DE-AC02-

05CH11231

R. Keller et al. (Eds.): EuroMPI 2010, LNCS 6305, pp. 219–228, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

220 J. Hursey et al.

The C/R-enabled parallel debugging design supports multi-threaded MPI
applications without requiring any application modifications. Additionally, all
checkpoints, whether generated with or without a debugger attached, are usable
within a debugging session or during normal execution. We highlight the debug-
ger detach and debugger reattach problems that may lead to inconsistent views
of the debugging session. This paper presents a solution to these problems that
uses a thread suspension technique which provides the user with a consistent
view of the debugging session across repeated checkpoint and restart operations
of the parallel application.

2 Related Work

For HPC applications, the MPI [1] standard has become the de facto standard
message passing programming interface. Even though some parallel debuggers
support MPI applications, there is no official standard interface for the inter-
action between the parallel debugger and the MPI implementation. However,
the MPI implementation community has informally adopted some consistent in-
terfaces and behaviors for such interactions [2,3]. The MPI Forum is discussing
including these interactions into a future MPI standard. This paper extends these
debugging interactions to include support for C/R-enabled parallel debugging.

C/R rollback recovery techniques are well established in HPC [4]. The check-
point, or snapshot, of the parallel application is defined as the state of the process
and all connected communication channels [5]. The state of the communication
channels is usually captured by a C/R-enabled MPI implementation, such as
Open MPI [6]. Although C/R is not part of the MPI standard, it is often pro-
vided as a transparent service by MPI implementations [6,7,8,9]. The state of the
process is captured by a Checkpoint/Restart Service (CRS), such as Berkeley
Lab Checkpoint/Restart (BLCR) [10]. The combination of a C/R-enabled MPI
and a CRS provide consistent global snapshots of the MPI application. Often
global snapshots are used for fault recovery, but, as this paper demonstrates, can
also be used to support reverse execution while debugging the MPI application.
For an analysis of the performance implications of integrating C/R into an MPI
implementation we refer the reader to previous literature on the subject [9,11].

Debugging has a long history in software engineering [12]. Reverse execu-
tion or back-stepping allows a debugger to either step backwards through the
program execution to a previous state, or step forward to the next state. Re-
verse execution is commonly achieved though the use of checkpointing [13,14],
event/message logging [15,16], or a combination of the two techniques [17,18].
When used in combination, the parallel debugger restarts the program from a
checkpoint and replays the execution up to the breakpoint. A less common im-
plementation technique is the actual execution of the program code in reverse
without the use of checkpoints [19]. This technique is often challenged by com-
plex logical program structures which can interfere with the end user behavior
and applicability to certain programs.

Event logging is used to provide a deterministic re-execution of the program
while debugging. Often this allows the debugger to reduce the number of processes

Checkpoint/Restart-Enabled Parallel Debugging 221

involved in the debugging operation by simulating their presence through replay-
ing events from the log. This is useful when debugging an application with a large
number of processes. Event logging is also used to allow the user to view a histor-
ical trace of program execution without re-execution [20,21].

C/R is used to return the debugging session to an intermediary point in the
program execution without replaying from the beginning of execution. For pro-
grams that run for a long period of time before exhibiting a bug, C/R can focus
the debugging session on a smaller period of time closer to the bug. C/R is also
useful for program validation and verification techniques that may run concur-
rently with the parallel program on smaller sections of the execution space [22].

3 Design

C/R-enabled parallel debugging of MPI applications requires the cooperation of
the parallel debugger, the MPI implementation, and the CRS to provide consis-
tently recoverable application states. The debugger provides the interface to the
user and maintains state about the parallel debugging session (e.g., breakpoints,
watchpoints).

The C/R-enabled MPI implementation marshals the network channels around
C/R operations for the application. Though the network channels are often mar-
shaled in a fully coordinated manner, this design does not require full coordina-
tion. Therefore the design is applicable to other checkpoint coordination protocol
implementations (e.g., uncoordinated).

The CRS captures the state of a single process in the parallel application.
This can be implemented at the user or system level. This paper requires an
MPI application transparent CRS, which excludes application level CRSs. If the
CRS is not transparent to the application, then taking the checkpoint would
alter the state of the program being debugged, potentially confusing the user.

One goal of this design is to create always usable checkpoints. This means that
regardless of whether the checkpoint was generated with the debugger attached
or not, it must be able to be used on restart with or without the debugger. To
provide the always usable checkpoints condition, the checkpoints generated by
the CRS with the debugger attached must be able to exclude the debugger state.
To achieve this, the debugger must detach from the process before a checkpoint
and reattach, if desired, after the checkpoint has finished, similar to the technique
used in [17]. Since we are separating the CRS from the debugger, we must
consider the needs of both in our design.

In addition to the always usable checkpoints goal, this technique supports
multi-threaded MPI applications without requiring any explicit modifications
to the target application. Interfaces are prefixed with MPIR to fit the existing
naming convention for debugging symbols in MPI implementations.

3.1 Preparing for a Checkpoint

The C/R-enabled MPI implementation may receive a checkpoint request inter-
nally or externally from the debugger, user, or system administrator. The MPI

222 J. Hursey et al.

volatile int MPIR checkpoint debug gate = 0;
volatile int MPIR debug with checkpoint = 0;
int MPIR checkpoint debugger detach(void) { return 0; } // Detach Function
void MPIR checkpoint debugger waitpoint(void) { // Thread Wait Function

// MPI Designated Threads are released early,
// All other threads enter the breakpoint below
MPIR checkpoint debug gate = 0;
MPIR checkpoint debugger breakpoint();

}
void MPIR checkpoint debugger breakpoint(void) { // Debugger Breakpoint Func.

while(MPIR checkpoint debug gate == 0) { sleep(1); }
}
void MPIR checkpoint debugger crs hook(int state) { // CRS Hook Callback Func.

if(MPIR debug with checkpoint) {
MPIR checkpoint debug gate = 0;
MPIR checkpoint debugger waitpoint();

} else { MPIR checkpoint debug gate = 1; }
}

Fig. 1. Debugger MPIR function pseudo code

implementation communicates the checkpoint request to the specified processes
(usually all processes) in the MPI application. The MPI processes typically pre-
pare for the checkpoint by marshaling the network state and flushing caches
before requesting a checkpoint from the CRS.

If the MPI process is under debugger control at the time of the checkpoint,
then the debugger must allow the MPI process to prepare for the checkpoint
uninhibited by the debugger. If the debugger remains attached, it may interfere
with the techniques used by the CRS to preserve the application state (e.g.,
by masking signals). Additionally, by detaching the debugger before the check-
point, the implementation can provide the always usable checkpoints condition
by ensuring that it does not inadvertently include debugger state in the CRS
generated checkpoint.

The MPI process must inform the debugger of when to detach since the de-
bugger is required to do so before a checkpoint is requested. The MPI process
informs the debugger by calling the MPIR checkpoint debugger detach() func-
tion when it requires the debugger to detach. This is an empty function that the
debugger can reference in a breakpoint. It is left to the discretion of the MPI
implementation when to call this function while preparing for the checkpoint,
but it must be invoked before the checkpoint is requested from the CRS.

The period of time between when the debugger detaches from the MPI process
and when the checkpoint is created by the CRS may allow the application to run
uninhibited, we call this the debugger detach problem. To provide a seamless and
consistent view to the user, the debugger must make a best effort attempt at
preserving the exact position of the program counter(s) across a checkpoint op-
eration. To address the debugger detach problem, the debugger forces all threads

Checkpoint/Restart-Enabled Parallel Debugging 223

Before Checkpoint After Checkpoint (continue/restart)

N
or

m
al

E

xe
cu

tio
n

D
eb

ug
gi

ng
E

xe
cu

tio
n

Pi Threads

Pi Threads

debugger_detach() CRS_hook_fn()

Notify Debugger to Attach

(noop) Open debug_gate and continue

Threads in waitpoint()

Fig. 2. Illustration of the design for each of the use case scenarios

into a waiting function (called MPIR checkpoint debugger waitpoint()) at the
current debugging position before detaching from the MPI process. By forcing all
threads into a waiting function the debugger prevents the program from making
any progress when it returns from the checkpoint operation.

The waiting function must allow certain designated threads to complete the
checkpoint operation. In a single threaded application, this would be the main
thread, but in a multi-threaded application this would be the thread(s) desig-
nated by the MPI implementation to prepare for and request the checkpoint
from the CRS. The MPI implementation must provide an “early release” check
for the designated thread(s) in the waiting function. All other threads directly
enter the MPIR checkpoint debugger breakpoint() function which waits in a
loop for release by the debugger. Designated thread(s) are allowed to continue
normal operation, but must enter the breakpoint function after the checkpoint
has completed to provide a consistent state across all threads to the debugger,
if it intends on reattaching. Figure 1 presents a pseudo code implementation of
these functions.

The breakpoint function loop is controlled by the MPIR checkpoint debug -
gate variable. When this variable is set to 0 the gate is closed, keeping threads
waiting for the gate to be opened by the debugger. To open the gate, the debugger
sets the variable to a non-zero value, and steps each thread out of the loop and
the breakpoint function. Once all threads pass through the gate, the debugger
then closes it once again by setting the variable back to 0.

3.2 Resuming after a Checkpoint

An MPI program either continues after a requested checkpoint in the same
program, or is restarted from a previously established checkpoint saved on stable
storage. In both cases the MPI designated thread(s) are responsible for recovering
the internal MPI state including reconnecting processes in the network.

If the debugger intends to attach, the designated thread(s) must inform the
debugger when it is safe to attach after restoring the MPI state of the process. If
the debugger attaches too early, it may compromise the state of the checkpoint
or the restoration of the MPI state. The designated thread(s) notify the debugger

224 J. Hursey et al.

that it is safe to attach to the process by printing to stderr the hostname and
PID of each recovered process. The message is prefixed by “MPIR debug info)”
as to distinguish it from other output. Afterwards, the designated thread(s) enter
the breakpoint function.

The period of time between when the MPI process is restarted by the CRS and
when the debugger attaches may allow the application to run uninhibited, we call
this the debugger reattach problem. If the MPI process was being debugged before
the checkpoint was requested, then the threads are already being held in the
breakpoint function, thus preventing them from running uninhibited. However,
if the MPI process was not being debugged before the checkpoint then the user
may experience inconsistent behavior due to the race to attach the debugger
upon multiple restarts from the same checkpoint.

To address this problem, the CRS must provide a hook callback function that
is pushed onto the stack of all threads before returning them to the running state.
This technique preserves the individual thread’s program counter position at the
point of the checkpoint providing a best effort attempt at a consistent recovery
position upon multiple restarts. The MPI implementation registers a hook call-
back function that will place all threads into the waiting function if the debug-
ger intends to reattach. The intention of the debugger to reattach is indicated by
the MPIR debug with checkpoint variable. Since the hook function is the same
function used when preparing for a checkpoint, the release of the threads from the
waiting function is consistent from the perspective of the debugger.

If the debugger is not going to attach after the checkpoint or on restart, the
hook callback does not need to enter the waiting function, again indicated by
the MPIR debug with checkpoint variable. Since the checkpoint could have been
generated with a debugger previously attached, the hook function must release all
threads from the breakpoint function by setting the MPIR checkpoint debug -
gate variable to 1. The structure of the hook callback function allows for check-
points generated while debugging to be used without debugging, and vice versa.

3.3 Additional MPIR Symbols

In addition to the detach, waiting, and breakpoint functions, this design de-
fines a series of support variables to allow the debugger greater generality when
interfacing with a C/R-enabled MPI implementation.

The MPIR checkpointable variable indicates to the debugger that the MPI
implementation is C/R-enabled and supports this design when set to 1. The
MPIR debug with checkpoint variable indicates to the MPI implementation if
the debugger intends to attach. If the debugger wishes to detach from the pro-
gram, it sets this value to 0 before detaching. This value is set to 1 when the
debugger attaches to the job either while running or on restart.

The MPIR checkpoint command variable specifies the command to be used
to initiate a checkpoint of the MPI process. The output of the checkpoint
command must be formatted such that the debugger can use it directly
as an argument to the restart command. The output on stderr is pre-
fixed with “MPIR checkpoint handle)” as to distinguish it from other output.

Checkpoint/Restart-Enabled Parallel Debugging 225

The MPIR restart command variable specifies the restart command to pre-
fix the output of the checkpoint command to restart an MPI application.
The MPIR controller hostname variable specifies the host on which to ex-
ecute the MPIR checkpoint command and MPIR restart command commands.
The MPIR checkpoint listing command variable specifies the command that
lists the available checkpoints on the system.

4 Use Case Scenarios

To better illustrate how the various components cooperate to provide C/R-
enabled parallel debugging we present a set of use case scenarios. Figure 2
presents an illustration of the design for each scenario.

Scenario 1: No Debugger Involvement. This is the standard C/R scenario
in which the debugger is neither involved before a checkpoint nor afterwards. A
transition from the upper-left to upper-right quadrants in Figure 2. The MPI
processes involved in the checkpoint will prepare the internal MPI state and
request a checkpoint from the CRS then continue free execution afterwards.

Scenario 2: Debugger Attaches on Restart. In this scenario, the debugger
is attaching to a restarting MPI process from a checkpoint that was generated
without the debugger. A transition from the upper-left to lower-right quadrants
in Figure 2. This scenario is useful when repurposing checkpoints originally gen-
erated for fault tolerance purposes instead for debugging. The process of creating
the checkpoints is the same as in Scenario 1.

On restart, the hook callback function is called by the CRS in each thread
to preserve their program counter positions. Once the MPI designated thread(s)
have reconstructed the MPI state, the debugger is notified that it is safe to
attach. Once attached, the debugger walks all threads out of the breakpoint
function and resumes debugging operations.

Scenario 3: Debugger Attached While Checkpointing. In this scenario,
the debugger is attached when a checkpoint is requested of the MPI process. A
transition from the lower-left to lower-right quadrants in Figure 2. This scenario is
useful when creating checkpoints while debugging that can be returned to in later
iterations of debugging cycle or to providebackstepping functionality while debug-
ging. The debugger will notice the call to the detach function and call the waiting
function in all threads in the MPI process before detaching. The MPI designated
checkpoint thread(s) are allowed to continue through this function in order to re-
quest the checkpoint from the CRS while all other threads wait there for later re-
lease. After the checkpoint or on restart the protocol proceeds as in Scenario 2.

Scenario 4: Debugger Detached on Restart. In this scenario, the debugger
is attached when the checkpoint is requested of the MPI process, but is not when
the MPI process is restarted from the checkpoint. A transition from the lower-left
to upper-right quadrants in Figure 2. This scenario is useful when analyzing the
uninhibited behavior of an application, periodically inspecting checkpoints for

226 J. Hursey et al.

validation purposes or, possibly, introducing tracing functionality to a running
program. The process of creating the checkpoint is the same as in Scenario 3. By
inspecting the MPIR debug with checkpoint variable, the MPI processes know
to let themselves out of the waiting function after the checkpoint and on restart.

5 Implementation

The design described in Section 3 was implemented using GNU’s GDB debugger,
Allinea’s DDT Parallel Debugger, the Open MPI implementation of the MPI
standard, and the BLCR CRS. Open MPI implements a fully coordinated C/R
protocol [6] so when a checkpoint is requested of one process all processes in
the MPI job are also checkpointed. We note again that full coordination is not
required by the design, so other techniques can be used at the discretion of the
MPI implementation.

5.1 Interlayer Notification Callback Functions

Open MPI uses the Interlayer Notification Callback (INC) functions to coordi-
nate the internal state of the MPI implementation before and after checkpoint
operations. After receiving notification of a checkpoint request, Open MPI calls
the INC checkpoint prep() function. This function quiesces the network, and
prepares various components for a checkpoint operation [11]. Once the INC is
finished it designates a checkpoint thread, calls the debugger detach function,
and then requests the checkpoint from the CRS, in this case BLCR.

After the checkpoint is created (called the continue state) or when the MPI
process is restarted (called the restart state), BLCR calls the hook callback
function in each thread (See Figure 1). The thread designated by Open MPI (in
the INC checkpoint prep() function) is allowed to exit this function without
waiting, while all other threads must wait if the debugger intends on attaching.
The designated thread then calls the INC function for either the continue or
restart phase depending on if the MPI process is continuing after a checkpoint
or restarting from a checkpoint previously saved to stable storage.

If the debugger intends on attaching to the MPI process, then after recon-
structing the MPI state, the designated thread notifies the debugger that it is
safe to attach by printing the “MPIR debug info)” message to stderr as de-
scribed in Section 3.2.

5.2 Stack Modification

In Section 3.1, the debugger was required to force all threads to call the waiting
function before detaching before a checkpoint in order to preserve the program
counter in all threads across a checkpoint operation. We explored two different
ways to do this in the GDB debugger. The first required the debugger to force
the function on the call stack of each thread. In GDB, we used the following
command for each thread:

Checkpoint/Restart-Enabled Parallel Debugging 227

void MPIR checkpoint debugger signal handler(int num) {
MPIR checkpoint debugger waitpoint();

}

Fig. 3. Open MPI’s SIGTSTP signal handler function to support stack modification

call MPIR checkpoint debugger waitpoint()

Unfortunately this became brittle and corrupted the stack in GDB 6.8.
In response to this, we explored an alternative technique based on signals.

Open MPI registered a signal callback function (See Figure 3) that calls the
MPIR checkpoint debugger waitpoint() function. The debugger can then send
a designated signal (e.g., SIGTSTP) to each thread in the application, and the
program will place itself in the waiting function.

Though the signal based technique worked best for GDB, other debuggers
may have other techniques at their disposal to achieve this goal.

6 Conclusions

Debugging parallel applications is a time-consuming part of the software devel-
opment life-cycle. C/R-enabled parallel debugging may be helpful in shortening
the time required to debug long-running HPC parallel applications. This paper
presented a design specification for the interaction between a parallel debugger,
C/R-enabled MPI implementation, and CRS to achieve C/R-enabled parallel
debugging for MPI applications. This design focuses on an abstract separation
between the parallel debugger and the MPI and CRS implementations to allow
for greater generality and flexibility in the design. The separation also enables
the design to achieve the always usable checkpoints goal.

This design was implemented using GNU’s GDB debugger, Allinea’s DDT
Parallel Debugger, Open MPI, and BLCR. An implementation of this design
will be available in the Open MPI v1.5 release series. More information about
this design can be found at the link below:
http://osl.iu.edu/research/ft/crdebug/

References

1. Message Passing Interface Forum: MPI: A Message Passing Interface. In: Proc. of
Supercomputing 1993, pp. 878–883 (1993)

2. Cownie, J., Gropp, W.: A standard interface for debugger access to message queue
information in MPI. In: Margalef, T., Dongarra, J., Luque, E. (eds.) PVM/MPI
1999. LNCS, vol. 1697, pp. 51–58. Springer, Heidelberg (1999)

3. Gottbrath, C.L., Barrett, B., Gropp, B., Lusk, E., Squyres, J.: An interface to
support the identification of dynamic MPI 2 processes for scalable parallel debug-
ging. In: Mohr, B., Träff, J.L., Worringen, J., Dongarra, J. (eds.) PVM/MPI 2006.
LNCS, vol. 4192, pp. 115–122. Springer, Heidelberg (2006)

http://osl.iu.edu/research/ft/crdebug/

228 J. Hursey et al.

4. Elnozahy, E.N.M., Alvisi, L., Wang, Y.M., Johnson, D.B.: A survey of rollback-
recovery protocols in message-passing systems. ACM Computing Surveys 34, 375–
408 (2002)

5. Chandy, K.M., Lamport, L.: Distributed snapshots: determining global states of
distributed systems. ACM Transactions on Computer Systems 3, 63–75 (1985)

6. Hursey, J., Squyres, J.M., Mattox, T.I., Lumsdaine, A.: The design and implemen-
tation of checkpoint/restart process fault tolerance for Open MPI. In: Proceedings
of the IEEE International Parallel and Distributed Processing Symposium (2007)

7. Jung, H., Shin, D., Han, H., Kim, J.W., Yeom, H.Y., Lee, J.: Design and imple-
mentation of multiple fault-tolerant MPI over Myrinet (M3). In: Proceedings of
the ACM/IEEE Supercomputing Conference (2005)

8. Gao, Q., Yu, W., Huang, W., Panda, D.K.: Application-transparent check-
point/restart for MPI programs over InfiniBand. In: International Conference on
Parallel Processing, pp. 471–478 (2006)

9. Bouteiller, A., et al.: MPICH-V project: A multiprotocol automatic fault-tolerant
MPI. International Journal of High Performance Computing Applications 20, 319–
333 (2006)

10. Duell, J., Hargrove, P., Roman, E.: The design and implementation of Berkeley
Lab’s Linux Checkpoint/Restart. Technical Report LBNL-54941, Lawrence Berke-
ley National Laboratory (2002)

11. Hursey, J., Mattox, T.I., Lumsdaine, A.: Interconnect agnostic checkpoint/restart
in Open MPI. In: Proceedings of the 18th ACM International Symposium on High
Performance Distributed Computing, pp. 49–58 (2009)

12. Curtis, B.: Fifteen years of psychology in software engineering: Individual differ-
ences and cognitive science. In: Proceedings of the International Conference on
Software Engineering, pp. 97–106 (1984)

13. Feldman, S.I., Brown, C.B.: IGOR: A system for program debugging via reversible
execution. In: Proceedings of the ACM SIGPLAN/SIGOPS workshop on Parallel
and Distributed Debugging, pp. 112–123 (1988)

14. Wittie, L.: The Bugnet distributed debugging system. In: Proceedings of the 2nd
workshop on Making Distributed Systems Work, pp. 1–3 (1986)

15. Bouteiller, A., Bosilca, G., Dongarra, J.: Retrospect: Deterministic replay of MPI
applications for interactive distributed debugging. In: Recent Advances in Parallel
Virtual Machine and Message Passing Interface, pp. 297–306 (2007)

16. Ronsse, M., Bosschere, K.D., de Kergommeaux, J.C.: Execution replay and de-
bugging. In: Proceedings of the Fourth International Workshop on Automated
Debugging, Munich, Germany (2000)

17. King, S.T., Dunlap, G.W., Chen, P.M.: Debugging operating systems with time-
traveling virtual machines. In: Proceedings of the USENIX Annual Technical Con-
ference (2005)

18. Pan, D.Z., Linton, M.A.: Supporting reverse execution for parallel programs. In:
Proceedings of the ACM SIGPLAN/SIGOPS workshop on Parallel and Distributed
Debugging, pp. 124–129 (1988)

19. Agrawal, H., DeMillo, R.A., Spafford, E.H.: An execution-backtracking approach
to debugging. IEEE Software 8(3), 21–26 (1991)

20. Undo Ltd.: UndoDB - Reversible debugging for Linux (2009)
21. TotalView Technologies: ReplayEngine (2009)
22. Sorin, D.J., Martin, M.M.K., Hill, M.D., Wood, D.A.: SafetyNet: Improving the

availability of shared memory multiprocessors with global checkpoint/recovery.
SIGARCH Computer Architecture News 30, 123–134 (2002)

Load Balancing for Regular Meshes on SMPs

with MPI

Vivek Kale and William Gropp

University of Illinois at Urbana-Champaign, IL, USA
{vivek,wgropp}@illinois.edu

Abstract. Domain decomposition for regular meshes on parallel com-
puters has traditionally been performed by attempting to exactly par-
tition the work among the available processors (now cores). However,
these strategies often do not consider the inherent system noise which
can hinder MPI application scalability to emerging peta-scale machines
with 10000+ nodes. In this work, we suggest a solution that uses a tun-
able hybrid static/dynamic scheduling strategy that can be incorporated
into current MPI implementations of mesh codes. By applying this strat-
egy to a 3D jacobi algorithm, we achieve performance gains of at least
16% for 64 SMP nodes.

1 Introduction

Much literature has emphasized effective decomposition strategies for good par-
allelism across nodes of a cluster. Recent work with hybrid programming models
for clusters of SMPs has often focused on determining the best split of threads
and processes, and the shape of the domains used by each thread [1,2]. In fact,
these static decompositions are often auto-tuned for specific architectures to
achieve reasonable performance gains. However, the fundamental problem is that
this “static scheduling” assumes that the user’s program has total access to all of
the cores all of the time; these static decomposition strategies cannot be tuned
easily to adapt in real-time to system noise (particularly due to OS jitter). The
occassional use of the processor cores, by OS processes, runtime helper threads,
or similar background processes, introduce noise that makes such static parti-
tioning inefficient on a large number of nodes. For applications running on a
single node, the general system noise is small though noticeable. Yet, for next-
generation peta-scale machines, improving mesh computations to handle such
system noise is a high priority. Current operating systems running on nodes
of high-performance clusters of SMPs have been designed to minimally interfere
with these computationally intensive applications running on SMP nodes [3], but
the small performance variations due to system noise can still potentially im-
pact scalability of an MPI application for a cluster on the order of 10,000 nodes.
Indeed, to eliminate the effects of process migration, the use of approaches such
as binding compute threads/processes to cores, just before running the applica-
tion, is advocated [3]. However, this only provides a solution for migration and
neglects overhead due to other types of system noise.

R. Keller et al. (Eds.): EuroMPI 2010, LNCS 6305, pp. 229–238, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

230 V. Kale and W. Gropp

In this work, we illuminate how the occassional use of the processor cores by
OS processes, runtime helper threads, or similar background processes, introduce
noise that makes such static schedules inefficient. In order to performance tune
these codes with system noise in mind, we propose a solution which involves a
partially dynamic scheduling strategy of work. Our solution uses ideas from task
stealing and work queues to dynamically schedule tasklets. In this way, our MPI
mesh codes work with the operating system running on an SMP node, rather
than in isolation from it.

2 Problem Description

Our model problem is an exemplar of regular mesh code. For simplicity, we
will call it a Jacobi algorithm, as the work that we perform in our model prob-
lem is the Jacobi relaxation iteration in solving a Poisson problem. However,
the data and computational pattern are similar for both regular mesh codes
(both implicit and explicit) and for algorithms that attempt to evenly divide
work among processor cores (such as most sparse matrix-vector multiply im-
plementations). Many MPI implmentations of regular mesh codes traditionally
have a predefined domain decomposition, as can be seen in many libraries and
microbenchmark suites [4]. This optimal decomposition is necessary to reduce
communication overhead, minimize cache misses, and ensure data locality. In this
work, we consider a slab decomposition of a 3-dimensional block implemented in
MPI/pthreads hybrid model, an increasingly popular model for taking advantage
of clusters of SMPs.

We use a problem size and dimension that can highlight many of the issues
we see in real-world applications with mesh computations implemented in MPI:
specifically, we use a 3D block with dimensions 64× 512× 64 on each node for a
fixed 1000 iterations. For our 7-point stencil computation, this generates a total
of 1.6 GFLOPS per node With this problem size, we can ensure that computa-
tions are done out-of-cache so that it is just enough to excercise the full memory
hierarchy. The block is partitioned into vertical slabs across processes along the
X dimension. Each vertical slab is further partitioned into horizontal slabs across
threads along the Y dimension. Each vertical slab contains a static section(top)
and a dynamic section(bottom). We use this decomposition strategy because of
its simplicity to implement and tune different parameters in our search space.
A MPI border exchange communication occurs between left and right borders
of blocks of each process across the YZ planes. The border exchange operation
uses MPI Isend and MPI Irecv pair, along with an MPI Waitall.We mitigate the
issue of first-touch as noted in [5] by doing parallel memory allocation during
the initialization of our mesh.

For such regular mesh computations, the communication between processes,
even in an explicit mesh sweep, provides a synchronization between the processes.
Any load imbalance between the processes can be amplified, even when using a
good (but static) domain decomposition strategy. If even 1% of nodes are affected
by system interference during one iteration of a computationally intensive MPI

Load Balancing for Regular Meshes on SMPs with MPI 231

application on a cluster with 1000s of nodes, several nodes will be affected by
noise during each iteration. Our solution to this problem is to use a partially
dynamic scheduling strategy, and is presented in the section that follows.

3 Performance Tuning Experimentation

3.1 Performance Tuning Technique

The technique for supporting dynamic scheduling of computation was imple-
mented with a queue that was shared among threads. Each element of the shared
queue (we refer to it as a tasklet) contains the specification of what work the
thread executing this tasklet is responsible for, and a flag indicating whether
the tasklet has been completed by a thread. In order to preserve locality (so
that in repeated computations the same threads can get the same work), we
also maintain an additional tag specifying the last thread that ran this tasklet.
In the execution of each iteration of the Jacobi algorithm, there are 3 distinct
phases: MPI communication, statically scheduled computation, and dynamically
scheduled computation. In phase 1, thread 0 does the MPI communication for
border exchange. During this time, all other threads must wait at a thread bar-
rier. In phase 2, a thread does all work that is statically allocated to it. Once a
thread completes its statically allocated work it immediately moves to phase 3,
where it starts pulling the next available tasklet from the queue shared among
other threads, until the queue is empty. As in the completely static scheduled
case, after threads have finished computation, they will need to wait at a bar-
rier before continuing to the next iteration. The percentage of dynamic work,
granularity/number of tasklets, and number of queues for a node, is specified as
parameter. Through our experimental studies of tuning our dynamic scheduling
strategy, we pose the following questions:

1. Does partially dynamic scheduling improve performance for mesh computa-
tions that have traditionally been completely statically scheduled?

2. What is the tasklet granularity we need to use for maintaining load balance
of tasklets across threads?

3. In using such a technique, how can we decrease the overheads of synchro-
nization of the work queues used for dynamic scheduling?

4. What is the impact of the technique for scaling to many nodes?

In the sections that follow, we first demonstrate the benefits of partial dynamic
scheduling on one node in 3.2. Section 3.3 describes the effect of task granularity.
Section 3.4 examines the impact on MPI runs with multiple nodes. Our experi-
ments were conducted on a system with Power575 SMP nodes with 16 cores per
node, and the operating system was IBM AIX. We assign a compute thread to
each core, ensuring that the node is fully subscribed (ignoring the 2-way SMT
available on these nodes as there are only 16 sets of functional units). If any
OS or runtime threads need to run, they must take time away from one of our
computational threads.

232 V. Kale and W. Gropp

3.2 Reducing Impact of OS Jitter: Dynamic vs Static Scheduling

As mentioned above, threads first complete all static work assigned to it. Once
a thread completes this stage, it moves to the dynamic phase, where it dequeues
tasklets from the task queue. In the context of the stencil computation experi-
mentation we do, each thread is assigned a horizontal slab from the static region
at compile time. After a thread fully completes its statically allocated slab, it
completes as many tasklets of the dynamic region as it can. The number of
tasklets is a user-specified parameter. To explore the impact of using dynamic
scheduling with locality preference, we enumerate 4 separate cases, based on the
dynamic scheduling strategy.

1. 0% dynamic: Slabs are evenly partitioned, with each thread being assigned
one slab. All slabs are assigned to threads at compile-time.

2. 100% dynamic + no locality: All slabs are dynamically assigned to threads
via a queue.

3. 100% dynamic + locality: Same as 2, except that when a thread tries to
dequeue a tasklet, it first searches for tasklets that it last executed in a
previous jacobi iteration.

4. 50% static, 50% dynamic + locality: Each thread first does its static section,
and then immediately starts pulling tasklets from the shared work queue.
This approach is motivated by a desire to reduce overhead in managing the
assignment of tasks to cores.

For the cases involving dynamic scheduling, we initially assume the number of
tasklets to be 32, and that all threads within an MPI process share one work
queue. We preset the number of iterations to be 1000 (rather than using conver-
gence criteria) to allow us to more easily verify our results. In our experiments,
we choose 1000 iterations as this adequately captures the periodicity of the jit-
ter induced by the system services during a trial [3]. Figure 1 below shows the
average performance we obtained over 40 trials for each of these cases. From
the figure, we can see that the 50% dynamic scheduling gives significant per-
formance benefits over the traditional static scheduling scheduling case. Using
static scheduling, the average execution time we measure was about 7.00 sec-
onds of wall-clock time. We make note that of the 40 trials we did, we obtained
6 lucky runs where the best performance we got was in the range 6.00 - 6.50
seconds. The remaining 34 runs were between 7.00 - 8.00 seconds. Using fully
dynamic scheduling with no locality, performance was slightly worse than the
statically scheduled case. For this case, there were some small performance vari-
ations (within 0.2 seconds) across the 40 trials; these were most probably due
to the varying number of cache misses, in addition to system service interfer-
ence. Using locality with fully dynamic scheduling, the performance variations
over 40 trials here were even lower (within 0.1 seconds). Using the 50% dynamic
scheduling strategy, the execution time was 6.53 seconds, giving us over 7% per-
formance gain over our baseline static scheduling. Thus, we notice that just by
using a reasonable partially dynamic scheduling strategy, performance variation
can be reduced and overall performance can be improved. In all cases using

Load Balancing for Regular Meshes on SMPs with MPI 233

6.00

6.50

7.00

7.50

8.00

8.50

fully static 100% with
no Locality

100%
dynamic

75% dynamic 50% dynamic 25% dynamic

dequeueTime

Other Time

W
al

lC
lo

ck
Ti

m
e

(s
ec

on
ds

)

Performance for Different Scheduling Strategies

Fig. 1. The performance of different scheduling strategies used with the Jacobi Com-
putation with 64 by 512 by 64 size block

dynamically scheduling, the thread idle times(not shown here) contribute to the
largest percentage overhead. The high overhead in case 2 is likely attributed to
the fact that threads suffer from doing non-local work. Because some threads
suffer cache misses while others do not, the overall thread idle time (due to
threads waiting at barriers) could be particularly high.

3.3 Tuning Tasklet Granularity for Reduced Thread Idle Time

As we noticed in the previous section, the idle times account for a large percent-
age of the performance. Total thread idle time (summed across threads) can be
high because of load imbalance. Our setup above used 32 tasklets. However, the
tasklets may have been too coarse grained (each tasklet has a 16-plane slab).
With very coarse granularity, performance suffers because threads must wait
(remain idle) at a barrier, until all threads have completed their dynamic phase.
As a first strategy, we varied the number of tasklets, using 16, 32, 64, 96, and
128 tasklets as our test cases. The second strategy, called skewed workloads,
addresses the tradeoff between fine-grain tasklets and coarse-grain tasklets. In
this strategy, we use a work queue containing variable sized tasklets, with larger
tasklets at the front of the queue and smaller tasklets towards the end. Skewed
workloads reduce the contention overhead for dequeuing tasklets (seen when us-
ing fine-granularity tasklets) and also reduce the idle time of threads (seen when
using coarse-grain tasklets). In figure 2, we notice that as we increase number of
tasklets from 16 to 64 tasklets (decreasing tasklet size) we obtain significant per-
formance gains, and the gains come primarily from the reduction in idle times.
Overall, we notice that the performance increases rapidly in this region. As we
increase from 64 to 128 tasklets, performance starts to decrease, primarily due to
the contention for the tasklets and the increased dequeue overhead. We also see
that performance of the skewed strategy (especially with 50% dynamic schedul-
ing) is comparable to that of 64 tasklets, which has the best performance. In
this way, a skewed strategy can yield competitive performance without needing

234 V. Kale and W. Gropp

0

10

20

30

40

50

60

70

80

16 32 64 128 skewed

100% dynamic + no locality

25% dynamic

100% dynamic

50% dynamic

Performance Impact of Tasklet Granularity

To
ta

l
Th

re
ad

 id
le

 ti
m

e(
se

co
nd

s)

Tasklet Granularity strategy

Fig. 2. Increasing task granularity to helps improve performance, particularly because
of reduced thread idle times. However, at 128 tasklets the performance starts to degrade
due to increasing contention for tasklets.

to predefine the tasklet granularity. To understand how tuning with a skewed
workload benefits performance, figure 3 shows the distribution of timings for
each of the 1000 iterations of the jacobi algorithm, comparing between static
scheduling, 50% dynamic scheduling with fixed size tasklets, and 50% dynamic
scheduling with skewed workloads. Using static scheduling, the maximum iter-
ation time was 9.5 milliseconds(ms), about 40% larger than the average time
of all iterations. Also, the timing distribution is bimodal, showing that half the
iterations ran optimally as tuned to the architecture(running in about 6 ms),
while the other half were slowed down by system noise(running in about 7.75
ms). Using 50% dynamic scheduling, the maximum iteration time is reduced to
8.25 ms, but it still suffers due to dequeue overheads, as can be seen by the mean
of 7.25 ms. By using a skewed workload strategy, we see that the max is also
8.25 ms. However, the mean is lower (6.75 ms) than that seen when using fixed
size tasklets, because of the lower dequeue overhead that this scheme provides.
The skewed workloads provided 7% performance gains over the simple 50% dy-
namic scheduling strategy, which uses fixed-size coarse-grain tasklets of size 32.
Furthermore, the reduced max time when using dynamic scheduling indicates
that our dynamic scheduling strategy better withstands perturbations caused
by system noise.

3.4 Using Our Technique to Improve Scalability

For many large MPI applications (especially with barriers) running on many
nodes of a cluster, even a small system service interruption on a core of a node
can accumulate to offset the entire computation, and degrade performance. In
this way, the impact of a small load imbalance across cores is amplified for a
large number of processes. This reduces the ability for application scalability,
particularly for a cluster with a very large number of nodes (and there are many
machines with more than 10000 nodes). To understand how our technique can be
used to improve scalability, we tested our skewed workload with a 50% dynamic
scheduling strategy on 1, 2, 4, 8, 16, 32, and 64 nodes of a cluster. One core of a

Load Balancing for Regular Meshes on SMPs with MPI 235

Fig. 3. Histogram view showing the performance variation of iterations for static
scheduling, 50% dynamic scheduling with fixed-size tasklet granularity, and 50% dy-
namic scheduling with skewed workload strategy

node was assigned as a message thread to invoke MPI communication (for border
exchanges) across nodes. We used the hybrid MPI/pthread programming model
for implementation. Figure 4 shows how as we increase the number of nodes, us-
ing 50% dynamic scheduling always outperforms the other strategies and scales
well. At 64 nodes, the 50% dynamic scheduling gives us on average a 30% per-
formance improvement over the static scheduled case. As we can see for the case
with static scheduling, a small overhead due to system services is amplified at 2
nodes and further degrades as we move up to 64 nodes. In contrast, for the 50%
dynamic scheduling strategy using skewed workloads, the performance does not
suffer as much when increasing the number of nodes, and our jitter mitigation
techniques’ benefits are visible at 64 nodes. To see the reasons for better scala-
bility, we consider the iteration time distributions for 1 node in our 64 node runs,
as shown in figure 5 (the distributions across all nodes were roughly the same).
Compared to the top left histogram of figure 3, the histogram in figure 5 shows
that the distribution has shifted significantly to the right for static scheduling.
This makes sense since each node’s jitter occurs at different times. The chain
of dependencies through MPI messaging for border exchanges compounds the
delay across nodes in consecutive iterations.With dynamic scheduling, the dis-
tribution has not shifted as much. For example, the mode(the tallest line) only
shifted from 6.75 ms to 7.00 ms. This is because in each iteration, the node that

236 V. Kale and W. Gropp

5

5.5

6

6.5

7

7.5

8

8.5

9

9.5

10

1 2 4 8 16 32 64

Fully Static

25% dynamic

50% dynamic

100% dynamic
with locality

100% dynamic
with no locality

Scalability of Different Scheduling Strategies

W
al

l C
lo

ck
Ti

m
e(

se
co

nd
s)

Number of Nodes

Fig. 4. Scalability results show that the 50% dynamic scheduling strategy performs
better and also scales well compared to the traditional static scheduling approach

Fig. 5. The histograms (taken from node 0) in a 64 node run are shown. The left
histogram corresponds to the static scheduling technique, while the right histogram
corresponds to the 50% dynamic scheduling technique.

experiences noise mitigates its effect by scheduling delayed tasklets to its other
threads.

4 Related Work

The work by [5, 1] shows how regular mesh (stencil) codes can be auto-tuned
onto a multi-core architecture by enumerating different parameters and using
sophisticated machine learning techniques to search for the best parameter con-
figurations. In their work, the search space is based on the architectural param-
eters. In our work, we suggest another issue that one should be aware of for
tuning codes: the random system noise incurred by OS-level events.

Load Balancing for Regular Meshes on SMPs with MPI 237

Cilk is a programming library [6] intended to enhance performance of many
multi-core applications, and uses the ideas of shared queues and work stealing to
dynamically schedule work. While the implementation of our dynamic strategy
is similar to the Cilk dynamic scheduling strategy, we propose using a dynamic
scheduling strategy for just the last fraction of the computation, rather than all of
it. Furthermore, our method is locality-aware and allows one to tune this fraction
of dynamic scheduling to the inherent system noise. We believe this can be
particularly beneficial to scientific codes that are already optimally partitioned
across nodes and tuned for the architecture. In [7] dynamic task scheduling
with variable task sizes is used as a method for optimizing ScaLaPack libraries.
Our work uses predefined, but tuned, task sizes that mitigate the system noise,
without incurring dynamic scheduling overhead.

The work in [8] identifies, quantifies, and mitigates sources of OS jitter mitiga-
tion sources on large supercomputer. This work suggests different methodologies
for handling each type of jitter source. This study suggests primarily modify-
ing the operating system kernel to mitigate system noise. Specific methods for
binding threads to cores [9] have been shown to have effect in reducing system
interference (particularly process migration and its effects on cache misses) for
high-performance scientific codes. However, these approaches cannot mitigate all
system noise such as background processes or periodic OS timers. Our approach
involves tuning an MPI application to any system noise, rather than modifying
the operating system kernel to reduce its interference. In addition, the tech-
niques we present can be used in conjunction with thread binding or other such
techniques, rather than as an alternative.

5 Conclusions and Future Work

In this work, we introduced a dynamic scheduling strategy that can be used to
improve scalability of MPI implementations of regular meshes. To do this, we
started with a pthread mesh code that was tuned to the architecture of a 16-
core SMP node. We then incorporated our partially dynamic scheduling strategy
into the mesh code to handle inherent system noise. With this, we tuned our
scheduling strategy further, particularly considering the grain size of the dynamic
tasklets in our work queue. Finally, we added MPI for communication across
nodes and demostrated the scalability of our approach. Through proper tuning,
we showed that our methodology can provide good load balance and scale to a
large number of nodes of our cluster of SMPs, even in the presence of system
noise.

For future work, we plan to apply our technique to larger applications such
as MILC [4]. We will also incorporate more tuning parameters (we are currently
examining more sophisticated work-stealing techniques). In addition, we will
tune our strategy so that it works alongside other architectural tuning strategies
and other basic jitter mitigation techniques. We also plan to test on clusters with
different system noise characteristics. With this, we hope to develop auto-tuning
methods for such MPI/pthread code in the search space we have presented.

238 V. Kale and W. Gropp

Acknowledgments. We thank Franck Cappello, as well as students at IN-
RIA, for sharing their experience with OS jitter on IBM Power-series machines.
Parts of this research are part of the Blue Waters sustained-petascale computing
project, which is supported by the National Science Foundation (award number
OCI 07-25070) and the state of Illinois.

References

1. Williams, S., Carter, J., Oliker, L., Shalf, J., Yelick, K.A.: Optimization of a lattice
Boltzmann computation on state-of-the-art multicore platforms. Journal of Parallel
and Distributed Computing (2009)

2. Cappello, F., Etiemble, D.: MPI versus MPI+OpenMP on IBM SP for the NAS
benchmarks. In: Supercomputing 2000: Proceedings of the 2000 ACM/IEEE con-
ference on Supercomputing (CDROM), Washington, DC, USA. IEEE Computer
Society, Los Alamitos (2000)

3. Mann, P.D.V., Mittaly, U.: Handling OS jitter on multicore multithreaded systems.
In: IPDPS 2009: Proceedings of the 2009 IEEE International Symposium on Parallel
and Distributed Processing, Washington, DC, USA. IEEE Computer Society Press,
Los Alamitos (2009)

4. Shi, G., Kindratenko, V., Gottlieb, S.: The bottom-up implementation of one MILC
lattice QCD application on the Cell blade. International Journal of Parallel Pro-
gramming 37 (2009)

5. Kamil, S., Chan, C., Williams, S., Oliker, L., Shalf, J., Howison, M., Bethel, E.W.:
A generalized framework for auto-tuning stencil computations. In: Proceedings of
the Cray User Group Conference (2009)

6. Blumofe, R.D., Joerg, C.F., Kuszmaul, B.C., Leiserson, C.E., Randall, K.H., Zhou,
Y.: Cilk: An efficient multithreaded runtime system. Journal of Parallel and Dis-
tributed Computing (1995)

7. Song, F., YarKhan, A., Dongarra, J.: Dynamic task scheduling for linear algebra
algorithms on distributed-memory multicore systems. In: SC 2009: Proceedings of
the Conference on High Performance Computing Networking, Storage and Analysis.
ACM, New York (2009)

8. Petrini, F., Kerbyson, D.J., Pakin, S.: The case of the missing supercomputer per-
formance: Achieving optimal performance on the 8,192 processors of ASCI Q. In: SC
2003: Proceedings of the 2003 ACM/IEEE conference on Supercomputing, Wash-
ington, DC, USA, IEEE Computer Society Press, Los Alamitos (2003)

9. Klug, T., Ott, M., Weidendorfer, J., Trinitis, C., Müchen, T.U.: Autopin, automated
optimization of thread-to-core pinning on multicore systems (2008)

Adaptive MPI Multirail Tuning for Non-uniform

Input/Output Access

Stéphanie Moreaud, Brice Goglin, and Raymond Namyst

Université de Bordeaux, INRIA – LaBRI
351, cours de la Libération F-33405 Talence cedex, France

{smoreaud,goglin,namyst}@labri.fr

Abstract. Multicore processors havenot only reintroducedNon-Uniform
Memory Access (NUMA) architectures in nowadays parallel computers,
but they are also responsible for non-uniform access times with respect
to Input/Output devices (NUIOA). In clusters of multicore machines
equipped with several network interfaces, performance of communica-
tion between processes thus depends on which cores these processes are
scheduled on, and on their distance to the Network Interface Cards in-
volved. We propose a technique allowing multirail communication be-
tween processes to carefully distribute data among the network interfaces
so as to counterbalance NUIOA effects. We demonstrate the relevance of
our approach by evaluating its implementation within OpenMPI on a
Myri-10G + InfiniBand cluster.

Keywords: Multirail, Non-Uniform I/O Access, Hardware Locality,
Adaptive Tuning, Open MPI.

1 Introduction

Multicore processors are widely used in high-performance computing. This archi-
tecture trend is increasing the complexity of the compute nodes while introducing
non-uniform memory topologies. A careful combined placement of tasks and data
depending on their affinities is now required so as to exploit the quintessence of
modern machines. Furthermore, access to the networking hardware also becomes
non-uniform since interface cards may be closer to some processors. This feature
has been known to impact networking performance for a long time [1] but cur-
rent MPI implementations do not take it into account in their communication
strategies.

One way to take affinities between processes and communication into account
is to modify the process placement strategy so as to offer a privileged networking
access to communication-intensive processes. In this article, we look at an or-
thogonal idea: optimizing communication with a predefined process placement.
We study multirail configurations (scattering messages across multiple network
interfaces) and show that MPI implementations should not blindly split mes-
sages in halves when sending over two rails. Non-Uniform I/O Access should be
involved in this splitting strategy so as to improve the overall performance.

R. Keller et al. (Eds.): EuroMPI 2010, LNCS 6305, pp. 239–248, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

240 S. Moreaud, B. Goglin, and R. Namyst

The remaining of the paper is organized as follows. Section 2 presents modern
architectures and the affinities of Network Interface Cards (NICs). Our pro-
posal and implementation of a NUIOA-aware multirail MPI is then described in
Section 3 while its performance is presented in Section 4.

2 Background and Motivation

In this section, we describe the architecture of modern cluster nodes and intro-
duce Non-Uniform Input/Output Access as a consequence that must definitely
be taken into account in the design of communication algorithms and strategies.

2.1 Multicore and NUMA Architectures

Multicore processors have represented over 90% of the 500 most powerful com-
puting systems in the world1 for the last five years. This hardware trend is
currently leading to an increasing share of NUMA architectures (Non-Uniform
Memory Access), the vast majority of recent cluster installations relying on In-
tel Nehalem or AMD Opteron processors that have introduced scalable but
non-uniform memory interconnects. AMD HyperTransport and, more re-
cently, Intel QPI were designed towards this goal by attaching a memory node
to each processor socket, as depicted on Figure 1. These increased complexity
and hierarchical aspects, from multiple hardware threads, cores, shared caches
to distributed memory banks, raise the need for carefully placing tasks and data
according to their affinities. Once tasks are distributed among all the cores, an
additional step is to optimize communication and synchronization between tasks
depending on their topological distance within the machine [2].

In addition, the increasing number of cores in machines causes network inter-
faces and I/O buses to become potential bottlenecks. Indeed, concurrent requests
from all cores may lead to contention and may thus reduce the overall applica-
tion performance significantly [3]. Regarding this problem, multirail machines
are now commonly considered as a workaround since their multiple NICs scale
better with the number of cores. However, such complex architectures, intercon-
necting numerous hardware components, also raise the need to take affinities
and locality into account when scheduling network processing [4].

2.2 Non-Uniform Input/Output Access

NUMA architectures have been the target of numerous research projects in the
context of high-performance computing, from affinity-based OpenMP thread
scheduling to MPI process placement [5,6]. The impact of process placement in
NUMA machines on high-speed networking has been known for several years
already. As shown on Figure 1, network interfaces may be closer to some NUMA
nodes and processors than to the others, causing their data transfer performance

1 Top500, http://www.top500.org.

http://www.top500.org

Adaptive MPI Multirail Tuning for Non-uniform Input/Output Access 241

Fig. 1. Quad-socket dual-core host with two I/O chipsets connected to NUMA nodes
#0 and #1

to vary. However, this property is almost only taken into account for microbench-
marks by binding processes as close as possible to the network interface.

As depicted by Figure 2, we demonstrated with previous Opteron archi-
tectures and several network technologies that the actual throughput is dra-
matically related to process placement with regards to network interfaces [1].
While latency depends only slightly on process placement (usually less than
100 nanoseconds), we observed up to 40% throughput degradation when using
multiple high-performance interconnects. This behavior, called Non-Uniform In-
put/Output Access (NUIOA), induces the need for a careful placement of tasks
depending on their communication intensiveness.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1 32 1024 32768 1048576

T
hr

ou
gh

pu
t (

M
iB

/s
)

Message Size (bytes)

NUMA Node near IB card
Other NUMA Node

Fig. 2. Influence of the locality of processes and network cards on the RDMA Write
throughput between 2 dual-Opteron 265 machines with InfiniBand DDR cards

242 S. Moreaud, B. Goglin, and R. Namyst

This characteristic has been observed for various memory interconnects. It
still appears with latest Intel Nehalem processors and QPI architectures. It is
sometimes also referred to as Non-Uniform Network Access but it is actually not
specific to network devices. Indeed, we observed DMA throughput degradation
by up to 42% when accessing a NVIDIA GPU from the distant NUMA node
of a dual-Xeon 5550 machine. Moreover, in the presence of multiple devices,
it becomes important to carefully distribute the workload among devices. Since
these NUMA architectures are now spreading into high-performance computing,
we intend to look at adapting the MPI implementation to these new constraints.

3 NUIOA-Aware Multirail

We introduce in this section our proposal towards a MPI implementation that
adapts multirail communication to Non-Uniform I/O Access. We then describe
how we implemented it in Open MPI.

3.1 Proposal

Dealing with affinities inside NUMA machines usually requires to place tasks
with intensive inter-communication or synchronization inside the same NUMA
node or shared cache. Meanwhile, distributing the workload across the whole
machine increases the available processing power and memory bandwidth. Find-
ing a tradeoff between these goals is difficult and depends on the application
requirements. Adding the locality of network interfaces to the problem brings
new constraints since some cores may have no I/O devices near them. It leads to
the idea of keeping these cores for tasks that are not communication-intensive.
Other processes may be given a privileged access to all or only some of the inter-
faces (they may be close to different cores). Moreover, detecting which tasks are
communication-intensive may be difficult. And numerous MPI applications have
uniform communication patterns since most developers try to avoid irregular
parallelism so as to exploit all the processing cores.

While binding communication-intensive tasks near the network interfaces is
not easy, we look at an orthogonal problem: to optimize the implementation of
communication within a predefined process placement. This placement may have
been chosen by the MPI process launcher depending on other requirements such
as affinities between tasks [6]. Given a fixed distribution of processes on a NUIOA
architecture, we propose to adapt the implementation of MPI communication
primitives to better exploit multiple network interfaces.

3.2 Distributing Message Chunks According to NICs Localities

Several MPI implementations may use multiple network interfaces at the
same time. For throughput reasons, large messages are usually split across
all available rails and reassembled on the receiver side. Open MPI [7] and
MPICH2/NewMad [8] may even use different models of interfaces and wires

Adaptive MPI Multirail Tuning for Non-uniform Input/Output Access 243

and dynamically adapt their utilization depending on their relative performance.
For instance, a 3MiB message would be sent as a 1MiB chunk on a DDR In-
finiBand link and another 2 MiB chunk on a QDR link. As explained above,
the actual throughput of these network rails depends on the process location.
We propose to adapt the size of the chunks to the distance of each process from
network interfaces.

We implemented this idea in Open MPI 1.4.1. Each network interface is man-
aged by a BTL component (Byte Transfer Layer) that gathers its expected
bandwidth by looking at its model and current configuration. By default, these
bandwidths are accumulated in the BML (BTL Multiplexing Layer) so as to com-
pute a weight for each BTL. Sending a large message then results in one chunk
per BTL that connects the processes, and a splitting ratio is determined so that
each chunk size is proportional to the BTL weight, as depicted on Figure 3.

Fig. 3. Multirail using a 60% splitting ratio. 100% means that the whole message is
sent through the NIC1.

We modified the R2 BML component so as to take hardware locality into
account when computing these weights. The expected bandwidth of each BTL
is adjusted by looking at the current process and BTL physical device locations.
This change is specific to each process since it depends on its actual binding. It
must thus be done late in the initialization phase, usually after the paffinity
component (in charge of processor affinity) has done the actual binding of pro-
cesses.

3.3 Gathering NIC and Process Locality Information

Our NUIOA-aware tuning of BTL weights relies on the knowledge of the location
of each networking device in the underlying hardware topology. Most BIOSes
tell the operating system which NUMA node is close to each I/O bus. It is thus
easy to determine the affinity of each PCI device. However, user-level processes
do not manipulate PCI devices, they only know about software handles such as
InfiniBand devices in the Verbs interface. Some low-level drivers offer a way to
derive these software handles into hardware devices thanks to sysfs special files
under Linux. For other drivers such as Myricom MX, a dedicated command
had to be added to retrieve the locality of a given MX endpoint.

We implemented in the hwloc library (Hardware Locality2) the ability to
directly return the set of cores near a given InfiniBand software device.
2 http://www.open-mpi.org/projects/hwloc/

http://www.open-mpi.org/projects/hwloc/

244 S. Moreaud, B. Goglin, and R. Namyst

Open MPI will switch to using hwloc for process binding in the near future
since it offers an extensive set of features for high-performance computing [9].
The BML will thus easily know where Open MPI binds each process. Until this
is implemented, we let the paffinity component bind processes and later have
the BML retrieve both process and network device locations through hwloc.
Once this information has been gathered, the BML adjusts the splitting ratio
according to the actual performance of each BTL in this NUIOA placement.

4 Performance

We present in this section the performance evaluation of NUIOA effects, from
single rail ping-pong to multirail MPI collective operations.

4.1 Experimentation Platform

The experimentation platform is composed of several quad-socket hosts with
dual-core Opteron 8218 processors (2.6GHz). As depicted by Figure 1, this
NUMA architecture contains four NUMA nodes, two of them being also con-
nected to their own I/O bus. Each bus has a PCIe 8x slot where we plug either
a Myricom Myri-10G NIC or a Mellanox MT25418 Connect-X DDR In-
finiBand card. These hosts run the Intel MPI Benchmarks (IMB) on top of our
modified Open MPI 1.4.1 implementation, using the MX or OpenIB BTLs.

4.2 Single-Rail Micro-Benchmark

Figure 4 summarizes NUIOA effects on our experimentation platform by pre-
senting the MPI throughput of a ping-pong between two hosts depending on the
process binding. It confirms that NUIOA effects are indeed significant on our
platform, whenever messages contain dozens of kilobytes.

However the actual impact depends a lot on the underlying networking hard-
ware. Indeed, the throughput over MX with Myri-10G cards varies only very
slightly while the InfiniBand throughput decreases by 23% when the process is
not bound near the network interface. The raw InfiniBand throughput being
larger, it may be more subject to contention, but we do not feel that this fact
would induce such a difference. Instead we think that these NICs may be using
different DMA strategies to transfer data inside the host, causing the congestion
to differ. Indeed, if InfiniBand uses smaller DMA packets, more packets are in-
flight at the same time on the HyperTransport bus, causing more saturation
of the HyperTransport request and response buffers.

Moreover, we also observed that increasing the NUMA distance further does
not further decrease the InfiniBand throughput: once the process is not near
the card, the throughput does not vary anymore when binding it farther away.

4.3 Point-to-Point Multirail

Figure 5 now presents the multirail throughput for large messages depending
on process placement when an InfiniBand NIC is connected to each I/O bus.

Adaptive MPI Multirail Tuning for Non-uniform Input/Output Access 245

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1 32 1024 32768 1048576

T
hr

ou
gh

pu
t (

M
iB

/s
)

Message Size (bytes)

InfiniBand - Process near the NIC
InfiniBand - Process away from the NIC
MX - Process near the NIC
MX - Process away from the NIC

Fig. 4. Influence of the locality of processes and network cards on a single-rail IMB
ping-pong with OpenMPI

It clearly shows that when the process is bound near one of the cards (NUMA
node #0 or #1), the MPI implementation should privilege this card by assigning
about 58% of the message size to it. This ratio is actually very close to the ratio
between monorail throughputs that we may derive from Figure 4 (56.6%). Such a
tuning offers 15% better throughput than the usual half-size splitting. Moreover,
when the process is not close on any NIC (NUMA node #2 or #3), the messages
should be split in half-size chunks as usual. Again, this could have been derived
from Figure 4 since monorail throughput does not vary from with the binding
when not close to the NIC.

When Myri-10G NICs are used, the closest NIC should only be very slightly
privileged (51%). It is also expected since Myri-10G performance varies only
slightly with process placement. Finally, combining one Myri-10G and one In-
finiBand NIC also matches our expectations: when a process is close to the
InfiniBand NIC, it should privilege it significantly (57%), while a process near
the Myri-10G NIC should only privilege it slightly (51%).

These results confirm that combining monorail throughputs from the given
process bindings is an interesting way to approximate the optimal multirail ratio
for point-to-point operations, as suggested in earlier works [10].

4.4 Contention

We now look at the impact of contention on the memory bus on our NUIOA-
aware multirail. Indeed, previous results used idle hosts where data transfers
between NUMA nodes and the NICs were optimal. In the case of real applica-
tions, some processors may access each others’ memory, causing contention on
the HyperTransport links.

246 S. Moreaud, B. Goglin, and R. Namyst

 1400

 1600

 1800

 2000

 2200

 2400

 30 35 40 45 50 55 60 65 70

T
hr

ou
gh

pu
t (

M
iB

/s
)

Ratio (%)

Process on NUMA node 0
Process on NUMA node 1
Process on NUMA node 2
Process on NUMA node 3

Fig. 5. Multirail IMB ping-pong throughput for 1MiB messages, depending on the
ratio between two InfiniBand cards and on the process placement

We added such contention on some HyperTransport links during our afore-
mentioned multirail IMB ping-pong. This reduces the network throughput but
does not modify the splitting ratio. This is a surprising result since we had
carefully chosen which HyperTransport link should get contention so as to
disturb the data path towards a single NIC and not the other (thanks to the
HyperTransport routing table). If the ratio does not change, then it means
that our contention on the single link reduces the overall memory bandwidth
instead of only the bandwidth on this link.

4.5 Collective Operations

Previous sections showed that an interesting splitting of large point-to-point mes-
sages across multiple rails may be derived from each rail NUIOA throughput. We
now look at collective MPI operations. Since processes are now communicating
from all NUMA nodes at the same time, we should now find the splitting ratio of
each running process simultaneously. Figure 6 presents the performance of the
all-to-all operation depending on the splitting ratios. We distinguish processes
depending on whether they are close to one NIC or not.

The optimal tuning that we obtained first reveals that processes that are
not close to any NIC should send one half of each message on each NIC. This
result matches our earlier point-to-point observations since NUIOA effects do
not matter once processes are far from NICs, but it seems less significant here.
Then, the interesting result is that processes close to one NIC should only use this
NIC. This result contradicts the previous section since contention now appears
as critical for performance. We think that contention in this all-to-all benchmark
were more intensive than in the previous section, causing the ratio to vary. In
the end, this all-to-all tuning outperforms the default splitting strategy by 5%.

Adaptive MPI Multirail Tuning for Non-uniform Input/Output Access 247

 0
 20

 40
 60

 80
 100

Ratio for processes
far away from NICs (%) 0

 20

 40

 60

 80

 100

Ratio for processes
close to one NIC (%)

 130

 135

 140

 145

 150

 155

 160

MiB/s

Fig. 6. IMB all-to-all, throughput per process between 16 processes on 2 hosts with 2
InfiniBand NICs, depending on multirail splitting ratios

When using one InfiniBand and one Myri-10G NIC, we obtained simi-
lar results. However, when using two Myri-10G NICs we again observed less
NUIOA effects since the ratio almost does not matter (the variation of results
among multiple runs is larger than the variation due to splitting ratios). Looking
at other collectives, we observed that communication intensive operations, such
as allgather, tend towards all-to-all ratios while other operations show barely
noticeable variations with changes of splitting ratios.

5 Conclusion and Future Works

The increasing number of cores and the widespread use of NUMA architectures
in cluster computing nodes leads to the multiplication of connected hardware
components. It raises the need to take affinities and localities into account in the
design of communication strategies. Indeed, the performance of communication
over high-speed networks is directly related to the relative location of processes
and network interfaces.

In this paper, we propose to optimize the implementation of MPI primitives
by adapting the use of multiple network interfaces to their locations with regards
to processes. Thanks to the knowledge of process/NIC affinities in hwloc, we
determine a splitting ratio that increases the throughput by up to 15% over the
standard multirail strategy. Communication-intensive patterns such as all-to-all
even show that processes that are close to one NIC should not use other NIC so
as to avoid contention on the memory bus.

Combined with per-core sampling of the interfaces, or even auto-tuning [11],
this approach lets us envision a far better utilization of multiple rails. We plan
to integrate our work in the mainline Open MPI implementation and further
experiment with it on real applications. We also intend to integrate this knowl-
edge about NIC affinities in collective algorithms, where the role of each process

248 S. Moreaud, B. Goglin, and R. Namyst

may differ (e.g. local root of a reduction) and thus where each process would
certainly use different thresholds.

References

1. Moreaud, S., Goglin, B.: Impact of NUMA Effects on High-Speed Networking with
Multi-Opteron Machines. In: The 19th IASTED International Conference on Paral-
lel and Distributed Computing and Systems (PDCS 2007), Cambridge, Massachus-
setts (2007)

2. Buntinas, D., Goglin, B., Goodell, D., Mercier, G., Moreaud, S.: Cache-Efficient,
Intranode Large-Message MPI Communication with MPICH2-Nemesis. In: Pro-
ceedings of the 38th International Conference on Parallel Processing (ICPP-2009),
Vienna, Austria, pp. 462–469. IEEE Computer Society Press, Los Alamitos (2009)

3. Narayanaswamy, G., Balaji, P., Feng, W.: Impact of Network Sharing in Multi-core
Architectures. In: Proceedings of the IEEE International Conference on Computer
Communication and Networks (ICCCN), St. Thomas, U.S. Virgin Islands (2008)

4. Jang, H.C., Jin, H.W.: MiAMI: Multi-core Aware Processor Affinity for TCP/IP
over Multiple Network Interfaces. In: Proceedings of the 17th Annual Symposium
on High-Performance Interconnects (HotI 2009), New York, NJ, pp. 73–82 (2009)

5. Rabenseifner, R., Hager, G., Jost, G.: Hybrid MPI/OpenMP Parallel Programming
on Clusters of Multi-Core SMP Nodes. In: Proceedings of the 17th Euromicro
International Conference on Parallel, Distributed, and Network-Based Processing
(PDP 2009), Weimar, Germany, pp. 427–436 (2009)

6. Mercier, G., Clet-Ortega, J.: Towards an Efficient Process Placement Policy for
MPI Applications in Multicore Environments. In: Ropo, M., Westerholm, J., Don-
garra, J. (eds.) Recent Advances in Parallel Virtual Machine and Message Passing
Interface. LNCS, vol. 5759, pp. 104–115. Springer, Heidelberg (2009)

7. Gabriel, E., Fagg, G.E., Bosilca, G., Angskun, T., Dongarra, J.J., Squyres, J.M.,
Sahay, V., Kambadur, P., Barrett, B., Lumsdaine, A., Castain, R.H., Daniel, D.J.,
Graham, R.L., Woodall, T.S.: Open MPI: Goals, concept, and design of a next
generation MPI implementation. In: Proceedings of 11th European PVM/MPI
Users’ Group Meeting, Budapest, Hungary, pp. 97–104 (2004)

8. Mercier, G., Trahay, F., Buntinas, D., Brunet, É.: NewMadeleine: An Efficient Sup-
port for High-Performance Networks in MPICH2. In: Proceedings of 23rd IEEE In-
ternational Parallel and Distributed Processing Symposium (IPDPS 2009), Rome,
Italy. IEEE Computer Society Press, Los Alamitos (2009)

9. Broquedis, F., Clet-Ortega, J., Moreaud, S., Furmento, N., Goglin, B., Mercier,
G., Thibault, S., Namyst, R.: hwloc: a Generic Framework for Managing Hardware
Affinities in HPC Applications. In: Proceedings of the 18th Euromicro International
Conference on Parallel, Distributed and Network-Based Processing (PDP 2010),
Pisa, Italia. IEEE Computer Society Press, Los Alamitos (2010)

10. Aumage, O., Brunet, E., Mercier, G., Namyst, R.: High-Performance Multi-Rail
Support with the NewMadeleine Communication Library. In: Proceedings of the
Sixteenth International Heterogeneity in Computing Workshop (HCW 2007), held
in conjunction with IPDPS 2007, Long Beach, CA (2007)

11. Pellegrini, S., Wang, J., Fahringer, T., Moritsch, H.: Optimizing MPI Runtime
Parameter Settings by Using Machine Learning. In: Ropo, M., Westerholm, J.,
Dongarra, J. (eds.) Recent Advances in Parallel Virtual Machine and Message
Passing Interface. LNCS, vol. 5759, pp. 196–206. Springer, Heidelberg (2009)

Using Triggered Operations to Offload Collective

Communication Operations

K. Scott Hemmert1, Brian Barrett1, and Keith D. Underwood2

1 Sandia National Laboratries�

P.O. Box 5800, MS-1110
Albuquerque, NM, 87185-1110

kshemme@sandia.gov, bwbarre@sandia.gov
2 Intel Corporation
Hillsboro, OR, USA

keith.d.underwood@intel.com

Abstract. Efficient collective operations are a major component of ap-
plication scalability. Offload of collective operations onto the network
interface reduces many of the latencies that are inherent in network com-
munications and, consequently, reduces the time to perform the collective
operation. To support offload, it is desirable to expose semantic building
blocks that are simple to offload and yet powerful enough to implement a
variety of collective algorithms. This paper presents the implementation
of barrier and broadcast leveraging triggered operations — a semantic
building block for collective offload. Triggered operations are shown to
be both semantically powerful and capable of improving performance.

1 Introduction

Although the vast majority of data volume that is transferred within science and
engineering applications is in relatively localized, point to point communications,
these applications also include some number of global communications known
as collectives. Many collective communications are inherently less scalable, as
they involve communications all the way across the machine and contributions
from every node. As system sizes increase, it becomes increasingly difficult to
implement fast collectives across the entire system. One approach to improving
collective performance is to offload collective operations to the network.

Many prior approaches to offloading collective operations have offloaded the
entire collective operation, including the communication setup and computa-
tion [1]. While this eliminates the host overhead, it creates a more complicated
offload function that is harder to adapt over time. As an alternative, a similar
level of offload can be achieved with more elementary building blocks that are
both easier to implement in hardware and less subject to change. When building

� Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed
Martin Company, for the United States Department of Energy’s National Nuclear
Security Administration under contract DE-AC04-94AL85000.

R. Keller et al. (Eds.): EuroMPI 2010, LNCS 6305, pp. 249–256, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

250 K.S. Hemmert, B. Barrett, and K.D. Underwood

blocks are provided, the host library (e.g., MPI) is able to more readily adopt
new collective algorithms as they are being developed. Alternatively, the host
can more easily tune the algorithm based on the size of the system, the layout
of the job on the system, and the size of the collective.

Portals 4 [2] introduced a set of semantic building blocks that included trig-
gered operations and counting events that were explored for MPI ALLREDUCE
in [3]. Triggered operations allow an application to schedule a new network op-
eration to occur in the future when a counting event reaches a specified threshold.
This paper illustrates the breadth of triggered operations for implementing col-
lective algorithms ranging from tree based barriers to dissemination barriers to
bulk data broadcasts. Simulation results show the performance improvements
that can be achieved using offload through triggered operations.

2 Related Work

Offload of collective operations has been an active area of research for many
years. Custom engineered systems like the Cray T3D provided hardware barrier
synchronization [4] and IBM’s BG/L provided a dedicated collective network.
Similarly, research into hardware support for collective operations on commod-
ity hardware began in the mid-1990’s [5]. This work became more prevalent
with the arrival of programmable network interfaces like Myrinet and Quadrics.
Barrier [1,6] and broadcast [7] are particularly popular targets.

Offloading collective operations onto a Myrinet NIC requires significant en-
hancements to the control program running on the NIC processor. Because this
requires significant effort for each collective operation offloaded, mechanisms to
provide more dynamic offloaded capability were proposed [8]. Unlike Myrinet,
the Quadrics Elan network supported a user-level thread on the NIC. Because
this user-level thread has direct access to the address space of the process that
created it, it is easier to create extended functionality to offload collectives. The
programming environment for the Elan adapters provides some key functionality.
For example, Elan event functions can increment a counter by a user specified
amount when an operation, such as a DMA transfer, completes. Events could
be chained to allow the triggering of one event to trigger others. Elan events are
very similar to the counting events that were added to the Portals [2] API.

3 Triggered Operations in Portals 4

Triggered operations and counting events were introduced into Portals 4 [2] as
semantic building blocks for collective communication offload. Triggered opera-
tions provide a mechanism through which an application can schedule message
operations that initiate when a condition is met. Triggered versions of each of
the Portals data movement operations were added (e.g., PtlTriggeredPut(),
PtlTriggeredGet(), and PtlTriggeredAtomic()) by extending the argument
list to include a counting event on which the operation will trigger and a thresh-
old at which it triggers. In turn, counting events are the lightweight semantic

Using Triggered Operations to Offload Collective Communication Operations 251

provided to track the completion of network operations. Counting events are
opaque objects containing an integer that can be allocated, set to a value, or
incremented by a value through the Portals API. In addition, they can be at-
tached to various Portals structures and configured to count a variety of network
operations, such as the local or remote completion of a message as well as the
completion of incoming operations on a buffer (e.g., the completion of a PtlPut()
or PtlAtomic() to a local buffer).

A triggered operation is issued by the application and then initiated by the
network layer when a counting event reaches a threshold. Through careful use
of counting events and triggered operations, an almost arbitrary sequence of
network operations can be setup by the application and then allowed to progress
asynchronously. A discussion of how reduction operations can be implemented
using triggered operations is presented in [3].

4 Evaluation Methodology

The Structural Simulation Toolkit (SST) v2.0 [9] was used to simulate both
host-based and offloaded versions of several collective algorithms. SST provides
a component-based simulation environment, designed for simulating large-scale
HPC environments. It simultaneously provides both cycle-accurate and event-
based simulation capabilities. Here, we present both the algorithms simulated
and a description of the parameters used for simulation.

4.1 Collective Algorithms

Three barrier algorithms were simulated for both a host based and a triggered
operation based implementation. The first algorithm was a binomial tree (not
shown) with the experimentally determined optimal radix chosen for both the
host and the triggered cases. The tree algorithm is similar to what was explored
for Allreduce in prior work [3]. The second algorithm used was the recursive dou-
bling algorithm (also not shown), which is a simplified variant of the Allreduce
in [3], since no data movement is required.

The final algorithm explored is the dissemination barrier [10]. In the radix-2
version, the dissemination barrier has a series of rounds, R, where each node, N ,
sends a message to node (N + 2R) mod P . A message in a given round can only
be sent after messages for all prior rounds have been received. Because some
nodes can proceed through the rounds faster than others, a node must receive
a specific set of messages before proceeding. This is synonymous with receiving
the message for this round and having completed the previous round, which is
how the algorithm in Figure 1 is structured. Figure 1 is also extended to show a
higher radix dissemination barrier algorithm.

A binomial tree algorithm is used for broadcast. Figure 2 shows how triggered
operations can be leveraged for a rendezvous style protocol implementing a tree.
At communicator creation, each node creates a descriptor to receive messages
from their “parent” in the tree. When the collective is initiated, children de-
termine who their parent will be based on the root and issue a triggered get.

252 K.S. Hemmert, B. Barrett, and K.D. Underwood

//Round 0 message from self when we enter
for (j = 1; j < radix; j++) PtlPut(user md h, (id+j) % num nodes, 0);
//Signal round 1. Only receive radix−1 messages and not signal from previous round
PtlTriggeredCTInc(level ct hs[1], 1, level ct hs[0], radix−1);
PtlTriggeredCTInc(level ct hs[0], −(radix−1), level ct hs[0], radix−1);
for (i = 1, level = 0x2 ; level < num nodes ; level <<= log2(radix), ++i) {

for (j = 0; j < (radix−1); ++j) {
remote = (id + level + i) % num nodes;
// Start round i when input from round i − 1 peer arrives and
// communication to round i − 1 completes
PtlTriggeredPut(md h, remote, i, level ct hs[i], radix);

}
//Signal round i+1 that round i (and all previous rounds) is done
PtlTriggeredCTInc(level ct hs[i+1], 1, level ct hs[i], radix);
//Clean−up this iteration
PtlTriggeredCTInc(level ct hs[i], −radix, level ct hs[i], radix);

}
// wait for completion and clean up last level
PtlCTWait(level ct h[levels], 1);
PtlTriggeredCTInc(level ct hs[levels], −1, level ct hs[levels], 1);

Fig. 1. Pseudo-code for the triggered dissemination barrier algorithm

When the data is available in the local buffer, the parent notifies the child, which
increments the counting event that releases the triggered get. The algorithm is
pipelined by issuing multiple triggered gets with offsets that trigger at different
count thresholds. Short messages are sent using a puts into the bounce buffer,
with a user-level copy on completion.

4.2 Simulation Model

The collective operation simulations utilize a cycle-based router and network
model combined with an event driven model of the network interface and the
host. A torus network of up to 32K nodes (32 × 32 × 32) was simulated. Simu-
lations were run with and without simulated OS interference to determine the
success of offloaded implementations in eliminating noise. The router simulation
matched those used in earlier simulations [9]. In contrast, the node was modeled
as a simple state machine. Message insertion rate, delays for copying data to the
NIC, and delays associated with memory copies were all modeled as interrelated
occupancies in a queuing model. The NIC used a similar set of occupancies to
model the NIC level operations and fed data (packets) to the router model.

Key parameters were modeled for both the NIC and host processing times: bus
delays, delays through the NIC, occupancy in the receive processing logic, and
memory latencies. Parameters that were used corresponded to network latencies
of 1 μs and 1.5 μs and are shown in Table 1. The one way message rates are
limited by the highest latency, unpipelined processing stage. Since the hardware

Using Triggered Operations to Offload Collective Communication Operations 253

if (my root == my id) {
/∗ Notify children that all chunks are ready ∗/
for (j = 0 ; j < msg size ; j += chunk size)

for (i = 0 ; i < num children ; ++i) PtlPut(bounce md, 0, 0, 0, child[i], 0);
} else {

/∗ iterate over chunks ∗/
for (offset = 0 ; offset < msg size ; offset += chunk size) {

/∗ when a chunk is ready, issue get. Local and remote offset are the same ∗/
PtlTriggeredGet(out md, offset, chunk size, my root, offset,

bounce ct, j / chunk size);
/∗ then when the get is completed, send ready notice to children ∗/
for (i = 0 ; i < num children ; ++i)

PtlTriggeredPut(bounce md, 0, 0, 0, child[i], 0, out md ct, offset / chunk size);
}
/∗ reset 0−byte put received counter ∗/
PtlTriggeredCTInc(bounce ct, −count, bounce ct, count);

}
/∗ wait for children gets ∗/
if (num children > 0) PtlCTWait(out me ct, count);
/∗ wait for local gets to complete ∗/
else PtlCTWait(out md ct, count);

Fig. 2. Pseudo-code for the long message triggered binomial tree broadcast

stages are pipelined, the message rate limiter is the software, which yields 5.7
million messages per second (Mmsgs/s) and 3.3 Mmsgs/s for 1 μs and 1.5 μs
latency, respectively. The rate at which the NIC can issue triggered operations is
limited by the 8 flit header and the 500 MHz clock to yield 62.5 Mmsgs/s (once
the operations are queued on the NIC). To enqueue triggered operations, the
software faces the same limitations as message transmits; therefore, triggered
operations can be enqueued at 10 Mmsgs/s and 5 Mmsgs/s, based on the 100 ns
and 200 ns TX software delays, respectively. As a final parameter, setup time for
the collective operation — time needed by MPI before communication starts to
setup the algorithm — is set to 200 ns. In addition to the baseline simulations,
we run simulations representing the impact of OS noise. One “long noise at
infrequent interval” signature (25 μs at 1 KHz) from a previous study [11] is
used to represent OS noise.

Table 1. Summary of simulation parameters

Msg Latency 1000 ns 1500 ns Msg Latency 1000 ns 1500 ns

TX Software Delay 100 ns 200 ns RX Software Delay 175 ns 300 ns
TX Bus Delay 200 ns 300 ns RX Bus Delay 200 ns 300 ns
TX NIC Delay 75 ns 100 ns RX NIC Delay 150 ns 200 ns

Memory Latency 100 ns 100 ns Read over Bus 400 ns 500 ns

254 K.S. Hemmert, B. Barrett, and K.D. Underwood

5 Results

Figure 3 compares the performance of the three barrier algorithms with 1000
ns and 1500 ns latency for both host and triggered implementations. The trig-
gered implementation has over a 2× advantage that is larger at higher latency,
since the triggered operations experience lower effective latency and higher ef-
fective message rate when they actually issue from the NIC. Much of the real
latency and message posting overheads are overlapped with other communica-
tions for triggered operations (i.e., they happen before the host implementation
is free to initiate the messages). Note that we used a Radix-8 implementation for
the triggered dissemination barrier, which gave it a significant advantage over the
very similar recursive doubling algorithm using Radix-2. Radix-8 results for the
host variant (not shown) were far worse than Radix-2.

0

10000

20000

30000

40000

50000

60000

70000

80000

64 128 256 512 1024 2048 4096 8192 1638432768

B
ar

rie
r

T
im

e
(n

s)

Nodes

Host Tree: 1000 ns latency, Radix-8
Trig. Tree: 1000 ns latency, Radix-16
Host Rec. Doubling: 1000 ns latency
Trig. Rec. Doubling: 1000 ns latency
Host Dissemination: 1000 ns latency

Trig. Dissem.: 1000 ns latency, Radix-8

0

10000

20000

30000

40000

50000

60000

70000

80000

64 128 256 512 1024 2048 4096 8192 1638432768

B
ar

rie
r

T
im

e
(n

s)

Nodes

Host Tree: 1500 ns latency, Radix-4
Trig. Tree: 1500 ns latency, Radix-8

Host Rec. Doubling: 1500 ns latency
Trig. Rec. Doubling: 1500 ns latency
Host Dissemination: 1500 ns latency

Trig. Dissem.: 1500 ns latency, Radix-8

1000 ns latency 1500 ns latency

Fig. 3. Simulated barrier time

Figure 4 presents results of simulations with noise. While the barrier time
increases substantially for host based implementations and shows growing impact
as the number of nodes increases, the barrier time for implementations using
triggered operations shows more modest impact from noise and the noise impact
levels off at large node counts. In addition, note that the introduction of noise
changes the “right” algorithm to use. Both dissemination and recursive doubling
algorithms require processing by every node at every stage, but a tree based
algorithm uses logarithmically fewer nodes at each stage. This carries over to
triggered operations, since all nodes spend a significant amount of time injecting
messages in the dissemination and recursive doubling barrier algorithms, but
most nodes inject few messages in the binomial tree.

Broadcast performance is presented in Figure 4 for small messages (8 bytes)
and in Figure 5 for a sweep over larger messages at 4096 nodes. At small mes-
sages, the triggered operations provide a 15–20% performance improvement over
host based algorithms, in addition to substantially less noise sensitivity. At larger
message sizes, however, broadcast using triggered operations has a smaller per-
formance and noise sensitivity advantage. Serialization delay to transfer data

Using Triggered Operations to Offload Collective Communication Operations 255

0

50000

100000

150000

200000

64 128 256 512 1024 2048 4096 81921638432768

B
ar

rie
r

T
im

e
(n

s)

Nodes

Host Tree: 1000 ns latency, w/ Noise
Triggered Tree: 1000 ns latency, w/ Noise
Host Rec. Dbl.: 1000 ns latency, w/ Noise
Trig. Rec. Dbl.: 1000 ns latency, w/ Noise

Host Diss: 1000 ns latency, w/ Noise
Trig. Diss: 1000 ns latency, w/ Noise

0

10000

20000

30000

40000

50000

60000

70000

80000

64 128 256 512 1024 2048 4096 8192 1638432768

B
ro

ad
ca

st
 T

im
e

(n
s)

Nodes

Host: 1000 ns latency, Radix-8
Triggered Tree: 1000 ns latency, Radix-16

Host: 1000 ns latency, w/ Noise
Triggered Tree: 1000 ns latency, w/ Noise

Barrier with Noise Small Broadcast Performance

Fig. 4. Simulated time with Noise

dominates both noise and processor overheads, which can be seen by the con-
vergence of the host and triggered results in Figure 5. The triggered technique
shows promise for non-blocking collectives, however, as it offers similar perfor-
mance to host-based collectives with minimal processor overhead after an initial
setup period. The use of a multi-post triggered interface to save round-trip com-
munication with the NIC when setting up the messaging pipeline would further
reduce the (small) processor overhead experienced for triggered bcasts of large
messages and will be examined in future work.

10000

100000

1e+06

1e+07

4K 16K 64K 256K 1M

B
ro

ad
ca

st
 T

im
e

(n
s)

Size (bytes)

Host: 1000 ns latency, Radix-4
Triggered Tree: 1000 ns latency, Radix-4

10000

100000

1e+06

1e+07

4K 16K 64K 256K 1M

B
ro

ad
ca

st
 T

im
e

(n
s)

Size (bytes)

Host: 1000 ns latency, w/ Noise
Triggered Tree: 1000 ns latency, w/ Noise

Broadcast size sweep Broadcast size sweep Noise

Fig. 5. Sweep of broadcast size with and without noise

6 Conclusions

This paper has illustrated that triggered operations leveraging counting events
are semantically sufficient to implement a variety of collective algorithms.
Pseudo-code was shown for a rendezvous-like functionality for long broadcasts
and pseudo-code was shown for higher radix dissemination barriers. Collectives
based on triggered operations are shown to be both higher performing (by over
2×) and more resistant to interference from system noise.

256 K.S. Hemmert, B. Barrett, and K.D. Underwood

References

1. Buntinas, D., Panda, D.K., Sadayappan, P.: Fast NIC-based barrier over
Myrinet/GM. In: Proceedings of the International Parallel and Distributed Pro-
cessing Symposium (April 2001)

2. Riesen, R.E., Pedretti, K.T., Brightwell, R., Barrett, B.W., Underwood, K.D.,
Hudson, T.B., Maccabe, A.B.: The Portals 4.0 message passing interface. Technical
Report SAND2008-2639, Sandia National Laboratories (April 2008)

3. Underwood, K.D., Coffman, J., Larsen, R., Hemmert, K.S., Barrett, B.W.,
Brightwell, R., Levenhagen, M.: Enabling flexible collective communication offload
with triggered operations. Submitted to Proceedings of the 2010 IEEE Interna-
tional Conference on Cluster Computing (September 2010)

4. Scott, S.L., Thorson, G.: Optimized routing in the Cray T3D. In: Bolding, K.,
Snyder, L. (eds.) PCRCW 1994. LNCS, vol. 853, pp. 281–294. Springer, Heidelberg
(1994)

5. Yih Huang, P.K.M.: Efficient collective operations with ATM network interface
support. In: Proceedings of the International Conference on Parallel Processing,
August 1996, pp. 34–43 (1996)

6. Yu, W., Buntinas, D., Graham, R.L., Panda, D.K.: Efficient and scalable barrier
over Quadrics and Myrinet with a new NIC-based collective message passing proto-
col. In: Proceedings of the Workshop on Communication Architecture for Clusters
(April 2004)

7. Buntinas, D., Panda, D.K., Duato, J., Sadayappan, P.: Broadcast/multicast over
Myrinet using NIC-assisted multidestination messages. In: Proceedings of the
Fourth International Workshop on Communication, Architecture, and Applications
for Network-Based Parallel Computing (January 2000)

8. Wagner, A., Jin, H.-W., Panda, D.K., Riesen, R.: NIC-based offload of dynamic
user-defined modules for Myrinet clusters. In: Proceedings of the 2004 IEEE Inter-
national Conference on Cluster Computing, September 2004, pp. 205–214 (2004)

9. Underwood, K.D., Levenhagen, M., Rodrigues, A.: Simulating Red Storm: Chal-
lenges and successes in building a system simulation. In: 21st International Parallel
and Distributed Processing Symposium (IPDPS 2007) (March 2007)

10. Hoefler, T., Mehlan, T., Mietke, F., Rehm, W.: Fast barrier synchronization for
InfiniBand. In: 20th International Parallel and Distributed Processing Symposium,
IPDPS 2006. (April 2006)

11. Ferreira, K.B., Bridges, P., Brightwell, R.: Characterizing application sensitivity
to OS interference using kernel-level noise injection. In: SC 2008: Proceedings of
the, ACM/IEEE conference on Supercomputing, pp. 1–12. IEEE Press, Piscataway
(2008)

Second-Order Algorithmic Differentiation by

Source Transformation of MPI Code

Michel Schanen�, Michael Förster, and Uwe Naumann

LuFG Informatik 12: Software and Tools for Computational Engineering
RWTH Aachen University, Germany

{schanen,foerster,naumann}@stce.rwth-aachen.de
http://www.stce.rwth-aachen.de

Abstract. A source transformation tool for algorithmic differentiation
is introduced, capable of transforming MPI-enabled code into second-
order adjoint code. Our derivative code compiler (dcc) is used for the
source transformation while a runtime library handles the adjoining of
the MPI routines. This paper describes in detail the link between these
two components in order to compute second derivatives. This process is
illustrated by a simplified parallel implementation of Burgers’ equation
in a second-order optimization setting, for example, Newton’s method.

1 Introduction

Burgers’ equation ∂u
∂t +u∂u

∂x = ν ∂2u
∂x2 [1] is used in fluid dynamics to describe shock

waves moving through gases. u is the velocity field of the fluid with viscosity ν.
Without going into the physical details, such types of equations represent the
basis of many numerical simulations. Suppose we have a one-dimensional discrete
problem with nx finite difference grid points. We simulate a physical process by
integrating over nt time steps for given initial conditions ui, 0 ≤ i < nx. Since
the initial conditions ui often cannot be measured, they are replaced by guessed
values. To improve their accuracy additional observed values uob are taken into
account. The cost function

cost =
nx∑

i=0

nt∑

j=0

(u[i][j] − uob[i][j])2

2
(1)

then compares the observed values uob with the computed values u. This allows
us to optimize the initial conditions by applying, for example, Newton’s method
[2] to perform a parameter estimation with Burgers’ equation as constraints. The
Newton step is repeated until the cost undercuts a certain threshold. Accurate
second derivatives are highly desirable.

Modern large-scale simulations exploit parallelism. We assume that the mes-
sage passing library MPI [3] is used in a Burgers simulation to implement a
� This work was supported by the Fond National de la Recherche of Luxembourg

under grant PHD-09-145.

R. Keller et al. (Eds.): EuroMPI 2010, LNCS 6305, pp. 257–264, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

http://www.stce.rwth-aachen.de

258 M. Schanen, M. Förster, and U. Naumann

standard reduction over the cost function. This paper introduces an extension
to the derivative code compiler dcc [4] enabling the differentiation of MPI code
based on a subset of C by accessing an external library for adjoining MPI calls [5].

In Sect. 2 we introduce algorithmic differentiation as implemented by dcc fol-
lowed by a brief overview of the adjoint MPI library. The link between these two
components is the wrapper introduced in Sect. 3. Section 4 discusses issues re-
lated to non-blocking communication. Finally, the Burgers test case is considered
in Sect. 5.

2 Derivative Code Compiler

Suppose we have an implementation of a multivariate vector function y = F (x) :
R

n → R
m. There exist two distinct derivative models, differing in the order of

application of the chain rule. Let ∇F be the Jacobian of F . The tangent-linear
model of F computes the directional derivative ẏ = ∇F (x) · ẋ of the outputs
y with respect to the inputs x for a given direction ẋ ∈ R

n. The runtime com-
plexity for accumulating the whole Jacobian is O(n) · Cost(F), where Cost(F)
denotes the computational cost of a single function evaluation. By exploiting the
associativity of the chain rule, the adjoint model of F computes adjoints x̄

x̄ = (∇F (x))T · ȳ (2)

of the outputs y with respect to the inputs x for given adjoints ȳ ∈ R
m leading

to a runtime complexity of O(m) · Cost(F) for the accumulation of the entire
Jacobian.

The generalized model for arbitrary orders of algorithmic differentiation (AD)1

is presented in [6]. dcc semi-automatically generates such derivative models for
computer programs written in a well-defined subset of C++. The jth-order
derivative code is generated by reapplication of dcc to the (j−1)th-order deriva-
tive code. Moreover, dcc implements both the tangent-linear and adjoint modes
of AD while preserving the reapplication feature. In this paper we use dcc to
generate second-order adjoint code by reapplying it in tangent-linear mode to
the adjoint model of the cost function (1). This process is illustrated in Fig. 1.

For second derivatives every variable y,ȳ,x, and x̄ of the adjoint code is aug-
mented with an additional directional derivative component ẏ, ˙̄y,ẋ, and ˙̄x, respec-
tively. It follows that each incrementation of the differentiation order doubles the
number of arguments.

When computing the cost of our parameter estimation problem by MPI’s
reduction operation we have to deal with a code that is similar to the code
fragment of the function f in Listing (1). Without loss of generality we omit
all other MPI Reduce arguments besides the master process id root, the send
buffer c, and the receive buffer cost. Additionally, we inserted a multiplication
statement to illustrate the differentiation model.
1 Refer to the AD community’s web portal http://www.autodiff.org/ for information

on research groups, AD tools, and an extensive bibliography.

http://www.autodiff.org/

Algorithmic Differentiation by Source Transformation of MPI Code 259

F

(
↓
x, y

↓

)
dcc−→ F̄

(
↓
x, x̄

↓
, y

↓
,

↓
ȳ

)
dcc−→ ˙̄F

(
↓
x,

↓
ẋ, x̄

↓
, ˙̄x

↓
, y

↓
, ẏ

↓
,

↓
ȳ,

↓
˙̄y

)

, where

˙̄x = ẋT · ∇2F (x) · ȳ + ∇F (x)T · ȳ ẏ = ∇F (x) · ẋ

x̄ = ∇F (x)T · ȳ y = F (x)

Fig. 1. Second-order adjoint derivative model generated by dcc. Upper arrows mark
the inputs of a program whereas base arrows mark the outputs.

vo i d f (doub l e ∗x , doub l e ∗ co s t) {
. . .
c=c∗x [myid] ;
MPI Reduce (cos t , c , r o o t) ;

}
Listing 1. dcc input: c is a double; myid is the process id.

Application of dcc in adjoint mode (2) yields the function b1 f shown in
Listing (2). All added code segments are highlighted. First the name of the
function is prefixed with b1 (b for bar used to denote adjoints and 1 for first
derivatives). Each of the arguments (x,cost) is augmented with its respective
adjoint (b1 x, b1 cost). The adjoint code is split into two separate runs indicated
by the parameter m.
1 vo i d b1 f (i n t m , doub l e∗ x , doub le∗ b1 x , doub l e∗ cos t , doub le∗ b1 cos t

) {
2 m=1; // fo rwa rd run
3 . . .
4 push (c) ; c=c∗x [myid] ;
5 b1 MPI Reduce (m , cos t , b1 cos t , c , b1 c , r o o t) ;
6
7 m=2; // r e v e r s e run
8 b1 MPI Reduce (m , cos t , b1 cos t , c , b1 c , r o o t) ;
9 pop (c) ;

10 b1 x [myid]+=c∗b1 c ; b1 c+=x [myid]∗ b1 c ;
11 . . .
12 }

Listing 2. Adjoint dcc output

The forward run (m=1) computes cost as a function of x. When the value of
the variable c is overwritten, it is pushed onto a stack for later use in the com-
putation of the adjoints. Note that the current value of c enters the computation
of the adjoint b1 x[myid] as the local partial derivative in line 10. Overwriting c
in line 4 without saving the current value and restoring it in line 9 would result
in an incorrect b1 x[myid].

After the forward run the reverse run is started computing the adjoints b1 x as
a function of b1 cost. It is executed in reverse order of the original computation.
Hence we first execute b1 MPI Reduce. Here, b1 cost is actually broadcast to all
processes where it is saved in b1 c.

Each MPI routine is either called in forward (m=1) or reverse (m=2) mode.
Therefore b1 MPI Reduce is called twice, once to reduce c to cost and a second

260 M. Schanen, M. Förster, and U. Naumann

time to broadcast the adjoint b1 cost to the adjoints b1 c of every process amount-
ing to the adjoint reduction operation.

Since computing the adjoints involves the reversal of the whole program, this
also implies the reversal of all communication inside MPI. A Send has to become
a Receive, a Receive becomes a Send and so on. In our example, MPI Reduce has
to become a MPI Broadcast in the reverse run (Fig. 2). A general approach is
needed to transform each MPI routine into its adjoint counterpart. This logic is
provided by a basic library written in C as presented in [5]. Each MPI routine is
associated with a forward routine, essentially the same as the original MPI call
and a backward routine, propagating the adjoints. We have implemented an ad-
joint MPI library (AMPI) which provides the most commonly used MPI routines
in their forward and backward variants, including non-blocking communication.

MasterSlave Slave

Slave

x x

x

(a) Reduce: The values of x are
sent from the slaves to the mas-
ter.

MasterSlave Slave

Slave

b1 cost b1 cost

b1 cost

(b) Adjoint Reduce: The ad-
joint b1 cost is broadcast from
the master to the slaves.

Fig. 2. Adjoint MPI

The essential part of our work, is to link the generated b1 MPI calls with
the underlying AMPI routines. The corresponding wrapper is the main novel
contribution of this paper.

3 AMPI dcc Wrapper

The AMPI dcc wrapper library is the interface between AMPI and the adjoint
code generated by dcc. Its sole responsibility is to ensure that values and adjoints
are mapped properly from and to the AMPI routine calls. Hence, the relevant
part of the AMPI calling signatures is the handling of values and adjoints. The
forward routines need to be called with the original values as arguments in the
forward run, whereas the backward routines need to be called with the adjoints as
arguments in the reverse run. The logic of transforming the MPI communications
is entirely handled by the AMPI library. Therefore AMPI Reduce b is actually a
Broadcast as illustrated in Fig. 2.

Furthermore, we want to compute second derivatives by reapplying dcc in
tangent-linear mode to the adjoint code. As explained in Fig. 1, the Reduce will
be differentiated again yielding

d2 b1 MPI Reduce(m,cost,d2 cost,b1 cost,d2 b1 cost,x,d2 x,b1 x,d2 b1 x).

Algorithmic Differentiation by Source Transformation of MPI Code 261

The function prefix d2 b1 stands for the second-order adjoint code obtained
by tangent-linear (d2) over adjoint (b1) mode. As in Fig. 1, every value and
every adjoint get an additional tangent-linear component (highlighted) pre-
fixed with d2 . Hence there are twice as many variables in the signature of
d2 b1 MPI Reduce than in the first-order adjoint routine b1 MPI Reduce. Since
the underlying AMPI library does not have specific second-order routines, we
need to split the communication into two AMPI calls as shown in Fig. 3. This
amounts to a doubling of the MPI communication. As in first-order adjoint mode
we call d2 b1 MPI Reduce in the forward run and in the backward run. In the
forward run (m=1) d2 b1 MPI Reduce calls the AMPI library twice: Once to
reduce the value of x to cost and once more to reduce the value of the tangent-
linear component of d2 x to d2 cost. The resulting MPI calls are two Allreduce
calls. As in first-order adjoint mode, the Allreduces are necessary, since each pro-
cess need the values of cost and d2 cost to compute the adjoints in the reverse
run. In the reverse run (m=2), we propagate the adjoints in reverse order of
the original code. Therefore the reverse AMPI Reduce routine AMPI Reduce b is
called. Again this is done twice since the tangent-linear components (d2 b1 cost,
d2 b1 x) of both adjoints and the adjoints (b1 cost, b1 x) themselves need to be
set. The actual resulting MPI communications are the two Broadcasts of b1 cost
and d2 b1 cost explained in Sect. 2. b1 x and d2 b1 x are computed based on
the adjoint of the reduction operation.

d2 b1 MPI Reduce(m,cost,d2 cost,b1 cost,d2 b1 cost x,d2 x,b1 x,d2 b1 x)

AMPI Reduce f(cost,x)

AMPI Reduce f(d2 cost,d2 x)

AMPI Reduce b(b1 cost,b1 x)

AMPI Reduce b(d2 b1 cost,d2 b1 x)

MPI Allreduce(cost,x)

MPI Allreduce(d2 cost,d2 x)

MPI Broadcast(b1 cost,0)

MPI Broadcast(d2 b1 cost,0)

m=1 m=2

AMPI AMPI

Fig. 3. d2 d1 MPI Reduce

The procedure of linking each second-order adjoint MPI routine with the cor-
responding AMPI library routines has been implemented and tested for block-
ing Send/Receive, non-blocking Send/Receive, Reduce, Broadcast and Waitall.
Issues arising from non-blocking communication patterns are explained in the
following section.

4 Non-blocking Communication

Reversal of non-blocking communication (MPI Wait, MPI Isend, MPI Irecv) is
challenging, due to the undetermined state of the buffer variables between a

262 M. Schanen, M. Förster, and U. Naumann

Wait and a Irecv or Isend. A solution to the request handling and non-blocking
communication patterns has been presented in [7]. Additionally, our solution
imposes certain restrictions on the memory management of the buffer.

The wait routine MPI Wait is exceptional in the way that it does not have any
variable as an argument. Let us assume that we have a function placing an Isend
followed some time later by a Wait. When computing the adjoints in the reverse
run, the adjoint Wait will be called before the adjoint Isend. The AMPI library
treats this situation by providing a memory manager, handling all the adjoint
buffers. It requires that the memory allocation of the adjoint variables b1 v is
completed during the forward run. Unfortunately, this requirement contradicts
our current reversal model.

As seen in Fig. 4(a), the forward run m=1 (double right arrow) and the
reverse run m=2 (double left arrow) of a function b1 bar are currently separated
into two subroutine calls except for the root routine foo. Therefore we call this
reversal mode split reversal [6]. It implies that the adjoint buffers of b1 MPI are
in different memory locations in the forward and reverse runs. As this contradicts
the premiss of AMPI, it is impossible for b1 bar to call an AMPI dcc routine.
We could avoid this difficulty, if we merged the forward and reverse run into one
function call.

b1 MPI

b1 bar

b1 foo

b1 MPI

b1 bar

b1 foo

(a) Split Reversal

b1 bar

b1 foo

b1 bar

b1 foo

b1 bar

(b) Joint Reversal

b1 bar

b1 foo

b1 bar

b1 foo

b1 bar

MPI b1 MPI b1 MPI

dcc

AMPI dcc

(c) Intrinsic Reversal

Fig. 4. Reversal models

dcc uses joint reversal [8] shown in Fig. 4(b) as its data-flow reversal model by
introducing three modes m=1,2,3. It is a trade-off between computational and
memory complexity of the generated adjoint codes. Let foo be the root routine.
The three modes are defined as follows:

– m=1: forward and reverse run
– m=2: store arguments + original routine call
– m=3: restore arguments + forward and reverse run

Only the root routine b1 foo is called with m=1. It starts its forward run (double
right arrow) and calls b1 bar with m=2. b1 bar then stores its arguments (down
arrow) and runs the undifferentiated original routine bar (single right arrow).
b1 foo now starts its reverse run (double left arrow). To do this, it needs the
adjoints of the reversed routine b1 bar. This is done by calling b1 bar with m=3.

Algorithmic Differentiation by Source Transformation of MPI Code 263

b1 bar restores its arguments (up arrow) and performs its forward run (double
right arrow) followed by the reverse run (double left arrow). We end up with all
the adjoints when b1 foo finishes its reverse run.

Lets assume the routine bar has an MPI call in joint reversal. We then use
intrinsic reversal for the called AMPI dcc. Just like any intrinsic function the
AMPI dcc routines are differentiated through provision of their differentiated
counterpart by the AMPI dcc library and not by dcc. Thus we can separate the
forward and the reverse run, since we have internal structures that link these two
calls if necessary. In Fig. 4(c) we see that with joint reversal, the adjoint buffers
are the same for both b1 MPI calls since they are called by the same instance of
the routine b1 bar as opposed to split reversal in Fig. 4(a). Obviously this comes
at a communication cost, since the original MPI routine has to be called during
the undifferentiated call (m=2) of b1 bar.

The prime benefit of our approach to the reversal of non-blocking MPI com-
munication is the avoidance of modification of dcc’s source transformation algo-
rithms. dcc handles all MPI calls similar to any arbitrary user-written subroutine
by calling adjoint versions in modes m=1,2,3. Dealing with memory management
issues is deferred entirely to the wrapper.

5 Test Case

Due to space restrictions we only present the code fragment covering the MPI
reduction of cost over cost mpi (Listing (3)) of the Burgers simulation introduced
in Sect. 1. We initialize cost mpi of each process to 0. Then we calculate the
left (mpi x) and right (mpi nx−1) boundaries of the partitioned one-dimensional
domain based on each process’ id (myid). Each process then computes its local
contribution to the cost cost mpi by comparing at each time step j the velocity
u with the observed velocity values uob. Last but not least, we reduce the values
cost mpi to cost with root being our master process.

co s t mp i =0;
mp i i = (myid) ∗ (nx/numprocs) ; mpi nx = (myid+1) ∗ (nx/numprocs) ;
wh i l e (mp i i < mpi nx) {

j =0;
wh i l e (j<n) {

co s t mp i=cos t mp i +0.5∗(u [mp i i] [j]−uob [mp i i] [j]) ∗(u [mp i i] [j]−uob [
mp i i] [j]) ;

j=j +1;
}
mp i i=mp i i +1;

}
MPI Reduce (cos t , cos t mpi , r o o t) ;

Listing 3. Reduction of cost in Burgers simulation

This code is entirely accepted by dcc and allows us to generate second-order
adjoint code. We then compile the resulting code with gcc, while linking the MPI
calls to our AMPI dcc wrapper. The complete code is available on request. As
anticipated, the results of the parallel computation exactly match those of the
serial run without the MPI enhancements. While the correctness of our approach

264 M. Schanen, M. Förster, and U. Naumann

is proven, no conclusion about speed may be drawn yet. Ongoing work focusses
on the application of the proposed method to practically relevant problems in-
cluding simulations in oceanography and waterways engineering [9].

6 Summary and Conclusion

Our goal was to compute second derivatives of numerical simulations imple-
mented as MPI-augmented code. For this purpose we wrote a wrapper AMPI dcc
capable of linking second-order adjoint calls generated by the derivative code
compiler dcc [4] with the AMPI library [5]. The wrapper covers the most com-
monly used MPI calls. Nonetheless there are certain limits. As the reversal of
a program is closely interwoven with memory management, there are certain
caveats that need to be considered when dealing with non-blocking communi-
cation. The proposed approach is extensible to any order of differentiation. The
corresponding wrappers could be implemented by hand. Alternatively, one could
envision a model, where even the wrapper is generated for an arbitrary order of
differentiation.

References

1. Zwillinger, D.: Handbook of Differential Equations, 3rd edn. Academic Press, Boston
(1997)

2. Kelley, T.: Solving nonlinear equations with Newton’s method. Fundamentals of
Algorithms. SIAM, Philadelphia (2003)

3. Gropp, W., Lusk, E., Skjellum, A.: Using MPI: Portable Parallel Programming with
the Message Passing Interface. MIT Press, Cambridge (1994)

4. Hannemann, R., Marquardt, W., Gendler, B., Naumann, U.: Discrete first- and
second-order adjoints and automatic differentiation for the sensitivity analysis of
dynamic models. In: Procedia Computer Science. Elsevier, Amsterdam (to appear,
2010)

5. Utke, J., Hascoët, L., Heimbach, P., Hill, C., Hovland, P., Naumann, U.: Toward
Adjoinable MPI. In: Proceedings of the 23rd IEEE International Parallel & Dis-
tributed Processing Symposium, Washington, DC, USA. IEEE Computer Society
Press, Los Alamitos (2009)

6. Griewank, A., Walter, A.: Evaluating Derivatives. Principles and Techniques of Al-
gorithmic Differentiation, 2nd edn. SIAM, Philadelphia (2008)

7. Schanen, M., Naumann, U., Hascoët, L., Utke, J.: Interpretative adjoints for numer-
ical simulation codes using mpi. Procedia Computer Science 1, 1819–1827 (2010);
ICCS 2010

8. Utke, J., Naumann, U., Fagan, M., Tallent, N., Strout, M., Heimbach, P., Hill, C.,
Wunsch, C.: OpenAD/F: A modular, open-source tool for automatic differentiation
of Fortran codes. ACM Transactions on Mathematical Software 34, 1–18 (2008)

9. Riehme, J., Kopmann, R., Naumann, U.: Uncertainty quantification based on for-
ward sensitivity analysis in sisyphe. In: Proceedings of ECCOMAS-CFD 2010 (to
appear, 2010)

Locality and Topology Aware Intra-node

Communication among Multicore CPUs

Teng Ma, George Bosilca, Aurelien Bouteiller, and Jack J. Dongarra

Innovative Computing Laboratory,
University of Tennessee Computer Science Department
1122 Volunteer Blvd., Knoxville, TN 37996-3450, USA

{tma,bosilca,bouteill,dongarra}@eecs.utk.edu

Abstract. A major trend in HPC is the escalation toward manycore,
where systems are composed of shared memory nodes featuring numer-
ous processing units. Unfortunately, with scale comes complexity, here
in the form of non-uniform memory accesses and cache hierarchies. For
most HPC applications, harnessing the power of multicores is hindered
by the topology oblivious tuning of the MPI library. In this paper, we
propose a framework to tune every type of shared memory communica-
tions according to locality and topology. An implementation inside Open
MPI is evaluated experimentally and demonstrates significant speedups
compared to vanilla Open MPI and MPICH2.

1 Introduction

Because the emergence of thermic and power issues have prevented further per-
formance improvements through the usual frequency scaling, CPU vendors have
resorted to multicore architectures to deliver the expected level of performance
progression. Unfortunately, incorporating more processing units does not give an
instant and automatic speed boost to applications; programmers have to take
into account numerous issues posed by the intrinsic parallel and heterogeneous
nature of multicore chips. Although HPC developers have become proficient at
harnessing the power of parallel systems, through the use of various program-
ming models such as Single Process Multiple Data (SPMD) and tools like MPI
or OpenMP, straight out applications of those paradigm on cluster of multicores
types of architecture have exhibited disappointing performance [1]. To enable
the integration of more cores inside a computing node, vendors are forced to
expose more complex architectures, exhibiting Non Uniform Memory Accesses
(NUMA) and several levels of partitioned cache hierarchies. Furthermore, design
and implementation of multi-core architecture present a large diversity among
vendors. As an example, Intel’s Tigerton CPUs feature a SMP architecture,
while AMD’s Istanbul and Intel’s Nehalem exhibit NUMA characteristics. In a
node, some cores reside on different sockets, interconnected by network-style fast
connections such as Intel’s QuickPath and AMD’s HyperTransport. Even inside
a single die, one can encounter different L2 caches, shared between exclusive

R. Keller et al. (Eds.): EuroMPI 2010, LNCS 6305, pp. 265–274, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

266 T. Ma et al.

groups of cores, so that two cores of the same processor might or might not
share the same level of cache, depending on their respective position on the die.

While hybrid approaches and novel programming models are being investi-
gated, the large majority of applications available in the HPC ecosystem today
are based on the message passing paradigm (using the MPI standard). Convert-
ing every and each of those applications to take into account the fine subtleties
of the various and changing vendor implementations of multicore systems would
impose a significant and lasting burden to the community. Among the issues
preventing message passing from delivering performance on cluster of multicore
systems is the use of a flat set of tuning parameters for all shared memory com-
munications, regardless of the underlying hardware architecture, more precisely
the distance to different levels of cache and memory and the physical topology
imposed by the chips. In this paper, we propose to alleviate this issue by pro-
viding a topology aware framework inside the message passing middleware, in
order to unleash legacy application performance on the most recent architectures
without shifting the programming model. The prominent feature of this frame-
work is to optimize intra-node communication by selecting the optimal tuning
parameter set at runtime. Multiple communication parameter sets are provided
and can be selected, according to the run-time placement of the MPI processes
and considering the topology of the underlying hardware.

The rest of this paper is organized as follows: Section 2 introduces the related
work on multi-core intra-node communication. Section 3 formulates and outlines
the extent of the problem when considering modern multicore processors. Then
Section 4 describes our framework designed to combine locality and topology
information with intra-node communication, and its implementation in a lead-
ing MPI implementation. A performance study is presented in the Section 5,
substantiating the benefits of this approach when compared to the Open MPI
and MPICH2 implementations. Finally, Section 6 concludes the paper with a
discussion of the results and future directions.

2 Related Work

MPICH2 [2] and OpenMPI [3,4] are the two major implementations of the MPI
standard. Both feature an optimized device to handle shared memory commu-
nications: Nemesis [5] for MPICH2 and the SM BTL for Open MPI. In both
MPI implementations, large messages are divided into fragments to establish
a pipeline. The smallest message to use the pipeline protocol as well as the
fragment size are examples of crucial parameters to reach maximum bandwidth
without sacrificing latency. The OPTO tool [6] has been proposed to optimize
the run-time parameters of the Open MPI environment. It uses a brute-force
searching of the parameter space by evaluating benchmarks such as NetPipe, for
point-to-point communication, and SkaMPI, for collective communication. This
set of tuned parameters is then used for every communication of any application.

In regular MPI shared memory implementations, any transfer actually in-
volves two memory copies: one from the user buffer to the shared memory buffer

Locality and Topology Aware Intra-node Communication 267

C
0

L
2

C
12

C
8

C
4

L
2

C
1

L
2

C
13

C
9

C
5

L
2

C
2

L
2

C
14

C
10

C
6

L
2

C
3

L
2

C
15

C
11

C
7

L
2

Memory
Controller

HUB (MCH)

Memory

Socket 0 Socket 1 Socket 2 Socket 3

Memory Memory Memory

(a) Four sockets Intel Tigerton node

C0

L3

C6
C4
C2

C1

L3

C7
C5
C3

QPI

Memory

Socket 0

Socket 1

(b) Two sockets Intel Nehalem node

Fig. 1. Architecture comparison between 2 generations of Intel multicore CPUs

and another to the destination user buffer. The LiMIC [7] kernel module can
decrease the number of necessary memory copies to one by doing the memory
movement with kernel access rights. KNEM [8] is a similar kernel module that
also features DMA (Direct Memory Access) copy by using Intel I/O acceleration
technique (I/OAT). DMA copy can decrease cache pollution and CPU noise from
communication. However, DMA performance suffers when multiple communica-
tions overload a single DMA device, which is very likely with the current trend
to increase the number of cores. In that context, rather than easing the tuning
process, using kernel-based DMA methods is another parameter that changes
according to the communication workload.

Several efforts have proposed to embrace the hierarchical nature of Grid sys-
tems network [9,10,11]. These papers propose different approaches to map the
collective communication topology to the actual network topology, an idea that
applies as well to multicore processors. Yet, our work focuses on the optimization
of point-to-point message, and its indirect improvement on collective communi-
cation performance. The optimization and tuning of the collective algorithm
itself, according to the hardware topology, is left for future works.

While shared memory communication tuning has been an active research area,
using the underlying hardware topology to define different tuning parameter sets,
as we propose in our framework, has never been attempted.

3 Multicore and Multifarious Hierarchies

Modern CPUs exhibit several levels of cache, with non uniform memory accesses.
The communication distance between two cores of a single node varies depending
on those hierarchies. Furthermore, each vendor exhibits different characteristics
that tends to radically change between successive CPU generations. Figure 1(a)
and Figure 1(b) illustrate such differences by describing two typical cluster nodes
featuring different generations of Intel multicore CPUs. Figure 1(a) shows the ar-
chitecture of a node with four Intel’s Tigerton CPUs (16 cores). In this machine,
all sockets are interconnected by one memory controller. Thus, the apparent

268 T. Ma et al.

distance to the memory is the same for every core. However, three different com-
munication path exist with distinct costs. The first one is between core 0 and
core 8 which are on the same die and share the L2 cache. While core 0 and core
4 do not share L2 cache, communication inside the same socket are significantly
faster than resorting to the FSB (front side bus). Between core 0 and core 2,
hosted in different sockets, the FSB is the only option. Figure 1(b) describes the
architecture of a node with two Intel Nehalem CPUs (8 cores). Each processor
has an independent memory controller, which makes it a NUMA architecture.
While all cores of a socket share a common L3 cache, the Nehalem architecture
also exhibits different communication performance whether the cores are on the
same socket or not.

SPMD had been a very successful programming model for single core archi-
tectures. Consequently, numerous applications and libraries have been developed
following this approach, and have benefited from its easy portability across dif-
ferent vendors, and excellent level of performance. However, in the context of
multicore CPUs, not considering the locality and topology of the cores distri-
bution inside the CPUs dreadfully affects the overall application experienced
communication performance.

Nowadays MPI implementations provide a specific optimized device to handle
shared memory communications. This device is usually applied directly to core-
to-core communications with a single set of tuning parameter oblivious of the
topology between the sender and receiver cores. As an example, in the Nemesis
device of MPICH2, when the message size is smaller than PIPELINE THRESHOLD
(128KBytes), the copy limit, defining the pipeline size, is set to 16KBytes. For
larger messages, this parameter is changed to MPID MEM COPY BUF LEN which is
often 32KBytes. Open MPI also has a set of similar communication parameters
(btl eager limit and btl max send size) which are used for protocol switch
point and pipeline size respectively. Unlike MPICH2, in Open MPI users can
tune those parameters without recompiling the MPI library. Despite this added
flexibility, users rarely have the expertise and time to properly tune parameters
for the communication pattern of their application, leading most runs to use the
default parameters. Furthermore, for any run of an application, a single set of
tuning parameters can be used. Therefore, it is impossible to apply a different set
of tuning parameters to communications to account for different characteristics
of the links between cores. The experimental section of this paper (5) provides
an evaluation of the extent of the performance issue induced.

4 Multi-tuning Framework

Because Open MPI is based on a modular and component model while at the
same time retaining outstanding performance, it is a very convenient vessel
to investigate new features. Thus, while the principles presented are generic,
our topology aware multicore communication framework is implemented into
Open MPI. The framework is composed of three main components: the rule
discovery module, the machine topology discovery module and the runtime com-
munication tuning module.

Locality and Topology Aware Intra-node Communication 269

Table 1. An example of rule discovery table

CPU locality btl eager limit pipe size use knem DMA min

Tigerton no shared L2 cache 2096 0.5 * L1 cache 1 2196608

Nehalem EP no shared L2 cache 4192 0.5 * L1 cache 0 null

Tigerton shared L2 cache 2096 L1 cache 1 4804864

The rule discovery module is used offline to construct a table storing knowl-
edge about best tuning parameters for a particular architecture. In this table,
we store common knowledge about the relationship between CPU architecture,
locality, topology and tuning parameters. Table 1 is an example of a generated
rule table, where the tuning of various pipeline length and the use of a DMA
engine is governed by the sharing of an L2 cache. Rules are inferred from a math-
ematical model taking into account the size of the L1 data cache, L2 cache and
the sharing of cache hierarchies between cores. As an example, if two cores share
the L2 cache, the heuristic is to use half of L1 data cache size as the pipeline
size. Most rules depends on the cache reuse policy and the snoopy cache proto-
col. Different sets of rules have been defined for different families of processors.
While more experimental evaluations are needed to assert the soundness of the
models proposed, the results presented in the experimental section of this paper
are encouraging. Should some architecture be difficult to describe with a mathe-
matical model, the previously discussed parameter exhaustive OPTO tool could
also be used to build the rule table.

The machine topology discovery module discover, once for every run, all in-
formation about the cache hierarchies, core mapping and proximity between
each pair of cores. This module is based on the Portable Hardware Locality
(hwloc) [12] project. It provides a portable abstraction (OS, versions, archi-
tectures, etc.) of the hierarchical topology of modern CPUs, including NUMA
memory nodes, sockets, shared caches, cores and hyper-threading. It also gathers
various system attributes such as cache and memory information.

Based on the tables generated by the two discovery modules, the runtime com-
munication tuning modules instantiates several distinct SM BTL with adequate
tuned parameters for each type of communications. Then, among the available
instantiation of the SM BTL, for every message, the best one [13] is selected to
actually transfer the data, based on the rules applied to this type and size of
message and the source to destination core distance.

5 Experimental Evaluation

Experimental Conditions. Our experimental setup includes two different Intel
based machines. The first one is based on four Intel Xeon E7340 at 2.4GHz
(Tigerton), as described by Figure 1(a). Its L1 data cache is 32KB and L2 data
cache is 4MB. The four sockets are interconnected each other by the front side
bus. The second system is based on two Intel Xeon E5520 at 2.27GHz (Nehalem),
as described by Figure 1(b). Its L1 data cache is 32KB, and each core has an

270 T. Ma et al.

 2

 4

 6

 8

 10

 12

 14

 4
k

 16k
 64k

256k
 1M 4M

B
an

d
w

id
th

 (
G

b
p

s)

Message Size (Bytes)

Tuned
Vanilla

(a) MPICH2 off-die

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 4
k

 16k
 64k

256k
 1M 4M

Message Size (Bytes)

Tuned
Vanilla

(b) MPICH2 on-die

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

 4
k

 16k
 64k

256k
 1M 4M

Message Size (Bytes)

Tuned
Vanilla

(c) OpenMPI off-die

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 4
k

 16k
 64k

256k
 1M 4M

Message Size (Bytes)

Tuned
Vanilla

(d) OpenMPI on-die

Fig. 2. Impact on bandwidth of pipeline fragment size tuning according to core distance
on the Tigerton machine for MPICH2 and Open MPI

independent L2 data cache whose size is 256KB. CPUs are interconnected by
Intel QuickPath. The same operating system (Linux 2.6.30) is deployed on both
machines. MPICH2-1.2.1 and Open MPI trunk (r22930) are used. We used Net-
PIPE [14], Intel MPI benchmarks [15] and the NAS parallel benchmarks [16] to
evaluate the performance of our tuning framework. All benchmarks are compiled
with gcc 4.1.2, with the -O3 flag.

Assessment of the Severity of the Performance Issues. The first set of exper-
iments evaluates the performance loss incurred by using a single set of tuning
parameters, regardless of core locality. Figure 2 presents the performance com-
parison between a vanilla version of MPICH-2 and Open MPI with a similar
version where pipeline size has been hand-tuned for maximum inter-socket band-
width. In vanilla MPICH-2, for messages larger than 128KB, the pipeline size
switches from 16KB to 32KB. As the steep bandwidth drop illustrates in Fig-
ure 2(a), this is a very inappropriate tuning for communications between cores
located in different sockets. The hand tuned version, that retains the original
16KB pipeline for larger messages, is capable of sustaining a higher bandwidth,
up to a very significant 2.5 times improvement. Open MPI exhibit the same
behavior (Figure 2(c)), illustrating that the issue is not implementation specific.
However, as illustrated by the Figures 2(b) and 2(d), when communicating inside
the same die, the default parameters are perfectly tuned and perform slightly
better. While the hand tuned parameters yield significant benefits in certain
cases (inter-socket communications), using them in certain cases decrease per-
formance, illustrating the need for using simultaneously different sets of tuning
parameters for different types of communications.

Effectiveness of the Multi-tuning Framework. The four Figures 3 presents the
comparison between vanilla MPICH2, vanilla Open MPI and multi-tuned Open
MPI in the NetPIPE ping-pong benchmark for a variety of machines and core
distributions. The bandwidth values for message smaller than 4KB have been
removed for clarity, as the performance of the three versions were similar. On the
Tigerton machine, the multi-tuned version outperforms both vanilla Open MPI
and MPICH2 for inter-socket communications (Figure 3(a)), thanks to using

Locality and Topology Aware Intra-node Communication 271

 2

 4

 6

 8

 10

 12

 14

 4
k

 8
k

 16k
 32k

 64k
128k

256k
512k

 1M 2M 4M 8M

B
an

d
w

id
th

 (
G

b
p

s)

Message Size (Bytes)

Multi-tuned
Open MPI

MPICH2

(a) Tigerton, inter-socket C0 ⇀↽ C2

 5

 10

 15

 20

 25

 30

 35

 4
k

 8
k

 16k
 32k

 64k
128k

256k
512k

 1M 2M 4M 8M

B
an

d
w

id
th

 (
G

b
p

s)

Message Size (Bytes)

Multi-tuned
Open MPI

MPICH2

(b) Nehalem, inter-socket C0 ⇀↽ C1

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 4
k

 8
k

 16k
 32k

 64k
128k

256k
512k

 1M 2M 4M 8M

B
an

d
w

id
th

 (
G

b
p

s)

Message Size (Bytes)

Multi-tuned
Open MPI

MPICH2

(c) Tigerton, intra-socket C0 ⇀↽ C8

 20

 25

 30

 35

 40

 45

 50

 55

 60

 4
k

 8
k

 16k
 32k

 64k
128k

256k
512k

 1M 2M 4M 8M

B
an

d
w

id
th

 (
G

b
p

s)

Message Size (Bytes)

Multi-tuned
Open MPI

MPICH2

(d) Nehalem, intra-socket C0 ⇀↽ C2

Fig. 3. Bandwidth of the ping-pong test for vanilla MPICH2, vanilla OpenMPI and
multi-tuned Open MPI

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 4
k

 16k
 64k

256k
 1M 4M

N
o

rm
al

iz
ed

 r
u

n
ti

m
e

Message size (Bytes)

(a) Tigerton platform

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 4
k

 16k
 64k

256k
 1M 4M

N
o

rm
al

iz
ed

 r
u

n
ti

m
e

Message size (Bytes)

Vanilla Open MPI
AllReduce

AlltoAll
Broadcast

(b) Nehalem platform

Fig. 4. Run time of the IMB collective tests of the multi-tuned Open MPI (normalized
to the vanilla Open MPI performance, lower is better)

better tuning. Contrarily to the naive hand-tuned version presented in the pre-
vious experiment (Figure 2(d)), it does not suffer from any performance degra-
dation for intra-socket communication (Figure 3(c)). The same holds with the
Nehalem processor; though initially MPICH2 performs better than Open MPI,
the multi-tuned Open MPI version outperforms both vanilla MPI for intra-socket

272 T. Ma et al.

Table 2. Run time of the NAS benchmarks

name Nehalem (8 cores) name Tigerton (16 cores)

Open MPI Tuned Speedup Open MPI Tuned Speedup

IS.C 3.72s 3.48s 6.9% IS.C 6.27s 6.22s 0.8%

FT.B 15.81s 15.31s 3.3% FT.B 24.53s 24.45s 0.32%

LU.C 278.34s 276.81s 0.55% LU.C 209.07s 204.64s 2.16%

MG.B 2.60s 2.57s 1.2% MG.B 4.94s 4.91s 0.61%

CG.C 46.42s 46.34s 0.17% CG.C 97.31s 96.21s 0.93%

communications. Though all cores are on the same die, they don’t share L2 cache,
which is the prominent performance affecting factor.

Collective Communications. Figure 4(a) and Figure 4(b) present the run time of
multi-tuned OpenMPI for Broadcast, AlltoAll, and AllReduce collective commu-
nication, on the Tigerton and Nehalem machines, normalized to the run time of
the similar algorithm in vanilla Open MPI. In this experiment, the multi-tuning
only takes place at the the point-to-point communication level underlying the
collective algorithm; the collective algorithm itself is left unchanged. For mes-
sages smaller than 4KB, the physical page size, multi-tuned and vanilla Open
MPI always use the same eager protocol, exhibiting equal performance (thus not
presented on the graph); yet significant performance improvement are visible for
larger message sizes.

In the AlltoAll test, while multi-tuned Open MPI reduces the execution time
by only 2% on the Tigerton platform, it yields up to 17% improvement on the
Nehalem platform. This result can be explained by the communication pattern of
the shared memory AlltoAll collective operation: it does not use a tree topology.
On the Tigerton platform, the cross bandwidth of the FSB is consequently easily
saturated by this naive algorithm, negating the inter-socket bandwidth benefit
achieved on the simple point-to-point benchmark. As multi-tuning does not yield
much gains for the intra-socket communication on the Tigerton architecture, the
overall benefit is small. On the contrary, the Nehalem platform features only two
sockets connected through the much faster QPI interface and adapts better to
cross-traffic. Moreover, intra-socket point-to-point bandwidth is also improved
on this system, which transfers as well to the collective performance.

In the AllReduce test, multi-tuned OpenMPI benefits from a 12% run time
reduction on Nehalem and up to 23% for the very common 256KB message size
on Tigerton. Both platform exhibit a close to 25% performance improvement for
some message sizes on the Broadcast collective operation. In these two collectives,
the shared memory collective algorithm uses a tree topology which does not
saturate the inter-socket link; therefore, benefits of multi-tuning on point-to-
point performance are reflected in the collective performance. For the entire
range of message sizes, multi-tuned collective operations compare favorably to
vanilla Open MPI, except for 32KB on the Tigerton platform.

Applications. Additionally, we used application benchmarks to evaluate the per-
formance of our framework. We used IS, FT, LU, MG and CG from the NAS

Locality and Topology Aware Intra-node Communication 273

benchmarks. Table 2 shows the comparison between the runtime of the multi-
tuned version of Open MPI and vanilla Open MPI for these benchmarks. Com-
pared with regular MPI, the multi-tuned approach always decreases the over-
all application runtime. As communication are using the extremely fast shared
memory device, the communication to computation ratio is balancing toward
computation bound performance. As a consequence, the overall impact of com-
munication performance on the application runtime is small, an effect more
pronounced on the benchmark achieving good communication overlap by com-
putations such as MG and CG. Though the CG benchmark is communication
intensive, only its latency bound communications are difficult to overlap, an area
where tuning is already adequate by default. The FT benchmark, which uses an
all-to-all collective communication, exhibits a similar performance profile as the
AlltoAll test, with almost no gain on the Tigerton platform but some improve-
ment on the Nehalem. The maximum performance improvement of multi-tuning
is achieved in the communication intensive IS benchmark on the Nehalem plat-
form, with close to 7% application run time improvement.

6 Conclusion and Future Work

In this paper, we studied the problem of intra-node communication inside mul-
ticore CPUs. Our experiments show that ignoring the locality and topology
information in the MPI software stack is an obstacle to harness the optimal
communication performance on multicore systems. We then introduced a frame-
work to 1) build tuning rules for different models of CPUs, 2) discover the
run-time information such as CPU type, cache size, locality and etc. and 3) take
advantage of this knowledge to finely tune the internals of the MPI library for
different kind of communications. Our experiments show that the multi-tuned
Open MPI version based on this framework, always exhibits better application
performance, thanks to improved communication speed for both point-to-point
and collective communication patterns. With the future increase in the number
of cores per node this benefit is expected to be magnified.

Future Works. While fine tuning of point-to-point communication to adapt to
the multicore topology has proven beneficial indirectly to the collective com-
munications, tuning the collective itself according to the same information has
the potential to further increase performance. We expect to witness the same
hardware locality dependent tuning for the selection and parametrization of the
collective algorithm itself, an area where we believe our multi-tuning approach
will be valuable.

References

1. Rabenseifner, R., Hager, G., Jost, G.: Hybrid MPI/OpenMP parallel programming
on clusters of multi-core SMP nodes. In: Parallel, Distributed and Network-based
Processing, pp. 427–436 (2009)

2. Gropp, W., Lusk, E., Doss, N., Skjellum, A.: A high-performance, portable imple-
mentation of the MPI message passing interface standard. Parallel Computing 22,
789–828 (1996)

274 T. Ma et al.

3. Gabriel, E., Fagg, G.E., Bosilca, G., Angskun, T., Dongarra, J.J., Squyres, J.M.,
Sahay, V., Kambadur, P., Barrett, B., Lumsdaine, A., Castain, R.H., Daniel, D.J.,
Graham, R.L., Woodall, T.S.: Open MPI: Goals, concept, and design of a next
generation MPI implementation. In: Proceedings, 11th European PVM/MPI Users’
Group Meeting, Budapest, Hungary, pp. 97–104 (2004)

4. Graham, R.L., Woodall, T.S., Squyres, J.M.: Open MPI: A flexible high perfor-
mance MPI. In: Proceedings of 6th Annual International Conference on Parallel
Processing and Applied Mathematics, Poznan, Poland (2005)

5. Buntinas, D., Mercier, G., Gropp, W.: Design and evaluation of Nemesis, a scalable,
low-latency, message-passing communication subsystem. In: Sixth IEEE Interna-
tional Symposium on Cluster Computing and the Grid, vol. 1, pp. 10–20 (2006)

6. Chaarawi, M., Squyres, M., Gabriel, J., Feki, E.,, S.: A tool for optimizing runtime
parameters of Open MPI. In: Lastovetsky, A., Kechadi, T., Dongarra, J. (eds.)
EuroPVM/MPI 2008. LNCS, vol. 5205, pp. 210–217. Springer, Heidelberg (2008)

7. Jin, H.W., Sur, S., Chai, L., Panda, D.: LiMIC: support for high-performance MPI
intra-node communication on linux cluster. In: International Conference on Parallel
Processing, ICPP 2005, pp. 184–191 (2005)

8. Buntinas, D., Goglin, B., Goodell, D., Mercier, G., Moreaud, S.: Cache-Efficient,
Intranode Large-Message MPI Communication with MPICH2-Nemesis. In: Pro-
ceedings of the 38th International Conference on Parallel Processing (ICPP 2009),
pp. 462–469. IEEE Computer Society Press, Vienna (2009)

9. Kielmann, T., Hofman, R.F.H., Bal, H.E., Plaat, A., Bhoedjang, R.A.F.: Magpie:
Mpi’s collective communication operations for clustered wide area systems. In:
Proceedings of the 1999 ACM SIGPLAN Symposium on Principles and Practice
of Parallel Programming (PPOPP 1999), pp. 131–140 (1999)

10. Karonis, N.T., de Supinski, B.R., Foster, I., Gropp, W., Lusk, E., Bresnahan, J.:
Exploiting hierarchy in parallel computer networks to optimize collective opera-
tion performance. In: The 14th International Parallel and Distributed Processing
Symposium, p. 377 (2000)

11. Filgueira, R., Singh, D.E., Pichel, J.C., Isaila, F., Carretero, J.: Data Locality
Aware Strategy for two-phase Collective I/O. In: Palma, J.M.L.M., Amestoy, P.R.,
Daydé, M., Mattoso, M., Lopes, J.C. (eds.) VECPAR 2008. LNCS, vol. 5336, pp.
137–149. Springer, Heidelberg (2008)

12. Broquedis, F., Clet Ortega, J., Moreaud, S., Furmento, N., Goglin, B., Mercier,
G., Thibault, S., Namyst, R.: hwloc: a Generic Framework for Managing Hardware
Affinities in HPC Applications. In: The 18th Euromicro International Conference
on Parallel, Distributed and Network-Based Computing (2010)

13. Shipman, G.M., Woodall, T.S., Bosilca, G., Graham, R.L., Maccabe, A.B.: High
performance RDMA protocols in HPC. In: Mohr, B., Träff, J.L., Worringen, J.,
Dongarra, J. (eds.) PVM/MPI 2006. LNCS, vol. 4192, pp. 76–85. Springer, Hei-
delberg (2006)

14. Snell, Q.O., Mikler, A.R., Gustafson, J.L.: NetPIPE: A network protocol indepen-
dent performance evaluator. In: IASTED International Conference on Intelligent
Information Management and Systems (1996)

15. Intel: Intel MPI benchmarks 3.2 (2010),
http://software.intel.com/en-us/articles/intel-mpi-benchmarks/

16. Bailey, D.H., Barszcz, E., Barton, J.T., Browning, D.S., Carter, R.L., Fatoohi,
R.A., Frederickson, P.O., Lasinski, T.A., Simon, H.D., Venkatakrishnan, V., Weer-
atunga, S.K.: The NAS parallel benchmarks. Technical report. The International
Journal of Supercomputer Applications (1991)

http://software.intel.com/en-us/articles/intel-mpi-benchmarks/

Transparent Neutral Element Elimination in

MPI Reduction Operations

Jesper Larsson Träff

Department of Scientific Computing, University of Vienna
Nordbergstrasse 15C, A-1090 Vienna, Austria

traff@par.univie.ac.at

Abstract. We describe simple and easy to implement MPI library inter-
nal functionality that enables MPI reduction operations to be performed
more efficiently with increasing sparsity (fraction of neutral elements
for the given operator) of the input (and intermediate result) vectors.
Using this functionality we give an implementation of the MPI Reduce
collective operation that completely transparently to the application pro-
grammer exploits sparsity of both input and intermediate result vectors.
Experiments carried out on a 64-core Intel Nehalem multi-core cluster
with InfiniBand interconnect show considerable and worthwhile improve-
ments as the sparsity of the input grows, about a factor of three with
1% non-zero elements which is close to best possible for the approach.
The overhead incurred for dense vectors is negligible when compared to
the same implementation not exploiting sparsity of input and intermedi-
ate results. The implemented SPS Reduce function is for both very small
and large vectors faster than the native MPI Reduce of the used MPI
library, indicating that the improvements reported are not artifacts of
suboptimal reduction algorithms.

1 Introduction

Many of the MPI built-in, binary reduction operators (like e.g. MPI SUM [8, Sec-
tion 5.9.1]) have a neutral (zero) element for many of the basic MPI datatypes.
Thus, there is an obvious, input dependent potential for improving implemen-
tations of the MPI reduction collectives [8, Section 5.9] by elimination of the
neutral elements in partial result vectors, and by performing intermediate appli-
cations of the binary reduction operator directly with such compressed vectors.
We present elimination schemes and simple, library internal functionality that
makes it straightforward to incorporate this improvement in (any) point-to-point
communication based MPI library implementation of the reduction collectives.
By the design we take care that the elimination can never (bar small overhead
for scanning parts of input and intermediate result vectors) be worse than imple-
mentations using standard functionality for sending, receiving and local operator
application. We back this claim up by giving text-book implementations of the
MPI Reduce collective operation by means of binomial trees and linear pipelines,
and perform experiments that show that significant performance improvements

R. Keller et al. (Eds.): EuroMPI 2010, LNCS 6305, pp. 275–284, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

276 J.L. Träff

can be achieved as sparsity (fraction of neutral elements) increases, with very
little additional overhead for dense input vectors. We suggest that the optimiza-
tion of elimination of neutral elements comes with so little cost as to be useful
as per default MPI library implementations of the reduction collectives.

Message compression to improve communication performance is nothing new
for MPI libraries. A number of papers have explored the use of general pur-
pose message compression in MPI, see e.g. [1,6,7] and [2] and further references
there. Such general schemes cannot exploit sparsity for operations with addi-
tional semantics, like the collective operations and in particular the MPI re-
duction operations. Elimination of neutral elements for improvements in both
message complexity and computational load was recently somewhat explored
in [5] that use run-length encodings of floating-point numbers for zero-element
elimination and a simple, linear pipeline reduction implementation. We use a dif-
ferent neutral-element elimination scheme that can cover all basic MPI datatypes
(and in principle be extended also to user-defined types and reduction operators),
give the accompanying, general reduction operator application functionality, and
thus demonstrate how neutral-element elimination can easily be incorporated in
any MPI library implementation of the collective reduction operations. We be-
lieve that actual applications do exhibit cases of MPI reductions performed on
large vectors with a substantial fraction of zeroes, but this claim needs to be
backed up with concrete examples. Another source of inspiration is the sparse
exchange problem investigated in [4]. One of the proposed algorithms entails a
reduce-scatter computation of p-element vectors that will typically have a very
large number of zeroes. For this protocol the optimization presented here will be
immediately applicable.

2 Neutral Element Elimination

The idea of the neutral element elimination optimization is to represent the neu-
tral elements of input (and intermediate) vectors for the MPI reduction functions
only implicitly. MPI offers a number (12) of built-in binary reduction operators
that work on the MPI built-in datatypes. The neutral element, if defined, is
different for different combinations of operator and datatype, thus a function
SPS Op get neutral(op,type,zero) that returns either a (pointer to) the neutral
(zero) element of the operator op for datatype type, or NULL is needed, and can
easily be written. This is sufficient for most of the MPI operators, but not for
the logical operation MPI LAND where the neutral element is anything that is
not (integer) 0. To cater for such cases, variants of the discussed functionality
are needed, but it is obvious that these cases can be handled, and we will not
describe such any further.

The aim is to provide functionality that can replace the send, receive and lo-
cal reduction functions normally used in point-to-point based implementations
of the reduction collectives. To this end send and receive functions that take an
extra parameter specifying the neutral element are introduced. A (non)blocking
SPS Send elim(sendbuf,. . . ,dest,tag,zero,comm) function with an extra void

Transparent Neutral Element Elimination in MPI Reduction Operations 277

pointer to the zero element of the datatype is introduced, that (as described
in the next section) only sends the non-zero elements of sendbuf.

Conversely, SPS Recv fill(recvbuf,. . . ,source,tag,comm,request) also with a void
pointer to the zero element of the datatype, expands the received result (that
must have been sent with SPS Send elim) by filling in again the eliminated zero
elements. We will actually not use this function, but try to maintain vectors in
the compressed format as long as possible.

Ideally, both functions should be implemented such that no extra space than
allocated for the send and receive buffers is used internally. At least the count
and datatype arguments should always give an upper bound on the amount of
extra space that need to be allocated. In order to guarantee that the new reduc-
tion collective implementations are never worse than their native counterparts
it is important than no more data be ever sent than would have been done
with a standard MPI Send call, that is as specified by the count and datatype
arguments.

3 Implicit Representation of Neutral Elements

A simple representation of vectors with many neutral elements is as a list of
indices of non-neutral elements paired with a list of the corresponding, actual
values. This simple format will be used as a starting point. Indices and values
are kept separate to minimize effects of bad word alignments (e.g. indices being
integers and values bytes).

With this representation the heart of SPS Send elim would look as follows,
assuming here that auxiliary space has been allocated for the index and value
arrays. This version does not do neutral element elimination in-place, but has
crucial the property that no more data are sent than an MPI Send operation
would have done.

MPI_Type_size(type,&typesize); space = 0; j = 0;
for (i=0; i<count; i++) {
if (sendbuf[i]!=*zero) {
space += sizeof(int)+typesize; index[j++] = i;

}
if (space>=cutoff) break;

}
if (space>=cutoff) {
// no compression possible, send normal
MPI_Send(sendbuf,total,MPI_BYTE,dest,DENSETAG,comm);

} else {
value = (type*)(index+j); // values after indices
for (i=0; i<j; i++) value[i] = sendbuf[index[i]];
MPI_Send(index,space,MPI_BYTE,dest,SPARSETAG,comm);

}

The overhead for this format is at most one scan of the input, with a break
as soon as the size of the compacted data reaches a certain cutoff size, which

278 J.L. Träff

could for instance be a fixed fraction of the size of the send buffer (in the ex-
periments cutoff is set to the size of the send buffer). Both the loops for setting
the index vector and the copy of the non-zero values into the value array are
regular and well suited for vectorization. Tags DENSETAG and SPARSETAG are
used to distinguish between implicitly represented, compressed vectors and nor-
mal, uncompressed buffers. Data are sent as uninterpreted MPI BYTEs; an actual
library implementation of the functionality would be more careful and send non-
compressed data with their actual MPI datatype. For this simple format, the
tag suffices to distinguish between compressed and uncompressed formats; for
the compressed format the start of the list of values can be computed from the
amount of data received, as shown in the next section.

For inputs where the non-zero elements come in consecutive blocks (banded
vectors), the index-value format is obviously wasteful, and a representation based
for instance on runs would be more space-efficient. It is easy to switch format as
soon as a run of more than two successive indices is seen. Each such run would
be represented by an index, a run-length, and the block of values. Again, the
indices and run-lengths should be kept separate from the values, and the two
formats could be mixed as follows. A positive index indicates a block of size
1, the corresponding value is the next value in the array of values. A negative
index indicates a larger block, and is followed (in the index array) by the length
of the run. The values for the block are found consecutively in the values array.
One word is needed for the size of the index array, since this now cannot be
computed from the number of bytes in index and value array. This format would
be typed by a third special tag, RUNTAG. The overhead in preparing index array,
and in copying the values is higher for this format, and might overall the change
feasibility of using neutral element elimination. The format has not (yet) been
implemented.

4 Implementations of Collective Reduction Algorithms

With the two functions for sending with elimination of neutral element and re-
ceiving with expansion, any (point-to-point) based implementation of any of the
MPI reduction functions can be modified to employ neutral element elimina-
tion. This is the benefit gained from (possibly more powerful) general purpose
message compression. However, expansion is wasteful and should be avoided. By
introducing an extra utility function for doing local reductions on the index-value
arrays this can easily be accomplished.

In addition to the MPI 2.2 functionality MPI Reduce local we therefore intro-
duce a function SPS Reduce local index(index,value,inout,count,type,op), taking
an index-value pair as input argument; the count argument in this case is the
number of such pairs. The implementation for MPI SUM would look as follows.

for (i=0; i<count; i++) inout[index[i]] = in[i]+inout[index[i]];

If commutativity shall not be exploited, more local reduction functions for
left/right reduction are convenient to minimize the amount of copying between

Transparent Neutral Element Elimination in MPI Reduction Operations 279

intermediate buffers. For user-defined operators we would have to call MPI -
Reduce local in each iteration.

Now, the reception and local reduction part of a typical (pipelined) imple-
mentation of, say, MPI Reduce would look as follows.

MPI_Recv(partbuf,blocksize,MPI_BYTE,child,MPI_ANY_TAG,
comm,&status);

if (status.MPI_TAG==DENSETAG) {
MPI_Reduce_local(partbuf,recvbuf,count,type,op);

} else if (status.MPI_TAG==SPARSETAG) {
MPI_Get_count(&status,MPI_BYTE,&sparsecount);
sparsecount = sparsecount/(sizeof(int)+typesize);
index = (int*)partbuf; value = (void*)(index+sparsecount);
SPS_Reduce_local_index(index,value,recvbuf,sparsecount,type,op);

} else {
// impossible for data sent with SPS_Send_elim

}

where child is some process to receive from. The right local reduction operator
application function is selected based on the tag of the message (DENSETAG or
SPARSETAG).

Using this scheme we have here implemented a binomial tree for short vectors,
and a linear pipeline for long vectors. There is no claim that these are best
possible algorithms, and any other reduction algorithm could have been chosen,
e.g. the butterfly based algorithms described in [9].

4.1 Algorithm Performance

The functionality proposed so far would simply replace the send, receive and
local reduction operations as outlined. Since no more data are sent than in the
original algorithm, performance should, apart from the small overhead in scan-
ning through the vectors to be sent (until the size cutoff is reached) never be
worse; for pipelined algorithms the same number of blocks is being transmitted.
This nice property is also the limiting factor in the performance improvement
that can be achieved, with the best possible performance being bounded by the
cost of sending only empty blocks (corresponding to vectors of zeroes). Alter-
native functionality would make it possible to send/receive variable parts of the
input (intermediate) vectors, compressing as many non-zeroes as possible into
the pipeline buffer. This alternative would thus pipeline blocks of the same size
as in the original algorithm, but possibly fewer blocks. There would be some
slight implementation difficulties by children in tree based algorithms going out
of sync, but these are not major obstacles. Nevertheless, incorporating this vari-
ant into existing MPI libraries would definitely require more reimplementation
work. We note that for both variants, estimating performance and in particular
finding best possible pipeline block sizes in an on-line computation is not eas-
ily possible, since the actual amount of work in sending data and doing local
reductions is input and intermediate result dependent (non-oblivious).

280 J.L. Träff

5 Experimental Setup and Evaluation

Experiments with the SPS Reduce function were conducted at the University of
Vienna on a newly installed 64-core Intel Nehalem based cluster, consisting of 8
compute nodes each with two Xeon quad-core X5550 2.66GHz CPUs, intercon-
nected by a QDR InfiniBand. The system runs the mvapich2-1.2 MPI imple-
mentation. Performance of SPS Reduce was measured with a benchmark written
according to the guidelines in [3]. We report the effective reduction bandwidth
(number of reduced MBytes per second) calculated from minimum completion
time of the slowest MPI process to finish over a small number of iterations (25).
Some care is taken that reduction buffers are not in cache when SPS Reduce is
called. The communicator is MPI COMM WORLD in which the MPI processes are
distributed consecutively over the cores.

Although critical, it has not been attempted to highly tune the choice of
pipeline blocksize for the linear pipeline algorithm. A fixed, (surprisingly) small
pipeline blocksize of somewhat less than 10,000 Bytes seemed to give good re-
sults. The switch point from binomial tree to linear pipeline is at 100,000 Bytes,
independently of the number of MPI processes. These choices were made for the
sake of the experiments, and are certainly not overall best for production quality
MPI Reduce implementations.

With the experiments we aim to illustrate the possible improvements through
neutral element elimination, estimate the overhead compared to algorithms not
employing the optimization, and show differences for different datatypes. All
experiments reported here have been performed with all 64 cores of the cluster.

Figure 1 shows the effect of varying the density (fraction of non-neutral ele-
ments) of the input vectors. All input vectors have the same structure and consist
of blocks of one non-neutral element followed by a stride of neutral elements.
Thus, intermediate results computed by the reduction algorithms have the same
structure and density. The operator is MPI SUM and the datatype MPI INT. As
vector size increase, the improvement increases, becoming up to a factor three

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1 10 100 1000 10000 100000 1e+06 1e+07 1e+08

E
ffe

ct
iv

e
B

an
dw

id
th

 (
M

B
yt

es
/s

ec
on

d)

Message Size (Bytes)

SPS_Reduce, 64 processors, varying densities, same structure

Density 0.1%
Density 1%

Density 10%
Density 33%

Density 100%

 0

 20

 40

 60

 80

 100

 120

 140

 1 10 100 1000 10000

T
im

e
(m

ic
ro

se
co

nd
s)

Message Size (Bytes)

SPS_Reduce, 64 processors, varying densities, same structure

Density 0.1%
Density 1%

Density 10%
Density 33%

Density 100%
No elimination

Fig. 1. Varying input density, same block structure of input and intermediate vectors,
0.1%, 1%, 10%, 33%, 100% non-neutral elements. Effective reduction bandwidth (left),
latency (time) for input vectors up to 10,000Bytes (right).

Transparent Neutral Element Elimination in MPI Reduction Operations 281

for density 0.1% compared to fully dense vectors, but not much better than
the improvement obtained for 1% density. For a density of 33%, corresponding
to a reduction in message size to 2/3 of the input vectors, the improvement
is proportional to the reduction in size, but improvements much larger than a
factor three is not be possible with the machinery of this paper: the difference
between sending a single integer and sending a full pipeline buffer (slightly less
than 10KBytes) over the InfiniBand network is about a factor of three (2.9μ sec-
onds vs. 9μ seconds). For small vectors up to a few thousand elements, the scan
overhead for dense input does make a difference, up to 50%, but this quickly
trails off; in a production setting the cutoff should probably be set such that
neutral element elimination is only performed for vectors larger than a few hun-
dred (or thousand) elements. For the vectors with low density some interesting
effects are seen in the medium vector size regime. For 10,000 to 100,000 Bytes
the effective message can become small enough that a different point-to-point
message protocol is used, leading to a disproportional increase in effective re-
duction bandwidth. This is seen for densities of 1% and 0.1%, again with little
difference between the two.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1 10 100 1000 10000 100000 1e+06 1e+07 1e+08

E
ffe

ct
iv

e
B

an
dw

id
th

 (
M

B
yt

es
/s

ec
on

d)

Message Size (Bytes)

SPS_Reduce, 64 processors, same base density, offset structure

Density 100% fixed
Density 10% increasing

Density 10% decreasing
Density 10% fixed

Fig. 2. Increasing and decreasing densities of intermediate results, compared to base
density of 10% and 100%

The structure of the input vectors used in the experiments of Figure 1 was such
that the intermediate results (of reducing any two vectors) again have the same
structure: no neutral new elements appear or disappear. The effect of gradually
increasing density as further non-zero elements are generated by intermediate
reductions; and of decreasing density as neutral elements are created by inter-
mediate reductions is shown in Figure 2. A density of 10% is taken as base, and
vectors with the block structure described above but offset by the rank of the
calling process are used as input. Addition of these input vectors will gradually
lead to fully dense vectors (depending on the order in which partial results are
combined). With input elements chosen as -1 for even ranks and 1 for odd ranks,
neutral elements are sometimes generated (again, depending on reduction order)
leading to less dense intermediate results.

282 J.L. Träff

 0

 100

 200

 300

 400

 500

 600

 1 10 100 1000 10000 100000 1e+06 1e+07 1e+08

E
ffe

ct
iv

e
B

an
dw

id
th

 (
M

B
yt

es
/s

ec
on

d)

Message Size (Bytes)

SPS_Reduce, 64 processors, overhead

Native MPI_Reduce
SPS_Reduce with no elimination

SPS_Reduce, dense input

 0

 20

 40

 60

 80

 100

 120

 140

 1 10 100 1000 10000

T
im

e
(m

ic
ro

se
co

nd
s)

Message Size (Bytes)

SPS_Reduce, 64 processors, overhead latency

Native MPI_Reduce
SPS_Reduce with no elimination

SPS_Reduce, dense input

Fig. 3. Native MPI Reduce compared to SPS Reduce with no elimination compared to
SPS Reduce with dense input, bandwidth (left) and latency (time) for input vectors up
to 10,000Bytes (right)

A crucial factor for the usability of the optimization is the overhead in per-
forming elimination compared to SPS Reduce implementations that do not at-
tempt to do this (including MPI Reduce), and thus do not have to scan the input.
This is measured with the experiment documented in Figure 3 which compares
the same basic algorithms with and without neutral element elimination. For
large vectors there is virtually no overhead incurred in having to scan for zeroes;
interestingly about a factor three improvement over mvapich’s MPI Reduce im-
plementation is observed with the simple linear pipeline. For very small vectors
up to a few hundred bytes the overhead can sometimes be significant (50%).
It therefore may make sense to use the optimization only beyond some small
threshold of some hundred bytes up to a few thousand bytes.

Finally, to illustrate that different MPI datatypes will have different com-
pression and thus different improvements, results of running SPS Reduce on
other datatypes than MPI INT are shown in Figure 4. The benchmark was run
with density 1% and density 100% for MPI SIGNED CHAR and MPI DOUBLE. For

 0

 100

 200

 300

 400

 500

 600

 1 10 100 1000 10000 100000 1e+06 1e+07 1e+08

E
ffe

ct
iv

e
B

an
dw

id
th

 (
M

B
yt

es
/s

ec
on

d)

Message Size (Bytes)

SPS_Reduce, 64 processors, type MPI_CHAR

Density 1%
Density 100%

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1 10 100 1000 10000 100000 1e+06 1e+07 1e+08

E
ffe

ct
iv

e
B

an
dw

id
th

 (
M

B
yt

es
/s

ec
on

d)

Message Size (Bytes)

SPS_Reduce, 64 processors, type MPI_DOUBLE

MPI_Reduce
Density 1%

Density 100%

Fig. 4. Effects of neutral element elimination for MPI SIGNED CHAR (left) and
MPI DOUBLE, density of 1% compared to density 100%

Transparent Neutral Element Elimination in MPI Reduction Operations 283

MPI SIGNED CHAR the improvement for the sparse input is only about 20%, while
for for MPI DOUBLE it is again well over a factor of three. For this type it was
possible to compare against the native MPI Reduce of mvapich, which again was
almost a factor three slower than the linear pipeline implemented here.

6 MPI Standardization

As described in this paper, elimination of neutral elements applies to the (com-
mutative) built-in operators of MPI. The machinery could be used for user-
defined operators as well, but MPI lacks functionality for users to declare neu-
tral elements for user-defined reduction operators. There is therefore no portable
way for an MPI library to determine whether a user-defined function indeed
possesses a neutral element (for the given type). It might be worthwhile for the
MPI Forum to consider functionality for this purpose, e.g. a function of the form
MPI Op set neutral(op,type,zero) with zero being in C a pointer to the neutral
element for user-defined operator op for the (possibly derived) type type, allow-
ing a library internal optimization like the one described here to look up the
neutral element also for a user-defined operator. If no neutral element has been
defined this way, the MPI library shall internally assume that none exists, and
the optimizations described here will have no effect.

7 Concluding Remarks

We described, implemented and evaluated simple support functionality that en-
ables neutral-element elimination to be incorporated into any implementation
of the MPI reduction collectives. This consists in three library internal func-
tions SPS Op get neutral, SPS Send elim and SPS Reduce local index. Together,
these effectively hide the internal data format for vectors with eliminated neu-
tral elements, and can thus readily be plugged in in any (point-to-point) based
implementation of any of the MPI reduction collectives. A reduce function called
SPS Reduce with the same interface as MPI Reduce was implemented by means of
binomial tree and linear pipeline algorithms, and demonstrated improvements of
a factor of more than 3 with increasing sparsity. Anecdotically, these implemen-
tations performed considerably better than the native MPI Reduce implementa-
tion of the mvapich library installation on the Nehalem cluster. We suggest that
neutral-element elimination can be incorporated as viable optimization in MPI
libraries and used as default for the reduction collectives.

Neutral-element elimination was recently given as a student project at the
University of Vienna. The students agreed on a common representation of vec-
tors with implicitly represented neutral elements (which turned out to be dif-
ferent from the one presented here), and in small groups implemented either a
set of test programs, the send-receive functionality, the local reduction opera-
tor application function, and three standard reduction algorithms (binomial and
pipelined binary tree, linear pipeline). The resulting implementations gave per-
formance improvements comparable to those presented here. This further shows

284 J.L. Träff

that neutral-element elimination can be implemented in a modular way with
little effort.

Acknowledgments. Thanks to the participating students and the tutor, Mar-
tin Wimmer.

References

1. Alpern, B., Carter, L.: Message compression for high performance. In: SIAM Con-
ference on Parallel Processing for Scientific Computing (PPSC), pp. 814–819 (1995)

2. Filgueira, R., Singh, D.E., Calderón, A., Carretero, J.: CoMPI: Enhancing MPI
based applications performance and scalability using run-time compression. In:
Ropo, M., Westerholm, J., Dongarra, J. (eds.) Recent Advances in Parallel Virtual
Machine and Message Passing Interface. LNCS, vol. 5759, pp. 207–218. Springer,
Heidelberg (2009)

3. Gropp, W., Lusk, E.: Reproducible measurements of MPI performance character-
istics. In: Margalef, T., Dongarra, J., Luque, E. (eds.) PVM/MPI 1999. LNCS,
vol. 1697, pp. 11–18. Springer, Heidelberg (1999)

4. Hoefler, T., Siebert, C., Lumsdaine, A.: Scalable communication protocols for dy-
namic sparse data exchange. In: 15th ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming (PPoPP), pp. 159–168 (2010)

5. Hofmann, M., Rünger, G.: MPI reduction operations for sparse floating-point data.
In: Lastovetsky, A., Kechadi, T., Dongarra, J. (eds.) EuroPVM/MPI 2008. LNCS,
vol. 5205, pp. 94–101. Springer, Heidelberg (2008)

6. Ke, J., Burtscher, M., Speight, W.E.: Runtime compression of MPI messanes to
improve the performance and scalability of parallel applications. In: ACM/IEEE
Supercomputing, p. 59 (2004)

7. Lee, H.-J., Park, K.-L., Koh, K.-W., Kwon, O.-Y., Park, H.-W., Kim, S.-D.: Im-
proving the performance of grid-enabled MPI by intelligent message compression.
In: International Conference on Internet Computing, pp. 772–780 (2003)

8. MPI Forum. MPI: A Message-Passing Interface Standard. Version 2.2 (September
4, 2009), www.mpi-forum.org

9. Rabenseifner, R., Träff, J.L.: More efficient reduction algorithms for message-
passing parallel systems. In: Kranzlmüller, D., Kacsuk, P., Dongarra, J. (eds.) Eu-
roPVM/MPI 2004. LNCS, vol. 3241, pp. 36–46. Springer, Heidelberg (2004)

www.mpi-forum.org

Use Case Evaluation of the Proposed MPIT

Configuration and Performance Interface

Carsten Clauss, Stefan Lankes, and Thomas Bemmerl

Chair for Operating Systems, RWTH Aachen University, Germany
{clauss,lankes,bemmerl}@lfbs.rwth-aachen.de

http://www.lfbs.rwth-aachen.de/content/research

Abstract. In this contribution, we present our experiences gained while
prototyping the MPIT Configuration and Performance Interface that is
currently under discussion for being integrated into the next MPI stan-
dard. The work is based on an API draft that has been recently released
by the MPI Tools Working Group [1]. As a use case, we have already de-
veloped a simple tuning tool on top of the proposed MPIT interface that
can help to optimize protocol thresholds of MPI implementations accord-
ing to communication characteristics of the respective applications.

Keywords: MPI 3.0, MPIch, Tools Support, Information Interface.

1 Introduction

Currently, the definition of the upcoming MPI 3.0 standard is under active dis-
cussion by the respective working groups of the MPI-Forum [2]. One of these
working groups deals with the definition of an additional interface that should
help to enhance the interaction between MPI implementations and additional
tools like debugger and profiler [1]. In this context, it is intended to offer an
additional set of tool-oriented functions within a separate namespace, namely
the MPIT configuration and performance interface. In contrast to the tradi-
tional PMPI profiling interface, that simply offers alternate entry points to MPI
functions, the MPIT configuration and performance interface is rather a generic
information interface that allows for querying MPI-internal configuration vari-
ables and performance counters. While the set of routines of this new interface
is to be defined by the new MPI standard, names and intent of the accessible
configuration and performance variables are left to the respective MPI implemen-
tation. For that reason, variable names and data types have to be retrievable via
the MPIT interface, too, as well as their actual meaning. However, the question
arises how a certain tool should cope with these library-specific configuration
and performance variables.

2 Prototyping the MPIT Interface

In order to evaluate the potential of this new information interface, we have
prototyped a major part of the proposed MPIT functions on top of an MPI

R. Keller et al. (Eds.): EuroMPI 2010, LNCS 6305, pp. 285–288, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

http://www.lfbs.rwth-aachen.de/content/research

286 C. Clauss, S. Lankes, and T. Bemmerl

library called MP-MPICH [5]. MP-MPICH, which stands for Multi-Platform
MPICH, is a modification and extension to the well-known MPICH distribution.
It covers several subprojects like SCI-MPICH (support for SCI cluster intercon-
nects), NT-MPICH (support for Windows operating systems) and MetaMPICH
(a Grid-enabled MPI library) and conforms to most parts of the MPI-2 standard
(including process-spawning and one-sided communication on certain platforms).

Since MP-MPICH is derived from the original MPICH, it also makes use of
the three common message transmission protocols Short, Eager and Rendezvous.
The decision which of these is to be used is based on the respective message size.
Usually, the thresholds between the protocols are set as static configurations
before application start, either depending on certain resource restrictions or ac-
cording to communication characteristics of the MPI applications.

For example, when using SCI-MPICH, the optimal threshold between Short
and Eager protocol depends on the size of the largest atomic data package within
the SCI network (e.g. 64, 128 or 1024 Bytes, depending on the SCI Link Con-
troller used). On the other hand, for an optimal threshold between Eager and
Rendezvous protocol, the fraction of unexpected messages occurring during an
application run can be the decisive factor, as Gropp and Lusk have shown in [3].

By implementing the MPIT interface on top of MP-MPICH, it is now possi-
ble to query and even to adjust these protocol thresholds via configuration vari-
ables (MPID EAGER THRESHOLDS and MPID RNDV THRESHOLDS on verbosity level
MPIT VERBOSITY TUNER BASIC) for each pair of processes at runtime. For this
purpose, an application (or rather an adjustment tool utilizing the MPIT in-
terface) can call the proposed MPIT Config get() function, returning an array
that contains the respective threshold values for all remote ranks. In turn, via
the MPIT Config set() function, it can be attempted to modify these values at
runtime. However, it’s up to the underlying communication device (the so-called
channel device of the ADI2 layer [4]) to accept such a modification, or to reject
it e.g. for resource reasons.

3 Use Case: A Simple Tool on Top of MPIT

In order to evaluate the impact of varying these configuration values, we have
developed a small tool that makes use of the MPIT interface by adjusting the
protocol thresholds during a simple Ping-Pong benchmark. At first, the tool
measures the communication time for messages of a length equal to the consid-
ered threshold. Then, the tool shifts the threshold (if possible), so that during
a second measurement the alternative protocol is applied for the same message
length. By comparing the measurement results and repeating this procedure in
a nested manner, the tool tries to optimize the threshold values.

An example for such an optimized protocol transition is shown in Figure 1.
Here, the measured communication times are plotted over the message sizes, once
for a default threshold between Eager and Rendezvous of 16kByte, and once for
an adjusted threshold of 27kByte. Obviously, messages of a size between these
two values will benefit from shifting the transition from 16kByte to 27kByte in

Use Case Evaluation of the Proposed MPIT Interface 287

12kB 16kB 20kB 24kB 28kB 32kB
Message Size

0

50

100

150

200

250

300

T
im

e
(u

s)
16kB (default)
27kB

Fig. 1. Roundtrip Time for a Protocol Threshold of 16kByte (default) and 27kByte

this case. Although we have developed this simple threshold adjustment tool on
top of MP-MPICH, we have designed the tool independent from the underlying
MPI library. For this reason, the actual name of the MPIT configuration variable
representing the threshold to be optimized has to be passed to the tool by the
user.

However, as we have stated above, the optimal threshold between Eager and
Rendezvous protocol also depends on the fraction of unexpected messages within
an application run. The case of an unexpected message occurs every time when
a message header arrives at receiver side before the final receive buffer is known
to the MPI layer. That means that at arriving time of the header, the receiver
hasn’t yet posted a matching request for the message. The receiving of the actual
payload can now either be delayed until the respective request gets posted, or
the payload is being received temporarily into an intermediate buffer and copied
later on into its final destination.

As shown in [3], the cost for receiving an expected message in Eager mode
can be quantified as follows:

teagerexpected
= 2 · tlateny +

h + n

B
, Communication Bandwidth B

for a message with n bytes of payload and a header size of h bytes.
When the message is unexpected, the payload must be copied into the final

buffer later on. Therefore, the cost of an unexpected message in Eager mode can
be quantified as:

teagerunexpected
= teagerexpected

+
n

C
, Copy Bandwidth C

288 C. Clauss, S. Lankes, and T. Bemmerl

In the Rendezvous case, the receiver responses to the initial header likewise with
a control packet as soon as the matching receive request is posted. Therefore,
the costs for transferring a message via this protocol amount to:

trendezvous = 3 · tlatency +
2 · h + n

B

Finally, if f is the fraction of unexpected messages, then the optimal threshold
n between these two protocols can be determined as follows:

trendezvous = teager ⇒ nthreshold =
tlatency + h

B
f
C

≈ tlatency · C
f

In order to take this into account, the user of our tool can specify this fraction
f of messages that should arrive during the Ping-Pong measurements before the
receiver has posted the respective receive requests.

However, here arises the question how this fraction can be determined for a
real-world application in an easy way. For that purpose, we have implemented
MPIT-related performance variables within MP-MPICH that count (among oth-
ers) the occurrence of unexpected messages for each remote rank. By comparing
this count with the total number of messages received, the required value f
can easily be determined. This appraisal can, for example, be conducted within
an overloaded MPI Finalize() function by just querying the respective MPIT
counters (MPID MSGS UNEXPECTED and MPID MSGS RECEIVED) at the end of the
application. By this means, the protocol thresholds of MP-MPICH can be opti-
mized easily with respect to each application.

Announcement. We are not part of the MPI 3.0 Tools Working Group, but
we are observing the respective standardization process with great interest.

References

1. MPI 3.0 Tools Support Working Group: Tool Interfaces for MPI (The current draft
for the new MPI tools chapter) (April 2010),
https://svn.mpi-forum.org/trac/mpi-forum-web/wiki/MPI3Tools/draft

2. Message Passing Interface Forum: MPI: A Message-Passing Interface Standard
– Version 2.2, High-Perfomance Computing Center Stuttgart (HLRS), Germany
(September 2009)

3. Gropp, W., Lusk, E.: MPICH Working Note: The Implementation of the Second-
Generation MPICH ADI, Mathematics and Computer Science Division, Argonne
National Laboratory, ANL (1996)

4. Gropp, W., Lusk, E.: MPICH Working Note: The Second-Generation ADI for the
MPICH Implementation of MPI, Mathematics and Computer Science Division, Ar-
gonne National Laboratory, ANL (1996)

5. Bierbaum, B., Clauss, C., Finocchiaro, R., Schuch, S., Pöppe, M., Worringen, J.:
MP-MPICH – User Documentation and Technical Notes, Chair for Operating Sys-
tems, RWTH-Aachen University, Germany (2009)

https://svn.mpi-forum.org/trac/mpi-forum-web/wiki/MPI3Tools/draft

Two Algorithms of Irregular Scatter/Gather

Operations for Heterogeneous Platforms

Kiril Dichev, Vladimir Rychkov, and Alexey Lastovetsky

UCD School of Computer Science and Informatics,
University College Dublin,
Belfield, Dublin 4, Ireland

Abstract. In this work we present two algorithms of irregular scat-
ter/gather operations based on the binomial tree and Träff algorithms.
We use the prediction provided by heterogeneous communication
performance models when constructing communication trees for these
operations. The experiments show that the model-based algorithms out-
perform the traditional ones on heterogeneous platforms.

Keywords: Heterogeneous platform, communication performance
model, collective communication, scatterv, gatherv.

1 Introduction and Related Work

Algorithms for MPI collective communication operations typically implement
them as a combination of point-to-point operations in a tree representing the
communication partners and the way messages are exchanged between them.
Traditional tree-based implementations target homogeneous platforms, implic-
itly assuming identical processors and a homogeneous communication layer.
When applied to heterogeneous platforms, these implementations may be far
from the optimal.

We propose to use heterogeneous communication performance models and
their prediction for finding more optimal communication trees for these algo-
rithms. The models take into account the underlying heterogeneous network of
computers when constructing communication trees. In this work, we only use
t(i, j, m) , the prediction of the execution time of sending a message of size m
from process i to process j, in the algorithm design.

Optimization of collectives is not a new research topic and a wide range of
optimized collective algorithms have been proposed in the past [1,3,5]. Com-
munication performance models [4] have been used for collectives by predicting
the runtime of various collective algorithms and switching between them accord-
ingly [6]. In this work, we use model predictions during the dynamic construction
of communication trees either by changing the mapping or changing the tree
structure altogether. This topic has not been of practical interest to the best of
our knowledge, except for [7], where the regular gather collective operation is
optimized.

R. Keller et al. (Eds.): EuroMPI 2010, LNCS 6305, pp. 289–293, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

290 K. Dichev, V. Rychkov, and A. Lastovetsky

2 Model-Based Algorithms of Irregular Scatter/Gather

The shortcomings of the homogeneous algorithms are also valid for scatter and
gather algorithms. While the regular variants of these operations only allow for
same-sized chunks of data to be scattered or gathered, their irregular counterparts
support different data sizes at each process. Irregular scatter/gather operations
are used particularly for heterogeneous algorithms which distribute data accord-
ing to the different computational capacity of the different processes. In this work,
we demonstrate our approach on the example of two existing tree construction al-
gorithms for irregular scatter/gather operations. We integrate the model predic-
tion t(i, j, m) into the algorithms to produce more optimal communication trees.

A model-based algorithm for tree construction derived from an algorithm
that does not use models can differ from it by changing the process mapping
to nodes or by constructing a tree with a different tree structure. From the two
algorithms we present, the first one changes the mapping, while the second one
may construct a different tree structure as well.

Model-based binomial tree scatterv/gatherv. In this algorithm we use point-to-
point predictions to map processes to a binomial tree. The binomial tree is
constructed in a depth-first manner, starting with the lowest-order subtrees.
Each new tree node receives the process number i from the set of free processes
that has minimal (minimum−first) or maximal (maximum−first) predicted
communication time t(parent, i, mi), where mi is the message size assigned to
process i. A good choice of mapping depends on the runtime platform. For
example, on a heterogeneous cluster with a single switch, maximum − first
mapping may be better since the subtrees of a parent node will be balanced in
their communication costs to it. In a hierarchy of clusters minimum − first
mapping may be better because intra-cluster processes are likely to be mapped
to the same communication subtree.

Model-based Träff algorithm for scatterv/gatherv. We will significantly modify
an algorithm by Träff [2] which targets irregular scatter/gather operations when
constructing a communication tree. Träff considers the message size assigned to
each process and assumes identical links between all nodes, while we consider
both the message size and the characteristics of the links between nodes by
using the prediction function t(i, j, m). Even for a fixed node count, the original
algorithm can generate different trees depending on the message sizes at the node
level. Since our modified algorithm observes the weight of the links instead, both
the process mapping as well as the tree structure can differ from the original
algorithm.

Given :

– set of nodes S with corresponding sendcounts/recvcounts arrays defining the
message size to be sent to/received from each process

– defined predictor t(i, j, m)

Two Algorithms of Irregular Scatter/Gather Operations 291

Result :

– a communication tree

Algorithm :
Starting from a set of processes to build a tree with a given root (Fig. 1a),

we sort them decreasingly using t(i, j, m) and partition the sorted set into sub-
sets(Fig. 1b). These subsets are balanced in their total communication cost with
the root node - left subtrees have less processes with slower transfer times while
the right subtrees have more processes with faster transfer times. Each subset
then chooses the process i which would take the least time to transfer all mes-
sages of this subset to/from the parent node j, removes it from the subset and
an edge (i, j) is created (Fig. 1c). We repeat the algorithm for all further subsets
until the tree is fully constructed. The outlined phases have to be repeated in
each step since we predict the communication time of new process pairs.

Fig. 1. Main phases in the modified Träff algorithm [2]

3 Experimental Results

We present results for the two irregular scatter/gather algorithms described in
section 2. Our experiments used benchmarks implemented in the CPM/MPIBlib
framework [4]. We used two different platforms the HCL cluster with a single
Gigabit Ethernet switch and a larger and more heterogeneous multi-site clus-
ter of clusters known as Grid5000. On both platforms, we used the Hockney
model for our predictions. Since the prediction we use is not model-specific,
other communication models can be used as well. An important consideration is
that scatterv/gatherv operations can use any distribution of message sizes. We
used a setup which assigns each node a message size based on its CPU speed
(delivered by a trivial benchmark).

We first tested this message size distribution on the HCL cluster and Open
MPI (1.2.8) on 14 nodes, running one process per node. Since this platform did
not provide a high level of network heterogeneity, the improvement demonstrated
by our algorithms was not significant. We then experimented with a message size
distribution with a larger ratio between maximal and minimal message size. The

292 K. Dichev, V. Rychkov, and A. Lastovetsky

Fig. 2. Experimental setup and message size distribution on Grid5000

Fig. 3. Benchmarks on Scatterv (a) and Gatherv (b) operations on Grid5000

modified algorithm of Trff had similar timings to the original algorithm. The
results were best for the model-based binomial tree algorithm with maximum-
first mapping - compared to the original algorithm using an arbitrary binomial
tree, it was faster by 25-35% or more for larger messages. In the case of a high
message size variation, the prediction still had a positive impact for this cluster.

The experiments on Grid5000 used 39 nodes from 5 clusters located on 2 sites,
running one process per node. Fig. 2 displays the experimental setup and the
CPU-based message size distribution. MPICH2 (version 1.2.1) was used with
TCP/IP as communication layer. The results (Fig. 3) demonstrate that on het-
erogeneous networks both model-based algorithms clearly outperform their non-
model-based counterparts we observed time reductions for scatterv and gatherv
of up to 75% for the binomial algorithm (minimum-first mapping) and up to
60% for Träffs algorithm. This confirms that our approach is particularly useful
for platforms with high network heterogeneity.

Acknowledgments. This publication has emanated from research conducted
with the financial support of Science Foundation Ireland under Grant Number
08/IN.1/I2054.

Two Algorithms of Irregular Scatter/Gather Operations 293

References

1. Thakur, R., Rabenseifner, R., Gropp, W.: Optimization of Collective Communica-
tion Operations in MPICH. Int. J. of High Perf. Comp. App. 19, 49–66 (2005)

2. Träff, J.L.: Hierarchical Gather/Scatter Algorithms with Graceful Degradation. In:
IPDPS 2004, vol. 1, pp. 80–89. IEEE, Los Alamitos (2004)

3. Worringen, J.: Pipelining and Overlapping for MPI Collective Operations. In: LCN
2003, pp. 548–557. IEEE, Los Alamitos (2003)

4. Lastovetsky, A., Rychkov, V., OFlynn, M.: Accurate heterogeneous communication
models and a software tool for their efficient estimation. Int. J. of High Perf. Comp.
App. 24, 34–48 (2010)

5. Chan, E.W., Heimlich, M.F., Purkayastha, A., van de Geijn, R.A.: On optimizing
collective communication. In: Cluster 2004, pp. 145–155. IEEE, Los Alamitos (2004)

6. Pjesivac-Grbovic, J., Angskun, T., Bosilca, G., Fagg, G., Gabriel, E., Dongarra, J.:
Performance analysis of MPI collective operations. Cluster Comput. 10(2), 127–143
(2007)

7. Hatta, J., Shibusawa, S.: Scheduling algorithms for efficient gather operations in
distributed heterogeneous systems. In: WPP 2000, pp. 173–180. IEEE, Los Alamitos
(2000)

Measuring Execution Times of Collective

Communications in an Empirical Optimization
Framework

Katharina Benkert1 and Edgar Gabriel2

1 High Performance Computing Center Stuttgart (HLRS),
University of Stuttgart, 70550 Stuttgart, Germany

benkert@hlrs.de
2 Parallel Software Technologies Laboratory,

Department of Computer Science, University of Houston, Houston, TX, USA
gabriel@cs.uh.edu

Abstract. An essential part of an empirical optimization library are
the timing procedures with which the performance of different codelets
is determined. In this paper, we present for four different timing methods
to optimize collective MPI communications and compare their accuracy
for the FFT NAS Parallel Benchmarks on a variety of systems with
different MPI implementations. We find that timing larger code portions
with infrequent synchronizations performs well on all systems.

Keywords: Empirical Optimization, Abstract Data and Communica-
tion Library (ADCL), Collective Communication, NAS Parallel Bench-
mark.

1 Introduction and Motivation

Automatic performance tuning is an area of research defined by one of the fun-
damental questions in computing: how to obtain for a kernel (computational
or communication pattern) platform-independently an equal or superior perfor-
mance compared to hand-tuned code. Among the pioneers of empirical tuning
software in High Performance Computing (HPC) are the Automatically Tuned
Linear Algebra Software (ATLAS) [1] which uses pre-runtime tuning. Projects
applying runtime tuning include FFTW [2], PhiPAC [3], and STAR-MPI [4].

The Abstract Data and Communication Library (ADCL) [5] is an empiri-
cal auto-tuning library targeting, but not restricted to, MPI communications
with an own API. It provides predefined sets of codelets for collective operations
and for a Cartesian neighborhood communication. Information about the com-
munication operation is encapsulated into ADCL objects and combined to an
ADCL Request object which represents a persistent communication object and
similarly to its MPI counterpart for sequential persistent requests can be ’started’
using ADCL Request start. The latter routine executes the communication and
controls the optimization process. During the first calls to ADCL Request start,

R. Keller et al. (Eds.): EuroMPI 2010, LNCS 6305, pp. 294–297, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Measuring Execution Times of Collective Communications 295

the search phase, execution times of alternative codelets are measured empiri-
cally, i.e. by actually running them multiple times one after another. Thereafter
we compute an outlier-aware average on each process as explained in [6] and se-
lect the codelet judged best-performing which is then used during the rest of the
simulation, the production phase. The assessment of the performance of different
implementation alternatives is critical as it is the basis for the selection of the
optimal codelet.

2 Timing Methods

Embracing the codelet with timing routines inside the library (fig. 1 left) is the
simplest way to measure the execution time of a codelet and transparent to the
user. Including the synchronizations during the search phase creates additional
overhead but ensures a common starting point. The timings represent a worst-
case scenario since eventually delays would cancel. Even systematic errors may be
introduced since applications features (e.g. process arrival patterns) are ignored.
We refer to this timing method as barrier. Alternatively, the nobarrier method
has no synchronization but still couples timing and codelet inside the library. It
is faster during search phase, closer to reality as it does not add any disturbances,
but the timings might influence one another and be difficult to evaluate since
the common starting point is lost.

Fig. 1. Timing routines with user code (grey) and ADCL code (white) embrace only
the codelet (left) or the codelet plus its environment (right); m ≥ 1, k = 1,

To mimic the application behavior, we introduce a new ADCL object, the
timer object, along with functions to start and stop the timing. The idea is to
not just measure the codelet in isolation, but rather the codelet plus (a part of)
its environment (fig. 1 right). This makes it possible to optimize communication
operations that are part of larger code portions, such as code sections which
overlap communication and computation, as well as the simultaneous optimiza-
tion of different communications, i.e. multiple requests, at the same time which
may interfere with one another. However, it is up to the user to select the right
environment to time. For the method timer with m = 1 the treatment of outliers

296 K. Benkert and E. Gabriel

as explained in [6] does not change whereas for timer multistep, we set m > 1
but leave the number of calls to ADCL Request start the same (k ∗m = const.).
This results in fewer already averaged measurements per codelet, which might
be more susceptible to the outlier problem. With well-balanced values for k and
m, this method should demonstrate an ”undisturbed” execution behavior but
also provide enough measurements to allow outlier handling.

3 Timing of Collective Communications

To investigate different timing techniques for collective communications, we use
the MPI FFT Benchmark from the NAS Parallel Benchmarks 3.0 [7]. The main
loop consists of an evolution step and the computation of the Fast Fourier Trans-
form (FFT) which involves an all-to-all communication and is in this version
automatically tuned using ADCL. The test systems used are a Nehalem clus-
ter with InfiniBand interconnect, a Cray XT5m and a NEC-SX8 installation at
HLRS, the SGI Altix at LRZ Munich and the BlueGene/P system at the Su-
percomputing System Jülich. For each system, we executed the FFT benchmark
for various classes K with different numbers of processes n (one MPI process
per core), denoted in the following as Kn, and eventually with multiple MPI
implementations.

Within a single batch job, we execute three set of runs. Each set contains 12
runs, one for each of the 8 codelets for the all-to-all operation (the verification
runs) and 4 for the different timing methods, with 200 FFT iterations each. Each
codelet is measured 20 times, a number found sufficient in the past to determine
the winner implementation reliably. For timer multistep, we chose m = 4. The
execution times over the runs are averaged over the sets, as performance data
normally slightly varies. However in some cases deviations in execution time
between the three sets of verification runs were equal to or exceeded the possible
gains between the codelets, most notably for the SGI Altix with OpenMPI or
the Nehalem Cluster with Mvapich. Collectives are known to have the potential
to cause network flooding. This fact by itself can produce large deviations and
it worsens if resources are shared. Although the reasons for these deviations are
worth considerating, they lay outside the scope of this paper and are difficult to
carry out for closed-source MPI implementations.

The averaged execution times of the verification runs provide some ranking
of the 8 codelets. Ideally, the results of the timing procedures should follow this
ordering, i.e. be a monotone ascending function, and reproduce qualitatively the
slopes of each segment. Nearly vertical slopes signify almost equal performance
whereas steep slopes imply a larger performance gap between two codelets.

We found that barrier and nobarrier have problems on a variety of machines,
especially in case of medium deviations. Timer has some problems on the SGI
Altix. Best results gives the timer multistep procedure, which just fails once in
a case where all timing procedures have problems.

Measuring Execution Times of Collective Communications 297

4 Summary and Outlook

This paper introduced the timer object within the Abstract Data and Commu-
nication Library (ADCL) which allows to time not only a single codelet but also
its environment. We showed that for an all-to-all communication pattern the
accuracy of performance prediction for performance data generated with this
timer object is superior to that when timing just the codelet itself. An enhanced
version of the timer object nearly exactly reproduced quantitatively the perfor-
mance data obtained from longer runs. These results set the stage for further
investigations on the simultaneous optimization of multiple, dependent commu-
nications and allow adding predefined sets of codelets to optimize overlapping
computations and communications.

Acknowledgments. This work was funded by the project STEDG within the
BMBF Software Initiative for High Performance Computing and supported by a
short-time scholarship of the DAAD. Partial support for this work was provided
by NSF under award no. CNS-0846002. Any opinions, findings, and conclusions
or recommendations expressed in this material are those of the authors and do
not necessarily reflect the views of the National Science Foundation.

References

1. Whaley, R.C., Petite, A.: Minimizing development and maintenance costs in sup-
porting persistently optimized BLAS. Software: Practice and Experience 35(2), 101–
121 (2005)

2. Frigo, M., Johnson, S.G.: The Design and Implementation of FFTW3. Proceedings
of IEEE 93(2), 216–231 (2005)

3. Bilmes, J., Asanovic, K., Chin, C., Demmel, J.: Optimizing matrix multiply using
PHIPAC: a Portable, High-Performance, ANSI C coding methodology. In: Proceed-
ings of the International Conference on Supercomputing, Vienna, Austra (July 1997)

4. Faraj, A., Yuan, X., Lowenthal, D.: STAR-MPI: self tuned adaptive routines for MPI
collective operations. In: ICS 2006: Proceedings of the 20th Annual International
Conference on Supercomputing, pp. 199–208. ACM Press, New York (2006)

5. Gabriel, E., Feki, S., Benkert, K., Resch, M.M.: Towards Performance Portability
through Runtime Adaption for High Performance Computing Applications. Con-
currency and Computation — Practice and Experience (2010) (accepted for publi-
cation)

6. Benkert, K., Gabriel, E., Resch, M.M.: Outlier Detection in Performance Data of
Parallel Applications. In: 9th IEEE International Workshop on Parallel and Dis-
tributed Scientific and Engineering Computing (2008)

7. Bailey, D., Barszcz, E., Barton, J., Browning, D., Carter, R., Dagum, L., Fatoohi,
R., Fineberg, S., Frederickson, P., Lasinski, T., Schreiber, R., Simon, H., Venkatakr-
ishnan, V., Weeratunga, S.: The NAS Parallel Benchmarks (1994)

Dynamic Verification of Hybrid Programs�

Wei-Fan Chiang1, Grzegorz Szubzda1,
Ganesh Gopalakrishnan1, and Rajeev Thakur2

1 School of Computing, Univ. of Utah, Salt Lake City, UT 84112, USA
2 Math. and Comp. Sci. Div., Argonne Nat. Lab., Argonne, IL 60439, USA

Overview

Hybrid (mixed MPI/thread) programs are extremely important for efficiently
programming future HPC systems. In this paper, we report our experience
adapting ISP [3,4,5], our dynamic verifier for MPI programs, to verify a large
hybrid MPI/Pthread program called Eddy Murphi [1]. ISP is a stateless model
checker that works by replaying schedules leading up to previously recorded non-
deterministic selection points, and pursuing new behaviors out of these points.
The main difficulty we faced was the inability to deterministically replay up to
these selection points because ISP instruments only the MPI calls issued by an
application, whereas thread level scheduling non-determinism may change the
course of execution. Instrumenting both MPI and Pthreads API calls requires an
invasive modification of ISP which was not favored. The novelty of our solution
is to determinize thread schedules using a record/replay daemon and demon-
strating that this approach works on a realistic hybrid application: the Eddy
Murphi model checker.

Verification Challenge

Figure 1 illustrates the architecture of Eddy Murphi, a parallelized and dis-
tributed model checker. It essentially implements a BFS approach algorithm to
explore the state space. Each process of Eddy Murphi (the node shown in Fig-
ure 1) consists of the worker thread and the communicator thread (CT). The
communicator thread issues MPI sends and MPI wildcard receives.

If we are to successfully verify Eddy Murphi using ISP, we must have ISP
explore the space of non-deterministic receives of the communicator threads.
ISP must not be “confused” by the Pthread schedule changes that may vary the
order in which the worker and communicator threads obtain the mutex lock that
guards common data structures to these threads.

Determining Solution

ISP’s operation is as follows. It collects MPI calls from all processes and waits
for the processes to reach their fence points. Once all processes have reached
fences, ISP chooses a sender process in the set of potential matching senders
� Supported in part by Microsoft, NSF CNS-0935858, CCF-0903408, and DOE ASCR

DE-AC02-06CH11357.

R. Keller et al. (Eds.): EuroMPI 2010, LNCS 6305, pp. 298–301, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Dynamic Verification of Hybrid Programs 299

Fig. 1. The Architecture of Eddy Murphi

to a wildcard receive and rewrites the wildcard receive into a specific receive
matching this sender, thus determinizing the MPI schedule from that point. We
call such a step a determinized receive (DR event) event.

Figure 2 illustrates how we augment ISP with a daemon that helps record
a previous Pthread schedule (of Pthread mutex calls, etc.) up to a DR event
into a log file and enforces the recorded schedule when we replay up to this
DR event. Essentially, the daemon sends positive acknowledgements (ACKs) to
threads calling Pthread routines in an order matching the recorded order, and
sends negative acknowledgements (NACKs) to threads calling in a non-matching
order. The NACKed threads have to re-issue their Pthread calls or be blocked
on the calls.

For the very first schedule exhibited, our daemon is in the record mode, record-
ing the entire schedule. When replaying the schedule, the daemon stays in the
replay mode till it sees ISP pursue a new behavior (a different DR event is
pursued by ISP). The daemon then switches to record mode, extending the par-
tially replayed schedule with a new record sequence. This concatenated sequence
forms the ‘seed’ for the next execution. Such a record/replay mechanism is easily
implemented by keeping only two log files: the previous one and the current one.
Assumptions (satisfied by Eddy Murphi):

– All read/writes are protected by mutual exclusion locks.
– The MPI threading level is MPI_THREAD_FUNNELED.
– Processes communicate only through MPI calls.
– Other API calls (besides MPI and Pthreads) are not allowed.
– The inputs provided by our test harness are deterministic.

Related Works: The idea of our “record/replay” mechanism is inspired by
ODR, output deterministic replay [2]. Our “record/replay” method is similar

300 W.-F. Chiang et al.

Fig. 2. ISP-Daemon System

to the SI-DRI recording approach to recording the lock order used in ODR.
ODR gathers the schedule trace, input trace, and read trace from the original
execution and generates symbolic path constraints. These are then solved using
a constraint solver to enforce previous schedules. Our mechanisms are much
simpler in comparison.

Findings and Concluding Remarks
We chose the n peterson model as the test input of Eddy Murphi and set the
depth bound of it to control the scale of exploration. Table 1 presents our experi-
ment results. The original isp denotes the old version of ISP which cannot handle
thread non-determinism (it crashes when threads change their schedules). The
isp-daemon denotes the new version of ISP which can enforce Pthread schedules.
The column ISP version & configuration denotes the version of ISP we used, the

Table 1. Experiment on n peterson Model

ISP version & configuration interleaving explored min./max./ave. DR events
original isp / p3 / d3 11 112 / 112 / 112

original isp / p3 / d5 fail on 2ed 133 / 133 / 133

original isp / p4 / d3 fail on 4th 145 / 149 / 146

isp-daemon / p3 / d3 11 112 / 112 / 112

isp-daemon / p3 / d5 61 133 / 133 / 133

isp-daemon / p3 / d10 over 1500 179 / 179 / 179

isp-daemon / p3 / d20 over 1600 723 / 765 / 727

isp-daemon / p4 / d3 6 141 / 145 / 143

isp-daemon / p4 / d5 over 1097 174 / 174 / 174

isp-daemon / p4 / d10 over 2000 300 / 304 / 303

isp-daemon / p4 / d20 over 2400 898 / 898 / 898

Dynamic Verification of Hybrid Programs 301

number of processes, and the depth bound. For instance, “original isp / p3 / d5”
means the result of running Eddy Murphi on the old version ISP with three pro-
cesses created and with a 5-level depth bound BFS. The column interleaving
explored denotes the number of interleavings explored by ISP while verifying
Eddy Murphi. The column min./max./ave. DR events denotes the minimum,
maximum, and average number of DR events we encountered in one execution.

The main limitation of our method is that it does not guarantee coverage of
the Pthread non-determinism space. It covers only the MPI non-determinism
space for particular determinizations of the Pthread schedule space. We briefly
explored trying to iterate through the Pthread schedule space through methods
such as preemption bounded search, and re-running ISP for each such altered
Pthread schedule. Such an approach will result in an extremely large schedule
space to cover – equaling the product of the Pthread and MPI schedule spaces.
A better approach may be to conduct a random-walk across the Pthread and
MPI schedule spaces. Our main conclusion is that unless hybrid programming is
approached with discipline, building a tractable verification approach becomes
nearly impossible. Our future work will examine how to make ISP capable of
dynamically verifying more types of hybrid programs such as MPI-OpenMP,
MPI-CUDA, etc.

From a practical point of view, it is important to cover mixed MPI/OpenMP
programs. However, this opens up a number of challenges. First, it would be nec-
essary for OpenMP implementors to expose the underlying OpenMP scheduling
points. Without this, it would be impossible to guarantee any sort of cover-
age. Since OpenMP implementations differ significantly from each other, ideally
one would standardize such an API pertaining to scheduling so that hybrid dy-
namic verifiers can resort to a single standardized solution in determinizing the
OpenMP behaviour while exploring MPI behaviours.

Even with such help, we do need a well articulated set of programming prac-
tices around which to build dynamic verifiers for hybrid programs. Without
such programming practices, the product schedule spaces of the individual con-
currency models will be so huge that it cannot be covered within reasonable
amounts of time.

References

1. Eddy murphi. distribution, http://www.cs.utah.edu/formal verification/
mediawiki/index.php/Eddy Murphi

2. Altekar, G., Stoica, I.: ODR: Output-deterministic replay for multicore debugging.
In: 22nd symposium on Operating Systems Principles (SOSP), pp. 193–206 (2009)

3. Vakkalanka, S.: Efficient Dynamic Verification Algorithms for MPI Applications.
PhD thesis (2010), http://www.cs.utah.edu/Theses

4. Vakkalanka, S., Gopalakrishnan, G., Kirby, R.M.: Dynamic Verification of MPI
Programs with Reductions in Presence of Split Operations and Relaxed Orderings.
In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 66–79. Springer,
Heidelberg (2008)

5. Vo, A., Vakkalanka, S., DeLisi, M., Gopalakrishnan, G., Kirby, R.M., Thakur, R.:
Formal verification of practical mpi programs. In: PPoPP, pp. 261–269 (2009)

http://www.cs.utah.edu/formal_verification/mediawiki/index.php/Eddy_Murphi
http://www.cs.utah.edu/formal_verification/mediawiki/index.php/Eddy_Murphi
http://www.cs.utah.edu/Theses

Challenges and Issues of Supporting Task Parallelism
in MPI

Márcia C. Cera, João V.F. Lima, Nicolas Maillard, and Philippe O.A. Navaux

Universidade Federal do Rio Grande do Sul, Brazil
{marcia.cera,joao.lima,nicolas,navaux}@inf.ufrgs.br

Abstract. Task parallelism deals with the extraction of the potential parallelism
of irregular structures, which vary according to the input data, through a defi-
nition of abstract tasks and their dependencies. Shared-memory APIs, such as
OpenMP and TBB, support this model and ensure performance thanks to an ef-
ficient scheduling of tasks. In this work, we provide arguments favoring the sup-
port of task parallelism in MPI. We explain how native MPI can be used to define
tasks, their dependencies, and their runtime scheduling. We also discuss perfor-
mance issues. Our preliminary experiments show that it is possible to implement
efficient task-parallel MPI programs and to increase the range of applications
covered by the MPI standard.

1 Task Parallelism in MPI Programs

Explicit task parallelism is a simple and elegant programming paradigm that allows to
unfold irregular parallelism efficiently. The programmer identifies independent units of
work (tasks), dependencies among them, and the runtime takes care of the scheduling.
A large set of lightweight tasks are specified, leaving it up to the runtime to unfold
parallelism and to decide the mapping of tasks: either they may execute on different
units of execution, or run sequentially.

We show how it is possible to develop task-parallel MPI programs that tackle these
issues, as well as experimental results of task-parallel MPI programs. which include in
their source-code the control of granularity. This control follows an Adaptive approach
adjusting the size of the grain according to the number of available processing elements.

The development of task-parallel programs involves the definition of tasks, their de-
pendencies, and scheduling decisions [1]. In this Section, we show how native MPI
features can be used to treat these issues, after a quick review of classical implementa-
tions in shared memory.

Related Work. Many programming interfaces or languages have been proposed to sup-
port explicit task parallelism. Cilk [2,3] was the precursor parallel programming inter-
face to deal with explicit task issues. OpenMP 3.0 [4] and Intel c© Threading Building
Blocks (TBB) [5] are also parallel APIs for multithreaded programming. These parallel
APIs have some common concepts concerning task-parallel programming. While Cilk
represents tasks as procedures, OpenMP uses a block of instructions (defined by a task
construct) and TBB uses instances of a task class. Task dependencies are expressed as
barriers using keywords in Cilk (sync) and OpenMP (taskwait), and TBB allows

R. Keller et al. (Eds.): EuroMPI 2010, LNCS 6305, pp. 302–305, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Challenges and Issues of Supporting Task Parallelism in MPI 303

Listing 1. Source-code of Fibonacci calculation using MPI-2 dynamic processes: one parent pro-
cess computes Fibonacci(n). It spawns two children processes that compute Fibonacci(n − 1)
and Fibonacci(n − 2). Then it blocks in an MPI Recv to wait for their return.Declarations of
variables have been omitted.

1 void mpi_fib(int n) {
2 if (n < 2) MPI_Send(&n, 1, MPI_INT, 0, 1, parent);
3 else {
4 sprintf(argv[0], "%d", (n - 1));
5 MPI_Comm_spawn("mpi_fib", argv, 1, info, myrank,
6 MPI_COMM_SELF, &child[0], err);
7 sprintf(argv[0], "%d", (n - 2));
8 MPI_Comm_spawn("mpi_fib", argv, 1, info, myrank,
9 MPI_COMM_SELF, &child[1], err);

10 MPI_Recv(&x, 1, MPI_INT, MPI_ANY_SOURCE, 1, child[0], &st);
11 MPI_Recv(&y, 1, MPI_INT, MPI_ANY_SOURCE, 1, child[1], &st);
12 fibn= x + y;
13 MPI_Send(&fibn, 1, MPI_INT, 0, 1, parent);
14 }
15 }

synchronization with either the blocking style (similar to Cilk) or the continuation style.
Cilk and TBB schedule tasks efficiently using work-stealing, while OpenMP includes
several simple strategies but is still under development to include more complex and
programmer-friendly strategies.

Defining and Spawning Tasks in MPI — The MPI standard defines tasks as having their
own address space, and most MPI distributions map a task to an O.S. process. MPI-2
has added the support for dynamic process management through MPI Comm spawn.

A simple and well-known example of task-parallel program is a recursive implemen-
tation of the Fibonacci calculation. Listing 1 shows this trivial implementation in which
the MPI Comm spawn creates MPI tasks and the exchanges of messages express the
dependencies. However, an efficient execution of task-parallel MPI programs requires
some control of granularity.

In task-parallel programs, the programmer only identifies the potential parallelism
to be unfolded at runtime. Recursive algorithms often include a threshold to indicate
the point where sequential computations are more efficient than recursive calls. In task-
parallel MPI programs, the threshold may indicate that the spawning of new processes
must stop. This naturally increases the granularity of the tasks.

2 Experimental Results

All the results have been obtained on the French Grid’5000. Each node has two Intel c©
Xeon E5310 Quad Core 1.60 GHz processor (eight cores per node) and 16 GB of mem-
ory. We have used GCC 4.3 with OpenMPI. All the presented measures are the speedup

304 M.C. Cera et al.

Table 1. Speedups of Fibonacci and Matrix Multiplication with MPI and OpenMP upon 1, 2, 4,
and 8 cores of a multicore machine

Applications API Number of Cores
1 2 4 8

Fibonacci MPI 1 1 2.62 3.40
OpenMP 0.55 1.09 2.07 3.89

Matrix Multiplication MPI 0.76 1.48 1.55 3.94
OpenMP 1.17 1.77 2.25 2.47

relative to the best sequential running time, and each running time is the mean of 30
executions, with standard deviation always smaller than 3%.

We have developed two test applications, based on recursive algorithms: The Fi-
bonacci calculation and a recursive implementation of the traditional matrix multipli-
cation algorithm (multiplication of rows per columns) for tests with heavier tasks. A
recursive threshold is used to determine when sequential executions must replace the
dynamic process creation. Furthermore, an Adaptive approach has been used to control
the granularity of the tasks aiming to provide a better load balancing.

Achieving Parallelism with Tasks in MPI. In the results presented here, the Fibonacci
program computes the 53th element in the sequence, and the matrix multiplication
uses two input matrices of 8192 × 8192 elements. Thresholds are the 46th element in
Fibonacci and 256×256 elements for matrix multiplication. Besides, sequential execu-
tions took almost 1, 240 seconds for Fibonacci and 80 seconds for matrix multiplication.

Table 1 shows the speedups of the applications using MPI and OpenMP upon a
shared-memory processor with 1, 2, 4, and 8 cores.

We have verified that our MPI versions achieves mostly lower speedups than
OpenMP, because it creates processes and exchanges messages into a shared-memory
environment. On the other hand, the difference is low and the MPI-2 task-parallel pro-
grams show speedups close to OpenMP, even without efficient use or shared memory.

Performance of Task-Parallel MPI Programs. This section aims to verify the behavior
of task-parallel MPI programs in distributed-memory environments. Here, the input of
matrix multiplication has been increased to 16384×16384 elements which took almost
412 seconds in sequential. The Fibonacci input as well as both thresholds are the same
as exposed above.

Figures 1a and 1b show respectively the speedups of Fibonacci and matrix multi-
plication from 1 processor with 8 cores to 8 processors (64 cores). In the Fibonacci
case, our MPI implementations achieve speedups mostly lower than the naive version.
This means that when tasks involve few computations, the use of a threshold is already
enough to ensure good performance. On the other hand, an adaptive granularity control
in matrix multiplication allows a considerable gain of performance.

Challenges and Issues of Supporting Task Parallelism in MPI 305

8 16 24 32 40 48 56 64

Prototype
Naïve

number of cores

sp
ee

du
p

0
5

10
15

20

(a) Fibonacci speedups

8 16 24 32 40 48 56 64

Prototype
Naïve

number of cores

sp
ee

du
p

0
5

10
15

20

(b) Matrix multiplication speedups

Fig. 1. Performance results with Fibonacci calculation and matrix multiplication comparing our
prototype with a naive implementation

3 Conclusion: Blueprint for Task Parallelism in MPI

MPI has not been originally designed to support task parallelism. However, our study
provides hints at solutions.
MPI Comm spawn is a natural and native way to define and fork new MPI tasks.

The original MPI 1.2 norm already defined MPI tasks independently of the notion of
process (in the OS sense). However, the currentMPI Comm spawn is meant to run new
images of MPI binaries, i.e. to create new processes. An interesting improvement would
be to allow the call of functions instead of, or together with MPI binaries. Thus the
programmer could easily improve the granularity choosing between processes creation
or recursive calls. The choice between spawning functions or binaries could be let to
the programmer by the use of a special field of the MPI Info parameter passed to
MPI Comm spawn.

Acknowledgments. We would like to thank CAPES for the financial support.

References

1. Mattson, T.G., Sanders, B.A., Massingill, B.L.: Patterns for Parallel Computing. In: Software
Patterns Series. Addison-Wesley, Reading (2004)

2. Blumofe, R.D., Joerg, C.F., Kuszmaul, B.C., Leiserson, C.E., Randall, K.H., Zhou, Y.: Cilk:
An efficient multithreaded runtime system. J. of Parallel and Dist. Comp. 37(1), 55–69 (1996)

3. Leiserson, C.E.: The Cilk++ concurrency platform. In: Proceedings of the 46th Annual Design
Automation Conference, pp. 522–527. ACM, New York (2009)

4. Chapman, B., Jost, G., van der Pas, R.: Using OpenMP: Portable Shared Memory Parallel Pro-
gramming. In: Scientific and Engineering Computation Series. MIT Press, Cambridge (2008)

5. Reinders, J.: Intel Threading Building Blocks: Outfitting C++ for Multi-core Processor Paral-
lelism. O’Reilly & Associates, Inc., Sebastopol (2007)

Author Index

Abouelhoda, Mohamed 142
Anand, Rakhi 198

Balaji, Pavan 11, 31, 160
Bangerth, Wolfgang 122
Barrett, Brian 50, 249
Bemmerl, Thomas 285
Benkert, Katharina 294
Biddiscombe, John 62
Bloch, Noam 102
Bosilca, George 189, 265
Bouteiller, Aurelien 189, 265
Brightwell, Ron 208
Bronevetsky, Greg 50
Buntinas, Darius 11, 31

Cera, Márcia C. 302
Chiang, Wei-Fan 298
Choudhary, Alok 72
Clarke, Jerry 62
Clauss, Carsten 285

de Supinski, Bronis R. 50
Dichev, Kiril 289
Dongarra, Jack J. 189, 265
Dózsa, Gábor 11

Elster, Anne C. 42

Ferreira, Kurt 208
Förster, Michael 257

Gabriel, Edgar 198, 294
Goglin, Brice 239
Goodell, David 11, 31, 82
Gopalakrishnan, Ganesh 152, 298
Gottlieb, Steven 132
Graham, Richard L. 102, 179
Gropp, William 1, 11, 21, 31, 229

Hargrove, Paul H. 219
Heister, Timo 122
Hemmert, K. Scott 249

Herault, Thomas 189
Hoefler, Torsten 21, 50, 132
Hofmann, Michael 113
Hursey, Joshua 219

Ishikawa, Yutaka 92

January, Chris 219

Kale, Vivek 229
Kandemir, Mahmut 72
Keller, Rainer 179
Kimpe, Dries 82
Kim, Seong Jo 72
Kirby, Robert M. 152
Krishna, Jayesh 31, 160
Kronbichler, Martin 122
Kumar, Sameer 11

Lankes, Stefan 285
Lastovetsky, Alexey 289
Lecomber, David 219
Lemarinier, Pierre 189
Liao, Wei-keng 72
Lima, João V.F. 302
Lumsdaine, Andrew 50, 219
Lusk, Ewing 31, 160

Maillard, Nicolas 302
Ma, Teng 265
Mohamed, Hisham 142
Moreaud, Stéphanie 239

Namyst, Raymond 239
Natvig, Thorvald 42
Naumann, Uwe 257
Navaux, Philippe O.A. 302
Nomura, Akihiro 92

O’Connor, Mark 219

Patrick, Christina 72
Prabhakar, Ramya 72

308 Author Index

Rabinovitz, Ishai 102
Ratterman, Joe 11
Riesen, Rolf 208
Ross, Robert 82
Rünger, Gudula 113
Rychkov, Vladimir 289

Sack, Paul 1
Schanen, Michel 257
Shainer, Gilad 102
Shamis, Pavel 102
Son, Seung Woo 72
Soumagne, Jerome 62
Squyres, Jeffrey M. 219

Subhlok, Jaspal 198
Szubzda, Grzegorz 298

Thakur, Rajeev 11, 21, 31, 160, 298
Tillier, Fabian 160
Träff, Jesper Larsson 21, 170, 275

Underwood, Keith D. 249

Vakkalanka, Sarvani 152
Vo, Anh 152

Zhang, Yuanrui 72

	Title Page
	Preface
	Organization
	Table of Contents
	Large Scale Systems
	A Scalable MPI Comm split Algorithm for Exascale Computing
	Introduction
	Background
	Scalable Communicators
	Better Performance through Parallel Sorting
	Less Memory Usage with Distributed Tables

	Evaluation
	Discussion and Future Work
	Conclusion
	References

	Enabling Concurrent Multithreaded MPI Communication on Multicore Petascale Systems
	Introduction
	Background
	MPI Semantics for Multithreading
	Framework for Supporting Thread Safety in MPICH2
	Blue Gene/P Hardware and Software Overview

	Enabling Concurrent Multithreaded MPI Communication on BG/P
	Multichannel Extensions to DCMF
	Exploiting Multiple Channels in MPICH2
	Parallel Receive Queues

	erformanceResults
	Conclusions
	References

	Toward Performance Models of MPI Implementations for Understanding Application Scaling Issues
	Motivation
	Previous Work and a General Approach to Modeling
	The Deficiency of Current Point-to-Point Models
	Performance Models for Collective Communication
	Summary and Conclusions
	References

	PMI: A Scalable Parallel Process-Management Interface for Extreme-Scale Systems
	Introduction
	Requirements of a Process-Management Interface
	Decoupling the Process Manager and the Process-Management Interface
	Overview of the First-Generation PMI (PMI-1)
	PMI Requirements for the Process Manager

	Second-Generation PMI (PMI-2)
	Experimental Evaluation and Analysis
	System Information Query Functionality
	Impact of Added PMI Functionality over the Native Process Manager
	Performance of Multithreaded MPI Applications
	Comparison with Alternative Process Management Frameworks

	Related Work
	Concluding Remarks
	References

	Run-Time Analysis and Instrumentation for Communication Overlap Potential
	Introduction
	Previous Work
	Outline

	Instrumentation Method
	Startup
	Sends and Receives
	Page Faults
	Other Function Calls
	Performance Measurements
	Non-blocking Verification

	Post-processing and Presentation
	Chain Merges
	Expected Savings
	Code Parser
	Scalability Analysis

	Results
	Current and Future Work
	Conclusion
	References

	Efficient MPI Support for Advanced Hybrid Programming Models
	Introduction
	Multithreaded MPI Messaging
	A Fine-Grained Locking Mechanism
	Matching Outside of MPI

	Extending the MPI Standard: Matched Probe
	A Reference Implementation of Matched Probe
	Low-Level Message Matching

	Performance Evaluation
	Receive Message Rate
	Threaded Roundtrip Time

	Summary and Conclusions
	References

	Parallel Filesystems and I/O
	An HDF5 MPI Virtual File Driver for Parallel In-situ Post-processing
	Introduction
	Architecture
	A Streaming MPI Virtual File Layer
	Operating Modes
	Communication
	Synchronization
	Distribution Strategies

	Implementation
	DSM Service Thread
	Configuration of the DSM

	Performance
	Application: Integration of the DSM Interface within ParaView
	Related Work and Discussion
	Conclusion and Future Work
	References

	Automated Tracing of I/O Stack
	Introduction
	Related Work
	Our Approach
	High-Level View of Automated Instrumentation
	Technical Details of Automated Instrumentation

	Evaluation
	Concluding Remarks and Future Work
	References

	MPI Datatype Marshalling: A Case Study in Datatype Equivalence
	Introduction
	MPI Datatype Equivalence
	Type Name Equivalence
	Constructor Equivalence
	Attribute Equivalence

	MPI Datatype Marshalling
	External Type Representation
	Marshalling Type Names
	Marshalling Attributes
	Compression

	Evaluation
	Related Work
	Conclusions and Future Work
	References

	Collective Operations
	Design of Kernel-Level Asynchronous Collective Communication
	Introduction
	Issues
	Design
	Collective Algorithm Design

	Implementation
	Structure of KACC System

	Evaluation
	Conclusions
	References

	Network Offloaded Hierarchical Collectives Using ConnectX-2’s CORE-$Direct$ Capabilities
	Introduction
	Related Work
	Overview of Technical Approach
	Experimental Setup
	BenchmarkResults
	Discussion and Summary
	References

	An In-Place Algorithm for Irregular All-to-All Communication with Limited Memory
	Introduction
	Related Work
	An In-Place Algorithm for MPI Alltoallv
	Basic Algorithm
	Initializing the Index Sets
	Determine the Number of Data Items to Be Received
	Updating the Index Sets
	Using Auxiliary Buffers

	erformanceResults
	Summary
	References

	Applications
	Massively Parallel Finite Element Programming
	Introduction
	Related Work
	Massively Parallel Finite Element Software Design
	Distributed Mesh Handling
	Handling of Degrees of Freedom
	Efficient Indexing
	Numerical Linear Algebra
	Summary of Finite Element Algorithms
	Communication Patterns

	Numerical Results
	Scalability Test
	Results for a Mantle Convection Problem

	Conclusions
	References

	Parallel Zero-Copy Algorithms for Fast Fourier Transform and Conjugate Gradient Using MPI Datatypes
	Introduction
	Fast Fourier Transformations
	A Typical Parallel FFT Implementation
	Constructing the Datatypes
	Experimental Evaluation

	MIMD Lattice Computation Collaboration Application
	Data Layout and Datatype Construction
	Experimental Evaluation

	Conclusions
	References

	Parallel Chaining Algorithms
	Introduction
	Review of Sequential Chaining Algorithms
	Parallelization of Chaining Algorithms
	Space Decomposition
	Anti-chain Decomposition
	Wavefront Decomposition

	Implementation and Experimental Results
	Implementation
	Experimental Results

	Conclusions
	References

	MPI Internals (I)
	Precise Dynamic Analysis for Slack Elasticity: Adding Buffering without Adding Bugs
	Introduction
	Motivating Examples
	ThePOE$_MSE$ Algorithm
	Results and Conclusions
	Concluding Remarks

	References

	Implementing MPI on Windows: Comparison with Common Approaches on Unix
	Introduction
	Background
	Implementing MPI on Windows versus Unix
	Asynchronous Progress
	Process Management
	Intranode Communication
	Threads

	Experimental Evaluation and Analysis
	Asynchronous Progress
	Intranode Communication
	Internode Communication
	Cost of Supporting Thread Safety

	Related Work
	Conclusions and Future Work
	References

	Compact and Efficient Implementation of the MPI Group Operations
	Introduction
	Process Group Operations
	Compact Representation of Mappings
	Experimental Evaluation
	Compact Binary Search
	Concluding Remarks
	References

	Characteristics of the Unexpected Message Queue of MPI Applications
	Introduction
	Design and Implementation
	Application Measurement
	Related Work
	Conclusion
	References

	Fault Tolerance
	Dodging the Cost of Unavoidable Memory Copies in Message Logging Protocols
	Introduction
	Related Works
	Strategies for Sender-Based Copies
	Experimental Evaluation
	Conclusion
	References

	Communication Target Selection for Replicated MPI Processes
	Introduction
	VolpexMPI
	Target Selection Algorithms
	Performance Evaluation
	Results for Heterogeneous Network Configurations
	Results for Heterogeneous Processor Configurations
	Results for Combinations of Heterogeneous Network and Processor Configurations

	Summary
	References

	Transparent Redundant Computing with MPI
	Introduction
	Implementation
	Design Choices
	Mirror Protocol
	Parallel Protocol
	Issues

	Results
	Accelerating Redundant Computing
	Integrating rMPI into an MPI Implementation
	Bandwidth and Latency Consumption
	Message Order Semantics in Case of MPI ANY SOURCE
	Use of One-Sided Operations

	Related Work
	References

	Checkpoint/Restart-Enabled Parallel Debugging
	Introduction
	Related Work
	Design
	Preparing for a Checkpoint
	Resuming after a Checkpoint
	Additional MPIR Symbols

	Use Case Scenarios
	Implementation
	Interlayer Notification Callback Functions
	Stack Modification

	Conclusions
	References

	Best Paper Awards
	Load Balancing for Regular Meshes on SMPs with MPI
	Introduction
	Problem Description
	Performance Tuning Experimentation
	Performance Tuning Technique
	Reducing Impact of OS Jitter: Dynamic vs Static Scheduling
	Tuning Tasklet Granularity for Reduced Thread Idle Time
	Using Our Technique to Improve Scalability

	Related Work
	Conclusions and Future Work
	References

	Adaptive MPI Multirail Tuning for Non-uniform Input/Output Access
	Introduction
	Background and Motivation
	Multicore and NUMA Architectures
	Non-Uniform Input/Output Access

	NUIOA-Aware Multirail
	Proposal
	Distributing Message Chunks According to NICs Localities
	Gathering NIC and Process Locality Information

	Performance
	Experimentation Platform
	Single-Rail Micro-Benchmark
	Point-to-Point Multirail
	Contention
	Collective Operations

	Conclusion and Future Works
	References

	Using Triggered Operations to Offload Collective Communication Operations
	Introduction
	Related Work
	Triggered Operations in Portals 4
	Evaluation Methodology
	Collective Algorithms
	Simulation Model

	Results
	Conclusions
	References

	MPI Internals (II)
	Second-Order Algorithmic Differentiation by Source Transformation of MPI Code
	Introduction
	Derivative Code Compiler
	AMPI dcc Wrapper
	Non-blocking Communication
	Test Case
	Summary and Conclusion
	References

	Locality and Topology Aware Intra-node Communication among Multicore CPUs
	Introduction
	Related Work
	Multicore and Multifarious Hierarchies
	Multi-tuning Framework
	Experimental Evaluation
	Conclusion and Future Work
	References

	Transparent Neutral Element Elimination in MPI Reduction Operations
	Introduction
	Neutral Element Elimination
	Implicit Representation of Neutral Elements
	Implementations of Collective Reduction Algorithms
	Algorithm Performance

	Experimental Setup and Evaluation
	MPI Standardization
	Concluding Remarks
	References

	Poster Abstracts
	Use Case Evaluation of the Proposed MPIT Configuration and Performance Interface
	Introduction
	Prototyping the MPIT Interface
	Use Case: A Simple Tool on Top of MPIT
	References

	Two Algorithms of Irregular Scatter/Gather Operations for Heterogeneous Platforms
	Introduction and Related Work
	Model-Based Algorithms of Irregular Scatter/Gather
	Experimental Results
	References

	Measuring Execution Times of Collective Communications in an Empirical Optimization Framework
	Introduction and Motivation
	Timing Methods
	Timing of Collective Communications
	Summary and Outlook
	References

	Dynamic Verification of Hybrid Programs
	References

	Challenges and Issues of Supporting Task Parallelism in MPI
	Task Parallelism in MPI Programs
	Experimental Results
	Conclusion: Blueprint for Task Parallelism in MPI
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

