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Preface

These proceedings contain the papers presented at the 8th Internationl Sym-
posium on Automated Technology for Verification and Analysis held during
September 21–24, 2010 in Singapore. The primary objective of the ATVA con-
ferences remains the same: to exchange and promote the latest advances of
state-of-the-art research on theoretical and practical aspects of automated anal-
ysis, verification and synthesis.

From 72 papers submitted to ATVA 2010 in response to our call for papers,
the Program Committee accepted 21 regular papers and 9 tool papers. Each
paper received at least three reviews. The Program Committee worked hard to
ensure that every submission received a rigorous and fair evaluation, with the
final program selected after a 10-day online discussions via the Easychair system.

Our program also included three keynote talks and invited tutorials by Thomas
A. Henzinger (IST Austria), Joxan Jaffar (National University of Singapore) and
Igor Walukiewicz (CNRS, France). The conference organizers were truly grateful
to have such distinguished researchers as keynote speakers for the symposium.

A new feature for the ATVA symposium this year were the two co-located
workshops, Infinity 2010 (co-chaired by Yu-Fang Chen and Ahmed Rezine) and
PMCW 2010 (co-chaired by Jun Sun and Hai Wang). We are delighted with the
expanded scope, interactions and depth that the two workshops helped bring to
the symposium.

Many people worked hard and offered their valuable time so generously to
make ATVA 2010 successful. First and foremost, we would like to thank all
authors who worked hard to complete and submit papers to the conference.
The Program Committee members, reviewers and Steering Committee members
also deserve special recognition. Without them, a competitive and peer-reviewed
international symposium simply cannot take place.

Many individuals offered enthusiastic help to the conference. We are grate-
ful to Jin Song Dong (Conference Chair) and Farn Wang (Steering Committee
Chair) for their many invaluable suggestions and advice. We thank Yang Liu
(Local Arrangements Chair) and Chunqing Chen (Finance and Registration
Chair) for their support on local logistics. We also thank Florin Craciun for
his invaluable help in the final proceedings preparation, and Tian Huat Tan for
Web support.

We sincerely hope that the readers find the proceedings of ATVA 2010
informative and rewarding.

July 2010 Ahmed Bouajjani
Wei-Ngan Chin
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Frédéric Herbreteau and B. Srivathsan

Reachability as Derivability, Finite Countermodels and Verification . . . . . 233
Alexei Lisitsa

LTL Can Be More Succinct . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245
Kamal Lodaya and A.V. Sreejith

Automatic Generation of History-Based Access Control from
Information Flow Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259

Yoshiaki Takata and Hiroyuki Seki

Auxiliary Constructs for Proving Liveness in Compassion Discrete
Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276

Teng Long and Wenhui Zhang

Symbolic Unfolding of Parametric Stopwatch Petri Nets . . . . . . . . . . . . . . 291
Louis-Marie Traonouez, Bartosz Grabiec, Claude Jard,
Didier Lime, and Olivier H. Roux

Recursive Timed Automata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 306
Ashutosh Trivedi and Dominik Wojtczak

Probabilistic Contracts for Component-Based Design . . . . . . . . . . . . . . . . . 325
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Probabilistic Automata on Infinite Words:
Decidability and Undecidability Results�

Krishnendu Chatterjee and Thomas A. Henzinger

IST Austria (Institute of Science and Technology Austria)

Abstract. We consider probabilistic automata on infinite words with

acceptance defined by safety, reachability, Büchi, coBüchi, and limit-

average conditions. We consider quantitative and qualitative decision

problems. We present extensions and adaptations of proofs for prob-

abilistic finite automata and present an almost complete characteriza-

tion of the decidability and undecidability frontier of the quantitative

and qualitative decision problems for probabilistic automata on infinite

words.

1 Introduction

Probabilistic automata and decision problems. Probabilistic automata for
finite words were introduced in the seminal work of Rabin [Rab63], and have been
extensively studied (see the book by [Paz71] on probabilistic automata and the
survey of [Buk80]). Probabilistic automata on infinite words have been studied
recently in the context of verification [BG05, BBG08]. We consider probabilis-
tic automata on infinite words with acceptance defined by safety, reachability,
Büchi, coBüchi, and limit-average conditions. We consider the quantitative and
qualitative decision problems [Paz71, GO09]. The quantitative decision problems
ask, given a rational 0 ≤ λ ≤ 1, whether (a) (equality) there is a word with ac-
ceptance probability exactly λ; (b) (existence) there is a word with acceptance
probability greater than λ; and (c) (value) for all ε > 0, there is a word with ac-
ceptance probability greater than λ−ε. The qualitative decision problems are the
special cases of the quantitative problems with λ ∈ { 0, 1 }. The qualitative and
quantitative decision problems for probabilistic automata are the generalization
of the emptiness and universality problem for deterministic automata.

Known results for probabilistic automata on infinite words. The deci-
sion problems for probabilistic automata on finite words have been extensively
studied [Paz71, Buk80]. For probabilistic automata on infinite words it follows
from the results of [BBG08] that for the coBüchi acceptance condition, the qual-
itative equality problem is undecidable and the qualitative existence problem is
decidable, whereas for the Büchi acceptance condition, the qualitative equality
problem is decidable and the qualitative existence problem is undecidable.

� This research was supported by the European Union project COMBEST and the

European Network of Excellence ArtistDesign.

A. Bouajjani and W.-N. Chin (Eds.): ATVA 2010, LNCS 6252, pp. 1–16, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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Our results: quantitative decision problems. In [GO09] a simple and ele-
gant proof for the undecidability of the quantitative decision problems for proba-
bilistic finite automata was given. In Section 3 we show that the proof of [GO09]
can be extended to show that the quantitative decision problems are undecidable
for safety, reachability, Büchi, coBüchi, and limit-average conditions. In partic-
ular we show the undecidability of the quantitative equality problem for the
special classes of probabilistic automata with safety and reachability acceptance
conditions. The other undecidability results for quantitative decision problems
are obtained by simple extensions of the result for quantitative equality.
Our results: qualitative decision problems. In Section 4 we show that all
qualitative decision problems are decidable for probabilistic safety automata. We
present a simple adaptation of a proof of [GO09] to give the precise characteri-
zation of the decidability and undecidability frontier for all qualitative decision
problems for probabilistic reachability, Büchi, and coBüchi automata. We show
that for probabilistic limit-average automata, the qualitative value problem is
undecidable. The other two problems (qualitative equality and qualitative exis-
tence) remain open for probabilistic limit-average automata.

2 Definitions

In this section we present definitions for probabilistic automata, notions of ac-
ceptance for infinite words, and the decision problems.

2.1 Probabilistic Automata

Probabilistic automata. A probabilistic automaton A is a tuple (Q, qι, Σ,M)
that consists of the following components:

1. a finite set Q of states and an initial state qι;
2. a finite alphabet Σ;
3. a set M = { Mσ | σ ∈ Σ } of transition probability matrices Mσ; i.e.,

for σ ∈ Σ we have Mσ is a transition probability matrix. In other words,
for all σ ∈ Σ the following conditions hold: (a) for all q, q′ ∈ Q we have
Mσ(q, q′) ≥ 0; and (b) for all q ∈ Q we have

∑
q′∈Q Mσ(q, q′) = 1.

Infinite paths and words. Given a probabilistic automaton A, an infinite path
π = (q0, q1, q2, . . .) is an infinite sequence of states such that for all i ≥ 0, there
exists σ ∈ Σ such that Mσ(qi, qi+1) > 0. We denote by π a path in A, and by
Π the set of all paths. For a path π, we denote by Inf(π) the set of states that
appear infinitely often in π. An infinite (resp. finite) word is an infinite (resp.
finite) sequence of letters from Σ. For a finite word w we denote by |w| the
length of w. Given a finite or an infinite word w, we denote wi as the i-th letter
of the word (for a finite word w we assume i ≤ |w|).
Cones and probability measure. Given a probabilistic automaton A and a
finite sequence q = (q0, q1, . . . , qn) of states, the set Cone(q) consists of the set
of paths π with prefix q. Given a word w ∈ Σω, we first define a measure μw on
cones as follows:
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1. μw(Cone(qι)) = 1 and for qi �= qι we have μw(Cone(qi)) = 0;
2. for a sequence q = (q0, q1, . . . , qn−1, qn) we have

μw(Cone(q)) = μw(Cone(q0, q1, . . . , qn−1)) · Mwn(qn−1, qn).

The probability measure Pw
A is the unique extension of the measure μw to the

set of all measurable paths in A.

2.2 Acceptance Conditions

Probabilistic automata on finite words. A probabilistic finite automaton
consists of a probabilistic automaton and a set F of final states. The automaton
runs over finite words w ∈ Σ∗ and for a finite word w = σ0σ1 . . . σn ∈ Σ∗ it
defines a probability distribution over Q as follows: let δ0(qι) = 1 and for i ≥ 0
we have δi+1 = δi · Mσi . The acceptance probability for the word w, denoted as
PA(w), is

∑
q∈F δ|w|+1(q).

Acceptance for infinite words. Let A be a probabilistic automaton and let
F ⊆ Q be a set of accepting (or target) states. Then we consider the following
functions to assign values to paths.

1. Safety condition. The safety condition Safe(F ) defines the set of paths in A
that only visits states in F ; i.e., Safe(F ) = { (q0, q1, . . .) | ∀i ≥ 0. qi ∈ F }.

2. Reachability condition. The reachability condition Reach(F ) defines the
set of paths in A that visits states in F at least once; i.e., Reach(F ) =
{ (q0, q1, . . .) | ∃i ≥ 0. qi ∈ F }.

3. Büchi condition. The Büchi condition Büchi(F ) defines the set of paths in A
that visits states in F infinitely often; i.e., Büchi(F ) = {π | Inf(π)∩F �= ∅}.

4. coBüchi condition. The coBüchi condition coBüchi(F ) defines the set of
paths in A that visits states outside F finitely often; i.e., coBüchi(F ) =
{ π | Inf(π) ⊆ F }.

5. Limit-average condition. The limit-average condition is a function
LimitAvg : Π → IR that assigns to a path the long-run average frequency of
the accepting states. Formally, for a state q ∈ Q, let r(q) = 1 if q ∈ F and 0
otherwise, then for a path π = (q0, q1, . . .) we have

LimitAvg(π) = lim inf
k→∞

1
k
·

k−1∑
i=0

r(qi).

In sequel, we will consider Reach, Safe, Büchi, coBüchi and LimitAvg as functions
from Π to IR. Other than LimitAvg, all the other functions only returns boolean
values (0 or 1). Given an condition Φ : Π → IR, a probabilistic automaton A
and a word w, we denote by Ew

A(Φ) the expectation of the function Φ under the
probability measure Pw

A. Given a probabilistic automaton A and a condition Φ,
we use the following notation: A(Φ, w) = Ew

A(Φ), and if the condition Φ is clear
from the context we simply write A(w). If Φ is boolean, then A(Φ, w) is the
acceptance probability for the word w for the condition Φ in A.
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2.3 Decision Problems

We now consider the quantitative and qualitative decision problems.
Quantitative decision problems. Given a probabilistic automaton A, a con-
dition Φ, and a rational number 0 < λ < 1, we consider the following questions:

1. Quantitative equality problem. Does there exist a word w such that Ew
A(Φ) =

λ. If Φ is boolean, then the question is whether there exists a word w such
that Pw

A(Φ) = λ.
2. Quantitative existence problem. Does there exist a word w such that Ew

A(Φ) >
λ. If Φ is boolean, then the question is whether there exists a word w such
that Pw

A(Φ) > λ. This question is related to emptiness of probabilistic au-
tomata: let LA(Φ, λ) = {w | Pw

A(Φ) > λ} be the set of words with acceptance
probability greater than λ; then the set is non-empty iff the answer to the
quantitative existence problem is yes.

3. Quantitative value problem. Whether the supremum of the values for all
words is greater than λ, i.e., supw∈Σω Ew

A(Φ) > λ. If Φ is boolean, this
question is equivalent to whether for all ε > 0, does there exist a word w
such that Pw

A(Φ) > λ − ε.

Qualitative decision problems. Given a probabilistic automaton A, a condi-
tion Φ, we consider the following questions:

1. Almost problem. Does there exist a word w such that Ew
A(Φ) = 1.

2. Positive problem. Does there exist a word w such that Ew
A(Φ) > 0.

3. Limit problem. For all ε > 0, does there exist a word w such that Ew
A(Φ) >

1 − ε.

If Φ is boolean, then in all the above questions E is replaced by P.

3 Undecidability of Quantitative Decision Problems

In this section we study the computability of the quantitative decision problems.
We show undecidability results for special classes of probabilistic automata for
safety and reachability conditions, and all other results are derived from the
results on these special classes. The special classes are related to the notion of
absorption in probabilistic automata.

3.1 Absorption in Probabilistic Automata

We will consider several special cases with absorption condition and consider
some simple equivalences.
Absorbing states. Given a probabilistic automaton A, a state q is absorbing if
for all σ ∈ Σ we have Mσ(q, q) = 1 (hence for all q′ �= q we have Mσ(q, q′) = 0).
Acceptance absorbing automata. Given a probabilistic automaton A let F
be the set of accepting states. The automaton is acceptance-absorbing if all states
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in F are absorbing. Given an acceptance-absorbing automaton, the following
equivalence hold: Reach(F ) = Büchi(F ) = coBüchi(F ) = LimitAvg(F ). Hence
our goal would be to show hardness (undecidability) for acceptance-absorbing au-
tomata with reachability condition, and the results will follow for Büchi, coBüchi
and limit-average conditions.
Absorbing automata. A probabilistic automaton A is absorbing if the follow-
ing condition holds: let C be the set of absorbing states in A, then for all σ ∈ Σ
and for all q ∈ (Q \ C) we have Mσ(q, q′) > 0 for some q′ ∈ C. In sequel we will
use C for absorbing states in a probabilistic automaton.

3.2 Absorbing Safety Automata

In sequel we write automata (resp. automaton) to denote probabilistic automata
(resp. probabilistic automaton) unless mentioned otherwise. We now prove some
simple properties of absorbing automata with safety condition.

Lemma 1. Let A be an absorbing automaton with C as the set of absorbing
states. Then for all words w ∈ Σω we have Pw

A(Reach(C)) = 1.

Proof. Let η = minq∈Q,σ∈Σ

∑
q′∈C Mσ(q, q′) be the minimum transition proba-

bility to absorbing states. Since A is absorbing we have η > 0. Hence for any
word w, the probability to reach C after n steps is at least 1 − (1 − η)n. Since
η > 0, as n → ∞ we have 1 − (1 − η)n → 1, and hence the result follows.

Complementation of absorbing safety automata. Let A be an absorbing
automaton, with the set F as accepting states, and we consider the safety con-
dition Safe(F ). Without loss of generality we assume that every state in Q \ F
is absorbing. Otherwise, if a state in q ∈ Q \ F is non-absorbing, we transform
it to an absorbing state and obtain an automaton A′. It is easy to show that for
the safety condition Safe(F ) the automata A and A′ coincide (i.e., for all words
w we have A(Safe(F ), w) = A′(Safe(F ), w)). Hence we consider an absorbing
safety automaton such that all states in Q \ F are absorbing: it follows that
every non-absorbing state is an accepting state, i.e., Q \ C ⊆ F . We claim that
for all words w we have

Pw
A(Safe(F )) = Pw

A(Reach(F ∩ C)).

Since every state in Q \C ⊆ F and all states in C are absorbing, it follows that
Pw
A(Safe(F )) ≥ Pw

A(Reach(F ∩C)). Since A is absorbing, for all words w we have
Pw
A(Reach(C)) = 1 and hence it follows that

Pw
A(Safe(F )) ≤ Pw

A(Reach(C)) · Pw
A(Safe(F ) | Reach(C)) = Pw

A(Reach(F ∩ C)).

The complement automaton A is obtained from A by changing the set of ac-
cepting states as follows: the set of accepting states F in A is (Q \C)∪ (C \F ),
i.e., all non-absorbing states are accepting states, and for absorbing states the
accepting states are switched. Since A is also absorbing it follows that for all
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words w we have Pw
A(Safe(F )) = Pw

A(Reach(C ∩F )) = Pw
A(Reach(C \F )). Since

A is absorbing, it follows that for all words we have Pw
A(Reach(C)) = 1 and hence

Pw
A(Safe(F )) = Pw

A(Reach(C \F )) = 1−Pw
A(Reach(C ∩F )) = 1−Pw

A(Reach(C ∩
F )). It follows that for all words w we have A(Safe(F ), w) = 1−A(Safe(F ), w),
i.e., A is the complement of A.
Remark 1. It follows from above that an absorbing automaton with safety condi-
tion can be transformed to an acceptance-absorbing automaton with reachabil-
ity condition. So any hardness result for absorbing safety automata also gives a
hardness result for acceptance-absorbing reachability automata (and hence also
for Büchi, coBüchi, limit-average automata).

3.3 Undecidability for Safety and Acceptance-Absorbing
Reachability Automata

Our first goal is to show that the quantitative equality problem is undecid-
able for safety and acceptance-absorbing reachability automata. The reduction
is from the Post Correspondence Problem (PCP). Our proof is inspired by and
is an extension of a simple elegant proof of undecidability for probabilistic finite
automata [GO09]. We first define the PCP and some related notations.
PCP. Let ϕ1, ϕ2 : Σ → { 0, 1, . . . , k − 1 }∗, and extended naturally to Σ∗

(where k = |Σ|). The PCP asks whether there is a word w ∈ Σ∗ such that
ϕ1(w) = ϕ2(w). The PCP is undecidable [HU79].

Notations. Let ψ : { 0, 1, . . . , k − 1 }∗ → [0, 1] be the function defined as:

ψ(σ1σ2 . . . σn) =
σn

k
+

σn−1

k2
+ · · · + σ2

kn−1
+

σ1

kn
.

For i ∈ { 1, 2 }, let θi = ψ ◦ϕi : Σ∗ → [0, 1]. We first prove a property of θi, that
can be derived from the results of [BMT77].
Lemma 2. For a finite word w ∈ Σ∗ and a letter σ ∈ Σ we have

θi(w · σ) = θi(σ) + θi(w) · ki(σ),

where ki(σ) = k−|ϕi(σ)|.

Proof. Let w = σ1σ2 . . . σn, and let ϕi(w) = b1b2 . . . bm and ϕi(σ) = a1a2 . . . a�.
Then we have

θi(w · σ) = ψ ◦ ϕi(w · σ)

= ψ(b1b2 . . . bma1a2 . . . a�)

=
a�

k
+ · · · + a1

k�
+

bm

k�+1
+ · · · + b1

k�+m

=
(

a�

k
+ · · · + a1

k�

)
+

1
k�

·
(

bm

k
+ · · · + b1

km

)
= ψ ◦ ϕi(σ) +

1
k�

· (ψ ◦ ϕi(w))

= θi(σ) + θi(w) · ki(σ).

The result follows.
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q0

1
2
· (1 − θi(σ))

q1

1
2
· (θi(σ) + ki(σ))

q2 q3

1
2
· θi(σ)

1
2
· (1 − θi(σ) − ki(σ))

σ, 1
2

$, 1σ, 1
2
; $, 1

Fig. 1. Absorbing safety automata from PCP instances

The absorbing safety automata from PCP instances. Given an instance
of the PCP problem we create two safety automata Ai = (Q, Σ∪{$},Mi, qι, F ),
for i ∈ { 1, 2 } as follows (we assume $ �∈ Σ):

1. (Set of states and initial state). Q = { q0, q1, q2, q3 } and qι = q0;
2. (Accepting states). F = { q0, q1, q3 };
3. (Transition matrices). The set of transition matrices is as follows:

(a) the states q2 and q3 are absorbing;
(b) M i

$(q0, q2) = 1 and M i
$(q1, q3) = 1;

(c) for all σ ∈ Σ we have
i. M i

σ(q0, q2) = M i
σ(q1, q2) = 1

2 ;
ii. M i

σ(q0, q0) = 1
2 · (1 − θi(σ)); M i

σ(q0, q1) = 1
2 · θi(σ);

iii. M i
σ(q1, q0) = 1

2 · (1− θi(σ) − ki(σ)); M i
σ(q1, q1) = 1

2 · (θi(σ) + ki(σ));

A pictorial description is shown in Fig 1. We will use the following notations:
(a) we use Σ̂ for Σ ∪ { $ }; (b) for a word w ∈ Σ̂ω if the word contains a $, then
we denote by first(w) the prefix w′ of w that does not contain a $ and the first $
in w occurs immediately after w′ (i.e., w′$ is a prefix of w). We now prove some
properties of the automata Ai.

1. The automata Ai is absorbing: since for every state and every letter the
transition probability to the set { q2, q3 } is at least 1

2 ; and q2 and q3 are
absorbing.

2. Consider a word w ∈ Σ̂ω. If the word contains no $, then the state q2 is
reached with probability 1 (as every round there is at least probability 1

2
to reach q2). If the word w contains a $, then as soon as the input letter is
$, then the set { q2, q3 } is reached with probability 1. Hence the following
assertion holds: the probability Pw

A(Safe(F )) is the probability that after the
word w′ = first(w) the current state is q1.

Lemma 3. For all words w ∈ Σ∗, the probability that in the automaton Ai after
reading w (a) the current state is q1 is equal to 1

2|w| · θi(w); (b) the current state is
q0 is equal to 1

2|w| · (1 − θi(w)); and (c) the current state is q2 is equal to 1 − 1
2|w| .



8 K. Chatterjee and T.A. Henzinger

q0Σ q1 Σ̂
$

Fig. 2. Safety automaton A3

Proof. The result follows from induction on length of w, and the base case is
trivial. We prove the inductive case. Consider a word w ·σ: by inductive hypoth-
esis the probability that after reading w the current state is q0 is 1

2|w| ·(1−θi(w))
and the current state is q1 is 1

2|w| · θi(w), and the current state is q2 with proba-
bility (1− 1

2|w| ). After reading σ, if the current state is q0 or q1, with probability
1
2 a transition to q2 is made. Hence the probability to be at q2 after w · σ is
(1 − 1

2|w|+1 ) and the rest of the probability is to be at either q0 and q1. The
probability to be at q1 is

1

2|w|+1 · ((1 − θi(w)) · θi(σ) + θi(w) · (θi(σ) + ki(σ)
)

= 1

2|w|+1 · (θi(σ) + θi(w) · ki(σ))

= 1

2|w|+1 · θi(w · σ).

The first equality follows by rearranging and the second equality follows from
Lemma 2. Hence the result follows.

The following lemma is an easy consequence.

Lemma 4. For i ∈ { 1, 2 }, for a word w ∈ Σ̂ω, (a) if w contains no $, then
Ai(w) = 0; (b) if w contains a $, let w′ = first(w), then Ai(w) = 1

2|w′| · θi(w′).

Constant automata and random choice automata. For any rational con-
stant ν it is easy to construct an absorbing safety automaton A that assigns
value ν to all words. Given two absorbing safety automata A1 and A2, and two
non-negative rational numbers β1, β2 such that β1 + β2 = 1, it is easy to con-
struct an automaton A (by adding an initial state with initial randomization)
such that for all words w we have A(w) = β1 · A1(w) + β2 · A2(w). We will use
the notation β1 · A1 + β2 · A2 for the automaton A.

Safety automaton A3. We consider a safety automaton A3 on the alphabet
Σ̂ as follows: (a) for a word w without any $ the acceptance probability is 1;
(b) for a word with a $ the acceptance probability is 0. The automaton is shown
in Fig 2 and the only accepting state is q0. Consider the acceptance-absorbing
reachability automaton A4 as follows: the automaton is same as in Fig 2 with
accepting state as q1: the automaton accepts a word with a $ with probability 1,
and for words with no $ the acceptance probability is 0.

Theorem 1 (Quantitative equality problem). The quantitative equality
problem is undecidable for probabilistic safety and acceptance-absorbing reach-
ability automata.
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Proof. Consider an automaton A = 1
3 · A1 + 1

3 · (1 − A2) + 1
3 · A3 (since A2 is

absorbing we can complement A2 and obtain an automaton for 1−A2). We show
that the quantitative equality problem for A with λ = 1

3 is yes iff the answer to
the PCP problem instance is yes. We prove the following two cases.

1. Suppose there is a finite word w such that ϕ1(w) = ϕ2(w). Consider the
infinite word w∗ = w$w′ where w′ is an arbitrary infinite word. Then the
acceptance probability of w∗ in A3 is 0 (since it contains a $). Since w∗

contains a $ and first(w∗) = w, by Lemma 4 the acceptance probability of
w∗ in A is 1

3 + 1
2|w| · (θ1(w) − θ2(w)). Since ϕ1(w) = ϕ2(w) it follows that

θ1(w)−θ2(w) = 0. It follows that the acceptance probability of w∗ in A is 1
3 .

2. Consider an infinite word w. If the word contains no $, then the acceptance
probability of w in A1 and A2 is 0, and the acceptance probability in A3 is 1.
Hence A accepts w with probability 2

3 > 1
3 . If the word w contains a $, then

A3 accepts w with probability 0. The difference of acceptance probability
of w in A1 and A2 is 1

2|w′| · (θ1(w′) − θ2(w′)), where w′ = first(w). Hence
the acceptance probability of w in A is 1

3 iff θ1(w′) = θ2(w′). Hence w′ is a
witness that ϕ1(w′) = ϕ2(w′).

It follows that there exists a finite word w that is a witness to the PCP instance
iff there exists an infinite word w∗ in A with acceptance probability equal to 1

3 .
For acceptance-absorbing reachability automata: consider the same construc-

tion as above with A3 being replaced by A4, and the equality question for λ = 2
3 .

Since A1 −A2 < 1, it follows that any witness word must contain a $, and then
the proof is similar as above.

Quantitative existence and value problems. We will now show that the
quantitative existence and the quantitative value problems are undecidable for
probabilistic absorbing safety automata. We start with a technical lemma.

Lemma 5. Let us consider a PCP instance. Let z = maxσ∈Σ{|ϕ1(σ)|, |ϕ2(σ)|}.
For a finite word w, if θ1(w) − θ2(w) �= 0, then (θ1(w) − θ2(w))2 ≥ 1

k2·|w|·z .

Proof. Given the word w, we have |ϕi(w)| ≤ |w| · z, for i ∈ { 1, 2 }. It follows
that θi(w) can be expressed as a rational number pi

q , where q ≤ kz·|w|. It follows
that if θ1(w) �= θ2(w), then |θ1(w) − θ2(w)| ≥ 1

kz·|w| . The result follows.

Automaton A5. Consider the automaton shown in Fig 3: the accepting states
are q0 and q1. For any input letter in Σ, from the initial state q0 the next state
is itself with probability 1

k2·(z+1) , and the rest of the probability is to goto q2. For
input letter $ the next state is q1 with probability 1. The states q1 and q2 are
absorbing. Given a word w, if there is no $ in w, then the acceptance probability
is 0; otherwise the acceptance probability is 1

k2(z+1)·|w′ | , where w′ = first(w). Also
note that the automaton A5 is absorbing.

Theorem 2 (Quantitative existence and value problems). The quanti-
tative existence and value problems are undecidable for probabilistic absorbing
safety automata.



10 K. Chatterjee and T.A. Henzinger

q0

Σ, 1

k2·(z+1)

q1 Σ̂
$q2Σ̂

Σ, 1 − 1

k2·(z+1)

Fig. 3. Safety automaton A5

Proof. Let us first consider the following automata: B1 = 1
2 · A1 + 1

2 · (1 − A2)
and B2 = 1

2 · A2 + 1
2 · (1 − A1). The Cartesian product of B1 and B2 gives us

the automaton B3 = 1
4 − (A1 − A2)2. Finally, let us consider the automaton

B = 1
2 · B3 + 1

2 · A5. The automaton B can be obtained as an absorbing safety
automaton. We show that there exists a word (or the sup value of words) is
greater than 1

8 iff the answer to PCP is yes.

1. If the answer to PCP problem is yes, consider the witness finite word w
such that ϕ1(w) = ϕ2(w). We construct an infinite word w∗ for B as follows:
w∗ = w$w′ where w′ is an arbitrary infinite word. Since the word w∗ contains
a $ by Lemma 4 we have the difference in acceptance probability of w∗ in
A1 and A2 is 1

2|w| · (θ1(w) − θ2(w)). Since ϕ1(w) = ϕ2(w), it follows that
A1(w∗) = A2(w∗). Hence we have B(w∗) = 1

8 + 1
k2·(z+1)·|w| > 1

8 .
2. We now show that if there is an infinite word with acceptance probabil-

ity greater than 1
8 (or the sup over the infinite words of the acceptance

probability is greater than 1
8 ) in B, then the answer to the PCP prob-

lem is yes. Consider an infinite word w for B. If w contains no $, then
A1, A2, and A5 accepts w with probability 0, and hence the acceptance
probability in B is 1

8 . Consider an infinite word w that contains a $. Let
w′ = first(w). If θ1(w′) �= θ2(w′), then by Lemma 4 and Lemma 5 we have
(A1(w)−A2(w))2 ≥ 1

22|w′| · 1
k2·|w′|·z ≥ 1

k2·|w′|·(z+1) . Since A5(w) = 1
k2·|w′ |·(z+1) ,

it follows that B(w) ≤ 1/8. If θ1(w′) = θ2(w′) (which implies ϕ1(w′) =
ϕ2(w′)), then B(w) = 1

8 + 1
k2·|w′|·(z+1) > 1

8 .

It follows from above that the quantitative existence and the quantitative value
problems are undecidable for absorbing safety (and hence also for acceptance-
absorbing reachability) automata.

Corollary 1. Given any rational 0 < λ < 1, the quantitative equality, exis-
tence, and value problems are undecidable for probabilistic absorbing safety and
acceptance-absorbing reachability automata.

Proof. We have shown in Theorem 1 and Theorem 2 that the problems are
undecidable for specific constants (e.g., 1

3 , 1
8 etc.). We show below given the

problem is undecidable for a constant 0 < c < 1, the problem is also undecidable
for any given rational 0 < λ < 1. Given an automaton B we consider two cases:

1. If λ ≤ c, then consider the automaton A = λ
c ·B+(1− λ

c )·0. The quantitative
decision problems for constant c in B is exactly same as the quantitative
decision problems for A with λ.
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2. If λ ≥ c, then consider the automaton A = 1−λ
1−c ·B+ λ−c

1−c ·1. The quantitative
decision problems for c in B is exactly same as the quantitative decision
problems for A with λ.

The desired result follows.

Corollary 2 (Quantitative decision problems). Given any rational 0 <
λ < 1, the quantitative equality, existence and value problems are undecidable
for probabilistic safety, reachability, Büchi, coBüchi and limit-average automata.

4 (Un-)Decidability of Qualitative Decision Problems

In this section we show that the qualitative decision problems are decidable for
safety automata, and the limit problem is undecidable for reachability, Büchi,
coBüchi and limit-average automata. The result is inspired from the proof
of [GO09] that shows that the limit problem is undecidable for finite automata.
If the finite automata construction of [GO09] were acceptance absorbing, the
result would have followed for acceptance-absorbing reachability automata (and
hence also for Büchi, coBüchi and limit-average automata). However, the un-
decidability proof of [GO09] for finite automata constructs automata that are
not acceptance-absorbing. Simply changing the accepting states of the automata
constructed in [GO09] to absorbing states does not yield the undecidability for
accepting absorbing automata. We show that the construction of [GO09] can be
adapted to prove undecidability of the limit problem for acceptance-absorbing
automata with reachability condition. We first present a simple proof that for
safety condition the almost and limit problem coincide.

Lemma 6. Given an automaton with a safety condition the answer to the limit
problem is yes iff the answer to the almost problem is yes.

Proof. If the answer to the almost problem is yes, then trivially the answer to the
limit problem is yes (since a witness for almost problem is a witness for all ε > 0
for the limit problem). We now show the converse is true. Consider an automaton
A with � states, and let η > 0 be the minimum non-zero transition probability
in A. We assume that the answer to the limit problem is yes and show that the
answer to the almost problem is also yes. Consider ε = η2�

, and let w be a word
such that A(w) > 1−ε. For a position i of w let Si = {q ∈ Q | δ|wi|+1(q) > 0} be
the set of states that have positive probability in the distribution of states after
reading the prefix of length i of w. If a path in A leaves the set F of accepting
states within k steps, then it leaves with probability at least ηk. Since w ensures
the safety condition with probability at least 1 − ε = 1 − η2�

it follows that for
all 1 ≤ i ≤ 2� we have Si ⊆ F (i.e., each Si upto 2� is a subset of the accepting
states). There must exist 0 ≤ n < m ≤ 2� such that Sn = Sm. Consider the
word w∗ = w1w2 · · ·wn−1(wnwn+1wm−1)ω. The word w∗ ensures the following:
let S∗

i = { q ∈ Q | δ|w∗
i |+1(q) > 0 }, then for all 0 ≤ i ≤ n we have Si = S∗

i , and
for all i ≥ n we have S∗

i ⊆ ⋃m
j=n Si. It follows that for all i ≥ 0 we have S∗

i ⊆ F
and hence A(w∗) = 1. The result follows.
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q1

a, x

q2

a

q3 q4

a, b, $ a, b, $

a, 1 − x

b

$
$b

q5

a, 1 − x

q6

a

q7 q8

a, b, $ a, b, $

a, x

b

$
$b

Fig. 4. Automata A1 (on left) and A2 (on right)

Qualitative decision problems for safety conditions. The above lemma
shows that for safety condition the answers to the almost and the limit problem
coincide. The almost and positive problem for safety condition can be solved by
reduction to partial observable Markov decision processes (POMDPs). The de-
cidability of the almost and positive problem for POMDPs with safety condition
is known in literature [BGG09]. It follows that the qualitative decision problems
are decidable for safety condition.

Lemma 7. Consider the acceptance-absorbing automaton A = 1
2A1 + 1

2 · A2,
where A1 and A2 are shown in Fig 4. The following assertion hold: for all ε > 0,
there exists a word w such that A(w) > 1 − ε iff x > 1

2 .

Proof. Given ε > 0, a word w to be accepted with probability at least 1 − ε
2

both A1 and A2 must accept it with probability at least 1− ε. Conversely, given
a word w if it is accepted by A1 and A2 with probability at least 1 − ε, then A
accepts it with probability at least 1− ε. Hence we show that for all ε > 0 there
exist words w such that both A1(w) ≥ 1 − ε and A2(w) ≥ 1 − ε iff x > 1

2 .
We first observe that a word w to be accepted in A1 can have a $ only after

having reached its absorbing accepting state (since for all other states the input
letter $ leads to the non-accepting absorbing state q4). A word w to be accepted
in A2 must have a $, and the $ must occur when the current state is either
q5 or q6. A word to be accepted in A1 must contain a b and the b must occur
when the current state is q1. Hence it suffices to consider words of the form
w∗ = ww′, where w′ is an arbitrary infinite word and w is a finite word of
the form an0ban1b . . . anib$. Consider a word anb, for n ≥ 0: the probability to
reach the state q3 from q1 is xn, and the probability to reach the absorbing non-
accepting state q7 from q5 is (1 − x)n. Consider a word w = an0ban1b . . . anib$:
(a) the probability of reaching q3 from q1 in A1 is 1 −∏i

k=0(1 − xni); (b) the
probability of reaching q7 from q5 in A2 is
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(1 − x)n1 + (1 − (1 − x)n1) · (1 − x)n2+ · · · +
∏i−1

k=0(1 − (1 − x)nk) · (1 − x)ni

= 1 −∏i
k=0(1 − (1 − x)ni).

If x ≤ 1
2 , then x ≤ 1−x, and hence 1−∏i

k=0(1−xni) ≤ 1−∏i
k=0(1− (1−x)ni).

It follows that the acceptance probability of w in A1 is less than the rejection
probability in A2, hence A(w) ≤ 1

2 . It follows that if x < 1
2 , then for all words

w we have A(w) ≤ 1
2 .

To complete the proof we show that if x > 1
2 , then for all ε > 0, there exist

words w such that both A1(w) ≥ 1 − ε and A2(w) ≥ 1 − ε. Our witness words
w∗ will be of the following form: let w = an0ban1b . . . anib and we will have
w∗ = w$ω. Our witness construction closely follows the result of [GO09]. Given
the word w, the probability to reach q3 from q1 is

L1 = 1 −
i∏

k=0

(1 − xni);

hence A1 accepts w∗ with probability L1. Given the word w, since the last letter
is a b, with probability 1 the current state is either q7 or q5. The probability to
reach q7 from q5 for w is given by

L2 = (1 − x)n1 + (1 − (1 − x)n1) · (1 − x)n2 + · · · +∏i−1
k=0(1 − (1 − x)nk) · (1 − x)ni

≤ ∑i
k=0(1 − x)ni since

∏j
k=0(1 − (1 − x)nk) ≤ 1 for all j ≤ i.

Thus the acceptance probability for w in A2 is at least 1−L2. Hence given ε > 0,
our goal is to construct a sequence (n0, n1, n2, . . . , ni) such that L1 ≥ 1 − ε and
L2 ≤ ε. For ε > 0, it suffices to construct an infinite sequence (nk)k∈N such that∏

k≥0

(1 − x)nk = 0; and
∑
k≥0

(1 − x)nk ≤ ε.

Then we can construct a finite sequence (n0, n1, . . . , ni) of numbers such that
we have both

i∏
k=0

(1 − x)nk ≤ ε; and
i∑

k=0

(1 − x)nk ≤ 2 · ε,

as desired. Since
∏

k≥0(1 − x)nk = 0 iff
∑∞

k=0 xnk = ∞, we construct sequence
(nk)k∈N such that

∑∞
k=0 xnk = ∞, and

∑
k≥0(1 − x)nk ≤ ε. Let (nk)k∈N be a

sequence such that nk = lnx( 1
k )+J , where J is a suitable constant (to be chosen

later and depends on ε and x). Then we have∑
k≥0

xnk = xJ ·
∑
k≥0

1
k

= ∞.

On the other hand, we have

1 − x = xlnx(1−x) = x
ln(1−x)

ln x
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Since x > 1
2 we have β = ln(1−x)

ln x > 1, i.e., there exists β > 1 such that 1−x = xβ .
Hence ∑

k≥0

(1 − x)nk =
∑
k≥0

xβ·nk = xβ·J ·
∑
k≥0

xβ·lnx( 1
k ) = xβ·J ·

∑
k≥0

1
kβ

.

Since the above series converges, for all ε > 0, there exists a J such that
∑

k≥0(1−
x)nk ≤ ε. This completes the proof.

Almost and limit problem do not coincide. In contrast to probabilistic
safety automata where the almost and limit question coincide, the answers are
different for probabilistic acceptance-absorbing reachability automata. In the
automaton A above if x > 1

2 , the answer to the limit question is yes. It follows
from the proof above that if 1

2 < x < 1, then though the answer to the limit
question is yes, the answer to the almost question is no. The almost and positive
problem for reachability automata is decidable by reduction to POMDPs with
reachability objective. We show that the limit question is undecidable. The proof
uses the above lemma and the reduction technique of [GO09].
Reduction for undecidability. Given an acceptance-absorbing reachability
automaton B, we construct an automaton as shown in Fig 5: we assume that �
does not belong to the alphabet of B, and in the picture the dashed transitions
from B on � are from accepting states, and the solid transitions are from non-
accepting states. We call the automaton as A∗. We claim the following: the
answer to the limit problem for the automaton A∗ is yes iff there exists a word
w that is accepted in B with probability greater than 1

2 .

1. Suppose there is a word w∗ such that B(w∗) = y > 1
2 . Let η = y − 1

2 . There
is a finite prefix w of w∗ such that the probability to reach an accepting state
in B given w is x = y − η

2 > 1
2 . Given ε > 0 and x as defined y − η

2 , we have
x > 1

2 , and hence by Lemma 7 there exists a sequence (n0, n1, . . . , nk) such
that (an0ban1b . . . ankb)($)ω is accepted in A with probability at least 1−ε. It
follows that the automaton A∗ accepts

(
(aw�)n0b(aw�)n1 . . . b(aw�)nk b

)
($)ω

with probability at least 1−ε. It follows that the answer to the limit problem
is yes.

2. If for all words w we have B(w) ≤ 1/2, then we show that the answer to
the limit problem is no. Let x = supw∈Σω B(w) ≤ 1

2 . Consider a word ŵ =(
(aw0�)n0b(aw1�)n1 . . . b(aw2�)nkb

)
($)ω : given this word the probability to

reach q3 in q1 given ŵ is at most

1 −
i∏

k=0

(1 − xni);

and the probability to reach q7 from q5 given ŵ is at least

(1 − x)n1 + (1 − (1 − x)n1) · (1 − x)n2 + · · · +

i−1∏
k=0

(1 − (1 − x)
nk) · (1 − x)

ni

= 1 −
i∏

k=0

(1 − (1 − x)
ni).
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q1 q2

a

q3 q4

B

a, b, $ a, b, $

a
�

�

b

$
$b

q5 q6

a

q7 q8

B

a, b, $ a, b, $

a
�

�

b

$
$b

Fig. 5. Limit undecidability construction

The argument is similar to the proof of Lemma 7. It follows from the argu-
ment of Lemma 7 that the word is accepted with probability at most 1

2 in A∗.
Thus it follows that for all words w we have A∗(w) ≤ 1

2 . Since the quantita-
tive existence problem is undecidable for acceptance absorbing reachability
automata (Theorem 2), it follows that the limit problem is also undecidable.

Table 1. Decidability and undecidability results for probabilistic automata

Positive Almost Limit Quantitative Equality

Safety Dec. Dec. Dec. Undec.

Reachability Dec. Dec. Undec. Undec.

Büchi Undec. Dec. Undec. Undec.

coBüchi Dec. Undec. Undec. Undec.

Limit-average ?? ?? Undec. Undec.

Undecidability. From the above proof it follows that the limit problem is unde-
cidable for acceptance absorbing reachability automata, and hence also for Büchi,
coBüchi, and limit-average condition. This gives us the Theorem 3. For other
qualitative questions the results are as follows: (A) We argued that for safety con-
dition that almost and limit problem coincide, and the decision problems can be
answered from the solutions of partial-observable MDPs (POMDPs) [BGG09].
(B) For reachability condition the almost and positive problem can be answered
through POMDPs ([BBG08]). (C) For Büchi condition it was shown in [BBG08]
that the positive problem is undecidable and the almost problem is decidable.
(D) For coBüchi condition it was shown in [BBG08] that the almost problem
is undecidable and the positive problem is decidable. (E) For limit-average con-
dition the decidability of the positive and almost problem remains open. The
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results are summarized in Table 1 (the results for quantitative existence and
quantitative value problem is the same as for quantitative equality problem).

Theorem 3 (Qualitative problem). The following assertions hold: (a) the
positive problem is decidable for probabilistic safety, reachability, and coBüchi
automata, and is undecidable for probabilistic Büchi automata; (b) the almost
problem is decidable for probabilistic safety, reachability, and Büchi automata,
and is undecidable for probabilistic coBüchi automata; and (c) the limit problem
is decidable for probabilistic safety automata and is undecidable for probabilistic
reachability, Büchi, coBüchi and limit-average automata.
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et indécidables. In: Rapport de Recherche RR-1464-09 LaBRI (Conference

version to appear ICALP 2010) (2009)

[HU79] Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages,

and Computation. Addison-Wesley Publishing Company, Reading (1979)

[Paz71] Paz, A.: Introduction to probabilistic automata, Computer science and ap-

plied mathematics. Academic Press, London (1971)

[Rab63] Rabin, M.O.: Probabilistic automata. Information and Control 6, 230–245

(1963)



Abstraction Learning
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A state-of-the-art approach for proving safe programs is CounterExample-Guided
Abstraction Refinement (CEGAR) which performs a “abstraction-verification-
refinement” cycle by starting with a coarse abstract model that is then refined
repeatedly whenever a counterexample is encountered. In this work, we present
a dual approach which starts with a concrete model of the program but progres-
sively abstracts away details but only when these are known to be irrelevant.
We call this concept Abstraction Learning (AL). In order to deal with loops, our
algorithm is encapsulated in an iterative deepening search where, because of a
particular depth bound, abstraction is forced upon loops. This abstraction will
correspond to the strongest loop invariant we can discover. As in CEGAR, this
abstraction is of a speculative nature: if the proof is unsuccessful, the abstraction
is removed and we initiate a new attempt using a new depth bound.

A key difference between AL and CEGAR is that AL detects more infeasible
paths in the state-space traversal phase. We argue that this key feature poses
unique benefits, and demonstrate the performance of our prototype implemen-
tation against the state-of-the-art BLAST system.
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Synthesis: Words and Traces
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Abstract. The problem of synthesising a reactive system is discussed.

The most standard instance of this problem ask to construct a finite

input-output automaton satisfying a given regular specification. During

fifty years since its introduction by Church, numerous extensions of the

initial formulation have been considered. One particularly challenging

case is that of distributed synthesis where a construction of a network of

input/output automata is required.

1 General Context

Synthesis is about constructing a system from a given specification. For example:
constructing of a circuit realizing a given boolean function. This case is easy until
one adds constraints on placement of gates, etc. In some other settings the task
is impossible from the very beginning: there is no algorithm constructing from
an arithmetic formula a program realising the specified I/O function. Yet some,
severe, restrictions of this problem are decidable, e.g., when considering only
formulas of Presburger arithmetic. Here we will be interested in an extension of
the first example to infinite, reactive behaviour.

The starting point of this research is the setting proposed by A. Church more
than half a century ago [6]. He considered devices that transform an infinite
sequence of input bits into an infinite sequence of output bits. The device is
required to work “on-line”: for each input bit read, it should produce an output
bit. Church asked for an algorithm that constructs such a device from a given
specification. The specification language he considered is monadic second-order
logic (MSOL) over natural numbers with order, 〈N,≤〉. In this case a specification
is a formula ϕ(X, Y ), where X and Y stand for subsets of N, or equivalently,
infinite sequences of bits. So the formula defines a desired relation between the
input sequence X and the output sequence Y .

The problem of Church is fundamentally different from decidability of MSOL
theory of 〈N,≤〉. Satisfiability of the formula ∀X.∃Y.ϕ(X, Y ) is just a necessary
condition for the existence of a required device: not only for every input sequence
there should exist a good output sequence, but moreover this sequence should be
produced “on-line”. Indeed, while Büchi has shown decidability of MSOL theory
of 〈N,≤〉 in 1960 [3], the solution to the synthesis problem came almost a decade
later [2,19,20].

At the end of the eighties, Ramadge and Wonham introduced the theory of
control of discrete event systems [21,9,4]. In this theory we start with a finite
automaton, also called a plant, that defines all possible sequential behaviours of

A. Bouajjani and W.-N. Chin (Eds.): ATVA 2010, LNCS 6252, pp. 18–21, 2010.
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the system. The goal is to find for a given plant another finite automaton, called
controller, such that the synchronous product of the plant and the controller
satisfies desired properties: MSOL properties of the language of the product.

This kind of synthesis problem would be interesting neither from theoreti-
cal nor from practical point of view if there were no additional restrictions on
controllers. In the most standard form, some events of the plant are declared
to be uncontrollable, and some others to be unobservable. The controller is not
allowed to block uncontrollable events, and is not supposed to see unobservable
events. More precisely these restrictions are determined by two subsets Aunc and
Auobs of the alphabet of events with the associated requirement that:

(C) For every state q of the controller, and for every uncontrollable event a ∈
Aunc , there is a transition from q labelled by a.

(O) For every state q of the controller, and for every unobservable event a ∈
Auobs , if there is a transition from q labelled by a then this transition is a
loop over q.

Ramadge and Wonham setting is more general than Church formulation. Inter-
estingly though, the tools developed for the Church problem are sufficient to solve
this case too. One important lesson here is that synthesis is ultimately about
branching properties: properties of trees rather than properties of sequences.
Once MSOL theory of trees is well understood, the rest is relatively easy.

At present, Ramadge and Wonham setting as described above is well estab-
lished. Starting from there, many extensions have been studied: richer automata
models, richer specification languages, introduction of time constraints, quanti-
tative constraints, . . .One of the most challenging and promising directions is the
extension of the framework to the distributed case. Here, one puts restrictions
on the form of synthesised device: it should be distributed into several modules,
each with limited capacities of observing the plant.

2 Distributed Synthesis

In a distributed system one can have multiple processes. The system specifies
possible interactions between the processes and the environment, as well as, the
interactions between the processes themselves. The synthesis problem is to find
a program for each of the processes such that the overall behaviour of the system
satisfies a given specification.

The problem can be modeled by a game with incomplete information. In such
a game we have a team of controllers playing against a single player represent-
ing environment. Finding a program for each controller is then equivalent to
computing a distributed winning strategy for each of the controllers. In gen-
eral, multiplayer games with incomplete information are undecidable [17,16].
For similar reasons the distributed control problem is also undecidable in most
cases [18,11,10,12,14,1]. Thanks to these works we understand some sources for
undecidability, but we do not have the whole picture yet. It is fair to say that
the examples leading to undecidability can be qualified as unrealistic. It would
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be very interesting to refine the setting to rule out these examples, but no sat-
isfactory proposal is known at present.

One important attempt to get a decidable framework of distributed synthesis
is to change the way information is distributed in the system. In the case above,
every controller sees only its inputs and its outputs. In order to deduce some
information about the global state of the system a controller can use only his
knowledge about the architecture and the initial state of the system. In partic-
ular, controllers are not permitted to pass additional information during com-
munication. It is clear though that when we allow some transfer of information
during communication, we give more power to controllers.

Pushing the idea of sharing information to the limit, we obtain a model where
two processes involved in a communication share all the information they have
about the global state of the system [8]. This point of view is not as unrealis-
tic as it may seem at the first glance. It is rooted in the theory of traces that
studies finite communicating automata with this kind of information transfer.
A fundamental result of Zielonka [22,7] implies that in fact there is a bound
on the size of additional information that needs to be transferred during com-
munication. In our terms, the theory of traces considers the case of synthesis
for closed systems, i.e., systems without environment. For the distributed syn-
thesis with environment, some decidability results for some special cases are
known [8,13,15,5]. Moreover, similarly to Zielonka’s Theorem, these results give
a bound on additional information that needs to be transferred. The decidability
of the general case is open. Interestingly, the general case can be formulated as
an extension of the Ramadge and Wonham setting from words, that is linear
orders, to special partial orders called Mazurkiewicz traces.

References

1. Arnold, A., Walukiewicz, I.: Nondeterministic controllers of nondeterministic pro-
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2. Büchi, J., Landweber, L.: Solving sequential conditions by finite state strategies.

Trans. Amer. Math. Soc. 138, 367–378 (1969)
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Abstract. Liveness properties of on-going reactive systems assert that

something good will happen eventually. In satisfying liveness properties,

there is no bound on the “wait time”, namely the time that may elapse

until an eventuality is fulfilled. The traditional “unbounded” semantics

of liveness properties nicely corresponds to the classical semantics of

automata on infinite objects. Indeed, acceptance is defined with respect

to the set of states the run visits infinitely often, with no bound on the

number of transitions taken between successive visits.

In many applications, it is important to bound the wait time in live-

ness properties. Bounding the wait time by a constant is not always

possible, as the bound may not be known in advance. It may also be

very large, resulting in large specifications. Researchers have studied

prompt eventualities, where the wait time is bounded, but the bound

is not known in advance. We study the automata-theoretic counterpart

of prompt eventually. In a prompt-Büchi automaton, a run r is accepting

if there exists a bound k such that r visits an accepting state every at

most k transitions. We study the expressive power of nondeterministic

and deterministic prompt-Büchi automata, their properties, and decision

problems for them. In particular, we show that regular nondeterministic

prompt Büchi automata are exactly as expressive as nondeterministic

co-Büchi automata.

1 Introduction

A specification of a reactive system describes the required on-going behaviors
of the system. Specifications can be viewed as ω-regular languages and are tra-
ditionally classified into safety and liveness properties [1]. Intuitively, safety
properties assert that nothing bad will ever happen during the execution of the
system, and liveness properties assert that something good will happen even-
tually. In satisfying liveness properties, there is no bound on the “wait time”,
namely the time that may elapse until an eventuality is fulfilled.

In many applications, it is important to bound the wait time in liveness prop-
erties. Bounding the wait time by a constant changes the specification from a
liveness property to a safety property. For example, if we bound the wait time
in the specification “every request is eventually granted” and replace it by the
specification “every request is granted within k transitions” for some fixed k,
then we end up with a safety property – we never want to come across a request
that is not granted within the next k transitions. While the safety property is
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much stronger, it involves two drawbacks. First, the bound k needs to be known
in advance, which is not the case in many applications. For example, it may de-
pend on the system, which may not yet be known, or it may change, if the system
changes. Second, the bound may be large, causing the state-based description of
the specification (e.g., an automaton for it) to be large too. Thus, the common
practice is to use liveness properties as an abstraction of such safety properties.

Several earlier work suggested and studied an alternative semantics to eventu-
ally properties. The semantics, termed finitary fairness in [3], bounded fairness in
[9], and prompt eventually in [15], does not suffer from the above two drawbacks
and is still more restrictive than the standard semantics. In the alternative se-
mantics, the wait time is bounded, but the bound is not known in advance.
Consider, for example, the computation π = req.grant .req.¬grant .grant .req .
(¬grant)2. grant . req.(¬grant)3.grant . . ., in which the wait time to a grant in-
creases in an unbounded (yet still finite) manner. While π satisfies the liveness
property “every request is eventually granted”, it does not satisfy its prompt
variant. Indeed, there is no bound k such that π satisfies the property “every
request is granted within k transitions”.

The traditional “unbounded” semantics of liveness properties nicely corre-
sponds to the classical semantics of automata on infinite objects. Indeed, accep-
tance is defined with respect to the set of states the run visits infinitely often,
with no bound on the number of transitions taken between successive visits. The
correspondence in the semantics is essential in the translation of temporal-logic
formulas to automata, and in the automata-theoretic approach to specification,
verification, and synthesis of nonterminating systems [17,19]. The automata-
theoretic approach views questions about systems and their specifications as
questions about languages, and reduces them to automata-theoretic problems
like containment and emptiness.

In this paper we introduce and study a prompt semantics for automata on
infinite words, by means of prompt-Büchi automata. In a Büchi automaton, some
of the states are designated as accepting states, and a run is accepting iff it visits
states from the accepting set infinitely often [7]. Dually, in a co-Büchi automaton,
a run is accepting iff it visits states outside the accepting set only finitely often.
In a prompt-Büchi automaton, a run is accepting iff there exists a bound k
such that the number of transitions between successive visits to accepting states
is at most k. More formally, if A is a prompt-Büchi automaton with a set α of
accepting states, then an infinite run r = r1, r2, ... of A is accepting iff there exists
a bound k ∈ � such that for all i ∈ � it holds that {ri, ..., ri+k−1} ∩ α �= ∅. We
consider both nondeterministic (NPBWs, for short) and deterministic (DPBW,
for short) prompt-Büchi automata.

It is not hard to see that if A is a Büchi automaton, then the language of the
automaton obtained by viewing A as a prompt Büchi automaton is contained in
the union of all the safety languages contained in the language of A.

The relation between safety languages and promptness has been studied al-
ready in [20]. There, the authors define bound automata, which are parame-
terized by a bound k, and a run is accepting if for all i ∈ � it holds that
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{rik, ..., r(i+1)k−1} ∩ α �= ∅. Thus, bound automata are similar to prompt au-
tomata, except that one restricts attention to windows that start in positions 0
mod k. It is shown in [20] that eventhough the language of A with parameter
k is a safety language, the automaton A can be used in order to generate an
infinite sequence of safety properties. As stated in [3], the union of all safety
languages that are recognized by A with parameter k, for some k, need not be
ω-regular. We prove that the language of the prompt-Büchi automaton need not
be ω-regular as well. In fact, Büchi and prompt-Büchi automata are incompara-
ble in terms of expressive power. Indeed, no NPBW can recognize the ω-regular
language (a∗b)ω (infinitely many occurrences of b), whereas no nondeterminis-
tic Büchi automaton (NBW, for short) can recognize the language Lb, where
w ∈ {a, b}ω is in Lb if there exists a bound k ∈ � such that all the subwords
of w of length k have at least one occurrence of b. Note that Lb is recognized
by a two-state DPBW that goes to an accepting state whenever b is read. Note
that when an NPBW runs on a word, it guesses and verifies the bound k with
which the run is going to be accepting. The bound k may be bigger than the
number of states, and still the NPBW has to somehow count and check whether
an accepting state appears at least once every k transitions. We would like to
understand how this ability of NPBWs influences their expressive power and
succinctness.

We start by investigating prompt Büchi automata in their full generality and
show that while both NPBWs and DPBWs are closed under intersection and
not closed under complementation, only NPBWs are closed under union. Also,
NPBWs are strictly more expressive than DPBWs. We then focus on regular-
NPBWs, namely languages that can be recognized by both an NPBW and an
NBW. We first show that NPBWs are NBW-type: if the language of a given
NPBW A is regular, then A is also an NBW for the language. From a theo-
retical point of view, our result implies that if a union of safety languages is
ω-regular, then the promptness requirement can be removed from every NPBW
that recognizes it. From a practical point of view, our result implies that there
is no state blow-up in translating NPBWs to NBWs, when possible. On the
other hand, we show that there are NBWs that recognize languages that can be
recognized by an NPBW, but an NPBW for them requires an automaton with a
different structure. Thus, if we add the promptness requirement to an NBW, we
may restrict its language, even if this language is a union of safety properties.

Our main result shows that regular-NPBWs are as expressive as nondetermin-
istic co-Büchi automata (NCWs). To show this, we first prove that counting to
unbounded bounds is not needed, and that the distance between successive vis-
its in accepting states can be bounded by 3n2

, where n is the number of states
of the automaton. Technically, the bound follows from an analysis of equiva-
lence classes on Σ∗ and an understanding that increasingly long subwords that
skip visits in accepting states must contain equivalent prefixes. It is easy to
show that the existence of the global 3n2

bound implies that the language is
NCW-recognizable. The global bound suggests a translation to NCW that is
not optimal. We use results on the translation of NBWs to NCWs [6] in order
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to show an alternative translation, with a blow up of only n2n. We also describe
a matching lower bound. It follows that regular-NPBW are exponentially more
succinct than NCWs. The equivalence with NCWs also gives immediate results
about the closure properties of regular-NPBWs.

Finally, we study decision problems for prompt automata. We show that
the problem of deciding whether a prompt automaton is regular is PSPACE-
complete for NPBW and is NLOGSPACE-complete for DPBW. The same
bounds hold for the universality and the containment problems. The main chal-
lenge in these results is the need to complement the NPBW. We show how
we can circumvent the complementation, work, instead, with an automaton
that approximates the complementing one, in the sense it accepts only words
with a fixed bound, and still solve the regularity, universality, and containment
problems.

Related work. The work in [9,15] studies the prompt semantics from a
temporal-logic prospective. In [9], the authors study an eventuality operator
parameterized by a bound (see also [2]), and the possibility of quantifying the
bound existentially. In [15], the authors study the logic prompt-LTL, which ex-
tends LTL by a prompt-eventuality operator Fp. A system S satisfies a prompt-

LTL formula ψ if there is a bound k ∈ � such that S satisfies the LTL formula
obtained from ψ by replacing all Fp by F≤k. Thus, there should exist a bound,
which may depend on the system, such that prompt eventualities are satisfied
within this bounded wait time. It is shown in [15] that the realizability and the
model-checking problems for prompt-LTL have the same complexity as the cor-
responding problems for LTL, though the algorithms for achieving the bounds
are technically more complicated. Note that the definition of prompt Büchi au-
tomata corresponds to the semantics of the Fp operator of prompt-LTL. Thus,
given an LTL formula ψ, we can apply to ψ the standard translation of LTL to
NBW [19], and end up with an NPBW for the prompt-LTL formula obtained
from ψ by replacing its eventualities by prompt ones.

The work in [8,10] studies the prompt semantics in ω-regular games. The
games studied are finitary parity and finitary Streett games. It is shown in
[8] that these games are determined and that the player whose objective is to
generate a computation that satisfies the finitary parity or Streett condition has
a memoryless strategy. In contrast, the second player may need infinite memory.
In [10] it is shown that the problem of determining the winner in a finitary parity
game can be solved in polynomial time.1

The closest to our work here is [4,5], which introduced the notion of prompt-
ness to Monadic Second Order Logic (MSOL) and ω-regular expressions. In [5],
the authors introduced ωBS-regular expressions, which extend ω-regular expres-
sions with two new operators B and S – variants of the Kleene star operator. The
semantics of the new operators is that (rB)ω , for a regular expression r, states
that words in L(r) occur globally with a bounded length, and (rS)ω states that

1 The computations of games with a single player correspond to runs of a nonde-

terministic automaton. Games, however, do not refer to languages, and indeed the

problems we study are very different from these studied in [8,10].
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words in L(r) occur with a strictly increasing length. Thus, ωBS-regular expres-
sions are clearly more expressive than NPBWs. In [4], the author studies the
properties of a prompt extension to MSOL. The contribution in [4,5] is orthog-
onal to our contribution here. From a theoretical point of view, [5,4] offer an
excellent and exhaustive study of the logical aspects of promptness, in terms of
closure properties and the decidability of the satisfiability problem for the for-
malisms and their fragments, where the goal is to give a robust formalism and
then study its computational properties. Indeed, the algorithmic aspects of the
studied formalisms are not appealing: the complexity of the decidability problem
is much higher than that of NPBWs, and the model of automata that is needed
in order to solve these problems is much more complex than NPBW (the au-
tomata are equipped with counters, and the translation of expressions to them is
complicated). Our contribution, on the other hand, focuses on the prompt vari-
ant of the Büchi acceptance condition. As such, it does not attempt to present a
robust promptness formalism but rather to study NPBWs in depth. As our re-
sults show, NPBWs are indeed much simpler than the robust formalisms, making
them appealing also from a practical point of view.

Due to the lack of space, most proofs are omitted and can be found in the full
version in the authors’ URLs.

2 Preliminaries

Given an alphabet Σ, a word over Σ is a (possibly infinite) sequence w =
σ1 · σ2 · σ3 · · · of letters in Σ. For x ∈ Σ∗ and y ∈ Σ∗ ∪ Σω, we say that x is a
prefix of y, denoted x � y, if there is z ∈ Σ∗ ∪ Σω such that y = x · z. If z �= ε
then x is a strict prefix of y, denoted x ≺ y. For an infinite word w and indices
0 ≤ k ≤ l, let w[k..l] = σk · · ·σl be the infix of w between positions k and l.

An automaton is a tuple A = 〈Σ, Q, δ, Q0, α〉, where Σ is the input alphabet,
Q is a finite set of states, δ : Q → 2Q is a transition function, Q0 ⊆ Q is a
set of initial states, and α ⊆ Q is an acceptance condition. We define several
acceptance conditions below. Intuitively, δ(q, σ) is the set of states that A may
move into when it is in the state q and it reads the letter σ. The automatonA may
have several initial states and the transition function may specify many possible
transitions for each state and letter, and hence we say that A is nondeterministic.
In the case where |Q0| = 1 and for every q ∈ Q and σ ∈ Σ, we have that
|δ(q, σ)| = 1, we say that A is deterministic. The transition function extends
to sets of states and to finite words in the expected way, thus for x ∈ Σ∗,
the set δ(S, x) is the set of states that A may move into when it is in a state
in S and it reads the finite word x. Formally, δ(S, ε) = S and δ(S, x · σ) =⋃

q∈δ(S,x) δ(q, σ). We abbreviate δ(Q0, x) by δ(x), thus δ(x) is the set of states
that A may visit after reading x. A run r = r1, r2, r3, ... of A on an infinite word
w = σ1 · σ2 · · · ∈ Σω is an infinite sequence of states such that r1 ∈ Q0, and
for every i ≥ 1, we have that ri+1 ∈ δ(ri, σi). Note that while a deterministic
automaton has a single run on an input word, a nondeterministic automaton
may have several runs on an input word. We sometimes refer to r as a word
in Qω or as a function from the set of prefixes of w to the states of A (that
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is, for a prefix x � w, we have r(x) = r|x|+1). Acceptance is defined with
respect to the set inf(r) of states that the run r visits infinitely often. Formally,
inf(r) = {q ∈ Q | for infinitely many i ≥ 1, we have ri = q}.

As Q is finite, it is guaranteed that inf(r) �= ∅. The run r is accepting if
it satisfies the acceptance condition α. A run r satisfies a Büchi acceptance
condition α if inf(r) ∩ α �= ∅. That is, r visits α infinitely often. Dually, r
satisfies a co-Büchi acceptance condition α if inf(r) ⊆ α. That is, r visits α
almost always. Note that the latter is equivalent to inf(r) ∩ (Q \ α) = ∅

We now define a new acceptance condition, prompt-Büchi, as follows: A run
r = r1, r2, . . . satisfies a prompt-Büchi acceptance condition α if there is k ≥ 1
such that for all i ≥ 1 there is j ∈ {i, i+ 1, . . . , i + k− 1} such that rj ∈ α. That
is, in each block of k successive states, the run r visits α at least once. We say
that r is accepting with a bound k. It is easy to see that requiring the bound
to apply eventually (instead of always) provides an equivalent definition. Thus,
equivalently, a run r satisfies prompt-Büchi acceptance condition α if there is
k ≥ 1 and n0 ∈ � such that for all i ≥ n0 there is j ∈ {i, i + 1, . . . , i + k − 1}
such that rj ∈ α. We say that r is accepting with eventual bound k. Given a
prompt-Büchi accepting run with bound k and eventual bound k′, note that it
always holds that k′ ≤ k, and that a strict inequality is possible.

An automaton accepts a word if it has an accepting run on it. The language
of an automaton A, denoted L(A), is the set of words that A accepts. We also
say that A recognizes the language L(A). For two automata A and A′ we say
that A and A′ are equivalent if L(A) = L(A′).

We denote the classes of automata by acronyms in {D, N} × {B, PB, C} ×
{W}. The first letter stands for the branching mode of the automaton (determin-
istic or nondeterministic); the second letter stands for the acceptance-condition
type (Büchi, Prompt-Büchi, or co-Büchi); the third letter indicates that the au-
tomaton runs on words. For example, DPBW stands for deterministic prompt-
Büchi automaton. We say that a language L is in a class γ if L is γ-recognizable;
that is, L can be recognized by an automaton in the class γ.

Given two classes γ and η we say that γ is more expressive than η if every
η-recognizable language is also γ-recognizable. If γ is not more expressive than η
and η is not more expressive than γ, we say that γ and η are incomparable. Dif-
ferent classes of automata have different expressive power. In particular, NBWs
recognize all ω-regular languages, while NCWs are strictly less expressive [18].

3 Properties of Prompt Languages

In this section we study properties of the prompt-Büchi acceptance condition.
As discussed in Section 1, the class of NPBW-recognizable languages is incom-
parable with that of ω-regular languages. Similar results were shown in [3], in
the context of finitary fairness in and safety languages.

Theorem 1. NPBWs and NBWs are incomparable.

The fact that NPBWs and NBWs are incomparable implies we cannot borrow
the known closure properties of ω-regular languages to the classes NPBW and
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DPBW. In Theorem 2 below, we study closure properties. As detailed in the
proof, for the cases of NPBW union as well as NPBW and DPBW intersection,
the known constructions for NBW and DBW are valid also for the prompt set-
ting. To show non-closure, we define, the following language. Let Σ = {a, b}. For
a letter σ ∈ Σ, let Lσ = {w ∈ {a, b}ω : there exists k ∈ � such that for alli ∈
� we have σ ∈ {wi, wi+1, ..., wi+k}}. Recall that the language Lb is in NPBW
but is not ω-regular. It is easy to see that Lσ can be recognized by a DPBW
with two states (that goes to an accepting state whenever σ is read). We show,
however, that the union of La and Lb cannot be recognized by a DPBW and
that no NPBW exists for its complementation. These results also imply that
NPBWs are strictly more expressive than DPBWs.

Theorem 2

1. NPBWs are, but DPBWs are not closed under union.
2. NPBWs and DPBWs are closed under intersection.
3. NPBWs and DPBWs are not closed under complementation.
4. NPBWs are strictly more expressive than DPBWs.

4 Regular NPBW

We have seen in Section 3 that NPBWs and NBWs are incomparable. In this
section we study regular prompt languages, namely languages that are both
NPBW and NBW recognizable. We use reg-NPBW and reg-DPBW to denote
the classes NBW ∩NPBW and NBW ∩DPBW, respectively. For an automaton
A, we denote by AB ,AP , and AC the automaton A when referred to as an
NBW, NPBW, and NCW, respectively.

4.1 Typeness

Given two types of automata γ1 and γ2, we say that a γ1 is γ2-type if for every
automaton A in the class γ1, if A has an equivalent automaton in the class γ2,
then there exists an equivalent automaton in the class γ2 on the same structure
as A (that is, only changing the acceptance condition). Typeness was studied
in [12,13], and is useful, as it implies that a translation between the two classes
does not involve a blowup and is very simple. In this section we study typeness
for NPBWs and NBWs.

Theorem 3. NPBW are NBW-type: if A is an automaton such that L(AP ) is
ω-regular, then L(AP ) = L(AB).

Proof. Since both L(AP ) and L(AB) are ω-regular, so is their difference, and
thus there is an NBW A′ such that L(A′) = L(AB) \ L(AP ). We prove that
L(A′) = ∅. Assume by way of contradiction that L(A′) �= ∅. Then A′ accepts
also a periodic word, thus there are u, v ∈ Σ∗ such that u ·vω ∈ L(AB)\L(AP ).
Let r be an accepting run of AB on u · vω. Thus, inf(r) ∩ α �= ∅. Hence, there
are indices i < j such that r visits α between reading u · vi and u · vj , and such
that r(uvi) = r(uvj). Then, however, we can pump r to an accepting run of AP

on u · (vivi+1 · · · vj−1)ω = u · vω, contradicting the fact that u · vω �∈ L(AP ).
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Theorem 4. NBWs are not NPBW-type: there exists an automaton A such
that L(AB) is NPBW-recognizable, but there is no NPBW A′ with the same
structure as A such that L(A′) = L(AB).

Proof. Consider the automaton A below. Note that L(AB) = {a, b}ω\{aω, bω}.
It is easy to construct a four-state NPBW for L(AB). On the other hand, it is
not hard to see that all possibilities to define an acceptance condition on top of
the structure of A results in an NPBW whose language is different.

b

a

a

ab b

a

a

b
a

b b

4.2 Reg-NPBW=NCW

In this section we prove that reg-NPBWs are as expressive as NCWs. We show
that while in the deterministic case, an equivalent DCW can always be defined
on the same structure, the nondeterministic case is much more complicated and
reg-NPBW are exponentially more succinct than NCWs.

We start with the deterministic case. As detailed in the proof, a DPBW AP

that recognizes a regular language can be translated to an equivalent DCW by
making the set α of accepting states maximal. That is, by adding to α all states
that do not increase the language of the DPBW. Intuitively, it follows from the
fact that if a run of the obtained DCW does not get trapped in α, and α is
maximal, then there must exists a state q �∈ α that is visited infinitely often
along the run. The word that witnesses the fact that q cannot be added to α
can then be pumped to a word showing that L(AP ) �= L(AB), contradicting the
regularity of AP .

Theorem 5. Let A be a reg-DPBW, then there exists a DCW B on the same
structure as A such that L(A) = L(B).

Proof. Consider the DPBW AP . For simplicity, we assume that α is maximal
(that is, no states can be added to α without increasing the language. Clearly,
we can turn a non-maximal accepting condition to an equivalent maximal one).
We claim that L(AC) = L(AP ).

It is easy to see that L(AC) ⊆ L(AP ). Indeed, if w is in L(AC), then the
run of A on w eventually gets stuck in α, and so w ∈ L(AP ). For the other
direction, consider a word w ∈ L(AP ) and assume by way of contradiction that
w /∈ L(AC). Let r be the accepting run of A on w, and let q ∈ α and q′ �∈ α be
states that are visited infinitely often in r. Since r is prompt-accepting and not
co-Büchi accepting, such q and q′, which are reachable from each other, exist.
Let v ∈ Σ∗ be a word leading from the initial state of A to q′ and let u ∈ Σ∗ be
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a word leading from q′ back to itself via q. Note that since q ∈ α, then v · uω is
accepted by A (with a max{|v|, |u|} bound).

Recall that α is maximal. Thus, adding q′ to α would result in an automaton
whose language strictly contains L(AP ). Hence, there exists z ∈ Σ∗, such that
z leads from q′ to itself and v · zω is not in L(AP ). Thus, the run on z from q′

is a cycle back to q′ that visits no states in α.
For all k ≥ 1, the word wk = v · (zk · u)ω is accepted by A. Indeed, the run

r of A on wk first gets to q′ after reading v. Then, whenever the run reads a
zku subword, it traverses a loop from q′ to itself k times while reading zk, and
traverses a loop that visits α while reading u. Since the cycle traversed while
reading u occurs every |zku| letters (that is, every fixed number of letters), this
run is accepting.

Denote the number of states in A by n and let k > n. In every z-block
there are l1 and l2 such that r visits the same state after it reads zl1 and zl2

in this block. Formally, for all i ≥ 0 there are 0 ≤ l1 < l2 ≤ k such that
r(v · (zk · u)i · zl1) = r(v · (zk · u)i · zl2). This means we can pump the z-blocks
of wk to a word w = v · zi1 · u · zi2 · u · zi3 · u · · · , with i1 < i2 < i3 < · · · , such
that w ∈ L(AB). By Theorem 3, we know that L(AB) = L(AP ). Hence, also
w ∈ L(AP ). Let k be the bound with which w is accepted by AP . Since there is
j ≥ 1 such that ij > max{k, n}, we can conclude, as in the proof of Theorem 1,
that the word w′ = v · zi1 · u · zi2 · · ·u · zij · u · zω is accepted by AP . However,
the run r′ of A on w′ has r′(v · zi1 · u · zi2 · · ·u · zij · u) = q′. Then, reading the
zω suffix, the run r′ does not visit α, implying that AP does not accept w′, and
we have reached a contradiction.

We now proceed to study the (much harder) nondeterministic case. Consider an
automaton A = 〈Σ, Q, Q0, δ, α〉. For u ∈ Σ∗ and q, q′ ∈ Q, we say that q →+

u q′

if q′ ∈ δ(q, u) and there is a run of A from q to q′ that reads u and visits α.
Similarly, we say that q →−

u q′ if q′ ∈ δ(q, u) but all runs of A from q to q′ that
read u do not visit α.

We define a relation ≡A⊆ Σ∗×Σ∗, where u ≡A v if for all q, q′ ∈ Q, we have
that q →+

u q′ iff q →+
v q′ and q →−

u q′ iff q →−
v q′ . Intuitively, u ≡A v if

for all states q of A, reading u from q has exactly the same effect (by means of
reachable states and visits to α) as reading v from q.

It is easy to see that ≡A is reflexive, symmetric, and transitive. We can char-
acterize each equivalence class [u] of ≡A by a function fu : Q → {+,−,⊥}Q,
where for all q, q′ ∈ Q, we have fu(q)(q′) = + iff q →+

u q′ , fu(q)(q′) = − iff
q →−

u q′ and fu(q)(q′) = ⊥ iff q′ /∈ δ(q, u). Since there are only 3|Q|2 such
functions, we have the following.

Lemma 1. The relation ≡A is an equivalence relation with at most 3(|Q|2) equiv-
alence classes.

Lemma 2. Consider an NPBW A. Let m denote the number of equivalence
classes of ≡A. Consider a word w ∈ Σm. There exist s ∈ Σ∗ and z ∈ Σ+ such
that s ≺ z � w, and s ≡A z.
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Proof. Since ≡A has m equivalence classes, every set of m + 1 words must
contain at least two ≡A-equivalent words. In particular, this holds for the set
{ε, w[0..1], w[0..2], . . . , w[0..m]}.
Theorem 6. Consider an automaton A. Let m denote the number of equiva-
lence classes of ≡A. If L(AP ) is ω-regular, then every word in L(AP ) has an
accepting run with an eventual bound of 2m.

Proof. SinceAP is ω-regular, then, by Theorem 3, we have that L(AP ) = L(AB).
Consider a word w ∈ L(AP ). We prove that there is a run that accepts w with
bound at most 2m. Let w = b1 ·b2 ·b3 · · · be a partition of w to blocks of length m;
thus, for all i ≥ 1, we have that bi ∈ Σm. We define w′ by replacing each block bi

by a new block b′i, of length strictly greater than m, defined as follows. For i ≥ 1,
let hi = b1 · · · bi−1 and h′

i = b′1 · · · b′i−1. Thus, hi and h′
i are the prefixes of w and

w′, respectively, that consist of the first i − 1 blocks. Note that h1 = h′
1 = ε.

Assume we have already defined h′
i. We define b′i as follows: By Lemma 2,

for every i ≥ 1 there exist si ∈ Σ∗ and zi ∈ Σ+ such that si ≺ si · zi � bi

and si ≡A si · zi. Let ti in Σ∗ be such that bi = si · zi · ti. Now, we define
b′i = si · (zi)i · ti. Thus, b′i is obtained from bi by pumping an infix of it that lies
between two prefixes that are ≡A-equivalent.

For runs r and r′ of A on w and w′, respectively, we say that r and r′ are
matching if for all i ≥ 0, the run r visits α when it reads the block bi iff the
run r′ visits α when it reads the block b′i. We prove that every run r of A on
w induces a matching run r′ of A on w′, and, dually, every run r′ of A on w′

induces a matching run r of A on w.
Consider a run r of A on w. For all i ≥ 1, recall that bi = si · zi · ti, where

si ≡A si · zi. It is easy to see (by induction on j) that for all j ≥ 1, the latter
implies that si · zi ≡A si · (zi)j . In particular, si · zi ≡A si · (zi)i. We define the
behavior of r′ on b′i as follows. By the definition so far, r′(h′

i) = r(hi). We rely on
the fact that si ·zi ≡A h′

isi ·(zi)i and define r′ so that r′(h′
i ·si ·(zi)i) = r(hi ·si ·zi).

Also, r′ visits α when it reads si · (zi)i iff r visits α when it reads si · zi. On ti
we define r′ to be identical to r. It is easy to see that r and r′ are matching. In
a similar way, every run r′ of A on w′ induces a matching run r of A on w.

Recall that w ∈ L(AP ). Therefore, there is a run r of A on w that visits
α infinitely often, or, equivalently, visits α in infinitely many blocks. Hence,
the matching run r′ of A on w′ also visits α in infinitely many blocks, and
w′ ∈ L(AB) = L(AP ).

Since w ∈ L(AP ), there is a run r′ on w′ that is accepting with some bound
k ≥ 1. For every i > k, the block b′i contains the infix (zi)i, for zi �= ε, and is
therefore of length at least k. Hence, the run r′ visits α when it reads the the block
b′i. Let r be a run of A on w that matches r′. Since r and r′ are matching, the run r
visits α when it reads the block bi, for all i > k. Since |bi| = m, the longest α-less
window in r after block i is of length 2m− 1, thus r is accepting with an eventual
bound of 2m. Hence, w is accepted by a run that has a 2m eventual bound.

Theorem 6, together with Lemma 1, induce a translation of reg-NPBW to NCW:
the NCW can guess the location in which the eventual bound k becomes valid
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and then stays in an accepting region as long as an accepting state of the NPBW
is visited at least once every k transition. Since an NCW can be translated to
an NPBW with eventual bound 1, we can conclude with the following.

Theorem 7. reg-NPBWs are as expressive as NCWs.

The construction used in the proof of Theorem 7 involves a blow-up that de-
pends on the number 3(|Q|2) of equivalence classes, and is thus super-exponential.
We now show that while we can do better, an exponential blow-up can not be
avoided.

Theorem 8. The tight blow-up in the translation of reg-NPBW to NCW is n2n,
where n is the number of states of the NPBW.

Proof. Consider a reg-NPBW A with n states. From Theorem 7, we know that
L(AP ) is NCW-recognizable. From Theorem 3, we know that L(AP ) = L(AB).
Thus, AB is an NBW whose language is NCW recognizable. Hence, by [6], there
exists an NCW B with at most n2n states equivalent to AB, and hence also to
AP . Moreover, it can be shown that the family of languages with which the n2n

lower bound was proven in [6] can be defined by means of reg-NPBWs, rather
than NBWs, implying a matching lower bound.

4.3 Properties of Reg-NPBW and Reg-DPBW

The fact that reg-NPBW =NCW immediately implies that closure properties
known for NCWs can be applied to reg-NPBW. For reg-DPBW, we present the
corresponding constructions. The fact that only reg-DPBW are closed under
complementation also implies that reg-NPBW are more expressive than reg-
DPBW.

Theorem 9

1. reg-NPBW are closed under finite union and intersection, and are not closed
under complementation.

2. reg-DPBW are closed under finite union, intersection and complementation.
3. reg-NPBW are strictly more expressive than reg-DPBW.

5 Decision Problems

In this section we study three basic decision problems for prompt automata:
regularity (given AP , deciding whether L(AP ) is ω-regular) universality (given
AP , deciding whether L(AP ) = Σω), and containment (given AP and an NBW
A, deciding whether L(A) ⊆ L(AP )). Note that the nonemptiness problem for
an NPBW AP can ignore the promptness and solve the nonemptiness of AB

instead. The other problems, however, require new techniques. The main chal-
lenge solving them has to do with the fact that we cannot adopt solutions from
the regular setting, as these involve complementation. Instead, we use approx-
imated determinization of NPBW: determinization that restricts attention to
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words accepted with some fixed eventual bound. We show that we can approxi-
mately determinize NPBWs and that we can use the approximating automaton
in order to solve the three problems.

We first show that in the deterministic setting, the three problems can be
solved by analyzing the structure of the automaton. To see the idea behind the
algorithms, consider a reachable state q ∈ Q such that q is reachable from itself
both by a cycle that intersects α and by a cycle that does not intersect α. The
existence of such a state implies the existence of words x, u, v ∈ Σ∗ such that
the word x(uvi)ω is accepted by AP for all i ∈ �, but w = xuvuv2uv3 · · ·
satisfies w ∈ L(AB) \L(AP ). Thus, AP is regular iff no such state exists, which
can be checked in NLOGSPACE. As detailed in the proof, the algorithms for
universality and containment follow similar arguments.

Theorem 10. The regularity, universality, and containment problems for
DPBW are NLOGSPACE-complete.

We continue to the nondeterministic setting and start with the construction of
the deterministic co-Büchi approximating automaton. The DCW D that approx-
imates the NPBW A has a parameter k and it accepts exactly all words that
are accepted in A with eventual bound k. Essentially, D follows the subset con-
struction of A, while keeping, for each reachable state q, the minimal number
of transitions along which q is reachable from a state in α in some run of A. If
this number exceeds k, then D regards it as ∞, meaning that this state cannot
be part of a run that has already reached the suffix in which the eventual bound
applies. A run of D is accepting if eventually it visits only subsets that contain
at least one state with a finite bound. Indeed, a run of D can get stuck in such
states iff there is a run of A that visits α every at most k transitions. We note
that a similar construction is described in [20], for the translation of a bound
automaton with parameter k to a deterministic Büchi automaton.

Theorem 11. Let A be an NPBW with n states. For each k ∈ � there exists a
DCW D with at most (k + 1)n states such that L(D) = {w : w is accepted by A
with eventual bound k}.

Proof. Let A = 〈Σ, Q, δ, Q0, α〉 and let k ∈ �. We define D = 〈Σ, Q′, δ′, Q′
0, α

′〉
as follows. The state space Q′ is the set of partial functions d : Q → {0, ..., k −
1,∞}. For a state d ∈ Q′, we say that a state q ∈ Q is d-safe if d(q) ∈ {0, 1, ..., k−
1}. Let safe(d) = {q : q is d-safe} be the set of all states that are d-safe. When
A reads a word w, a state d ∈ Q′ keeps track of all the runs of A on w in
the following manner. For each state q ∈ Q, if d(q) is undefined, then q is not
reachable in all runs of A on the prefix of the input word read so far. Otherwise,
d(q) is the minimal number of transition that some run of A on w that visits q
has made since visiting α. If this number is greater than k, that is, no run of A
that visits q has visited α in the past k transitions, then d(q) = ∞. Intuitively,
this means that runs that visit q are still not in the suffix in which α is visited
promptly. As we shall prove below, some run has reached a “good” suffix, iff D
can get trapped in states that contain at least one safe state.
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We now define D formally. The initial state is Q′
0 = {d0} such that for all

q ∈ Q0, we have d0(q) = 0. The set of accepting states is α′ = {d : safe(d) �=
∅}. Before we define the transition function, we define an addition operator on
{0, 1, ..., k− 1,∞} as follows. For all i ∈ {1, ..., k− 1,∞}, we define i + 1 = i + 1
if i < k − 1 and i + 1 = ∞ if i ∈ {k − 1,∞}.

For technical convenience, we associate with a state d the set Sd of states on
which d is defined. We say that d is lost if for all q ∈ Sd, we have d(q) = ∞. For
d ∈ Q′ and σ ∈ Σ we define δ′ as follows. If d is lost, then δ′(d, σ)(q′) = 0 for all
q′ ∈ δ(Sd, σ). Otherwise we define δ′(d, σ) = d′ as follows. For q′ ∈ δ(safe(d), σ)∩
α, we have d′(q′) = 0. For q′ ∈ δ(Sd, σ)∩ (Q \α) we have d′(q′) = min{d(q)+ 1 :
q′ ∈ δ(q, σ) and q ∈ Sd}. Finally, for q′ ∈ (δ(Sd, σ) \ δ(safe(d), wi)) ∩ α we
have d′(q′) = ∞. Intuitively, safe(d) is the set of states that are still within the k
bound in some run of A. Thus, d′ checks which of these states indeed visit α after
reading σ, and resets them to 0. Otherwise it increases the counter. If all states
reached ∞, then the eventual bound k was not yet in effect. We ”take note” of
this by not visiting α, and then d′ resets to 0, giving the eventual bound a new
chance. One may notice that the sets Sd are exactly the subset construction of
A. Thus, essentially, d is a labeling function of the subset construction.

We refer to D as the k-approximating DCW of A. While the deterministic DCW
constructed in Theorem 11 accepts only words that are accepted in the original
NPBW with a fixed eventual bound, Theorem 6 enables us to use such a DCW
in the process of deciding properties of the NPBW. In particular, for a regular-
NPBW A, Theorem 6 implies that a DCW constructed with bound 2 · 3n2

is
equivalent to A. Recall that NPBWs are NBW-type. By [6], an NBW whose
language is DCW-recognizable can be translated to a DCW with 3n states.
Hence we have the following.

Theorem 12. Let A be a regular NPBW. There exists a DCW with at most 3n

states such that L(D) = L(A).

In fact, as we show below, the deterministic approximating automaton is helpful
for deciding all three problems, even when applied to non-regular NPBWs.

Theorem 13. The regularity, universality, and containment problems for
NPBWs are PSPACE-complete.

Proof. We prove here the upper bounds. For the lower bounds, we use a re-
duction from NFW universality to NPBW universality, and a reduction from
NPBW universality to NPBW regularity. Since universality can be reduced to
containment, PSPACE-hardness for all the three problems follow.

We first prove that the universality problem is in PSPACE. Let A be an
NPBW. Let D be the DCW defined in Theorem 11 with bound 2 ·3n2

. We claim
that L(AP ) = Σω iff L(D) = Σω. For the first direction, if L(AP ) = Σω, then in
particular L(AP ) is in reg-NPBW. From Theorem 12 we get that L(D) = L(AP ),
so L(D) = Σω. For the other direction, observe that it is always true that
L(D) ⊆ L(AP ). Thus, if L(D) = Σω, then L(AP ) = Σω. Since the number



Promptness in ω-Regular Automata 35

of states in D is (2 · 3n2
+ 1)n and the universality problem for DCWs is in

NLOGSPACE, a PSPACE upper bound follows.
We proceed to prove that the regularity problem is in PSPACE. Consider the

automaton D constructed in Theorem 12. If L(AP ) = L(AB) then L(AP ) is ω-
regular and thus L(D) = L(AP ) = L(AB). On the other hand, if L(D) = L(AP )
then L(AP ) is ω-regular and by Theorem 3 we have that L(AP ) = L(AB).
Thus, deciding whether L(AP ) = L(AB) is equivalent to deciding whether
L(D) = L(AB). Note, however, that by Theorem 11 it is always true that
L(D) ⊆ L(AP ) ⊆ L(AB). Thus, it is sufficient to check whether L(AB) ⊆ L(D),
which can be done in PSPACE.

It is left to prove that the containment problem is in PSPACE. We describe
a PSPACE algorithm for deciding whether L(B) ⊆ L(AP ). Let m and n be
the number of states in B and A, respectively. First, check whether L(B) ⊆
L(AB). If L(B) �⊆ L(AB) return no. Otherwise, construct, per Theorem 11, a 2k-
approximating DCW, with k = (m+1) ·3n2

. Next, check whether L(B) ⊆ L(D).
If so, return yes. Otherwise, return no.

It is not hard to see that the algorithm can be implemented in PSPACE.
We now prove its correctness. Since it is always true that L(D) ⊆ L(AP ) ⊆
L(AB), then it is easy to see that if L(B) ⊆ L(D) then L(B) ⊆ L(AP ), and if
L(B) �⊆ L(AB) then L(B) �⊆ L(AP ). It remains to show that if L(B) ⊆ L(AB)
but L(B) �⊆ L(D) then L(B) �⊆ L(AP ).

Recall that L(D) = {w : w is accepted by AP with eventual bound of at most
2k}. We claim that if L(B) ⊆ L(AP ) then L(B) ⊆ L(D). Thus, we show that if
w ∈ L(B) then w is accepted by AP with eventual bound of at most 2k. The
proof of this claim follows the reasoning in the proof of Theorem 6.

Let w ∈ L(B). Since L(B) ⊆ L(AP ) then w ∈ L(AP ). Assume by way of
contradiction that w is accepted by AP with an eventual bound greater than 2k.
We divide w into blocks of length k, so w = b1 ·b2 · · · such that |bi| = k. Let s and
r be accepting runs of B and AP on w, respectively. Thus, there are infinitely
many blocks bi such that s visits αB when reading bi. Since r has an eventual
bound greater than 2k, then there are infinitely many blocks bi such that r does
not visit αA when reading bi. Since we took k = (m+1) ·3n2

, then in every block
bi = x1 · · ·xk there exist two indices j1 < j2 such that x1 · · ·xj1 ≡A x1 · · ·xj2

and s(xj1 ) = s(xj2 ). We can now pump the infix xj1 · · ·xj2 such that both r
and s are not affected outside the pumped infix. Now, similarly to the proof of
Theorem 6, we can pump infinitely many blocks bi such that the run r is no
longer prompt-accepting and s is still accepting. We end up with a word w′ that
is accepted by B. By our assumption, w′ is accepted by AP , and thus has a
prompt accepting run r′ of AP . We can shrink the pumped blocks of w′ back to
w such that the respective shrinking of s′ is a prompt accepting run of w with
eventual bound of at most 2k, which leads to a contradiction.

In [14], the authors describe a PSPACE model-checking algorithm for Prompt-

LTL. Our PSPACE containment algorithm completes the picture and implies
that all prompt properties given by an NPBW can be model-checked in PSPACE.
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Abstract. This paper is concerned with a method for computing reach-

able sets of linear continuous systems with uncertain input. Such a

method is required for verification of hybrid systems and more generally

embedded systems with mixed continuous-discrete dynamics. In general,

the reachable sets of such systems (except for some linear systems with

special eigenstructures) are hard to compute exactly and are thus often

over-approximated. The approximation accuracy is important especially

when the computed over-approximations do not allow proving a prop-

erty. In this paper we address the problem of refining the reachable set

approximation by adding redundant constraints which allow bounding

the reachable sets in some critical directions. We introduce the notion of

directional distance which is appropriate for measuring approximation

effectiveness with respect to verifying a safety property. We also de-

scribe an implementation of the reachability algorithm which favors the

constraint-based representation over the vertex-based one and avoids ex-

pensive conversions between them. This implementation allowed us to

treat systems of much higher dimensions. We finally report some exper-

imental results showing the performance of the refinement algorithm.

1 Introduction

Hybrid systems, that is, systems exhibiting both continuous and discrete dy-
namics, have been recognized as a high-level model appropriate for embedded
systems, since this model can describe, within a unified framework, the logical
part and the continuous part of an embedded system. Due to the safety critical
features of many embedded applications, formal analysis is a topic of particular
interest. Recently, much effort has been devoted to the development of automatic
analysis methods and tools for hybrid systems, based on formal verification.

Reachability analysis is a central problem in formal verification. The impor-
tance of this problem can be seen in its growing literature. For hybrid systems
with simple continuous dynamics that have piecewise constant derivatives, their
reachable sets can be computed using linear algebra. This is a basis for the ver-
ification algorithms implemented in a number of tools, such as UPPAAL [19],
KRONOS [25], HYTECH [13] and PHAVER [9]. For hybrid systems with more
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complex continuous dynamics described by differential or difference equations,
the reachability problem is much more difficult, and a major ingredient in de-
signing a reachability analysis algorithm for such hybrid systems is an efficient
method to handle their continuous dynamics. Hybrid systems can be seen as a
combination of continuous and discrete dynamics; their verification thus requires,
in addition to computing reachable sets of continuous dynamics, performing op-
erations specific for discrete behavior, such as Boolean operations over reachable
sets. It is worth noting first that exact computation of reachable sets of lin-
ear continuous systems is in general difficult. It was proved in [21] that this is
possible for a restricted class with special eigenstructures.

In this paper we revisit the problem of approximating reachable sets of linear
continuous systems, which was investigated in [3,8]. The approximation accuracy
is important especially when the computed over-approximations do not allow
proving a property. We propose a method for refining a reachable set approxi-
mation by adding redundant constraints to bound it in some critical directions.
We also introduce the notion of directional distance which is appropriate for mea-
suring approximation effectiveness with respect to verifying a safety property.
Although in this paper we focus only on methods for accurately approximating
reachable sets of linear continuous systems, it is important to note that we use
convex polyhedra to represent reachable sets, the treatment of discrete dynamics
in a hybrid system can thus be done using available algorithms for Boolean oper-
ations over these polyhedra. The methods presented in this paper can therefore
be readily integrated in any existing polyhedron-based algorithm for verification
of hybrid automata with linear continuous dynamics, such as [2].

The reachability problem for linear systems has been a topic of intensive
research over the past decade. We defer a discussion on related work to the last
section. The paper is organized as follows. We start with a brief description
of the technique for approximating reachable sets using optimal control [24,3].
We then present two methods for refining approximations by using redundant
constraints. One method can reduce approximation error globally while the other
is more local and guided by the property to verify. We also describe an efficient
implementation of these methods and some experimental results.

2 Preliminaries

Notation and Definitions. Let x, y be two points in Rn and X , Y be two
subsets of Rn. We denote by 〈x,y〉 the scalar product of x and y. The Hausdorff
semi-distance from X to Y is defined as h+(X, Y ) = supx∈X infy∈Y {||x− y||}
where || · || is the Euclidian norm. The Hausdorff distance between X and Y is
h(X, Y ) = sup {h+(X, Y ), h+(Y, X)}.

We now consider a discrete-time linear system described by the following
equation

x(k + 1) = Ax(k) + u(k) (1)

where x ∈ X is the state of the system and u ∈ U is the input. The input
set U is a bounded convex polyhedron in Rn. We assume a set U of admissible
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input functions consisting of functions of the form μ : Z+ → U . Note that any
system x(k + 1) = Ax(k) + Bv(k) where v(k) ∈ V ⊂ Rm can be transformed
into a system of the form (1) by letting u = Bv and defining the input set
U = {u | u = Bv ∧ v ∈ V}.

A trajectory of (1) starting from a point y ∈ X under a given input μ ∈ U

is the solution ξµ(y, k) of (1) with the initial condition x(0) = y, that is ∀k >
0 ξµ(y, k + 1) = Aξµ(y, k) + μ(k).

Let I be a subset of X . The set of states reachable from I at a time point k
under a given input μ ∈ U, denoted by Postµ(I, k), is the set of states visited at
time k by all the trajectories starting from points in I under μ: Postµ(I, k) =⋃
y∈I

ξµ(y, k). The set of all states reachable from I at time point k is Post(I, k) =⋃
µ∈U

PostI, µ(k).

Reachability Problem. The reachability problem we address in this paper is
stated as follows. Given a set I ⊂ X of initial states, we want to compute the
reachable set Post(I, k) of the system (1) up to some time k = kmax.

2.1 Reachability Algorithm

With a view to safety verification, our goal is to obtain conservative approxi-
mations. To this end, we make use of the technique, which was first suggested
in [24] and then applied in [3,8,2] for hybrid systems. This technique is based on
the Maximum Principle in optimal control [14]. In the following, we recap the
main idea of this technique.

We assume that the initial set is a bounded convex polyhedron described
as the intersection of a set H = {H(a1,y1), . . . , H(am,ym)} of m half-spaces:

I =
m⋂

i=0

H(ai,yi) where each half-space H(ai,yi) ∈ H is defined as H(ai,yi) =

{x | 〈ai,x〉 ≤ 〈ai,yi〉 = γi}. We say that 〈ai,x〉 ≤ 〈ai,yi〉 is the linear constraint
associated with H(ai,yi). For simplicity, we sometimes use H(ai,yi) to refer to
both the half-space and its associated constraint. The polyhedron defined by
the intersection of the half-spaces of H is denoted by Poly(H). We emphasize
that in the above description of I, the set of associated constraints may not be
minimal, in the sense that it may contain redundant constraints. The vector ai

is called the outward normal of the half-space H(ai,yi) and yi is an arbitrary
point of Poly(H) on the boundary of the half-space H(ai,yi), which we call a
supporting point of H(ai,yi).

By the Maximum Principle [14], for every half-space H(a,y) of I with the
outward normal a and a supporting point y, there exists an input μ∗ ∈ U such
that computing the successors of H(a,y) under μ∗ is sufficient to derive a tight
polyhedral approximation of Post(I, k). It can be proved that the evolution of
the normal of each H(a,y) is governed by the adjoint system whose dynamics
is described by the following equation:
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λ(k + 1) = −AT λ(k). (2)

The solution to (2) with the initial condition λ(0) = a is denoted by λa(k). The
following proposition shows that one can compute exactly the reachable set from
a half-space.

Proposition 1. Let H(a,y) = {x | 〈a,x〉 ≤ 〈a,y〉} be a half-space with the
normal a and a supporting point y. Let λa(k) be the solution to (2) with the
initial condition λ(0) = a. Let μ∗(k) ∈ U be an input such that for every k ≥ 0

μ∗(k) ∈ arg max{〈λa(k),u〉 | u ∈ U}.
Let ξµ∗(y, k) be the solution to (1) under the above input μ∗ with the initial

condition x(0) = y. Then, the reachable set from H(a,y) is the half-space with
the normal λa(k) and the supporting point ξµ∗(y, k):

Post(H(a,y), k) = Postµ∗(H(a,y), k) = {x | 〈λa(k),x〉 ≤ 〈λa(k), ξµ∗(y, k)〉}.
(3)

We remark that the evolution of the normal λa(k) is independent of the input;
therefore for all μ ∈ U the boundaries of the half-spaces Postµ(H(a,y), k) are
parallel to each other, as shown in Figure 1.

y

a

I λa(1)

H(a,y)

ξμ∗(y, 1)ξμ(y, 1)

Postμ∗(H(a,y), 1)

ai

yiI
y∗

i (k)

λi(k)

P̂ ost(I, k)

H(ai,yi)

Fig. 1. Left figure: The solid and the dotted curves are the trajectories ξµ∗(y, k)

under μ∗ and ξµ(y, k) under μ. At the first step, the reachable set Postµ∗(H(a,y), 1)
is the half-space determined by the normal λa(1) and the supporting point ξµ∗(y, 1).
Right figure: Over-approximating the exact reachable set Post(I, k) (shown in dotted

line) by the polyhedron P̂ ost(I, k).

The following proposition [24,8] shows that one can conservatively approximate
the reachable set from the convex polyhedron I =

⋂m
i=0 H(ai,yi).

Proposition 2. For every i ∈ {1, . . . , m}, let μ∗
i(k) be an admissible input

such that for every k ≥ 0 μ∗
i(k) ∈ argmax{〈λai

(k),u〉 | u ∈ U}. Then,

Post(I, k) ⊆
m⋂

i=0

{x | 〈λai
(k),x〉 ≤ 〈λai

(k), ξµ∗
i
(yi, k)〉}.
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Proposition 2 provides the following scheme to over-approximate Post(I, k) by
P̂ ost(I, k). For brevity we denote y∗

i (k) = ξµ∗
i
(yi, k) and λi(k) = λai

(k).

λi(k + 1) = −AT λi(k); λi(0) = ai, (4)
y∗

i (k + 1) = Ay∗
i (k) + μ∗

i(k); y∗
i (0) = yi, (5)

μ∗
i(k) ∈ arg max {〈λi(k),u〉 | u ∈ U}. (6)

Algorithm 1. Over-approximating PostI(k)
for i = 1, . . . , m do

Compute λi(k) by solving (4).

Compute μ∗
i(k) = arg max {〈λi(k),u〉 | u ∈ U}.

Compute y∗
i (k) by solving (5) with μ∗

i(k) obtained in the previous step.

end for
P̂ ost(I, k) =

⋂m
i=1 {x | 〈λi(k),x〉 ≤ 〈λi(k),y∗

i (k)〉}.

Note that if the input set U is a bounded convex polyhedron then μ∗
i(k)

can be selected at one of its vertices at every time point k. The last step con-
sists in intersecting all the half-spaces defined by the normal vectors λi(k) and
the points y∗

i (k) to obtain the convex polyhedron P̂ ost(I, k), which is an over-
approximation of Post(I, k) (see Figure 1 for an illustration of the algorithm).

2.2 Approximation Accuracy

As a metric for our approximations, we use the Hausdorff distance introduced in
the beginning of Section 2. This is a good measure for differences between sets.
The approximation error is defined as: εk = h(P̂ ost(I, k), Post(I, k)).

Proposition 3. For a linear system x(k + 1) = Ax(k) + u(k) where the set of
input function is a singleton, the equality in Proposition 2 is achieved, that is
the set P̂ ost(I, k) = Post(I, k).

To prove this result, we notice that the image of the intersection of two sets
X and Y by a function g satisfies g(X ∩ Y ) ⊆ g(X) ∩ g(Y ). In particular, if
g is injective, g(X ∩ Y ) = g(X) ∩ g(Y ). Indeed, the solutions of deterministic
systems are injective since they do not cross one another. On the contrary, the
solutions of non-deterministic systems are generally not injective (since from
different initial states, different inputs may lead the system to the same state).
This implies that for linear systems with uncertain input, Algorithm 1 produces
only an over-approximation of this set.

Proposition 4. If a half-space H supports the initial set I, that is its boundary
contains a point in I, then for every k > 0 the half-space Post(H, k) computed
as shown in the formula (3) supports the exact reachable set Post(I, k).

The proof of this can be straightforwardly established from the fact that the
supporting point y∗(k) = ξµ∗(y, k) of each Postk(H) is indeed a point in the
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exact reachable set from I since it is computed as a successor from a point in I
under an admissible input function.

From the above results, to improve the approximation accuracy one can use
additional half-spaces in the description of the initial set, such that with re-
spect to the initial set their associated constraints are redundant, but under
the system’s dynamics they evolve into new half-spaces which can be useful for
bounding the approximation in some directions. In order to significantly reduce
the approximation error which is measured by the Hausdorff distance between
the approximate and the exact sets, it is important to find the area when the
difference between these sets is large. In the following, we propose two methods
for refining the reachable set approximation by dynamically adding constraints.

3 Refinement Using Sharp Angles

For simplicity we use H = {H1, . . . , Hm} with Hi = H(ai,yi) = {x | 〈ai,x〉 ≤
〈ai,yi〉 = γi} to denote the half-spaces of the reachable set at the kth step.
As mentioned earlier, the constraints to add should not change the polyhedron
and thus must be redundant. Another requirement is that the corresponding
half-spaces should be positioned where the approximation error is large. The
over-approximation error indeed occurs mostly around the intersections of the
half-spaces. In addition, this error is often large when the angle between two
adjacent half-spaces, which can be determined from their normal vectors, is
smaller than some threshold σ. We call them adjacent half-spaces with sharp
angle.

Indeed, when two adjacent half-spaces form a sharp angle, the area near their
intersection is elongated, which causes a large difference between the polyhedral
approximation and the actual reachable set. Hence, in order to better approxi-
mate the exact boundary, one needs to use more approximation directions.

A constraint to add can be determined as follows. Its normal vector λn can be
defined by a linear combination of λl and λj : λn = w1λl + w2λj where w1 > 0,
w2 > 0. We next determine a supporting point of the constraint. To this end,
we find a point on the facet in the intersection between Hl and Hj by solving
the following linear programming problem:

min 〈λn,x〉
s.t. ∀q ∈ {1, . . . , m} : q �= l ∧ q �= j ∧ 〈λq,x〉 ≤ γq (7)

〈λl,x〉 = γl

〈λj ,x〉 = γj

The solution x∗ of the above LP problem yields the new constraint 〈λn,x〉 ≤
λnx∗, which can be used for refinement purposes.

It is important to note that while sharp angles between half-spaces are useful
to identify the areas where the approximation error might be large, sharp angles
can also be formed when the system converges to some steady state. In this
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case, “curving” the approximate set does not significantly improve the accuracy,
because their normal vectors under the system’s dynamics become very close to
each other, and we choose not to add constraints in this case.

Dynamical Refinement. In the above we showed how to determine redundant
constraints for refinement. The refinement process can be done dynamically as
follows. During the computation, if at the kth step, the sharp angle criterion
alerts that the approximation error might be large, we move r ≤ k steps back-
wards and add constraints for each pair of adjacent half-spaces with sharp angles.
The computation is then resumed from the (k − r)th step.

An important remark is that the larger r is, the more significant accuracy im-
provement is achieved, at the price of more computation effort. Indeed, when we
backtrackuntil thefirst step, thehalf-spaces corresponding to the addedconstraints
actually support the boundary of the initial set. Thus, by Proposition 4, their suc-
cessors also support the exact reachable set from I, which guarantees approxima-
tion tightness. On the contrary, if r < k, it follows from the above LP problem (7)
that the added constraints only support the approximate reachable set and their
boundaries therefore are not guaranteed to contain a truly reachable point.

Figure 4 illustrates the improvement in accuracy achieved by this method for
a 2-dimensional linear system whose matrix is a Jordan block1. The colored parts
correspond to the approximation error which is reduced by adding constraints
using the sharp angle criterion.

4 Refinement Using Critical Directions

A good compromise between accuracy and computation time depends on the
problems to solve and the available computation budget. In this section, we dis-
cuss a refinement procedure specific for safety verification problems. As we have
seen earlier, in order to guarantee a desired approximation error bound, mea-
sured using the Hausdorff distance between the approximate and the exact sets,
one needs to assure that their difference does not exceed the bound in all direc-
tions. Nevertheless, when reachability analysis is used to prove a safety property,
this measure is not appropriate for characterizing the potential of reaching a un-
safe zone. In this case, one is more interested in computing an approximation
that may not be precise (with respect to the Hausdorff distance to the exact
set) but enables deciding whether the exact set intersects with the unsafe set.
To this end, we use a measure, called directional distance.

4.1 Directional Distance

Given two convex sets A and B in Rn, a Boolean function contact(A, B) = true
if and only if the following two conditions are satisfied: (1) Int(A)∩ Int(B) = ∅;
(2) δA ∩ δB �= ∅ where Int(A) is the interior of A and δA is its boundary.

1 A Jordan block is a matrix whose main diagonal is filled with a fixed number and

all the entries which are directly above and to the right of the main diagonal are 1.
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Fig. 2. Adding constraints can reduce approximation error (which is the colored areas

in the figure)

Intuitively, contact(A, B) is true if and only if A and B intersect with each other
and, in addition, they intersect only on their boundaries.

If A ∩ B �= ∅, the directional distance between A and B is defined as

ρ(A, B) = inf
p∈Rn

{||p|| : contact(A, B + p)}.

where ||p|| denotes the Euclidian length of the vector p, B+p = {x+p | x ∈ B}
is the result of translating the set B by the vector p.

If A and B are in contact, ρ(A, B) = 0. Note that if the sets A and B are
overlapping, the above ρ(A, B) > 0 measures the “depth” of the intersection
of the two sets. To generalize this definition to overlapping sets, we need to
distinguish this case from the case where A and B do not intersect. To do so,
we use a signed version of the directional distance that has positive values if the
two sets are non-overlapping and negative values otherwise.

Definition 1. Given two convex sets A and B in Rn, the signed directional
distance between A and B is defined as

ρs(A, B) =
{

ρ(A, B) ifA ∩ B �= ∅,
−ρ(A, B) otherwise.

This directional distance in two and three dimensions has been used in robotics
for collision detection [20]. The advantages of using the signed directional dis-
tance for the safety verification problem are the following:

– It measures the potential and the degree of collision between two moving
objects, which, in the context of reachability computation, provides useful
information on the necessity of refining reachable set approximations.

– For convex polyhedral sets, it can be estimated efficiently, as we will show
in the sequel.
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4.2 Signed Directional Distance Estimation and Refinement
Algorithm

The signed directional distance between two convex polyhedra can be computed
using existing algorithms (such as in [7]). However, these algorithms are specific
for two and three dimensions and require complete polyhedral boundary descrip-
tions (such as their vertices and facets). In high dimensions these descriptions
are very expensive to compute, which will be discussed more in Section 5. We
therefore focus on the problem of estimating the signed distance using only con-
straint descriptions of polyhedra. Our solution can be summarized as follows.
The underlying idea is based on the relation between the signed directional dis-
tance ρs(A, B) and the Minkowski difference A � B. The latter is defined as
follows:

A � B = {b− a |a ∈ A ∧ b ∈ B}.
Intuitively, the Minkowski difference contains the translation directions that can
bring A into contact with B. Its relation with the signed distance that we exploit
is expressed by: ρs(A, B) = ρs(0, A�B) where 0 is the singleton set that contains
the origin of Rn. Again, the vertex description of the Minkowski difference set can
be expensive to compute, we resort to a constraint description of this set that can
be efficiently computed. To this end, we consider a particular set of translation
vectors corresponding to moving the half-space of a face e of A in the direction of
its normal λe by a distance de so that the half-space touches B. Then, it can be
proved that the half-space He = {x : 〈λe,x〉 ≤ de} contains at least one face of
the exact Minkowski difference A � B. Let He be the set of all such half-spaces
He. This implies that A � B ⊆ Poly(He) =

⋂
∀e{x : 〈λe,x〉 ≤ de}. In two

or three dimensions, it is possible to obtain the exact constraint description of
A�B by considering other translation types (such as an edge of A moves along
an edge of B). Nevertheless, this computation requires the vertex descriptions
of the polyhedra and we thus omit it.

λe

A

B

de

e

Fig. 3. Estimation of the directional distance
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Since Poly(He) is an over-approximation of A � B, it can be proved that{
ρs(0, Poly(He)) ≤ ρs(A, B) ifA ∩ B = ∅,
ρs(0, Poly(He)) ≥ ρs(A, B) otherwise.

The distance ρs(0, Poly(He)) can then be easily determined, since it is exactly
the largest value of all de. We use ρs(0, Poly(He)) as an estimate of the signed
directional distance between A and B.

It is important to note that this estimate is conservative regarding its utility
as a critical situation alert. Indeed, if the two sets do not overlap, the result
is smaller than the exact separating distance; otherwise, its absolute value is
larger than the exact penetration distance. It is important to note again that
the above estimation, which does not involve expensive vertex computation, is
time-efficient.

In the context of safety verification, the set A plays the role of the reachable set
and B the unsafe set. The constraints of A corresponding to the largest values of
de are called critical because they are closest to B with respect to the directional
distance measure. Their identification is part of the above computation of the
signed directional distance between A and B.

Even if the angle between a critical constraint and one of its adjacent con-
straints does not satisfy the sharp angle criterion, we still refine around their
intersection. The refinement can then be done using the same method for adja-
cent half-spaces with sharp angles, described in the previous section.

4.3 Refinement Using Constraints from the Safety Specification

Let ΛB̄ be the set of normal vectors of the complement of each half-space of
the unsafe set B. In many cases, intersection of the reachable set and B can be
tested more easily if the reachable set description contains a constraint whose
normal vector coincides with a vector in ΛB̄. Hence, for each direction λ ∈ ΛB̄,
the predecessors of λ by the adjoint system can be used to define constraints to

Fig. 4. Refinement using critical directions on a 2-dimensional example
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add, again by solving the LP problem (7). The refinement using the predecessors
of such directions is needed when the reachable set is close to the unsafe set.
The refinement procedure using critical directions is summarized in Algorithm 2.
In this algorithm, H0 is the set of constraints of the initial polyhedron I. The
function dir(Hk

c ) returns the set of normal vectors of the constrains in Hk
c . The

function AddConstraints(Poly(Hk−r), Λk−r) adds in Hk−r the new constraints
with normal vectors in Λk−r that support Poly(Hk−r).

Algorithm 2. Refinement Using Critical Directions

H1 = P̂ ost1(H0) /* One step computation */
k = 1

while k ≤ kmax do
if ρs(Hk,B) ≤ η then

Hk
c = criticalConstraints(Hk,B) /* Hk

c is the set of critical constraints */
/* r ≤ k is the number of backtracking steps */

Λk−r
c = Prer(dir(Hk

c )) /* Retrieve r-step predecessors of the normal vectors
of Hk

c

which were computed at the (k − r)th step */
Λk−r

b = Prer(ΛB̄) /* Predecessors of the normal vectors of B */
Λk−r = Λk−r

b ∪ Λk−r
c

Hk−r = AddingConstraints(Poly(Hk−r), Λk−r)

k = k − r
end if
Hk+1 = P̂ ost1(Hk) /* One step computation */
k = k + +

end while

Figure 4 shows the result obtained for a 2-dimensional system in Jordan block
form using the above algorithm. The rectangle on the right is the unsafe set.
When the reachable set is close to the unsafe set, the algorithm backtracks a
number of steps and adds new constraints. This refinement allows approximating
more precisely the actual reachable set near the bad set and thus proving that
the system does not enter the unsafe set. The colored zones are the parts of the
over-approximation error eliminated by the added constraints. It can be seen
from the figure that the aprroximation is refined only in the critical zones near
the unsafe set.

5 Implementation and Experimental Results

We emphasize that in our development so far the algorithms use the constraint
description and do not require the vertex description of polyhedra. Indeed, the
transformation from a constraint description to a vertex description is known as
vertex enumeration and the inverse transformation is known as facet enumera-
tion. To show the computational complexity of these problems, we mention the
algorithm published in [4] which finds mv vertices of a polyhedron defined by a
non-degenerate system of m inequalities in n dimensions (or, dually, the facets
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of the convex hull of m points in n dimensions, where each facet contains exactly
n given points) in time O(mnmv) and O(mn) space.

From our experience in using polyhedra for reachability computation for con-
tinuous and hybrid systems, we noticed that many operations (such as, the
convex-hull) are extremely time-consuming, especially in high dimensions. De-
generacy of sets, such as flatness, which occurs frequently in reachable set com-
putation, is also another important factor that limits the scalabibility of existing
polyhedron-based algorithms. It is fair to say that they can handle relatively well
systems of dimensions only up to 10. This therefore motivated a lot of research
exploiting other set representations, which will be discussed later.

On the other hand, when trying to solve a specific verification problem, it is
not always necessary to maintain both the vertex and the constraint descriptions
of polyhedra. Indeed, for many tasks in a verification process, vertex enumer-
ation can be avoided, such as in the algorithms we presented so far. We have
implemented the above described algorithms of reachability computation with
refinement for linear continuous systems and this implementation enabled us to
handle continuous systems of dimensions much higher than what can be treated
by typical polyhedron-based reachability analysis algorithms, such as [2].

In the following, we present some experimental results obtained using this
implementation. To evaluate the performance of our methods, we generated a
set of linear systems in Jordan block form in various dimensions up to 100 with
the values in the diagonal are all equal to (−0.8). The input set U = [−0.1, 0.1]n

Table 1. Computation time for 100 steps on some linear systems in Jordan block form

using the implementation with vertex computation

dim n Final number of added constraints Computation time in seconds

2 32 0.4

5 59 9.14

10 10 150.93

20 – –

50 – –

100 – –

Table 2. Computation time for 100 steps on the same linear systems in Jordan block

form using the constraint-based implementation

dim n Final number of added constraints Computation time in seconds

2 32 0.48

5 59 0.76

10 36 2.22

20 38 3.67

50 94 42.07

100 197 335.95
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and the initial set I = [−1, 1]n are boxes (whose number of constraints equal to
2n). The threshold for the sharp angle criterion is σ = 60 degrees.

To show the advantage of the constraint-based implementation, we also tested
an implementation using vertex computation on the same examples. In this im-
plementation with vertex computation, the constraint adjacency information can
be directly derived and the constraints to add are easier to compute. However,
the cost for vertex computation is high, which limited the application of this im-
plementation to the examples of dimensions only up to 10, as shown in Table 1.
For the example in 10 dimensions, we had to fix a smaller maximal number of
constraints to add, in order to produce the result in a feasible computation time.

The constraint-based implementation is more time-efficient and thus allows
us to handle systems of higher dimensions, as shown in Table 2.

6 Summary and Related Work

There have been other works on computing reachable sets of linear continu-
ous systems. The treatment of uncertain inputs can be done by Minkowski sum
(such as in the approaches using zonotopes [12,1], ellipsoids [17,5,18], or parallelo-
topes [15]). This can also be handled by optimization (such as in [16,6,22]). On
the other hand, various set representations have been investigated. The classes
of set representations with special shapes that have been used for reachability
computations include oriented hyper-rectangles [23], zonotopes [10,12,1], ellip-
soids [17,5,18], parallelotopes [15]. Compared to general convex polyhedra, their
manipulation can be more efficient, but they are less appropriate for approxi-
mating sets with complex geometric forms.

To our knowledge, the most scalable algorithm is the recently developed
zonotope-based algorithms [12,1]. The main advantage of zonotopes is that some
important operations can be performed very efficiently over zonotopes, such as
the Minkowski sum and linear transformations. This allows the zonotope-based
algorithms to handle continuous systems of dimensions up to a few hundreds of
variables. However, a major difficulty that comes with this set representation
is that intersection of zonotopes is hard, which limits the extension of this ap-
proach to hybrid systems. Similarly, support functions [11] are a representation
for general convex sets, on which the Minkowski sum and linear transformations
can be efficiently computed. However, using support functions, set intersection
is also difficult, which is an obstacle towards lifting the scalability of the associ-
ated algorithms to hybrid systems. In the context of hybrid systems verification,
the main advantage of convex polyhedra, in our opinion, is their approximation
power. In addition, using well-established techniques for linear programming
solving and algorithmic geometry, polyhedral manipulation for specific tasks in
verification can be optimized, which was demonstrated in this paper.

Concerning approximation refinement, our method is similar to the well-
known counter-example based refinement approaches in the idea of guiding the
refinement process using the previously explored behaviors. However, to the best
of our knowledge, the idea of using redundant constraints for refinement pur-
poses is new. Another novelty in our results is the use of the directional distance
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to measure approximation effectiveness in proving safety properties and to guide
the refinement process.

The results of this paper open many promising research directions. The appli-
cation of this method to hybrid systems is straighforward since the polyhedral
operations for treating discrete dynamics can be computed using available algo-
rithms. However, a challenge in this task is to go beyond the dimension limits of
existing polyhedral computation algorithms, by exploiting the structure and the
specificity of hybrid systems as well as of the verification problems. In addition,
exploring the Minkowski difference between the reachable set and the unsafe set
would allow a better measure of critical proximity of the reachable set under the
dynamics of the system.
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Abstract. Controlling concurrent systems to impose some global invari-

ant is an undecidable problem. One can gain decidability at the expense

of reducing concurrency. Even under this flexible design assumption, the

synthesis problem remains highly intractable. One practical method for

designing controllers is based on checking knowledge properties upon

which the processes can make their decisions whether to allow or block

transitions. A major deficiency of this synthesis method lies in calculat-

ing the knowledge based on the system that we want to control, and not

on the resulted system. The original system has less knowledge, and as a

result, we may introduce far more synchronization than needed. In this

paper we show techniques to reduce this overhead.

1 Introduction

Model checking has provided algorithms for the automatic analysis of systems.
Techniques for automating the process of system design, in order to obtain
correct-by-construction systems, have been recently studied as well. The syn-
thesis problem from LTL specifications was shown by Pnueli and Rosner [12] to
be 2EXPTIME hard for sequential reactive systems and undecidable for concur-
rent systems. A related problem is to control an already given system in order
to force it to satisfy some additional property [14]. For distributed systems, this
has also been shown to be undecidable [18,17]. Under the assumption that a
system is flexible to the addition of further synchronization, the control problem
becomes decidable. A solution based on model checking of knowledge properties
was suggested [1,7].

In this paper, we look at the problem of reducing the need for additional
synchronization in order to control distributed systems. We identify the main
problem of the knowledge approach in using the controlled (source) system to
calculate the knowledge. In fact, this is merely an approximation, as the actual
knowledge needs to be satisfied by the (target) system after it is being controlled.
After the control is applied, there are fewer executions, and fewer reachable
states, hence the knowledge cannot decrease.

Our first observation is somewhat surprising: we prove that it is safe to calcu-
late the knowledge based on the source system when considering for the analysis
only the executions of the source system that satisfy the desired constraint. This
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provides a smaller set of executions and reachable states, hence also potentially
more knowledge.

A second observation is that once we control a system according to its knowl-
edge properties, we obtain again a system with fewer executions and reachable
states: even if in the original system there are states where the system lacks the
knowledge to continue, these states may, in fact, already be unreachable. Thus,
one needs to make another round of checks on the obtained controlled system.

These two observations can be used in conjunction with other methods for
constructing distributed controllers based on knowledge:

– Using knowledge of perfect recall (proposed in [1]).
– Adding coordinations to combine knowledge (proposed in [7]).

We show here that all these techniques are independent of each other, hence can
be combined.

2 Preliminaries

The model used in this paper is Petri Nets. The method and algorithms de-
veloped here can equally apply to other models, e.g., transition systems and
communicating automata.

Definition 1. A Petri Net N is a tuple (P, T,E, s0) where

– P is a finite set of places. The set of states (markings) is defined as S = 2P .
– T is a finite set of transitions.
– E ⊆ (P × T ) ∪ (T × P ) is a bipartite relation between the places and the

transitions.
– s0 ⊆ 2P is the initial state (initial marking).

For a transition t ∈ T , we define the set of input places •t as {p ∈ P |(p, t) ∈ E},
and output places t• as {p ∈ P |(t, p) ∈ E}.
Definition 2. A transition t is enabled in a state s if •t ⊆ s and t•∩s = ∅. We
denote the fact that t is enabled from s by s[t〉.
A state s is in deadlock if there is no enabled transition from it.

Definition 3. A transition t can be fired (executed) from state s to state s′,
which is denoted by s[t〉s′, when t is enabled in s. Then, s′ = (s\•t) ∪ t•.

Definition 4. Two transitions t1 and t2 are independent if (•t1 ∪ t1
•) ∩ (•t2 ∪

t2
•) = ∅. Let I ⊂ T × T be the independence relation. Two transitions are

dependent if they are not independent.

As usual, transitions are represented as lines, places as circles, and the relation E
is represented by arrows from transitions to places and from places to transitions.
We will use Petri Net N of Figure 1 as a running example. In N , there are
places p1, p2, . . . , p5 and transitions a, b, c, d. We depict a state by putting full
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circles, called tokens, inside the places of this state. In the example of Figure 1,
the depicted initial state s0 is {p1, p4}. If we fire transition a from this initial
state, the token from p1 will be removed, and a token will be placed in p2. The
transitions enabled in s0 are a and c. In this example, a and b are independent
of c and d.

� �p1

p2

p3

p4

p5

a

b

c d

Fig. 1. A Petri Net N with priorities a � {c, d} � b

Definition 5. An execution is a maximal (i.e. it cannot be extended) alternating
sequence of states and transitions s0t1s1t2s2 . . . with s0 the initial state of the
Petri Net, such that for each states si in the sequence, si[ti+1〉si+1.

We denote the executions of a Petri Net N by exec(N). The prefixes on the
executions in a set X are denoted by pref (X). A state is reachable in a Petri Net
if it appears in at least one of its executions. We denote the reachable states of
a Petri Net N by reach(N). The reachable states of our running example N are
{p1, p4}, {p1, p5}, {p2, p4}, {p2, p5}, {p3, p4} and {p3, p5}.

We use places also as state predicates where s |= pi iff pi ∈ s. This is extended
to Boolean combinations on such predicates in a standard way. For a state s, we
denote by ϕs the formula that is a conjunction of the places that are in s and the
negated places that are not in s. Thus, ϕs is satisfied by state s and by no other
state. For the Petri Net in Figure 1, the initial state s is characterized by ϕs =
p1∧¬p2∧¬p3∧p4∧¬p5. For a set of states Q ⊆ S, we can write a characteristic
formula ϕQ =

∨
s∈Q ϕs or use any equivalent propositional formula. We say that

a formula ϕ is an invariant of a Petri Net N if s |= ϕ for each s ∈ reach(N), i.e.,
if ϕ holds in every reachable state.

Definition 6. A process of a Petri Net N is a subset of the transitions π ⊆ T
satisfying that for each t1, t2 ∈ π, such that (t1, t2) ∈ I, there is no reachable
state s in which both t1 and t2 are enabled.

We assume a given set of processes Π that covers all the transitions of the net,
i.e.,

⋃
π∈Π π = T . A transition can belong to several processes, e.g., when it

models a synchronization between processes.

Definition 7. The neighborhood ngb(π) of a process π is the set of places⋃
t∈π(•t ∪ t•).
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We want to enforce global properties on Petri Nets in a distributed fashion. For
a Petri Net N , we consider a property of the form Ψ ⊆ S×T . That is, Ψ defines
the allowed global states, and, furthermore, which transition may be fired in each
allowed state. Note that as a special case Ψ can represent an invariant (when
the transitions are not constrained).

Definition 8. Let N be a Petri Net and Ψ ⊆ S×T . We denote (N,Ψ) the pair
made of N and the property Ψ that we want to enforce. A transition t of N is
enabled with respect to Ψ in a state s if s[t〉 and, furthermore, (s, t) ∈ Ψ . An
execution of (N,Ψ) is a maximal prefix s0t1s1t2s2t3 . . . of an execution of N such
that for each state si in the sequence, (si, ti+1) ∈ Ψ . We denote the executions
of (N,Ψ) by exec(N,Ψ), and the set of states reachable in these executions by
reach(N,Ψ). We assume that those sets are nonempty.

Clearly, reach(N,Ψ) ⊆ reach(N) and exec(N,Ψ) ⊆ pref (exec(N)); recall that
restricting N according to Ψ may introduce deadlocks.

In particular, we are interested in enforcing priority policies. Indeed, a priority
order 
 is a partial order relation among the transitions T of N and thus defines
a set Ψ in a straightforward manner. We use priorities as a running example. If
Ψ is defined by a priority order 
, then (s, t) ∈ Ψ if s[t〉 is enabled in s and has
a maximal priority among the transitions enabled in s. That is, there is no other
transition r with s[r〉 such that t 
 r. We write exec(N,
) and reach(N,
)
instead of exec(N,Ψ) and reach(N,Ψ), respectively. Note that priority orders do
not introduce new deadlocks, and thus we have exec(N,
) ⊆ exec(N).

Let us now consider the prioritized Petri Net N of Figure 1. The executions
of N , when the priorities are not taken into account, include those with finite
prefixes (where states are abstracted away) abcd, acbd, acdb, cadb. However, when
taking the priorities into account, the prioritized executions of N contain only
alternations of c and d.

Definition 9. The local information of a process π of a Petri Net N in a state
s is s|π = s ∩ nbg(π).

That is, the local information of a process π in a given state consists of the
restriction of the state to the neighborhood of π. It plays the role of a local
state of π in s. Our definition of local information is only one among possible
definitions that can be used for modeling the part of the state that the system
is aware of at any given moment.

Definition 10. Define an equivalence relation ≡π⊆ reach(N) × reach(N) such
that s ≡π s′ when s|π = s′|π.

It is easy to see that the enabledness of a transition depends only on the local
information of a process that contains it, i.e., if t ∈ π and s ≡π s′ then s[t〉 if
and only if s′[t〉.

We cannot always make a local decision, based on the local information of
processes (and sometimes sets of processes) that would guarantee that the global
property Ψ is enforced. Indeed, in a prioritized Petri Net (N,
), there may exist
different states s, s′ ∈ reach(N) such that s ≡π s′, a transition t ∈ π is an enabled
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transition in s with maximal priority, but in s′ this transition is not maximal
with respect to the priority order among the enabled transitions.

To reason about properties, we will use predicates. We can easily construct the
following formulas, representing state sets, using only propositions representing
places of the Petri Net:

– ϕreach(N): all the reachable states of N . Similarly, ϕreach(N,Ψ) denotes the
reachable states of (N,Ψ).

– ϕen(t): the states in which transition t is enabled.
– ϕΨ(t): the states s in which transition t is enabled and (s, t) ∈ Ψ . Formally:

ϕΨ(t) = ϕen(t) ∧
∨

(s,t)∈Ψ ϕs

– ϕΨ
df : the deadlock-free reachable states. That is, the states in which at least

one transition is enabled w.r.t. Ψ , i.e., in which there is no deadlock in (N,Ψ).
Formally: ϕΨ

df = ϕreach(N,Ψ) ∧
∨

t∈T ϕΨ(t).
– ϕs|π : the states in which the local information of process π is s|π.

For Ψ representing priority constraints, we denote ϕΨ(t) by ϕmax(t): the states
in which transition t has a maximal priority among all the enabled transitions
of the system. That is, ϕmax(t) = ϕen(t) ∧

∧
t�r ¬ϕen(r). We can perform model

checking in order to calculate these formulas, and store them in a compact way,
e.g., using BDDs.

3 Knowledge Based Approach for Distributed Control

In this section, we adapt the support policy introduced in [7] to Petri Nets.

3.1 The Support Policy

The problem we want to solve is the following:

Given a Petri Net with a constraint (N,Ψ), we want to obtain a Petri
Net N ′ such that exec(N ′) ⊆ exec(N,Ψ). In particular, this means that
reach(N ′) must not introduce deadlock states that are not already in
reach(N,Ψ) or be empty. In this case, we say that N ′ implements (N,Ψ).

For simplicity of the transformation, we consider extended Petri Nets [5], where
processes may have local variables, and transitions have an enabling condition
and a data transformation.

Definition 11. An extended Petri Net has, in addition to the Petri Net compo-
nents, for each process π ∈ Π a finite set of variables Vπ and (1) for each variable
v ∈ Vπ, an initial value v0 (2) for each transition t ∈ T , an enabling condition
ent and a transformation predicate ft on the variables Vt = ∪π∈proc(t)Vπ, where
proc(t) is the set of processes to which t belongs. In order to fire t, ent must hold
in addition to the usual Petri Net enabling condition on the input and output
places of t. When t is executed, in addition to the usual changes to the tokens,
the variables Vt are updated according to ft.
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A Petri Net N ′ extends N if N ′ is an extended Petri Net obtained from N
according to Definition 11. The comparison between the original Petri Net N
and N ′ extending it is based only on places and transitions. That is, we ignore
(project out) the additional variables.

Lemma 1. For a Petri Net N ′ extending N , exec(N ′) ⊆ pref (exec(N)).

Proof. The extended net N ′ only strengthens the enabling conditions and gives
values to the added variables, thus it can only restrict the executions. However,
these restrictions may result in new deadlocks. �
As we saw in the previous section, it is not possible in general to decide, based
only on the local information of a process or a set of processes, whether some
enabled transition is allowed by Ψ . We may, however, exploit some model check-
ing based analysis of the system to identify the cases where such decision can be
made.

Our approach for a local or semi-local decision on firing transitions is based
on the knowledge of processes [4]. Basically, the knowledge of a process in a
given (global) state is the set of reachable states that are consistent with the
local information of that process.

Definition 12. The process π knows a (Boolean) property ϕ in a state s, de-
noted s |= Kπϕ, exactly when for each s′ such that s ≡π s′, we have that s′ |= ϕ.

We obtain immediately from the definitions that if s |= Kπϕ and s ≡π s′,
then s′ |= Kπϕ. Furthermore, the process π knows ϕ in state s exactly when
(ϕreach(N) ∧ϕs|π) → ϕ is a tautology. Given a Petri Net and a Boolean property
ϕ, one can perform model checking in order to decide whether s |= Kπϕ. We
have the following monotonicity property:

Theorem 1. Let N be a Petri Net and N ′ an extension of N . If s |= Kπϕ in
N , then s |= Kπϕ also in N ′.

Proof. The extended Petri Net N ′ restricts the executions, and possibly the set
of reachable states, of N . Each local state s|π is part of fewer global states, and
thus the knowledge in s|π can only increase. �
Monotonicity is important to ensure Ψ in N ′. The knowledge allowing to enforce
Ψ by the imposed transformation is calculated based on N , but is used to control
the execution of the transitions of N ′. Monotonicity thus ensures the correctness
of N ′.

We propose a support policy that consists in extending the original Petri Net
with a disjunctive decentralized controller [19]. In general, a controller blocks
some transitions in order to satisfy a given constraint. This is done by adding a
supervisor process [14], which is usually an automaton that runs synchronously
with the controlled system. Supervisors are often (finite state) automata observ-
ing the controlled system, progressing according to the transitions they observe,
and blocking some of the enabled transitions depending on its current state. A
decentralized controller sets up one supervisor per process. A decentralized dis-
junctive controller allows a transition to be fired if at least one of the supervisors
supports it.
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Our construction of such a disjunctive controller is based on a support table
as introduced in [1,7] which indicates in each local state which transitions are
supported. We do not formalize the details of the construction here, but the
intuition provided here should be sufficient.

In a state s, a transition t is supported by a process π containing t if
and only if π knows in s (and thus in all s′ which π cannot distinguish
from s) about (s, t) respecting Ψ , i.e., s |= KπϕΨ(t); a transition can be
fired (is enabled) in a state only if, in addition to its original enabledness
condition, at least one of the processes containing it supports it.

To implement the support policy, we first create a support table Δ as follows:
we check for each process π, reachable state s ∈ reach(N) and transition t ∈ π,
whether s |= KπϕΨ(t). If it holds, we put in the support table at the entry
s|π the transitions t that are responsible for satisfying this property. In fact, as
s |= Kπϕ and s ≡π s′ implies that s′ |= Kπϕ, it is sufficient to check this for a
single representative state containing s|π out of each equivalence class of ‘≡π’.

We construct for a Petri Net N a support table Δ and use it to control
(restrict) the executions of N to satisfy the property Ψ . Each process π in N is
equipped with the entries of this table of the form s|π for s a reachable state.
Before firing a transition, a process π of N consults the entry s|π that corresponds
to its current local information, and supports only the transitions that appear
in that entry. This can be represented as an extended Petri Net NΔ.

The construction of the support table is simple and its size is limited to the
number of different local informations of the process and not to the (sometimes
exponentially larger) size of the state space.

3.2 Solutions When the Support Policy Fails

Sometimes the knowledge based analysis does not provide an indication for a
controller. Consider the prioritized Petri Net (N,
) of Figure 1. The right pro-
cess πr, upon having a token in p4, does not support c; the priorities dictate
that c can be executed if b is not enabled, since c has a lower priority than b.
But this information is not locally available to the right process, which cannot
distinguish between the cases where the left process has a token in p1, p2 or p3.
To tackle this issue, several suggestions have been made:

1. Use knowledge of perfect recall [11,1]. This means that the knowledge is not
based only on the local information, but also on the limited history that
each process can observe. Although the history is not finitely bounded, it
is enough to calculate the set of states where the rest of the system can
reside at each point. A subset construction can be used to supply for each
process an automaton that is updated according to the local history. This
construction is very expensive: the size of this automaton can be exponential
in the number of global states. Although in this way we extend our knowledge
(by separating local informations according with different histories), this still
does not guarantee that a distributed controller can be found.
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2. Combine the knowledge of certain processes together by synchronizing them.
The definition of knowledge can be based on equivalence classes of states
that share the same local information of several processes. With the com-
bined knowledge, one can achieve more situations where the maximal priority
transition is known. However, to use this knowledge at runtime, these sets
of processes need to be able to access their joint local information. This
means synchronizing them, at the cost of losing concurrency. At the limit,
all processes can be combined, and no actual concurrency remains.

3. Instead of the fixed synchronization between processes, one may use tempo-
rary synchronization [7]. Processes interact to achieve common knowledge.
This does not reduce the concurrency as much as the previous method, but
requires some overhead in sending messages to achieve the temporary syn-
chronization.

In the following two sections, we propose two additional techniques, which are
orthogonal to the previous ones, to handle the case where the support policy
fails.

4 Support Policy Based on the Controlled System

The first technique is based on the following observation:

Instead of calculating the knowledge with respect to all the executions
of the original system, we may calculate it based on the executions of
the original system that invariantly satisfy Ψ .

The set of global states on these executions are a subset of the reachable states,
and, furthermore, for each local information, the set of global states containing
it is contained in the corresponding set of the original Petri Net. Thus, our
knowledge in each global configuration may not decrease but possibly grows.
Still, we need to show that calculating knowledge using this set of executions
produces a correct controller.

Theorem 2. Let N be a Petri Net and Ψ a property to be enforced. Let Δ be
the support table calculated for reach(N,Ψ), and let NΔ be the extended Petri
Net constructed for Δ. Then exec(NΔ) ⊆ pref (exec(N,Ψ)).

Proof. When a transition t of NΔ is supported in some state s according to
the support table Δ, then for some supporting process π ∈ Π , s |= KπϕΨ(t).
By definition of the knowledge operator, this implies that (s, t) ∈ Ψ . Thus, each
firing of a transition of NΔ preserves Ψ . However, it is possible that at some
point, there is not enough knowledge to support any transition. �
The above proof does not guarantee that NΔ implements (N,Ψ): indeed, reach
(N ′) may introduce deadlocks which are not in reach(N,Ψ) because in some
states not enough knowledge is available to support transitions.



60 S. Bensalem et al.

Let ϕsupport(π) denote the disjunction of the formulas ϕs|π such that the entry
s|π is nonempty in the support table. A sufficient condition for NΔ to implement
(N,Ψ) is:

ϕΨ
df →

∨
π∈Π

ϕsupport(π) (1)

This condition requires that for each state in reach(N,Ψ) that is not in deadlock,
at least one transition is supported. When this condition does not hold, we say
that the support table is incomplete.

For the prioritized Petri Net of Figure 1, the calculation of the knowledge
based on the prioritized executions provides a controller, whereas the calcula-
tion based on the original (non prioritized) system did not. If we analyze the
knowledge based on the constrained executions, then c and d are fired alternately,
and p2 is never reached, hence b is never enabled. In this case, our knowledge in
p4 and in p5 allows us to execute c or d, respectively, and avoid the deadlock.

Let us look now at a more elaborate example. Consider Petri Net N1 of
Figure 2 with the given priority rules. The separation of transitions of N1 ac-
cording to processes is represented using dashed lines.

The example shows three processes π1 (left), π2 (in the middle), π3 (right) that
use binary synchronizations and priorities to enforce mutual exclusion for the
execution of critical sections (biriei)i∈[1,3]. Intuitively, priority rules bi 
 {rj , ej}

� �

�p6

p7

p9

p2

p5

p8

p10

p1

p3

p4

p11

p12

p13

s12

b3

r3

e2

b2

r2

e3

s23b1

r1

e1

∀i ∈ [1, 3], bi � {rj, ej}j �=i

∀i ∈ [1, 3], ri � ej �=i

s23 � {b1, r1, e1}

b2 � b3

Fig. 2. A Petri Net N1 with three processes π1, π2 and π3
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and ri 
 ej give higher priority to transitions close to the end of the critical
sections over the others. This enforces the mutual exclusion. Moreover, priority
rules s23 
 {b1, r1, e1} and b2 
 b3 enforce a particular execution order of
critical sections: repeatedly π1 followed by π3 and then by π2.

Using the method of [1] described in section 3, no controller is found. Indeed,
as all states are reachable, no process has enough knowledge to enter or progress
in its critical section.

Now, if we calculate the support table on the prioritized executions, then we
are able to construct a controller for N1. Indeed, in the prioritized executions,
there is always at most one process in its critical section. Thus, process π1 always
supports all its transitions as it can only enter the critical section in global states
in which the other processes are blocked in front of a synchronization. Process π3

supports all its transitions except s23. Process π2 supports transition s23 when
π1 is in p1, transition b2 when π3 is in p10, and transitions r2 and e2 in all cases.

5 Controllers Based on an Incomplete Support Table

In this section we show that even an incomplete support table Δ for (N,Ψ)
may still define a controller NΔ that implements (N,Ψ). The reason is that
states that are reachable in the executions of (N,Ψ) may be unreachable when
applying the calculated support table. The executions according to the support
table may be a subset of the executions of (N,Ψ), and the problematic states
may not occur.

We illustrate this now on an example with priorities. Consider Petri Net N2

of Figure 3. It represents two processes πl (left) and πr (right) with a single
joint transition, which means that πl can observe whether πr is in one of the
places p8 and p9. Similarly, πl can observe whether πr is in p2 or in p3. The table
in Figure 3 shows the set of reachable states of N2, including its termination
(deadlock) states, denoted �. Non-reachable states are in grey.

Suppose that the following set of priority rules must be enforced for the Petri
Net N2: k 
 j and c 
 b 
 i.

The support table is calculated based on the knowledge of the original system.
Table 1 presents a view of the global states of the Petri Net.

– non-reachable (grey), or
– in termination or deadlock (�) or
– reachable and non-deadlock.

In the latter case, the cell contains the transitions which are supported in this
state by any of the processes (i.e., we have accumulated all the transitions sup-
ported by the local states that constitute together the global state). The blanks
in this incomplete table represent states in which no process supports any tran-
sition. There are two such states, namely {p4, p10} and {p6, p10}. The situation
in both states is the following: πl has terminated and πr could take transition k,
but without an additional synchronization, there is no way for πr to know that
it may safely execute k.
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� �p1

p2

p3

p5p4

p6

p8

p9

p10

p11

p12

p13

p7

a

b

e

h

k

c

f

j

d

ig

πl = {a, b, e, f, g, j}
ngb(πl) = {p1, ... , p6, p8, p9}
πr = {c, d, e, h, i, k}
ngb(πr) = {p2, p3, p7, ... , p13}

reach(N2) =

p7 p8 p9 p10 p11 p12 p13

p1

p2 �

p3

p4 � � �

p5

p6 � � �

Fig. 3. A Petri Net N2 with two processes πl and πr

Table 1. Support policy for N2 with priorities k � j and c � b � i

p7 p8 p9 p10 p11 p12 p13

p1 a, d a, i a

p2 c, d e i �

p3 f, g, c, d f, g f, g, h f, g, k f, g f, g, i f, g

p4 d � h � i �

p5 j, d j j, h j j j, i j

p6 d � h � i �

Note that in state {p1, p7}, process πl supports a and process πr supports
d; it is impossible for πl to know whether πr is in p12 or not, and therefore
b (which has lower priority than i) is not supported by πl. Similarly, πr does
not support c (which has lower priority than b). While c is supported, e.g., in
{p2, p7}, transition b is never supported, hence never fired in NΔ

2 , although it is
allowed according to the priority rules in some states.

As a consequence, the set of states reachable in NΔ
2 may be smaller than

reach(N2,
). Indeed, reach(NΔ
2 ) does not contain any state including the places

p2 together with p9, p10 or p11. This means in particular that the blanks in Table 1
are in fact not reachable, and thus NΔ

2 implements (N2,
).
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6 Comparison with History-Based Controllers

We show now that the use of perfect recall is independent of the methods pro-
posed in this paper, meaning that in some cases only history is able to provide
a controller, while in others it is still relevant to check whether an incomplete
table provides a controller.

Consider the Petri Net N2 of Figure 3, this time with the priorities g 
 k and
f 
 i. In this case, the set of reachable states is the same, regardless of the use
or not of priorities. Consequently, there is no difference between the support pol-
icy based on the unrestricted system and the prioritized executions. Moreover, this
support policy fails because there are two reachable global states where no process
is supporting a transition, appearing as blanks in Table 2: {p3, p11} and {p3, p13}.
Furthermore, these global states are also reachable in the controlled system, mean-
ing that the heuristics applied in the previous example does not help either.

Nevertheless, this example may be controlled if perfect recall is used. If the
left process πl can remember the path it takes to reach p3, it can distinguish
between reaching p3 directly after p1 (by firing a) or respectively by passing
through place p2. Now, the set of reachable states contains enough information
for the support policy to succeed.

Table 2. Support policy for N2 with priorities g � k and f � i without history

p7 p8 p9 p10 p11 p12 p13

p1 a, b, c, d a, b a, b, i a, b

p2 c, d e i �

p3 c, d f, g f, g, h k i

p4 c, d � h k � i �

p5 j, c, d j j, h j, k j j, i j

p6 c, d � h k � i �

Our last example illustrates the combined use of perfect recall and an incom-
plete table to build a controller. Consider again the Petri Net N2 of Figure 3, now
with priorities g 
 k, f 
 {i, k} and c 
 b 
 i. On one hand, building the sup-
port table using the prioritized executions does not provide enough knowledge
to control the system, and the incomplete support table does not provide a con-
troller. On the other hand, the use of history as shown previously does not help
either. Table 3 reflects the incomplete support table constructed using jointly
the prioritized executions and perfect recall. Additional information related to
perfect recall is presented in the rows and columns of the table only when it
is relevant for the support table. We can observe that in {p3 after p2, p11}, no
transition is supported by any process. However, the system can be controlled
according to this table. Indeed, no extra deadlock (blank) is actually reachable
within the controlled system for a reason similar to one presented in the example
of Section 5. This means that only the combination of several techniques leads
to a controller.
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Table 3. Support policy for N2 with g � k, f � {i, k}, c � b � i and history

p7 p7 after p3 p8 p9 p10 p11 p12 p13

p1 a, d a, i a

p2 c, d e i �

p3 after p1 c, d, g f, g g, i g

p3 after p2 f, g, h k

p4 c, d � h k � i �

p5 j, c, d j j, h j, k j j, i j

p6 c, d � h k � i �

7 Implementation and Experimental Results

In [7], we implemented a prototype for experimenting with knowledge based
controlling of distributed systems. We have integrated the two results of this
paper. More precisely, the support table is now built directly from the set of
reachable states in the prioritized executions. Then, if the table contains empty
entries, we check the reachability of the states in which no transition can be
supported before adding synchronization.

We present here some results illustrating the improvements thus obtained. Let
us go back to the Petri Net of Figure 2. Using the approach of [7], several addi-
tional synchronizations were added in order to check maximality of transitions
in the critical section. Out of 80 reachable states, 26 are global states in which
no process can support an interaction. More precisely, 4 transitions out of 11
always require a synchronization to be fired: these transitions are b1, r1, b3, r3.
As a result, an execution of 10,000 steps contains exactly 3636 (= 10000×4/11)
synchronizations. Using the prioritized executions to build the support table, we
do not need any synchronization to build a controller.

Consider now a simplification of this example with two processes instead of
three. In this case, interestingly, the method of [7] would not result in the exe-
cution of any additional synchronization. The reason for this is that the states
requiring additional synchronizations are exactly the states in which no transi-
tion can be supported, meaning that synchronizations are added only when they
are necessary. As these states are unreachable in the prioritized executions, no
synchronization ever takes place. This emphasizes the fact that both approaches
can be combined efficiently.

8 Conclusion

Calculating knowledge properties can be used for constructing a distributed
controller that imposes some state property Ψ on a system. A transformation
is used to impose a global property Ψ invariantly. To maintain the concurrent
nature of the system, the decision on which transitions to support needs to be
made locally. Checking whether one can impose such a transformation without
adding interaction is undecidable [18,17,7]. Knowledge can be used to help in
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constructing such a controller. When a process locally knows that executing a
transition will satisfy Ψ , then it is safe to support it. By combining the knowledge
of different processes [7], if we are allowed to add synchronization, the synthesis
becomes decidable, since at the limit, we may obtain a fully synchronized, i.e.,
a global system. Now, adding extensive synchronizations is undesirable.

We observe here that the knowledge approach for constructing a distributed
controller is based on analyzing the original system in order to achieve the in-
variance of Ψ after the transformation. Thus, the use of knowledge calculated
on the original version may be pessimistic in concluding when transitions can be
supported. This brings us to two useful observations that can remove the need
for some of the additional interactions used to control the system:

1. Although the analysis of the knowledge of the system is done with the original
system, it is safe to use only its executions that enforce Ψ . This gives fewer
executions and fewer reachable states and enhances the knowledge.

2. Blocking transitions (not supporting them) because of lack of knowledge
has a propagating effect that can prevent reaching other states. Thus, even
when the result of the knowledge analysis may seem to lack the ability of
supporting a way to continue from some states, this may not be the case.
Indeed, analyzing the system after imposing the restriction forced by the
analysis may result in a system that does not introduce new deadlock: the
deadlocks appearing in states where no enabled transition is supported are
in fact unreachable.

In this paper, we showed that using these two observations is orthogonal to other
tools used to force knowledge based control such as using knowledge of perfect
recall and adding temporary interactions or fixed synchronizations between pro-
cesses. We propose to use these knowledge based techniques as a practical way
of synthesizing distributed controllers.
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Abstract. We present a method to enhance the power of a given reach-

ability analysis engine for hybrid systems. The method works by a new

form of composition of reachability analyses, each on a different relax-

ation of the input hybrid system. We present preliminary experiments

that indicate its practical potential for checking safety and stability.

1 Introduction

A standard technique in programming languages is to improve the precision
of the analysis of a program by preceding it with an auxiliary analysis. The
auxiliary analysis is in general used to infer the validity of an invariant at a
specific program location. For example, an interval analysis is used to infer a
lower and an upper bound on the possible values of a program variable at a
given program location, which means that an assertion of the form l ≤ x ≤ u is
a valid invariant for the program location. It is hence safe to use this invariant
for refining the abstract program used for a subsequent program analysis. A
simple way to refine the abstract program is to insert an assume statement (e.g.,
assume(l<= x <= u)).

Unfortunately, it is not clear how one can directly transfer this technique from
programs to hybrid systems. In a hybrid system, where the value of a variable
changes not only through updates in transitions from one location to another
but evolves dynamically in one location, an invariant in the form of a state
assertion associated with a program location does not seem useful for improving
a subsequent analysis. For one thing, an invariant must account for a continuum
of states. For another, a state assertion does not seem suitable to describe the
interdependence between the possible values of continuous variables x and y
whose evolution is prescribed by differential equations.

In essence, the problem is to incorporate the result of the reachability analysis
of one abstraction into the reachability analysis of another abstraction of a given
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hybrid system. In this paper, we propose to base the solution of this problem
on the notion of dwell time. The concept of dwell time has already shown its
usefulness for the analysis of hybrid systems (see our discussion of related work
further below). It refers to the amount of time which the hybrid system can resp.
must spend (‘dwell’) in a location between an entry and an exit. The mutual
interdependence between the possible values of continuous variables x and y can
be approximated via bounds on the the dwell time, i.e., bounds on the possible
values of x propagate to bounds on the dwell time which again propagate to
bounds on the possible values of y. We propose to use an auxiliary ‘dwell time
variable’ d for interfacing a reachability analysis with an auxiliary analysis. We
encode the result of the auxiliary analysis by bounds on the possible values of d
in reachable states of an (in general coarse) abstraction of the hybrid system. We
use these bounds to improve the precision of the reachability analysis of another
(in some sense, complementary) abstraction as follows. We add the dwell time
variable d as a continuous variable (in addition to other continuous variables,
in case the abstraction is expressed by a hybrid system), and we refine the
abstraction by constraints on d.

In summary, we present new methods both for inferring and for exploiting
dwell time bounds. As a consequence, we obtain an approach where one can
incorporate the result of a first, auxiliary reachability analysis into a second
reachability analysis in order to refine its abstraction and thus improve its preci-
sion. Our approach is generic in that it uses reachability analysis as a black-box
method. We present initial experiments that indicate its practical potential for
checking safety and stability.

2 Hybrid Systems, Relaxation, Refinement

A hybrid system is formally a tuple H = (Loc,V , Init , Rcont, Rdisc, Inv) defining

– the finite set of locations Loc,
– the set of continuous variables V = {v1, . . . , vn},
– the initial condition, given by the constraint Init(	) for each location 	,
– the continuous transition relation, given by the expression e = Rcont(	)(v)

for each continuous variable v and each location 	; the expression e (in the
variables v1, . . . , vn) is used in the differential equation v̇ = e that defines
the flow of the continuous variable v in the location 	,

– the discrete transition relation, given by a set Rdisc of transitions; a transition
is formally a tuple (	, g, ξ, 	′) defining
• the source location 	 and the target location 	′,
• the guard, given by a constraint g,
• the update, given by a (possibly empty) set ξ of assignments v := e of

expressions to continuous variables,
– the invariant, given by the constraint Inv(	) for each location 	.

An example of a hybrid system is given in Figure 1.
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Fig. 1. Example hybrid system, modeling a temperature controller with one internal

engine. The temperature of the plant is controlled through a thermostat which turns

the engine off and on, depending on the temperature of the room (modeled by the

continuous variable xr) and the temperature of the engine (modeled by the continuous

variable xe). We model the mode ‘off’ by the two locations �11 and �21, and the mode

‘on’ by the location �2.

A state of the hybrid system H is a tuple (	, v1, . . . , vn) consisting of a location
	 in Loc and values of the continuous variables in V .

The hybrid system can be represented by a labeled graph (as in Figure 1),
where the set of nodes is the set of locations Loc, and the set of edges is defined
by the discrete transition relation, i.e.,

E = {(	, 	′) | ∃(	, g, ξ, 	′) ∈ Rdisc}.

We now give the formal definition of the semantics of a hybrid system, in the
form of the set of its runs. We write T for the set of all continuous time points
which are denoted by non-negative real values, i.e., T = IR+

0 . A run ρ assigns
to every time point t in T a location and a valuation of the variables v in V .
Formally, a run ρ is a tuple

ρ = (	̂, v̂1, . . . , v̂n)

of functions 	̂ : T → Loc (for the current location) and v̂ : T → IR (for the
current value of the variable v in V ), such that there exists an infinite sequence
of switching time points,

(τi)i∈ω ∈ T ω
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which starts in 0 and is strictly increasing, i.e., τ0 = 0 and τi < τi+1, such that
the following five conditions hold:

• “non-zenoness”
∀t ∈ T ∃i : t ≤ τi (1)

• “switching time”
∀i ∀t ∈ [τi, τi+1) : 	̂(t) = 	̂(τi) (2)

• “continuous evolution”

∀v ∈ V ∀i ∀t ∈ [τi, τi+1) :
d

dt
v̂(t) = e[v̂1, . . . , v̂n](t) (3)

where e = Rcont(	)(v) with 	 = 	̂(τi),
• “invariants”

∀i ∀t ∈ [τi, τi+1) : (v̂1(t), . . . , v̂n(t)) |= Inv(	) (4)

where 	 = 	̂(τi),
• “discrete transition firing”

∀i ∃ (	, g, ξ, 	′) ∈ Rdisc :
	̂ (τi) = 	

	̂ (τi+1) = 	′

∃ σ : V → IR ∀v ∈ V :
σ(v) = lim

u→τi+1
v̂(u)

σ |= g

v̂(τi+1) =
{
σ(e), if v := e ∈ ξ
σ(v), otherwise.

(5)

Condition (1) states that we do not allow Zeno behavior. The time sequence
(τi)i∈ω identifies the time points where location switches may occur, which is
expressed in Condition (2). Only at those points discrete transitions may be
taken. Condition (3) expresses that the dynamics of the continuous variables
obeys their respective differential equations. Condition (4) requires that for each
location the valuation of continuous variables satisfies the local invariant while
staying in that location. Condition (5) expresses that whenever a discrete tran-
sition is taken, variables may be assigned new values, obtained by evaluating the
right-hand side of the respective assignment using the previous values of vari-
ables. If there is no such assignment, the variable maintains its previous value,
which is determined by taking the limit of the trajectory of the variable as t
converges to the switching time τi+1.

Definition 1 (Relaxation, Refinement). A hybrid system H# is a relax-
ation of H, written H# � H, if it has more runs than H, i.e.,

Run(H#) ⊇ Run(H).

The system H is called, in turn, a refinement of H#.



Composing Reachability Analyses of Hybrid Systems 71

�� ��

�� �	

�11
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Fig. 2. The relaxation of the heating system from Figure 1 obtained by eliminating

the continuous variable xe

By definition, each (reachable) location 	 and edge (	, 	′) of H belongs also to
H#. There are several ways to construct a relaxation H# from H, for example,
by projection or by weakening of constraints; see, e.g. [8]. Figure 2 presents
the relaxation of the heating system from Figure 1 obtained by eliminating the
continuous variable xe.

3 Dwell Time Bounds

A family of dwell time bounds dtb = (dtb low, dtbhigh) for a hybrid system H is
given by a constant

dtb low(	, 	′) = c(�,�′)

for each transition from the location 	 to the location 	′, and a constant

dtbhigh(	) = c�

for each location 	. (Here, we index a dwell time guard by a pair of locations,
and not by the transition. We assume wlog. that a transition is unique for its
pair of source and target locations.)

Definition 2 (Validity of dwell time bounds). The dwell time bound
dtb low(	, 	′) = c(�,�′) for the transition from the location 	 to the location 	′ is
valid if in every run of H, the time spent between the entry of the location 	 and
its exit towards the location 	′ is always greater than or equal to c(�,�′).

The dwell time bound dtbhigh(	) = c� for the location 	 is valid if in every run
of H, the time spent between the entry and the exit of the location 	 is always
smaller than or equal to c�.
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Fig. 3. DTR(H, dtb), the dwell time refinement of H for a given family of dwell time

bounds dtb valid for H, is obtained from H by a transformation that adds the high-

lighted items; among those, the dwell time constraints d ≤ c� and d ≥ c(�,�′)

A family of dwell time bounds dtb = (dtb low, dtbhigh) for a given hybrid system
H is valid if each of its dwell time bounds are valid.

That is, the valid dwell time bound dtb low(	, 	′) for the transition from the loca-
tion 	 to the location 	′ is a lower bound for the time spent in the location 	, or,
equivalently, for the length of the interval [τi, τi+1] formed by two consecutive
switching time points for a discrete transition into 	 and a discrete transition
from 	 to 	′.

Also, the valid dwell time bound dtbhigh(	) is an upper bound for the time
spent in the location 	, or, equivalently, for the length of the interval [τi, τi+1]
formed by two consecutive switching time points for a discrete transition into 	
respectively away from 	.

4 Dwell Time Refinement

Dwell Time Refinement for H (DTR(H, dtb)). Given a family dtb =
(dtb low, dtbhigh) of dwell time bounds valid for H, we construct a new hybrid
system DTR(H, dtb) informally as follows (see also Figure 3).

– We add a continuous variable d .
– In each location, we set the slope of d to 1 (i.e., d evolves like a clock).
– In each discrete transition, the variable d is reset to 0 (i.e., we add the

assignment d := 0 to update of the transition).
– We add d ≥ dtb low(	, 	′) as a conjunct to the guard of the transition from

the location 	 to the location 	′ (we call this conjunct the dwell time guard).
– We add d ≤ dtbhigh(	) as a conjunct to the invariant of the location 	 (we

call this conjunct the dwell time invariant).

Formally, we define DTR(H, dtb) as the hybrid system

DTR(H, dtb) = (Loc,Vd , Initd ,Rcont
d ,Rdisc

d , Invd)

where

– the set of locations Loc is the same as in H,
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ḋ = 1

d ≤ 1
3

xr≤21

��
true

��

Fig. 4. DTR(H#, dtb), the dwell time refinement of the relaxation H# in Figure 2 for

a given family of dwell time bounds dtb valid for H, where the dwell time bounds dtb
are the ones inferred automatically by the method given in Section 5

– the set of continuous variables Vd contains the new variable d and all vari-
ables of H,

Vd = {d} ∪ V

– the initial condition Initd fixes the value of the new variable d to 0 in each
location,

Initd(	) ≡ Init(	) ∧ (d = 0)

– the continuous transition relation Rcont
d assigns constant 1 to the derivative

of the new variable,

Rcont
d (	)(d) = 1

Rcont
d (	)(v) = Rcont(	)(v) for v ∈ V

– the discrete transition relation Rdisc
d adds the assignment d := 0 to the update

of each transition, and it adds the dwell time guard d ≥ dtb low(	, 	′) as a
conjunct to the guard of the transition from 	 to 	′,

(	, g ∧ d ≥ dtb low(	, 	′) , ξ ∪ {d := 0} , 	′) ∈ Rdisc
d if (	, g, ξ, 	′) ∈ Rdisc

– the invariant Invd adds the dwell time invariant d ≤ dtbhigh(	) as a conjunct
to the invariant of the location 	,

Invd(	) ≡ Inv(	) ∧ d ≤ dtbhigh(	)
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The definition of the validity of dtb as a family of dwell time bounds for H is
equivalent to saying that DTR(H, dtb) has the same set of runs as H. Dwell time
refinement becomes interesting when it is applied to a relaxation H# of H.

Theorem 1. If dtb is a valid family of dwell time bounds for H, and H# is a
relaxation of H, then DTR(H#, dtb) is also a relaxation of H. �

5 Inferring Dwell Time Bounds

Given a relaxation H# of a hybrid system H, we define the operation DTI(H#),
which infers

dtb = DTI(H#),

a family of dwell time bounds which is valid for H. The operation DTI consists
of applying a syntactic transformation ST to the hybrid system H# and then
applying a reachability analysis to the resulting hybrid system ST (H#), for every
location 	. The syntactic transformation ST is very simple. Given the location
	, we add a dwell time variable d, which is a continuous varible. The dwell time
variable is reset to 0 by every transition entering the location 	. It evolves like
a clock variable (i.e., it has constant slope 1) in the location 	 and it does not
evolve in every other location (i.e., it has the constant slope 0). The syntactic
transformation of H# thus consists of adding updates d := 0 to every incoming
transition and adding the differential equation ḋ = 1 to the location 	 and the
differential equation ḋ = 0 to every other location.

Having computed a safe approximation of the set of reachable states of
ST (H#), we are interested only in the set

Reachd(	′)

of values of the continuous variable d of states at the neighbor locations 	′ of 	.

– We define the constant c(�,�′) as the minimum of Reachd(	′).
– We define the constant c� as the maximum of the union of sets Reachd(	′)

for all neighbor locations 	′.

By repeating the above computation of the dwell time guards and invariants for
all locations 	 of the hybrid system H we obtain a valid family of dwell time
bounds dtb.

For concreteness, we illustrate the syntactic transformation for the particu-
lar relaxation that we use in our experiments (see Section 7). We consider the
relaxation Proj(H, 	) of H by projecting H to one single location, say 	, and
its successor locations 	′. While abstracting away all predecessors of 	, we col-
lect the entry guards and the invariants of the predecessors of 	. By applying
the syntactic transformation ST to this relaxation, we obtain the hybrid sys-
tem Projd(H, 	). Informally (see also Figure 5), Projd(H, 	) = ST (Proj(H, 	))
consists of only the location 	 and its neighbor locations 	′, which are the target
locations of transitions from 	, and an additional clock variable d .
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Fig. 5. Given the hybrid system H and the location �, the figure presents the hybrid

system Projd(H, �) used for the inference of dwell time constraints by reachability

analysis. The new initial condition for the location � uses the disjunction of the guards

‘g of incoming transitions in conjunction with the invariants of their source locations ‘�

Formally,

Projd(H, 	) = (Loc�,V ∪ {d}, Init�, R
cont
� , Rdisc

� , Inv�)

with

– the set of locations Loc� that consists of 	 and all its successor locations 	′,
– the set of continuous variables V ∪ {d}, where d is a new clock variable,
– the initial condition for the location 	 is augmented by the disjunction of the

guards ‘g of incoming transitions in conjunction with the invariants of their
source locations ‘	 (pronounced “old-ell”), and the update,

Init �(	) ≡ d = 0 ∧ (Init(	) ∨
∨

(‘�,‘g,‘ξ,�)∈Rdisc

‘g ∧ ‘ξ ∧ Inv(‘	))

– the initial condition for each neighbor location 	′ is the Boolean constant
false,

– the continuous transition relation Rcont
� is given by

Rcont
� (	)(v) = Rcont(	)(v) if v �= d

Rcont
� (	)(d) = 1

Rcont
� (	′) = 0 for each neighbor location 	′

– the discrete transition relation Rdisc
� is the discrete transition relation Rdisc

restricted to transitions from 	,
– the invariant of the location 	 is equal to Inv(	),
– the invariant in each neighbor location 	′ is the Boolean constant true.

Strictly speaking, Proj(H, 	) is not a relaxation of H (in the sense fixed in Section
2), since it has not the same set of locations and the same set of edges the set of
its runs cannot be a superset of the set of runs H. It is straightforward to extend
the definition of Proj(H, 	) such that we obtain a relaxation in the strict sense.

6 Composing Reachability Analyses

We now define the method to sequentially compose reachability analyses. The
method incorporates the result of the reachability analysis of one relaxation H#

1
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into the reachability analysis of another relaxation H#
2 of a given hybrid system

H. We want to note that to get good experimental results it is crucial to choose
judicious relaxations H#

1 and H#
2 ; several methods to obtain relaxations are

mentioned in Section 2 and Section 5.

– The input to the method consists of two hybrid systems H#
1 and H#

2 . The
first one, H#

1 , embodies the auxiliary (in general, rather coarse) relaxation of
H. The second one, H#

2 , embodies another (in some sense, complementary)
relaxation of H. (As a consequence of our definition of relaxation, the three
hybrid systems H, H#

1 and H#
2 all have the same set of locations.)

– We infer dtbH#
1

= DTI(H#
1 ), a family of dwell time bounds valid for H, by

applying, repeatedly for each location 	, a reachability analysis to the hybrid
system that is obtained from H#

1 by the simple syntactic transformation
described in Section 5.

– We use the family of dwell time bounds dtbH#
1

for the dwell time refine-

ment of H#
2 ; we obtain the hybrid system DTR(H#

2 , dtbH#
1
) from H#

2 by the
syntactic transformation described in Section 4.

– The output of the method is the result of the reachability analysis applied
to the hybrid system DTR(H#

2 , dtbH#
1
).

The method is sound by Theorem 1, i.e., the output of the method is a safe
approximation of the set of reachable states of the original hybrid system H and
the following relation holds.

H � DTR(H#
2 , dtbH#

1
) � H#

2

Completeness is of theoretical interest only; trivially, for every relaxation
H#

1 of H there exists a relaxation H#
2 of H such that the hybrid system

DTR(H#
2 , dtbH#

1
) has the same runs as H. Generally, for a given relaxation H#

2

of H, it is not possible to find a relaxation H#
1 of H such that the inferred dwell

time bounds are precise enough, i.e., such that DTR(H#
2 , dtbH#

1
) has the same

runs as H.
A family of dwell time bounds incarnates a rather conservative approximation.

This is because, intuitively, a bound at a location 	 accounts for every visit of
the location by a run of the hybrid system; i.e., it ignores the history of the
run. As a tradeoff, one can choose a rather coarse relaxation for H#

1 and obtain
(practically optimal) dwell time bounds rather efficiently (this is confirmed by
our practical experiments, where the cost for the inference of the dwell time
bounds is negligible).

7 Case Studies

7.1 Case Study: Stability Verification

For a proof of concept, we have implemented the sequential composition of reach-
ability analyses and automatic computation of dwell time bounds and used it to



Composing Reachability Analyses of Hybrid Systems 77

Table 1. Case study on three previously unsolved instances of the stability verification

problem: a water tank system with a parametrized number of tanks (three and four)

and a temperature controller with a parametrized number of internal engines (two).

Execution times are in seconds on a Pentium 2.7 GHz, with Linux Debian 2.1.18.

The regions in the specification of the stability criterion are varied for the purpose of

comparison of execution times; the stability condition becomes weaker with a larger

region; for the purpose of specifying correctness, the larger regions are less interesting.

In each case, H#
2 is a relaxation of H obtained by eliminating all variables that are

not used in the specification of the region. H#
1 is the relaxation of H described in

Section 5. Both, plain reachability and sequential composition of reachability analyses

are realized with PHAVer [4], Version 0.38

system region H#
2 DTR(H#

2 , dtbH#
1

)

result time result time

three water tanks x3 ≥ 5 stable 5.03 stable 4.74

three water tanks x3 ≥ 6 stable 897.82 stable 17.73

three water tanks x3 ≥ 7 stable 13518.26 stable 34.53

three water tanks x3 ≥ 8 – timeout stable 57.87

three water tanks x3 ≥ 9 – timeout stable 83.13

three water tanks x3 ≥ 10 – timeout stable 109.79

four water tanks x4 ≥ 5 stable 18.66 stable 6.84

four water tanks x4 ≥ 6 stable 5052.40 stable 38.38

four water tanks x4 ≥ 7 – timeout stable 81.28

four water tanks x4 ≥ 8 – timeout stable 160.30

four water tanks x4 ≥ 9 – timeout stable 248.09

four water tanks x4 ≥ 10 – timeout stable 343.15

two engines heater 19 ≤ xr ≤ 25 ??? 14.44 stable 16.11

two engines heater 20 ≤ xr ≤ 25 ??? 14.46 stable 17.01

two engines heater 19 ≤ xr ≤ 24 ??? 25.04 stable 35.97

two engines heater 20 ≤ xr ≤ 24 ??? 24.97 stable 37.39

conduct preliminary experiments with the abstraction-based verification method
for region stability of hybrid systems [11,12,13]. This method seems an appealing
first target because its preprocessing step doubles the number of continuous vari-
ables; i.e., variable elimination is the last resort for relatively small parameters
in our scalable benchmark systems. As a consequence, a number of previously
unsolved instances of the stability verification problem for classical hybrid sys-
tem benchmarks were available as test cases. Our method proved to be effective
on these tests.

A hybrid system is stable with respect to a given region ϕ if for every run,
there exists a point of time such that from then on, the states on the run are
always in the region ϕ (it may go in and out arbitrarily often before this point of
time). The verification method transforms the hybrid system into another one
where each continuous variable is duplicated. It is the hybrid system on that a
reachability analysis is performed, e.g., by PHAVer [4]. There is an additional
step on the output of the reachability analysis which does not matter here; the
obstacle to scalability lies in the reachability analysis on the system with the
doubled number of variables.



78 S. Bogomolov, C. Mitrohin, and A. Podelski

For our case study, we took two classical scalable benchmarks, the water tank
system with a parametrized number of tanks and the temperature controller
with a parametrized number of internal engines. The instances for three and
four tanks and three internal engines were previously unsolved. Using sequen-
tial composition of reachability analyses with automatically inferred dwell time
bounds for the abstraction of these hybrid systems by variable elimination, the
verification method could solve these instances. We refer to Table 1 for the exe-
cution times (in sec, on a Pentium 2,7 GHz, with Linux Debian 2.1.18).

In order to obtain more benchmarks for comparing executions, we have varied
the regions in the specification of the stability property. For sufficiently large
regions, the abstraction by variable elimination was not coarse; i.e., the property
could be checked. These regions are, however, not interesting as correctness
specifications. The stability property for the water tank system expresses that
the final tank (represented by x3 resp. x4) must stabilize with a minimum fill-up
quantity. The last region is tight; i.e., the stability property does not hot hold for
x3 ≥ 11 or x4 ≥ 11. For the two engines heater, the stability property expresses
that the room temperature (represented by xr) must stabilize within a “comfort
zone”. The last region is tight; i.e., the system does not stabilize for xr ≥ 21 or
xr ≤ 23.

H#
1 is the relaxation of H described in Section 5. The choice of the variable

to be eliminated for the abstraction of H (yielding relaxation H#
2 ) is determined

by specification of the correctness property; i.e., we eliminate all variables that
are not used for specifying the region (of ‘stable states’). For the interesting
regions, the abstraction H#

2 is too coarse; the verification tool returns the answer

Table 2. Checking of a safety property: an automatic highway with arbiter example.

H#
1 is a relaxation of H obtained by ignoring the synchronization between the parallel

components of the hybrid system H. The relaxation H#
2 is obtained by ignoring the

values of the continuous variables of H. Execution times are in seconds on a Pentium

2.7 GHz, with Linux Debian 2.1.18. Both, plain reachability and sequential composition

of reachability analyses are realized with PHAVer [4], Version 0.38.

Number of cars H DTR(H#
2 , dtbH#

1
)

8 2.06 4.29

9 2.93 4.92

10 4.76 5.57

11 32.05 6.78

12 58.87 7.81

13 171.64 7.94

14 829.56 9.39

15 5904.12 10.65

16 timeout 12.48

17 timeout 13.20

18 timeout 14.83

19 timeout 15.47

20 timeout 16.93
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“stability unknown”, while the verification method applied to DTR(H#
2 , dtbH#

1
)

terminates with the answer “system stable” (see also Table 1, where “???” stands
for “stability unknown”).

7.2 Case Study: Safety Verification

We take the model of a central arbiter for an automated highway from [8]. We
will check the safety property that no cars collide.

In this example the model is represented as a linear hybrid automaton. H#
1

is obtained by ignoring the synchronization between the parallel components of
the hybrid system H. The relaxation H#

2 is obtained by ignoring the values of
the continuous variables of H. The detailed results are presented in Table 2. We
can see that using sequential composition of reachability analyses we can get the
results much faster then just using plain reachability analysis with PHAVer.

8 Related Work and Conclusion

Related Work. Dwell time is a natural concept that appears in different
uses [2,5,7,9,10,14,16]. Jumping ahead and summarizing the detailed discussion
to follow, it seems that our work is the first to investigate the possibility of infer-
ring dwell time bounds via a (black-box) reachability analysis applied to an (in
general coarse) auxiliary abstraction, and using them for improving the precision
of the reachability analysis of another (in some sense, complementary) abstrac-
tion of the hybrid system by a refinement (the refinement being a transformation
of hybrid systems).

In [2], the dimension of the model is reduced by projecting out continuous vari-
ables and replacing differential equations by differential inclusions and, in case
the resulting abstraction is too coarse, adding (manually inferred) information
about staying time. The idea of using differential inclusions may be interesting
in our setting as well.

In [5], clock variables replace variables with non-linear dynamics, which is
possible only if the value of the replaced ‘non-linear’ variable can be inferred
from the value of the replacing clock variable.

In [9,16], the abstract discrete model based on rectangular cells is refined
by adding (manually inferred) information about the time between the entry
and the exit of a rectangular cell. In [14], a hybrid system is transformed into
a timed system by replacing each continuous variable with a clock variable.
The motivation for such an approach is the possibility to use a model checker
for timed automata. It may be interesting to combine the idea of splitting a
location according to rectangular cells with our approach, in order to obtain
more expressive dwell time constraints.

In [8], a coarse relaxation abstraction (which can be done by eliminating con-
tinuous variables) is iteratively refined (in a counterexample-guided fashion) by
adding back continuous variables. This refinement is orthogonal to, and can
potentially be combined with dwell time refinement.
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The notion of average dwell time in [7,10] refers to a run, in contrast with our
notion of dwell time which refers to an individual location. A check of the validity
of a given average dwell time (but not its automatic inference) is proposed in
[10]). It is not clear how one would relate the two notions. Average dwell time
is used to bound the frequency of discrete transitions, which is a condition in a
local proof rule for asymptotic stability.

Conclusion and Future Work. In this paper, we have presented new methods
both for inferring and for exploiting dwell time bounds. As a consequence, we
have obtained an approach where one can incorporate the result of a first, aux-
iliary reachability analysis into a second reachability analysis in order to refine
its abstraction and thus improve its precision. Our approach is generic in that
it uses reachability analysis as a black-box method. We have presented initial
experiments that indicate its practical potential for checking safety and stability.
The experiments used one particular tool, but in principle, the approach can be
piggy-packed on other reachability analysis tools (each with its own abstraction
method, and with different scopes of applicability), and it will be interesting to
explore those options. Also, an interesting perspective is to investigate the Rus-
sian doll technique, i.e., the nesting of a sequence of reachability analyses for
deriving a sequence of successively stronger dwell time bounds.
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Abstract. In this paper we study the fault codiagnosis problem for discrete event
systems given by finite automata (FA) and timed systems given by timed au-
tomata (TA). We provide a uniform characterization of codiagnosability for FA
and TA which extends the necessary and sufficient condition that characterizes
diagnosability. We also settle the complexity of the codiagnosability problems
both for FA and TA and show that codiagnosability is PSPACE-complete in both
cases. For FA this improves on the previously known bound (EXPTIME) and for
TA it is a new result. Finally we address the codiagnosis problem for TA under
bounded resources and show it is 2EXPTIME-complete.

1 Introduction

Discrete-event systems [1,2] (DES) can be modelled by finite automata (FA) over an
alphabet of observable events Σ.

The fault diagnosis problem is a typical example of a problem under partial observa-
tion. The aim of fault diagnosis is to detect faulty sequences of the DES. The assump-
tions are that the behavior of the DES is known and a model of it is available as a finite
automaton over an alphabet Σ ∪ {τ, f}, where Σ is the set of observable events, τ rep-
resents the unobservable events, and f is a special unobservable event that corresponds
to the faults: this is the original framework introduced by M. Sampath et al. [3] and the
reader is referred to this paper for a clear and exhaustive introduction to the subject.
A faulty sequence is a sequence of the DES containing an occurrence of event f . An
observer which has to detect faults, knows the specification/model of the DES, and it
is able to observe sequences of observable events. Based on this knowledge, it has to
announce whether an observation it makes (in Σ∗) was produced by a faulty sequence
(in (Σ ∪ {τ, f})∗) of the DES or not. A diagnoser (for a DES) is an observer which
observes the sequences of observable events and is able to detect whether a fault event
has occurred, although it is not observable. If a diagnoser can detect a fault at most Δ
steps1 after it has occurred, the DES is said to be Δ-diagnosable. It is diagnosable if
it is Δ-diagnosable for some Δ ∈ N. Checking whether a DES is Δ-diagnosable for

� Author supported by a Marie Curie International Outgoing Fellowship within the 7th European
Community Framework Programme.

1 Steps are measured by the number of transitions in the DES.
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a given Δ is called the bounded diagnosability problem; checking whether a DES is
diagnosable is the diagnosability problem.

Checking diagnosability for a given DES and a fixed set of observable events can be
done in polynomial time using the algorithms of [4,5]. If a diagnoser exists there is a
finite state one. Nevertheless the size of the diagnoser can be exponential as it involves
a determinization step. The extension of this DES framework to timed automata (TA)
has been proposed by S. Tripakis in [6], and he proved that the problem of checking
diagnosability of a timed automaton is PSPACE-complete. In the timed case however,
the diagnoser may be a Turing machine. The problem of checking whether a timed
automaton is diagnosable by a diagnoser which is a deterministic timed automaton was
studied by P. Bouyer et al. [7].

Codiagnosability generalizes diagnosability by considering decentralized architec-
tures. Such decentralized architectures have been introduced in [8] and later refined
in [9,10]. In these architectures, local diagnosers (with their own partial view of the
system) can send some information to a coordinator, summarizing their observations.
The coordinator then computes a result from the partial results of the local diagnosers.
The goal is to obtain a coordinator that can detect the faults in the system. When lo-
cal diagnosers do not communicate with each other nor with a coordinator (protocol 3
in [8]), the decentralized diagnosis problem is called codiagnosis [10,9]. In this case,
codiagnosis means that each fault can be detected by at least one local diagnoser. In the
paper [10], codiagnosability is considered and an algorithm to check codiagnosability
is presented for discrete event systems (FA). An upper bound for the complexity of the
algorithm is EXPTIME. In [9], the authors consider a hierarchical framework for de-
centralized diagnosis. In [11] a notion of robust codiagnosability is introduced, which
can be thought of as a fault tolerant (local diagnosers can fail) version of codiagnosabil-
ity. None of the previous papers has addressed the codiagnosability problems for timed
automata. Moreover, the exact complexity of the codiagnosis problems is left unsettled
for discrete event systems (FA).

Our Contribution. In this paper, we study the codiagnosability problems for FA and TA.
We settle the complexity of the problems for FA (PSPACE-complete), improving on the
best known upper bound (EXPTIME). We also address the codiagnosability problems
for TA and provide new results: algorithms to check codiagnosability and also codiag-
nosability under bounded resources. Our contribution is both of theoretical and practical
interests. The algorithms we provide are optimal, and can also be implemented using
standard model-checking tools like SPIN [12] for FA, or UPPAAL [13] for TA. This
means that very expressive languages can be used to specify the systems to codiagnose
and very efficient implementations and data structures are readily available.

Organisation of the Paper. Section 2 recalls the definitions of finite automata and timed
automata. We also give some results on the Intersection Emptiness Problems (sec-
tion 2.6) that will be used in the next sections. Section 3 introduces the fault codiagnosis
problems we are interested in, and a necessary and sufficient condition that character-
izes codiagnosability for FA and TA. Section 4 contains the first main results: optimal
algorithms for the codiagnosability problems for FA and TA. Section 5 describes how
to synthesize the codiagnosers and the limitations of this technique for TA. Section 6 is
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devoted to the codiagnosability problem under bounded resources for TA and contains
the second main result of the paper.

Omitted proofs can be found in the full version of this paper [14].

2 Preliminaries

Σ denotes a finite alphabet and Στ = Σ∪{τ} where τ �∈ Σ is the unobservable action.
B = {TRUE, FALSE} is the set of boolean values, N the set of natural numbers, Z the
set of integers and Q the set of rational numbers. R is the set of real numbers and R≥0

(resp. R>0) is the set of non-negative (resp. positive) real numbers. We denote tuples
(or vectors) by d = (d1, · · · , dk) and write d[i] for di.

2.1 Clock Constraints

Let X be a finite set of variables called clocks. A clock valuation is a mapping v : X →
R≥0. We let RX

≥0 be the set of clock valuations over X . We let 0X be the zero valuation
where all the clocks in X are set to 0 (we use 0 when X is clear from the context).
Given δ ∈ R, v + δ is the valuation defined by (v + δ)(x) = v(x) + δ. We let C(X)
be the set of convex constraints on X , i.e., the set of conjunctions of constraints of the
form x �� c with c ∈ Z and ��∈ {≤, <,=, >,≥}. Given a constraint g ∈ C(X) and a
valuation v, we write v |= g if g is satisfied by the valuation v. We also write [[g]] for the
set {v | v |= g}. Given a set R ⊆ X and a valuation v of the clocks in X , v[R] is the
valuation defined by v[R](x) = v(x) if x �∈ R and v[R](x) = 0 otherwise.

2.2 Timed Words

The set of finite (resp. infinite) words over Σ is Σ∗ (resp. Σω) and we let Σ∞ =
Σ∗ ∪Σω. A language L is any subset of Σ∞. A finite (resp. infinite) timed word over
Σ is a word in (R≥0.Σ)∗.R≥0 (resp. (R≥0.Σ)ω). Duration(w) is the duration of a
timed word w which is defined to be the sum of the durations (in R≥0) which appear in
w; if this sum is infinite, the duration is ∞. Note that the duration of an infinite word
can be finite, and such words which contain an infinite number of letters, are called
Zeno words. We let Unt(w) be the untimed version of w obtained by erasing all the
durations in w. An example of untiming is Unt(0.4 a 1.0 b 2.7 c) = abc. In this paper
we write timed words as 0.4 a 1.0 b 2.7 c · · · where the real values are the durations
elapsed between two letters: thus c occurs at global time 4.1.

TW∗(Σ) is the set of finite timed words over Σ, TWω(Σ), the set of infinite timed
words and TW(Σ) = TW∗(Σ) ∪ TWω(Σ). A timed language is any subset of TW(Σ).

Let πΣ′ be the projection of timed words of TW(Σ) over timed words of TW(Σ′).
When projecting a timed word w on a sub-alphabet Σ′ ⊆ Σ, the durations elapsed bet-
ween two events are set accordingly: for instance for the timed word 0.4 a 1.0 b 2.7 c,
we have π{a,c}(0.4 a 1.0 b 2.7 c) = 0.4 a 3.7 c (note that projection erases some
letters but keep the time elapsed between two letters). Given a timed language L, we let
Unt(L) = {Unt(w) | w ∈ L}. Given Σ′ ⊆ Σ, πΣ′(L) = {πΣ′(w) | w ∈ L}.
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2.3 Timed Automata

Timed automata are finite automata extended with real-valued clocks to specify timing
constraints between occurrences of events. For a detailed presentation of the fundamen-
tal results for timed automata, the reader is referred to the seminal paper of R. Alur and
D. Dill [15].

Definition 1 (Timed Automaton). A Timed Automaton A is a tuple (L, l0, X,Στ , E,
Inv, F,R) where: L is a finite set of locations; l0 is the initial location; X is a finite
set of clocks; Σ is a finite set of actions; E ⊆ L × C(X) × Στ × 2X × L is a finite
set of transitions; in a transition (	, g, a, r, 	′), g is the guard, a the action, and r the
reset set; as usual we often write a transition 	

g,a,r−−−−→ 	′; Inv ∈ C(X)L associates
with each location an invariant; as usual we require the invariants to be conjunctions
of constraints of the form x � c with �∈ {<,≤}; F ⊆ L is the set of final locations
and R ⊆ L is the set of repeated locations. �

The size of a TA A is denoted |A| and is the size of the clock constraints i.e., the size
of the transition relation E. A state of A is a pair (	, v) ∈ L× RX

≥0. A run � of A from
(	0, v0) is a (finite or infinite) sequence of alternating delay and discrete moves:

� = (	0, v0)
δ0−→ (	0, v0 + δ0)

a0−→ (	1, v1) · · · an−1−−−→ (	n, vn) δn−→ (	n, vn + δn) · · ·
s.t. for every i ≥ 0:

– vi + δ |= Inv(	i) for 0 ≤ δ ≤ δi;
– there is some transition (	i, gi, ai, ri, 	i+1) ∈ E s.t. : (i) vi + δi |= gi, (ii) vi+1 =

(vi + δi)[ri].

The set of finite (resp. infinite) runs in A from a state s is denoted Runs∗(s,A) (resp.
Runsω(s,A)). We let Runs∗(A) = Runs∗(s0, A), Runsω(A) = Runsω(s0, A) with s0 =
(l0, 0), and Runs(A) = Runs∗(A) ∪ Runsω(A). If � is finite and ends in sn, we let
last(�) = sn. Because of the denseness of the time domain, the unfolding of A as
a graph is infinite (uncountable number of states and delay edges). The trace, tr(�),
of a run � is the timed word πΣ(δ0a0δ1a1 · · ·anδn · · · ). The duration of the run � is
Duration(�) = Duration(tr(�)). For V ⊆ Runs(A), we let Tr(V ) = {tr(�) | � ∈ V },
which is the set of traces of the runs in V .

A finite (resp. infinite) timed word w is accepted by A if it is the trace of a run of
A that ends in an F -location (resp. a run that reaches infinitely often an R-location).
L∗(A) (resp. Lω(A)) is the set of traces of finite (resp. infinite) timed words accepted
by A, and L(A) = L∗(A) ∪ Lω(A) is the set of timed words accepted by A.

In the sequel we often omit the sets R and F in TA and this implicitly means F = L
and R = ∅.

A timed automaton A is deterministic if there is no τ labelled transition in A, and
if, whenever (	, g, a, r, 	′) and (	, g′, a, r′, 	′′) are transitions of A, g ∧ g′ ≡ FALSE.
A is complete if from each state (	, v), and for each action a, there is a transition
(	, g, a, r, 	′) such that v |= g. We note DTA the class of deterministic timed automata.

A finite automaton is a particular TA with X = ∅. Consequently guards and invari-
ants are vacuously true and time elapsing transitions do not exist. We write A = (Q,
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q0, Στ , E, F,R) for a finite automaton. A run is thus a sequence of the form: � = 	0
a0−→

	1 · · · · · · an−1−−−→ 	n · · · where for each i ≥ 0, (	i, ai, 	i+1) ∈ E. Definitions of traces
and languages are the same as for TA. For FA, the duration of a run � is the number
of steps (including τ -steps) of �: if � is finite and ends in 	n, Duration(�) = n and
otherwise Duration(�) = ∞.

2.4 Region Graph of a Timed Automaton

A region of RX
≥0 is a conjunction of atomic constraints of the form x �� c or x− y �� c

with c ∈ Z, ��∈ {≤, <,=, >,≥} and x, y ∈ X . The region graph RG(A) of a TA A
is a finite quotient of the infinite graph of A which is time-abstract bisimilar to A [15].
It is a finite automaton on the alphabet E′ = E ∪ {τ}. The states of RG(A) are pairs
(	, r) where 	 ∈ L is a location of A and r is a region of RX

≥0. More generally, the edges
of the graph are tuples (s, t, s′) where s, s′ are states of RG(A) and t ∈ E′. Genuine
unobservable moves of A labelled τ are labelled by tuples of the form (s, (g, τ, r), s′)
in RG(A). An edge (g, λ,R) in the region graph corresponds to a discrete transition of
A with guard g, action λ and reset set R. A τ move in RG(A) stands for a delay move to
the time-successor region. The initial state of RG(A) is (l0, 0). A final (resp. repeated)
state of RG(A) is a state (	, r) with 	 ∈ F (resp. 	 ∈ R). A fundamental property of the
region graph [15] is:

Theorem 1 (R. Alur and D. Dill, [15]). L(RG(A)) = Unt(L(A)).

The (maximum) size of the region graph is exponential in the number of clocks and in
the maximum constant of the automaton A (see [15]): |RG(A)| = |L| · |X |! ·2|X| ·K |X|

where K is the largest constant used in A.

2.5 Product of Timed Automata

Given a n locations 	1, · · · , 	n, we write 	 for the tuple (	1, · · · , 	n) and let 	[i] = 	i.
Given a letter a ∈ Σ1 ∪ · · · ∪Σn, we let I(a) = {k | a ∈ Σk}.

Definition 2 (Product of TA). Let Ai = (Li, l
i
0, Xi, Σ

i
τ , Ei, Invi), i ∈ {1, · · · , n},

be n TA s.t. Xi ∩ Xj = ∅ for i �= j. The product of the Ai is the TA A = A1 ×
· · · × An = (L, l0, X,Στ , E, Inv) given by: L = L1 × · · · × Ln; l0 = (l10, · · · , ln0 );
Σ = Σ1 ∪ · · · ∪ Σn; X = X1 ∪ · · · ∪ Xn; E ⊆ L × C(X) × Στ × 2X × L and

(	, g, a, r, 	
′
) ∈ E if:

– either a ∈ Σ \ {τ}, and
1. for each k ∈ I(a), (	[k], gk, a, rk, 	

′
[k]) ∈ Ek,

2. g = ∧k∈I(a)gk and r = ∪k∈I(a)rk;

3. for k �∈ I(a), 	
′
[k] = 	[k];

– or a = τ and ∃j s.t. (	[j], gj, τ, rj , 	
′
[j]) ∈ Ej , g = gj , r = rj and for k �= j,

	
′
[k] = 	[k].

Inv(	) = ∧n
k=1Inv(	[k]). �

This definition of product also applies to finite automata (no clock constraints).
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If the automaton Ai has the set of final locations Fi then the set of final locations for
A is F1×· · ·×Fn. For Büchi acceptance, we add a counter c to A which is incremented
every time the product automaton A encounters an Ri-location in Ai, following the
standard construction for product of Büchi automata. The automaton constructed with
the counter c is A+. The repeated set of states of A+ is L1 × · · · × Ln−1 × Ln × {n}.
As the sets of clocks of the Ai’s are disjoint2, the following holds:

Fact 1. L∗(A) = ∩n
i=1L∗(Ai) and Lω(A+) = ∩n

i=1Lω(Ai).

2.6 Intersection Emptiness Problem

In this section we give some complexity results for the emptiness problem on products
of FA and TA.

First consider the following problem on deterministic finite automata (DFA):

Problem 1 (Intersection Emptiness for DFA)
INPUTS: n deterministic finite automata Ai, 1 ≤ i ≤ n, over the alphabet Σ.
PROBLEM: Check whether ∩n

i=1L∗(Ai) �= ∅.

The size of the input for Problem 1 is
∑n

i=1 |Ai|.
Theorem 2 (D. Kozen, [16]). Problem 1 is PSPACE-complete.

D. Kozen’s Theorem also holds for Büchi languages:

Theorem 3. Checking whether ∩n
i=1Lω(Ai) �= ∅ is PSPACE-complete.

Problem 1 is PSPACE-hard even if A2, · · · , An are automata where all the states are
accepting and A1 is the only automaton with a proper set of accepting states (actually
one accepting state is enough).

Proposition 1. Let Ai, 1 ≤ i ≤ n be n DFA over the alphabet Σ. If for all Ai, 2 ≤ i ≤
n, all states of Ai are accepting, Problem 1 is already PSPACE-hard.

The next results are counterparts of D. Kozen’s results for TA.

Problem 2 (Intersection Emptiness for TA)
INPUTS: n TA Ai = (Li, l

i
0, Xi, Σ

i
τ , Ei, Invi, Fi), 1 ≤ i ≤ n with Xk ∩ Xj = ∅ for

k �= j.
PROBLEM: Check whether ∩n

i=1L∗(Ai) �= ∅.

Theorem 4. Problem 2 is PSPACE-complete.

The previous theorem extends to Büchi languages:

Problem 3 (Büchi Intersection Emptiness for TA)
INPUTS: n TA Ai = (Li, l

i
0, Xi, Σ

i
τ , Ei, Invi, Ri), 1 ≤ i ≤ n with Xk ∩ Xj = ∅ for

k �= j.
PROBLEM: Check whether ∩n

i=1Lω(Ai) �= ∅.

Theorem 5. Problem 3 is PSPACE-complete.

2 For finite automata, this is is vacuously true.
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3 Fault Codiagnosis Problems

We first recall the basics of fault diagnosis. The purpose of fault diagnosis [3] is to
detect a fault in a system as soon as possible. The assumption is that the model of the
system is known, but only a subset Σo of the set of events Σ generated by the system
are observable. Faults are also unobservable.

Whenever the system generates a timed word w ∈ TW∗(Σ), an external observer
can only see πΣo(w). If an observer can detect faults under this partial observation of
the outputs of A, it is called a diagnoser. We require a diagnoser to detect a fault within
a given delay Δ ∈ N.

To model timed systems with faults, we use timed automata on the alphabet Στ,f =
Στ ∪ {f} where f is the faulty (and unobservable) event. We only consider one type
of fault, but the results we give are valid for many-types of faults {f1, f2, · · · , fn}:
indeed solving the many-types diagnosability problem amounts to solving n one-type
diagnosability problems [5]. The observable events are given by Σo ⊆ Σ and τ is
always unobservable.

The idea of decentralized or distributed diagnosis was introduced in [8]. It is based
on decentralized architectures: local diagnosers and a communication protocol. In these
architectures, local diagnosers (with their own partial view of the system) can send to a
coordinator some information, using a given communication protocol. The coordinator
then computes a result from the partial results of the local diagnosers. The goal is to
obtain a coordinator that can detect the faults in the system. When local diagnosers do
not communicate with each other nor with a coordinator (protocol 3 in [8]), the decen-
tralized diagnosis problem is called codiagnosis [10,9]. In this section we formalize the
notion of codiagnosability introduced in [10] in a style similar to [17]. This allows us to
obtain a necessary and sufficient condition for codiagnosability of FA but also to extend
the definition of codiagnosability to timed automata.

In the sequel we assume that the model of the system is a TA A = (L, l0, X, Στ,f ,
E, Inv) and is fixed.

3.1 Faulty Runs

Let Δ ∈ N. A run � = (	0, v0)
δ0−→ (	0, v0 + δ0)

a0−→ (	1, v1) · · · an−1−−−→ (	n, vn) δn−→
(	n, vn + δ) · · · of A is Δ-faulty if: (1) there is an index i s.t. ai = f and (2) the

duration of �′ = (	i, vi)
δi−→ · · · δn−→ (	n, vn + δn) · · · is larger or equal to Δ. We

let Faulty≥Δ(A) be the set of Δ-faulty runs of A. Note that by definition, if Δ′ ≥
Δ then Faulty≥Δ′(A) ⊆ Faulty≥Δ(A). We let Faulty(A) = ∪Δ≥0Faulty≥Δ(A) =
Faulty≥0(A) be the set of faulty runs of A, and NonFaulty(A) = Runs(A) \ Faulty(A)
be the set of non-faulty runs of A. Finally, we let Faultytr

≥Δ(A) = Tr(Faulty≥Δ(A)) and
NonFaultytr(A) = Tr(NonFaulty(A)) which are the traces3 of Δ-faulty and non-faulty
runs of A.

We also make the assumption that the TA A cannot prevent time from elapsing. For
FA, this assumption is that from any state, a discrete transition can be taken. If it is not
case, τ loop actions can be added with no impact on the (co)diagnosability status of the

3 Notice that tr(�) erases τ and f .
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system. This is a standard assumption in diagnosability and is required to avoid taking
into account these cases that are not interesting in practice.

For discrete event systems (FA), the notion of time is the number of transitions (dis-
crete steps) in the system. A Δ-faulty run is thus a run with a fault action f followed by
at least Δ discrete steps (some of them can be τ or even f actions). When we consider
codiagnosability problems for discrete event systems, this definition of Δ-faulty runs
apply. The other definitions are unchanged.

Remark 1. A timed automaton where discrete actions are separated by one time unit is
not equivalent to using a finite automaton when solving a fault diagnosis problem. For
instance, a timed automaton can generate the timed words 1.f.1.a and 1.τ.1.τ.1.a. In
this case, it is 1-diagnosable: after reading the timed word 2.a we announce a fault. If
we do not see the 1-time unit durations, the timed words f.a and τ2.a give the same
observation. And thus it is not diagnosable if we cannot measure time. Using a timed
automaton where discrete actions are separated by one time unit gives to the diagnoser
the ability to count/measure time and this is not equivalent to the fault diagnosis prob-
lem for FA (discrete event systems).

3.2 Codiagnosers and Codiagnosability Problems

A codiagnoser is a tuple of diagnosers, each of which has its own set of observable
events Σi, and whenever a fault occurs, at least one diagnoser is able to detect it. In
the sequel we write πi in place of πΣi for readability reasons. A codiagnoser can be
formally defined as follows:

Definition 3 ((Δ, E)-Codiagnoser). Let A be a timed automaton over the alphabet
Στ,f , Δ ∈ N and E = (Σi)1≤i≤n be a family of subsets of Σ. A (Δ, E)-codiagnoser
for A is a mapping D = (D1, · · · , Dn) with Di : TW∗(Σi) → {0, 1} such that:

– for each � ∈ NonFaulty(A),
∑n

i=1 D[i](πi(tr(�))) = 0,
– for each � ∈ Faulty≥Δ(A),

∑n
i=1 D[i](πi(tr(�))) ≥ 1. �

As for diagnosability, the intuition of this definition is that (i) the codiagnoser will raise
an alarm (D outputs a value different from 0) when a Δ-faulty run has been identified,
and that (ii) it can identify those Δ-faulty runs unambiguously. The codiagnoser is
not required to do anything special for Δ′-faulty runs with Δ′ < Δ (although it is
usually required that once it has announced a fault, it does not change its mind and keep
outputting 1).

A is (Δ, E)-codiagnosable if there exists a (Δ, E)-codiagnoser for A. A is E-codia-
gnosable if there is some Δ ∈ N s.t. A is (Δ, E)-codiagnosable.

The standard notions [3] of Δ-diagnosability and Δ-diagnoser are obtained when
the family E is the singleton E = {Σ}. The fundamental codiagnosability problems for
timed automata are the following:

Problem 4 ((Δ, E)-Codiagnosability)
INPUTS: A TA A = (L, l0, X,Στ,f , E, Inv), Δ ∈ N and E = (Σi)1≤i≤n.
PROBLEM: Is A (Δ, E)-codiagnosable?
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Problem 5 (Codiagnosability)
INPUTS: A TA A = (L, l0, X,Στ,f , E, Inv) and E = (Σi)1≤i≤n.
PROBLEM: Is A E-codiagnosable?

Problem 6 (Optimal delay)
INPUTS: A TA A = (L, l0, X,Στ,f , E, Inv) and E = (Σi)1≤i≤n.
PROBLEM: What is the minimum Δ s.t. A is (Δ, E)-codiagnosable?

The size of the input for Problem 4 is |A| + logΔ + n · |Σ|, and for Problems 5 and 6
it is |A| + n · |Σ|.

In addition to the previous problems, we will consider the construction of a (Δ, E)-
codiagnoser when A is (Δ, E)-codiagnosable in section 5.

3.3 Necessary and Sufficient Condition for Codiagnosability

In this section we generalize the necessary and sufficient condition for diagnosabil-
ity [6,17] to codiagnosability.

Lemma 1. A is not (Δ, E)-codiagnosable if and only if ∃� ∈ Faulty≥Δ(A) and

∀1 ≤ i ≤ n, ∃�i ∈ NonFaulty(A) s.t. πi(tr(�)) = πi(tr(�i)). (1)

Using Lemma 1, we obtain a language based characterisation of codiagnosability ex-
tending the one given in [6,17]. Let π−1

i (X) = {w ∈ TW∗(Σ) | πi(w) ∈ X}.

Lemma 2. A is (Δ, E)-codiagnosable if and only if

Faultytr
≥Δ(A) ∩

( n⋂
i=1

π−1
i

(
πi(NonFaultytr(A))

))
= ∅. (2)

4 Algorithms for Codiagnosability Problems

4.1 (Δ, E)-Codiagnosability (Problem 4)

Deciding Problem 4 amounts to checking whether equation 2 holds or not. Recall that
A = (L, l0, X,Στ,f , E, Inv). Let t be a fresh clock not in X . Let Af (Δ) = ((L ×
{0, 1}) ∪ {Bad}, (l0, 0), X ∪ {t}, Στ , Ef , Invf ) with:

– ((	, n), g, λ, r, (	′, n)) ∈ Ef if (	, g, λ, r, 	′) ∈ E, λ ∈ Σ ∪ {τ};
– ((	, 0), g, τ, r ∪ {t}, (	′, 1)) ∈ Ef if (	, g, f, r, 	′) ∈ E;
– for 	 ∈ L, ((	, 1), t ≥ Δ, τ,∅, Bad) ∈ Ef ;
– Invf ((	, n)) = Inv(	).

Af (Δ) is similar to A but when a fault occurs it switches to a copy of A (encoded by
n = 1). When sufficient time has elapsed in the copy (more than Δ time units), location
Bad can be reached. The language accepted by Af (Δ) with the set of final states {Bad}
is thus L∗(Af (Δ)) = Faultytr

≥Δ(A). Define Ai = (L, l0, Xi, Στ , Ei, Invi) with:

– Xi = {xi | x ∈ X} (create copies of clocks of A);
– (	, gi, λ, ri, 	

′) ∈ Ei if (	, g, λ, r, 	′) ∈ E, λ ∈ Σi ∪ {τ} with: gi is g where the
clocks x in X are replaced by their counterparts xi in Xi; ri is r with the same
renaming;



The Complexity of Codiagnosability 91

– (	, gi, τ, ri, 	
′) ∈ Ei if (	, g, λ, r, 	′) ∈ E, λ ∈ Σ \Σi

– Invi(	) = Inv(	) with clock renaming (xi in place of x).

Each Ai accepts only non-faulty traces as the f -transitions are not in Ai. If the set
of final locations is L for each Ai, then L∗(Ai) = πi(NonFaultytr(A)). To accept
π−1

i

(
πi(NonFaultytr(A)) we add transitions (	, TRUE, λ,∅, 	) for each location 	 of

Ei and for each λ ∈ Σ \ Σi. Let A∗
i be the automaton on the alphabet Σ constructed

this way. By definition of A∗
i , L∗(A∗

i ) = π−1
i

(
πi(NonFaultytr(A))

)
.

Define B = Af (Δ) × A∗
1 × A∗

2 × · · · × A∗
n with the set of final locations FB =

{Bad} × L× · · · × L. We let RB = ∅. Using equation 2 we obtain:

Lemma 3. A is (Δ, E)-codiagnosable iff L∗(B) = ∅.

The size of the input for problem 4 is |A|+logΔ+n · |Σ|. The size of Af (Δ) is (linear
in) the size of A and logΔ, i.e., O(|A| + logΔ). The size of A∗

i is also bounded by
the size of A. It follows that |Af (Δ)| +

∑n
i=1 |A∗

i | is bounded by (n + 1)|A| and is
polynomial in the size of the input of problem 4. We thus have a polynomial reduction
from Problem 4 to the intersection emptiness problem for TA. We can now establish the
following result:

Theorem 6.Problem 4 is PSPACE-complete for Timed Automata. It is already PSPACE-
hard for Deterministic Finite Automata.

4.2 E-Codiagnosability (Problem 5)

In this section we show how to solve the E-codiagnosability problem. The algorithm is
a generalisation of the procedure for deciding diagnosability of discrete event and timed
systems (see [18] for a recent presentation).

For standard fault diagnosis (one diagnoser and E = {Σ}), A is not diagnosable if
there is an infinite faulty run in A the projection of which is the same as the projection
of a non-faulty one [18].

The procedure for checking diagnosability of FA and TA slightly differ due to spe-
cific features of timed systems. We recall here the algorithms to check diagnosability of
FA and TA [18,6] and extend them to codiagnosability.

Codiagnosability for Finite Automata. To check whether a FA A is diagnosable, we
build a synchronized product Af × A1, s.t. Af behaves exactly like A but records in
its state whether a fault has occurred, and A1 behaves like A without the faulty runs
(transitions labelled f are cut off). This corresponds to Af (Δ) defined in section 4.1
without the clock Δ.

A faulty run in the product Af × A1 is a run for which Af reaches a faulty state of
the form (q, 1). To decide whether A is diagnosable we build an extended version of
Af ×A1 which is a Büchi automaton B [18]: B has a boolean variable z which records
whether Af participated in the last transition fired by Af × A1. A state of B is a pair
(s, z) where s is a state of Af × A1. B is given by the tuple ((Q × {0, 1} × Q) ×
{0, 1}, ((q0, 0), q0, 0), Στ ,−→B,∅, RB) with:
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– (s, z) λ−−→B (s′, z′) if (i) there exists a transition t : s λ−−→ s′ in Af × A1, and (ii)
z′ = 1 if λ is a move of Af and z′ = 0 otherwise;

– RB = {(((q, 1), q′), 1) | ((q, 1), q′) ∈ Af ×A1}.

The important part of the previous construction relies on the fact that, forA to be non Σ-
diagnosable, Af should have an infinite faulty run (and take infinitely many transitions)
and A1 a corresponding non-faulty run (note that this one can be finite) giving the
same observation. With the previous construction, we have [18]: A is diagnosable iff
Lω(B) = ∅.

The construction for codiagnosability is an extension of the previous one adding
A2, · · · , An to the product. LetBco = Af×A1×· · ·×An with Ai defined in section 4.1.
In Bco we again use the variable z to indicate whether Af participated in the last move.
Define the set of repeated states of Bco by: RBco = {(((q, 1), q), 1) | ((q, 1), q) ∈ Af ×
A1×· · ·×An}. By construction, a state in RBco is: (1) faulty as it contains a component
(q, 1) for the state of Af and (2) Af participated in the last move as z = 1. It follows
that:

Lemma 4. A is E-codiagnosable iff Lω(Bco) = ∅.

Theorem 7. Problem 5 is PSPACE-complete for Deterministic Finite Automata.

Codiagnosability for Timed Automata. Checking diagnosability for timed automata
requires an extra step in the construction of the equivalent of automaton B defined
above: indeed, for TA, a run having infinitely many discrete steps could well be zeno,
i.e., the duration of such a run can be finite. This extra step in the construction was first
presented in [6]. It can be carried out by adding a special timed automaton Div with two
locations {0, 1} and synchronizing it with Af ×A1. If we use F = ∅ and R = {1} for
Div, any accepted run is time divergent and thus cannot be zeno. Let D = Af×Div×A1

and let FD = ∅ and RD be the set of states where Af is in a faulty location and Div is
in location 1. For standard fault diagnosis, the following holds [6,18]: A is diagnosable
iff Lω(D) = ∅.

The construction to check codiagnosability is obtained by adding A2, · · · , An in the
product. Let Dco = Af × Div ×A1 × · · · ×An.

Lemma 5. A is E-codiagnosable iff Lω(Dco) = ∅.

Theorem 8. Problem 5 is PSPACE-complete for Timed Automata.

4.3 Optimal Delay (Problem 6)

Using the results for checking E-codiagnosability and (Δ, E)-codiagnosability, we ob-
tain algorithms for computing the optimal delay.

Lemma 4 reduces codiagnosability of FA to Büchi emptiness on a product automa-
ton. The number of states of the automaton Bco is bounded by 4 · |A|n, and the number
of faulty states by 2 · |A|n. This implies that:

Proposition 2. Let A be a FA. If A is E-codiagnosable, then A is (2 · |A|n, E)-codia-
gnosable.
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From Proposition 2, we can conclude that:

Theorem 9. Problem 6 can be solved in PSPACE for FA.

For timed automata, a similar reasoning can be done on the region graph of Dco. If a
TA A is E-codiagnosable, there cannot be any cycle with faulty locations in RG(Dco).
Otherwise there would be a non-zeno infinite word in L(Dco) and thus an infinite time-
diverging faulty run in A, with corresponding non-faulty runs in each Ai, giving the
same observation. Let K be the size of RG(Dco). If A is E-codiagnosable, then a faulty
state in RG(Dco) can be followed by at most K states. Otherwise a cycle in the region
graph would occur and thus Lω(Dco) would not be empty. This also implies that all the
states (s, r) in RG(Dco) that can follow a faulty state must have a bounded region. As
the amount of time that can elapse in one region is at most 1 time unit4, the maximum
duration of a faulty run in Dco is bounded by K . This implies that:

Proposition 3. Let A be a TA. If A is E-codiagnosable, then A is (K, E)-codiagnosable
with K = |RG(Dco)|.
The size of the region graph ofDco is bounded by |L|n+1·((n+1)|X |+1)!·2(n+1)|X|+1·
M (n+1)|X|+1. Thus the encoding of constant K has size O(n · |A|).
Theorem 10. Problem 6 can be solved in PSPACE for Timed Automata.

5 Synthesis of Codiagnosers

The reader is referred to the extended version of this paper [14] for a detailed presenta-
tion of this section. The synthesis of codiagnosers for FA and TA can be carried out by
extending the known construction for diagnosers [3].

The construction of a diagnoser for timed automata [6] consists in computing on-
the-fly the current possible states of the timed automaton Af after reading a timed word
w. This procedure is effective but gives a diagnoser which is a Turing machine. The
machine computes a state estimate of A after each observable event, and if it contains
only faulty states, it announces a fault.

Obviously the same construction can be carried out for codiagnosis: we define the
Turing machines Mi, 1 ≤ i ≤ n that estimate the state of A. When one Mi’s estimate
on an input Σi-trace w contains only faulty states, we set Di(w) = 1 and 0 otherwise.
This tuple of Turing machines is a (Δ, E)-codiagnoser.

Computing the estimates with Turing machines might be too expensive to be im-
plemented at runtime. More efficient and compact codiagnosers might be needed with
reasonable computation times. In the next section, we address the problem of codiag-
nosis for TA under bounded resources.

6 Codiagnosis with Deterministic Timed Automata

The fault diagnosis problem using timed automata has been introduced and solved by
P. Bouyer et al. in [7]. The problem is to determine, given a TA A, whether there exists
a diagnoser D for A, that can be represented by a deterministic timed automaton.

4 The constants in the automata are integers.
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6.1 Fault Diagnosis with Deterministic Timed Automata

When synthesizing (deterministic) timed automata, an important issue is the amount
of resources the timed automaton can use: this can be formally defined [19] by the
(number of) clocks, Z , that the automaton can use, the maximal constant max, and a
granularity 1

m . As an example, a TA of resource μ = ({c, d}, 2, 1
3 ) can use two clocks,

c and d, and the clocks constraints using the rationals −2 ≤ k/m ≤ 2 where k ∈ Z and
m = 3. A resource μ is thus a triple μ = (Z,max, 1

m ) where Z is finite set of clocks,
max ∈ N and 1

m ∈ Q>0 is the granularity. DTAμ is the class of DTA of resource μ.

Remark 2. Notice that the number of locations of the DTA in DTAμ is not bounded and
hence this family has an infinite (yet countable) number of elements.

If a TA A is Δ-diagnosable with a diagnoser that can be represented by a DTA D with
resource μ, we say that A is (Δ,D)-diagnosable. P. Bouyer et al. in [7] considered the
problem of deciding whether there exists a DTA diagnoser with resource μ:

Problem 7 (Δ-DTA-Diagnosability [7])
INPUTS: A TA A = (L, l0, X,Στ,f , E, Inv), Δ ∈ N, a resource μ = (Z,max, 1

m ).
PROBLEM: Is there any D ∈ DTAμ s.t. A is (Δ,D)-diagnosable ?

Theorem 11 (P. Bouyer et al., [7]). Problem 7 is 2EXPTIME-complete.

The solution to the previous problem is based on the construction of a two-player
safety game, GA,Δ,μ. In this game a set of states, Bad, must be avoided for A to be
Δ-diagnosable. The most permissive winning strategy gives the set of all DTAμ diag-
nosers (the most permissive diagnosers) which can diagnose A (or ∅ is there is none).
We refer to the extended version [14], section 6.1 for a detailed presentation of this
construction.

6.2 Algorithm for Codiagnosability

In this section we include the alphabet Σ of a DTA in the resource μ and write μ =
(Σ,Z,max, 1

m ).

Problem 8 (Δ-DTA-Codiagnosability)
INPUTS: A TA A = (L, l0, X,Στ,f , E, Inv), Δ ∈ N, and a family of resources μi =
(Σi, Zi,maxi,

1
mi

), 1 ≤ i ≤ n with Σi ⊆ Σ.

PROBLEM: Is there any codiagnoser D = (D1, D2, · · · , Dn) with Di ∈ DTAμi s.t. A
is (Δ,D)-codiagnosable ?

To solve Problem 8, we extend the algorithm given in [7] for DTA-diagnosability. Let
Gi be the game GA,Δ,μi and Badi the set of bad states. Given a strategy fi, we let
fi(Gi) be the outcome5 of Gi when fi is played by Player 0. Given w ∈ TW∗(Σ) and
a DTA A on Σ, we let last(w,A) be the location reached when w is read by A.

5 fi(G
i) is a timed transition system.
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Table 1. Summary of the Results

Δ-Codiagnosability Codiagnosability Optimal Delay
Synthesis

(Bounded Resources)

FA
PSPACE-C.
PTIME [5,4]

PSPACE-C.
PTIME [5,4]

PSPACE
PTIME [5,4]

EXPTIME
EXPTIME [3]

TA
PSPACE-C.

PSPACE-C. [6]
PSPACE-C.

PSPACE-C. [6]
PSPACE

PSPACE [18]
2EXPTIME-C.

2EXPTIME-C. [7]

Lemma 6. A is (Δ,D)-codiagnosable iff there is a tuple of strategies f s.t.

(1) ∀1 ≤ i ≤ n, f [i] is state-based on the game Gi, and

(2) ∀w ∈ Tr(A)

{
If Si = last(πΣi(w), fi(Gi)), 1 ≤ i ≤ n,

then ∃1 ≤ j ≤ n, s.t. Sj �∈ Badj.

Item (2) of Lemma 6 states that there is no word in A for which all the Player 0 in the
games Gi are in bad states. The strategies for each Player 0 are not necessarily winning
in each Gi, but there is always one Player 0 who has not lost the game Gi. From the
previous Lemma, we can obtain the following result:

Theorem 12. Problem 8 is 2EXPTIME-complete.

7 Conclusion and Future Work

Table 1 gives an overview of the results described in this paper (bold face) for the co-
diagnosis problems in comparison with the results for the diagnosis problems (second
line, normal face). Our ongoing work is to extend the results on diagnosis using dynamic
observers [20,17] to the codiagnosis framework.

Ackowledgements. The author would like to thank the anonymous reviewers for their
helpful comments.
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Abstract. In software development a system is often viewed by various

models at different levels of abstraction. It is very difficult to maintain

the consistency between them for both structural and behavioral seman-

tics. This paper focuses on a formal foundation for presenting scenar-

ios and reasoning the synchronization between them. We represent such

a synchronization using a transition system, where a state is viewed

as a triple graph presenting the connection of current scenarios, and

a transition is defined as a triple graph transformation rule. As a re-

sult, the conformance property can be represented as a Computational

Tree Logic (CTL) formula and checked by model checkers. We define the

transition system using our extension of UML activity diagrams together

with Triple Graph Grammars (TGGs) incorporating Object Constraint

Language (OCL). We illustrate the approach with a case study of the re-

lation between a use case model and a design model. The work is realized

using the USE tool.

1 Introduction

In software development a system is viewed by various models at different lev-
els of abstraction. Models are defined in different modeling languages such as
UML [1] and DSMLs [2]. It is often very difficult to maintain the consistency
between them as well as to explain such a relation for both structural and be-
havioral semantics.

There are several approaches as introduced in [3,2,4] for behavioral semantics
of modeling languages. The behavior semantics can be defined as trace-based,
translation-based, denotation-based, and execution-based semantics. Such a se-
mantics can also be obtained by semantics mappings as pointed out in [5,6]. The
semantics can be represented by different formal methods such as graph trans-
formation in [7], Z in [5,8] for a full formal description for the Unified Modeling
Language (UML), and Alloy in [9] for a semantics of modeling languages. Meta-
modeling is another approach which allows us to define structural semantics of
models. Models from modeling languages like UML must conform to the corre-
sponding metamodels, i.e., their well-formedness needs to be ensured. Constraint

A. Bouajjani and W.-N. Chin (Eds.): ATVA 2010, LNCS 6252, pp. 97–111, 2010.
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languages for metamodels such as the Object Constraint Language (OCL) [10]
allow us to express better structural semantics of models. In this context the re-
lation between models can be obtained based on mappings between metamodels.
On the mappings, transformation rules are defined for a model transformation.
This principle is the core of many transformation tools and languages [11,12] as
well as the Object Management Group (OMG) standard for model transforma-
tion, Query/View/Transformation (QVT) [13].

This paper aims to describe an integrated view on two modeling languages in
order to characterize the semantics relation between them. Models within our
approach are viewed as a set of execution scenarios of the system. We develop a
formal foundation for presenting scenarios and reasoning the synchronization be-
tween scenarios. We represent such a synchronization using a transition system,
where a state is viewed as a triple graph presenting the connection of current
scenarios, and a transition is defined as a triple graph transformation rule. As
a result, the conformance property can be represented as a Computational Tree
Logic (CTL) fomula and checked by model checkers. We define the transition
system using our extension of UML activity diagrams together with Triple Graph
Grammars (TGGs) [14] incorporating Object Constraint Language (OCL) [15].

We illustrate our approach with a case study explaining the relation between
a use case model and a design model. Use cases [1,16,17,18] have achieved wide
acknowledgement for capturing and structuring software requirements. Our ap-
proach not only allows us to check the conformance between use case and design
models but also to describe operational semantics of use cases in particular and
modeling languages in general. We implement our approach based within the
UML-based Specification Environment (USE) tool [19].

The rest of this paper is organized as follows. Section 2 presents preliminaries
for our work. Section 3 explains scenarios and the synchronization between them
in an informal way. Section 4 focuses on the syntax and semantics aspects of
scenarios in order to form a formal foundation for scenario synchronization. The
core is a transition system for the synchronization. Section 5 shows the CTL
formula for the conformance property and explains our implementation in USE.
Section 6 discusses related work. This paper is closed with a summary.

2 Preliminaries

This section presents preliminaries for our work. The definitions explained in
this section are adapted from the work in [20]. Models in our work are seen as
graphs. They are defined by a corresponding metamodel, which is represented
as a type graph.

Definition 1. (Graphs and Graph Morphisms). A graph G = (GV , GE ,
sG, tG) consists of a set GV of nodes, a set GE of edges, and two functions
sG, tG : GE → GV , the source and the target function.

Given graphs G, H a graph morphism f = (fV , fE) : G → H consists of two
functions fV : GV → HV and fE : GE → HE that preserve the source and the
target function, i.e., fV ◦ sG = sH ◦ fE and fV ◦ tG = tH ◦ fE. Graphs and graph
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morphisms define the category Graph. A graph morphism f is injective if both
functions fV , fE are injective.

Definition 2. (Typing). A tuple (G, typeG) of a graph G = (V,E, s, t) together
with a graph morphism typeG : G → TG, where TG is a graph, is called a typed
graph. Then, TG is called a type graph. Given typed graphs G = (G, typeG) and
H = (H, typeH), a typed graph morphism f is a graph morphism f : G → H,
such that typeH ◦ f = typeG.

State
name:String

Statechart
trOwner

Transition* *
*

src

0..1owner

*dst

*

* trigger0..1

1

1

Metamodel - Type graph

On Off

Switch

Model in concrete syntax

:State
name = 'Off'

:State
name = 'On'

:Statechart

:Event
name = 'Switch'

Event
name:String

:Transition

Model in abstract syntax - Typed graph

src

dst

owner
owner trOwner

Fig. 1. Statechart as a typed graph conforms to the metamodel as a type graph

Example. Model as graph; Metamodel as type graph: The simplified
metamodel which defines the structure of statecharts is represented by a type
graph as shown in Fig. 1. Instances of these node types (Statechart, State, Tran-
sition, and Event) have to be linked according to the edge types between the
node types as well as attributed according to note type attributes.

In order to relate pair of models to each other, we will consider such a combi-
nation as a triple graph. Then, a triple graph transformation allows us to build
states of the integration.

Definition 3. (Triple Graphs and Triple Graph Morphisms).
Three graphs SG, CG, and TG, called source, connection, and target graph,

together with two graph morphisms sG : CG → SG and tG : CG → TG form a
triple graph G = (SG sG← CG

tG→ TG). G is called empty, if SG, CG, and TG
are empty graphs.

A triple graph morphism m = (s, c, t) : G → H between two triple graphs
G = (SG sG← CG

tG→ TG) and H = (SH sH← CH
tH→ TH) consists of three

graph morphisms s : SG → SH, c : CG → CH and t : TG → TH such
that s ◦ sG = sH ◦ c and t ◦ tG = tH ◦ c. It is injective, if morphisms s, c
and t are injective. Triple graphs and triple graph morphisms form the category
TripleGraph.
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:Statechart

refined

eha:EHAs2e:SC2EHA

c2s1:S2SH

s2a1:St2Aut

c2s2:S2SH

s2a2:St2Aut

onStateH:StateH
name = 'On'

lampAut:Automata
name = 'Lamp'

redStateH:StateH
name = 'Red'

counterAut:Automata
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onState:CompState
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name='Lamp'

redState:CompState
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name='Red'

ownerowner
owner

container

refined

owner
owner

container

container

ehasc

Fig. 2. Triple graph for an integrated SC2EHA model

Example. Triple graph: The graph in Fig. 2 shows a triple graph containing
a statechart together with correspondence nodes pointing to the extended hier-
archical automata (EHA). References between source and target models denote
translation correspondences. For a detailed explanation of the transformation,
we refer to the work in [21].

Definition 4. (Triple Graph Transformation Systems)
A triple rule tr = L tr→ R consists of triple graphs L and R and an injective
triple graph morphisms tr.

(SL

(SR

CL

CR

TL)

TR)
ts

sR tR

tLsL
L   =

R   =
tr c

Given a triple rule tr = (s, c, t) : L → R, a triple graph G and a triple graph
morphism m = (sm, cm, tm) : L → G, called triple match m, a triple graph
transformation step G

tr,m
=⇒ H from G to a triple graph H is given by three objects

SH, CH and TH in category Graph with induced morphisms sH : CH → SH
and tH : CH → TH. Morphism n = (sn, cn, tn) is called comatch.

(SG

(SH

CG

CH

TG)

TH)
t’s’

sH tH
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TL

TR
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A triple graph transformation system is a structure TGTS = (S, TR) where S is
an initial graph and TR = {tr1, tr2, ...., trn} is a set of triple rules. Triple graphs
in the set {G|S ⇒∗ G} are referred to as reachable states.
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s2e:SC2EHA

s:SimpState
name

sc:Statechart

sH:StateH
names2sH:S2SH

eha:EHA

aut:Automata
name

{new}
{new}

{new}

Fig. 3. Triple rule for SC2EHA model transformation

Example. Triple rule: The rule in Fig. 3 is part of a triple graph transformation
system that generates statecharts and corresponding EHA models, as introduced
in [21]. This rule may create a simple state of a statechart and its corresponding
state of the corresponding EHA model at any time.

3 Scenarios and Synchronization

This section explains scenarios and scenario synchronization in an informal way.
We focus on activity diagrams and their extensions as a means to present scenar-
ios. Activity diagrams normally allow us to present scenarios at different levels
of abstraction, ranging from the very high level such as workflows to lower lev-
els such as execution scenarios of programs. However, they only emphasize the
flows in scenarios, and the meaning of actions is unavailable so that the infor-
mation of scenarios is often incompletely captured by this kind of diagrams. We
refine activity diagrams by adding into each action a pair of interrelated ob-
ject diagrams attached with OCL conditions as pre- and postconditions of the
action.

With the extension the semantics of activity diagrams needs to be updated.
The key question is how a scenario is defined for each system execution from
a specification using extended activity diagrams. Normally, pre- and postcondi-
tions for each action incompletely capture the effect of the action, we refer to
such activity diagrams as declarative activity diagrams. Figure 4 shows an exam-
ple for declarative activity diagrams. This diagram presents scenarios of the use
case “ReturnCar”, which describes a fragment of the service of a car rental sys-
tem. In the diagram, use case snapshots, which include objects, links, and OCL
conditions, are denoted by rectangles. Here, we use concepts of the conceptual
domain of the system in order to present use case snapshots. System and actor
actions, e.g., the actions (1) and (4) are denoted by rounded rectangles. Use case
actions, e.g., the action (5) are denoted by the double-line rounded rectangles.
A conditional action, e.g., the action (2) is denoted by the dashed-line rounded
rectangles. The extension point, e.g., the Return Late extension point of the
action (4), is denoted by the six-sided polygons.

At the design level, effect of each action is fully reflected by its pre- and post-
conditions, and scenarios reflecting the system behavior, are completely deter-
mined. We refer to the kind of activity diagrams as operational activity diagrams.
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Require system to process 
as a car is returned
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Fig. 4. Scenarios at the use case level of the use case “ReturnCar” presented by declar-

ative activity diagrams
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Fig. 5. Scenarios at the design level of the use case “ReturnCar” presented by opera-

tional activity diagrams
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Figure 5 shows an example for operational activity diagrams. This diagram cap-
tures scenarios at the design level of the use case “ReturnCar”, refining by the
diagram depicted in Fig. 5. Snapshots at the level are used to specify pre- and
postconditions in action contracts and the branch conditions. Actions in a sce-
nario at the design level are organized in a hierarchy by action groups. This
hierarchy originates from mappings between a sequence diagram and a corre-
sponding extended activity diagram: The interaction sequence between objects
(by messages) is represented by an action sequence. Each message sent to a life-
line in the sequence diagram corresponds to an action or an action group which
realizes the object operation invoked by this message. The action group includes
actions and may include other action groups. An action group always links to
an object node at the corresponding lifetime line.

Scenarios of a declarative activity diagram will depend on scenarios of the
operational diagram which refines the activity diagram. We need to clarify sce-
narios in extended activity diagrams as well as to maintain the conformance
between a declarative activity diagram and a corresponding operational activ-
ity diagram. Specifically, we need to relate action effects for scenarios at these
diagrams to each other. This is based on the refinement of actions in the declar-
ative activity diagram by an action group in the operational activity diagram. A
current action at this activity diagram will correspond to a current action at the
other activity diagram. In this way a synchronization of scenarios at operational
and declarative activity diagrams is formed for each system execution.

4 Scenarios and Synchronization, Formally

First, we focus on the syntax of extended activity diagrams in order to present
scenarios. Then, we consider the semantics aspect, where an operational seman-
tics for extended activity diagrams is defined. We aim to build a transition system
reflecting the synchronization between scenarios.

4.1 Syntax Aspect

Similar to the work in [22], we also restrict our consideration to well-structured
activity diagrams: The building blocks are only sequences, fork-joins, decisions,
and loops. We define new meta-concepts in addition to the UML metamodel in
order to present extended activity diagrams. Due to the limited space, concepts
of the metamodels are only shown in triple rules, which are depicted in the long
version of this paper1. Here, we refer to them, i.e., metamodels of declarative
and operational activity diagram as graphs DG and OG, respectively.

Definition 5. (Declarative Activity Diagrams). A declarative activity di-
agram is a graph typed by the graph DG, where DG is a graph corresponding to
the metamodel for declarative activity diagrams.

1 http://www.coltech.vnu.edu.vn/~hanhdd/publications/Dang_2010_ATVA.pdf

http://www.coltech.vnu.edu.vn/~hanhdd/publications/Dang_2010_ATVA.pdf


104 D.-H. Dang, A.-H. Truong, and M. Gogolla

Definition 6. (Operational Activity Diagrams). An operational activity
diagram is a graph typed by the graph OG, where OG is a graph corresponding
to the metamodel for operational activity diagrams.

Note that each Action object node in the DG and OG graphs, which repre-
sent an action, is attached with SnapshotPattern object nodes, which express
pre- and postconditions of the action, respectively. The attribute snapshot of a
SnapshotPattern node is a graph whose nodes are variables. This graph is typed
by the graph CD, which is a graph corresponding to the class diagram of the
system (i.e., a system state is a graph typed by CD). For example, Fig. 4 shows
SnapshotPatterns as the pre- and postcondition of the action marked by (4).

Well-formedness of extended activity diagrams can be ensured using OCL
conditions. For example, it ensures that an activity diagram has exactly one
InitialNode and ActivityFinalNode.

4.2 Semantics Aspect - Synchronization by a Transition System

Activity diagrams basically have a Petri-like semantics. However, as discussed
in Sect. 3 scenarios from declarative and operational activity diagrams depend
with each other. In order to obtain an operational semantics for these extended
activity diagrams, we have to define a pair of scenarios in synchronization for
each system execution. This section clarifies what a current state of the synchro-
nization is and which transitions are used for it.

State of Scenario Synchronization. In order to form a semantics domain
for extended activity diagrams, we define new meta-concepts connecting the
metamodels DG and OG to each other. In this way a type graph EG for triple
graphs is established. We add the new concept ExecControl into the correspon-
dence part of the triple graph in order to mark current actions of the declarative
and operational activity diagrams.

Definition 7. (State of Scenario Synchronization). Let dG be a declarative
activity diagram, and oG be a corresponding operational activity diagram. The
state of the scenario synchronization between dG and oG is a triple graph eG ∈
EG connecting dG and oG to each other:

– The current actions of dG and oG are the set of actions currDG = {a ∈
dG|∃e : ExecControl · (e, a) ∈ EeG} and currOG = {a ∈ oG|∃e :
ExecControl · (e, a) ∈ EeG}, respectively.

– The current snapshot corresponding to the action a1 ∈ currDG and a2 ∈
currOG is the snapshot sp1 : SnapshotPattern|(a1, sp1) ∈ EdG ∧ ∃e :
ExecControl · (e, sp1) ∈ EeG and sp2 : SnapshotPattern|(a2, sp2) ∈
EoG ∧ ∃e : ExecControl · (e, sp2) ∈ EeG, respectively.

Example. Figure 6 shows a current state of the synchronization between sce-
narios shown in Fig. 4 and Fig. 5.
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getRentalInfo getCustomer

retCar:ReturningCar -> getRentalInfo()

precondition
cust:Customer
id_Cust:StringCls
[cust.id=id_Cust.string]

Require system to process
as a car is returned

Retrieve information of
the rental

Current Execution Control

snapshotUCDeclarative Activity Diagram
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Operational Activity Diagram
(Design level)

precondition
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current action

current snapshot :SysAction:SnapshotPattern

:ExecControl

:Action

:ActGrp

:SnapshotPattern

Simplified Triple Graph
(Current State)

:Corr

current snapshot

current snapshot current action

current action

precondition

precondition

Fig. 6. Current synchronization state of scenarios shown in Fig. 5 and Fig. 4

Transitions. A transition of the system is defined by a graph transformation
rule in two cases: (1) The rule is used to transform the current snapshot as the
precondition of the current action into the next snapshot as the postcondition;
(2) The rule is used to transform the current state (as a triple graph) to the next
state by selecting the next current actions. The first case is referred to as snapshot
transitions. The transition rules are defined according to the specification of
the system. The second case is referred to as action transitions. The transition
rules are defined based on the refinement relation between a declarative activity
diagram and an operational activity diagram as discussed in Sect. 3. The rules
are independent with a concrete system.

Definition 8. (Snapshot Transition). A snapshot transition is a triple rule
which allows us to transform a state eG1 to the next state eG2 such that the
current actions are unchanged and only the current snapshot of dG or oG is
changed from as the precondition snapshot to the postcondition snapshot by a
corresponding graph transformation rule. This postcondition snapshot needs to
be fulfilled.

Example. Let us consider the synchronization between scenarios shown in Fig. 4
and Fig. 5. A snapshot transition will transfer from the current state, which refers
to the action (4) and its precondition snapshot (as depicted in Fig. 4), to the
next state which refers to the postcondition snapshot of this action.

Definition 9. (Action Transition). An action transition is a triple rule which
allows us to transform a state eG1 to the next state eG2 such that the current
actions and the current snapshots are changed and the current snapshots as the
precondition of the current actions in eG2 are fulfilled.

Example. An action transition will transfer from the current state, which refers
to the action (4) shown in Fig. 4 and the action (8) shown in Fig. 5, to the next
state which refers to the action (5) and action (9) of these scenarios.
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Definition 10. (Sound and Conformance Property). Let TS = (S,→, s0)
be a transition system, where s0 is the initial state, i.e., the current actions are
the initial actions of the declarative and operational activity diagrams dG and
oG; S is a set of reachable states from s0 by snapshot transitions SR and action
transitions AR. The activity diagrams dG and oG are sound and conformed to
each other if and only if the following conditions hold:

1. ∀s ∈ S · ∃sys0, ..., sysn : CD · (si
rk∈SR−→ si+1 ⇒ sysk

rk→ sysk+1) ∧ ∃e :
ExecControl · ∀sp : SnapshotPattern · (e, sp) ∈ Es ⇒ isV alid(sp, sysn),
where isV alid(sp, sysn) indicates the graph sp conforms to the graph sysn.

2. ∀sys : CD · ∃s1, ..., sn ∈ S · (si → si+1∧ isF inalState(sn)∧ (si
rk∈SR−→ si+1 ⇒

sysk
rk→ sysk+1) ∧ sys0 = sys, where isF inalState(sn) indicates sn is the

final state, i.e., the ExecControl object node of this triple graph points to the
final nodes of dG and oG.

In this definition Condition 1 ensures that each snapshot in the snapshot se-
quence corresponding to the scenario from dG and oG is valid. Condition 2
ensures that we can always define a pair of scenarios for a system execution
starting from a sys state.

5 Conformance Property and Tool Support

We aim to obtain an automatic check for the sound and conformance property
mentioned above. To utilize model checkers for the goal we need to translate the
conditions of Def. 10 into CTL, i.e., the notion of temporal logic most model
checkers understand. Now we briefly define the CTL formulas we will use to
express our conditions. Note that this is only a subset of CTL.

Definition 11. (CTL Formulas). Let TS = (S,→, s0) be a transition system
by snapshot transitions and action transitions. Let Comp(s0) be all possible com-
putations starting with the state s0: Comp(s) := {s0s1s2...|(si, si+1) ∈→}, and
let p be some atomic proposition. Then

TS |= AG(p) ⇔ ∀s0s1... ∈ Comp(s0)∀k ∈ N : p holds in sk

TS |= AF(p) ⇔ ∀s0s1... ∈ Comp(s0)∃k ∈ N : p holds in sk

TS |= EF(p) ⇔ ∃s0s1... ∈ Comp(s0)∃k ∈ N : p holds in sk

We are now ready to formulate our theorem.

Theorem 1. Let dG and oG be the declarative and operational activity dia-
grams, respectively. Let TS = (S,→, s0) be a transition system by snapshot
transitions and action transitions (S contains exactly those states which are
reachable from s0). dG and oG are sound and conformed to each other if and
only if the following CTL formulas hold for TS:

1. TS |= AG(isV alidSnapshot), where that isV alidSnapshot holds in the
state s, denoted as s |= isV alidSnapshot, means the current SnapshotPat-
tern objects of s are valid.
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2. TS |= EF(AtFinalState), where that AtFinalState holds in the state s, de-
noted as s |= AtFinalState, means the ExecControl object node of this triple
graph (s) points to the final nodes of dG and oG.

Proof. We start by pointing out the equivalence of the first condition of
Def. 10 and Theor. 1. We have TS |= AG(isV alidSnapshot) ⇔ ∀s0s1... ∈
Comp(s0)∀k ∈ N : sk |= isV alidSnapshot ⇔ ∀s0s1... ∈ Comp(s0)∀k ∈
N · ∃sys0, sys1, ..., sysm : CD · (si

rl∈SR−→ si+1 ⇒ sysl
rl→ sysl+1) ∧ (sk |=

isV alidSnapshot). Since sk |= isV alidSnapshot ⇔ ∃e : ExecControl · ∀sp :
SnapshotPattern · (e, sp) ∈ Esk

→ isV alid(sp, sysm) this induces the equiva-
lence of the first condition of Def. 10 and Theor. 1.

We will show that Condition 2 of Def. 10 and Theor. 1 is equivalent. We
have TS |= EF(AtFinalState) ⇔ ∃s0s1... ∈ Comp(s0)∃k ∈ N : sk |=
AtFinalState ⇔ ∀sys0 : CD · ∃s0s1... ∈ Comp(s0)∃k ∈ N∃sys1, ..., sysm :
CD · (si

rl∈SR−→ si+1 ⇒ sysl
rl→ sysl+1) : sk |= AtFinalState ⇔ ∀sys0 : CD ·

∃s0, ..., sk ∈ S ·(si → si+1)∧isF inalState(sk)∧(si
rl∈SR−→ si+1 ⇒ sysl

rl→ sysl+1).
This induces the equivalence Condition 2 of Def. 10 and Theor. 1. �
Our formal framework has been applied for the running example as depicted in
Fig. 4 and Fig. 5: It allows us to check the conformance between use case and
design models. With the case study we have defined 10 triple rules for action
transitions. Due to the limited space of this paper, they are only shown in the
long version of this paper as footnoted in Sect. 4.

We employ the USE tool and its extensions for the implementation. This
tool allows us to animate and validate such a scenario synchronization. With
USE we can present the declarative and operational activity diagrams as well-
formed models since USE supports the specification of metamodels together
with OCL conditions. Snapshot transitions and action transitions will be real-
ized as operations in USE. Then, we can carry out transitions of our TS tran-
sition system and animate states as object diagrams. Currently, the process is
realized in a semi-automatic way. This is suitable for designers to check their
design at the early phase of the development process. For an automatic check,
we plan to employ the USE feature which supports generating snapshots [23].
Then, CTL formulas can be automatically checked. This point belongs to future
work.

6 Related Work

Triple Graph Grammars (TGGs) [14] have been a promising approach for
explaining relationships between models, especially, bidirectional transforma-
tions. Several tools support model transformation based on TGGs such as
MOFLON [12] and AToM3 [24].

Many approaches to model transformation have been introduced. ATL [11]
and Kermeta [25] are well-known systems supporting transformation lan-
guages. They aim to realize the Query/View/Transformation (QVT) [13]
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standard for model transformation, which is proposed by the Object Manage-
ment Group (OMG).

Many researches as surveyed in [26] have been attempted to introduce rigor
into use case descriptions. The works in [27,28] propose viewing use cases from
the different levels of abstraction. Many works focus on defining a formal seman-
tics of use cases. They are strongly influenced by UML. The formal semantics
of use cases in the works is often based on activity diagram or state charts. The
works in [29,30] employ the metamodel approach in order to form a conceptual
frame for use case modeling. The work in [27] proposes use case charts as an
extension of activity diagram in order to define a trace-based semantics of use
cases. The works in [31,32,33] propose using state charts to specify use cases.
Their aim is to generate test cases from the use case specification.

The works in [22,7] propose using graph transformation to specify use cases,
which are seen as activity diagrams. Those works employ the technique analyzing
a critical pair of rule sequences in order to check the dependency between use
case scenarios. Our work for design scenarios is similar to that work. Unlike them
we employ OCL conditions in order to express action contracts.

This paper continues our proposal for the approach to use cases in [34,35]. The
core of this approach is viewing use cases as a sequence of use case snapshots and
using the integration of TGGs and OCL to define this sequence. The integration
of TGGs and OCL is proposed in our previous work in [15,36].

7 Conclusion and Future Work

We have introduced a novel approach to explain the relation of behavioral se-
mantics between models at different levels of abstraction. The heart of it is
to analyse scenarios and scenario synchronization. We have developed a theory
framework for the aim. This framework is examined with the case study con-
cerning the relation between a use case model and a design model. It brings out
a method to check the conformance between use case and design models. This
work is implemented using the USE tool.

In future we continue to refine our theory framework so that we can analyse
better on scenarios. Exploring triple rules as transitions of the transition sys-
tem for scenario synchronization is also a focus of our future work. Besides, we
will enhance the USE tool in order to obtain more support for the new tasks,
especially, for checking CTL formulas.
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Compositional Algorithms for LTL Synthesis�
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CS, Université Libre de Bruxelles, Belgium

Abstract. In this paper, we provide two compositional algorithms to solve safety
games and apply them to provide compositional algorithms for the LTL synthe-
sis problem. We have implemented those new compositional algorithms, and we
demonstrate that they are able to handle full LTL specifications that are orders of
magnitude larger than the specifications that can be treated by the current state of
the art algorithms.

1 Introduction

Context and motivations. The realizability problem is best seen as a game between
two players [14]. Given an LTL formula φ and a partition of its atomic propositions P
into I and O, Player 1 starts by giving a subset o0 ⊆ O of propositions 1, Player 2
responds by giving a subset of propositions i0 ⊆ I , then Player 1 gives o1 and Player 2
responds by i1, and so on. This game lasts forever and the outcome of the game is the
infinite word w = (i0∪o0)(i1∪o1)(i2∪o2) · · · ∈ (2P )ω . Player 1 wins if the resulting
infinite word w is a model of φ. The synthesis problem asks to produce a winning
strategy for Player 1 when the LTL formula is realizable. The LTL realizability problem
is central when reasoning about specifications for reactive systems and has been studied
starting from the end of the eighties with the seminal works by Pnueli and Rosner [14],
and Abadi, Lamport and Wolper [1]. It has been shown 2EXPTIME-C in [15].2 Despite
their high worst-case computation complexity, we believe that it is possible to solve LTL
realizability and synthesis problems in practice. We proceed here along recent research
efforts that have brought new algorithmic ideas to attack this important problem.

Contributions. In this paper, we propose two compositional algorithms to solve the
LTL realizability and synthesis problems. Those algorithms rely on previous works
where the LTL realizability problem for an LTL formulaΦ is reduced to the resolution of

� Work supported by the projects: (i) QUASIMODO (FP7- ICT-STREP-214755),
Quasimodo: “Quantitative System Properties in Model-Driven-Design of Embedded”,
http://www.quasimodo.aau.dk/, (ii) GASICS (ESF-EUROCORES LogiCCC),
Gasics: “Games for Analysis and Synthesis of Interactive Computational Systems”,
http://www.ulb.ac.be/di/gasics/, (iii) Moves: “Fundamental Issues in Mod-
elling, Verification and Evolution of Software”, http://moves.ulb.ac.be, a PAI
program funded by the Federal Belgian Gouvernment, and (iv) ECSPER (ANR-JC09-
472677) and SFINCS (ANR-07-SESU-012), two projects supported by the French National
Research Agency.

1 Technically, we could have started with Player 2, for modelling reason it is conservative to
start with Player 1.

2 Older pioneering works consider the realizability problem but for more expressive and com-
putationally intractable formalisms like MSO, see [19] for pointers.

A. Bouajjani and W.-N. Chin (Eds.): ATVA 2010, LNCS 6252, pp. 112–127, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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a safety game G(Φ) [7] (a similar reduction was proposed independently in [17] and ap-
plied to synthesis of distributed controllers). We show here that if the LTL specification
has the form Φ = φ1 ∧ φ2 ∧ · · · ∧ φn i.e., a conjunction of LTL sub-specifications, then
G(Φ) can be constructed and solved compositionally. The compositional algorithms are
able to handle formulas that are several pages long while previous non-compositional
algorithms were limited to toy examples.

The new algorithms rely on the following nice property of safety games: for any
safety game G, there exists a function that maps each position of Player 1 to the set of
all actions that are safe to play. We call this function the master plan of Player 1 in G.
It encompasses all the winning strategies of Player 1. If Λ is the master plan of G then
we denote by G[Λ] the game G where the behavior of Player 1 is restricted by Λ.

To compute the winning positions of a safety game G12 = G1 ⊗ G2 defined as the
composition of two sub-games, we compute the master plans for the local components
G1 and G2 before composition. Let Λ1 (resp. Λ2) be the master plan for G1 (resp. G2),
then the winning positions in G12 are the same as the winning positions in G1[Λ1] ⊗
G2[Λ2]. We develop a backward and a forward algorithms that exploit this property.

We have implemented the two compositional algorithms into our prototype Acacia
and we provide an empirical evaluation of their performances on classical benchmarks
and on a realistic case study taken from the IBM RuleBase tutorial[9]. This implemen-
tation is rather used to test the new concepts and to see how they behave for scalability
test cases than to provide an advanced and deeply optimized prototype. In particular,
our implementation is in Perl (as Lily [10]) and does not use BDDs.

Related works. The first solution [14] to the LTL realizability and synthesis problem
was based on Safra’s procedure for the determinization of Büchi automata [16].

Following [12], the method proposed in our paper can be coined ”Safraless” ap-
proach to the realizability and synthesis of LTL as it avoids the determinization (based
on the Safra’s procedure) of the automaton obtained from the LTL formula. Our ap-
proach, as the one proposed in [7], relies on a reduction to safety games.

In [12], Kupferman and Vardi proposed the first Safraless approach that reduces the
LTL realizability problem to Büchi games, which has been implemented in the tool Lily
[10]. In [13], a compositional approach to LTL realizability and synthesis is proposed.
Their algorithm is based on a Safraless approach that transforms the synthesis problem
into a Büchi and not a safety game as in our case. There is no notion like the mas-
ter plan for Büchi games. To the best of our knowledge, their algorithm has not been
implemented.

In [3], an algorithm for the realizability problem for a fragment of LTL, known as
GR(1), is presented and evaluated on the case study of [9]. The specification into the
GR(1) fragment for this case study is not trivial to obtain and so the gain in term of
complexity3 comes with a cost in term of expressing the problem in the fragment. Our
approach is different as we want to consider the full LTL logic. In our opinion, it is
important to target full LTL as it often allows for writing more declarative and more
natural specifications.

In [18], the authors also consider LTL formulas of the form Φ = φ1 ∧ φ2 ∧ · · · ∧
φn. They propose an algorithm to construct compositionally a parity game from such
LTL specifications. Their algorithm uses a variant of Safra’s determinization procedure
and additionally tries to detect local parity games that are equivalent to safety games

3 GR(1) has a better worst-case complexity than full LTL.
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(because the associated LTL subformula is a safety property). For efficiently solving the
entire game, they use BDDs.

In [11], a compositional algorithm is proposed for reasoning about network of com-
ponents to control under partial observability. The class of properties that they consider
is safety properties and not LTL properties. They propose a backward algorithm and no
forward algorithm.

The implementation supporting the approaches described in [18] and [3] uses BDDs
while our tool Acacia does not. While our algorithms could have been implemented
with BDDs, we deliberately decided not to use them for two reasons. First, to fairly
compare our Safraless approach with the one proposed in [12] and implemented in Lily,
we needed to exclude BDDs as Lily does not use them. Second, several recent works
on the efficient implementation of decision problems for automata shown that antichain
based algorithms may outperform by several order of magnitude BDD implementations,
see [5,6] for more details.

2 Safety Games

In this section, we provide a definition of safety games that is well-suited to support our
compositional methods detailed in the following sections. Player 1 will play the role
of the system while Player 2 will play the role of the environment. This is why, as the
reader will see, our definition of games is asymmetric.

Turn-based games. A turn-based game on a finite set of moves Moves = Moves1 �
Moves2 such that Moves2 �= ∅ is a tuple G = (S1, S2, Γ1, Δ1, Δ2) where: (i) S1

is the set of Player 1 positions, S2 is the set of Player 2 positions, S1 ∩ S2 = ∅, we
let S = S1 � S2. (ii) Γ1 : S1 → 2Moves1 is a function that assigns to each position
of Player 1 the subset of moves that are available in that position. For Player 2, we
assume that all the moves in Moves2 are available in all the positions s ∈ S2. (iii)Δ1 :
S1×Moves1 → S2 is a partial function, defined on pairs (s,m) when Player 1 chooses
m ∈ Γ1(s), that maps (s,m) to the position reached from s. Δ2 : S2 × Moves2 → S1

is a function that maps (s,m) to the state reached from s when Player 2 chooses m.
We define the partial function Δ as the union of the partial function Δ1 and the

function Δ2. Unless stated otherwise, we fix for the sequel of this section a turn-based
game G = (S1, S2, Γ1, Δ1, Δ2) on moves Moves = Moves1 � Moves2.

Given a function Λ : S1 → 2Moves1 , the restriction of G by Λ is the game G[Λ] =
(S1, S2, Γ̂1, Δ̂1, Δ2) where for all s ∈ S1, Γ̂1(s) = Γ1(s)∩Λ(s) and Δ̂1 equals Δ1 on
the domain restricted to the pairs {(s,m) | s ∈ S1 ∧m ∈ Γ̂1(s)} i.e., G[Λ] is as G but
with the moves of Player 1 restricted by Λ.

Rules of the game. The game on G is played in rounds and generates a finite or an
infinite sequence of positions that we call a play. In the initial round, the game is in
some position, say s0, and we assume that Player 1 owns that position. Then if Γ1(s0)
is non-empty Player 1 chooses a move m0 ∈ Γ1(s0), and the game evolves to state
s1 = Δ1(s0,m0), otherwise the game stops. If the game does not stop then the next
round starts in s1. Player 2 chooses a move m1 ∈ Moves2 and the game proceeds to
position s2 = Δ2(s1,m1). The game proceeds accordingly either for an infinite number
of rounds or it stops when a position s ∈ S1 is reached such that Γ1(s) = ∅. Player 1
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wins if the game does not stop otherwise Player 2 wins (safety winning condition). Our
variant of safety games are thus zero-sum games as usual. In particular, the positions
s ∈ S1 such that Γ1(s) �= ∅ are the safe positions of Player 1.

Plays and strategies. We now define formally the notions of play, strategy, outcome of
a strategy and winning strategies. Given a sequence ρ = s0s1 . . . sn . . . ∈ S∗ ∪ Sω, we
denote by |ρ| its length (which is equal to ω if ρ is infinite). We denote by first(ρ) the
first element of ρ, and if ρ is finite, we denote by last(ρ) its last element.

A play in G is a finite or infinite sequence of positions ρ = s0s1 . . . sn . . . ∈ S∗∪Sω

such that : (i) if ρ is finite then last(ρ) ∈ S1 and Γ1(last(ρ)) = ∅; (ii) ρ is consistent
with the moves and transitions of G i.e., for all i, 0 ≤ i ≤ |ρ|, we have that si+1 =
Δ(si,m) for some m ∈ Γ1(si) if s ∈ S1, or m ∈ Moves2 if s ∈ S2.We denote by
Plays(G) the set of plays in G.

Given a set of finite or infinite sequences L ⊆ S∗ ∪ Sω, we write Prefj(L), j ∈
{1, 2}, for the set of prefixes of sequences in L that end up in a position of Player
j. Let ⊥ be such that ⊥ �∈ Moves. A strategy for Player 1 in G is a function λ1 :
Pref1(Plays(G)) → Moves1∪{⊥} which is consistent with the set of available moves
i.e., for all ρ ∈ Prefi(Plays(G)), we have that: (i) λ1(ρ) ∈ Γ1(last(ρ)) ∪ {⊥}, and
(ii) λ1(ρ) = ⊥ only if Γ1(last(ρ)) = ∅. A strategy for Player 2 in G is a function
λ2 : Pref2(Plays(G)) → Moves2. Note that the codomain of a Player 2’s strategy
never contains ⊥ as all the moves of Player 2 are allowed at any position, whereas the
moves of Player 1 are restricted by Γ1.

A play ρ = s0s1 . . . sn . . . ∈ Plays(G) is compatible with a strategy λj of Player j
(j ∈ {1, 2}), if for all i, 0 ≤ i < |ρ|, if si ∈ Sj then si+1 = Δj(si, λj(s0s1 . . . si)).We
denote by outcome(G, s, λj) the subset of plays in Plays(G) that are compatible with
the strategy λj of Player j, and that start in s. We denote by outcome(G, λj) the set⋃

s∈S outcome(G, s, λj), and by outcome(G, s, λ1, λ2) the unique play that is com-
patible with both λ1 and λ2, and starts in s.

The winning plays for Player 1 are those that are infinite i.e., Win1(G) = Plays(G)∩
Sω, or equivalently those that never reach an unsafe position s ∈ S1 of Player 1
where Γ1(s) = ∅. A strategy λ1 is winning in G from sini iff outcome(G, sini, λ1) ⊆
Win1(G). A game with such a winning condition in mind is called safety game. We
denote by WinPos1(G) the subset of positions s ∈ S in G for which there exists λ1

such that outcome(G, s, λ1) ⊆ Win1(G).

Games with initial position. A safety game with initial position is a pair (G, sini) where
sini ∈ S1 ∪ S2 is a position of the game structure G called the initial position. The set
of plays in (G, sini) are the plays of G starting in sini, i.e. Plays(G, sini) = Plays(G) ∩
sini · (S∗ ∪ Sω). All the previous notions carry over to games with initial positions.

Solving safety games. The classical fixpoint algorithm to solve safety games relies on
iterating the following monotone operator over sets of game positions. Let X ⊆ S1�S2:

CPre1(X)={s∈S1 |∃m∈Γ1(s), Δ1(s,m)∈X}∪{s∈S2 |∀m∈Moves2, Δ2(s,m)∈X}
i.e., CPre1(X) contains all the positions s ∈ S1 from which Player 1 can force X in
one step, and all the positions s ∈ S2 where Player 2 cannot avoid X in one step. Now,
we define the following sequence of subsets of positions:
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W0 = {s ∈ S1 | Γ1(s) �= ∅} ∪ S2 Wi = Wi−1 ∩ CPre(Wi−1) for all i ≥ 1

Denote by W � the fixpoint of this sequence. It is well known that W � = WinPos1(G).

Master plan. Let Λ1 : S1 → 2Moves1 be defined as follows: for all s ∈ S1, Λ1(s) =
{m ∈ Γ1(s) | Δ1(s,m) ∈ W �} i.e., Λ1(s) contains all the moves that Player 1 can
play in s in order to win the safety game. We call Λ1 the master plan of Player 1 and
we write it MP(G). The following lemma states that MP(G) can be interpreted as a
compact representation of all the winning strategies of Player 1 in the game G:

Lemma 1. For all strategies λ1 of Player 1 in G, for all s ∈ S, λ1 is winning in G
from s iff λ1 is a strategy in (G[MP(G)], s) and λ1(s) �=⊥.

Now that we have defined and characterized the notion of master plan, we show that
we can compute directly the master plan associated with a game using a variant of
the CPre operator and sequence W . The variant of CPre considers the effect of some

Player 1’s move followed by some Player 2’s move. Let ĈPre : (S1 → 2Moves1) →
(S1 → 2Moves1) be defined as follows. For all s ∈ S1, let:

ĈPre(Λ)(s) = {m ∈ Λ(s) | ∀m′ ∈ Moves2 : Λ(Δ2(Δ1(s,m),m′)) �= ∅}

Consider the following sequence of functions: Λ0 = Γ1, and Λi = ĈPre(Λi−1), i ≥
1. This sequence stabilizes after at most O(|S|) iterations and we denote by Λ� the
function on which the sequence stabilizes. Clearly, the value on which the sequence
stabilizes corresponds exactly to the master plan of G:

Theorem 1. Λ� = MP(G).

3 From LTL Realizability to Safety Games

In this section, after recalling the formal definition of the LTL realizability problem, we
recall the essential results of [17,7] where it is shown how to reduce the LTL realizability
problem to a safety game problem.

Linear Temporal Logic (LTL). The formulas of LTL are defined over a set of atomic
propositions P . The syntax is given by: φ ::= p | φ ∨ φ | ¬φ | Xφ | φUφ with p ∈ P .
The notations true, false, φ1 ∧φ2, ♦φ and �φ are defined as usual. LTL formulas φ are
interpreted on infinite words w = σ0σ1σ2 . . . ∈ (2P )ω via a satisfaction relation w |= φ
inductively defined as follows: (i) w |= p if p ∈ σ0, (ii) w |= φ1 ∨ φ2 if w |= φ1 or
w |= φ2, (iii) w |= ¬φ if w �|= φ, (iv) w |= Xφ if σ1σ2 . . . |= φ, and (v) w |= φ1 Uφ2

if there is n ≥ 0 such that σnσn+1 . . . |= φ2 and for all 0 ≤ i < n, σiσi+1 . . . |= φ1.

LTL Realizability and Synthesis. Let P be a finite set of propositions. Unless other-
wise stated, we partition P into I the set of input signals controlled by Player 2 (the
environment), and O the set of output signals controlled by Player 1 (the controller).
We let Σ = 2P , ΣI = 2I , and ΣO = 2O. The realizability problem is best seen
as a game. The players play according to strategies. A strategy for Player 1 is a (to-
tal) mapping λ1 : (ΣOΣI)∗ → ΣO while a strategy for Player 2 is a (total) mapping
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λ2 : ΣO(ΣIΣO)∗ → ΣI . The outcome of λ1 and λ2 is the word outcome(λ1, λ2) =
(o0 ∪ i0)(o1 ∪ i1) . . . such that for all j ≥ 0, oj = λ1(o0i0 . . . oj−1ij−1) and ij =
λ2(o0i0 . . . oj−1ij−1oj). In particular, o0 = λ1(ε) and i0 = λ2(o0). Given an LTL
formula φ, the realizability problem is to decide whether there exists a strategy λ1 of
Player 1 such that for all strategies λ2 of Player 2, outcome(λ1, λ2) |= φ. If such a
strategy exists, we say that the specification φ is realizable. If an LTL specification is
realizable, there exists a finite-state strategy that realizes it [14]. The synthesis problem
is to find a finite-state strategy that realizes the LTL specification.

Universal CoBüchi automata. LTL formulas are associated with turn-based automaton
A over ΣI and ΣO. A turn-based automaton is a tuple A = (ΣI , ΣO, QI , QO, Qini, α,
δI , δO) where QI , QO are finite sets of input and output states respectively, Qini ⊆ QO

is the set of initial states, α ⊆ QI∪QO is the set of final states, and δI ⊆ QI×ΣI×QO,
δO ⊆ QO×ΣO×QI are the input and output transition relations respectively. Wlog we
assume that the automata are complete, i.e. for all t ∈ {I,O}, all q ∈ Qt and all σ ∈ Σt,
δt(q, σ) �= ∅. Turn-based automata A run on words w = (o0 ∪ i0)(o1 ∪ i1) · · · ∈ Σω

as follows: a run on w is a word ρ = ρ0ρ1 · · · ∈ (QOQI)ω such that ρ0 ∈ Qini and for
all j ≥ 0, (ρ2j , oj , ρ2j+1) ∈ δO and (ρ2j+1, ij, ρ2j+2) ∈ δI . Let K ∈ N. We consider
the universal co-Büchi (resp. K-co-Büchi) accepting condition, for which a word w is
accepted iff any run on w visits finitely many (resp. at most K) accepting states. With
the K-co-Büchi interpretation in mind, we say that (A,K) is a universal K-co-Büchi
turn-based automaton. We denote by Luc(A) and Luc,K(A) the languages accepted by
A with these two accepting conditions resp. Turn-based automata with universal co-
Büchi and K-co-Büchi acceptance conditions are denoted by UCW and UK CW. As
they define set of infinite words, they can be taken as input to the realizability problem.

It is known that for any LTL formula one can construct an equivalent UCW Aφ (pos-
sibly exponentially larger) [20]. Fig. 1(a) represents a UCW equivalent to the formula
�(r → X (♦g)), where r is an input signal and g is an output signal. States of QO are
denoted by circles while states of QI are denoted by squares. The transitions on missing
letters are going to an additional sink non-accepting state that we do not represent for
the sake of readability. If a request r is never granted, then a run will visit the accepting
state q4 infinitely often.

The realizability problem can be reduced from a UCW to a UK CW specification:

Theorem 2 ([17,7]). Let A be a UCW overΣI , ΣO with n states and K = 2n(n2n+2+
1). Then A is realizable iff (A,K) is realizable.

Let us recall the intuition behind the correctness of this result. First, if the specification
(A,K) is realizable then clearly the specification A is also realizable as Luc,K(A) ⊆
Luc(A). Second, if the specification A is realizable then we know that there exists a
finite memory strategy λ1 that realizes it [14]. Any run on any outcome of λ1 visits
accepting states only a number of time equal to K , which is bounded by the size of the
strategy. So λ1 not only realizes the specification A but a stronger specification (A,K).

Reduction to safety game. Clearly UK CW specifications are safety properties. The re-
duction to a safety game relies on the fact that UK CW can easily be made deterministic.
Given a UK CW A, the gameG(A,K) is constructed via a subset construction extended
with counters for each state q, that count (up to K + 1) the maximal number of accept-
ing states which have been visited by runs ending up in q. We set the counter of a state
q to −1 when no run on the prefix read so far ends up in q. The set of game positions
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q1 q2

q3q4

r

g,¬g

r,¬r

¬g

r,¬r

(a) UCW

(q1, 0) (q2, 0)

(q1, 0), (q3, 0)

(q2, 0), (q4, 1)

(q1, 0), (q3, 1)

(q2, 0), (q4, 2)

g,¬g

¬r
r

g

¬gr,¬r

¬g

g

(b) Safety game G(φ, 1)

Fig. 1. UCW and safety game for the formula φ ≡ �(r → X♦g)

S1 for Player 1 is therefore the set of functions F : QO to {−1, . . . ,K + 1}. The set
S2 is similarly defined as the functions F : QI to {−1, . . . ,K + 1}. The set of moves
of both players are the letters they can choose, i.e. Moves1 = ΣO and Moves2 = ΣI .
The set of available moves in a position are defined via a successor function succ such
that for all F ∈ Si and σ ∈ Movesi,

succ(F, σ) = q �→ max{min(K + 1, F (p) + (q ∈ α)) | q ∈ δ(p, σ), F (p) �= −1}
where max ∅ = −1, and (q ∈ α) = 1 if q is in α, and 0 otherwise. An action
σ1 ∈ Moves1 is available for Player 1 in a position F ∈ S1 if the counters of F and
succ(F, σ) do not exceed K . More formally, σ ∈ Γ1(F ) iff for all p ∈ Q0 and all
q ∈ QI , F (p) ≤ K and succ(F, σ)(q) ≤ K . The transition function Δ1 is defined by
Δ1(F, σ) = succ(F, σ) for all F ∈ S1 and all σ ∈ Γ1(s). The function Δ2 is defined
by Δ2(F, σ) = succ(F, σ) for all F ∈ S2 and all σ ∈ Moves2. Finally, we start the
game in the initial position F0 ∈ S1 such that for all q ∈ QO, F (q) = −1 if q is not
initial, and 0 if q is initial but not final, and 1 if q is initial and final.

Associating a safety game with an LTL formula φ is done as follows: (1) construct a
UCW Aφ equivalent to φ, (2) construct G(Aφ,K), denoted as G(ψ,K) in the sequel,
where K = 2n(n2n+2 + 1) and n is the number of states of Aφ.

Incremental algorithm. In practice, for checking the existence of a winning strategy
for Player 1 in the safety game, we rely on an incremental approach. For all K1,K2 ·0 ≤
K1 ≤ K2, if Player 1 can win G(A,K1), then she can win G(A,K2). This is because
Luc,K1(A) ⊆ Luc,K2(A) ⊆ Luc(A). Therefore we can test the existence of strategies
for increasing values of K . In all our examples (see Section 6), the smallest K for which
Player 1 can win is very small (less than 5).

Example. Fig. 1(b) represents the safety game (for K = 1) associated with the formula
�(r → X♦g). Positions are pairs of states of the UCW with their counter values. Player
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1’s positions are denoted by circles while Player 2’s positions are denoted by squares.
The unavailable move of Player 1 from position (q2, 0) is denoted by a dashed arrow.
It goes to a position where a counter exceeds the value K . The master plan of the
game corresponds in this case to all the moves attached to plain arrows for Player 1’s
positions. Indeed Player 1 wins the game iff she never follows the dashed arrow.

Antichain-based symbolic algorithm. In practice, we do not construct the game
G(A,K) explicitly, as it may be too large. However it has a nice structure that can
be exploited for defining an efficient symbolic implementation for the computation of
the sequence of Wi’s defined in Section 2. The main idea is to consider an ordering on
the positions in G(A,K). Define the relation�⊆ FI×FI∪FO×FO by F � F ′ iff ∀q,
F (q) ≤ F ′(q). It is clear that � is a partial order. Intuitively, if Player 1 can win from
F ′ then she can also win from all F � F ′, since she has seen less accepting states in
F than in F ′. The consequence of this observation is that all the sets Wi are downward
closed for the relation �. It is shown in [7] that consequently all the computations can
be done efficiently by manipulating only �-maximal elements.

4 Compositional Safety Games

In this section, we define compositional safety games and develop two abstract compo-
sitional algorithms to solve such games.

Composition of safety games. We now consider products of safety games. Let Gi,
i ∈ {1, . . . , n}, be n safety games Gi = (Si

1, S
i
2, Γ

i
1, Δ

i
1, Δ

i
2) defined on the same

sets of moves Moves = Moves1 � Moves2. Their product, denoted by ⊗i=n
i=1G

i, is the
safety game G⊗ = (S⊗

1 , S⊗
2 , Γ⊗

1 , Δ⊗
1 , Δ

⊗
2 )4 defined as follows:

– S⊗
j = S1

j × S2
j × · · · × Sn

j , j = 1, 2;

– for s = (s1, s2, . . . , sn) ∈ S⊗
1 , Γ⊗

1 (s) = Γ 1
1 (s1) ∩ Γ 2

1 (s2) ∩ · · · ∩ Γn
1 (sn);

– for j ∈ {1, 2} and s = (s1, s2, . . . , sn) ∈ S⊗
j , let m ∈ Γ⊗

1 (s) if j = 1 or
m ∈ Moves2 if j = 2. Then Δ⊗

j (s) = (t1, t2, . . . , tn), where ti = Δi
j(s

i,m) for
all i ∈ {1, 2, . . . , n};

Backward compositional reasoning. We now define a backward compositional algo-
rithm to solve the safety game G⊗. The correctness of this algorithm is justified by the
following lemmas. For readability, we express the properties for composed games de-
fined from two components. All the properties generalize to any number of components.
The first part of the lemma states that to compute the master plan of a composition, we
can first reduce each component to its local master plan. The second part of the lemma
states that the master plan of a component is the master plan of the component where

the choices of Player 1 has been restricted by one application of the ĈPre operator.

Lemma 2. (a) Let G12 = G1 ⊗G2, let Λ1 = MP(G1) and Λ2 = MP(G2) then

MP(G12) = MP(G1[Λ1] ⊗G2[Λ2])

(b) For any game G, MP(G)=MP(G[ĈPre(Γ1)]).

4 Clearly, the product operation is associative up to isomorphism.
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Let Λ : S1
1 × S2

1 × · · · × Sn
1 → 2Moves, we let πi(Λ) the function with domain

Si
1 and codomain 2Moves1 such that for all s ∈ Si

1, πi(Λ)(s) is the set of moves al-
lowed by Λ in one tuple (s1, s2, . . . , sn) such that si = s. Formally, πi(Λ)(s) =⋃{Λ(s1, s2, . . . , sn) | (s1, s2, . . . , sn) ∈ S⊗

1 , si = s}. Given two functions Λ1 :
S1 → 2Moves1 and Λ2 : S1 → 2Moves1 , we define Λ1 ∩ Λ2 as the function on do-
main S1 such that for all s ∈ S1: Λ1 ∩ Λ2(s) = Λ1(s) ∩ Λ2(s). Given two functions
Λ1 : S1 → 2Moves1 and Λ2 : S2 → 2Moves1 , we define (Λ1 × Λ2) : S1 × S2 → 2Moves1

as (Λ1 × Λ2)(s1, s2) = Λ1(s1) ∩ Λ2(s2).
Based on Lemma 2, we propose the following compositional algorithm to compute

the master plan of a safety game defined as the composition of local safety games.
First, compute locally the master plans of the components. Then compose the local

master plans and apply one time the ĈPre operator to this composition. This applica-

tion of ĈPre compute a new function Λ that contains information about the one-step
inconsistencies between local master plans. Project back on the local components the
information gained by the function Λ, and iterate. This is formalized in Algorithm 1
whose correctness is asserted by Theorem 3.

Algorithm 1. Backward composition

Data: G⊗ = G1 ⊗ G2 ⊗ · · · ⊗ Gn

Λ ← Γ⊗
1 ;

repeat
Λi := MP(Gi[πi(Λ)]), 1 ≤ i ≤ n;

Λ := ĈPre(Λ ∩ (Λ1 × · · · × Λn))
until Λ does not change;
return Λ

Algorithm 2. Forward composition

Data: G⊗ = G1 ⊗ G2 ⊗ · · · ⊗ Gn

Λi := MPReach(G
i, si

ini), 1 ≤ i ≤ n;
Λ := MPReach(G

1[Λ1]⊗· · ·⊗Gn[Λn],
. (s1

ini, s
2
ini, . . . , s

n
ini))

return Λ

Theorem 3. The value Λ returned by Algorithm 1 is equal to MP(G⊗).

Forward compositional reasoning. When solving safety games, we may be interested
only in computing winning strategies for a fixed starting position, say sini. In this case,
the value of the master plan is not useful for positions that are not reachable when
playing winning strategies from sini. So, we are interested in computing a master plan
only for the winning and reachable positions. Given a gameG and a state sini, we denote
by Reach(G, sini) the subset of positions that are reachable from sini in G i.e., the states
s′ such that there exists a finite sequence s0s1 . . . sn with s0 = sini, sn = s′ and for
all i, 0 ≤ i < n, there exists m ∈ Γ1(si) ∪ Moves2 such that si+1 = Δ(si,m). The
master plan of reachable positions for (G, sini), denoted by MPReach(G, sini) is defined
for all s ∈ S as follows:

MPReach(G, sini)(s) =
{

MP(G)(s) if s ∈ Reach(G[Λ], sini)
∅ otherwise.

The following lemma shows that for a game defined compositionally, its master plan
can also be defined compositionally. For readability we express the lemma only for two
components but, as for the previous lemmas, it extends to any number of components:

Lemma 3. Let Λ1 = MPReach(G1, s1
ini) and Λ2 = MPReach(G2, s2

ini).

MPReach(G1 ⊗G2, (s1
ini, s

2
ini)) = MPReach(G1[Λ1] ⊗G2[Λ2], (s1

ini, s
2
ini))
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Fig. 2. Two games and their common master plan of reachable states

As composition of safety games is an associative operator, we can use variants of the
algorithm above where we first compose some of the components and compute their
master plan of reachable positions before doing the global composition.

To efficiently compute the master plan of reachable positions of a gameG, we use the
OTFUR algorithm of [4]. We say that a position s ∈ S1 is unsafe if Γ1(s) = ∅, or all
its successors are unsafe. A position s ∈ S2 is unsafe if one of its successors is unsafe.
The algorithm explores the state space by starting from the initial state in a forward
fashion. When sufficient information is known about the successors of a position s,
it back-propagates the unsafe information to s. At the end of the algorithm, the master
plan which allows all moves that lead to a safe position is exactly MPReach(G, sini). Fig.
2 illustrates the result of the OTFUR algorithms applied on the product of two safety
games G1, G2 over the possible moves o1, o2, o3 for Player 1 and i1, i2 for Player 2.
We assume that G1, G2 contains only winning actions, i.e. Gi = Gi[MP(Gi)] for all
i = 1, 2. The master plan of reachable states for G1 ⊗G2 corresponds to plain arrows.
Dashed arrows are those which have been traversed during the OTFUR algorithm but
have been removed due to backpropagation of unsafe information. From node 〈A,A′〉
the move o3 is not a common move, therefore o3 is not available in the product as well.
However o2 is available in both games and leads to C and C′ respectively. Similarly,
o1 is available in both games and goes to 〈B,B′〉. From 〈B,B′〉 one can reach 〈D,D′〉
by i1 but from 〈D,D′〉 there is no common action. Therefore 〈D,D′〉 is unsafe. Since
one of the successor of 〈B,B′〉 is unsafe and 〈B,B′〉 is owned by Player 2, 〈B,B′〉 is
declared to be unsafe as well. All the remaining moves are winning in the G1 ⊗G2, as
they are winning both in G1 and G2.

Remark 1. It should be noted that each Λi in Alg. 2 can be replaced by the full master
plan without changing the output of the forward algorithm. Indeed, it is easy to see
that Reach(G[MPReach(G, sini)], sini) = Reach(G[MP(G)], sini). So, we can mix the
backward and forward algorithms. For instance, we can compute locally the master plan
of each Gi using the backward algorithm of [7], and then check global realizability
using the OTFUR algorithm.
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5 Compositional LTL Synthesis and Dropping Assumptions

In this section, we show how to define compositionally the safety game associated with
an LTL formula when this formula is given as a conjunction of subformulas i.e., ψ =
φ1 ∧ φ2 ∧ · · · ∧ φn. Assume from now on that we have fixed some K ∈ N. We first
construct for each subformula φi the corresponding UK CW Aφi on the alphabet of ψ5,
and their associated safety games G(φi,K). The game G(ψ,K) for the conjunction ψ
is isomorphic to the game ⊗i=n

i=1G(φi,K).
To establish this result, we rely on a notion of product at the level of turn-based

automata. Let Ai = (ΣI , ΣO, Q
i
I , Q

i
O, q

i
0, α

i, δi
I , δ

i
O) for i ∈ {1, 2} be two turn-

based automata, then their product A1 ⊗ A2 is the turn-based automaton defined as
(ΣI , ΣO, Q

1
I �Q2

I , Q
1
O �Q2

O, Q1
ini �Q2

ini, α1 �α2, δ
1
I � δ2

I , δ
1
O � δ2

O). As we use univer-
sal interpretation i.e., we require all runs to respect the accepting condition, it is clear
that executing the A1⊗A2 on a word w is equivalent to execute both A1 and A2 on this
word. So w is accepted by the product iff it is accepted by each of the automata.

Proposition 1. Let A1 and A2 be two UCW on the alphabet Σ1 �Σ2, and K ∈ N: (i)
Luc(A1⊗A2) = Luc(A1)∩Luc(A2), (ii)Luc,K(A1⊗A2) = Luc,K(A1)∩Luc,K(A2)

As the state space and transition relation of A1 ⊗ A2 is the disjunct union of the space
spaces and transition relations of A1 and A2, the determinization of A1⊗A2 for a fixed
K ∈ N is equivalent to the synchronized product of the determinizations of A1 and A2

for that K , and so we get the following theorem.

Theorem 4. Let ψ = φ1 ∧ φ2 ∧ · · · ∧ φn, K ∈ N, G(ψ,K) is isomorphic to ⊗i=n
i=1

G(φi,K).

Even if it is natural to write large LTL specifications as conjunctions of subformulas, it
is also sometimes convenient to write specifications that are of the form (

∧i=n
i=1 ψi) →

(
∧j=m

j=1 φj) where ψi’s formalize a set of assumptions made on the environment (Player
2) and φj’s formalize a set of guarantees that the system (Player 1) must enforce. In this
case, we rewrite the formula into the logical equivalent formula

∧j=m
j=1 ((

∧i=n
i=1 ψi) →

φj) which is a conjunction of LTL formulas as needed for the compositional construc-
tion described above. As logical equivalence is maintained, realizability is maintained
as well.

Unfortunately, this formula is larger than the original formula as all the n assump-
tions are duplicated for all the m guarantees. But, the subformulas (

∧i=n
i=1 ψi) → φj , j ∈

{1, . . . ,m} are usually such that to guarantee φj , Player 1 does not need all the assump-
tions on the left of the implication. It is thus tempting to remove those assumptions that
are locally unnecessary in order to get smaller local formulas. In practice, we apply
the following rule. Let ψ1 ∧ ψ2 → φ be a local formula such that ψ2 and φ do not
share common propositions then we replace ψ1 ∧ ψ2 → φ by ψ1 → φ. This simpli-
fication is correct in the following sense: if the formula obtained after dropping some
assumptions in local formulas is realizable then the original formula is also realizable.
Further, a Player 1’s strategy to win the game defined by the simplified formula is also
a Player 1’s strategy to win the game defined by the original formula. This is justified

5 It is necessary to keep the entire alphabet when considering the subformulas to ensure proper
definition of the product of games that asks for components defined on the same set of moves.
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by the fact that the new formula logically implies the original formula i.e. ψ1 → φ log-
ically implies ψ1 ∧ ψ2 → φ. However, this heuristic is not complete because the local
master plans may be more restrictive than necessary as we locally forget about global
assumptions that exist in the original formula. We illustrate this on two examples.

Let I = {req}, O = {grant} and φ = (�♦req) → �♦grant. In this formula, the
assumption �♦req is not relevant to the guarantee �♦grant. Realizing φ is thus equiv-
alent to realizing �♦grant. However, the set of strategies realizing φ is not preserved
when dropping the assumption. Indeed, the strategy that outputs a grant after each req
realizes φ but it does not realize �♦grant, as this strategy relies on the behavior of the
environment. Thus dropping assumption is weaker than the notion of open implication
of [8], which requires that the strategies realizing φ have to realize �♦grant.

As illustrated by the previous example, dropping assumption does not preserve the
set of strategies that realize the formula. Therefore, it can be the case that a realiz-
able formula cannot be shown realizable with our compositional algorithm after lo-
cally dropping assumptions. In addition, it can be the case that a formula becomes
unrealizable after dropping local assumptions. Consider for instance the formula φ =
�♦req → (�♦grant ∧ �(X (¬grant) U req)). This formula is realizable, for in-
stance by the strategy which outputs a grant iff the environment signal at the pre-
vious tick was a req. Other strategies realize this formula, like those which grant a
request every n req signal (n is fixed), but all the strategies that realize φ have to ex-
ploit the behavior of the environment. Thus there is no strategy realizing the conjunction
of �♦grant and φ. Consequently, when we decompose φ into �♦req → �♦grant and
�♦req → �(X (¬grant) U req), we must keep �♦req in the two formulas.

Nevertheless, in our experiments, the dropping assumption heuristic is very effective
and except for one example, it always maintains compositional realizability.

Symbolic compositional synthesis with antichains. As mentioned in Sec. 3, we do not
construct the games explicitely, but solve them on-the-fly by compactly representing by
antichains the set of positions manipulated during the fixpoint computation. In partic-
ular, suppose that we are given a conjunction of formulas φ1 ∧ φ2, and some K ∈ N.
For all i ∈ {1, 2}, we first solve the subgame G(φi,K) by using the backward fixpoint
computation of [7] and get the downward closed set of winning positions (for Player
1), represented by antichains. Some winning positions are owned by Player 1 (resp.
Player 2), let this set be ↓W1 (resp. ↓W2), the downward closure of an antichain W1

(resp. W2). Then W1 and W2 also provide a compact representation of MP(G(φi,K)).
Indeed, let F be a Player 1’s position in G(φi,K), then MP(G(φi,K))(F ) is empty if
F �∈↓W1 (the downward closure of W1), otherwise is the set of moves σ ∈ ΣO such
that succ(F, σ) ∈↓W2. This symbolic representation is used in practice for the forward
and backward compositional algorithms (Algorithms 1 and 2 of Sec. 4).

Moreover, the partial order on game positions can also be exploited by the OTFUR
algorithm of Section 4 used in the forward compositional algorithm. Indeed let F be
some Player 1’s position of some game G(φ, k). Clearly, F is loosing (for Player 1 the
controller) iff all its minimal successors are loosing. We get the dual of this property
when F is a position owned by Player 2 (the environment). In this case F is loosing
(for the controller) iff one of its maximal successors is loosing. Therefore to decide
whether a position is loosing, depending on whether it is a controller or an environment
position, we have to visit its minimal or its maximal successors only. In the OFTUR
algorithm, this is done by adding to the waiting list only the edges (s′, s′′) such that
s′′ is a minimal (or maximal) successor of s′. In the case of a position owned by the
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controller, we can do even better. Indeed, we can add only one minimal successor in
the waiting list at a time. If it turns out that this successor is loosing, we add another
minimal successor. Among the minimal successors, the choice is done as follows: we
prefer to add an edge (s′, s′′) such that s′′ has already been visited. Indeed, this poten-
tially avoids unnecessary developments of new parts of the game. Note however that
this optimization cannot be used to compute the master plan of reachable positions, but
only some winning strategy, as some parts of the game may not be explored. In the ex-
periments, we use the backward algorithm to solve the local games and the optimized
forward algorithm to solve the global game.

6 Experimental Evaluation

The compositional algorithms have been implemented in our prototype ACACIA [7].
The performances are evaluated on the examples provided with the tool LILY and on a
larger specification of a buffer controller inspirated by the IBM rulebase tutorial [9].

Lily’s test cases and parametric example. We compare several methods on the real-
izable examples provided with LILY and on the parametric example of [7]. In those
benchmarks, the formulas are of the form

∧i=n
i=1 ψi → ∧j=m

j=1 φj where
∧i=n

i=1 ψi are a

set of assumptions and
∧j=m

j=1 φj are a set of guarantees. We decompose such formula

into several pieces (
∧i=n

i=1 ψi) → φj , as described in the previous section.
We compare four synthesis methods (Table 1). The first is the monolithic backward

method of [7]. The second is the monolithic forward method based on the OTFUR al-
gorithm optimized with antichains. The third method is a compositional method where
the local games are solved with the backward algorithm of [7] and the global game with
the forward algorithm OTFUR (optimized with antichains). Finally, the last method is
the third method where we use the dropping assumption heuristic. For each method,
we give the size of the automata (in the case of compositional methods it is the sum
of the sizes of every local automata), the time to construct them, the time to check for
realizability (Check Time), and the total time. The values in bold face are the best total
times among all methods.

On small examples, we can see that the benefit of the compositional approach is not
big (and in some cases the monolithic approach is even better). However for bigger
formulas (demo 3.2 to 3.7), decomposing the formulas decreases the time to construct
the automata, and the total realizability time is therefore better.

Now, we evaluate the benefit of dropping assumptions (last group of columns). For
those experiments, we only consider the subset of formulas for which this heuristic can
be applied. Our dropping heuristic does not work for demo 9 as it becomes unrealizable
after the application of dropping assumptions. As we see in the table, the benefit of
dropping assumptions is important and is growing with the size of the formulas that
are considered. The compositional algorithms outperform the monolithic ones when
combined with dropping assumptions. They also show promises for better scalability.
This is confirmed by our next benchmark.

A realistic case study. Now, we consider a set of realistic formulas (Table 2). All those
formulas are out of reach of the monolithic approach as even the Büchi automaton for
the formula cannot be constructed with state of the art tools. The generalized buffer
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(GenBuf) originates from the IBM’s tutorial for her RuleBase verification tool. The
benchmark has also the nice property that it can be scaled up by increasing the number
of receivers in the protocol. In this case study, the formulas are of the form

∧i=n
i=1 ψi →

φj and so they are readily amenable to our compositional algorithms.
In this case study, formulas are large: for example, the sum of the number of states in

the UCW of the components is 96 for gb(s2, r2) , and 2399 states for gb(s2, r7). Note
that the tool Wring cannot handle gb(s2, r2) monolithically.

This case study allows us to illustrate the effect of different strategies for exploiting
associativity of the product operation. In particular, we use different ways of parenthe-
sizing the local games. In all those examples, the local games and intermediate com-
bination of local games are solved with the backward compositional algorithm, while
the last compositional step (at the top) is done with the forward method. In each strat-
egy we first compute the master plan of each sub-formula. Then the column Flat refers
to the strategy that check global realizability directly. The column Binary refers to
the strategy that computes global realizability incrementally using the binary tree of
sub-formulas. Finally, the column Heuristic refers to the strategy that computes global

Table 1. Performance comparison on Lily’s benchmark and parametric example
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3 20 0.49 0.00 0.49 0.01 0.5 28 0.40 0.01 0.41 17 0.06 0.00 0.06
5 26 0.71 0.00 0.71 0.01 0.72 42 0.70 0.02 0.72 34 0.40 0.02 0.42
6 37 1.22 0.02 1.24 0.02 1.24 57 1.14 0.03 1.17 45 0.79 0.06 0.85
7 22 0.60 0.00 0.60 0.01 0.61 41 0.66 0.02 0.68 33 0.40 0.02 0.42
9 13 0.13 0.01 0.14 0.00 0.13 31 0.26 0.00 0.26 na na na na
13 7 0.00 0.00 0.00 0.01 0.01 4 0.01 0.00 0.01 na na na na
14 14 0.11 0.00 0.11 0.01 0.12 27 0.77 0.01 0.78 15 0.03 0.00 0.03
15 16 0.06 0.02 0.08 0.00 0.06 22 0.11 0.03 0.14 na na na na
16 21 0.22 0.31 0.53 0.07 0.29 45 0.20 0.14 0.34 na na na na
17 17 0.16 0.04 0.20 0.03 0.19 23 0.16 0.05 0.21 na na na na
18 22 0.34 0.21 0.55 0.19 0.53 45 0.35 0.16 0.51 na na na na
19 18 0.31 0.01 0.32 0.01 0.32 27 0.25 0.03 0.28 27 0.26 0.01 0.27
20 105 2.67 0.01 2.68 0.01 2.68 154 2.43 0.03 2.46 101 1.52 0.02 1.54
21 27 7.38 0.22 7.60 0.28 7.66 43 1.40 0.52 1.92 44 0.55 0.51 1.06
22 45 7.08 0.03 7.11 0.02 7.1 80 10.26 0.05 10.31 49 1.51 0.13 1.64
3.2 36 0.94 0.02 0.96 0.00 0.94 40 0.79 0.02 0.81 na na na na
3.3 56 1.80 0.15 1.95 0.02 1.82 60 1.21 0.06 1.27 na na na na
3.4 84 3.12 1.24 4.36 0.04 3.16 80 1.63 0.10 1.73 na na na na
3.5 128 3.52 9.94 13.46 0.12 3.64 100 2.04 0.17 2.21 na na na na
3.6 204 10.22 100 110.22 0.46 10.68 120 2.40 0.39 2.79 na na na na
3.7 344 26.48 660 686.48 2.35 28.82 140 2.96 1.02 3.98 na na na na
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Table 2. Performance comparison on a scalability test for the forward methods
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gb s2 r2 2 91 4.83 0.08 0.84 0.99 0.98 54
gb s2 r3 2 150 8.52 0.17 7.33 36.27 6.99 63
gb s2 r4 2 265 15.64 0.53 36.88 125.60 24.19 86
gb s2 r5 2 531 26.48 2.11 154.02 266.36 70.41 107
gb s2 r6 2 1116 50.70 14.38 889.12 1164.44 335.44 132
gb s2 r7 2 2399 92.01 148.46 2310.74 timeout 1650.83 149

realizability incrementally using a specific tree of sub-formula defined by the user. The
column UCW OPT refers to the time to optimize the automata with Lily’s optimizations
(this time was included in the UCW time in Table 1).

Conclusion. We have provided compositional algorithms for full LTL synthesis. Our
algorithm are able to handle formulas that are several pages long (see [2]). We believe
that our compositional approach is an essential step to make realizability check more
practical. As future works, we plan to improve our tool by considering symbolic data-
structures. Currently, the alphabet of signals is handled enumeratively and we believe
that substantial gain could be obtain by handling it symbolically. This algorithmic im-
provement is orthogonal to the ones presented in this paper. It should be noted that the
compositional approach we propose is general and can be applied, for example, if some
sub-games are not specified using LTL but constructed directly from another specifica-
tion language. This is important as in practice some modules could be easily specified
directly by deterministic automata instead of LTL. Exploring the use of such mixed
specification methodology is part of our future works.
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Abstract. We present a first-order theory of (finite) sequences with integer el-
ements, Presburger arithmetic, and regularity constraints, which can model sig-
nificant properties of data structures such as lists and queues. We give a deci-
sion procedure for the quantifier-free fragment, based on an encoding into the
first-order theory of concatenation; the procedure has PSPACE complexity. The
quantifier-free fragment of the theory of sequences can express properties such
as sortedness and injectivity, as well as Boolean combinations of periodic and
arithmetic facts relating the elements of the sequence and their positions (e.g.,
“for all even i’s, the element at position i has value i + 3 or 2i”). The result-
ing expressive power is orthogonal to that of the most expressive decidable log-
ics for arrays. Some examples demonstrate that the fragment is also suitable to
reason about sequence-manipulating programs within the standard framework of
axiomatic semantics.

1 Introduction

Verification is undecidable already for simple programs, but modern programming lan-
guages support a variety of sophisticated features that make it all the more complicated.
These advanced constructs — such as arrays, pointers, dynamic allocation of resources,
and object-oriented abstract data types — are needed because they raise the level of ab-
straction thus making programmers more productive and programs less defective. In an
attempt to keep the pace with the development of programming languages, verification
techniques have progressed rapidly over the years.

Further steady progress requires expressive program logics and powerful decision
procedures. In response to the evolution of modern programming languages, new decid-
able program logic fragments and combination techniques for different fragments have
mushroomed especially in recent years. Many of the most successful contributions have
focused on verifying relatively restricted aspects of a program’s behavior, for example
by decoupling pointer structure and functional properties in the formal analysis of a
dynamic data structure. This narrowing choice, partly deliberate and partly required by
the formidable difficulty of the various problems, is effective because different aspects
are often sufficiently decoupled that each of them can be analyzed in isolation with the
most appropriate, specific technique.

� Work partially supported by Hasler Stiftung, ManCom project, grant #2146.
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This paper contributes to the growing repertory of special program logics by explor-
ing the decidability of properties about sequences. Sequences of elements of homoge-
neous type can abstract fundamental features of data structures, such as the content of
a dynamically allocated list, a stack, a queue, or an array.

We take a new angle on reasoning about sequences, based on the theory of concate-
nation: a first-order theory where variables are interpreted as words (or sequences) over
a finite alphabet and can be composed by concatenating them. Makanin’s algorithm
for solving word equations [14] implies the decidability of the quantifier-free fragment
of the theory of concatenation. Based on this, we introduce a first-order theory of se-
quences Tseq(�) whose elements are integers. Section 3.3 presents a decision procedure
for the quantifier-free fragment of Tseq(�), which encodes the validity problem into
the quantifier-free theory of concatenation. The decision procedure is in PSPACE; it is
known, however, that Makanin’s algorithm is reasonably efficient in practice [1].

The theory Tseq(�) allows concatenating sequences to build new ones, and it includes
Presburger arithmetic over elements. The resulting quantifier-free fragment has signifi-
cant expressiveness and can formalize sophisticated properties such as sortedness, injec-
tivity, and Boolean combinations of arithmetic facts relating elements and their indices
in statements such as “for all even i’s, the element with index i has value i + 3 or 2i”
(see more examples in Section 3.2). It is remarkable that some of these properties are
inexpressible in powerful decidable array logics such as those in [4,10,12,11].

On the other hand, Tseq(�) forbids explicit indexed access to elements. This restric-
tion, which is required to have a decidable fragment, prevents the explicit modeling of
updatable memory operations such as “swap the first element with the element at index
i”, where i is a scalar program variable. It also differentiates Tseq(�) from the theory of
arrays and extensions thereof (see Section 5), which can formalize such operations.

In summary, the theory of sequences Tseq(�) provides a fresh angle on reasoning
“natively” about sequences of integers by means of an abstraction that is orthogonal to
most available approaches and can be practically useful (see examples in Section 4). To
our knowledge, the approach of the present paper is distinctly new. The absence of prior
work on decision procedures for theories of sequences prompted us to compare the ex-
pressiveness of Tseq(�) against that of theories of arrays, which are probably the closest
fragments studied. However, the two theories are not meant as direct competitors, as
they pertain to partially overlapping, yet largely distinct, domains.

In order to assess the limits of our theory of sequences better, we also prove that
several natural extensions of the quantifier-free fragment of Tseq(�) are undecidable.
Finally, we demonstrate reasoning about sequence-manipulating programs with anno-
tations written in the quantifier-free fragment of Tseq(�): a couple of examples in Sec-
tion 4 illustrate the usage of Tseq(�) formulas with the standard machinery of axiomatic
semantics and backward reasoning.

Remark. For space constraints, some details and proofs are deferred to [9].

2 The Theory of Concatenation

In the rest of the paper, we assume familiarity with the standard syntax and terminol-
ogy of first-order theories (e.g., [3]); in particular, we assume the standard abbreviations
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and symbols of first-order theories with the following operator precedence: ¬,∧,∨,⇒,
⇔, ∀ and ∃. FV (φ) denotes the set of free variables of a formula φ. With standard
terminology, a formula φ is a sentence iff it is closed iff FV (φ) = ∅. A set Q of
strings over {∃, ∀} (usually given in the form of a regular expression) denotes the
Q-fragment of a first-order theory: the set of all formulas of the theory in the form
∂1v1∂2v2 · · · ∂nvn • ψ, where ∂1∂2 · · · ∂n ∈ Q, v1, v2, . . . , vn ∈ FV (ψ), and ψ is
quantifier-free. The universal and existential fragments are synonyms for the ∀∗- and
∃∗-fragment respectively. A fragment is decidable iff the validity problem is decidable
for its sentences. It is customary to define the validity and satisfiability problems for a
quantifier-free formula ψ as follows: ψ is valid iff the universal closure of ψ is valid,
and ψ is satisfiable iff the existential closure of ψ is valid. As a consequence of this
definition, the decidability of a quantifier-free fragment whose formulas are closed un-
der negation is tantamount to the decidability of the universal or existential fragments.
Correspondingly, in the paper we will allow some freedom in picking the terminology
that is most appropriate to the context.

Sequences and concatenation. � denotes the set of integer numbers and� denotes the
set of nonnegative integers. Given a set A = {a, b, c, . . .} of constants, a sequence over
A is any word v = v(1)v(2) · · · v(n) for some n ∈ �where v(i) ∈ A for all 1 ≤ i ≤ n.
The symbol ε denotes the empty sequence, for which n = 0. |v| = n denotes the length
of v. A∗ denotes the set of all finite sequences over A including ε �∈ A.

It is also convenient to introduce the shorthand v(k1, k2) with k1, k2 ∈ � to describe
subsequences of a given sequence v. Informally, for positive k1, k2, v(k1, k2) denotes
the subsequence starting at position k1 and ending at position k2, both inclusive. For
negative or null k1, k2, v(k1, k2) denotes instead the “tail” subsequence starting from
the |k1|-to-last element and ending at the |k2|-to-last element. Finally, for positive k1

and negative or null k2, v(k1, k2) denotes the subsequence starting at position k1 and
ending at the |k2|-to-last element. Formally, we have the following definition.

v(k1, k2) �

⎧⎪⎪⎪⎨⎪⎪⎪⎩
v(k1)v(k1 + 1) · · · v(k2) 1 ≤ k1 ≤ k2 ≤ |v|
v(k1, |v| + k2) k1 − |v| ≤ k2 < 1 ≤ k1

v(|v| + k1, |v| + k2) 1 − |v| ≤ k1 ≤ k2 < 1
ε otherwise

For two sequences v1, v2 ∈ A∗, v1 � v2 denotes their concatenation: the sequence
v1(1) · · · v1(|v1|)v2(1) · · · v2(|v2|). We will drop the concatenation symbol whenever
unambiguous. The structure 〈A∗, �, ε〉 is also referred to as the free monoid with gener-
ators in A and neutral element ε. The size |A| is the rank of the free monoid and it can
be finite or infinite.

Decidability in the theory of concatenation. The theory of concatenation is the first-
order theory Tcat with signature

Σcat � { .=, ◦,R}
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where
.= is the equality predicate,1 ◦ is the binary concatenation function and R �

{R1,R2, . . .} is a set of unary (monadic) predicate symbols called regularity con-
straints. We sometimes write Ri(x) as x ∈ Ri and α � .= β abbreviates ¬(α .= β).

An interpretation of a formula in the theory of concatenation is a structure 〈A∗, �, ε,
R, ev〉 where 〈A∗, �, ε〉 is a free monoid, R = {R1,R2, . . .} is a collection of regular
subsets of A∗, and ev is a mapping from variables to values in A∗. The satisfaction
relation 〈A∗, �, ε,R, ev〉 |= φ for formulas in Tcat is defined in a standard fashion with
the following assumptions: (1) any variable x takes the value ev(x) ∈ A∗; (2) the
concatenation x ◦ y of two variables x, y takes the value ev(x) � ev(y); (3) for each
Ri ∈ R, the corresponding Ri ∈ R defines the set of sequences x ∈ Ri for which
Ri(x) holds (this also subsumes the usage of constants).

The following proposition summarizes some decidability results about fragments of
the theory of concatenation; they all are known results, or corollaries of them [9].

Proposition 1

1. [14,7,17] The universal and existential fragments of the theory of concatenation
over free monoids with finite rank are decidable in PSPACE.

2. The following fragments of the theory of concatenation are undecidable.
(a) [8] The ∀∗∃∗ and ∃∗∀∗ fragments.
(b) [5] The extensions of the existential and universal fragments over the free

monoid {a, b}∗ with: (1) two length functions |x|a, |x|b where |x|p � {y ∈ p∗ |
y has the same number of p’s as x}; or (2) the function Sp(x) � |x|a � |x|b.

3. [5] The following are not definable in the existential or universal fragments.
(a) The set S= � {anbn | n ∈ �}.
(b) The equal length predicate Elg(x, y) � |x| = |y|.

It is currently unknown whether the extension of the existential or universal fragment
of concatenation with Elg is decidable.

3 A Theory of Sequences

This section introduces a first-order theory of sequences (Section 3.1) with arithmetic,
demonstrates it on a few examples (Section 3.2), gives a decision procedure for its
universal fragment (Sections 3.3– 3.4), and shows that “natural” larger fragments are
undecidable (Section 3.5).

3.1 A Theory of Integer Sequences

We present an arithmetic theory of sequences whose elements are integers. It would be
possible to make the theory parametric with respect to the element type. Focusing on
integers, however, makes the presentation clearer and more concrete, with minimal loss
of generality as one can encode any theory definable in the integer arithmetic fragment.

1 We use the symbol
.
= to distinguish it from the standard arithmetic equality symbol = used

later in the paper.



132 C.A. Furia

Syntax. Properties of integers are expressed in Presburger arithmetic with signature:

Σ� � {0, 1,+,−,=, <}

Then, our theory Tseq(�) of sequences with integer values has signature:

Σseq(�) � Σcat ∪Σ�

Operator precedence is: ◦; + and −; .=,= and <, followed by logic connectives and
quantifiers with the previously defined precedence.

We will generally consider formulas in prenex normal formQ • ψ , where Q is a
quantifier prefix and ψ is quantifier-free written in the grammar:

seq ::= var | 0 | 1 | seq ◦ seq | seq + seq | seq − seq

fmla ::= seq
.= seq | R(seq) | seq = seq | seq < seq

| ¬fmla | fmla ∨ fmla | fmla ∧ fmla | fmla ⇒ fmla

with var ranging over variable names.

Semantics. An interpretation of a sentence of Tseq(�) is a structure 〈�∗, �, ε,R,
ev〉 with the same meaning as in the theory of concatenation plus the following ad-
ditional assumptions about arithmetic.2

– The interpretation of a sequence v1v2 · · · ∈ �
∗ of integers in an integer sub-

expression (e.g., in a sum, in an integer equality or inequality) is the first integer in
the sequence v1, with the convention that the interpretation of the empty sequence
is 0.3

– Conversely, the interpretation of an integer v ∈ � in a sequence sub-expression
(e.g., in a concatenation) is the singleton sequence v.

– Addition, subtraction, equality, and less than are interpreted accordingly.

For example, the expression (1 ◦ 0 ◦ 0 < 1 + 0 + 1) ∧ (1 ◦ 0 = 1 ◦ 1) evaluates to true
because the sequences 1 ◦ 0 ◦ 0, 1 ◦ 0, and 1 ◦ 1 are all interpreted as the integer 1.

Shorthands. We introduce several simplifying shorthands.

– A symbol for every constant k ∈ �, defined as obvious.
– α �= β, α ≤ β, α ≥ β, and α > β defined respectively as ¬(α = β), α < β ∨ α =

β, ¬(α < β), and α ≥ β ∧ α �= β.
– Shorthands such as α ≤ β < γ or β ∈ [α, γ) for α ≤ β ∧ β < γ.
– Bounded length predicates such as |x| < k for a variable x and a constant k ∈ �.

|x| < k abbreviates R<k(x), where R<k is a regularity constraint that stands for
{ε} ∪⋃0<i<k �

i.
The definition of derived expressions such as k1 ≤ |x| < k2 is straightforward.

2 The presentation of the semantics of the theory is informal and implicit for brevity.
3 The results of Section 3.5 suggest that interpretations aggregating the values of multiple se-

quence elements are likely to be undecidable.
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– Subsequence functions such as x(k1, k2) for a variable x and two constants k1, k2 ∈
� with the intended semantics (see Section 2). We define these functions in the the-
ory Tseq(�) by the following rewriting rules, defined on formulas in prenex normal
form with quantifier prefix Q:

Q • ψ[x(k1, k2)]

Q∀u, v, w •

⎛⎜⎜⎝
κ1 ∧ x

.
= uvw ∧ |u| = k1 − 1 ∧ |v| = k2 − k1 + 1

∨ κ2 ∧ x
.
= uvw ∧ |u| = k1 − 1 ∧ |w| = −k2

∨ κ3 ∧ x
.
= uvw ∧ |v| = −k1 + k2 + 1 ∧ |w| = −k2

∨ ¬(κ1 ∨ κ2 ∨ κ3) ∧ u
.
= v

.
= w

.
= ε

⎞⎟⎟⎠ ⇒ ψ[v]

where κ1 � 1 ≤ k1 ≤ k2 ≤ |x|, κ2 � k1 − |x| ≤ k2 < 1 ≤ k1, κ3 � 1 − |x| ≤
k1 ≤ k2 < 1.

– fst(x) and lst(x) for the first x(1, 1) and last element x(0, 0) of x, respectively.

3.2 Examples

A few examples demonstrate the expressiveness of the universal fragment of Tseq(�).

1. Equality: sequences u and v are equal.

u
.= v (1)

2. Bounded equality: sequences u and v are equal in the constant interval [l, u] for
l, u ∈ �.

u(l, u) .= v(l, u) (2)

3. Boundedness: no element in sequence u is greater than value v.

∀h, t • u
.= ht ⇒ t ≤ v (3)

4. Sortedness: sequence u is sorted (strictly increasing).

∀h,m, t • u
.= hmt ∧ |m| = 1 ∧ |t| > 0 ⇒ m < t (4)

5. Injectivity: u has no repeated elements.

∀h, v1,m, v2, t • u
.= hv1mv2t ∧ |v1| = 1 ∧ |v2| = 1 ⇒ v1 �= v2 (5)

6. Partitioning: sequence u is partitioned at constant position k > 0.

∀h1, t1, h2, t2 •
⎛⎝u(1, k) .= h1t1

∧ u(k + 1, 0) .= h2t2
∧ |t1| > 0 ∧ |t2| > 0

⎞⎠⇒ t1 < t2 (6)

7. Membership: constant element k ∈ � occurs in sequence u.

u ∈ (�∗k�∗) (7)

8. Non-membership: no element in sequence u has value v.

∀h, t • u
.= ht ∧ |t| > 0 ⇒ t �= v (8)
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9. Periodicity: in non-empty sequence u, elements on even positions have value 0 and
elements on odd positions have value 1 (notice that lst(h) = 0 if h is empty).

∀h, t • u
.= ht ∧ |t| > 0 ⇒

(
lst(h) = 1
⇒ t = 0

)
∧
(

lst(h) = 0
⇒ t = 1

)
(9)

10. Comparison between indices and values: for every index i, element at position i in
the non-empty sequence u has value i + 3.

fst(u) = 1+3∧∀h, t, v • u
.= ht∧|h| > 0∧|t| > 0∧ lst(h) = v ⇒ fst(t) = v+1

(10)
11. Disjunction of value constraints: for every pair of positions i < j in the sequence

u, either u(i, i) ≤ u(j, j) or u(i, i) ≥ 2u(j, j).

∀h, v1,m, v2, t • u
.= hv1mv2t ∧ |v1| > 0 ∧ |v2| > 0 ⇒ v1 ≤ v2 ∨ v1 ≥ v2 + v2

(11)

Comparison with theories of arrays. Properties such as strict sortedness (4), periodic-
ity (9), and comparisons between indices and values (10) are inexpressible in the array
logic of Bradley et al. [4]. The latter is inexpressible also in the logic of Ghilardi et
al. [10] because Presburger arithmetic is restricted to indices. Properties such as (11)
are inexpressible both in the SIL array logic of [11] — because quantification on mul-
tiple array indices is disallowed — and in the related LIA logic of [12] — because
disjunctions of comparisons of array elements are disallowed. Extensions of each of
these logics to accommodate the required features would be undecidable.

Conversely, properties such as permutation, bounded equality for an interval speci-
fied by indices, length constraints for a variable value, membership for a variable value,
and the subsequence relation, are inexpressible in the universal fragment of Tseq(�).
Membership and the subsequence relation are expressible in the dual existential frag-
ment of Tseq(�), while the other properties seem to entail undecidability of the corre-
sponding Tseq(�) fragment (see Section 3.5). Bounded equality, length constraints, and
membership, on the other hand, are expressible in all the logics of [4,10,11,12], and [10]
outlines a decidable extension which supports the subsequence relation (see Section 5).

3.3 Deciding Properties of Integer Sequences

This section presents a decision procedureDseq(�) for the universal fragment of Tseq(�).
The procedure transforms any universal Tseq(�) formula into an equi-satisfiable univer-
sal formula in the theory of concatenation over the free monoid {a, b, c, d}∗. The basic
idea is to encode integers as sequences over the four symbols {a, b, c, d}: the sequence
acbk1a encodes a nonnegative integer k1, while the sequence adb−k2a encodes a neg-
ative integer k2. Suitable rewrite rules encode all quantifier-free Presburger arithmetic
in accordance with this convention. Subsection 3.4 illustrates the correctness and com-
plexity of Dseq(�).

Consider a universal formula of Tseq(�) in prenex normal form:

∀x1, . . . , xv • ψ (12)

where ψ is quantifier-free. Modify (12) by application of the following steps.
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1. Introduce fresh variables to normalize formulas into the following form:

fmla ::= var
.= var | var .= var ◦ var | R(var) | var = 0 | var = 1

| var = var | var = var + var | var = var − var | var < var

| ¬fmla | fmla ∨ fmla | fmla ∧ fmla | fmla ⇒ fmla

Clearly, we can achieve this by applying exhaustively rewrite rules that operate on
ψ such as:

ψ[x ◦ y]
e

.= x ◦ y ⇒ ψ[e]
ψ[x + y]

f = x + y ⇒ ψ[f ]

for fresh variables e, f .

2. For each variable xi ∈ FV (ψ) = {x1, . . . , xv}, introduce the fresh variables
hi, ti, si,mi (for head, tail, sign, modulus) and rewrite ψ as:

∧
1≤i≤v

⎛⎜⎜⎜⎜⎝
⎛⎜⎜⎜⎜⎝

xi
.= hiti

∧ hi
.= asimia

∧ si ∈ {c, d}
∧ mi ∈ b∗

∧ ti ∈ (acb∗a ∪ adb+a)∗

⎞⎟⎟⎟⎟⎠ ∨

⎛⎜⎜⎜⎜⎝
xi

.= ε
∧ hi

.= asimia
∧ si

.= c
∧ mi

.= ε
∧ ti

.= ε

⎞⎟⎟⎟⎟⎠
⎞⎟⎟⎟⎟⎠⇒ ψ

3. Apply the following rules exhaustively to remove arithmetic equalities:

ψ[xi = xj ]
ψ[hi

.= hj ]
ψ[xi = 0]
ψ[hi ∈ 0]

ψ[xi = 1]
ψ[hi ∈ 1]

4. Apply the following rule exhaustively to remove differences:

ψ[xk = xi − xj ]
ψ[xi = xk + xj ]

5. Apply the following rule exhaustively to remove comparisons:

ψ[xi < xj ]

⎛⎝mi
.= mj

∨ mi
.= mjp

∨ mj
.= mip

⎞⎠⇒ ψ

⎡⎢⎢⎢⎢⎣
si

.= d ∧ sj
.= c

∨
si

.= sj
.= c ∧mj

.= mip
∨

si
.= sj

.= d ∧mi
.= mjp

⎤⎥⎥⎥⎥⎦
for fresh p ∈ b+.
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6. Apply the following rule exhaustively to remove sums:

ψ[xk = xi + xj ]

⎛⎝mi
.= mj

∨ mi
.= mjp

∨ mj
.= mip

⎞⎠⇒ ψ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

si
.= sj ∧ xk

.= asimimja
∨

si � .= sj ∧mi
.= mj ∧ xk

.= aca
∨

si � .= sj ∧mi
.= mjp ∧ xk

.= asipa
∨

si � .= sj ∧mj
.= mip ∧ xk

.= asjpa

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
for fresh p ∈ b+.

7. Modify the meaning of regularity constraints as follows: let Ri be defined by a
regular expression with constants in �. Substitute every occurrence of a nonnega-
tive constant k ∈ � by acbka; every occurrence of a negative constant k ∈ � by
adb−ka; every occurrence of set � by acb∗a ∪ adb+a.

The resulting formula is again in form (12) where ψ is now a quantifier-free formula in
the theory of concatenation over {a, b, c, d}∗; its validity is decidable by Proposition 1.

3.4 Correctness and Complexity

Let us sketch the correctness argument for the decision procedureDseq(�), which shows
that the transformed formula is equi-satisfiable with the original one.

The justification for step 1 is straightforward. The following steps introduce a series
of substitutions to eliminate arithmetic by reducing it to equations over the theory of
concatenation with the unary encoding of integers defined above.

Step 2 requires that any variable xi is a sequence of the form (acb∗a ∪ adb+a)∗ and
introduces fresh variables to denote significant parts of the sequence: hi aliases the first
element of the sequence which is further split into its sign si (c for nonnegative and d
for negative) and its absolute value mi encoded as a unary string in b∗. The second term
of the disjunction deals with the case of xi being ε, which has the same encoding as 0.

The following steps replace elements of the signature of Presburger arithmetic by
rewriting them as equations over sequences with the given encoding. Step 3 reduces the
arithmetic equality of two sequences of integers to equivalence of the sequences encod-
ing their first elements. Step 4 rewrites equations involving differences with equations
involving sums.

Step 5 reduces arithmetic comparisons of two sequences of integers to a case dis-
cussion over the sequences hi, hj encoding their first elements. Let p be a sequence in
b+ encoding the difference between the absolute values corresponding to hi and hj ;
obviously such a p always exists unless the absolute values are equal. Then, hi encodes
an integer strictly less than hj iff one of the following holds: (1) hi is a negative value
and hj is a nonnegative one; (2) both hi and hj are nonnegative values and the sequence
of b’s in hj is longer than the sequence of b’s in hi; or (3) both hi and hj are negative
values and the sequence of b’s in hi is longer than the sequence of b’s in hj .

Step 6 reduces the comparison between the value of a sum of two variables and a
third variable to an analysis of the three sequences hi, hj , hk encoding the first elements
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of the three variables. As in step 6, the unary sequence p encodes the difference between
the absolute values corresponding to hi and hj . Then, hk encodes the sum of the values
encoded by hi and hj iff one of the following holds: (1) hi and hj have the same sign
and hk contains a sequence of b’s which adds up the sequences of b’s of hi and hj ,
still with the same sign; (2) hi and hj have opposite sign but same absolute value, so
hk must encode 0; (3) hi and hj have opposite sign and the absolute value of hi is
greater than the absolute value of hj , so hk has the same sign as hi and the difference
of absolute values as its absolute value; or (4) hi and hj have opposite sign and the
absolute value of hj is greater than the absolute value of hi, so hk has the same sign as
hj and the difference of absolute values as its absolute value.

Finally, step 7 details how to translate the interpretation of the regularity constraints
over � into the corresponding regularity constraints over {a, b, c, d} with the given
integer encoding.

It is not difficult to see that all rewriting steps in the decision procedure Dseq(�)

increase the size of ψ at most quadratically (this accounts for fresh variables as well).
Hence, the PSPACE complexity of the universal fragment of the theory of concatenation
(Proposition 1) carries over to Dseq(�).

Theorem 1. The universal fragment of Tseq(�) is decidable in PSPACE with the deci-
sion procedure Dseq(�).

3.5 Undecidable Extensions

Theorem 2. The following extensions of the ∀∗-fragment of Tseq(�) are undecidable.

1. The ∀∗∃∗ and ∃∗∀∗ fragments.
2. For any pair of integer constants k1, k2, the extension with the two length functions

|x|k1 , |x|k2 counting the number of occurrences of k1 and k2 in x.
3. The extension with an equal length predicate Elg(x, y) � |x| = |y|.
4. The extension with a sum function σ(x) �

∑|x|
i=1 x(i, i).

Proof. 1. Sentences with one quantifier alternation are undecidable already for the
theory of concatenation without arithmetic and over a monoid of finite rank (Propo-
sition 1). Notice that the set of sentences that are expressible both in the ∀∗∃∗ and
in the ∃∗∀∗ fragment is decidable [18, Th. 4.4]; however, this set lacks a simple
syntactic characterization.

2. Corollary of Proposition 1.
3. We encode the universal theory of Π = 〈�, 0, 1,+, π〉 — where π(x, y) � x2y —

in the universal fragment of Tseq(�) extended by the Elg predicate; undecidability
follows from the undecidability of the existential and universal theories of Π [5,
Corollary 5]. All we have to do is showing that π(x, y) = p is universally definable
in Tseq(�) with Elg. To this end, define ly as a sequence that begins with value y,
ends with value 1, and where every element is the successor of the following.

∀h, t • fst(ly) = y ∧ lst(ly) = 1 ∧ ly
.= ht ∧ |h| > 0 ∧ |t| > 0 ⇒ lst(h) = t + 1

As a result ly is in the form y, y − 1, . . . , 1 and hence has length y.4 Then, π(x, y)
is universally definable as the sequence p with the same length as ly , whose last

4 This technique would allow the definition of the length function |x| and full index arithmetic.
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element is x, and where every element is obtained by doubling the value of the
element that follows:

∀g, u • Elg(p, ly) ∧ lst(p) = x ∧ p
.= gu ∧ |g| > 0 ∧ |u| > 0 ⇒ lst(g) = u + u

Hence p has the form 2yx, 2y−1x, . . . , 22x, 2x, x which encodes the desired value
x2y in Tseq(�). (Notice that the two universal definitions of ly and p can be com-
bined into a single universal definition by conjoining the definition of p to the con-
sequent in the definition of ly).

4. For any sequence x over {0, 1} define Sp(x) = y as y ∈ 0∗1∗ ∧ σ(y) = σ(x).
Then, Proposition 1 implies undecidability because this extension of Tseq(�) can
define universal sentences over the free monoid {a, b}∗ with the function Sp. �

The decidability of the following is instead currently unknown: the extension of the
universal fragment with a function x ⊕ 1 defined as the sequence x(1) + 1, x(2) +
1, . . . , x(|x|) + 1. The fragment allows the definition of the set S={0n1n | n ∈ �} as
the sequences x such that x ∈ 0∗1∗∧∀u, v • x

.= uv∧u ∈ 0∗∧ v ∈ 1∗ ⇒ u⊕ 1 .= v.
This is inexpressible in the universal fragment of the theory of concatenation, but the
decidability of the resulting fragment is currently unknown (see Proposition 1).

4 Verifying Sequence-Manipulating Programs

This section outlines a couple of examples that use formulas in the theory Tseq(�) to
reason about sequence-manipulating programs. An implementation of the decision pro-
cedure Dseq(�) is needed to tackle more extensive examples; it belongs to future work.
The examples are in Eiffel-like pseudo-code [15]; it is not difficult to detail an axiomatic
semantics and a backward substitution calculus, using the universal fragment of Tseq(�),
for the portions of this language employed in the examples.

Mergesort. Consider a straightforward recursive implementation of the Mergesort al-
gorithm; Table 1 (left) shows an annotated version, where ∗ denotes the concatenation
operator in the programming language (whose semantics is captured by the correspond-
ing logic operator ◦). The annotations specify that the routine produces a sorted array,
where predicate sorted(u) is defined as (cmp. (4)):

sorted(u) � ∀h,m, t • u
.= hmt ∧ |m| > 0 ∧ |t| > 0 ⇒ m ≤ t

It is impossible to express in Tseq(�) another component of the full functional specifi-
cation: the output is a permutation of the input. This condition is inexpressible in most
of the expressive decidable extensions of the theory of arrays that are currently known,
such as [4,11] (see also Section 5). Complementary automated verification techniques
— using different abstractions such as the multiset [16] — can, however, verify this
orthogonal aspect.

We must also abstract away the precise splitting of array a into two halves in line 8.
The way in which a is partitioned into l and r is however irrelevant as far as correct-
ness is concerned (it only influences the complexity of the algorithm), hence we can
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Table 1. Annotated Mergesort (left) and Array Reversal (right)

1 merge sort (a: ARRAY): ARRAY
2 local l , r : ARRAY
3 do
4 if |a| ≤ 1 then
5 { sorted (a) }
6 Result := a
7 else
8 l , r := a [1:| a |/2] , a[|a|/2+1: |a|]
9 { l ∗ r = a }

10 l , r := merge sort ( l ) , merge sort (r)
11 { sorted ( l ) ∧ sorted(r) }
12 from Result := ε
13 { invariant sorted (Result) ∧ sorted(l) ∧ sorted(r) ∧
14 lst(Result) ≤ fst(l) ∧ lst(Result) ≤ fst(r) }
15 until | l | = 0 ∨ |r| = 0
16 loop
17 if l . first > r. first then
18 Result := Result ∗ r. first ; r := r . rest
19 else
20 Result := Result ∗ l. first ; l := l . rest
21 end
22 end
23 if | l | > 0 then
24 { |r| = 0 } Result := Result ∗ l
25 else
26 { | l | = 0 } Result := Result ∗ r
27 end
28 { ensure sorted (Result) }

1 reverse (a: LIST): LIST
2 local v : INTEGER ; s: STACK
3 do
4 from s := ε
5 { invariant s ◦ a = old a }
6 until a = ε
7 loop
8 s .push (a. first )
9 a := a . rest

10 end
11 from Result := ε
12 { invariant
13 s ◦ ResultR = old a }
14 until s = ε
15 loop
16 v := s . top
17 s .pop ; Result . extend (v)
18 end
19 { ensure ResultR = old a}

simply over-approximate the instruction on line 8 by a nondeterministic splitting in two
continuous non-empty parts.

From the annotated program, we can generate verification conditions by standard
backward reasoning. Universal sentences of Tseq(�) can express the verification con-
ditions, hence the verification process can be automated. Let us see an example on
the non-trivial part of the process, namely checking that the formula on lines 13–14 is
indeed an inductive invariant. Consider the “then” branch on line 18. Backward substi-
tution of the invariant yields:

sorted(Result ∗ fst(r)) ∧ sorted(l) ∧ sorted(r(2, 0)) ∧
lst(Result ∗ fst(r)) ≤ fst(l) ∧ lst(Result ∗ fst(r)) ≤ fst(r(2, 0)) (13)

This condition must be discharged by the corresponding loop invariant hypothesis:

sorted(Result) ∧ sorted(l) ∧ sorted(r) ∧ (14)

lst(Result) ≤ fst(l) ∧ lst(Result) ≤ fst(r) ∧ |l| �= 0 ∧ |r| �= 0 ∧ fst(l)≤ fst(r)

The following sentence (where all free variables are implicitly universally quantified)
formalizes, in the universal fragment of Tseq(�), the fact that (14) entails (13). Checking
its validity means discharging the corresponding verification condition.

⎛⎝ Result
.
= h1m1t1

∧ |m1| = 1 ∧ |t1| > 0
⇒ m1 ≤ t1

⎞⎠
∧
(

l
.
= h2m2t2 ∧ |m2| = 1

∧|t2| > 0 ⇒ m2 ≤ t2

)
∧
(

r
.
= h3m3t3 ∧ |m3| = 1

∧|t3| > 0 ⇒ m3 ≤ t3

)
∧
⎛⎝ Result(0, 0) ≤ l(1, 1) ∧

Result(0, 0) ≤ r(1, 1) ∧
|l| �= 0 ∧ |r| �= 0 ∧ fst(l) ≤ fst(r)

⎞⎠

∧

⎛⎜⎜⎜⎝
Result ◦ r(1, 1)

.
= hmt

∧ |m| = 1 ∧ |t| > 0 ∧ l
.
= hlmltl

∧ |ml| = 1 ∧ |tl| > 0
∧ r(2, 0)

.
= hrmrtr

∧ |mr| = 1 ∧ |tr| > 0

⎞⎟⎟⎟⎠
⇒

⎛⎜⎜⎜⎜⎜⎜⎜⎝

m ≤ t
∧ ml ≤ tl

∧ mr ≤ tr

∧ lst(Result ◦ fst(r))
≤ fst(l)

∧ lst(Result ◦ fst(r))
≤ fst(r(2, 0))

⎞⎟⎟⎟⎟⎟⎟⎟⎠
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Reversal. In Table 1 (right), a program reverses a sequence of integers, given as a list
a, using a stack s. The queries “first” and “rest” respectively return the first element in
a list and a copy of the list without its first element, and the command “extend” adds an
element to the right of a list; the query “top” and the commands “pop” and “push” for
a stack have the usual semantics. In the annotations, s is modeled by a sequence whose
first element is the bottom of the stack; the expression old a denotes the value of a
upon entering the routine.

The superscript R denotes the reversal of a sequence. We do not know if the extension
of Tseq(�) by a reversal function is decidable. However, the following two simple update
axioms are sufficient to handle any program which builds the reverse uR of a sequence
u starting from an empty sequence and adding one element at a time:

uR = ε ⇔ u = ε |x| = 1 ⇒ (ux)R = xuR

Consider, for instance, the verification condition that checks if the invariant of the sec-
ond loop (lines 11–18) is indeed inductive:

s ◦ ResultR = old a ∧ s �= ε ⇒ s(1,−1) ◦ (Result ◦ s(0, 0))R = old a

After rewriting (Result ◦ s(0, 0))R into s(0, 0) ◦ ResultR the implication is straight-
forward to check for validity.

5 Related Work

A review of the staggering amount of work on decision procedures for theories of com-
plex data types (and integrations thereof) is beyond the scope of this paper; for a partial
account see [9,19,13]. In this section, we focus on a few approaches that are most simi-
lar to ours and in particular which yield decidable logics that can be compared directly
to our theory of sequences (see Section 3.2). The absence of previous work on “direct”
approaches to theories of sequences makes the many work on decidable extensions of
the theory of arrays the closest to ours in expressive power. As discussed in Section 1,
however, our theory of sequences is not meant as a replacement to the theories of arrays,
but rather as a complement to them in different domains.

Bradley et al. [4] develop the array property fragment, a decidable subset of the
∃∗∀∗ fragment of the theory of arrays. An array property is a formula of the form
∃∗∀∗ • ι ⇒ ν, where the universal quantification is restricted to index variables, ι is a
guard on index variables with arithmetic (restricted to existentially quantified variables),
and ν is a constraint on array values without arithmetic or nested reads, and where no
universally quantified index variable is used to select an element that is written to. The
array property fragment is decidable with a decision procedure that eliminates universal
quantification on index variables by reducing it to conjunctions on a suitable finite set of
index values. Extensions of the array property fragment that relax any of the restrictions
on the form of array properties are undecidable. Bradley et al. also show how to adapt
their theory of arrays to reason about maps.

Ghilardi et al. [10] develop “semantic” techniques to integrate decision procedures
into a decidable extension of the theory of arrays. Their ADP theory merges the quan-
tifier-free extensional theory of arrays with dimension and Presburger arithmetic over
indices into a decidable logic. Two extensions of the ADP theory are still decidable:
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one with a unary predicate that determines if an array is injective (i.e., it has no repeated
elements); and one with a function that returns the domain of an array (i.e., the set of
indices that correspond to definite values). Ghilardi et al. suggest that these extensions
might be the basis for automated reasoning on Separation Logic models. The frame-
work of [10] also supports other decidable extensions, such as the prefix, and sorting
predicates, as well as the map combinator also discussed in [6].

De Moura and Bjørner [6] introduce combinatory array logic, a decidable extension
of the quantifier-free extensional theory of arrays with the map and constant-value com-
binators (i.e., array functors). The constant-value combinator defines an array with all
values equal to a constant; the map combinator applies a k-ary function to the elements
at position i in k arrays a1, . . . , ak. De Moura and Bjørner define a decision procedure
for their combinatory array logic, which is implemented in the Z3 SMT solver.

Habermehl et al. introduce powerful logics to reason about arrays with integer values
[12,11,2]; unlike most related work, the decidability of their logic relies on automata-
theoretic techniques for a special class of counter automata. More precisely, [12] defines
the Logic of Integer Arrays LIA, whose formulas are in the ∃∗∀∗ fragment and allow
Presburger arithmetic on existentially quantified variables, difference and modulo con-
straints on index variables, and difference constraints on array values. Forbidding dis-
junctions of difference constraints on array values is necessary to ensure decidability.
The resulting fragment is quite expressive, and in particular it includes practically use-
ful formulas that are inexpressible in other decidable expressive fragments such as [4].
The companion work [11] introduces the Single Index Logic SIL, consisting of existen-
tially quantified Boolean combinations of formulas of the form ∀∗ • ι ⇒ ν, where the
universal quantification is restricted to index variables, ι is a positive Boolean combi-
nation of bound and modulo constraints on index variables, and ν is a conjunction of
difference constraints on array values. Again, the restrictions on quantifier alternations
and Boolean combinations are tight in that relaxing one of them leads to undecidabil-
ity. The expressiveness of SIL is very close to that of LIA, and the two logics can be
considered two variants of the same basic kernel. The other work [2] shows how to
use SIL to annotate and reason automatically about array-manipulating programs; the
tight correspondence between SIL and a class of counter automata allows the automatic
generation of loop invariants and hence the automation of the full verification process.

6 Future Work

Future work will investigate the decidability of the universal fragment of Tseq(�) ex-
tended with “weak” predicates or functions that slightly increase its expressiveness
(such as that outlined at the end of Section 3.5). We will study to what extent the deci-
sion procedure for the universal fragment of Tseq(�) can be integrated with other decid-
able logic fragments (and possibly with the dual existential fragment). We will investi-
gate how to automate the generation of inductive invariants for sequence-manipulating
programs by leveraging the decidability of the universal fragment of Tseq(�). Finally, we
will implement the decision procedure, integrate it within a verification environment,
and assess its empirical effectiveness on real programs.

Acknowledgements. Thanks to Nadia Polikarpova and Stephan van Staden for com-
ments on a draft of this paper, and to the anonymous reviewers for their remarks.
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Abstract. Fork-join structures are important for modelling parallel and

distributed systems where coordination and synchronisation occur, but

their performance analysis is difficult. The study presented in this paper

is motivated by the need to calculate performance measures for computer

controlled (agile) manufacturing systems. We consider the manufacture

of a class of products made from two components that are created by two

parallel production lines. The components are then assembled, requiring

synchronisation of the two lines. The products are only created on re-

quest from the client. The production lines need to be controlled so that

one line does not get ahead of the other by more than a certain amount,

N , a parameter of the system. We model this system with a Generalised

Stochastic Petri Net, where N is the initial marking of a control place.

The customer requests and the two production line rates are modelled

by exponential distributions associated with three timed transitions in

the model. We use TimeNET to calculate the stationary token distri-

bution of the GSPN for a wide range of the rates as N increases. This

reveals that the steady state probabilities converge. We characterise the

range of transition rates for which useful convergence occurs and pro-

vide a method for obtaining the steady state probabilities to the desired

accuracy for arbitrary N .

Keywords: Fork-Join, Generalised Stochastic Petri Nets, Parametric

Performance Analysis, Convergence.

1 Introduction

The modelling of parallel and distributed systems where coordination and syn-
chronisation occur requires the use of fork-join structures [1]. The performance
analysis of systems with synchronisation is difficult because product form solu-
tions do not exist in general. However, due to their importance, fork-join systems
have been extensively studied (e.g. [1,2,3,4,5,6,7,8,9,10,11,12]). Many of these
papers endeavour to find the mean response time of a job submitted to such
systems, which requires that each job is identified.
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The system we wish to analyse is different. We consider the computer control
of a class of agile manufacturing systems where goods are assembled from two
different components (C1 and C2). On request, the components are developed in
parallel in different production lines, perhaps by different companies, and need
to be synchronised for assembly. Common examples include the manufacture of
tools and kitchen utensils (e.g. potato peelers). The system is driven by cus-
tomer demand, so that no more goods are produced than those requested, and
controlled so that each production line can only be ahead of the other by a cer-
tain amount. Further, although the two components are different (e.g. handle
and blade), each component is identical, and hence the final product is made
by assembling any available C1 component with any available C2 component.
Thus components are not identified. This system has some similarity with as-
semble to order (ATO) systems, where several different products are assembled
from any number of components [13]. However, we are concerned with producing
components on demand, rather than assembling them on demand. In particular,
we are not aware of any work on ATO systems that prevents too many of one
component being made ahead of another.

We model this class of system with a Generalised Stochastic Petri Net (GSPN)
[14,15]. The GSPN includes a fork-join subnet that represents the two production
lines. It also contains an environment which ensures that one line can never be
ahead of the other by more than N components, which corresponds to the storage
capacity of one of the lines. Our goal is to derive performance measures for this
system, such as the average amount one production line is ahead of another. To
do this we can in principle use steady state Markov analysis [14,15]. We also
want to know how this system behaves as the capacity, N , is varied. Thus we
consider N as a positive integer parameter of the system.

This paper investigates the analysis of our GSPN model in an attempt to
obtain solutions for its steady state probabilities for arbitrary capacity N . The
fork-join subnet comprises two parallel branches where each branch includes an
exponential transition with a fixed but arbitrary firing rate. There is a further
exponential transition representing requests, that feeds the fork-join. The GSPN
is the same as that considered in [16,17], however, their work is only concerned
with aggregating the fork-join subnet and hence cannot be used to calculate
any performance measures within the fork-join. For example, [16] is concerned
with approximating the marking dependent rates of the aggregated transition
representing the fork-join.

Due to the complexity of finding exact closed form solutions [18] we use
TimeNET [19] to calculate the steady state probabilities for a wide range of
transition rates as we vary the capacity N . We demonstrate that the state prob-
abilities converge rapidly so long as the transition rates are not too similar. We
characterise the region of the rates for which useful convergence is obtained for
approximating the probabilities for N > Ncdp, where Ncdp is the capacity at
which the probabilities have converged to a certain number of decimal places,
dp. This allows us to obtain results up to a particular accuracy for arbitrary N ,
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within the useful convergence region. By examining trends amongst the state
probabilities, we derive a heuristic that allows Ncdp to be approximated for a
wide range of firing rates and number of decimal places.

The rest of the paper is organised as follows. Section 2 describes the GSPN
model. Its related continuous time Markov chain is discussed in Section 3.
Section 4 presents our convergence results for the steady state probabilities.
Progressions within the steady state probabilities are described in Section 5.
Our heuristic for Ncdp is described and evaluated in Section 6. Conclusions are
drawn in Section 7. Some familiarity with GSPNs and their analysis [14,15] is
assumed.

2 Parametric GSPN Model

We consider the parametric GSPN, GSPNN , shown in Fig. 1. GSPNN includes
a fork-join subnet with 2 branches between immediate transitions, t1 (the fork)
and t2 (the join). The remaining transitions are exponentially distributed timed
transitions with their own rates, i.e. λi is associated with Ti, i ∈ {0, 1, 2}. The
left branch of the subnet (P1, T1, P3) represents the production of component
C1 (stored in P3) and the right (P2, T2, P4) the production of C2 (stored in P4).
Place P0 coordinates the production lines. Initially all places are empty except
for P0 which contains N tokens, representing the smallest capacity of a line. T0

represents customer requests. Each request results in 1 unit of the raw materials
needed to create components C1 and C2 being deposited in places P1 and P2

respectively (via the fork). P1 and P2 represent stores for the raw material,
which is not identified nor related to a particular request. For efficiency, as soon
as both components are available they are removed immediately (transition t2)
for assembly, freeing up capacity in the lines. This is modelled by a token being
added to P0 indicating that there is now additional capacity for each component.
GSPNN ensures that the same number of components (C1 and C2) is produced
as goods requested, eliminating waste, and that they are produced on demand.
It also ensures that no more than N C1 components can be produced in advance
of a C2 component and vice versa, providing the desired level of coordination
between the production lines.

T1

P1

T2

P2

NP0

T0

P3 P4

P

t1

t2

Fig. 1. GSPNN with a Fork-Join Subnet
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Fig. 2. CTMCN for N = 1, 2 and 3

3 Continuous Time Markov Chain Family

We would like to obtain steady state solutions for the probability of being in a
particular marking of the GSPN. Unfortunately, obtaining analytical solutions
for the steady state probabilities, for arbitrary N , is a difficult problem [18].
We thus turn to numerical solutions using TimeNET [19], which can calculate
the steady state probabilities directly from the GSPN. However, to discuss the
results, we firstly provide some insight into the structure of the family of con-
tinuous time Markov chains (CTMCs) that are associated with GPSNN , and
define some notation for them (see [18] for details).

The family of CTMCs, CTMC N , can be derived from GSPNN by generating
its reduced reachability graph [14,15,18]. We depict CTMC N for N = 1, 2, 3 in
Fig. 2. We can observe that the number of states in CTMC N is (N + 1)2. We
number the states from 1 to (N + 1)2 in vertical columns, from left to right and
top to bottom. The initial marking is mapped to state 1, the top right vertex
is state N2 + 1, the bottom right vertex is state (N + 1)2, and the right-most
state on the horizontal centre row is numbered N2 +N + 1. Note the symmetry
about the horizontal centre row. Finally we denote the steady state probability
of being in state i of CTMC N by π(N,i), 1 ≤ i ≤ (N + 1)2.

4 Convergence Properties

Using TimeNET, we have performed steady state analysis of GSPNN for N
from 1 to 50 for a wide range of firing rates, which we call configurations . In-
spection of the results has identified powerful convergence trends that allow the
approximation of the steady state probabilities for arbitrary N with excellent
accuracy, based on the probabilities for moderately large N .

Because the results depend on ratios of the firing rates, and taking into account
the symmetry between λ1 and λ2, we fixed λ1 to 1 while varying λ0 and λ2. For
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Table 1. Convergence of π(N,1) to π(N,9) as N increases for λ0 =0.2, λ1 =1 and λ2 =4

π(N,1) π(N,2) π(N,3) π(N,4) π(N,5) π(N,6) π(N,7) π(N,8) π(N,9)

N=1 0.8264 0.0083 0.0331 0.13223140

N=2 0.7986 0.0078 0.0323 0.12837178 0.0001 0.0006 0.0013 0.0062 0.0247

N=3 0.7934 0.0078 0.0321 0.12755432 0.0001 0.0006 0.0013 0.0062 0.0245

N=4 0.7923 0.0078 0.0321 0.12739070 0.0001 0.0006 0.0013 0.0061 0.0245

N=5 0.7921 0.0078 0.0321 0.12735805 0.0001 0.0006 0.0013 0.0061 0.0245

N=6 0.7921 0.0078 0.0321 0.12735153 0.0001 0.0006 0.0013 0.0061 0.0245

N=7 0.7921 0.0078 0.0321 0.12735022 0.0001 0.0006 0.0013 0.0061 0.0245

N=8 0.7921 0.0078 0.0321 0.12734996 0.0001 0.0006 0.0013 0.0061 0.0245

N=9 0.7921 0.0078 0.0321 0.12734991 0.0001 0.0006 0.0013 0.0061 0.0245

N=10 0.7921 0.0078 0.0321 0.12734990 0.0001 0.0006 0.0013 0.0061 0.0245

N from 1 to 50 we analysed 216 different configurations in which λ2 varied over
1, 1.5, 2, 3, 4, 5, 8 and 10, and λ0 over 0.01, 0.02, 0.05, 0.1, 0.125, 0.2, 0.25, 1

3 ,
0.5, 2

3 , 0.75, 0.8, 0.9, 1, 1
0.9 , 1.25, 1

0.75 , 1.5, 2, 3, 4, 5, 8, 10, 20, 50 and 100, a total
of 10800 TimeNET runs. We chose these values due to convergence being less
rapid as the rates approach each other, (i.e. as the ratios approach 1). Because
of the dependence on ratios of firing rates, these results can be scaled to an
unbounded number of configurations that maintain the ratios: λ0

λ1
and λ2

λ1
.

4.1 Examples of Convergence

Convergence when λ0 < min(λ1, λ2). Consider the example of λ0 = 0.2,
λ1 = 1 and λ2 = 4. Table 1 presents the steady state probabilities of all four
states of the CTMC when N = 1, all 9 states when N = 2, and the first 9 states
(i.e. the first 3 columns) for N from 3 to 10. Steady state probabilities increase to
the left of the CTMC, due to λ0 being smaller than both λ1 and λ2, and toward
states in the lower half of the CTMC (e.g. π(N,4) > π(N,2)) due to λ2 > λ1.
Table 1 shows that the steady state probabilities for π(N,1) to π(N,9) converge to
four decimal places by N = 8. (The same is true of π(N,10) to π(N,(N+1)2), not
shown in Table 1). For 9 ≤ N ≤ 50, we found that all additional states have
probabilities of zero (to four decimal places). Hence, for this scenario, the steady
state probabilities of states 1 to 81 for arbitrary N > 8 can be approximated to
four decimal places by π(8,1) to π(8,81) and by 0 for states 82 to (N + 1)2.

Apart from π(N,4), all state probabilities of CTMC N converge to four decimal
places by N = 5. The reason is that the value to which π(N,4) converges is close
to 0.12735. The probabilities given in Table 1 for π(N,4) are given to 8 decimal
places to illustrate this behaviour, which we call a rounding anomaly.

Let us denote by Ncdp the minimum value of N by which convergence has
occurred to dp decimal places. To validate the above convergence approximation,
we took the values of Ncdp for dp = 4, 5 and 6 decimal places of accuracy
(Nc4 = Nc5 = Nc6 = 8). We then compared the approximation to the steady
state probabilities obtained from TimeNET for N = 10 to 100 in increments of
5, and found that the approximation was accurate to the corresponding number
of decimal places for each of these cases. Convergence thus provides a powerful
result, as it indicates that selection of an appropriate Ncdp will provide steady
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Table 2. Convergence of π(N,(N+1)2) to π(N,N2+1) as N increases for λ0 = 5, λ1 = 1

and λ2 = 4 (A denotes (N + 1)2)

π(N,A) π(N,A−1) π(N,A−2) π(N,A−3) π(N,A−4) π(N,A−5) π(N,A−6) π(N,A−7) π(N,A−8)

N=1 0.6400 0.1600 0.0400

N=2 0.6063 0.1516 0.0345 0.0121 0.0030

N=3 0.6012 0.1503 0.0372 0.0083 0.0033 0.0009 0.0002

N=4 0.6002 0.1501 0.0375 0.0092 0.0021 0.0009 0.0003 0.0001 0.0000

N=5 0.6000 0.1500 0.0375 0.0094 0.0023 0.0005 0.0002 0.0001 0.0000

N=6 0.6000 0.1500 0.0375 0.0094 0.0023 0.0006 0.0001 0.0001 0.0000

N=7 0.6000 0.1500 0.0375 0.0094 0.0023 0.0006 0.0001 0.0000 0.0000

N=8 0.6000 0.1500 0.0375 0.0094 0.0023 0.0006 0.0001 0.0000 0.0000

state probabilities, accurate to the corresponding number of decimal places, for
arbitrary N > Ncdp, where:

1. π(N,i) = π(Ncdp,i) for 1 ≤ i ≤ (Ncdp + 1)2; and
2. π(N,i) = 0 for (Ncdp + 1)2 < i ≤ (N + 1)2.

Convergence when λ0 > min(λ1, λ2). For this scenario, λ1 = 1 and λ2 = 4
as before, but this time we take λ0 = 5.

Table 2 presents the steady state probabilities of the states in the right-most
vertical column of CTMC N , from lower edge (state (N + 1)2) to upper edge
(state N2 + 1) as N increases. As expected, probabilities increase toward the
lower right vertex of the CTMC. These probabilities (and those not shown in
Table 2) converge to four decimal places by Nc4 = 7. It is important to note
that in this case the converged probabilities are associated with states that are
relative to the lower right vertex (state (N + 1)2) as N increases, not the left
vertex (state 1) as was the case when λ0 < min(λ1, λ2).

All ‘additional’ states for 8 ≤ N ≤ 50 (for N = 8 these are the states along
the top edge of the CTMC, given our reference point of the lower right vertex)
have probabilities of zero to four decimal places. Hence, it is possible to approx-
imate the steady state probabilities for the system with arbitrary N > Ncdp

by approximating the probabilities of the lower right states of CTMCN by
the probabilities of the states in CTMCNcdp

. For this example, with Nc4 = 7,
π(N,(N+1)2−14) to π(N,(N+1)2) for N > 7 can be approximated by π(7,50) to π(7,64)

(from Table 2), π(N,N2−12) to π(N,N2) can be approximated by π(7,37) to π(7,49),
π(N,(N−1)2−10) to π(N,(N−1)2) can be approximated by π(7,26) to π(7,36), and so
on until π(N,(N−6)2) can be approximated by π(7,1). The additional complexity
of convergence occuring relative to the lower right vertex gives the following
approximation for arbitrary N > Ncdp:

1. π(N,j) = π(Ncdp,i) for 1 ≤ i ≤ (Ncdp + 1)2 and j = (N − Ncdp)2 + 2(N −
Ncdp)($(

√
i)&) + i, where $x& is x rounded up to the nearest integer; and

2. π(N,j) = 0 for all other j between 1 and (N + 1)2,

where the probabilities of CTMC Ncdp
are translated to the lower right corner of

CTMC N , with the remaining probabilities equal to zero.



A Study of the Convergence of Steady State Probabilities 149

0.01

0.1

0.8

2
4 3

5
8

10

1

0

20

40

50

λ
0
/λ

1
λ

2
/λ

1

N
c4

(a) λ0 < min(λ1, λ2)

4
2

5
8

10

1.5
31.25

10

100

0

20

40

50

λ
2
/λ

1
λ

0
/λ

1

N
c4

(b) λ0 > min(λ1, λ2)
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Fig. 4. Ncdp for varying dp from 3 to 10, and varying λ0, with λ2 = 4

4.2 Trends in the Speed of Convergence

The above convergence experiments have been repeated for all configurations
and for accuracies of 3 to 10 decimal places. When considering four decimal
places of accuracy, this has revealed the values of Nc4 depicted in Fig. 3. We
can see from the graphs that the trend is for Nc4 to increase increasingly rapidly
(i.e. convergence slows increasingly rapidly) as λ0 approaches min(λ1, λ2) from
both below (Fig. 3 (a)) and above (Fig. 3 (b)). For the cases of λ0 = 0.9 and
λ0 = 1

0.9 we found that although many steady state probabilities appear to have
converged to four decimal places by N = 50, not all had done so. In situations
where λ0 > min(λ1, λ2) we observe that the speed of convergence also slows as
λ2 approaches λ1.

The graphs in Fig. 4 depict Ncdp for 3 ≤ dp ≤ 10 and λ0 from 0.01 to 0.9
(Fig. 4 (a)) and 1

0.9 to 100 (Fig. 4 (b)), with λ2 = 4. A significant trend we
observe is that Ncdp increases approximately linearly in dp. Again, convergence
slows as λ0 approaches min(λ1, λ2), as observed for Nc4 in Fig. 3. The ‘roughness’
of Figs. 3 and 4 are due to rounding anomalies.
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Fig. 5. Ratio of Probabilities of Successive States along the Centre Row for N = 20

5 Probability Progressions

As a prelude to finding a method for predicting Ncdp, we consider two progres-
sions in the converged steady state probabilities: one along the centre row of
states and the other along vertical columns of the CTMC.

5.1 Progression along the Centre Row of States

In CTMC N the global balance equation (GBE) [14] relating states N2 −N + 1
and N2 + N + 1 (the two right-most states along the central horizontal row) is
(λ1+λ2)π(N,N2+N+1) = λ0π(N,N2−N+1) [18]. Hence, the ratio of the probabilities
of these two states is given by λ0

λ1+λ2
.

When λ0 < min(λ1, λ2), the probabilities of successive pairs of states from
left to right along the central horizontal row differ by a multiplier of between

λ0
λ1+λ2

and λ0
max(λ1,λ2)

= λ0
λ2

(hence probabilities are decreasing from left to right).
λ0
λ2

provides an upper bound on the multiplier and hence provides an underap-
proximation of the change in probability between each pair of states, from left
to right. An example is given in Fig. 5 (a) for λ0 = 0.2, λ2 = 4 and N = 20.
The horizontal axis represents ratios of probabilities of successive pairs of states
along the centre row of the CTMC, from the ratio of π(20,1) to π(20,3) on the left,
to the ratio of π(20,381) to π(20,421) on the right. Dashed lines indicate the ratios

λ0
λ1+λ2

(lower bound) and λ0
λ2

(upper bound). The ratio is consistently less than
0.2
4 = 0.05.

When min(λ1, λ2) < λ0 < λ1 + λ2, the probabilities still generally decrease
from left to right along the central horizontal row but λ0

λ2
may no longer provide

a lower bound on the change in probability between successive pairs of states.
This effect becomes more pronounced as λ0 approaches λ1 + λ2. Hence, for this
range of rates, we cannot guarantee that λ0

λ2
will provide an underapproximation

of the change in probability. However, it still provides a good approximation in
all the configurations examined.

When λ0 ≥ λ1 + λ2, probabilities change from right to left along the central
horizontal row with a multiplier that is never greater than λ1+λ2

λ0
. Hence, λ1+λ2

λ0
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Fig. 6. Ratio of Probabilities of successive states from (N + 1)2 to N2 + 1 for
λ2
λ1

= 4

gives an underapproximation of the change in probability when moving from
right to left along the central horizontal row. An example is given in Fig. 5 (b)
for λ0 = 5, λ2 = 4 and N = 20. The horizontal axis is as in Fig. 5 (a). Here, the
ratio is never greater than 4+1

5 = 1 (upper horizontal dashed line). Note however
that λ2

λ0
(lower horizontal dashed line) still provides a reasonable approximation

in this case.

5.2 Progression from Lower Edge to Upper Edge

When λ2 > λ1 the steady state probabilities decrease when moving vertically
from the lower edge toward the upper edge. From the global balance equations of
the lower and upper vertices of CTMC N [18] we know that π(N,(N+1)2) is exactly
λ2
λ1

times larger than π(N,(N+1)2−1), and that π(N,N2+2) is exactly λ2
λ1

times larger
than π(N,N2+1). We have observed that the ratio of state probabilities is larger
than this for pairs of states closer to (but below) the central horizontal line,
but is smaller than this for pairs of states closer to (but above) the central
horizontal line. An example of this behaviour of the ratios is shown in Fig. 6 (a)
for increasing N and in Fig. 6 (b) for increasing λ0, for λ1 = 1 and λ2 = 4. These
graphs depict the ratio of π(N,(N+1)2) to π(N,(N+1)2−1) on the left, and the ratio
of π(N,N2+2) to π(N,N2+1) on the right. When N = 1, Fig. 6 (a) shows two ratios,
between states 4 and 3, and states 3 and 2, both equal to 4. As N increases,
the number of successive pairs of states increases, until N = 10 when there are
20 ratios depicted, from the ratio of states 121 to 120 on the left, to the ratio
of states 102 to 101 on the right. The ratios of probabilities of pairs of states
show that the ratios immediately to either side of state N2 + N + 1 approach
constant values as N increases, i.e. as the steady state probabilities converge.
In this example, π(10,112)

π(10,111)
= 4.47 and π(10,111)

π(10,110)
= 2.29. Figure 6 (b) depicts the

same 20 ratios for N = 10 as λ0 increases from 1 to 10, and illustrates that the
severity of the discrepancy decreases as λ0 increases.
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The change in probability between each successive pair of states from N2+N+
1 to (N+1)2 is hence underapproximated by λ2

λ1
and hence

π(N,(N+1)2)

π(N,N2+N+1)
< (λ2

λ1
)N .

However the same is not true of the states from N2 +1 to N2 +N +1, where the
ratio of probabilities of successive pairs of states is smaller than λ2

λ1
in all cases

except the first pair (N2+2 to N2+1). Note however that this overapproximation
will become less severe as λ0 increases (see e.g. Fig. 6 (b)).

A less näıve approximation can be obtained by considering a straight line
that always underapproximates the ratios of state probabilities from

π(N,N2+2)

π(N,N2+1)

to
π(N,N2+N+1)

π(N,N2+N)
. Such an underapproximation is given by

∏N
x=1((

x
N )(λ2

λ1
)), where

the change in probability from state N2 + 1 to state N2 + N + 1 is given by
the straight line from λ2

λ1
(ratio between states N2 + 2 to N2 + 1) to 1

N
λ2
λ1

(the
underapproximated ratio between states N2 + N + 1 and N2 + N). The idea is
that all points along this line will give ratios less than the actual ratios observed
when moving from the upper right vertex to the right-most centre line state.
The product,

∏N
x=1((

x
N )(λ2

λ1
)), can be simplified to ( N !

NN )(λ2
λ1

)N , and hence the
ratio of π(N,(N+1)2) to π(N,N2+1) can be expressed as ( N !

NN )(λ2
λ1

)2N .

6 General Approximation Method Based on Convergence

It is desirable to find a method by which the value of Ncdp can be determined for a
particular configuration (values of firing rates) and a particular desired accuracy,
without having to perform numerous TimeNET experiments to determine Ncdp

by observation.
The heuristics presented in this section are based on the premise that as N

increases, probabilities have converged by the time an increment in N results only
in additional probabilities equal to zero (to the desired accuracy) being added to
the system. Provided this premise holds, the key is thus to identify which state
has the largest of the new probabilities introduced when N is incremented, and
to determine the smallest value of N at which this is less than 0.5× 10−dp. This
value of N should thus overapproximate (or closely approximate) Ncdp.

6.1 Heuristic When λ0 < min(λ1, λ2)

When λ0 < λ1 < λ2 the probabilities increase to the left of CTMC N and
from top to bottom, hence state 1 has the highest probability and the lower
right vertex is the state with the highest probability of the states added each
time N is incremented. The probability of being in state (N + 1)2 can thus be
underapproximated, relative to state 1, by moving left to right along the central
horizontal row and then down the right edge to state (N + 1)2 as given by

π(N,(N+1)2) < π(N,1)

(
λ0

λ2

)N−1(
λ2

λ1

)N (
λ0

λ1 + λ2

)
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Simplifying, and assuming the worst case, i.e. π(N,1) = 1, we obtain the following
heuristic that can be solved to get the smallest N that satisfies the inequality
for a given dp: (

λ0

λ1

)N (
λ2

λ1 + λ2

)
< 0.5 × 10−dp (1)

6.2 Heuristic When min(λ1, λ2) < λ0 < λ1 + λ2

As discussed in Section 5.1 in this situation probabilities still generally decrease
from left to right along the central horizontal row. However, unlike the case when
λ0 < λ1, it is the lower right vertex with the highest probability (consistent
with λ0 > min(λ1, λ2) and λ2 > λ1) and state 1 with the highest of the ‘new’
probabilities introduced each time N is incremented. Hence, this situation is the
reverse of that given in Section 6.1 and the corresponding heuristic is given by(

λ1

λ0

)N (
λ1 + λ2

λ2

)
< 0.5 × 10−dp (2)

6.3 Heuristic When λ0 ≥ λ1 + λ2

When λ0 ≥ λ1+λ2 probabilities increase left to right along the central horizontal
row and increase down toward the lower right vertex, hence state (N + 1)2 has
the highest probability. Unlike the situation in Section 6.2, we have observed that
the largest of the ‘new’ probabilities introduced each time N is incremented is
either π(N,1) (left vertex) or π(N,N2+1) (upper right vertex), which seems to be
influenced by the relative ratios of λ0

λ2
and λ2

λ1
, although further experimentation

is required to ascertain the exact nature of the relationship. Hence, we derive
two heuristic expressions based on π(N,1) and π(N,N2+1) relative to π(N,(N+1)2)

using the progressions from Section 5:(
λ1

λ2

)N (
λ1 + λ2

λ0

)N

< 0.5 × 10−dp (3)

and (
NN

N !

)(
λ1

λ2

)2N

< 0.5 × 10−dp (4)

and take as our approximation of Ncdp whichever value of N is largest.

6.4 Results and Discussion

Of the 1728 cases examined (216 configurations, each examined for convergence
to 3, 4, 5, 6, 7, 8, 9 and 10 decimal places), convergence was reached by N = 50
in 1274 of those cases. The cases where convergence was not reached by N = 50
are primarily when λ0 = λ1 = λ2, λ1 = λ2 for λ0 > λ1, and as λ0 approaches λ1

from above or below, for increasingly smaller dp.
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Results when λ0 < min(λ1, λ2). Of the 832 cases examined in which λ0 <
λ1, 688 reached convergence by N = 50. Our heuristic gave an Ncdp at least
as high as the actual Ncdp in 620 of those 688 cases (90.1%). Table 3 shows
these results for Nc4. The majority of the 68 cases where our heuristic failed
are due to rounding anomalies: only 36 cases fail when increasing the predicted
Ncdp values by 1, and only 23 fail when increasing the predicted Ncdp values
by 2. Rounding anomalies are unavoidable when specifying convergence to a
certain number of decimal places. It is likely that the approximate probability
will be different from the actual probability in such cases by only ±10−dp. We
thus propose three strategies for reducing the influence of rounding anomalies:
consider adding a small number to the predicted value of Ncdp; determine Ncdp

for a slightly higher number of decimal places of accuracy than needed; or take
the predicted value of Ncdp to give probabilities accurate to ±10−dp.

Results when λ0 > min(λ1, λ2). Of the 832 cases examined in which λ0 >
λ1, 586 reached convergence by N = 50. Our heuristic performs more poorly
here than when λ0 < λ1, as only 424 (72.4%) give Ncdp at least as large as the
actual value. Two clear trends are evident. One is that the heuristic fails more
often for larger λ0 and larger λ2. λ0 ≥ 5 and λ2 ≥ 3 (56.3% of the convergent
cases) account for 137 of the 162 failed cases (84.6%). The other is that the

Table 3. Success of our heuristic in predicting an upper bound for Nc4.

λ0
λ1

λ2
λ1

Nc4 λ2
λ1

Nc4 λ2
λ1

Nc4 λ2
λ1

Nc4

actual heuristic actual heuristic actual heuristic actual heuristic

0.01
1 2 3

√
2 3 3

√
4 2 3

√
8 2 3

√
1.5 2 3

√
3 2 3

√
5 2 3

√
10 2 3

√

0.02
1 3 3

√
2 2 3

√
4 2 3

√
8 2 3

√
1.5 2 3

√
3 2 3

√
5 3 3

√
10 2 3

√

0.05
1 4 4

√
2 3 4

√
4 3 4

√
8 3 4

√
1.5 3 4

√
3 4 4

√
5 3 4

√
10 3 4

√

0.1
1 4 5

√
2 5 5

√
4 4 5

√
8 4 5

√
1.5 4 5

√
3 4 5

√
5 4 5

√
10 4 5

√

0.125
1 4 5

√
2 4 5

√
4 4 5

√
8 4 5

√
1.5 4 5

√
3 5 5

√
5 4 5

√
10 4 5

√

0.2
1 7 6 × 2 6 6

√
4 8 7 × 8 6 7

√
1.5 5 6

√
3 5 6

√
5 7 7

√
10 5 7

√

0.25
1 7 7

√
2 7 7

√
4 6 7

√
8 6 8

√
1.5 6 7

√
3 7 7

√
5 6 8

√
10 7 8

√

0.333
1 9 9

√
2 9 9

√
4 8 9

√
8 11 9 ×

1.5 8 9
√

3 9 9
√

5 9 9
√

10 8 9
√

0.5
1 13 14

√
2 16 14 × 4 12 14

√
8 15 15

√
1.5 14 14

√
3 13 14

√
5 12 15

√
10 13 15

√

0.666
1 24 23 × 2 23 24

√
4 30 24 × 8 21 25

√
1.5 30 24 × 3 28 24 × 5 27 24 × 10 22 25

√

0.75
1 35 33 × 2 35 34 × 4 38 34 × 8 40 35 ×

1.5 39 33 × 3 33 34
√

5 30 34
√

10 35 35
√

0.8
1 45 42 × 2 44 43 × 4 43 44

√
8 48 44 ×

1.5 44 43 × 3 36 44
√

5 45 44 × 10 46 44 ×
0.9

1 ≥ 50 88 ? 2 ≥ 50 91 ? 4 ≥ 50 92 ? 8 ≥ 50 93 ?

1.5 ≥ 50 90 ? 3 ≥ 50 92 ? 5 ≥ 50 93 ? 10 ≥ 50 94 ?
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Table 4. Convergence of π(N,(N+1)2) to π(N,(N+1)2−8) as N increases for λ0 = 100,

λ1 = 1 and λ2 = 10 (A denotes (N + 1)2)

π(N,A) π(N,A−1) π(N,A−2) π(N,A−3) π(N,A−4) π(N,A−5) π(N,A−6) π(N,A−7) π(N,A−8)

N=1 0.89206 0.08921 0.00892

N=2 0.89101 0.08910 0.00883 0.00096 0.00010

N=3 0.89100 0.08910 0.00891 0.00088 0.00010 0.00001 0.00000

N=4 0.89100 0.08910 0.00891 0.00089 0.00009 0.00001 0.00000 0.00000 0.00000

N=5 0.89100 0.08910 0.00891 0.00089 0.00009 0.00001 0.00000 0.00000 0.00000

N=6 0.89100 0.08910 0.00891 0.00089 0.00009 0.00001 0.00000 0.00000 0.00000

heuristic fails more often for larger dp. For dp = 3 only 9 of the 85 convergent
cases fails (10.6%), whereas for dp = 10 this has risen to 21 out of 55 (38%).

Closer investigation revealed that some of the failed cases are due to rounding
anomalies: increasing the predicted Ncdp by 1 or by 2 reduces the number of
failed cases from 162 to 97 and 46 respectively. However, we discovered that
not all failures are due to rounding anomalies. In those cases, it wasn’t the
approximation of the progressions that failed in these cases, as they successfully
determined an upper bound on the value of N by which an increment in N
resulted only in additional probabilities of zero. Rather, it was the premise that
all non-zero probabilities have converged by this same value of N that did not
hold.

As an example, consider λ0 = 100, λ1 = 1 and λ2 = 10. Table 4 gives the
probabilities of the states along the right edge of the CTMC for N = 1 to 4,
and the last 9 probabilities (starting from state (N + 1)2) for N = 5 and 6. Our
heuristic predicts that Nc5 = 3, i.e. that by N = 3 only zero probabilities will
be added when N increments to 4 and beyond. Table 4 shows this to be true for
N = 4 for the states visible, and this has been confirmed for all other states for
5 ≤ N ≤ 50. However, Table 4 shows that both π(N,(N+1)2−3) and π(N,(N+1)2−4)

don’t converge to 5 decimal places until Nc5 = 4.

7 Conclusions

This paper has presented a summary of the results of an extensive study of the
steady state analysis of a parametric Generalised Stochastic Petri Net (GSPN)
with a fork-join subnet. The GSPN has relevance to the coordination and syn-
chronisation of computer controlled manufacturing systems which produce two
components on demand for assembly into a product. Components 1 and 2 are
made at rates λ1 and λ2 respectively, with product requests arriving at rate λ0.
The GSPN implements a control which prevents the production of one compo-
nent exceeding the other by more than N . Using TimeNET, we obtained the
steady state probabilities for a wide range of values of the rates, demonstrating
convergence as N increases. The nature of this convergence has been reported.
Thus approximate results to dp decimal places have been obtained for a GSPN
with arbitrarily large N from a GSPN where the steady state probabilities have
converged to the same number of decimal places.
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We introduced the notation Ncdp for the value of N when all probabilities
have converged to dp decimal places. For convergence to be useful, Ncdp needs
to be calculated in a reasonable amount of time. From our experiments with
TimeNET, we found that useful convergence occurs for dp = 3 when either λ0

λ1

is less than about 0.9, or both λ0
λ1

is greater than about 1.2 and λ2
λ1

is greater
than about 1.5. We have also observed that Ncdp generally increases linearly
with increasing dp.

Analysing the progressions in the converged steady state probabilities enabled
the creation of a heuristic to predict the value of Ncdp as a function of the
transition rates and dp. The heuristic is based on the premise that probabilities
have converged to dp decimal places by the time an increment in N results only
in the introduction of additional probabilities of zero (i.e. less than 0.5×10−dp).
This heuristic was found to work well for a large range of transition rates, hence
confirming this premise and allowing the steady state probabilities to be obtained
for arbitrary N for a very large range of transition rates in the range of useful
convergence. The heuristic fails to produce sufficiently large Ncdp in many cases
where λ0

λ1
>≈ 5 and λ2

λ1
>≈ 3. In these cases, we discovered that the premise did

not hold, and that the discrepancy increases with increasing dp.
In the future we would like to improve the heuristic for λ0

λ1
> 5 and λ2

λ1
> 3,

by re-examining our choice of progressions in the steady state probabilities.
Further, a closer study of the progressions may allow us to derive closed form
approximations for the steady state probabilities. Finally, many manufacturing
processes comprise more than two production lines. To cater for this our model
could be extended to any number of branches in the fork-join subnet. This adds
a new dimension to the problem. Similar convergence trends observed in such
systems have not yet been characterised, which provides us with a significant
challenge.
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Abstract. This work introduces a new data structure, called Lattice-Valued Bi-
nary Decision Diagrams (or LVBDD for short), for the compact representation
and manipulation of functions of the form θ : 2P �→ L, where P is a finite set
of Boolean propositions and L is a finite distributive lattice. Such functions arise
naturally in several verification problems. LVBDD are a natural generalisation
of multi-terminal ROBDD which exploit the structure of the underlying lattice
to achieve more compact representations. We introduce two canonical forms for
LVBDD and present algorithms to symbolically compute their conjunction, dis-
junction and projection. We provide experimental evidence that this new data
structure can outperform ROBDD for solving the finite-word LTL satisfiability
problem.

1 Introduction

Efficient symbolic data structures are often the cornerstone of efficient implementa-
tions of model-checking algorithms [5]. Tools like SMV [6] and NuSMV [8] have been
applied with success to industrial-strength verification problems. These tools exploit
reduced ordered binary decision diagrams [10] (ROBDD for short) which is the refer-
ence data structure that has been designed to compactly encode and manipulate Boolean
functions i.e., functions of the form θ : 2P → {0, 1}. ROBDD are often regarded as the
basic toolbox of verification, and are, indeed, a very general symbolic data structure.

The dramatic success of ROBDD in the field of computer aided verification has
prompted researchers to introduce several variants of ROBDD [1, 2] or to extend them
to represent other kinds of functions[3, 12]. For instance, MTBDD [12] have been suc-
cessfully applied to the representation of functions of the form 2P �→ D, where D is an
arbitrary domain. However, MTBDD work best when the set D is small, and make no
assumptions about the structure of D. In this paper, we introduce a new data structure,
called lattice-valued binary decision diagrams (or LVBDD for short) to efficiently han-
dle lattice-valued Boolean functions (LVBF), i.e. functions of the form θ : 2P �→ L,
where P is a finite set of Boolean propositions and L is a finite distributive lattice.
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0 0 0 A{1,2}
0 0 1 A{1,2}
0 1 0 ⊥
0 1 1 A{1}
1 0 0 A{3}
1 0 1 A{3}
1 1 0 A{1,3}
1 1 1 A{1,3}

Fig. 1. The lattice LA and the truth table of an LVBF θ : 2{c1,c2,c3} �→ LA
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Fig. 2. Two examples of LVBDD resp. in SNF (left) and UNF (right) representing the LVBF θ

In our opinion, such an efficient data structure has potentially many applications,
as many examples of algorithms manipulating LVBF can be found in the literature. A
first example is the transition relation of an alternating finite state automaton (AFA for
short). It is well-known that the transition relation of an AFA is an LVBF of the form
2P �→ LU , where LU is the (finite distributive) lattice of upward-closed sets of sets of
locations of the automaton. Exploiting the particular structure of this transition relation
is of crucial importance when analyzing AFA, as recently shown in the antichain line
of research [13, 23]. This application is the case study we have retained in this paper.
A second example, is the field of multi-valued logics where formulas have Boolean
variables but truth values are taken in an arbitrary finite set, usually a lattice. Such multi-
valued formula occur in the field of multi-valued model checking [7]. Finally, LVBDD
could also be useful in the field of abstract interpretation [4], where they would allow to
manipulate more efficiently the abstract domains that mix Boolean variables (to encode
some control state for instance), and some numerical abstract domain (to encode more
fine-grained information about the numerical variables).

Syntactically, LVBDD are an extended form of MTBDD where each node is labeled
with a lattice value. The lattice value associated to a path from the root of an LVBDD
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to a terminal node (which corresponds to a valuation of the Boolean variables) is com-
puted by taking the greatest lower bound of the lattice values along the path. Let us
provide a simple example; Fig. 1 illustrates a finite distributive lattice LA, along with
an LVBF θ over the propositions c1, c2, c3 and LA. Intuitively, the lattice LA can be
seen as the possible truth values of a logic that models the potential disagreement of
three observers (for instance, A{1,2} represents the situation where the observers 1 and
2 say “true” while observer 3 says “false”). In that context, the function θ represents
the “truth statement” of each of the three observers for each valuation. Two different
LVBDD that represent θ are illustrated at Fig.2. By following the paths going from the
root to a terminal node, one can easily check that both LVBDD represent the function θ.

The LVBDD of Fig. 2 illustrate the fact that several syntactically different LVBDD
can represent the same LVBF. In practice, it is often desirable to have canonical data
structures so we introduce two normal forms for LVBDD, which we respectively call
shared (SNF) and unshared normal form (UNF). The unshared normal form is very
similar to MTBDD as it requires that each non-terminal node be labelled with the largest
value ( of the lattice. On the other hand, the shared normal form can achieve a much
more compact representation of LVBF by exploiting the structure of the lattice to share
redundant information along its paths. We show that the SNF has the potential to be
exponentially more compact than LVBDD in UNF at the price of worst-case-exponential
algorithms for the disjunction and intersection. In Section 5, we provide experimental
evidence that this exponential behavior is often avoided in practice.

Let us provide some intuition on the shared normal form of LVBDD, using the ex-
ample of Fig 2. The main idea of the SNF is quite simple: each node is always labeled
with the least possible value with respect to its descendants, and the greatest possi-
ble value with respect to its ancestors, all the while preserving the desired semantics.
Let us denote by paths(n) the set of paths descending from a node n to a terminal
node, and let us denote by value(π) the greatest lower bound of the lattice values along
a path π. Because of the semantics we have just sketched for LVBDD, one can see
that the least possible label of a node n, with respect to its descendants, is exactly
lub(n) ≡ ⊔ {value(π) | π ∈ paths(n)}. In effect, the lattice value lub(n) synthesizes
the common information shared by the subgraph rooted by n. This information can be
further exploited by the nodes in the subgraph rooted by n in order to have a labeling
that contains as few redundancies as possible. More formally, let 	 be the label of n, and
n′ be a descendant of n labeled by 	′; it is easy to see that we can replace the label of n′
by the largest lattice value 	′′ such that 	  	′′ = 	′. We show in Section 2 that this fac-
torization operation is well-defined and corresponds to known lattice-theoretic notions.
The reader can verify that by applying successive information-sharing and factorization
steps repeatedly on the UNF LVBDD on the right of Fig. 2, we obtain the SNF LVBDD
on the left. This SNF LVBDD is more compact because the information-sharing and
factorization operations have allowed to increase the sharing in the resulting graph.

Related works. While LVBDD represent functions of the form θ : 2P �→ L, other
structures to represent similar but different kinds of functions have been studied in the
literature. ROBDD [10], and some variants like ZBDD [1] and Boolean Expression Di-
agrams [2], encode purely Boolean functions θ : 2P �→ {0, 1}. MTBDD [12] represent
functions of the form 2P �→ D, but do not exploit the structure of D when it is a lattice.
Edge-Shifted Decision Diagrams [3] represent functions of the form LP �→ L and have
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been applied to Multi-Valued Model Checking. Finally, Lattice Automata [11] represent
functions of the form Σ∗ �→ L, where Σ is a finite alphabet.

Structure of the paper. In Section 2, we the define some basic lattice-theoretic notions.
In Section 3, we formally define LVBDD and their normal forms. In Section 4, we
describe the algorithms to manipulate LVBDD and discuss their worst-case complexity.
Finally Section 5 presents experimental evidence that LVBDD-based algorithms can
outperform state-of-the-art tools in the context of finite-word LTL satisfiability.

2 Preliminaries

Boolean variables. Let P be a finite set of Boolean propositions. A valuation (also
called truth assignment) v : P �→ {0, 1} is a function that associates a truth value
to each proposition. We denote by 2P the set of all valuations over P. For v ∈ 2P,
p ∈ P and i ∈ {0, 1}, we denote by v|p=i the valuation v′ such that v′(p) = i and
v′(p′) = v(p′) for all p′ ∈ P \ {p}.

Lattices. A finite lattice is a tuple L = 〈L,�,(,⊥,�,〉 where L is a finite set of
elements, � ⊆ L × L is a partial order on L; ( and ⊥ are two elements from L such
that: for all x ∈ L : ⊥ � x � (; and for all x, y there exists a unique greatest
lower bound denoted by x  y and a unique least upper bound denoted by x � y. A
finite lattice 〈L,�,(,⊥,�,, 〉 is distributive (FDL for short) iff, for all x, y, z in L:
(x  y) � z = (x � z)  (y � z) and (x � y)  z = (x  z) � (y  z).

Example 1. The lattice of the introduction is 〈LA,�A,(=A{1,2,3},⊥=A∅,�A,A〉
where LA = {AI | I ⊆ {1, 2, 3}}, AI �A AK iff I ⊆ K , AI �A AK = AI∪K and
AI A AK = AI∩K . Another example that will be useful in the sequel is the lattice
LUC(S) (for a finite set S) of upward-closed sets of cells of S. We call a cell any finite
subset of S. A set of cells U is upward-closed iff for any c ∈ U , for any c′ s.t. c ⊆ c′:
c′ ∈ U too. Given a finite set of cells C, we denote by ↑C the upward-closure of C, i.e.,
the set {c′ | ∃c ∈ C : c ⊆ c′}. We denote by UC (S) the set of all upward-closed sets of
cells of S. Then, LUC(S) = 〈UC (S),⊆, {∅}, {S},∪,∩〉. These two lattices are clearly
finite and distributive.

Lattice-valued Boolean functions. Now, let us formalise the notion of lattice-valued
Boolean function, which is the type of functions that we want to be able to represent
and manipulate thanks to LVBDD. For a set of Boolean propositions P and an FDL
L = 〈L,�,(,⊥,�,〉, a lattice-valued Boolean function (LVBF for short) over P and
L is a function θ : 2P �→ L. We denote by LVBF (P,L) the set of all LVBF over Boolean
propositions P and FDL L. We use the shorthands θ1θ2 for λv ·θ1(v)θ2(v); θ1�θ2

for λv · θ1(v)�θ2(v), d for λv ·d (with d ∈ L), p for λv· if v(p) = 1 then ( else ⊥ and
¬p for λv· if v(p) = 0 then ( else ⊥ (with p ∈ P). Given an LVBF θ over P, we denote
its existential quantification by ∃P · θ ≡ ⊔{

θ(v) | v ∈ 2P
}

. For p ∈ P and i ∈ {0, 1},
we define θ|p=i as the LVBF θ′ : 2P �→ L such that θ′(v) = θ(v|p=i) for all v ∈ 2P.
Finally, the dependency set Iθ ⊆ P of an LVBF θ is the set of propositions over which
θ depends; formally Iθ = {p ∈ P | θ|p=0 �= θ|p=1}.
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Example 2. We consider again the lattice LA (see Example 1). An example (using the
shorthands defined above) of LVBF of the form 2{c1,c2,c3} �→ LA is θ′ ≡ A{1,3} (
c2 � (¬c2 A{2,3})

)
. For instance, θ′(〈1, 0, 0〉) = θ′(〈1, 0, 1〉) = A{1,3} 

(⊥� ((
A{2,3})

)
= A{1,3}A{2,3} = A{3}. Also, ∃{c1, c2, c3}·θ′ = A{1,3}�A{3} = A{1,3}.

Recall from the introduction that LVBDD in shared normal form attempt to make the
representation of LVBF more compact by common information-sharing and factoriza-
tion. Let us formalize these intuitive notions. The idea of common information-sharing
between lattice values 	1, . . . , 	n corresponds to the least upper bound 	1 � · · · � 	n of
these values. This can be seen on node n in Fig. 2. All paths containing n correspond
to valuations where c1 = 1. In that case, the LVBF θ (see Fig. 1) returns either A{3} or
A{1,3}. Hence, n is labelled by the common information A{3} � A{1,3} = A{1,3}. To
formalize the idea of factorization, we need an additional lattice operator, namely the
relative pseudocomplement [17]. In an FDL, the pseudocomplement of x relative to y,
denoted by x → y, is the largest lattice value z s.t. z  x = y. For instance, in LA,
A{1,3} → A{3} = A{2,3} (see Fig. 1). Thus, once n has been labelled by A{1,3}, the
label A{3} of its left child can be replaced by A{1,3} → A{3}, i.e. A{2,3}.

Relative pseudocomplement. Let L = 〈L,�,(,⊥,�,〉 be a lattice. For any x, y in L
we consider the set {z | z  x � y}. If this set has a unique maximal element, we call
this element the pseudocomplement of x relative to y and denote it by x → y, otherwise
x → y is undefined. We extend this notion to LVBF (P,L) as follows. Let x ∈ L; if
x → θ(v) is defined for all v ∈ 2P, then x → θ is defined as λv · x → θ(v). Otherwise,
x → θ is undefined. In the case where L is an FDL, one can easily show that x → y is
defined for any pair x, y. Moreover, when x � y, x → y is the greatest element z such
that z  x = y.

Lemma 1. For all FDL L = 〈L,�,(,⊥,�,〉, for all x, y ∈ L: x → y is defined.
Moreover, y � x implies that (i) (x → y)  x = y and that (ii) for all z such that
z  x = y: z � (x → y).

3 Lattice-Valued Binary Decision Diagrams

In this section, we formally define the lattice-valued binary decision diagrams (LVBDD
for short) data structure. An LVBDD is a symbolic representation of an LVBF. Syntac-
tically speaking, each LVBDD is a directed, rooted, acyclic graph, whose nodes are la-
beled by two pieces of information: an index, and a lattice value. LVBDD are thus a strict
generalization of reduced ordered binary decision diagrams [10] (ROBDD). LVBDD
are also closely related to multi-terminal binary decision diagrams [12] (MTBDD) but
do not generalize them since MTBDD can have arbitrary co-domains.

Definition 1. Given a set of Boolean propositions P = {p1, . . . , pk} and a finite dis-
tributive lattice L = 〈L,�,(,⊥,�,〉, an LVBDD n over P and L is: (i) either a
terminal LVBDD 〈index(n), val(n)〉 where index(n) = k + 1 and val(n) ∈ L; or
(ii) a non-terminal LVBDD 〈index(n), val(n), lo(n), hi(n)〉, where 1 ≤ index(n) ≤ k,
val(n) ∈ L and lo(n) and hi(n) are (terminal or non-terminal) LVBDD such that
index(hi(n)) > index(n) and index(lo(n)) > index(n).
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In the sequel, we refer to LVBDD also as “LVBDD node”, or simply “node”. For any
non-terminal node n, we call hi(n) (resp. lo(n)) the high-child (low-child) of n. We
denote by LVBDD(P,L) the set of all LVBDD over P and L. Finally, the set nodes(n)
of an LVBDD n is defined recursively as follows. If n is terminal, then nodes(n) = {n}.
Otherwise nodes(n) = {n}∪nodes(lo(n))∪nodes(hi(n)). The number of nodes of an
LVBDD is denoted by |n|.
Semantics of LVBDD. The semantics of LVBDD is an LVBF, as sketched in the intro-
duction. Formally, the semantics is defined by the unary function �·� : LVBDD(P,L) �→
LVBF (P,L) such that for any n ∈ LVBDD(P,L), �n� = val(n) if n is terminal, and

�n� = val(n) 
(
(¬pindex(n)  �lo(n)�) � (pindex(n)  �hi(n)�)

)
otherwise.

Isomorphisms and reduced LVBDD In order to share common subgraphs in LVBDD,
we define a notion of isomorphism between LVBDD nodes. Let n1, n2∈LVBDD(P,L).
We say that n1 and n2 are isomorphic, denoted by n1 ≡ n2, iff either (i) n1 and n2

are both terminal and val(n1) = val(n2), or (ii) n1 and n2 are both non-terminal and
val(n1) = val(n2), index(n1) = index(n2), lo(n1) ≡ lo(n2) and hi(n1) ≡ hi(n2). An
LVBDD n is reduced iff (i) for all n ∈ nodes(n): either n is terminal or (i) lo(n) �=
hi(n) and (ii) for all n1, n2 ∈ nodes(n): n1 ≡ n2 implies n1 = n2.

Normal Forms. It is easy to see that there are LVBF θ for which one can find at least
two different reduced LVBDD n1 and n2 s.t. �n1� = �n2� = θ. For instance, the two
LVBDD of Fig. 2 both represent the LVBF θ of Fig. 1. In order to obtain efficient al-
gorithms to manipulate LVBDD, we define normal forms that associate to each LVBF
a unique LVBDD representing it, up to isomorphism and order of the Boolean proposi-
tions. In this work, we define two normal forms for LVBDD: (i) the unshared normal
form (UNF for short) which is similar to MTBDD, and (ii) the shared normal form
(SNF for short) in which common lattice values along paths are shared. We associate to
each LVBF θ, a unique LVBDD DU (θ) and a unique LVBDD DS(θ) which are respec-
tively the UNF and SNF LVBDD representing θ:

Definition 2 (Unshared normal form). Let P be a set of Boolean propositions and
L be an FDL. Then, for all θ ∈ LVBF (P,L), the UNF LVBDD DU (θ) is the re-
duced LVBDD defined recursively as follows. If Iθ = ∅, then θ(v) = d for some
d ∈ L. In this case, DU (θ) is the terminal LVBDD 〈k + 1, d〉. Otherwise, let pi

be the proposition of lowest index in Iθ . Then, DU (θ) is the non-terminal LVBDD
〈i,(,DU (θ|pi=0),DU (θ|pi=1)〉.
Definition 3 (Shared normal form). Let P be a set of Boolean propositions and let
L be an FDL. Then, for all θ ∈ LVBF (P,L), the SNF LVBDD DS(θ) is the reduced
LVBDD defined recursively as follows. If Iθ = ∅, then θ(v) = d for some d ∈ L. In this
case, DS(θ) is the terminal LVBDD 〈k + 1, d〉. Otherwise, let pi be the proposition of
lowest index in Iθ . Then, DS(θ) is the non-terminal LVBDD 〈i, ∃P · θ,DS((∃P · θ) →
(θ|pi=0)),DS((∃P · θ) → (θ|pi=1))〉.
It is not difficult to see that for all LVBF θ, Definition 2 and 3 each yield a unique
LVBDD DU (θ) and DS(θ). Then, an LVBDD n is in UNF iff n = DU (�n�). Similarly,
n is in SNF iff n = DS(�n�). We denote by LVBDDU (P,L) (resp. LVBDDS(P,L))
the set of all LVBDD in UNF (resp. SNF) on set P of Boolean propositions and FDL L.
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Example 3. Consider the family of lattice-valued
Boolean functions θi : 2{p1,...pi} �→ LUC({1,...,i})
for i ≥ 1, defined as θi ≡ 1≤j≤i

(
pj � ↑{{j}}).

It is easy to see that, for any i ≥ 1, the SNF
LVBDD DS(θi) has 2 × i + 1 nodes. For instance,
θ3 = (p1�↑{{1}})(p2�↑{{2}})(p3�↑{{3}})
and DS(θ3) is shown on the left. However, the corre-
sponding MTBDD (or UNF LVBDD) is of exponen-
tial size, as for any v �= v′, we have θi(v) �= θi(v′).

4 Algorithms on LVBDD

In this section, we discuss symbolic algorithms to manipulate LVBF via their LVBDD
representation. The proofs of these algorithms have been omitted here, but they can be
found in the technical report.

Remark however that we have managed to prove the correctness of the algorithms
for any finite distributive lattice. This general result can be obtained by exploiting
Birkhoff’s representation theorem [17], a classical result in lattice theory. Birkhoff’s
theorem says that any FDL L is isomorphic to a lattice L̂ that has a special structure: its
elements are sets of incomparable cells of certain elements of the original lattice L (the
meet-irreducible elements). We can thus exploit this structure to prove the algorithms
in the special case of L̂ and deduce the correctness of the algorithm on L, thanks to the
isomorphism. The interested reader is referred to the technical report for the complete
details.

Throughout this section, we assume that we manipulate LVBDD ranging over the set
of propositions P = {p1, . . . , pk} and the FDL L = 〈L,�,(,⊥,�,〉. We present
algorithms to compute the least upper bound �, the greatest lower bound , the test
for equality, the existential quantification of all the Boolean variables and the relative
pseudocomplement with a lattice value for LVBDD in SNF. Then, we briefly sketch
these operations for UNF LVBDD as they can be easily obtained from the definition,
and are very similar to those for MTBDD.

Memory management and memoization. The creation of LVBDD nodes in memory is
carried out by function MK: calling MK(i, d, 	, h) returns the LVBDD node 〈i, d, 	, h〉.
As in most BDD packages (see for instance [18]), our implementation exploits caching
techniques to ensure that each unique LVBDD is stored only once, even across multiple
diagrams. The implementation maintains a global cache that maps each tuple 〈i, d, 	, h〉
to a memory address storing the corresponding LVBDD node (if it exists). A call to
MK(i, d, 	, h) first queries the cache and allocates fresh memory space for 〈i, d, 	, h〉
in the case of a cache miss. Thus, MK guarantees that two isomorphic LVBDD always
occupy the same memory address, but does not guarantee that any particular normal
form is enforced. We assume that cache queries and updates take O(1) which is what is
observed in practice when using a good hash map. We implemented a simple reference
counting scheme to automatically free unreferenced nodes from the cache.

We use the standard memoization technique in graph traversal algorithms. Each al-
gorithm has access to its own pair of memo! and memo? functions; memo!(key, value)
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Algorithm 1. Relative pseudocomplementation for LVBDD in SNF

begin PseudoCompSNF(n, d)1

if index(n) = k + 1 then return MK(k + 1, d → val(n), nil, nil) ;2

else3

d′ := (d → val(n)) � (val(lo(n)) � (val(hi(n))) ;4

return MK(index(n), d′, lo(n), hi(n)) ;5

end6

Algorithm 2. Meet of a LVBDD in SNF with a lattice value

begin ConstMeetSNF(n, d)1

n′ := memo?(〈n, d〉) ;2

if n′ �= nil then return n′ ;3

else if val(n) � d then n′ := n ;4

else if val(n) � d = ⊥ then n′ := MK(k + 1,⊥, nil, nil) ;5

else if index(n) = k + 1 then n′ := MK(k + 1, val(n) � d, nil, nil) ;6

else7

� := ConstMeetSNF(lo(n), d) ;8

h := ConstMeetSNF(hi(n), d) ;9

if � = h then n′ := MK(index(�), val(�) � val(n), lo(�),hi(�)) ;10

else11

�′ := PseudoCompSNF(�, d) ; h′ := PseudoCompSNF(h, d) ;12

n′ := MK(index(n), val(n) � d, �′, h′) ;13

memo!(〈n, d〉, n′) ;14

return n′ ;15

end16

stores a computed value and associates it to a key; memo?(key) returns the previously
stored value, or nil if none was found. Both memo! and memo? run in O(1).

Operations on LVBDD in SNF. The operations on SNF LVBDD and their complexities
are summarized in Table 4. The procedure PseudoCompSNF(n, d) (see Algorithm 1)
takes an LVBDD in SNF n and a lattice value d � val(v), and computes the LVBDD n′

in SNF such that �n′� = d → �n�. It runs in O(1), since it is sufficient to modify the
label of the root. The resulting LVBDD is guaranteed to be still in SNF. This procedure
will be invoked by the other algorithms to enforce canonicity.

The procedure ConstMeetSNF(n, d) (Algorithm 2), returns the SNF LVBDD rep-
resenting �n�  d, where d is a lattice value. ConstMeetSNF consists in recursively
traversing the graph (the two recursive calls at lines 8 and 9 return the new subgraphs 	
and h), and to call PseudoCompSNF on 	 and h to enforce canonicity. This procedure
runs in O(|n|), thanks to memoization. The procedure MeetSNF(n1, n2) (Algorithm 3)
returns the SNF LVBDD representing �n1� �n2�. The algorithm first performs two re-
cursive calls on n1 and n2’s respective lo- and hi- sons, which produces LVBDD 	 and h
(not shown on the figure), and computes the value d = val(n1)val(n2) (i.e., d1d2 on
the figure), which will be the label of the root in the result. Then, canonicity of the result
is enforced in two steps. First, the conjunction of 	 and h with d is computed (second
step in the figure). Second, the subgraphs returned by the recursive calls are factorized
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Algorithm 3. Meet of two LVBDD in SNF

begin MeetSNF(n1, n2)1

n′ := memo?(〈n1, n2〉) ;2

if n′ �= nil then return n′ ;3

else if index(n1) = k + 1 then n′ := ConstMeetSNF(n2, val(n1));4

else if index(n2) = k + 1 then n′ := ConstMeetSNF(n1, val(n2));5

else6

if index(n1) = index(n2) then7

� := MeetSNF(lo(n1), lo(n2)) ; h := MeetSNF(hi(n1), hi(n2)) ;8

d := val(n1) � val(n2) ;9

else10

if index(n1) > index(n2) then swap(n1, n2) ;11

� := MeetSNF(lo(n1), n2) ; h := MeetSNF(hi(n1), n2) ;12

d := val(n1) ;13

�′ := ConstMeetSNF(�, d) ; h′ := ConstMeetSNF(h, d) ;14

if �′ = h′ then n′ := �′ ;15

else16

d′ := val(�′) � val(h′) ;17

�′′ := PseudoCompSNF(�′, d′) ; h′′ := PseudoCompSNF(h′, d′) ;18

n′ := MK(index(n1), d
′, �′′, h′′) ;19

memo!(〈n1, n2〉, n′) ; memo!(〈n2, n1〉, n′) ;20

return n′ ;21

end22

w.r.t. the value d, thanks to PseudoCompSNF (third step on the figure). The procedure
JoinSNF(n1, n2) (Algorithm 4) returns the SNF LVBDD representing �n1� � �n2�.

Both MeetSNF and JoinSNF run in 2O(|n1|+|n2|) in the worst case. As an example
of worst case for JoinSNF, consider, for any n ≥ 1, the lattice LUC({1,...,2n}) and the
two LVBF θn ≡ 1≤j≤n

(
pj �↑{{j}}) and θ′n ≡ 1≤j≤n

(
pj �↑{{n+ j}}). It is easy

to check that, for any n ≥ 1, |DS(θn)| = |DS(θ′n)| = 2 n+1 (see Example 3), but that
DS(θn � θ′n) has 2O(|n1|+|n2|) nodes. A similar example can be built for MeetSNF.

Operations on LVBDD in UNF. For an UNF LVBDD n, ∃P : �n� = �v�n�(v) amounts
to �n′∈Nval(n′), where N is the set of terminal nodes of n. This operation is thus in
O(|n|). The computation of the  and � operators is done by computing the synchro-
nised product of the two diagrams, similarly to MTBDD [12]. For instance, when n1

and n2 are terminal LVBDD in UNF, the UNF LVBDD that represents �n1� � �n2� is
〈k + 1, val(n1)� val(n2)〉. When n1 and n2 are non-terminal LVBDD in UNF with the
same index, the UNF LVBDD that represents �n1�� �n2� is obtained by building recur-
sively the LVBDD representing �lo(n1)���lo(n2)� and �hi(n1)���hi(n2)�, and adding
a root labelled by (. With memoization, we can achieve polynomial complexity.

5 Empirical Evaluation

In this section, we apply our new data structure to the satisfiability problem for the finite-
word linear temporal logic (LTL for short). In recent works [22, 23], it has been shown
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Algorithm 4. Join of two LVBDD in SNF

begin ReJoinSNF(n1, n2, d1, d2)1

n′ := memo?(〈n1, n2, d1, d2〉) ;2

if n′ �= nil then return n′;3

d′
1 := d1 � val(n1) ; d′

2 := d2 � val(n2) ;4

if index(n1) = index(n2) = k + 1 then n′ := MK(k + 1, d′
1 � d′

2, nil, nil) ;5

else6

if index(n1) = index(n2) then7

� := ReJoinSNF(lo(n1), lo(n2), d
′
1, d

′
2) ;8

h := ReJoinSNF(hi(n1), hi(n2), d
′
1, d

′
2) ;

else9

if index(n1) > index(n2) then10

swap(n1, n2) ; swap(d1, d2) ; swap(d′
1, d

′
2) ;11

� :=ReJoinSNF(lo(n1), n2, d
′
1, d

′
2) ; h :=ReJoinSNF(hi(n1), n2, d

′
1, d

′
2) ;12

if � = h then n′ := � ;13

else14

d := val(l) � val(h) ;15

� := PseudoCompSNF(�, d) ; h := PseudoCompSNF(h, d) ;16

n′ := MK(index(n1), d, �, h) ;17

memo!(〈n1, n2, d1, d2〉, n′) ; memo!(〈n2, n1, d2, d1〉, n′) ;18

return n′ ;19

end20

begin JoinSNF(n1, n2)21

return ReJoinSNF(n1, n2,�,�);22

end23

that algorithms based on both antichains and ROBDD, can outperform purely ROBDD-
based techniques like the ones implemented in the tools SMV and NuSMV. Our experi-
ments show that an approach based on a combination of antichains and LVBDD in SNF
can be even more efficient.

We solve the LTL satisfiability problem by the classical reduction to the language
emptiness for alternating automata (AFA for short). AFA are a natural generalization
of both non-deterministic and universal automata, as they use both conjunctive and
disjunctive constraints to encode the transition relation. Due to lack of space, we do not
define AFA formally but we illustrate their semantics on the example AFA of Fig. 3;

Table 1. Time complexity and maximum output size of LVBDD algorithms

Operation Form Procedure Time Complexity Maximum Size
�n1� � �n2� UNF similar to MTBDD O(|n1| |n2|) |n1| |n2|
�n1� � �n2� UNF similar to MTBDD O(|n1| |n2|) |n1| |n2|
∃P : �n� UNF bottom-up propagation O(|n|) -

�n1� � �n2� SNF MeetSNF(n1, n2) 2O(|n1|+|n2|) 2
(|I�n1�∪I�n2�|+1) − 1

�n1� � �n2� SNF JoinSNF(n1, n2) 2O(|n1|+|n2|) 2
(|I�n1�∪I�n2�|+1) − 1

d → �n� SNF PseudoCompSNF(n, d) O(1) |n|
∃P : �n� SNF root inspection O(1) -
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Fig. 3. An AFA (a) with the LVBDD (b) and ROBDD (c) encoding the transitions of location 1

this AFA has three locations 1, 2, 3, with 1 being the initial location and 1, 3 being
the accepting locations. A run of an AFA is a sequence of sets of locations (called
configurations); a run is accepting if it ends in a subset of the accepting locations,
and is initial if it begins with a configuration that contains the initial location. The
language of an AFA is defined as the set of finite words for which the automaton admits
an initial accepting run. In the figure, the forked arrows depict the AFA’s transitions.
Reading a valuation v, the AFA can move from configuration c1 to c2 iff for each 	 ∈ c1
there exists a transition from 	 labeled by ϕ such that all target locations are in c2 and
v |= ϕ. For example, if the AFA reads the valuation grant = 0 req = 1 from {1, 3},
it must go to {1, 2, 3}. Alternating automata enjoy the following useful property: the
set of successor configurations of any configuration is always upward-closed for subset
inclusion; this observation is the basis for the antichain-based approach to AFA analysis.
We do not recall the framework of antichains here, but it can be found in [14].

The translation from LTL to AFA yields automata which have an alphabet equal
to the set of valuations of the Boolean propositions of the LTL formula. It is easy to
see that, in that case, the transition function of an AFA can be encoded with an LVBF
over the set of propositions of the formula and the lattice of upward-closed sets of
configurations of the automaton. For example, the LTL formula �(req → �grant)
translates to the automaton of Fig. 3 (a), and the LVBF corresponding to the outgoing
transitions of location 1 is

(↑{{1}}  (¬req � grant)
) � (↑{{1, 2}}  req  ¬grant

)
.

We consider two encodings for the LVBF of AFA transitions. The first encoding uses
LVBDD in shared normal form, while the second uses traditional ROBDD. The LVBDD
encoding uses one decision variable per proposition of the formula. Each node of these
LVBDD is labeled with a lattice value, here an upward-closed set of configurations of
the automaton. In this work, we encode these upward-closed sets with ROBDD; other
encodings are possible (e.g., covering sharing trees [9]) but we do not discuss them
here as this is orthogonal to our work. For the ROBDD encoding of LVBF of AFA
transitions, we use one variable per proposition of the LTL formula and location of the
automaton. Both encodings are illustrated at Fig. 3 (b) and (c).

We consider three series of parametric scalable LTL formulas: mutex formulas, lift
formulas and pattern formulas. The mutex and lift formulas have been used previ-
ously as LTL benchmark formulas in [22], and the pattern formulas were used as
benchmark formulas by Vardi et al. in [15] and previously in [16]. The presentation
(given below) of the mutex and lift formulas has been slightly simplified due to space
limitations; all the benchmarks in their complete form are available for download at
http://www.antichains.be/atva2010/.
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Table 2. Running times in seconds. ‘n’ is the parameter of the formula, ‘locs’ the number of
locations of the AFA, ‘props’ the number of propositions of the LTL formula and ‘iters’ the
number of iterations of the fixpoint. Time out set at 1,000 seconds

n locs props iters ROBDD LVBDD NuSMV + ord NuSMV
M

u
te

x

40 328 121 3 12 2 12 11
80 648 241 3 74 12 31 34
120 968 361 3 284 37 87 180
160 1288 481 3 t.o. 79 206 325
200 1608 601 3 - 132 t.o. t.o.

L
if
t

20 98 42 41 1 1 1 1
40 178 82 81 10 3 6 10
60 258 122 121 36 8 24 44
80 338 162 161 83 17 53 162
100 418 202 201 188 31 185 581
120 498 242 241 330 51 341 t.o.
140 578 282 281 t.o. 81 t.o. -

E

100 103 101 2 12 0.1 1 1
200 203 201 2 110 0.3 4 4
300 303 301 2 392 0.6 19 19

U

100 102 101 2 1 1 2 2
200 202 201 2 7 12 23 19
300 302 301 2 39 44 117 116

R

6 27 8 2 0.2 0.4 0.1 0.1
8 35 10 2 20 21 0.1 0.1

10 43 12 2 t.o. t.o. 0.1 0.1

Q

10 23 12 2 1 1 0.1 0.1
15 33 17 2 205 234 0.1 0.1
20 43 22 2 t.o. t.o. 0.2 0.1

S

200 203 201 2 0.1 0.1 3 4
300 303 301 2 0.1 0.3 6 11
400 403 401 2 0.1 0.4 16 25

For each set of formulas, we supply an initial ordering of the propositions. Providing
a sensible initial ordering is critical to the fair evaluation of BDD-like structures, as
these are known to be very sensitive to variable ordering.

The mutex formulas describe the behavior of n concurrent processes involved in a
mutual exclusion protocol. The proposition ci indicates that process i is in its critical
section, ri that it would like to enter the critical section, and di that it has completed
its execution. The initial ordering on the propositions is r1, c1, d1, . . . , rn, cn, dn. We
check that μ(n) ∧ ¬(�r1 → �d1) is unsatisfiable.

μ(n) ≡
n∧

i=1

(
�(ci →

∧
j 
=i

¬cj)∧�(ri → �ci)∧�(ci → �¬ci)∧¬di∧�((ci∧X¬ci) → di)
)
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Table 3. Comparison of ROBDD and LVBDD sizes on the lift example

ROBDD
LVBDD no reord. SIFT WIN2

n locs props iters avg. max. avg. max. avg. max. avg. max.

10 58 22 21 58 284 2,374 8,190 2,374 8,190 2,374 8,190
12 66 26 25 65 300 9,573 32,766 682 32,766 695 32,766
14 74 30 29 75 306 t.o. t.o. 269 33,812 1,676 131,070
50 218 102 101 201 654 t.o. t.o. 270 1,925 t.o. t.o.
100 418 202 201 376 1,304 t.o. t.o. 469 1,811 t.o. t.o.

The lift formula describes the behavior of a lift system with n floors. The proposition
bi indicates that the button is lit at floor i, and fi that the lift is currently at floor i.
The initial variable ordering is b1, f1, . . . , bn, fn. We check that λ(n) ∧ ¬(bn−1 →
(¬fn−1 Ufn)) is unsatisfiable.

λ(n) ≡ f1∧
n∧

i=1

(
�(bi → (bi Ufi)∧�

(
fi → (¬bi∧

n∧
j 
=i

¬fj ∧¬Xfj)∧(
∨

i−1≤j≤i+1

XXfj)
))

The pattern formulas of [15] are found below, and their initial proposition ordering
is set to p1, . . . , pn.

E(n) =
∧n

i=1 �pi

U(n) = (. . . (pi Up2) U . . .) Upn

R(n) =
∧n

i=1(��pi ∨ ��pi+1)

Q(n) =
∧n−1

i=1 (�pi ∨ �pi+1)

S(n) =
∧n

i=1 �pi

In order to evaluate the practical performances of LVBDD, we have implemented two
nearly identical C++ prototypes, which implement a simple antichain-based forward
fixpoint computation [22, 23] to solve the satisfiability problem for finite word LTL.
These two prototypes differ only in the encoding of the LVBF of the AFA transitions:
one uses LVBDD while the other uses the BuDDy [18] implementation of ROBDD
with the SIFT reordering method enabled. On the other hand, a recent survey by Vardi
and Rozier [15] identifies NuSMV [8] as one of the best tools available to solve this
problem1. NuSMV implements many optimization such as conjunctive-clustering of
the transition relation and dynamic reordering of the BDD variables, so we believe that
NuSMV provides an excellent point of comparison for our purpose. The use of NuSMV
for finite-word LTL satisfiabilty is straightforward: we translate the formula into an
AFA, which is then encoded into an SMV module with one input variable (IVAR) per
proposition and one state variable (VAR) per location of the automaton. We then ask
NuSMV to verify the property “CTLSPEC AG !accepting” where accepting
is a formula which denotes the set of accepting configurations of the automaton. We
invoke NuSMV with the “-AG” and “-dynamic” command-line options which re-
spectively enable a single forward reachability computation and dynamic reordering of
BDD variables. We now present two sets of experiments which illustrate the practical
efficiency of LVBDD in terms of running time and compactness.

1 Vardi et al. considered infinite-word LTL, but this applies just as well to finite-word LTL.



Lattice-Valued Binary Decision Diagrams 171

Running time comparison. In our first set of experiments, we have compared the respec-
tive running times of our prototypes and NuSMV on the benchmarks described above.
These results are reported in Table 2, where we highlight the best running times in bold.

It is well-known that ordered decision diagrams in general are very sensitive to the
ordering of the variables. In practice, ROBDD packages implement dynamic variable
reordering techniques to automatically avoid bad variable orderings. However, these
techniques are known to be sensitive to the initial variable ordering, so a sensible initial
ordering is a necessary component to the fair evaluation of ordered decision diagrams.
In our experiments, we have two sets of variables which respectively encode the LTL
propositions and the AFA locations. We provide an initial sensible ordering for both sets
of variables; the LTL propositions are initially ordered as described previously, and the
AFA locations are ordered by following a topological sort2. Finally, for the ROBDD-
based tools, we provide an initial ordering such that the LTL propositions variables
precede the AFA location variables. In Table 2, the “NuSMV + ord” and “NuSMV”
columns respectively contain the running times of NuSMV when provided with our
initial ordering, or without any initial ordering.

On most of the examples, the LVBDD-based prototype performs better than NuSMV
and the ROBDD prototype. For the mutex and lift benchmarks, LVBDD seem to scale
much better than ROBDD. We have investigated the scalability of ROBDD on these
instances with profiling tools, which revealed that a huge proportion of the run time
is spent on variable reordering. Disabling dynamic reordering for either the ROBDD-
based prototype or NuSMV on these instances made matters even worse, with neither
NuSMV nor our ROBDD-based prototype being able to solve them for parameter values
beyond 30. These observations shed light on one of the key strengths of LVBDD in the
context of LVBF representation. While ROBDD-based encodings must find a suitable
interleaving of the domain and co-domain variables, which can be very costly, LVBDD
avoid this issue altogether, even when co-domain values are encoded using ROBDD.

Finally, the results for the pattern formulas confirm earlier research [23] by showing
that the antichain approach (i.e., columns ROBDD, LVBDD) and the fully-symbolic
approach (NuSMV in our case) exhibit performance behaviors that are incomparable in
general; in the Q benchmark, the antichains grow exponentially in length, while the S
benchmark makes the ROBDD reordering-time grow exponentially.

Compactness comparison. In this set of experiments, we compare the compactness of
LVBDD and ROBDD when encoding LVBF occurring along the computation of the
fixed point that solves the satisfiability for the lift formulas. These experiments are
reported in Table 3. We report on the largest and average structure sizes encountered
along the fixed point. We performed the experiments for ROBDD both with and without
dynamic reordering enabled, and for two different reordering techniques provided in
the BuDDy package: SIFT and WIN2. The sizes reported for LVBDD is equal to the
number of decision nodes of the LVBDD plus the number of unique ROBDD nodes
that are used to encode the lattice values labelling the LVBDD. This metric is thus
an accurate representation of the total memory footprint of LVBDD and is fair for
the comparison with ROBDD. These experiments show that, as expected, LVBDD are
more compact than ROBDD in the context of LVBF representation, although ROBDD
can achieve sizes that are comparable with LVBDD, but at the price of a potentially
very large reordering overhead. This increased compactness explains the better running
times of the LVBDD prototype reported in Table 2.

2 This ordering is sensible because the translation from LTL produces AFA that are very weak.
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All experiments were performed with a timeout of 1000 seconds on an Intel Core i7
3.2 Ghz CPU with 12 GB of RAM. A preliminary version of our C++ LVBDD library
is freely available at http://www.ulb.ac.be/di/ssd/nmaquet/#research.
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Abstract. Exception handling is an important language feature for building more
robust software programs. It is primarily concerned with capturing abnormal
events, with the help of catch handlers for supporting recovery actions. In this pa-
per, we advocate for a specification logic that can uniformly handle exceptions,
program errors and other kinds of control flows. Our logic treats exceptions as
possible outcomes that could be later remedied, while errors are conditions that
should be avoided by user programs. This distinction is supported through a uni-
form mechanism that captures static control flows (such as normal execution) and
dynamic control flows (such as exceptions) within a single formalism. Following
Stroustrup’s definition [15,9], our verification technique could ensure exception
safety in terms of four guarantees of increasing quality, namely no-leak guaran-
tee, basic guarantee, strong guarantee and no-throw guarantee.

1 Introduction

Exception handling is considered to be an important but yet controversial feature for
many modern programming languages. It is important since software robustness is
highly dependent on the presence of good exception handling codes. Exception failures
can account for up to 2/3 of system crashes and 50% of system security vulnerabilities
[10]. It is controversial since its dynamic semantics is often considered too complex to
follow by both programmers and software tools.

Goodenough provides in [5] a possible classification of exceptions according to their
usage. More specifically, they can be used:

– to permit dealing with an operation’s failure as either domain or range failure. Do-
main failure occurs when an operation finds that some input assertion is not satis-
fied, while range failure occurs when the operation finds that its output assertion
cannot be satisfied.

– to monitor an operation, e.g. to measure computational progress or to provide ad-
ditional information and guidance should certain conditions arise.

In the context of Spec#, the authors of [7] use the terms client failures and provider
failures for the domain and range failures, respectively. Client failures correspond to
parameter validation, whereas provider failures occur when a procedure cannot per-
form the task it is supposed to. Moreover, provider failures are divided into admissible
failures and observed program errors. To support admissible failures, Spec# provides
checked exceptions and throws sets. In contrast, an observed program error occurs if
the failure is due to an intrinsic error in the program (for e.g. an array bounds error) or a
global failure that is not tied to a particular procedure (for e.g. an out-of-memory error).

A. Bouajjani and W.-N. Chin (Eds.): ATVA 2010, LNCS 6252, pp. 173–187, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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Such failures are signaled by Spec# with the use of unchecked exceptions, which do not
need to be listed in the procedure’s throws set. Likewise for Java, its type system has
been used to track a class of admissible failures through checked exceptions.

However, omitting the tracking of unchecked exceptions is a serious shortcoming,
since it provides a backdoor for some programmers to deal exclusively with unchecked
exceptions. This shortcut allows programmers to write code without specifying or catch-
ing any exceptions. Although it may seem convenient to the programmer, it sidesteps
the intent of the exception handling mechanisms and makes it more difficult for others
to use the code. A fundamental contradiction is that, while unchecked exceptions are
regarded as program errors that are not meant to be caught by handlers, the runtime
system continues to support the handling of both checked and unchecked exceptions.

The aim of the current work is ensure a higher level of exception safety, as defined by
Stroustrup [15] and extended by Li and co-authors [9], which takes into consideration
both checked and unchecked exceptions. According to Stroustrup, an operation on an
object is said to be exception safe if it leaves the object in a valid state when it is
terminated by throwing an exception. Based on this definition, exception safety can be
classified into four guarantees of increasing quality:

– No-leak guarantee: For achieving this level of exception safety, an operation that
throws an exception must leave its operands in well-defined states, and must ensure
that every resource that has been acquired is released. For example, all memory al-
located must be either deallocated or owned by some object whenever an exception
is thrown.

– Basic guarantee: In addition to the no-leak guarantee, the basic invariants of classes
are maintained, regardless of the presence of exceptions.

– Strong guarantee: In addition to providing the basic guarantee, the operation ei-
ther succeeds, or has no effects when an exception occurs.

– No-throw guarantee: In addition to providing the basic guarantee, the operation is
guaranteed not to throw an exception.

We propose a methodology for program verification that can guarantee higher levels
of exception safety. Our approach can deal with all kinds of control flows, including
both checked and unchecked exceptions, thus avoiding the unsafe practice of using the
latter to circumvent exception handling. Another aspect worth mentioning is that some
of the aforementioned exception safety guarantees might be expensive. For instance,
strong guarantee might incur the high cost of roll-back operations as it pushes all the
recovery mechanism into the callee. However, such recovery may also be performed by
the caller, or there might be cases when it is not even required. Consequently, in Section
4 we improve on the definition of strong guarantee for exception safety.

Moreover, verifying a strong guarantee is generally more expensive than the verifica-
tion of a weaker guarantee, as it is expected to generate more complex proof obligations
(details can be found in Section 7). Hence, according to the user’s intention, our system
can be tuned to enforce different levels of exception safety guarantees.

1.1 Our Contributions

The main contributions of our paper are highlighted below:
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– We introduce a specification logic that captures the states for both normal and ex-
ceptional executions. Our design is guided by a novel unification of both static con-
trol flows (such as break and return), and dynamic control flows (such as exceptions
and errors).

– We ensure exception safety in terms of the guarantees introduced in [15], and ex-
tended in [9]. Additionally, we improve the strong guarantee for exception safety.
To support a tradeoff between precision and cost of verification, our verification
system is flexible in enforcing different levels of exception safety.

– We have implemented a prototype verification system with the above features and
validated it with a suite of exception-handling examples.

2 Related Works

Exceptions are undoubtedly important parts of programming language systems that
should be adequately handled during program verification. Consequently, in recent
years, there have been several research works that tackle the problem of exception han-
dling verification and analysis.

A traditional approach is based on type systems. However, it is tedious and possibly
imprecise to simply declare the set of exceptions that may escape from each method.
A better scheme is for the inference of uncaught exceptions. For example, [6] employs
two analyses of different granularity, at the expression and method levels, to collect
constraints over the set of exception types handled by each Java program. By solving
the constraint system using techniques from [4], they can obtain a fairly precise set
of uncaught exceptions. For exceptions that are being ignored by type system, such as
unchecked exceptions for Java and C#, there is a total loss of static information for
them. Moreover, conditions leading to exceptions are often quite subtle and cannot be
conveniently tracked in a type system.

To overcome the above shortcomings, this paper proposes a more expressive speci-
fication logic, which complements the type system through selective tracking on types
that are linked to control flows. A more limited idea towards verification of exception
handling programs is based on model checking [9]. A good thing is that it does not
require any specification for the verification of exception reliability (on the absence of
uncaught exceptions and redundant handlers), but annotations are required for the ver-
ification of the no-leak guarantee. However, this approach does not presently handle
higher levels of exception safety, beyond the no-leak guarantee.

A recent approach towards exception handling in a higher-order setting, is taken in
[2]. Exceptions are represented as sums and exception handlers are assigned polymor-
phic, extensible row types. Furthermore, following a translation to an internal language,
each exception handler is viewed as an alternative continuation whose domain is the
sum of all exceptions that could arise at a given program point. Though CPS can be
used to uniformly handle the control flows, it increases the complexity of the verifica-
tion process as continuations are first class values.

Spec# also has a specification mechanism for exceptions. While its verification sys-
tem is meant to analyse C# programs, exceptional specifications are currently use-
able for only the runtime checking module. The current Spec# prototype for static
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verification would unsoundly approximate each exception as false, denoting an unreach-
able program state [8].

Another impressive verification system, based on the Java language, is known as
the KeY approach [1]. This system makes use of a modal logic, known as dynamic
logic. Like Hoare logic, dynamic logic supports the computation of strongest postcon-
dition for program codes. However, the mechanism in which this is done is quite dif-
ferent since program fragments may be embedded within the dynamic logic itself. This
approach is more complex since rewriting rules would have to be specified for each
programming construct that is allowed in the dynamic logic. For example, to support
exception handling, a set of rewriting rules (that are meaning-preserving) would have
to be formulated to deal with raise, break and try-catch-finally constructs, in addition
to rewriting rules for block and conditionals and their possible combinations. The KeY
approach is meant to be a semi-automated verification system that occasionally prompts
the user for choice of rewriting rules to apply. In contrast, our approach is meant to be
fully-automated verification system, once pre/post specifications have been designed.

3 Source and Specification Languages

As input language for our system, we consider a Java-like language which we call
SrcLang. Although we make use of the class hierarchy to define a subtyping relation
for exception objects, the treatment of the other object-oriented features, such as in-
stance methods and method overriding, is outside the scope of the current paper. Our
language permits only static methods and single inheritance. We have also opted for
a monomorphically typed language. These simplifications are orthogonal to our goal
of providing a logic for specifying exceptions. We present the full syntax for the input
source language in Fig 1. Take note that −→e denotes e1, . . . , en.

P ::=
−→
D ;

−→
V ;

−→
M program

V ::= pred root::pname〈−→v 〉 ≡ Φ inv π pred declaration

D ::= class c1 extends c2{−→t f} data declaration
t ::= c | p user or prim. type

M ::= t m (
−−−−−→
[ref ] t v) requires Φpr ensures Φpo {e} method declaration

w ::= v | v.f variable or field
e ::= v | k | new c | v.f | m (−→v ) | {t v; e} | w:=e | e1; e2

| if e then e1 else e2

| (t) e casting
| raise e throw exception
| break [L] | return e break and return
| continue [L] loop continue
| L : e labelled expression
| e1 finally e2 finally
| try e catch (c1 v1) e1[catch (ci vi) ei]

n
i=2 multiple catch handlers

| do e1 while e2 requires Φpr ensures Φpo loop

Fig. 1. Source Language : SrcLang
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Δ ::= Φ | Δ1∨Δ2 | Δ∧π | Δ1∗Δ2 | ∃v·Δ | Δ∧β composite formulae
Φ ::=

∨
(∃v∗·κ∧π) formulae

π ::= γ∧φ∧τ pure constraints
γ ::= v1=v2 | v=null | v1 �=v2 | v �=null | γ1∧γ2 pointer constraints
κ ::= emp | v::a〈−→v 〉 | κ1 ∗ κ2 heap constraints
ft ::= c | predef flow flow types
β ::= fv=ft | fv1=fv2 flow var constraints
τ ::= flow = fset fset ::= Ex(ft) | ft − {ft1, .., ftn} current flow
φ ::=true | false |b1=b2 | b1≤b2 | c<v | φ1∧φ2 Presburger constraints

| φ1∨φ2 | ¬φ | ∃v · φ | ∀v · φ
b ::= k | v | k×b | b1+b2 | −b | max(b1,b2) | min(b1,b2)

Fig. 2. Specification Language

Our language allows for functions (and loops) to be decorated with pre and post con-
ditions that are verified by our tool. Unlike SPEC# or ESC/Java, where specifications
for exceptions are captured by a special syntax for exceptional postconditions, we aim
for a unified logic that is capable of capturing all kinds of control flows. Our specifi-
cation, as described in Fig 2, is based on separation logic formulas, introduced by John
Reynolds [13], given in disjunctive normal form, but has been enhanced with a control
flow annotation. Within a formula, each disjunct consists of a subformula κ referred to
as heap part and π, a pure part that represents a heap-independent part of the formula.

The heap part describes the heap footprint which is composed of ∗-separated heap
nodes. These nodes, written as v::a〈−→v 〉, are instances of either a user-defined class
(v::c〈−→v 〉) or a user-defined predicate (v::pname〈−→v 〉), as an abstraction for a data struc-
ture. As shown in Fig.1, each declaration of a user-defined predicate consists of a root
pointer, a predicate body and a pure formula that is an invariant of all its instances. The
pure part does not capture any heap-based data structures as it contains pointer equali-
ties/inequalities (γ), linear arithmetic (φ) and a special subformula τ for modelling the
control flow.

A special variable flow is used to denote the control flow associated with the re-
spective program state, captured as a disjunct. The possible values of control flow are
either Ex(ft) to denote an exact control flow type (not including its subclasses), or
ft − {ft1, .., ftn} to denote a control flow from ft but not from subclasses ft1, .., ftn.
The control flow ft is organised as a subtyping tree hierarchy. With this hierarchy, we
can be as precise as required for verifying different exception safety guarantees.

The flow type hierarchy incorporates all the possible control flow types ft, both the
ones pertaining to user-defined exceptions and the predefined flow types, predef flow.
This will be further elaborated in Sec.5.2.

Δ denotes a composite formula that is enhanced with an extra pure component β
to capture the bindings for flow variables, fv, from the catch handlers. Lastly, each
variable in our specification logic may be expressed in either primed form (e.g. v′)
or unprimed form (e.g. v). The former denotes the latest value of the corresponding
variable, while the latter denotes the original value of the same variable. When used
in the postcondition, they denote state changes that occur for parameters that are being
passed by reference.
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4 Examples with Higher Exception Safety Guarantees

We next illustrate our new specification mechanism through a few examples. Let us first
consider the following class and predicate definitions.

class node { int val; node next}

pred root::ll〈n〉 ≡ root=null ∧ n=0 ∨
∃r·root::node〈 , r〉 ∗ r::ll〈n−1〉 inv n≥0;

Predicate ll defines a linear-linked list of length n. As elaborated earlier, each pred-
icate describes a data structure, which is a collection of objects reachable from a base
pointer denoted by root in the predicate definition. The expression after the inv key-
word captures a pure formula that always holds for the given predicate.

Let us now consider the method list alloc allocating memory for a linear-linked
list to be pointed by x. The precondition requires x to be null, while the postcondition
asserts that either no error was raised, i.e. the flow is norm, and the updated x points
to a list with n elements, or an out of memory exception was raised, i.e. the flow is
out of mem exc, and x remains null.

Method list alloc calls an auxiliary method list alloc helper which recur-
sively allocates nodes in the list. If an out of memory exception is raised, the latter per-
forms a rollback operation, inside a try-catch block, during which it frees all the memory
that was acquired up to that point. Take note that, in the following examples, for illus-
tration purposes, we provide an alternative set of library methods with explicit memory
deallocation (via method list dealloc) that coexists with our Java like language.

void list alloc(int n, ref node x)
requires x=null ∧ n≥0
ensures (x′::ll〈n〉 ∧ flow=norm) ∨ (x′=null ∧ flow=out of mem exc);
{list alloc helper(n, 0, x); }

void list alloc helper(int n, int i, ref node x)
requires x::ll〈i〉 ∧ n≥i ∧ i≥0
ensures (x′::ll〈n〉 ∧ flow=norm) ∨ (x′=null ∧ flow=out of mem exc);
{if(n>i){

try{x = new node(0, x); }
catch(out of mem exc exc){

list dealloc(i, x);
raise (new out of mem exc()); }

list alloc helper(n, i+1, x); }
}
According to [15], method list alloc is said to ensure a strong guarantee on excep-
tion safety, as it either succeeds in allocating all the required memory cells, x′::ll〈n〉 ∧
flow=norm, or it has no effect, x′=null ∧ flow=out of mem exc. However, this
rollback operation can be expensive if we have been building a long list. Moreover,
there can be cases when such rollbacks are not needed. For instance, in the context
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of the aforementioned method, a caller might actually accept a smaller amount of the
allocated memory.

We propose to improve Stroustrup’s definition on strong guarantee as follows: An
operation is considered to provide a strong guarantee for exception safety if, in addition
to providing basic guarantees, it either succeeds, or its effect is precisely known to
the caller. Given this new definition, the method list alloc helper prime defined
below is also said to satisfy the strong guarantee. Compared to method list alloc
helper, the newly revised method has an extra pass-by-reference parameter, no cells,
to denote the number of memory cells that were already allocated. Through this output
parameter, the caller is duly informed on the length of list that was actually allocated.
This method now two possible outcomes :

– it succeeds and all the required memory cells were allocated, x′::ll〈n〉∧no cells′

=n;
– an out of memory exception is thrown and no cells captures the number of suc-

cessfully allocated memory cells. The caller is duly informed on the amount of
acquired memory through the no cells parameter, and could either use it, run a
recovery code to deallocate it, or mention its size and location to its own caller.

void list alloc helper prime(int n, int i, ref node x, ref int no cells)
requires x::ll〈i〉 ∧ n≥i ∧ i≥0
ensures (x′::ll〈n〉 ∧ no cells′=n ∧ flow=norm) ∨

(x′::ll〈no cells′〉 ∧ flow=out of mem exc);
{if(n>i){

try{x = new node(0, x); }
catch(out of mem exc exc){

no cells=i;
raise (new out of mem exc()); }

list alloc helper(n, i+1, x); }
else no cells=n; }

Next, we will illustrate how to make use of our verification mechanism for enforcing
the no-throw guarantee from [15]. For this purpose, let us consider the following swap
method which exchanges the data fields stored in two disjoint nodes.

void swap(node x, node y)
requires x::node〈v1, q1〉∗y::node〈v2, q2〉
ensures x::node〈v2, q1〉∗y::node〈v1, q2〉 ∧ flow=norm;
{ int tmp = x.val;

x.val = y.val;
y.val = tmp; }

The precondition requires the nodes pointed by x and y, respectively, to be disjoint,
while the postcondition captures the fact that the values stored inside the two nodes
are swapped. Additionally, the postcondition asserts that the only possible flow at the
end of the method is the normal flow, flow=norm, i.e. no exception was raised. This
specification meets the definition of no-throw guarantee given in [15]. Any presence of
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exception, including an exception caused by null pointer dereferencing, would require
the postcondition to explicitly capture each such exceptional flow. Conversely, any ab-
sence of exceptional flow in our logic is an affirmation for the no-throw guarantee.

5 Verification for Unified Control Flows

In this section, we present the rules for verifying programs with support for a wide range
of control flows. To keep the rules simple, we shall use a core imperative language that
was originally presented in [3]. First, we briefly present the key features of our core
language, before proceeding to show how our verification rules handle control flows
that are organised in a tree hierarchy.

5.1 Core Language

For a easier specification of our verification rules, we translate the source language
to a small core language [3]. This core language is detailed in Fig 3. The novelty is
represented by two unified constructs for handling control flows. The first one is the
output construct fn#v which can be used to provide an output with a normal flow via
norm#v, or a thrown exception via ty(v)#v. The type of a raised exception object v
is captured as its control flow.

The second special construct has the form try e1 catch ((ft@fv) v) e2 intended
to evaluate expression e1 that could be caught by handler e2 if the detected control flow
is a subtype of ft. This construct uses two bound variables, namely fv to capture the
control flow and v to capture the output value. It is more general than the try-catch con-
struct used in Java, since it can capture both normal flow and abnormal control flows,

P ::=
−→
D ;

−→
V ;

−→
M program

D ::= class c1 extends c2 {−→t v} data declaration
V ::= pred root::pname〈−→v 〉 ≡ Φ inv π pred declaration
ft ::= c | predef flows flow types

M ::= t m(
−−−−−→
[ref] t v) requires Φpr ensures Φpo {e} method decl

e ::= fn#x output (flow&value)
| v.f field access
| w:=v assignment
| m(−→v ) method call
| {t v; e} local var block
| if v then e1 else e2 conditional
| try e1 catch (ft[@v1] v2) e2 catch handler

fn ::= Ex(ft) | fv | ty(v) | v.1 flow
t ::= c | p user or prim. type
x ::= v | k | new c | (fv, v) | v.2 basic value
w ::= v | v.f var/field

Fig. 3. Core Language : Core−U
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including break, continue and procedural return. As a simplification, the usual se-
quential composition e1; e2 is now a syntactic sugar for try e1 catch ((norm@ ) ) e2,
whose captured value is ignored by use of an anonymous variable .

We extend the core language to embed control flows directly as values, by allowing a
pair of control flow and its value (fv, v) to be specified. With this notation, we can save
each exception and its output value as an embedded pair that could be later re-thrown.
Operations v.1 and v.2 are used to access the control flow and the value, respectively,
from an embedded pair in v.

5.2 Control Flow Hierarchy

To support the generalized try-catch construct we provide a unified view on all control
flows through the use of a tree hierarchy supporting a subtyping relation <:. All control
flow types are subtypes of (. Control flows that can be caught by catch handlers are
subtypes of c−flow, while abort denotes control flows that can never be caught. The
latter category includes program error, program termination and non-termination. Con-
trol flows corresponding to exceptions (both checked and unchecked) are placed in the
subtree hierarchy under the exc class. Regarding the static (or local) control-flows, they
are grouped under local which includes norm to denote normal flow, ret to signal a
method return (covering also methods with multi-return options [14]), brk to denote the
break out of a loop, and cont to denote a jump to the beginning of a loop. The use of
a tree hierarchy facilitates formal reasoning, since the disjointedness property between
any two flow types can be statically determined without ambiguity.

As opposed to other systems which enforce the restriction that the try-catch construct
applies only to exceptional flows, our unified view on control flows will generalize
the try-catch construct across the entire domain of control flow types. This domain
extension permits a much more streamlined verification mechanism.

A graphical representation of the entire flow hierarchy is given in Fig.4. Each arrow
c2→c1 denotes a subtyping relation c1<:c2.

c-flow abort

 T
c-flow

local

abort

halt hang
…

exc

norm

oca

others
runtimeExc

…

IOExc

ret_top
cont-top brk-top

brkcont

spec
nullPtrExc

…

FileIOExc
brk

brk-L1 brk-Ln
cont

cont-L1 cont-Ln
…

…
ret_1 ret_n

…

Fig. 4. A Subtype Hierarchy on Control Flows

5.3 Verification Rules

Our verification system requires pre/post conditions to be declared for each method and
each loop in the input program. Loops are then transformed to tail-recursive methods
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where the parameters are passed by reference. With these specifications being given,
we can apply modular verification to each method’s body using Hoare-style triples *
{Δ1} e {Δ2}. These are forward verification rules that expect Δ1 to be given before
computing Δ2. Furthermore, Δ1 is a captured program state whereby flow =(, while
Δ2 is a disjunctive heap state capturing the entire set of control flows that may escape
during the execution of e. For example, we may have x′=x+1∧flow=norm∨x′=x∧
flow=exc to denote a state change for variable x for normal control flow, while an
exception leaves the state of x unchanged.

In the remainder of the current section we will focus mainly on the verification of
output (with flow&value) and try-catch constructs in Figure 5, since the other rules are
largely conventional.

The output construct sets a control flow with a given value. To achieve this, we re-
quire each control flow variable to be resolved to an appropriate flow set (fset) value,

[FV−SPLIT]

split(Δ, c, fv, v) = ((∃flow .[res �→v]Δ ∧ flow <: c ∧ flow = fv), Δ ∧ ¬(flow <: c))

[FV−RESOLVE−FV]

(fv = fset) ∈ Δ

resolve(Δ,fv) = fset

[FV−RESOLVE−PAIR−FST]

(v=(fv, )) ∈ Δ
resolve(Δ,fv) = fset

resolve(Δ,v.1) = fset

[FV−RESOLVE−PAIR−SND]

(v=( , w)) ∈ Δ

resolve(Δ,v.2) = w

[FV−OUTPUT−NEW]

resolve(Δ,ft) = fset
Δ1=(∃res.Δ ∧ flow = fset) ∧ res::c〈. . .〉

� {Δ} ft#new c {Δ1}

[FV−RESOLVE−TYPE]

(type(v) = c) ∈ Δ

resolve(Δ,ty(v)) = c

[FV−OUTPUT−PAIR]

resolve(Δ,ft) = fset
Δ1=(∃res.Δ ∧ flow = fset) ∧ res = (fv, v)

� {Δ} ft#(fv, v) {Δ1}
[FV−RESOLVE−CONST]

resolve(Δ,Ex(c)) = Ex(c)

[FV−TRY−CATCH]

� {Δ} e1 {Δ1} (Δ2, Δ3) = split(Δ1, c, fv, v) � {Δ2} e2 {Δ4}
� {Δ} try e1 catch (c@fv v) e2 {Δ3 ∨ ∃v, fv · Δ4}

[FV−OUTPUT−CONST]

resolve(Δ,ft) = fset
Δ1=(∃res.Δ ∧ flow = fset) ∧ res = k

� {Δ} ft#k {Δ1}

[FV−OUTPUT−VAR]

resolve(Δ,ft) = fset
Δ1=∃res.(Δ ∧ flow = fset) ∧ res = v′

� {Δ} ft#v {Δ1}
[FV−CALL]

t mn(
−−→
(t v)) requires Φpr ensures Φpo {..} ∈ P

ρ=[u′
i/vi] Δ� ρΦpr ∗Δ1 Δ2=(Δ1 ∗ ρΦpo)

� {Δ}mn(−→u ) {Δ2}

Fig. 5. Some Verification Rules
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before we can set it as the current control flow. We rely on an auxiliary set of rules,
called FV−RESOLVE, to obtain the corresponding control flow set from a given pro-
gram state.

The verification system makes use of the res variable in order to store the result of
the current operation. Note that for an output(flow&value)# construct, the result is
the value, which is bound to the res variable as seen in the OUTPUT rules.

Regarding the FV−TRY−CATCH rule, we first compute the post-state of expression
e1 as Δ1. Since Δ1 may capture a range of control flows, it has to be split into two
components, Δ2 and Δ3, with the help of the FV−SPLIT rule. The Δ2 component
will model the program states with control flows that can be captured by the catch
handler, whereas Δ3 will model those states with control flows that escape from the
catch handler. Moreover, for the case when the control flow is being caught by the
handler, the control flow type is bound to fv, and its thrown value is bound to v. These
bindings are kept in Δ2 which is made available as the pre-state for e2. As these local
variables are only valid in the catch handler, we quantify them away in the resulting
postcondition.

6 Correctness

In the current section we provide a description of the operational semantics for our cal-
culus. The machine configuration is represented by 〈e, h, s〉 where e denotes the current
program code, h denotes the current heap for mapping addresses to objects, and s de-
notes the current runtime stack for mapping variables to values. We assume sets Loc of
locations (positive integer values), Val of values (either a constant, a location or a pair
of control flow type and value), Var of variables (program variables and other meta vari-
ables), and ObjVal of object values stored in the heap, with c[f1 �→ν1, .., fn �→νn] denoting
an object value of class c where ν1, .., νn are current values (from the domain Val such
that Loc ⊂ Val) of the corresponding fields f1, .., fn. Let s, h |= Φ denote that stack
s and heap h form a model of the constraint Φ, with h, s from the following concrete
domains:

h ∈ Heaps =df Loc ⇀fin ObjVal
s ∈ Stacks =df Var → Val

A complete definition of the model for separation constraints can be found in [11]. For
the dynamic semantics to follow through, we have introduced a couple of intermediate
constructs. Their syntax is extended from the original expression syntax as shown next,
where l ∈ Loc.

e ::= ft#l f low and location
| BLK({−→v }, e1) block construct

For the case of BLK({−→v }, e1), e1 denotes a residual code of the current block. This
new construct is used for handling try-catch constructs, method calls and local blocks.
Its main purpose is to provide a lexical scope for local variables that are removed once
its expression has been completely evaluated.
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6.1 Small-Step Semantics

The small-step dynamic semantics is defined using the transition 〈e, h, s〉↪→〈e1, h1, s1〉,
which means that if e is evaluated in stack s, heap h, then e reduces in one step to e1

and generates the new stack s1 and new heap h1. The small-step rules are given in Fig.
6. In the rules for local declaration, method call and try catch, the function newid()

returns a fresh identifier, while [u′/u] represents the substitution of u by u′. In order to
avoid dynamic binding, every variable whose binding is added to the stack is substituted
by a fresh identifier. For instance, in the case of the method call, after performing the
renaming of the callee’s formal parameters, the mappings for the fresh identifiers are
temporarily added to the stack, s. These bindings will be removed after the evaluation
of the callee’s body.

Regarding those constructs from the input language that may implicitly raise excep-
tions, such as v.f or new c, take note that they are handled by the translation described
in [3]. More specifically, our translation rules will make the raised exceptions explicit.
For illustration, let us consider the translation of v.f :

v.f ⇒T if v=null then nullPtrExc#v else v.f

In the remainder of this section, we will define some notions required for proving the
soundness of our verification rules. First, we provide the definition for closed configu-
ration, which ensures that variable access does not get stuck.

Definition 6.1 (Closed Configuration) A configuration 〈e, h, s〉 is said to be closed if
FV (e)⊆dom(s) and addr(s)∪addr(h)⊆dom(h).

Method FV collects the free variables in an expression, while addr returns all addresses
from the stack and heap. As their definitions are standard, we omit them from the current
work. Next, we define divergent computation for small-step semantics, as follows:

Definition 6.2 (Divergence) A configuration 〈e, h, s〉 is said to be divergent if its small-
step transition 〈e, h, s〉↪→∗〈e′, h′, s′〉 never terminates with a final expression for e′. We
shall represent this divergent computation using 〈e, h, s〉�↪→∗.

6.2 Soundness of Verification

The soundness of our verification rules is defined with respect to the small-step dy-
namic semantics given in Section 6.1. Before stating the soundness theorems, we need
to extract the post-state of a heap constraint by:

Definition 6.3 (Poststate) Given a constraint Δ, Post(Δ) captures the relation between
primed variables of Δ. That is :

Post(Δ) =df ρ (∃V·Δ), where
V = {v1, .., vn} denotes all unprimed program variables in Δ
ρ = [v1/v

′
1, .., vn/v

′
n].

Theorem 6.1 (Preservation). Consider a closed configuration 〈e, h, s〉. If

* {Δ} e {Δ2} and s, h |= Post(Δ) and 〈e, h, s〉↪→〈e1, h1, s1〉,
then there exists Δ1, such that s1, h1 |= Post(Δ1) and � {Δ1} e1 {Δ2}.
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〈fn#v, h, s〉↪→〈s(fn)#s(v), h, s〉 〈fn#(fv, v), h, s〉↪→〈s(fn)#(s(fv), s(v)), h, s〉

〈fn#k, h, s〉↪→〈s(fn)#k, h, s〉 〈v1:=v2, h, s〉↪→〈norm#(), h, s[v1 �→s(v2)]〉

〈v.f, h, s〉↪→〈norm#(h(s(v)).f), h, s〉 〈v1.f :=v2, h, s〉↪→〈norm#(), h[s(v1).f �→s(v2)], s〉

l = fresh()

〈fn#new c, h, s〉↪→〈s(fn)#l, h+[l �→c(
−→
⊥)], s〉

u=newid()

〈{t v; e}, h, s〉↪→〈BLK({u}, e[u/v]), h, s+[u�→⊥]〉

c1<:c u,fu=newid()

〈try c1#a1 catch c@fv#v e2, h, s〉↪→〈BLK({fu, u}, e2[u/v, fu/fv]), h, s+[fu�→c1,u�→a1]〉

¬(c1<:c)

〈try c1#a1 catch c@fv#v e2, h, s〉↪→〈c1#a1, h, s〉

〈e, h, s〉↪→〈e1, h1, s1〉

〈try e catch c@fv#v e2, h, s〉↪→〈try e1 catch c@fv#v e2, h1, s1〉

s(v)=true

〈if v then e1 else e2, h, s〉↪→〈e1, h, s〉

s(v)=false

〈if v then e1 else e2, h, s〉↪→〈e2, h, s〉

t0 mn (
−→
t u) {e}

−−−−−−−−→
u′=newid()

〈mn(−→v ), h, s〉↪→〈BLK({−→u ′}, e[
−−→
u′/u]), h, s+[

−−−−−→
u′ �→s(v)]〉

〈e, h, s〉↪→〈e1, h1, s1〉

〈BLK({−→v }, e), h, s〉↪→〈BLK({−→v }, e1), h1, s1〉

〈BLK({−→v }, c#a), h, s〉↪→〈c#a, h, s−{−→v }〉

Fig. 6. Small-Step Semantics

Proof: By structural induction on e.

Theorem 6.2 (Progress). Consider a closed configuration 〈e, h, s〉. If

� {Δ} e {Δ1} and s, h |= Post(Δ),

then either e is a value, or there exist s1, h1, and e1, such that 〈e, h, s〉↪→〈e1, h1, s1〉.
Proof: By structural induction on e.

Theorem 6.3 (Soundness). Consider a closed configuration 〈e, h, s〉. Assuming that
� {Δ} e {Δ′} and s,h |= Post(Δ), then either 〈e, h, s〉↪→∗〈v, h′, s′〉 terminates with a
value v such that (s′+[res �→v], h′) |= Post(Δ′) holds, or it diverges 〈e, h, s〉�↪→∗.

Proof Sketch: If the evaluation of e does not diverge, it will terminate in a finite number
of steps (say n): 〈e, h, s〉↪→〈e1, h1, s1〉↪→· · ·↪→〈en, hn, sn〉. By Theorem 6.1, there exist
Δ1, .., Δn such that, si, hi |= Post(Δi), and � {Δi} ei {Δ′}. By Theorem 6.2, The final
result en must be some value v (or it will make another reduction).
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7 Experiments

Our verification system is built using Objective Caml. The proof obligations generated
by the verification are discharged by the entailment checking procedure with the help
of Omega Calculator [12].

In order to prove the viability of our verification method we tried our prototype im-
plementation against a few examples from SPECjvm2008, a widely used Java bench-
mark created by SPEC. Due to the focus of our work, we only considered those tests
from SPECjvm2008 that are related to exception handling. After annotating the tested
methods with pre and post conditions, we were able to successfully verify all the tests.
Due to the fact that the KeY approach is semi-automated in the sense that it occasionally
prompts the user for choice of rewriting rules, while our approach is fully-automated,
we cannot perform a direct comparison of the verification timings.

Among these examples, MyClass is a Java program emphasizing the use of exception
handling in the presence of user defined exceptions. Its aim is to detect mishandling of
the exception class hierarchy. The main objective of While and ContinueLabel examples
is testing abrupt termination in the presence of loops. PayCard is a Java class from a real
life Java application that makes heavy use of exceptions while modelling the behaviour
of a credit card.

Figure 7 contains the timings obtained when using our system to verify the afore-
mentioned examples.

Programs LOC Time Focus
(seconds)

Break (KeY) 20 0.11 break handling
MyClass (KeY) 33 0.10 exception hierarchy

While (KeY) 130 2.47 while loops and break

ContinueLabel (KeY) 100 0.95 imbricated while loops and continue

PayCard (KeY) 70 0.91 general exception handling
SPECjvm2008 190 1.20 general exception handling

Fig. 7. Verification Times

We also verified the examples presented in the paper. Method list alloc was ver-
ified in 0.41 seconds, list alloc1 in 0.26 seconds and method swap in 0.09 seconds.
Take note that the verification of list alloc1, which ensures an improved strong ex-
ception safety guarantee as according to our approach, is faster by 36% than the verifi-
cation of list alloc which enforces the original strong guarantee defined in [15].

8 Concluding Remarks

We have presented a new approach to the verification of exception-handling programs
based on a specification logic that can uniformly handle exceptions, program errors
and other kinds of control flows. The specification logic is currently built on top of
the formalism of separation logic, as the latter can give precise description to heap-
based data structures. Our main motivation for proposing this new specification logic
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is to adapt the verification method to help ensure exception safety in terms of the four
guarantees of increasing quality introduced in [15] and extended in [9], namely no-
leak guarantee, basic guarantee, strong guarantee and no-throw guarantee. During the
evaluation process, we found the strong guarantee to be restrictive for some scenarios, as
it always forces a recovery mechanism on the callee, should exceptions occur. Hence,
we propose to generalise the definition of strong guarantee for exception safety. Our
approach has been formalised and implemented in a prototype system, and tested on
a suite of exception-handling examples. We hope it would eventually become a useful
tool to help programmers build more robust software.
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Non-monotonic Refinement of Control
Abstraction for Concurrent Programs
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Abstract. Verification based on abstraction refinement is a successful

technique for checking program properties. Conventional abstraction re-

finement schemes increase precision of the abstraction monotonically,

and therefore cannot recover from overly precise refinement decisions.

This problem is exacerbated in the context of multi-threaded programs,

where keeping track of all control locations in concurrent threads is the

inevitably discovered abstraction and is prohibitively expensive. In con-

trast to the conventional (partition refinement-based) approaches, non-

monotonic abstraction refinement schemes rely on re-partitioning and

have promising potential for avoiding excess of precision. In this paper,

we propose a non-monotonic refinement scheme for the control abstrac-

tion (of concurrent programs). Our approach employs a constraint solver

to discover re-partitioning at each refinement step. An experimental eval-

uation of our non-monotonic control abstraction refinement on a collec-

tion of multi-threaded verification benchmarks indicates its effectiveness

in practice.

1 Introduction

Automatic abstraction [10] is one of the essential components for the construction
of software verification tools. The success of verification tools based on abstract
domains equipped with widening operators, e.g., ASTREE [5], Clousot [13],
and Dagger [17], and software model checkers based on predicate abstraction,
e.g., SLAM/SDV [3], Blast [21], Magic [6], F-Soft [23], Terminator [9], and
ARMC [30], demonstrates the effectiveness of abstraction in practice. Finding
the right abstraction is a difficult task, since a too coarse abstraction may lead
to inconclusive verification results and, on the other hand, excess of precision
may impose a prohibitive efficiency penalty. In practice, the desired level of
details tracked during the abstraction process is determined through a trial-
and-error like process that adjusts abstraction at each failed verification at-
tempt. The existing refinement methods can automatically tune precision of var-
ious abstraction techniques, including infinite abstract domains equipped with
widening operators, e.g., [17, 11], and finitary predicate abstraction domains,
e.g., [1, 7, 22, 21, 4].

One of the most important properties of the iterative abstraction discovery
approaches is called progress of refinement. This property ensures that the ver-
ification effort does not get stuck in a loop trying to eliminate the same reason

A. Bouajjani and W.-N. Chin (Eds.): ATVA 2010, LNCS 6252, pp. 188–202, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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for imprecision over and over again. The majority of existing approaches achieve
the progress of refinement by adjusting abstraction monotonically. That is, they
compute a proper refinement of abstraction at each adjusting step. For exam-
ple, when using predicate abstraction such monotonic refinement can be easily
achieved by adding appropriate predicates to the abstract domain [7,1,22,21,24].

(b)

(a)

Fig. 1. Abstraction sets of program states using equiv-

alence classes. Boxes denote equivalence classes.

While monotonic refine-
ment approaches are well-
studied and widely ap-
plied, the monotonicity
property can lead to overly
precise abstraction and
hence unnecessarily slow
down verification. In fact,
monotonicity is just one
possible way to achieve re-
finement progress and al-
ternative approaches have
started to emerge. As an
example, consider two sequences of abstraction adjustments shown in Figure 1.
The sequence (a) uses a monotonic scheme that creates a properly refined par-
tition at each adjustment step. Assume that after making the first adjustment
the verifier recognizes that a re-partitioning following the sequence (b) yields an
abstraction that is sufficiently precise to prove the property. While not admissi-
ble in monotonic refinement scheme, (b) can be achieved using a non-monotonic
refinement scheme, which would lead to more efficient verification that consid-
ers two instead of four equivalence classes. The potential of such non-monotonic
refinement schemes has been identified in recent verification efforts. In a seminal
paper [29], a non-monotonic scheme is used to discover a localization abstrac-
tion which is improved based on proofs of unsatisfiability. A second related work
describes a method for computing an optimal localization abstraction from a
collection of broken traces [19]. These approaches led to effective verification
methods able to recover from overly precise abstraction decisions.

In this paper, we apply a non-monotonic abstraction refinement scheme for
the control-flow abstraction of multi-threaded programs. Abstraction of control-
flow deals with program counter variables that range over finite sets of control
locations of program threads, and is a crucial building block for achieving scal-
able reasoning about concurrent programs [15, 8]. In our experience, monotonic
abstraction results in too fine grained partitioning of control locations into equiv-
alence classes and hence is too expensive.

The main component of our scheme is a procedure that takes as input a
set of program paths that were the root cause for failed verification attempts
so far (including the current evidence for inadequacy of chosen abstraction) and
returns a set of predicates that eliminates all these failures. The abstract domain
is adjusted by replacing the previously used set of predicates by the output of the
above procedure (and not adding predicates as in conventional CEGAR-based
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int t1 = 0, t2 = 0; // ticket variables

bool choosing1 = 0, choosing2 = 0; // boolean flags

int x; //variable to update in critical section

void thr1() {

int tmp;

1 choosing1 = 1;

2 tmp = t2 + 1;

3 t1 = tmp;

4 choosing1 = 0;

5 while (choosing2 != 0);

6 while (t1 >= t2 && t2 != 0);

// begin: critical section

7 x = 0;

8 assert(x <= 0);

// end: critical section

9 t1 = 0;

10 }

void thr2() {

int tmp;

11 choosing2 = 1;

12 tmp = t1 + 1;

13 t2 = tmp;

14 choosing2 = 0;

15 while (choosing1 != 0);

16 while (t2 >= t1 && t1 != 0);

// begin: critical section

17 x = 1;

18 assert(x >= 1);

// end: critical section

19 t2 = 0;

20 }

Fig. 2. An implementation of Lamport’s Bakery algorithm

approaches). More specifically, our algorithm crucially relies on a repartitioning
step encoded as a SAT problem.

We implemented the two schemes for abstraction refinement and observed
on a set of multi-threaded examples that non-monotonic refinement enables an
improvement in the verification time ranging from 18% to 52% when compared
to a monotonic refinement scheme.

In summary, our contributions are a non-monotonic abstraction refinement
algorithm for control-flow abstraction, its implementation and experimental
evaluation.

2 Example

In this section, we illustrate our approach on Lamport’s Bakery algorithm, which
is a classic verification benchmark. We use the complete version of the algorithm
[25] with a set of Boolean flags (choosing1 and choosing2) where the reading
and the incrementing of the ticket variable is done non-atomically (see lines 2
and 3). We are interested in verifying that the Bakery algorithm achieves mutual
exclusion. This safety property is instrumented in Figure 2 using a global variable
x in the critical section of the two threads. We want to prove that no interleaving
of the threads leads to an assertion violation at either line 8 or 18.

To prove the program correct, our algorithm performs a combination of stan-
dard abstract reachability computation and non-monotonic abstraction refine-
ment. Abstract states represent sets of concrete program states. If the reachability
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computation finds an error state to be reachable, we analyze the reason for the fail-
ure and update the abstraction, if possible.

For our example, a reason for failure to prove safety is the following interleav-
ing of statements from first and second threads

(1, 2, 3, 4, 5,︸ ︷︷ ︸
thr1

13,︸︷︷︸
thr2

6, 7,︸︷︷︸
thr1

17,︸︷︷︸
thr2

8︸︷︷︸
thr1

),

where we identify program statements by the corresponding line numbers. This
counterexample is in fact infeasible, and is discovered due to abstraction. Two
different reasons make this counterexample infeasible:

– the first statement executed from the second thread cannot be 13,
– the statement 13 cannot be followed in the second thread by the state-

ment 17.

The mismatches between the program locations that lead to the infeasibility
of the counterexample are denoted using the following notation: (11 �≡ 13),
(14 �≡ 17). An abstraction function that maps the concrete program locations 11
and 13 to different abstract program locations will be able to avoid this coun-
terexample in subsequent reachability iterations. Similarly, this counterexample
can be avoided if the concrete locations 14 and 17 map to different abstract
locations (14 �≡ 17).

Let us assume that the refinement procedure picks the first possibility. The
resulting abstraction function can be represented using the following partition of
program locations: {11}, {13}, PC2\{11, 13}, PC1. PC1 and PC2 represent the
sets of all program locations from the first and, respectively, second thread.

A subsequent reachability computation finds another counterexample that
can be shown infeasible with the following mismatch relation, 12 �≡ 16.
To avoid this counterexample, the partitioning of the locations is up-
dated to {11, 12}, {13, 16}, PC2\{11, 12, 13, 16}, PC1. With a third mismatch
relation 11 �≡ 12, the program locations are again repartitioned to
{11, 16}, {12, 13}, PC2\{11, 12, 13, 16}, PC1. Note that these repartitionings are
possible only with a non-monotonic abstraction refinement scheme. The standard
monotonic refinement would compute a more fine-grained partitioning that is
unnecessarily precise and leads to expensive abstract reachability computations.
Overall, the verification of the Bakery example using non-monotonic abstraction
refinement concludes after 26 seconds and computes a 10-way partitioning of
control locations.

The monotonic abstraction refinement concludes after 54 seconds. The
mismatch 11 �≡ 13 and the second mismatch 12 �≡ 16 lead immediately to
the partitioning {11}, {12}, {13}, {16}, PC2\{11, 12, 13, 16}, PC1. Through all
the reachability iterations, the control locations are split into 14 partitions and
this large number explains the increased verification time based on monotonic
abstraction refinement.
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3 Preliminaries

In this section we define programs and computations, and provide a brief descrip-
tion of predicate abstraction-based approach to program verification together
with a standard counterexample-guided abstraction refinement procedure.

Programs and computations. We assume an abstract representation of pro-
grams by transition systems [27]. A program P = (Σ, sI , T , sE) is given by a
set of program states Σ, an initial state sI ∈ Σ, a set of transitions T , and
an error state sE ∈ Σ. Each transition τ ∈ T has a corresponding transition
relation ρτ ⊆ Σ×Σ. The error state sE is used to represent assertion statements
commonly present in programming languages. Each failed assertion leads to sE .

A computation of P is a sequence of states s1, s2, . . . such that s1 is the
initial state, i.e., s1 = sI , and there is a transition τ ∈ T between each pair of
consecutive states s and s′, i.e., (s, s′) ∈ ρτ . A state s is reachable if it appears
in some computation. The program is safe if the error state is not reachable in
any computation.

A path is a sequence of transitions. Let ◦ be the relational composition function
for binary relation over states, i.e., for X,Y ⊆ Σ ×Σ we have X ◦ Y = {(s, s′) |
∃s′′ ∈ Σ : (s, s′′) ∈ X ∧ (s′′, s′) ∈ Y }. Then, a path relation ρπ is a relational
composition of transition relations along the path, i.e., for π = τ1 . . . τn we have
ρπ = ρτ1 ◦ · · · ◦ ρτn . A path is feasible if its path relation is not empty.

Predicate abstraction. Our goal is to verify whether a given program is safe.
To achieve this goal we need to consider all reachable program states and check
if the error state appears among them. The set of all reachable states can be
computed iteratively using the function post : (T × 2Σ) → 2Σ such that

post(τ, S) = {s′ | ∃s ∈ S : (s, s′) ∈ ρτ} .

Its least fixed point above {sI} is the set of reachable states, i.e.,

s is reachable if and only if s ∈ lfp(λS.
⋃

τ∈T
post(τ, S), {sI}) .

The exact computation of the set of reachable states is an undecidable problem,
however for the verification purposes a sufficiently close abstraction is enough.
The framework of abstract interpretation [10] provides a formal foundation for
the approximate, yet sound abstraction of reachable states, where abstraction is
defined as an over-approximation. Given an abstraction function α : 2Σ → 2Σ

such that
∀S ⊆ Σ : S ⊆ α(S) ,

we construct an abstraction post# of post as follows:

post#(τ, S) = α(post(τ, S)) .

Our abstraction puts together and operates on sets of program states. We call
such sets abstract states and let Σ# = 2Σ be the set of all abstract states.
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The least fixed point of post# above the abstraction of the initial state is an
over-approximation of the reachable states, i.e.,

lfp(λS.
⋃

τ∈T
post#(τ, S), α({sI})) ⊇ lfp(λS.

⋃
τ∈T

post(τ, S), {sI}) .

If the error state is not included in the over-approximation then the program
is safe, that is, we obtain a sound method for verifying program safety. For
completeness of presentation, Appendix A contains an algorithm for abstract
fixpoint checking together with the re-construction of counterexamples, which is
required by our refinement scheme.

The abstraction function α can be constructed automatically from a given set
of basic building blocks, called predicates, where a predicate represents a set of
program states. Given a set of predicates P = {P1, . . . , Pn}, where Pi ⊆ Σ, and a
theorem prover that can decide validity of subset inclusion between sets of states
represented in a logical language, we use an abstraction function αP : 2Σ → 2Σ

which returns the strongest conjunction of the predicates implied by S as follows.

αP(S) = ∩{P ∈ P | S ⊆ P}

Abstraction refinement. In order to verify program safety using predicate
abstraction, we need to supply a set of predicates. Predicates can be provided
manually, collected from the program text by applying heuristics, or derived in
a goal-oriented way by using the counterexample-guided abstraction refinement
approach [7]. The crux of this approach to predicate discovery lies in leveraging
spurious counterexamples, which are program paths that expose the coarseness
of the abstraction function determined by the currently used set of predicates.

A path π = τ1 . . . τn is a spurious counterexample if the abstract reachability
computation along the path leads to the error states, i.e.,

sE ∈ post#(τn, post#(τn−1, . . . post#(τ1, αP({sI}))) ,

but the actual, not abstracted path does not lead to the error state, i.e.,
(sI , sE) �∈ ρπ. Conventional techniques for analyzing spurious counterexamples
use automated reasoning approaches , e.g., proofs [22] and interpolation [21], to
extract a set of new predicates that excludes the spurious counterexample.

We define an auxiliary predicate SafeInd that takes as input a sequence of
predicates of length n + 1 and a sequence of program transitions of length n,
where n ≥ 1, as follows.

SafeInd(ϕ0 . . . ϕn, τ1 . . . τn) = sI ∈ ϕ0 ∧ sE �∈ ϕn ∧
∀i ∈ 1..n :

∧
i∈1..n post(τi, ϕi−1) ⊆ ϕi

Given a spurious counterexample τ1 . . . τn, we say that the sequence of predicates
ϕ0 . . . ϕn excludes the counterexample if SafeInd(ϕ0 . . . ϕn, τ1 . . . τn) holds. We
will use SafeInd in our non-monotonic refinement scheme.
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1

2

3

4

5

function NonMonRefine

input
Paths : spurious counterexamples so far

π : current spurious counterexample

begin
choose P such that

∀τ1 . . . τn ∈ {π} ∪ Paths
∃ϕ0, . . . , ϕn ⊆ P :

SafeInd(ϕ0 . . . ϕn, τ1 . . . τn)

return P
end

1

2

3

4

5

6

7

8

9

10

11

12

procedure NonMonCEGAR

input
P : program

vars
P : abstraction predicates

Paths : spurious counterexamples so far

begin
P := ∅
Paths := ∅
repeat

match FindCounterexample(P,P) with
| Some π ->

if ρπ = ∅ then
P := NonMonRefine(Paths, π)

Paths := {π} ∪ Paths
else

return “Counterexample π to program safety”

| None ->

return “Program is safe”

end.

Fig. 3. Predicate abstraction-based algorithm for checking program safety that is based

on the non-monotonic abstraction refinement scheme.

4 Non-monotonic Refinement Scheme

In this section we present an abstraction refinement scheme that adjusts abstrac-
tion in a non-monotonic way. By not committing to a monotonic evolution of
the abstraction, we can obtain a greater choice of possible refinement steps and
hence can reach more favorable efficiency/precision trade-offs.

See Figure 3 for an algorithm NonMonCEGAR that implements a safety
verification procedure based on counterexample guided abstraction refinement
using the non-monotonic refinement NonMonRefine. The algorithm Non-

MonCEGAR crucially differs from a conventional CEGAR algorithm by keep-
ing the history of discovered counterexamples, as stored in the variable Paths.
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Every time an infeasible counterexample π is found, see lines 4–6, the set of
previously discovered counterexamples π together with the current one is passed
to NonMonRefine. The function NonMonRefine in our scheme chooses a set
of predicates P that excludes all counterexamples discovered so far. In Section 5
we present an instantiation of NonMonRefine for control-flow abstraction that
uses an encoding into SAT to implement lines 1–4 of NonMonRefine.

NonMonCEGAR overwrites the set of abstraction predicates P using the
result of calling NonMonRefine on the current set of counterexamples. At this
step, non-monotonicity takes place. Note however that the progress of refinement
is guaranteed, as formalized by the theorem below.

Theorem 1 (Progress of refinement in NonMonCEGAR). The algo-
rithm NonMonCEGAR never discovers the same counterexample twice, i.e.,
for given values of P and Paths we have that if π ∈ Paths then π �∈
FindCounterexample(P,P).

5 Non-monotonic Refinement for Control-Flow
Abstraction

In this section we present an application of the non-monotonic abstraction refine-
ment scheme to control-flow abstraction for concurrent programs. Our algorithm
for the verification of multi-threaded programs [20] relies on the abstraction of
control-flow, i.e., over-approximation of set of control locations in which threads
can be residing. This abstraction plays a crucial role for enabling scalable reason-
ing in the multi-threaded setting. Our experiments with a conventional mono-
tonic abstraction refinement procedure for dealing with control-flow abstraction
were not satisfactory. The refinement process was creating as many individual
abstract values as there are control locations, which subverted the application
of abstraction by effectively making the abstraction function to be an identity
function. In this section, we only present the non-monotonic control abstraction
refinement and refer to [20] for its client algorithm.

We assume a multi-threaded program that consists of N threads whose control
locations are given by the set L. For each thread i ∈ 1..N we use a variable pci

and its primed version pc′i to refer to the corresponding program counter value.
We consider counterexamples given by sequences of transitions whose transition
relations are of the form

pci = 	 ∧ pc′i = 	′ ∧
∧

j∈1..N\{i}
pcj = pc′j ,

where 	 and 	′ are control locations. This transition relation corresponds to a
step of the thread i, whereas each other thread j ∈ 1..N \ {i} idles and hence
does not change its control location. We assume a function from : T → L that
given a transition τ returns its start location, which 	 for the transition relation
above.
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function NonMonControlRefine

input
Paths : spurious counterexamples so far

vars
Φ, Ψ : auxiliary constraints

m : number of partitions

B : auxiliary propositional variables

bits : encodes equivalence classes of control locations as bit strings

begin
m := 2

repeat
B := ∅
for each � ∈ L do

b1 . . . b�log2(m)� := fresh propositional variables

B := {b1, . . . , b�log2(m)�} ∪ B
bits(�) := b1 . . . b�log2(m)�

Φ := true
for each π = τ1 . . . τn ∈ Paths do

Ψ := false
for each k ∈ 0..n and i ∈ 1..N and j ∈ 1..n− k +1 and � ∈ L such that

SafeInd(true . . . true︸ ︷︷ ︸
k times

pci = � . . . pci = �︸ ︷︷ ︸
j times

false . . . false︸ ︷︷ ︸
n−k−j+1 times

, π)

do
�′ := if k + j = n + 1 then sE(pci) else from(τk+j)

Ψ := Ψ ∨ bits(�) 	= bits(�′)
Φ := Ψ ∧ Φ

m := m + 1

until exists σ : B → {true, false} such that |= σ(Φ)

for each � ∈ L do
f≡(�) := {�′ ∈ L | σ(bits(�)) = σ(bits(�′))}

return f≡
end.

Fig. 4. Function NonMonControlRefine implements an instantiation of the non-

monotonic refinement scheme to control-flow abstraction. The application σ(bits(�))
computes a bit string by replacing propositional variables from bits(�) by their values

as determined in σ.

For example, the counterexample π = τ1τ2τ3τ4τ5τ13τ6τ7τ17τ8 presented in
Section 2 involves the following transition relations:

ρi =

{
pc1 = i ∧ pc1 = i + 1 ∧ pc2 = pc′2 , for i ∈ {1, . . . , 8} ,

pc1 = pc′1 ∧ pc2 = i ∧ pc ′
2 = i + 1 , for i ∈ {13, 17} .

The transitions have the following starting locations:

from(τi) = i , for i ∈ {1, . . . , 8, 13, 17}.
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Our goal is to compute an equivalence relation ≡ on L that leads to absence
of abstract counterexamples. We represent the equivalence relation by a char-
acteristic function f≡ : L → 2L from control locations to equivalence classes.
The equivalence classes of this relation are used as predicates defining control
abstraction for a thread i ∈ 1..N , i.e.,

α(S) = ∪{f≡(	) | (S ∩ (pc1 = 	 ∪ · · · ∪ pcN = 	)) �= ∅} .

For example, Section 2 first discovers an equivalence relation that consists of
three equivalence classes {11}, {13}, and PC 2\{11, 13}. This equivalence relation
yields a control-flow abstraction that, for example, yields the following result:

α({pc2 = 11, pc2 = 16}) = {11} ∪ PC 2 \ {11, 13} .

The following observation underlines our algorithm for non-monotonic refine-
ment of control-flow abstraction. Each spurious counterexample, say τ1 . . . τn can
be eliminated by keeping track of a certain predicate pci = 	, i.e., if ρτ1...τn = ∅
then there exists i ∈ 1..N and 	 ∈ L such that for k ∈ 1..n and j ∈ 1..n− k + 1
holds

SafeInd(true . . . true︸ ︷︷ ︸
k times

pci = 	 . . . pci = 	︸ ︷︷ ︸
j times

false . . . false︸ ︷︷ ︸
n−k−j+1 times

, τ1 . . . τn) .

For our counterexample π shown above, one refinement possibility is given below:

SafeInd(pc2 = 11 . . .pc2 = 11︸ ︷︷ ︸
6 times

false . . . false︸ ︷︷ ︸
5 times

, π) .

Figure 4 shows an algorithm NonMonControlRefine that computes a char-
acteristic function for adjusting the control-flow abstraction. The algorithm finds
an equivalence relation with the minimal number of equivalence classes, which
decreases the size of the abstract state space and improves efficiency of the ab-
stract reachability computation. Our implementation relies on a propositional
encoding that describes constraints on the characteristic functions. These con-
straints can be solved efficiency using a state-of-the-art SAT solver.

We illustrate NonMonControlRefine using the counterexample π above,
which is taken from Section 2, and assume that the input set Paths contains only
the path π. Line 1 in Figure 4 initializes the number of equivalence classes m
to 2, which serves as the first candidate. The repeat loop (lines 2–17) attempts
to find a control abstraction with at most m equivalence classes. If no such
abstraction exists then m is incremented and the attempt is repeated. This
iteration terminates after at most |L|-many steps, where |L| is the size of L.

At the first attempt, we start by creating propositional variables that keep
track of equivalence classes for control locations, see lines 4–7. For our ex-
ample, we assume bits(11) = (b1b2) and bits(13) = (b3b4), and hence B con-
tains {b1, b2, b3, b4}.

Since Paths contains only one counterexample, namely π, the for loop (lines
9–15) is executed only once. This path has two root causes of infeasibility, which



198 A. Gupta, C. Popeea, and A. Rybalchenko

leads to two iterations of the inner for loop in lines 11–14. At the first one we
obtain pc2 = 11, k = 0, j = 6, and 	′ = from(τ13) = 13. Then, line 14 computes
Ψ = false ∨ bits(11) �= bits(13). This constraint encodes the condition that the
control locations 11 and 13 need to be distinguished by the control abstraction,
formally, 11 �≡ 13.

The next iteration of the inner for loop discovers that for k = 6 and j = 3 we
have

SafeInd(true . . . true︸ ︷︷ ︸
6 times

pc2 = 14 . . . pc2 = 14︸ ︷︷ ︸
3 times

false false, π) ,

and 	′ = from(τ17) = 17. We finish the execution of the inner for loop and
obtain the final constraint

Φ = bits(11) �= bits(13) ∨ bits(14) �= bits(17) .

The first disjunct in Φ requires that at least one bit of bits(11) is different from
the corresponding bit in bits(13). This condition translates to (b1 �= b3 ∨ b2 �=
b4), which is equivalent to (b1 ∧ ¬b3) ∨ (¬b1 ∧ b3) ∨ (b2 ∧ ¬b4) ∨ (¬b2 ∧ b4).

The constraint Φ is satisfiable. We consider a solution σ such that
σ(bits(11)) = (0 0), σ(bits(13)) = (0 1), σ(bits(14)) = (0 0), and σ(bits(17)) =
(0 0). This solution leads to the characteristic function f≡ that maps 11, 14, and
17 to the same equivalence class. This equivalence class is different from f≡(13).

At each refinement iteration more and more conjuncts are added to the con-
straint Φ in line 15. As an additional optimization, we first try to find same
number of partitions among program counters as the number of partitions found
in the last iteration. If this fails, then we grow the number of partitions one
by one. In the worst case, the partition size may grow upto the number of pro-
gram locations. However, in our experiments the number of control partitions
was much lower indicating the benefit of control abstraction.

6 Experiments

We implemented the algorithm NonMonControlRefine in our tool for the
verification of multi-threaded programs written in the C language. Since our
tool uses both data abstraction and control abstraction, it may be possible that
some spurious counterexample can be ruled out by both data abstraction refine-
ment and control abstraction refinement. In this situation, we use an heuristic
that prefers data refinement over control refinement. Our tool uses a standard
(i.e. monotonic) abstraction refinement scheme for dealing with data variables,
and relies on NonMonControlRefine for the discovery of adequate control
abstraction. Constraints generated by NonMonControlRefine are resolved
using the Z3 solver [12]. Next, we will report our experience with applying Non-

MonControlRefine to the verification of multi-threaded programs.
We evaluated the non-monotonic refinement scheme in direct comparison with

monotonic one and present a summary in Table 1. Our examples include two
versions of the Bakery algorithm for mutual exclusion. Bakery [25] is shown
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Table 1. Comparison between monotonic and non-monotonic refinement of control

abstraction. For each configuration we present (i) the total verification time, its de-

composition into time spent on (ii) the abstract reachability computation and (iii)

abstraction refinement, together with (iv) the number of equivalence classes | ≡ | that

determine the control abstraction.

Monotonic refinement Non-monotonic refinement

Program Time | ≡ | Time | ≡ |
Bakery-atomic [27] 6.6s 5.7+0.9 8 4.8s 4.1+0.7 7

Bakery [25] 54s 48.4+5.6 14 26s 23.1+2.9 10

Bluetooth [31] 19.5s 16.4+3.1 7 16.4s 11.3+5.1 5

Mozilla-order-fixed [26] 2.7s 2.1+0.6 5 1.6s 0.9+0.7 3

Time-varying-mutex [14] 9.6s 8.7+0.9 10 7.1s 6.3+0.8 7

in Figure 2, while Bakery-atomic is its simplified version that increments the
ticket variable atomically [27]. Bluetooth models the stopping procedure of a
Windows NT Bluetooth driver [31], where a worker thread asserts that a boolean
flag stopped is not set to false by a second stopper thread. Mozilla-order-

fixed is the fixed version of a vulnerability from the Mozilla CVS repository,
which was discussed in abbreviated form in [26, Figure 2]. The property to verify
is that two operations performed by different threads are executed in the correct
order. Lastly, Time-varying-mutex illustrates a synchronization idiom found
in the Frangipani file system [14], where it is verified if a thread has exclusive
access over a disk block.

At a high level, our approach can be viewed as an optimization step with a
trade-off. While the non-monotonic refinement keeps the number of equivalence
classes | ≡ | smaller, it has to solve a growing set of constraints which may impact
on the refinement time. On our set of examples, we observed that the increase
in refinement time is acceptable and the coarser abstraction that is discovered
leads to a smaller time for abstract reachability computation. Consequently, the
time for non-monotonic verification compares favorably to that for verification
via monotonic refinement. We found overall time savings ranging from 18% for
Bluetooth to 52% for Bakery.

7 Related Work

Our paper builds upon counterexample-based model checking [7, 2, 22, 6], which
mostly employs monotonic refinement techniques that consider a single coun-
terexample at a time and are based on weakest preconditions [2] and inter-
polation [21]. Our non-monotonic scheme eliminates all previously discovered
spurious counterexample, which is in contrast to the elimination of all spurious
counterexamples of a given length [16].

Previous non-monotonic abstraction refinement approaches focus on data re-
finement, see e.g. [19,28]. The collection of broken traces in [19] is closely related
to our history of counterexamples. While [19] identifies which data variables to
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keep track by analysing broken traces, our approach first employs a constraint-
based reduction, which may be viewed as a generalization. The non-monotonic
abstraction refinement using interpolants [28] avoids explicit construction of ab-
stract state transformer that is usually required for program verification. Instead,
an interpolation procedure simultaneously adjusts precision for all previously dis-
covered spurious counterexamples. In contrast to [28], our non-monotonic control
abstraction imposes additional constraints on the form of the obtained abstrac-
tion using constraints.

Monotonicity plays a crucial role for widening operators in abstraction inter-
pretation framework [10] and its automatic refinement [18,11,32,17]. Refinement
techniques for widening achieve monotonicity by considering results of abstract
reachability tree computation from the previous iterations, see e.g. [18, 17]. We
are not aware of non-monotonic refinement in this domain.
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A Abstract Fixpoint Checking

In this appendix we briefly revisit abstract fixpoint checking together with the
re-construction of counterexample paths. See Figure 5 for the algorithm Find-

Counterexample. The algorithm takes as input a program and a set of pred-
icates defining the abstraction function. The computation of abstract reachable
states is implemented using a queue of abstract states whose successors are yet
to be computed. In order to be able to re-construct a counterexample path in
case the error state of the program is reached (see line 8), the auxiliary relation
Parent keeps track of how each abstract state is reached. The counterexample
re-construction is performed in lines 9–13 via a backward traversal.
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function FindCounterexample

input
P : program

P : abstraction predicates

vars
Reach : reached abstract states

Parent : parent relation

Queue : queue of abstract states

n, n′ : abstract states

τ : program transition

begin
Parent := ∅
Reach := {αP ({sI})}
add αP({sI}) to Queue
while Queue is not empty do

n := take from Queue
for each τ ∈ T do

n′ := post#(n, τ )

if sE ∈ n′ then
π := τ
while exists n and τ such that (n, τ, n′) ∈ Parent do

n′ := n
π := τ ′ · π

done
return Some π

else if ¬(∃m ∈ Reach : n′ ⊆ m) then
add n′ to Queue
Reach := {n′} ∪ Reach
Parent := {(n, τ, n′)} ∪ Parent

done
return None

end

Fig. 5. Abstract fixpoint checking algorithm combined with a counterexample con-

struction step



An Approach for Class Testing from Class Contracts

Atul Gupta

Indian Institute of Information Technology, Design & Manufacturing,
Jabalpur, MP, INDIA - 482005
atul@iiitdmj.ac.in

Abstract. Adequate testing of a class requires testing valid and invalid sequences
of class method interactions. In this paper, we show that class contracts can be
used to generate effective state based unit tests algorithmically for testing mean-
ingful interactions between methods. Using an abstract state configuration for the
object and an initial abstract state, we incrementally search for the methods those
can be invoked in the current state and compute resulting abstract states. The
same is repeated for each newly generated abstract state till no more new abstract
states are generated. This search generates a directed graph from which test se-
quences can easily be obtained. We applied the proposed approach to test three
Java programs seeded with mutation faults and obtained high mutation scores.

Keywords: Class Testing, unit testing, class contracts, abstract state, experiment,
mutation.

1 Introduction

The primary intent of class testing is to find discrepancies between the class specifica-
tions and the code. Therefore, class specification is the primary reference for the test
plan for writing effective unit tests. Testing of methods of a class in isolation is not
sufficient for adequate testing of the class and one needs to test valid and invalid se-
quences of method interactions as well [24,3,23]. However, the methods of a class can
be invoked in any order (except the ‘constructors’) and such sequences can be virtually
infinite. Therefore, an important question is how can adequate testing of the method
interactions for a given class be performed? This issue is addressed in this paper.

An important constituent of the class specifications is the class contracts which spec-
ifies the conditions that must hold just prior to the invocation of each method of the
class and after its execution [17]. These conditions are class invariants, preconditions
and postconditions of the methods. We use Object Constraint Language (OCL) [20] for
representing these constraints which include constraints on simple data types as well as
complex data types (e.g. a collection). OCL supports a set of query operations (e.g. Col-
lect operations for the Collection data type) which help to specify complex constraints.
These query operations are also useful to construct test case assertions in order to check
the outcome of a test case.

Our approach to perform class testing from the class contracts is as follows: Using
an abstract state configuration of the object and an initial abstract state, we incremen-
tally generate other reachable abstract states by searching for the methods which can be

A. Bouajjani and W.-N. Chin (Eds.): ATVA 2010, LNCS 6252, pp. 203–217, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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invoked in the current abstract state and compute resulting abstract states. This process
complements the identification of test sequences along with formulation of the con-
ditions for checking the test outcomes (test oracles) to construct the unit tests for the
class.

We demonstrate the application of the proposed approach by an experiment in which
we tested three Java programs for which class contracts were given in OCL. For each
test-program, we followed the proposed approach to generate unit tests which were
later executed on a set program’s mutants in order to measure the effectiveness of the
proposed approach.

The rest of the paper is organized as follows. We first describe our method to repre-
sent the abstract state configuration for an object of a class under test in Section 2. The
method to generate object’s abstract states and test sequences from its class contracts is
given in Section 3. In Section 4, we present an experiment evaluating the effectiveness
of the proposed class testing approach and discuss other issues relating to the potential
application of the work in Section 5. We present a comparison of our work with other
related work in Section 6 and summary in Section 7.

2 An Abstract State Configuration for the Class

Typically, an object’s state is specified by the concrete values of its variables. But the
problem of state explosion makes it intractable to analyze such behaviour. This problem
can be effectively tackled by the notion of ‘abstract states’ which facilitates variables
to take abstract values (symbolic values) over their input domains. In this situation, the
object behaviour can be analyzed by (1) identifying a set of reachable abstract states (2)
observing its behaviour by exercising valid and invalid method invocations in each of
the reachable states (3) by selecting a set of representational values from the method’s
input parameter space abstraction. Hence abstraction provides an opportunity to carry
out a systematic behavioural analysis which otherwise may not be possible.

Formally, we abstract out class variables (including input parameters of the methods
of the class) corresponding to their data types. Specifically,

– Numeric data types like integer, float, and double are mapped to a finite set of
disjoined partitions (i.e. ranges) over their valid state space. For example an integer
state variable X is mapped to three abstract states x < 0, x = 0, and x > 0.

– Boolean, character, and enumeration data types are mapped to one singleton ab-
stract state for each single value.

– String references S are mapped to either S = null or S = non− null.
– Object references Z are mapped either to the abstract state Z = null, or to the

abstract state Z.isInstanceOf(C) for the objects of each class C which may be
referenced by Z .

– Collection references involving a property of the collection are mapped to one sin-
gleton abstract state of a derived variable (defined later in this section) for each
possible value of that property.

– Additional conditions specified on various data types are partitioned accordingly.
For example, whether a string S contains a given substring S′ is mapped to a
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boolean function contains(S, S′) which returns TRUE (or FALSE) if S con-
tains S′ (or S does not contain S′). A derived variable is used to store the results
of this function.

We handle a complex constraint or a constraint on an object by defining a function
which evaluates the given expression and returns a derived variable of a primitive data
type. A derived variable helps to model the complex constraints specified in the class
contracts. In such cases, we update the class contracts to incorporate these derived
variable(s). A derived variable can be defined using the ‘def ’ construct in OCL. An
example for the same is given below.

context Hotel def:
let numberOfSingleRoomAvailable : int =

(self.singleRoom→collect(singleRoom.isAvailable == FALSE)).size()

where numberOfSingleRoomAvailable is a derived variable which is computed by call-
ing a Collection operation collect(CollectionC) (defined in OCL) on the collection
singleRoom in class Hotel1 which returns the size of the collection. The derived
variable numberOfSingleRoomAvailable then can be used in method contracts. For
example:

context Hotel:: bookSingleBedRoom(): int
pre: numberOfSingleRoomAvailable> 0

2.1 Identifying Object’s State Variables along with Their Abstractions

The state variables set (Sd) for an object of the class under test is obtained by taking
a set-union of all the variables (class and derived variables, excluding the input pa-
rameters of the methods) appearing in all the preconditions expressions of the class
contracts.

The abstract values for a state variable of the object are obtained by processing the
class contracts for the corresponding class. For each identified state variable, we collect
all the individual constraints specified on the state variable in the class contracts. This
includes all the preconditions, postconditions and the invariant constraints specified on
the state variable. Also, we symbolically process all the assignment expressions for the
state variable appearing in methods’ postconditions to obtain additional (postcondition)
constraints on the state variable. We then process these constraints on the state variable
and partition its domain into set of mutually exclusive and collectively exhaustive re-
gions by following an approach similar to the one that is used by Kung et al. [15]. For
example, the abstract values PX of a numerical state variable X are computed as given
below.

1. Construct an initial set of partitions (intervals) PX by including all the simple con-
straints (C1, C2, ..., Cn) as obtained above.

2. Select any two constraints Ci and Cj which represent two different intersecting
intervals in the domain of X and remove them from PX .

1 A class of HotelManagement test program that we have used in our experiment presented later
in this paper.
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3. Form additional intervals Ci − (Ci ∩ Cj), Cj − (Ci ∩ Cj), and Ci ∩ Cj .
4. Repeat steps 2 and 3 until no more intersecting partitions remain in PX .
5. Return PX .

2.2 The Abstract State Configuration for the Class

The abstract state configuration S of a class is represented by the set of state variables
(Sd) along with the domain abstraction defined for each state variable. For an n-state
variable configuration, Sd := {S1, S2, S3, ..., Sn}, where S1 is represented by a set of
p-disjoint abstract values, and S2 is represented by a set of q-disjoint abstract values,
and so on, the abstract state configuration S for the class is the Cartesian product of the
elements of Sd. Formally, it can be represented as

S := S1 × S2 × ....× Sn,
:= {( s1i, s2j , ..., snm)|s1i ∈ S1 ∧ s2j ∈ S2 ∧ ... ∧ snm ∈ Sn }, where
S1 := {s11, s12, ..., s1p },
S2 := {s21, s22, ..., s2q },
...
Sn := {sn1, sn2, ..., snm }.

The abstract values of a state variable are mutually exclusive and collectively exhaus-
tive. A specific state k of an object is represented by a specific abstract state configura-
tion (Sd(k)), which is an element of set S, i.e.

Sd(k) ∈ S

2.3 An Example: Class CoinBox

The class CoinBox implements the functionality of a simple vending machine which
delivers a drink after receiving two quarters. A customer can withdraw quarters previ-
ously inserted by her at any time before the drink is delivered. A specified amount of
drink is inserted in the machine when it is empty.

The class specifications in OCL are shown in Figure 1. From the CoinBox specifica-
tions, and following our approach to select state variables, we get

State Variable Set (Sd) = {curQtr, allowV end, quantity}
The abstract values for each state variable are obtained from the various constraints
specified in the class contracts. The abstraction obtained for each of the three state
variables are given as below.

1. curQtr - The set of constraints for this variable is {curQtr >= 0, curQtr = 0,
curQtr == 1, curQtr = curQtr@pre + 1}. By processing these constraints, we
obtain three abstract values for curQtr as {= 0, = 1, and > 1}.

2. allowV end - Being a boolean variable, its abstraction set is {TRUE, FALSE}.
3. quantity - The set of constraints for this variable is {quantity >= 0, quantity =

0, quantity = quantity@pre−1, quantity = quantity@pre+ m}. By processing
these constraints symbolically, we obtain two abstract values for quantity as {=0,
> 0}.
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Fig. 1. Class CoinBox Specifications in OCL

Therefore, the state-space configuration S for the CoinBox example is as follows:
S := {(s1i, s2j , s3k)|s1i ∈ curQtr ∧ s2j ∈ allowV end ∧ snm ∈ quantity},
where,

Sd := {curQtr, allowV end, quantity},
curQtr := {= 0,= 1, > 1},
allowV end := {TRUE,FALSE},
quantity := {= 0, > 0}.

3 Generating Object’s Abstract States and Unit Tests

We model the object’s state-specific behaviour by a directed graph where a node k
represents an abstract state configuration (Sd(k)) of the object and an edge (transition)
labelled as mj(..) from abstract state k to another abstract state l represents a valid
method invocation for method mj(..) at state k which changes the state of the object to
l. An abstract state is valid (reachable) or not depends on whether a path exists from the
initial state of the object (specified by a constructor of the class) to the specified state
via a sequence of method invocations. We capture this behaviour in our abstract state
generation process where starting at an initial state of the object, we exhaustively search
the object state space for all possible method invocations at each of the generated new
states.

3.1 Generating Initial State(s)

An initial state configuration Sd(0) is obtained by combining postconditions of a ‘con-
structor’ method with the class invariants. Each constraint in the postconditions of the
constructor is evaluated to obtain initial abstract values for the corresponding state vari-
ables. Remaining state variables are assigned default initial abstract values which are
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consistent with the class invariants. The generated abstract state corresponds to a spe-
cific initial state configuration Sd(0). If an object can be instantiated in multiple ways,
as is the case with an overloaded constructor, then for each possible instantiation, an
abstract initial state is generated separately.

3.2 Method Invocation in a Given State

A method mj can be invoked at a given object state k with configuration Sd(k) if its
preconditions set preSet(mj) are ‘consistent’ with that state. We explore this possi-
bility by comparing the abstract values of the state variables present in the method’s
preconditions against the current state configuration.

An algorithm match(Sd(k), preSet(mj)) for evaluating a method mj invocation at
a given state configuration Sd(k) is presented in Figure 2. This algorithm takes the cur-
rent state configuration (Sd(k)) and the precondition set (preSet(mj)) for the method
mj , both specified in Disjunctive Normal Form (DNF), and returns the result of the
‘match’ (overall − match). As stated earlier, a state configuration Sd(k) for a given
state k is a conjunction of all the state variables with their abstract values assigned for
that state. Each precondition Pi of method mj (Pi ∈ preSet(mj)) is matched with
the current state configuration Sd(k) to obtain an overall match (outermost loop in the
algorithm presented in Figure 2). This is done by evaluating each conjunct Cij of the
precondition Pi with the current state configuration Sd(k) separately. This, in turn,
requires comparing the two values of a state variable which also appears as a clause
variable in conjunct Cij .

Fig. 2. Algorithm for checking the possibility of a method invocation in a given state

3.3 Obtaining Resulting States

Once an affirmative decision regarding a method mj invocation in a given state is made,
the method’s postconditions are combined with the current state to obtain the resulting
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Fig. 3. Algorithm for obtaining resulting sub-states

states. For this, we determine the changes in the abstract values for the state variables
and reflect them in the current state to obtain the resulting states. Each postcondition
expression is separately processed to obtain the next state values for the state variables.
Identifying the next state abstractions for the state variables of boolean, enumerated, and
character (or string) data types is relatively straightforward whereas a numeric variable
may require symbolic processing.

Note that a postcondition expression may also contain input parameters of the method.
As discussed earlier, we also abstract out method input parameters based on the precon-
dition constraints specified on them. Different valid abstractions on an input parameter
(consistent with the precondition constraints) appearing in a postcondition expression
of a state variable X may result in additional abstract states for X .

To obtain the resulting states, we compute a set of sub-states, each consist of a subset
of updated state variables as a result of the method invocation along with their updated
abstract values. An algorithm for obtaining resulting sub-states due to method mj in-
vocation in the current state k is given in Figure 3. The algorithm works in two steps.
In the first step, it computes the abstraction information of the updated state variables.
This step is undertaken in the first for-loop of the algorithm. Subsequently, in the sec-
ond step, as undertaken in the second for-loop of the algorithm presented in Figure 3, it
computes a set of changed sub-states by combining the updated abstract values of indi-
vidual state variables of the sub-states. Finally, we combine the generated ‘sub-states’
with other state variables (unchanged state variables) to obtain the set of resulting states
for the method invocation.

3.4 Example: Class CoinBox Revisited

We demonstrate the generation of abstract states for the CoinBox object. As worked out
in the previous section, we identify a state configurationSd as represented by three state
variables and an initial state configuration Sd(A) (assuming A as an initial state) as
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Sd(A) := (0, FALSE, 0)

Only one method addDrink(m) can be called in the current state as for rest of the
methods, one or more preconditions are not satisfied. The postcondition of addDrink
(m) increment the quantity by a positive amount m and hence the next state value for
the quantity is (> 0). This will change the object state to

Sd(B) := (0, FALSE,> 0)

In state Sd(B), only method addQtr() can be called, which, results in a change of the
object state to

Sd(C) := (1, FALSE,> 0)

At Sd(C), two methods, addQtr() and retQtrs() may be invoked, resulting the next
state abstractions as (2, TRUE,> 0) and (0, FALSE,> 0), respectively. (2,
TRUE,> 0) is a new state and we mark it as

Sd(D) := (2, TRUE,> 0)

whereas (0, FALSE,> 0) is the same as Sd(B).
Three methods addQtr(), retQtrs() and vend() may be invoked in the newly gener-

ated state Sd(D). The invocation of methods addQtr() causes a transition from Sd(D)
to itself (a loop). The invocation of method retQtrs() leads to state Sd(B). The ab-
stract value for quantity in state Sd(D) is (> 0). Note that the method vend()’s post-
conditions include {quantity = quantity@pre− 1}. As described in Section 3.3, the
invocation of vend() leads to two different states Sd(A) and Sd(B), corresponding to
the two transitions with conditions [quantity = 1] and [quantity > 1], respectively.
The complete state graph for the CoinBox class is shown in Figure 4.

3.5 Generating Unit Tests for the Class

Testing a sequence of method invocations includes instantiating the class by means
of calling a constructor of that class, followed by a sequence of method invocations
to put the object in the desired state, followed by invoking a method of interest, and
finally, assessing the resulting state against the expected values (i.e. the test oracles).
Generating abstract states incrementally results in formation of a directed graph where
a node represents an abstract state and an edge represents a method invocation causing
the state transition. A test sequence then be a sequence of method invocations along
a simple 2 path in the graph. The test sequences so generated are said to follow the
Transition-Tree [3] coverage criterion on a state model. The checking of abstract states
before and after each method invocation in a test sequence forms the test oracles for a
unit test of the class. The test oracles are further strengthened by augmenting them with
the method’s postconditions.

2 A simple path is a path in the graph from start node to a node that has already appeared in that
path.
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Fig. 4. Generated abstract state model for the CoinBox class

4 Experiment Evaluation

We study the effectiveness of the generated unit tests by testing the classes of three
object-oriented programs using mutation analysis. The program units were coded in
Java. The class contracts were specified in OCL by the author. For each program, we
incrementally generated abstract states for each class exhibiting state-specific behaviour
and constructed unit tests as described above.

4.1 Test Programs

A brief summary of the test-programs are given below. Table 1 shows relevant statistics
for the three test programs.

Program-1: LinkedList
The LinkedList class is a class included in Java collection (in our case Java SDK ver-
sion 1.4.2). For the sake of this experiment, we simplified the code to remove super
class dependencies. It consists of 19 methods which include two getter-methods, size()
and contains(Object). Some methods use the Collection interface, into which we delib-
erately did not seed any faults for the sake of clarity.

Program-2: HotelManagement
This program manages a simple room booking system for a hotel providing accom-
modation for single, double, and function-rooms. The main class ‘Hotel’ facilitates the
bookings for the customers into available rooms and ensures that a room is made avail-
able for further bookings as soon as it is vacated. It also tracks the movement of pre-
sentation equipment between function rooms. The program, as implemented, does not
deal with the dates, which means that bookings and other activities are purely run time
events.
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Program-3: CruiseControl
CruiseControl is widely used for state based testing experiments. This program con-
sists of classes mainly composed of small methods exhibiting state-specific behaviour.
The invocations of most of the methods are purely governed by the object’s states. This
program is a graphical simulation of a cruise control system for a vehicle. The graph-
ical interface facilitates turning the engine on and off. When the engine is on, one can
accelerate, brake, or put the vehicle in the ‘cruise’ mode. Specifically, the program uses
two threads of control - one that provides manual control of the vehicle, and the other
that provides cruise control support for the vehicle.

4.2 Mutation Operators and Faults Seeded

To enable us to measure effectiveness we created multiple mutants of the three pro-
grams by manually seeding faults in a systematic way, using a set of applicable mu-
tation operators [14]. The faults were randomly and uniformly distributed in the code
under test. The types of the faults and other statistics for the three programs are given
in Figure 5 (a), (c), and (e), respectively. The mutation operators used and the kinds of
faults inserted by them in this study were:

– Literal Change Operator (LCO) - changing increment to decrement or vice versa,
incorrect or missing increment, incorrect or missing state assignment.

– Language Operator Replacement (LOR) - replacing a relational or logical operator
by another one of similar type.

– Control Flow Disruption (CFD) - missing or incorrectly placed block-markers,
break, continue, or return.

– Statement Swap Operator (SSO) - swapping two statements of the same scope.
– Argument Order Interchange (AOI) - interchanging arguments of similar types in a

method-definition or in a method-call.
– Variable Replacement Operator (VRO) - replacing a variable with another of simi-

lar type
– Missing Condition Operator (MCO) - missing-out a condition in a composite con-

ditional statement.
– Null Reference Operator (NRO) - causing a null reference.
– Incorrect Initialization Operator (IIO) - Incorrect or missing initialization.

4.3 Generating Unit Tests and Performing Unit Testing

For each program, we generated test sequences by applying the Transition-Tree cov-
erage criterion to the object state graph. We applied two strategies for generating unit
tests from the object state graph. In the first strategy, we computed the test inputs for
the test sequences obtained by applying TT criterion to the state graph. The generated
unit tests were coded as JUnit [13] test scripts and subsequently exercised on the set of
the test-program’s mutants to obtain killed mutants information.

In the next strategy, referred asModified Transition-Tree coverage criterion, we
strengthened the TT tests as obtained above by including additional tests for the in-
valid inputs (those violating the preconditions of corresponding method) and repeated
the unit testing.
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4.4 Results

For each program, we first highlight the effectiveness of the unit tests obtained using
the TT coverage criterion. We then show the improved effectiveness of the unit tests
obtained using the Modified TT coverage criterion, where the unit tests generated
earlier were combined with invalid test inputs based on input data abstraction. We also
present code coverage achieved by TT and Modified TT tests for each test-program.
Subsequently, we address the limitations of the proposed approach from the insights
gained by observing the kinds of faults not readily identified.

Program unit #1: LinkedList The analysis of the specification revealed only one state
variable ‘size’ with two abstract values, = 0, and > 0. We found that unit tests ob-
tained using the TT criterion revealed 82.34% of the faults seeded. When we used
Modified TT criterion for test generation, the fault detection effectiveness of the unit
testing was increased to 90%. The fault data is shown in Figure 5 (a), where each bar
in the graph (from bottom to top) demonstrate total number of mutants used of a given
type, killed mutants in TT , and additionally killed in ModifiedTT coverage criteria,
respectively.

Fig. 5. Faults and Coverage statistics for the three test programs

Figure 5 (b) shows the test code coverage for the TT tests for three code coverage
criteria, namely, block, branch, and predicate coverage obtained by using JavaCode
Coverage [16] tool. Note the increase in code coverage for all the three coverage cri-
teria when we have added more tests according to Modified TT criterion.

We tried to gain insight into reasons behind certain faults which were not revealed at
all. We found that by inserting an object in the ‘empty’ list, its state changed to ‘non-
empty’. There are two methods of the LinkedList class, namely, firstIndexOf(Object
o) and lastIndexOf(Object o) which return the index of the object as (=0), as the list
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Table 1. Subject Programs Test-statistics

S.
No.

Program Name
(NCLOC/mutants)

Class Name # of
meth-
ods

# of
states

# of TT tests # Faults
identified

# of modified
TT tests

# of
Faults
identified

1 LinkedList (380/68) LinkedList 19 2 184 56 196 61
2 HotelManagement Room 4 2 10 6 12 8

(390/86) FunctionRoom 4 2 10 6 11 7
Hotel 11 27 135 62 154 67

3 CruiseControl CarSimulator 4 6 19 10 19 10
(315/57) Controller 8 4 25 26 25 26

CruiseController 4 2 6 4 6 4
SpeedControl 4 3 10 8 10 8

contained only one element (at index 0). As both the methods use a for loop to search
for the desired element in the list, they got iterated for the first time and found the
desired object. Two VRO faults and one SSO fault inserted in these methods could
only be detected if the list would have an element appearing more than once. This
would have differentiated their places in the lists and hence detected the faults. Both
the methods had one CFD fault seeded which could only be revealed if the searched
element had occupied any other place than the first (in firstIndexOf(Object o)) or the
last (in lastIndexOf(Object o)) place in the list. Another CFD fault in the remove(Object
o) method remained unidentified for the same reason. Hence, three of the CFD faults
seeded in these methods were not revealed.

Program unit #2: HotelManagement. This program unit consists of six classes, three
of which exhibit state-specific behaviour. Two of the three classes are in the ‘isa’ re-
lationship (i.e. one class extends the other) and an ‘array’ of object-references of the
extended class are included in the third class. So we sequentially tested the three classes
- first the base class followed by the inherited class and finally the ‘container’ class.

The tests obtained from TT coverage criteria revealed 86% of the seeded faults. Us-
ing Modified TT criterion, the fault detection increased to 95%. Figure 5 (d) shows
the test code coverage for the TT tests (and modified TT tests) for three code cover-
age criteria. For the un-revealed faults, we found that all such faults were seeded in
one method of the ‘Hotel’ class, namely, movePresentationEquipment(Room r). As rel-
evant information of this method could not be captured in the state behaviour, some
of the seeded faults remained unidentified. Further investigation revealed that stronger
contracts for this method could have revealed these faults.

Program unit #3: CruiseControl. In this case, most of the faults were identified by the
unit tests obtained using TT coverage criteria. This was due to the fact that the methods
of the CruiseControl classes were small, singly minded, and without arguments. There-
fore, the TT tests were adequate enough to identify most of the errors. However, due to
the non-deterministic behaviour of the two threads of control, some regions of the test-
program were not reached deterministically by the generated unit tests, and therefore
faults present in these regions were missed. Figure 5 (f) shows the test code coverage
for the TT tests for three code coverage criteria.
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5 Discussions

A general perception is that class specifications are seldom complete and there may
be inconsistencies which may limit the correct interpretation of the behaviour of cor-
responding objects. Chow [5] has demonstrated that one can use finite state models to
identify the discrepancies in the specifications. It has been shown that incomplete and/or
inconsistent specifications can be synthesized in a step-wise refinement approach lead-
ing to more complete and consistent set of class specifications [9].

State based testing may not completely test a given class and similar situations have
also been observed in many investigations of state based testing by Briand et al. [1,4,18]
and Offutt et al. [21]. They advocated for combining state based testing with other test-
ing approaches like structural [18] and functional testing [1] for improving the effec-
tiveness of unit testing.

6 Related Work

Specifying suitable operational contracts in class specifications is a popular approach
[10,17,7,11] for program development which deals with behavioural ambiguities and
uncertainties. Operational contracts consist of a set of assertions that must hold imme-
diately before and after the termination of any call to a specified operation. A number of
such formalisms support operational contracts which include AsmL [2], Object-Z [19],
JML [12], and OCL [20].

Finite state machines represent important form of behaviour modeling and a number
of studies generated these models from specifications [5,11]. However, there is a signif-
icant problem of state explosion, which inherently limit the use of these FSMs. Many
studies tackled the state explosion by restricting the size of the generated FSM [11].
Other difficulties reported for FSM to be used were handling of pointer references, ar-
rays, and non-determinism [15,3].

The problem of state explosion can be tackled by abstraction [24,7,8,22]. Turner et
al. [24] combine a group of data values as ‘general substate values’ that are all con-
sidered in the same manner. Gao et al. [7] use pre and postcondition expressions to
identify the data states for simple data types. Grieskamp et al. [8] use similar consider-
ation for generating finite state machines from by executing the AsmL Specifications,
but the generated FSM may be an under-approximation of the true FSM due to missing
links between reachable abstract states. Their analysis included methods without any
arguments. Paradkar [22] also proposed an approach for generating a FSM based on the
abstract state notion where the author has used an informal abstraction procedure for
the state generation. More recently, Ciupa et al. [6] describe a tool AutoTest-supported
random testing of classes where method contracts are used as test oracles. Our approach
generates valid and invalid sequences of method invocations that covers an object state
space systematically and test results are compared, besides post conditions, with the
object abstract state at that point of time to ensure more comprehensive testing, though
a through analysis is required to obtained dependable results.

In our approach, we mechanically compute the abstraction information from the
class contracts. Our approach to generate object state graph is more comprehensible
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as it considers methods with input parameters that include primitive and non-primitive
data types. The proposed approach has the potential for end-to-end automation of class
testing as the test inputs for the test sequences can easily be obtained during the gener-
ation of the abstract states of an object. This can greatly improve the efficiency of the
testing process.

7 Summary

In this paper, we have proposed an approach to perform unit testing of object-oriented
programs from class contracts. An object behaviour is modeled as a state graph having
abstract states. The state variables for the object and their abstractions are determined
from the class contracts. The abstract state generation process is then used to obtain
unit tests for the class.

We demonstrate that the proposed approach is both practically applicable and ef-
fective by performing an experiment which tests the classes of three object-oriented
programs using mutation analysis. Our results suggested that most of the seeded faults
can be identified by the unit tests so obtained. The approach systematically models the
object state-specific behaviour and exhaustively explores its state space to ensure ob-
ject’s correct behaviour in terms of valid and invalid method invocations in reachable
states. The approach has considerable potential for automation, which suggests for the
proposed approach to be a viable option for unit testing object-oriented programs.
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Abstract. The Büchi non-emptiness problem for timed automata con-

cerns deciding if a given automaton has an infinite non-Zeno run satisfy-

ing the Büchi accepting condition. The solution to this problem amounts

to searching for a cycle in the so-called zone graph of the automaton.

Since non-Zenoness cannot be verified directly from the zone graph, ad-

ditional constructions are required. In this paper, it is shown that in

many cases, non-Zenoness can be ascertained without extra construc-

tions. An on-the-fly algorithm for the non-emptiness problem, using an

efficient non-Zenoness construction only when required, is proposed. Ex-

periments carried out with a prototype implementation of the algorithm

are reported and the results are seen to be promising.

1 Introduction

Timed automata [1] are finite automata extended with clocks. The clock values
can be compared with constants and reset to zero on the transitions, while they
evolve continuously in the states. The emptiness problem for timed automata is
decidable. Consequently, timed automata are used in tools like Uppaal [3] and
Kronos [8] for model-checking reachability properties of real-time systems. They
have also been successfully used for industrial case studies, e.g. [4].

For the verification of liveness properties, timed automata with Büchi con-
ditions have been considered. The emptiness problem demands if there exists a
non-Zeno run that visits an accepting state infinitely often. A run is non-Zeno
if the total time elapsed during the run is unbounded. This further requirement
makes the problem harder than classical Büchi emptiness.

The solution proposed in [1] relies on a symbolic semantics called the re-
gion graph. The emptiness problem for timed Büchi automata is reduced to
classical Büchi emptiness on the region graph with an additional time progress
requirement. However, the region graph construction is very inefficient for model
checking real life systems. Zones are used instead of regions in the aforementioned
tools. The zone graph is another symbolic semantics that is coarser than the re-
gion graph. Although it is precise enough to preserve reachability properties, it
is too abstract to directly infer time progress and hence non-Zenoness.

Two approaches have been proposed in order to ascertain time progress.
In [16], the automaton is transformed into a so-called strongly non-Zeno au-
tomaton, which has the property that all the runs visiting an accepting state

A. Bouajjani and W.-N. Chin (Eds.): ATVA 2010, LNCS 6252, pp. 218–232, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



Efficient On-the-Fly Emptiness Check 219

infinitely often are non-Zeno. Hence, non-Zenoness is reduced to Büchi empti-
ness. However it has been proved in [12] that this construction sometimes results
in an exponential blowup.

A careful look at the conditions for Zenoness yields another solution to verify
time progress. Two situations can prevent time from diverging on a run. Either
the value of a clock is bounded and not reset anymore, or some clock is reset and
later checked to zero preventing time elapse in-between. In [12] a guessing zone
graph has been introduced to identify clear nodes where time can elapse despite
zero-checks. Hence timed Büchi automata emptiness reduces to Büchi emptiness
on the guessing zone graph with two infinitary conditions namely clear nodes
and accepting nodes. The guessing zone graph is only |X |+ 1 times bigger than
the zone graph, where |X | stands for the number of clocks. The straightforward
algorithm handling both the above mentioned situations explores the guessing
zone graph O(|X |) number of times.

On a parallel note, the emptiness problem for (untimed) Büchi automata has
been extensively studied (see [13] for a survey). The best known algorithms in the
case of multiple Büchi conditions are inspired by the Tarjan’s SCC algorithm. An
on-the-fly algorithm which computes the graph during the search, and terminates
as soon as a satisfactory SCC is found, is crucial in the timed settings as the zone
graph is often huge. It is known that the Couvreur’s algorithm [9] outperforms
all on-the-fly SCC-based algorithms.

In this paper, we present an on-the-fly algorithm that solves the emptiness
problem for timed Büchi automata. We noticed from several experiments that
Büchi emptiness can sometimes be decided directly from the zone graph, i.e.
without using any extra construction. This is the way we take here. The Cou-
vreur’s algorithm is employed to search for an accepting SCC directly on the
zone graph. Then, we face two challenges.

The first challenge is to detect if this SCC has blocking clocks, that is clocks
that are bounded from above but are not reset in the transitions of the SCC.
The SCCs with blocking clocks have to be re-explored by discarding transitions
bounding these clocks. Notice that discarding edges may split the SCC into
smaller SCCs. The difficult task is to discover the smaller SCCs and explore
them on-the-fly.

The second challenge is to handle SCCs with zero-checks, that is clocks that
are tested for value being zero. In this case, the zone graph does not contain
enough information to detect time progress. This is where the guessing zone
graph construction is required. The involving part of the problem is to introduce
this construction on-the-fly. In particular the part of the guessing zone graph that
is explored should be restricted only to the transitions from the SCC containing
zero-checks.

We propose an algorithm that fulfills both challenges. In the worst case, it
runs in time O(|ZG|.(|X |+1)2). When the automaton does not have zero checks
it runs in time O(|ZG|.(|X |+ 1)). When the automaton further has no blocking
clocks, it runs in time O(|ZG|). Our algorithm further incorporates an improve-
ment that proves powerful in practice. Indeed, non-Zenoness could be established
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from situations where the value of some clock is known to increase by 1 infinitely
often. Even in the presence of zero-checks, this property avoids exploring the
guessing zone graph. Again, this improvement is applied on-the-fly.

Next, we show that all these operations on SCCs can be handled efficiently
as the memory needed by our algorithm is comparable to the memory usage of
the strongly non-Zeno approach in [16].

Finally, we also report some successful experiments of our algorithm on exam-
ples from the literature. All the experiments that we have conducted show that
non-Zenoness constructions need not be applied mechanically, hence validating
our approach.

Related work. Timed automata with Büchi conditions have been introduced in
the seminal paper [1]. The zone approach to model-checking has been introduced
in [5] and later used in the context of timed automata [11]. The Büchi emptiness
problem using zones has been studied in [6,16,15]. The idea of the strongly non-
Zeno approach first appears in [14]. The strongly non-Zeno construction has
been implemented in the tool Profounder [16]. Finally, the recent paper [12]
introduces the guessing zone graph construction.

Outline. The paper is organized as follows. In Section 2 we define the emptiness
problem. Then we present the two approaches that ensure time progress in Sec-
tion 3. We detail our algorithm and its optimizations in Section 4. Finally, we
discuss experiments and future work in Section 5.

2 The Emptiness Problem for Timed Büchi Automata

2.1 Timed Büchi Automata

Let X be a set of clocks, i.e., variables that range over R≥0, the set of non-
negative real numbers. Clock constraints are conjunctions of comparisons of
variables with integer constants, e.g. (x ≤ 3 ∧ y > 0). Let Φ(X) denote the
set of clock constraints over clock variables X .

A clock valuation over X is a function ν : X → R≥0. We denote RX
≥0 the set

of clock valuations over X , and 0 : X → {0} the valuation that associates 0 to
every clock in X . We write ν |= φ when ν satisfies φ, i.e. when every constraint
in φ holds after replacing every x by ν(x).

For a valuation ν and δ ∈ R≥0, let (ν + δ) be the valuation such that (ν +
δ)(x) = ν(x) + δ for all x ∈ X . For a set R ⊆ X , let [R]ν be the valuation such
that ([R]ν)(x) = 0 if x ∈ R and ([R]ν)(x) = ν(x) otherwise.

A Timed Büchi Automaton (TBA) is a tuple A = (Q, q0, X, T,Acc) where Q
is a finite set of states, q0 ∈ Q is the initial state, X is a finite set of clocks,
Acc ⊆ Q is a set of accepting states, and T ⊆ Q×Φ(X)× 2X ×Q is a finite set
of transitions (q, g, R, q′) where g is a guard, and R is a reset of the transition.
Examples of TBA are depicted in Figure 1.

A configuration of A is a pair (q, ν) ∈ Q× RX
≥0; with (q0,0) being the initial

configuration. A discrete transition between configurations (q, ν) t
⇀ (q′, ν′) for
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t = (q, g, R, q′) is defined when ν � g and ν′ = [R]ν. We also have delay transi-
tions between configurations: (q, ν) δ

⇁ (q, ν + δ) for every q, ν and δ ∈ R≥0. We

write (q, ν)
δ,t−→ (q′, ν′) if (q, ν) δ

⇁ (q, ν + δ) t
⇀ (q′, ν′).

A run of A is a finite or infinite sequence of configurations connected by
δ,t−→

transitions, starting from the initial state q0 and the initial valuation ν0 = 0:

(q0, ν0)
δ0,t0−−−→ (q1, ν1)

δ1,t1−−−→ · · ·

A run σ satisfies the Büchi condition if it visits accepting configurations infinitely
often, that is configurations with a state from Acc. A duration of the run is the
accumulated delay:

∑
i≥0 δi. A run σ is Zeno if its duration is bounded.

Definition 1. The Büchi non-emptiness problem is to decide if A has a non-
Zeno run satisfying the Büchi condition.

The class of TBA we consider is usually known as diagonal-free TBA since clock
comparisons like x − y ≤ 1 are disallowed. Since we are interested in the Büchi
non-emptiness problem, we can consider automata without an input alphabet
and without invariants since they can be simulated by guards.

The Büchi non-emptiness problem is known to be Pspace-complete [1].

2.2 The Zone Graph

A zone is a set of valuations defined by a conjunction of two kinds of constraints:
comparison of the difference between two clocks with a constant, or comparison
of the value of a single clock with a constant. For instance (x− y ≥ 1)∧ (y < 2)
is a zone.

The transition relation on valuations can be transposed to zones. Let
−→
Z be a

zone denoting the result of time elapse from Z, that is, the set of all valuations
ν′ such that ν′ = ν + δ for some ν ∈ Z and δ ∈ R≥0. We have (q, Z) t−→ (q′, Z ′) if
Z ′ is the set of valuations ν′ such that (q, ν) t−→ (q′, ν′) for some ν ∈ −→

Z . It can be
checked that Z ′ is a zone. Difference Bound Matrices (DBMs) can be used for
the representation of zones [11]. Transitions are computed efficiently for zones
represented by DBMs.

However, the number of reachable symbolic configurations (q, Z) may not
be finite [10]. Hence tools like Kronos or Uppaal use an approximation operator
Approx that reduces the set of zones to a finite set. The zone graph of A, denoted
ZG(A), has nodes of the form (q,Approx (Z)). Observe that ZG(A) only has
finitely many nodes. The initial node is (q0, Z0) where q0 is the initial state of
A and Z0 is the zone where all the clocks are equal to zero. The transitions of
the zone graph are (q, Z) t−→ (q′,Approx (Z ′)) instead of (q, Z) t−→ (q′, Z ′).

It remains to define Approx in such a way that verification results for ZG(A)
entail similar results for A. Let M be the maximal constant in A. M defines the
precision of the approximation. We define the region equivalence over valuations
as ν ∼M ν′ iff for every x, y ∈ X :
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1. ν(x) > M iff ν′(x) > M ;
2. if ν(x) ≤ M , then -ν(x). = -ν′(x).;
3. if ν(x) ≤ M , then {ν(x)} = 0 iff {ν′(x)} = 0;
4. for every integer c ∈ (−M,M): ν(x) − ν(y) ≤ c iff ν′(x) − ν′(y) ≤ c.

The first three conditions ensure that ν and ν′ satisfy the same guards. The
last one enforces that for every δ ∈ R≥0 there is δ′ ∈ R≥0, such that valuations
ν + δ and ν′ + δ′ satisfy the same guards. This definition of region equivalence
is introduced in [7]. Notice that it is finer than the equivalence defined in [1]
thanks to the last condition which is needed for correctness of Theorem 1 below.

An equivalence class of ∼M is called a region. For a zone Z, we define Approx
(Z) as the smallest union of regions that is convex and contains Z. Notice that
there are finitely many regions, hence finitely many approximated zones.

We call a path in the zone graph a finite or infinite sequence of transitions:

(q0, Z0)
t0−→ (q1, Z1)

t1−→ · · ·

A path is initialized when it starts from the initial node (q0, Z0). A run of A
(q0, ν0)

δ0,t0−−−→ (q1, ν1)
δ1,t1−−−→ · · · is an instance of a path if νi ∈ Zi for every i ≥ 0.

The path is called an abstraction of the run.
Approx preserves many verification properties, and among them Büchi ac-

cepting paths as stated in the following theorem.

Theorem 1 ([15]). Every path in ZG(A) is an abstraction of a run of A, and
conversely, every run of A is an instance of a path in ZG(A).

As a consequence, every run of A that satisfies the accepting conditions yields
a path in ZG(A) that also satisfies the accepting conditions, and conversely.
However, it is not possible to determine from a path in ZG(A) if it can be
instantiated to a non-Zeno run of A. Hence, we need to preserve more information
either in the automaton or in the zone graph.

3 Solutions to the Zenoness Problem

Theorem 1 is a first step towards an algorithm for the Büchi emptiness problem
working from the zone graph. It remains to ensure that a given path in ZG(A)
has a non-Zeno instance in A. Observe that the zone graph is not pre-stable:
a transition (q, Z) t−→ (q′, Z ′) may not have an instance for a valuation ν ∈ Z.
Hence zones are not precise enough to detect time progress.

For example, the state 3 of A1 in Figure 1 is reachable with zone Z = (0 ≤
x ∧ x ≤ y) on path from 0 via 2. At first sight, it seems that time can elapse in
configuration (3, Z). This is not the case as the transition from 3 to 0 forces x
to be equal to 0. Hence, Z has to be separated in two zones: x = 0 ∧ x ≤ y that
can take the transition from 3 to 0, and x > 0 ∧ x ≤ y that is a deadlock node.

We present two approaches from the literature to overcome this problem.
Both are used in our algorithm in section 4. They rely on the properties of the
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Fig. 1. A Timed Automaton and a Strongly non-Zeno Timed Automaton

transitions (q, Z)
g;R−−→ (q′, Z ′) in ZG(A). We say that a transition bounds x

from above if there exists c ≥ 1 such that
−→
Z ∧ g ⇒ (x ≤ c). Observe that this

is equivalent to ν′′(x) ≤ c for every valuation ν′′ such that both (q, ν) δ
⇁ (q, ν′′)

and ν′′ |= g. Similarly a transition bounds x from below when
−→
Z ∧ g ⇒ (x ≥ c);

it zero checks x when
−→
Z ∧ g ⇒ (x = 0). Finally, a transition resets x when x

belongs to R. Notice that all these properties are easily checked using DBMs for
zones and guards.

3.1 Adding One Extra Clock

A common solution to deal with Zeno runs is to transform a TBA into a strongly
non-Zeno automaton, i.e. such that all runs satisfying the Büchi condition are
guaranteed to be non-Zeno.

The construction in [16,2] adds one clock t and duplicates the accepting states
in order to ensure that at least one unit of time has passed between two visits
to an accepting state. Figure 1 presents A1 along with its strongly non-Zeno
counterpart SNZ(A1). The correctness of the approach comes from Lemma 1
below, the proof of which is omitted.

Lemma 1. If a path in ZG(A) visits infinitely often both a transition that
bounds some clock x from below and a transition that resets the same clock
x, then all its instances are non-Zeno.

The converse also holds: if A has a non-Zeno accepting run, then 1 time unit
elapses infinitely often. Hence, the guard t ≥ 1 is satisfied infinitely often and
there exists an accepting run of SNZ(A). By Theorem 1 one can find an accept-
ing path in ZG(SNZ(A)).

Despite being simple, this construction may lead to an exponential blowup.
It is shown in [12] that there exists some TBA A such that the zone graph of
SNZ(A) has size |ZG(A)|.2O(|X|). Our algorithm described in section 4 will use
a similar idea as an optimization. However, no new clocks are added and no
blowup is inflicted.
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3.2 The Guessing Zone Graph

Another solution was introduced in [12] in order to avoid the exponential blowup.
Consider a path in ZG(A) that only has Zeno instances. Two situations may
occur. Either the path has infinitely many transitions that bound some clock x
from above, but only finitely many transitions that reset x. Then, the total time
elapsed is bounded. Or, time cannot elapse at all because of zero-checks, as this
is the case in state 3 of A1 in Figure 1.

Zero-checks are handled thanks to a modification of the zone graph. The nodes
will now be triples (q, Z, Y ) where Y ⊆ X is the set of clocks that can potentially
be checked to 0. It means in particular that other clock variables, i.e. those from
X−Y are assumed to be bigger than 0. We write (X−Y ) > 0 for the constraint
saying that all the variables in X − Y are not 0.

Definition 2. Let A be a TBA over a set of clocks X. The guessing zone graph
GZG(A) has nodes of the form (q, Z, Y ) where (q, Z) is a node in ZG(A) and
Y ⊆ X. The initial node is (q0, Z0, X), with (q0, Z0) the initial node of ZG(A).
There is a transition (q, Z, Y ) t−→ (q′, Z ′, Y ∪R) in GZG(A) if there is a transition
(q, Z) t−→ (q′, Z ′) in ZG(A) with t = (q, g, R, q′), and there are valuations ν ∈ Z,

ν′ ∈ Z ′, and δ such that ν + δ � (X − Y ) > 0 and (q, ν)
δ,t−→ (q, ν′). We also

introduce a new auxiliary letter τ , and put transitions (q, Z, Y ) τ−→ (q, Z, Y ′) for
Y ′ = ∅ or Y ′ = Y .

Observe that the definition of transitions reflects the intuition about Y we have
described above. Indeed, the additional requirement on the transition (q, Z, Y ) t−→
(q′, Z ′, Y ∪R) is that it should be realizable when the clocks outside Y are strictly
positive; so there should be a valuation satisfying (X −Y ) > 0 that realizes this
transition. This construction entails that from a node (q, Z, ∅) every reachable
zero-check is preceded by the reset of the variable that is checked, and hence
nothing prevents a time elapse in this node. We call such a node clear. We call
a node (q, Z, Y ) accepting if it contains an accepting state q. Figure 4 depicts
the part of GZG(A1) reachable from node (3, x == 0, {x, y}) with state 1 and
all its transitions removed from A1.

Notice that directly from Definition 2 it follows that a path in GZG(A) de-
termines a path in ZG(A) obtained by removing τ transitions and the third
component from nodes.

We say that a path is blocked if there is a variable that is bounded from above
by infinitely many transitions but reset by only finitely many transitions on the
path. Otherwise the path is called unblocked. We have the following result.

Theorem 2 ([12]). A TBA A has a non-Zeno run satisfying the Büchi con-
dition iff there exists an unblocked path in GZG(A) visiting both an accepting
node and a clear node infinitely often.

It is shown in the same paper that the proposed solution does not produce an
exponential blowup. This is due to the fact that the zones reachable in ZG(A)
order the clocks. More precisely, if Z is the zone of a reachable node in ZG(A)
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then for every two clocks x, y, Z implies that at least one of x ≤ y, or y ≤ x
holds [12]. Now, it can be checked that for every node (q, Z, Y ) reachable in
GZG(A), the set Y respects the order given by Z, that is whenever y ∈ Y and
Z implies x ≤ y then x ∈ Y . In the end, a nice polynomial bound is obtained
on the size of the guessing zone graph.

Lemma 2 ([12]). Let |ZG(A)| be the size of the zone graph, and |X | be the
number of clocks in A. The number of reachable nodes of GZG(A) is bounded
by |ZG(A)|.(|X | + 1).

4 Solving the Emptiness Problem On-the-Fly

4.1 On-the-Fly Emptiness Check on the Guessing Zone Graph

We propose an on-the-fly algorithm for the Büchi emptiness problem based on
Theorem 2. It requires to find an unblocked path in GZG(A) that visits both
an accepting node and a clear node infinitely often. To make the presentation of
the algorithm simpler, we assume that there is one distinguished Büchi condition
that labels exactly all the clear nodes. Hence we search for an unblocked path
in GZG(A) that satisfies the Büchi conditions.

Observe that we do not need to exhibit the path; proving its existence is sim-
pler and sufficient1. Our problem can thus be stated over the SCCs of GZG(A).
A clock is blocking in an SCC if it is not reset by any transition in the SCC, but
it is bounded from above by one of them. An SCC is unblocked when it has no
blocking clock. Hence, finding an SCC that is unblocked and that contains an
accepting node (for every Büchi condition) yields the required path. Conversely,
from such a path, we have a satisfactory SCC.

The algorithm essentially involves three tasks: (1) detecting an accepting SCC,
(2) inferring any blocking clocks in the SCC, and (3) re-exploring the SCC with
blocking transitions removed. Since the blocking transitions might involve resets
of other clocks, the SCCs obtained after removing blocking transitions might
in turn contain new blocking clocks. These tasks have to be accomplished on-
the-fly. The Couvreur’s algorithm [9] finds accepting SCCs in (untimed) Büchi
automata on-the-fly. We first adapt it to infer blocking clocks. Next we propose
a modification to enable performing the third task. This last contribution is
particularly involving. Our algorithm is depicted in Figure 2.

Couvreur’s Algorithm. The Couvreur’s algorithm, can be viewed as three
functions check dfs, merge scc and close scc. The algorithm annotates every
node with an integer dfsnum and a boolean opened. The variable dfsnum is
assigned based on the order of appearance of the nodes during the depth-first
search. The opened bit is set to true when the node is just opened for exploration
by check dfs and is set to false by close scc when the entire SCC of the node
1 The path is a counter-example to the emptiness of the automaton, hence it can be an

expected outcome of the algorithm. As in the untimed case, a short counter-example

can be generated in a separate task from the outcome of our algorithm.



226 F. Herbreteau and B. Srivathsan

has been completely explored. The algorithm uses two stacks Roots and Active.
The Roots stack stores the root of each SCC in the current search path. The
root is the node of the SCC that was first visited by the DFS. If the roots stack
is s0s1 . . . sn, then for 0 ≤ i ≤ n− 1, si is the root of the SCC containing all the
nodes with dfsnum between si.dfsnum and si+1.dfsnum that have opened set
to true and sn is the root of the SCC containing all nodes with dfsnum greater
than sn.dfsnum which have opened set to true.

The main function check dfs proceeds by exploring the graph in depth-first
search (DFS) order. When a successor t of the current node s is found, t.dfsnum
being zero implies t has not been visited yet and t.opened being true implies that
t belongs to the same SCC as s. When t belongs to the SCC of s, all the nodes
visited in the path from t to s also belong to the SCC of s. These nodes are
collected by the function merge scc, which finds the root si of t and repeatedly
pops the Roots stack so that si comes to the top, signifying that it is the root of
the SCC containing all the nodes visited from t to s. A maximal SCC is detected
when all the transitions of the current node s have been explored, with s being
on the top of the Roots stack. The close scc function is now called that sets the
opened bit of all nodes in the SCC rooted at s to false. To identify these nodes,
the Active stack is used, which stores all the nodes of the partially explored
SCCs, in the order of the dfsnum.

Detecting Blocking Clocks. Observe that each node s in the Roots stack
represents an SCC rooted at s. The idea is to augment the Roots stack so that
along with each node s, the set of clocks (ub) that are bounded above and the
set of clocks r that are reset in a transition of the SCC rooted at s, are also
stored. The set ub− r gives the set of blocking clocks of the SCC rooted at s. To
achieve this, SCCs are stored in the Roots stack as tuples (s, a, ub, r, ubin, rin)
where the extra sets ubin and rin store respectively the clocks that are bounded
above and reset in the transition leading to s. The second modification occurs
in merge scc which now accumulates these sets while popping the nodes from
the Roots stack. Figure 3 gives a schematic diagram of the merging procedure.

Re-exploring Blocked SCCs. When a maximal SCC Γ is detected, the set
ub−r of the root gives the set of blocking clocks. If ub−r is not empty, Γ needs to
be re-explored with the transitions bounding clocks of blk∪(ub−r) removed. Here
blk denotes the blocked clocks when Γ was being explored. Doing this would split
Γ into some p smaller maximal SCCs Γ1, . . . , Γp such that Γ =

⋃i=p
i=1 Γi. Each Γi

is reachable from the root of Γ . Thus, GZG(A) would have an accepting run if
some Γi contains an unblocked accepting cycle. The objective is to identify and
explore the sub SCCs Γ1, . . . , Γp on-the-fly. The function close scc is modified
to enable on-the-fly re-exploration with blocked clocks.

Firstly, an additional bit per node called explore is needed to identify the
nodes that have to be explored again. When Γ is detected and close scc called,
the explore bit is set to true for all the nodes of Γ , if Γ contains blocking clocks.
The exploration is started from the root of Γ with the augmented set blk of
the blocking clocks. Assume that Γi is currently being explored with the set
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1 function emptiness check()

2 count := 0; Roots, Active, Todo := ∅
3 check scc(s0,∅,∅,∅)
4 report L(A) = ∅
5

6 function check scc(s,ubin,rin,blk)

7 if (s.dfsnum = 0)

8 count++; s.dfsnum := count

9 s.opened := �; s.explore := ⊥
10 push(Roots, (s,s.labels,∅,∅,ubin,rin))

11 push(Active, s)

12 for all s
g;r−−→ t do

13 if (UB(s, g) ∩ blk �= ∅) and (t �∈Todo)

14 push(Todo, t)
15 else if (t.explore)

16 check scc(t,UB(s, g),r,blk)

17 else if (t.opened)

18 merge scc(UB(s, g),r,t)
19 if top(Roots) = (s,· · ·)
20 close scc(blk)

21

22 function merge scc(ub′in,r′in,t)
23 A:=∅; U:=ub′in; R:=r′in
24 (s,a,ub,r,ubin,rin) := pop(Roots)

25 while s.dfsnum > t.dfsnum do
26 A:=A∪a; U:=U∪ub ∪ ubin

27 R:=R∪r ∪ rin

28 (s,a,ub,r,ubin,rin) := pop(Roots)

29 A:=A∪a; U:=U∪ub; R:=R∪r
30 push(Roots, (s,A,U,R,ubin,rin))

31 if (Acc⊆A) and (U⊆R)

32 report L(A) �= ∅
33

34 function close scc(blk)

35 (s,a,ub,r,ubin,rin):=pop(Roots)

36 repeat
37 u := pop(Active)

38 u.opened := ⊥
39 if (Acc⊆ a) and (ub �⊆ r)
40 u.explore := �
41 until u = s
42 if (Acc⊆ a) and (ub �⊆ r)
43 push(Todo, $); push(Todo, s)
44 while top(Todo) �= $ do
45 s′ := pop(Todo)

46 if (s′.explore)

47 check scc(s′,∅,∅,blk ∪ (ub − r))
48 pop(Todo)

Fig. 2. Emptiness Check Algorithm on GZG(A)
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Fig. 3. How ub sets and r sets are merged

blk. Each time a transition s
g;r−−→ t is detected, check dfs checks if it bounds

a blocking clock, that is, a clock in blk. This way the discarded transitions are
detected on-the-fly. Since t may belong to some Γj �= Γi, it is added to the
Todo stack for later re-exploration. The Todo stack is the crucial element of the
algorithm. The recursion ensures that Γi is completely closed before considering
a Γj on the Todo stack. After Γi completes, the node t′ on the top of the Todo
stack is considered for exploration. However, it is possible that although t′ was
added due to a discarded transition, it could now belong to another SCC that
has been completely closed, through a different enabled transition. Hence t′ is
explored only if its explore bit is true.
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Note that it is possible that more blocking clocks are detected on some Γi.
The re-exploration on Γi then updates the Todo stack on-the-fly. However, while
popping a node from Todo, in order to identify the right set of blocking clocks
it has to be explored with, a marker $ is pushed to the Todo stack whenever a
new re-exploration with a new set of blocking clocks is started.

Theorem 3. The above algorithm is correct and runs in time O(|ZG(A)|·|X |2).

4.2 On-the-Fly Emptiness Check on the Zone Graph

As stated in section 3.2, the guessing zone graph construction detects nodes
where time elapse is not prohibited by future zero checks. However, in the absence
of zero checks, this construction is not necessary. Recall that GZG(A) has |X |+1
times more nodes than ZG(A). Therefore, it is sufficient to consider the guessing
zone graph construction only on maximal SCCs with zero checks. We propose an
on-the-fly algorithm that checks for an accepting and unblocked SCC on the zone
graph ZG(A), detects zero checks and adopts the emptiness check algorithm on
the guessing zone graph only when required. The algorithm shown in Figure 2
is run on ZG(A) instead of GZG(A). When a maximal SCC Γ is detected in
line 19, it is required to know if Γ contains any zero checks.

Detecting Zero Checks. This is similar to the detection of blocking clocks.
Two extra bits zc and zcin are stored along with every tuple (s, . . . ) in the Roots
stack. zcin tracks zero checks in the transition leading to s and zc remembers
if there is a zero check in the SCC rooted at s. When an SCC is detected, the
information is merged in merge scc in a way similar to the schematic diagram
shown in Figure 3. Thus when Γ is detected, the zc bit of the root reveals the
presence of zero checks in Γ . The following lemma says that the algorithm can
be terminated if Γ is accepting, unblocked and free from zero-checks.

Lemma 3. If a reachable SCC in ZG(A) is accepting, unblocked and free from
zero-checks, then A has a non-Zeno accepting run.

The interesting case occurs when Γ does have zero checks. In this case, we apply
the guessing zone graph construction only to the nodes of Γ . If (qΓ , ZΓ ) is
the root of Γ , the guessing zone graph is constructed on-the-fly starting from
(qΓ , ZΓ , X). Intuitively, we assume that the set of clocks X could potentially
be zero at this node and start the exploration. We say that a run ρ of A ends
in a maximal SCC Γ of ZG(A) if a suffix of ρ is an instance of a path in Γ .
Let GZG(A)|Γ be the part of GZG(A) restricted to nodes and transitions that
occur in Γ .

Lemma 4. Let Γ be a reachable maximal SCC in ZG(A), with root (qΓ , ZΓ ).
A has an accepting non-Zeno run ending in Γ iff GZG(A)|Γ has an unblocked
accepting SCC reachable from (qΓ , ZΓ , X).
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Handling the Zero Checks. The function close scc is modified to identify
any zero-checks in the current maximal SCC Γ that was detected. If Γ contains
zero checks, then check dfs is called with the node (qΓ , ZΓ , X) and the current
set blk of blocking clocks. Note that the explore bit is true for all the nodes in
Γ . Each time a new node t = (q, Z, Y ) of GZG(A) is discovered in the for loop
s

g;r−−→ t, it is explored only when (q, Z).explore is true. When the exploration of
GZG(A) terminates, the explore bit of all the nodes of Γ are set to false. The
explore bit is thus responsible for the restriction of the search on GZG(A) only
to the nodes that occur in Γ . In particular, this happens on-the-fly.

4.3 An Optimization

We propose an optimization to the algorithm to enable quicker termination in
some cases. We take advantage of clocks in an SCC that are bounded from below,
that is of the form x > c or x ≥ c with c ≥ 1. We make use of Lemma 1 which
says that if an SCC Γ contains a transition that bounds a clock from below and
a transition that resets the same clock, then any path of Γ including both these
transitions should have non-Zeno instantiations. This is irrespective of whether
Γ contains zero checks. Notice that no new clock is added.

To implement the above optimization, we add clock sets lb and lbin to the
Roots stack entries. The set lb keeps track of the clocks that are bounded below
in the SCC. lb and lbin are handled as explained in Figure 3 for the sets ub and
ubin. We also modify the condition for L(A) to be empty. We conclude as soon as
an SCC, not necessarily maximal, is accepting and it bounds below and resets
the same clock. Observe that it is not useful to keep track of the clocks that
are bounded from below while solving zero-checks on GZG(A) as any transition
that sets a lower bound in GZG(A) has already been visited in ZG(A).

4.4 The Global Algorithm and Implementation Issues

A run of our algorithm is illustrated in Figure 4. Exploring ZG(A1), it computes
the maximal SCC rooted at node 2 that is blocked by y. Hence, it re-explores that
SCC with set of blocking clocks blk = {y}. This is seen from the double edges.
Notice that the edge from node 5 to node 2 is not crossed as it is discarded by
blk. The algorithm now computes the SCC Γ that contains the nodes 4, 5 and 6,
that is maximal w.r.t. blk. Γ is unblocked and accepting, but it has zero-checks.
Hence the algorithm explores GZG(A1) starting from node (3, x == 0, {x, y}).
It does not explore any transition outside of Γ . It eventually finds a non-maximal
SCC in GZG(A1) that proves L(A1) �= ∅.

Finally, we discuss memory issues for the implementation of our algorithm.
Information about the SCCs in ZG(A) is stored in the Roots stack as tuples
(s, a, lb, ub, r, zc, lbin, ubin, rin, zcin). An amount of 6.|X | + 2 bits of memory is
required to store the membership of each clock to the 6 sets, and the zero-check
information. In the worst case, all the nodes in ZG(A) have an entry in the Roots
stack. Similarly, SCCs in GZG(A) are stored as tuples (s, a, ub, r, ubin, rin) in
the Roots stack. 4.|X | bits allow to represent the content of those 4 sets. We
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ZG(A1) Part of GZG(A1)

Fig. 4. Zone Graphs of A1

estimate than the overhead due to our algorithm is 4.|X |.(|X | + 1) due to the
size of GZG(A) w.r.t. the size of ZG(A).

We eventually compare to the strongly non-Zeno construction. Running the
Couvreur’s algorithm requires to store smaller tuples (s, a). However, the zone
in s is represented by a DBM which is an |X | + 1-square matrix containing
32 bits integers. Hence, adding one clock increases the memory footprint by
(2.|X |+3).32 bits. Recall furthermore than ZG(SNZ(A)) can be 2O(|X|) bigger
than ZG(A). In the worst case all these nodes are on the Roots stack.

5 Experiments and Conclusion

We have implemented our algorithms in a prototype verification tool. The table
below presents the results that we obtained on several classical examples. The
models are products of Timed Büchi Automata that encode both the processes
in the system and the property to verify. The “Zone Graph” column gives the
number of nodes in the zone graph. Next, for the “Strongly non-Zeno” con-
struction, we give the size of the resulting zone graph followed by the number
of nodes that are visited during verification; similarly for the “Guessing Zone
Graph” where the last column corresponds to our fully optimized algorithm.

We have considered three types of properties: reachability properties (mu-
tual exclusion, collision detection for CSMA/CD), liveness properties (access
to the resource infinitely often), and bounded response properties (which are
reachability properties with real-time requirements). When checking reachabil-
ity properties we would like counter examples to be feasible by real systems.
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This is not the case with Zeno counter examples. Hence Timed Büchi Automata
offer a nice framework as they discard Zeno runs.

The strongly non-Zeno construction outperforms the guessing zone graph con-
struction for reachability properties. This is particularly the case for mutual
exclusion on the Fischer’s protocol and collision detection for the CSMA/CD
protocol. For liveness properties, the results are mitigated. On the one hand, the
strongly non-Zeno property is once again more efficient for the CSMA/CD pro-
tocol. On the other hand the differences are tight in the case of Fischer protocol.
The guessing zone graph construction distinguishes itself for bounded response
properties. Indeed, the Train-Gate model is an example of exponential blowup
for the strongly non-Zeno construction.

We notice that on-the-fly algorithms perform well. Even when the graphs are
big, particularly in case when automata are not empty, the algorithms are able
to conclude after having explored only a small part of the graph. Our optimized
algorithm outperforms the two others on most examples. Particularly, for the
CSMA/CD protocol with 5 stations our algorithm needs to visit only 4841 nodes
while the two other methods visited 8437 and 21038 nodes. This confirms our
initial hypothesis: most of the time, the zone graph contains enough information
to ensure time progress.

Our last optimization also proves useful for the FDDI protocol example. One
of its processes has zero checks, but since some other clock is bounded from below
and reset, it was not necessary to explore the guessing zone graph to conclude
non-emptiness.

Models
Zone Graph Strongly non-Zeno Guessing Zone Graph

size size visited size visited visited opt.
Train-Gate2 (mutex) 134 194 194 400 400 134
Train-Gate2 (bound. resp.) 988 227482 352 3840 1137 292
Train-Gate2 (liveness) 100 217 35 298 53 33
Fischer3 (mutex) 1837 3859 3859 7292 7292 1837
Fischer4 (mutex) 46129 96913 96913 229058 229058 46129
Fischer3 (liveness) 1315 4962 52 5222 64 40
Fischer4 (liveness) 33577 147167 223 166778 331 207
FDDI3 (liveness) 508 1305 44 3654 79 42
FDDI5 (liveness) 6006 15030 90 67819 169 88
FDDI3 (bound. resp.) 6252 41746 59 52242 114 60
CSMA/CD4 (collision) 4253 7588 7588 20146 20146 4253
CSMA/CD5 (collision) 45527 80776 80776 260026 260026 45527
CSMA/CD4 (liveness) 3038 9576 1480 14388 3075 832
CSMA/CD5 (liveness) 32751 120166 8437 186744 21038 4841

Conclusion and FutureWork. In this paper, we have presented an algorithm for the
emptiness problem of Timed Büchi Automata. We claim that our algorithm is on-
the-fly as (1) it computes the zone graphduring the emptiness check; (2) it does not
store the graph, in particularwhen it splits blockedSCCs; and (3) it stops as soon as
an SCC that contains a non-Zeno accepting run is found. Our algorithm is inspired
from the Couvreur’s algorithm. However, the handling of bounded clocks and the
application of the guessing zone graph construction on-the-fly, are two substantial
increments. The previous examples are academic case studies; still they show that
Büchi properties can be checked as efficiently as reachability properties for Timed
Automata, despite the non-Zenoness requirement.



232 F. Herbreteau and B. Srivathsan

As a future work we plan to extend our algorithm to commonly used syntactic
extensions of Timed Automata. For instance Uppaal and Kronos allow to reset
clocks to arbitrary values, which is convenient for modeling real life systems.
This would require to extend the guessing zone graph construction, and conse-
quently our algorithm. Another interesting question is to precisely characterize
the situations where an exponential blowup occurs in the strongly non-Zeno
construction. To conclude, it can be seen that the ideas of the prototype could
be used to construct a full-fledged tool like Profounder, which implements the
strongly non-Zeno construction.
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Abstract. We propose a simple and efficient approach to the verification of pa-
rameterized and infinite state system. The approach is based on modeling the
reachability relation between parameterized states as deducibility between suit-
able encodings of the states using formulae of first-order logic. To establish a
safety property, namely the non-reachability of unsafe states, a finite model finder
is used to generate a finite countermodel, thus providing the witness for non-
deducibility. We show that under an appropriate encoding the combination of fi-
nite model finding and theorem proving provides us with a decision procedure for
the safety of the lossy channel systems. We illustrate the approach by reporting
on experiments verifying both alternating bit protocol (specified as a lossy chan-
nel system) and a number of parameterized cache coherence protocols specified
by extended finite state machines. In these experiments, the finite model finder
Mace4 is used.

1 Introduction

In this introductory section we outline the main idea of the proposed method. Let S =
〈S,→〉 be a transition system comprising the set of states S and transition relation →.
Denote by →∗ the transitive closure of →. Consider the encoding e : s �→ ϕs of states
of S by formulae of first-order predicate logic, satisfying the following property.

The state s′ is reachable from s, i.e. s →∗ s′ if and only if ϕs′ is the logical
consequence of ϕs, that is ϕs |= ϕs′ and ϕs * ϕs′ .

Here we assume standard definitions of both semantical consequence |= and deducibil-
ity * (in a complete deductive system) for first-order predicate logic. Under such as-
sumptions one can translate reachability questions for S to classical questions in logic.
Thus, establishing reachability amounts to theorem proving, while deciding
non-reachability becomes theorem disproving. It is clear that, due to the undecidability
of first-order logic, such an approach can not be universal. However, one may hope that
the highly developed automated theorem provers [19] and model finders [2] for first-
order logic might be used for automated decision of the (non-)reachability problems.

In this paper we will focus on applications of these ideas to the automated verifi-
cation of the safety properties within parameterized and/or infinite state systems. The
adaption of the idea of “reachability as logical consequence” to the parametric case is
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not straightforward and appropriate encodings must be crafted carefully for any partic-
ular class of problems. In the following sections we will present such encodings for the
classes of Lossy Channel Systems and Extended Finite State Machines. Restriction to
safety properties, i.e. non-reachability of unsafe states, means we will be mainly dealing
with automated disproving. To disprove ϕs |= ϕs′ it is sufficient to find a countermodel
for ϕs → ϕs′ , or, equivalently, the model for ϕs ∧ ¬ϕs′ . In general, in first-order logic
such a model may be inevitably infinite. Furthermore, the set of satisfiable first-order
formulae is not recursively enumerable, so one can not hope for complete automation
here. As a partial solution we propose using automated finite model finders/builders
[2] for disproving. Although incomplete in general, this approach has turned out to be
complete for subclasses of verification problems and empirically successful for larger
classes of practically important parameterized problems.

The results presented in this paper were previously announced in its short version
which appeared in [15].

1.1 Preliminaries

We assume that the reader is familiar with the following concepts from logic and alge-
bra which we will use without definitions: first-order predicate logic, first-order models,
interpretations of relational, functional and constant symbols, satisfaction |= of a for-
mula in a model, semantical consequence |=, deducibility (derivability) * in first-order
logic, monoid, homomorphism. We denote the interpretations by square brackets, so,
for example, [f ] denotes an interpretation of a functional symbol f in a model.

2 Verification of Lossy Channel Systems

An important class of infinite state systems which can be verified by our method is the
class of Lossy Channel Systems, which are essentially finite-state automata augmented
with unbounded, but lossy, FIFO channels (queues). The messages sent via lossy chan-
nels may be lost in transition.

The definitions below are taken from [1].

Definition 1. A Lossy Channel System L is a tuple 〈S, s0, A, C,M, δ〉, where S is a
finite set of control states, s0 ∈ S is an initial control state, A is a finite set of actions,
C is a finite set of channels, M is a finite set of messages, δ is a finite set of transitions,
each of which is a triple of the form 〈s1, op, s2〉, where s1, s2 ∈ S and op is a label of
one of the forms

– c!m, where c ∈ C and m ∈ M ,
– c?m, where c ∈ C and m ∈ M ,
– a, where a ∈ A ∪ {τ}.

Given a Lossy Channel System L = 〈S, s0, A, C,M, δ〉, a global state of L is a pair
〈s, w〉, where s ∈ S and w : C → M∗ is a function assigning to each channel a finite
sequence of messages (content of the channel). We will also write wc for w(c) and
w = wc1 . . . wck

for C = {c1, . . . , ck}. We denote the concatenation of two sequences
of messages x and y by x · y, or simply xy if it does not lead to confusion.
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The initial global state γ0 of L is a pair 〈s0, ε〉 where ε assigns an empty sequence to
every channel.

The transition relation → is a set of triples 〈γ, a, γ′〉, where γ and γ′ are global states
and a ∈ A ∪ {τ}. For 〈γ, a, γ′〉 ∈→ we write γ →a γ′. The transition relation → is
now defined as the smallest set satisfying

1. If 〈s1, c!m, s2〉 ∈ δ then 〈s1, w〉 →τ 〈s2, w
′〉, where w′ coincides with w every-

where, except w′(c) = w(c) ·m, i.e. the message m is appended to the content of
the channel c.

2. If 〈s1, c?m, s2〉 ∈ δ and w(c) = m·l then 〈s1, w〉 →τ 〈s2, w
′〉, where w′ coincides

with w everywhere except w′(c) = l, i.e. the message m is read off the channel c.
3. If w(c) = x ·m · y, then 〈s, w〉 →τ 〈s, w′〉, where w′ coincides with w everywhere

except w′(c) = x · y.
4. If 〈s1, a, s2〉 ∈ δ, then 〈s1, w〉 →a 〈s2, w〉.

For global states γ and γ′, and a sequence σ ∈ A∗ the expression γ ⇒σ γ′ denotes the
fact that γ′ is reachable from γ, that is

γ = γ1 →a1 γ2 →a2 . . . →an−1 γn = γ′

and σ is the sequence of non-τ actions among a1, . . . , an−1. Further, we write γ → γ′

to denote γ →a γ′ for some a ∈ A ∪ {τ}, and γ →∗ γ′ to denote γ ⇒σ γ′ for some
σ ∈ A∗. A trace of a lossy channel system L is a sequence σ ∈ A∗ such that γ0 ⇒σ γ
for some γ. The set of all traces of L is denoted by Traces(L).

2.1 Verification of Safety Properties

The general form of the safety verification problem for lossy channel systems we ad-
dress here is as follows.

Given: A lossy channel system L = 〈S, s0, A, C,M, δ〉 and a set Σ ⊆ A∗

Question: Does Traces(L) ⊆ Σ hold?

The set Σ of safe traces represents the expected behaviour, or correctness condition for
the system to be verified. From now on we assume that Σ is a regular language and is
effectively given.

Consider an instance of the above verification problem. Let M = 〈T, t0, A, ρ, F 〉 be
a deterministic finite automaton which accepts the complement of Σ. Here T is a finite
set of states, t0 ∈ T is an initial state, A is the set of actions, ρ : T × A → T is a
transition function and F is a set of accepting states.

Definition 2. Let L and M are as above. The productL×M is the lossy channel system
〈S×T, 〈s0, t0〉, A, C,M, δ′〉, where δ′ is a set of triples of the form 〈〈s1, t1〉, op, 〈s2, t2〉〉
where either

– op is of the form c!m, c?m, or τ , and t1 = t2 and 〈s1, op, s2〉 is a transition in δ,
or

– op ∈ A, 〈s1, a, s2〉 is a transition in δ and ρ(t1, a) = t2 is a transition in ρ.
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The above question of the verification problem can be equivalently reformulated now
as a question of reachability:

Is it true that in L × M no global state of the form 〈〈s, t〉, w〉 with t ∈ F is
reachable? (1)

So far we closely followed closely the known standard approaches to the verification
of lossy channel systems, see e.g. [1]. Now, instead of application of the specialized
symbolic reachability algorithm used before, we reduce the above reachability question
to a finite model finding task, which is then delegated to the generic finite model finders.
This is the topic of the next subsection.

2.2 Verification via Countermodel Finding

Given the reachability question (1), define a translation of the product system L ×M
into a set ΦL×M of formulae of the first-order predicate logic as follows. The vocabulary
of ΦL×M consists of

– the set of constant symbols C = {ds | s ∈ S}∪{dt | t ∈ T }∪{dm | m ∈ M}∪{e}
– one binary functional symbol ∗
– one predicate symbol R of arity n + 2, where n is a number of channels in L,

i.e. | C |
For a sequence of messages l ∈ M∗ define its term translation l̃ inductively: Λ̃ = e,
m̃ = dm and ˜x · y = x̃ ∗ ỹ. The translation is well-defined modulo the associativity of
∗ which we will specify in the formula.

Given a global state γ = 〈〈s, t〉, wc1 . . . wcn〉 of L ×M we define its translation to
a n + 2-tuple of terms as t̄γ = (ds, dt, w̃c1 , . . . , w̃cn). Thus, terms of t̄γ represent the
states of L and M together with the content of all channels.

The intended meaning of the atomic formula R(t̄γ) is “the global state γ is
reachable.”

Let ΦL×M be a set of the following formualae, which are all assumed to be univer-
sally closed. In the formulae x̄ denotes a sequence of different variables x1, . . . , xn and
x̄i�→t coincides with x̄ everywhere except in ith position where it contains a term t.

(x ∗ y) ∗ z = x ∗ (y ∗ z)
R(ds0 , dt0 , e, . . . , e)
R(ds1 , dt1 , x̄) → R(ds2 , dt2 , x̄) for all 〈s1, a, s2〉 ∈ δ and ρ(t1, a) = t2
R(ds1 , y, x̄) → R(ds2 , y, x̄i�→m∗xi) for all 〈s1, ci!m, s2〉 ∈ δ
R(ds1 , y, x̄i�→m∗xi) → R(ds2 , y, x̄) for all 〈s1, ci?m, s2〉 ∈ δ
R(y, z, x̄i�→(z1∗z2)∗z3) → R(y, z, x̄i�→z1∗z3) for all i = 1, . . . , n

Proposition 1 (Adequacy of translation). If a global state γ is reachable in L ×M
then ΦL×M * R(t̄γ).

Proof is by induction on the length of the transition sequences in L×M . For the initial
global state γ0 we have R(t̄γ0) ∈ ΦL×M , so for the base case of induction we have
ΦL×M * R( ¯tγ0). Now, we notice that, if γ → γ′ is a one step transition of global
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states in L ×M , then R(t̄γ) → R(t̄γ′) is a ground instance of one of the formulae in
ΦL×M (by immediate inspection of the definition of ΦL×M ). Assuming γ is reachable
in L ×M and ΦL×M * R(t̄γ), then applying Modus Ponens we get ΦL×M * R(t̄γ′).
That provides the step of induction.

Theorem 1. For any lossy channel system L = 〈S, s0, A, C,M, δ〉, and deterministic
finite automaton M = 〈T, t0, A, ρ, F 〉, exactly one of following mutually exclusive
alternatives holds:

i) ΦL×M * ∨f∈F ∃x∃z̄R(x, df , z̄), or
ii) there is a finite model M such that

M |= ΦL×M ∧ ¬(∨f∈F ∃x∃z̄R(x, df , z̄))

Proof. Consider two cases, depending on the answer to the reachability question (1).

Case 1. For some s ∈ S, t ∈ F , wc1 , . . . , wck
∈ M∗ the global state

〈〈s, t〉, wc1 , . . . , wck
〉 of L×M is reachable. Then by Proposition 1 we have ΦL×M *

R(ds, dt, w̃c1 , . . . , w̃ck
) and, therefore,

ΦL×M * ∨f∈F∃x∃z̄R(x, df , z̄). The first alternative holds.

Case 2. For none of the s ∈ S, t ∈ F , wc1 , . . . , wck
∈ M∗ the global state 〈〈s, t〉, wc1 ,

. . . , wck
〉 of L×M is reachable. We now construct a finite model M which satisfies the

formula in the second alternative above. The construction crucially uses the finite char-
acterization of the set V̂ of global states of L×M from which global states 〈〈s, t〉, w〉
with t ∈ F are reachable, given in [1]:

V̂ = {γ; ∃γ′.γ′ ∈ V ∧ γ′ � γ}
where V is some finite set of global states. Here � denotes a pre-order on the global
states defined as follows.

Definition 3. For γ1 = 〈〈s, t〉, wc1 , . . . , wck
〉 and γ2 = 〈〈s′, t′〉, w′

c1
, . . . , w′

ck
〉 we

have γ1 � γ2 if and only if s = s′, t = t′ and for each i = 1, . . . , k wci is a (not
necessarily contiguous) subword of w′

ck
.

It follows1 that V̂ is a regular set. To give more details let
V̂ = ∪s∈S,t∈T,γ∈V V̂s,t,γ , where V̂s,t,γ = {〈s, t, w̄〉 ∈ V̂ | γ � 〈s, t, w̄〉}. Then we
have that V̂s,t,γ = {〈s, t, w1, . . . , wk〉 | w1 ∈ Ls,t,γ

1 , . . . , wk ∈ Ls,t,γ
k } and Ls,t,γ

i ⊆
M∗ are all regular sets. Thus, Ls,t,γ

i is a language of all words which appear in ith
channel in the global states 〈〈s, t〉, w̄〉 greater (in a sense of �) than a particular global
state γ ∈ V .

Notice that, by the assumption of the Case 2, the set of all reachable global states in
L×M is disjoint with V̂ .

Let M s,t,γ
i = 〈T s,t,γ

i , ts,t,γ
0i

, A, ρs,t,γ
i , F s,t,γ

i 〉 be a deterministic finite state automa-
ton which recognizes the regular language Ls,t,γ

i .
Now any m ∈ M induces a transformation

τm :
∐

s,t,γ,i

T s,t,γ
i →

∐
s,t,γ,i

T s,t,γ
i

1 See relevant discussion in [1], pp 15–16, with references to [5,13].
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of the disjoint union (coproduct) of all state sets T s,t,γ
i as follows. For any t ∈ T s,t,γ

i ,
τm(t) = ρs,t,γ

i (t,m) ∈ T s,t,γ
i . Intuitively, τm represents the state transitions of all

automata after reading a symbol m. All transformations τm with m ∈ M and the
operation ◦ of composition of transformations generate a monoid T M = 〈TM, ◦〉, the
transformational monoid of the direct sum of all automata Ls,t,γ

i . Due to the finitness
of all T s,t,γ

i this monoid is finite. Mapping m �→ τm is extended to a homomorphism h
of the free monoid M∗ to T M in usual way.

Now we return to the construction of the required model M. Define its domain to be
a union S ∪ T ∪ TM ∪ 0, where S and T are state sets of the original lossy channel
system and correctness checking automaton, respectively; TM is a set of elements of
the monoid T M, and 0 is a distinct “dummy” constant.

Define interpretations of the constants:

[ds] = s for s ∈ S
[dt] = t for t ∈ T
[dm] = τm for m ∈ M
[e] = e, where e is an identity element of T M

The interpretation of ∗ is a mapping [∗] : D ×D → D, where (in infix notation)

τ1[∗]τ2 = τ1 ◦ τ2 for τ1, τ2 ∈ TM
x[∗]y = 0, otherwise

Define an interpretation [R] ⊆ Dk+2 of the relational symbol R:

[R] = {〈ds, dt, τ1, . . . , τk〉 |
s ∈ S, t ∈ T, τi ∈ TM, ∀γ ∈ V (τi(t

s,t,γ
0i

) �∈ F s,t,γ
i )}

In other words, R is true on tuples 〈ds, dt, h(w̄))〉 such that no global state 〈s′, t′, w̄′〉
with t′ ∈ F is reachable in L × M from 〈s, t, w̄)〉. That concludes the definition of
finite model M.

By the assumption of Case 2 and definition of [R] we have M |= ¬(∨f∈F ∃x∃z̄R(x,
df , z̄)).

To show M |= ΦL×M we consider all clauses in the definition of ΦL×M separately:

1. M |= (x ∗ y) ∗ z = x ∗ (y ∗ z). This holds true by the choice of interpretation of ∗
as a monoid operation ◦.

2. M |= R(dso , dt0 , e, . . . , e). This holds true by the assumption of Case 2 that no
bad global state is reachable from the initial state of L×M .

3. M |= R(ds1 , dt1 , x̄) → R(ds2 , dt2 , x̄) for all 〈s1, a, s2〉 ∈ δ and ρ(t1, a) = t2.
Assume that if 〈s1, t1, τ1, . . . , τk〉 ∈ [R], then we have τi = h(wi) for some
wi ∈ M∗, i = 1 . . . k. By the definition of [R], no bad state is reachable from
〈s1, t1, w1, . . . wk〉 in L ×M . On the other hand, we have 〈s1, t1, w1, . . . wk〉 →a

〈s2, t2, w1, . . . wk〉 in L×M and, therefore, no bad state is reachable from 〈s2, t2,
w1, . . . wk〉 either. It follows that 〈s2, t2, τ1, . . . , τk〉 ∈ [R].

4. M |= R(ds1 , y, x̄) → R(ds2 , y, x̄i�→m∗xi) for all 〈s1, ci!m, s2〉 ∈ δ. This case is
treated analogously to previous one.
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5. R(ds1 , y, x̄i�→m∗xi) → R(ds2 , y, x̄) for all 〈s1, ci?m, s2〉 ∈ δ. Assume that
〈s1, t, τ1, . . . , h(m) ◦ τi, . . . , τk〉 ∈ [R] then for some w1, . . . , wk we have τi =
h(wi) and no bad state is reachable from
〈s1, t, w1, . . . ,m ∗ wi, . . . , wk〉.

Since 〈s1, t, w1, . . . ,m∗wi, . . . , wk〉→ 〈s2, t, w1, . . . , wi, . . . , wk〉 no bad state
is reachable from 〈s2, t, w1, . . . , wi, . . . , wk〉 either. It follows that 〈s2, t, τ1, . . . ,
τi, . . . , τk〉 ∈ [R].

6. R(y, z, x̄i�→(z1∗z2)∗z3) → R(y, z, x̄i�→z1∗z3) for all i = 1, . . . , n. This case is
treated analogously to previous one.

That concludes the proof of the Theorem 1. �

Note 1. Using finite automata in the model construction is not necessary. Alternatively
one may use an algebraic characterization of regular languages as the preimages of
subsets of finite monoids under a homomorphism from the free monoid.

Note 2. The above model construction serves only the purpose of proof and it is not
efficient in practical use of the method. Instead, we delegate the task of model construc-
tion to generic finite model building procedures.

Corollary 1. Parallel composition of complete theorem proving and complete finite
building procedures for first-order predicate logic provides us with a decision procedure
for safety properties of lossy channel systems.

The approach has turned out to be practically efficient. Using translation of the spec-
ification from [1] and the finite model finder Mace4 we have verified the Alternative
Bit Protocol modeled by an lossy channel system[14]. See Section 4 for experimental
results.

3 Verification of Parameterized Cache Coherence Protocols

Another class of the systems to which verification via our finite countermodel find-
ing approach has been applied is that of parameterized cache coherence protocols [7],
modeled by Extended Finite State Machines (EFSM)[4] using a counting abstraction
[7]. The variant of EFSM we consider here is as in [7], namely without input and out-
put signals and with a single location (control state), which is a restriction of general
EFSM model introduced in [4]. The states of EFSM are n-dimensional non-negative
integer vectors and the transitions are affine transformations with affine pre-conditions.
Denote by Z+ the set of non-negative integers. Let X = {x1, . . . , xn} be a finite set
of variables. A state is a non-negative integer evaluation of all variables from X , that
is a mapping s : X → Z+, which we represent by an n-dimensional integer vector
(s(x1), . . . s(xn)) ∈ Z+n

Definition 4. An extended finite state machine is a tuple 〈X, I, T 〉 where

– X = {x1, . . . , xn} is a finite set of variables;
– T is a finite set of transitions of the form G(x̄) → T (x̄, x̄′), where, the guard G(x̄)

has a form A · x̄ ≥ c̄ and T (x̄, x̄′) denotes an affine transformation x̄′ = M · x̄+ d̄;
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here c̄, d̄ ∈ Z+n are n-dimensional integer vectors and A,M ∈ Z+n × Z+n are
n× n-matrices with unit vectors as columns;

– I ⊆ (Z+)n is a set of initial states.

Definition 5. A run of an extended finite state machine M = 〈X, I, T 〉 is a possibly
infinite sequence of states c̄0, . . . , c̄i, . . . where Gi(c̄i) → Ti(c̄i, ¯ci+1) holds true for
some transitions Gi(x̄i) → Ti(x̄i, ¯xi+1) in T for i ≥ 0. A state c̄′ is reachable from c̄
in M iff there is a run c̄, . . . , c̄′, . . . of M .

Definition 6. A set of states S ⊆ Z+n
is called upwards closed if it is of the form

{(x1, . . . , xn) | ∧i=1...n(xi ∼i ci)} where ∼i is either = or ≥ and ci ∈ Z+.

The general form of the parameterized verification problem we consider here is as
follows:

Given: An extended finite state machine M = 〈X, I, T 〉 with an upwards closed set
I ⊆ Z+n of the initial states, and a finite family of the upwards closed sets of
unsafe states F1, . . . Fk ∈ Z+n

Question: Is it true that none of the states in F1, . . . , Fk is reachable from any of the
initial states?

Here we assume that I and Fi are constructively given by expressions of the form shown
in Definition 6.

As in the case of the verification of lossy channel systems we define a reduction of
the above verification problem to the problem of disproving some first-order formula.

Given the verification problem above, we define a translation of an extended finite
state machine M into a set ΦM of formulae of the first-order predicate logic as follows.
The vocabulary of ΦM consists of

constant 0;
unary functional symbol s;
binary functional sysmbol plus
n-ary predicate symbol R;

For an integer l ∈ Z+ we define its term translation l �→ l̃ inductively: 0̃ = 0, ˜k + 1 =
s(k̃). For the state γ = (l1, . . . , ln) define its translation as γ̃ = (l̃1, . . . , l̃n). For ex-
ample, the state (2, 3, 0) is translated to (s(s(0)), s(s(s(0))), 0). Effectively given up-
wards closed sets of states are translated into n-tuples of non-ground in general terms.
For example, the upward-closed set of states {(x, 1, y) | x ≥ 1, y ≥ 2} is trans-
lated into a tuple (s(x), s(0), s(s(y))). Formally, for an upward closed set of states
S = {(x1, . . . , xn) | ∧i=1...n(xi ∼i ci)}, its term translation S̃ is defined as a n-tuple
of terms (t1, . . . , tn) where

ti = s(ci)(0) if ∼i is =, or
ti = s(ci)(xi) if ∼i is ≥.

Further, we define a translation of guarded transitions. A guard of the form A · x̄ ≥ c̄
(for the matrices with unit columns) can be represented as a conjunction

∧
i Condi of

conditions of the form Σj∈Jxj ≥ c, where J ⊆ {1, . . . , n} and c ∈ Z+. The translation
of the expression Σj∈Jxj , is defined inductively as follows.
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tr(Σj∈Jxj) = plus(xi, tr(Σj∈J−{i}xj)) for i ∈ J , and
tr(Σj∈{i}xj) = xi

The translation is extended further to the conditions: tr(Σj∈Jxj ≥ c) =
∃z(tr(Σj∈Jxj) = s(c)(z)), where z is a fresh variable; and to the guards: tr(G(x̄)) =∧

tr(Condi) for G(x̄) =
∧

Condi.
The transitions T (x̄, x̄′) allowed in the definition of the EFSM above can be repre-

sented as the set of updates of individual variables. For i = 1, . . . , n we have either

x′
i = c for c ∈ Z+, or;

x′
i = Σj∈Jxj +c, where J ⊆ {1, . . . , n} and c ∈ Z (notice that c may be a negative

here).

For each of the variables update define its term translation as a pair of terms 〈τ, τ ′〉,
where, τ and τ ′ represent, intuitively, the values of the corresponding variable before
and after transition:

tr(x′
i = c) = 〈xi, s

(c)(0)〉
tr(x′

i = Σj∈Jxj + c) = 〈xi, s
(c)(tr(Σj∈Jxj))〉 if c ∈ Z+;

tr(x′
i = Σj∈Jxj + c) = 〈s(−c)(xi), tr(Σj∈Jxj)〉 if c is negative;

As before, the predicate R is used to specify the reachable global states.
Now we are ready to present the set of formulae ΦM describing the reachability

for an extended finite state machine M = 〈X, I, T 〉. Let ΦM be the following set of
formulae which we assume to be universally closed:

R(Ĩ);
(tr(G(x̄)) ∧R(τ1, . . . , τn)) → R(τ ′1, . . . , τ ′n) for every
G(x̄) → T (x̄, x̄′) in T with 〈τi, τ

′
i〉, i = 1, . . . , n being terms translations of indi-

vidual variable updates in T (x̄, x̄′);
(plus(0, y) = y) ∧ (plus(i(x), y) = i(plus(x, y))).

The adequacy of the translation is given by the following

Proposition 2. If the above verification problem has a negative answer, that is there is
an initial state s ∈ I and an unsafe state f ∈ ∪i=1,...,kFi such that f is reachable from
s in M then ΦM * ∨i∃x̄iF̃i(x̄i)

Proof is by straightforward induction on the length of transition sequences. �
It follows that finding any model for φM ∧ ¬(∨i∃x̄iF̃i(x̄i)) provides a positive answer
for the above verification problem. Unlike the case of the verification of lossy channel
systems, we do not claim completeness of the method, so, there is no guarantee that
there exists a finite model even if the protocol is safe. We conjecture, though, that rela-
tive completeness of the proposed method with respect to the methods of [7] holds. The
method has turned out to be practically efficent. Using the finite model finder Mace4[17]
we have verified [14] in this way all the parameterized cache coherence protocols from
[6,7], including Synapse N+1, MESI, MOESI, Firefly, Berkeley, Illinois, Xerox PARC
Dragon and Futurebus+, and MSI protocol from [8]. The results of experiments are
presented in Section 4.
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4 Experimental Results

In the experiments we used the finite model finder Mace4[17] within the package
Prover9-Mace4, Version 0.5, December 2007. It is not the latest available version,
but it provides with convenient GUI for both the theorem prover and the finite model
finder. The system configuration used in the experiments: Microsoft Windows XP Pro-
fessional, Version 2002, Intel(R) Core(TM)2 Duo CPU, T7100 @ 1.8Ghz 1.79Ghz,
1.00 GB of RAM. The time measurements are done by Mace4 itself, upon completion
of the model search it communicates the CPU time used. The table below lists the pa-
rameterized/infinite state protocols together with the references and shows the time it
took Mace4 to find a countermodel and verify a safety property. The time shown is an
average of 10 attempts.

Protocol Reference Time
ABP∗ [1] 0.93s
MSI [8] 0.01s
MESI [7] 0.03s
MOESI [7] 0.05s
Firefly [7] 0.03s
Synapse N+1 [7] 0.01s
Illinois [7] 0.03s
Berkeley [7] 0.03s
Dragon [7] 0.05s
Futurebus+ [6] 1.14s

∗ ABP = Alternating Bit Protocol
In all cases the conjunctions of all safety properties specified for the protocols in the
corresponding references are verified.

5 Discussion

The classes of verification tasks we tackle in this paper are well-known and have been
previously considered in the literature. In [1] the decidability of safety verification for
lossy channel systems has been established and an efficient algorithm, based on back-
ward symbolic reachability was proposed. The verification of of parameterized cache
coherence protocols has attracted much attention, too - this is practically important
class of non-trivial protocols, amenable to automated verification at the behaviour level
[18,9,7,10,11,16]. The verification method we propose in this paper differs from pre-
viously known ones by championing a pure reductionist approach: given a verification
task, reduce it to a question in first-order classical logic, which then can be tackled
by existing automated procedures. Notice, that in [10,11] the verification of parame-
terized cache coherence protocols was reduced to the theorem proving in fragments of
first-order temporal logic, which in practical terms has proved to be much less efficient
than the approach we advocate here. In a sense, the results we present here support that
theorem disproving in classical logic can be more efficient for verification (at least, for
particular classes of protocols) than theorem proving in stronger temporal logics.



Reachability as Derivability, Finite Countermodels and Verification 243

We focused in this paper on the verification of safety properties. If the safety prop-
erty does not hold, the finite model finders can not help, instead, in our “reachability as
deducibility” approach the automated theorem provers can be used to establish the vi-
olation of the property. Indeed, during the numerious experiments we observed that for
incorrect protocols, the proofs produced by Prover9 [17] provide enough information
to extract the execution traces violating the properties. The systematic study of relevant
questions is yet to be done.

The idea that computation can be modeled faithfully by derivation in some logic has a
long tradition in formal approaches to security, starting as early as in work on BAN logic
[3]. Very recently, in [12], the verification method based on modeling the execution
of security protocols by derivation in first-order logic and finding countermodels was
proposed. This method uses the same idea as we present here, but applied to a different
class of protocols. A further difference is that in [12] a specialized model building
procedure is proposed, while we insist that reduction-based approach using generic
finite model building can already be practically efficient and sufficient.

The reductionist approach presented in this paper has also a potential advantage be-
ing a modular. Any progress in finite model finding procedures can be incorporated
immediately in the verification procedure. Perhaps, the most interesting question to ad-
dress in future work is whether the use of infinite model finders [2], that is procedures
searching for finite presentation of infinite models, will increase the verifying power of
the method.

Acknowledgements. The author is grateful to Michael Fisher for many helpful sug-
gestions on this paper.
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Abstract. It is well known that modelchecking and satisfiability of Lin-

ear Temporal Logic (LTL) are Pspace-complete. Wolper showed that

with grammar operators, this result can be extended to increase the ex-

pressiveness of the logic to all regular languages. Other ways of extending

the expressiveness of LTL using modular and group modalities have been

explored by Baziramwabo, McKenzie and Thérien, which are expressively

complete for regular languages recognized by solvable monoids and for

all regular languages, respectively. In all the papers mentioned, the nu-

meric constants used in the modalities are in unary notation. We show

that in some cases (such as the modular and symmetric group modali-

ties and for threshold counting) we can use numeric constants in binary

notation, and still maintain the Pspace upper bound. Adding modulo

counting to LTL[F] (with just the unary future modality) already makes

the logic Pspace-hard. We also consider a restricted logic which allows

only the modulo counting of length from the beginning of the word. Its

satisfiability is ΣP
3 -complete.

1 Introduction

In this theoretical paper, we consider the extension of LTL to count the number
of times a proposition holds modulo n. (More generally, in a recursive syntax,
we can count formulas which themselves can have counting subformulas.)

There are many such extensions: Wolper used operators based on right-linear
grammars [21], Emerson and Clarke developed the μ-calculus [2]. Henriksen and
Thiagarajan’s dynamic LTL [8] is an extension based on ideas from process logic
[6]. Harel and Sherman had used operators based on automata for PDL [7].
Another extension has propositional quantification [4], but its model checking
complexity is nonelementary [22]. More recently we have PSL/Sugar, and Vardi
narrates [19] how regular expressions proved to be more successful than finite
automata as far as designers in industry were concerned. Baziramwabo et al [1]
explicitly have countably many MODk

n operators for their logic LTL+MOD.
In work concurrent with ours, Laroussine, Meyer and Petonnet have introduced
threshold counting [11].

Wolper’s grammars, Harel and Sherman’s automata, Henriksen and Thiagara-
jan’s regular expressions, all use in effect a unary notation to express n. Hence
stating properties using a large n is cumbersome. Consider a model describing
properties of a circuit (which works very fast) interleaved with events which take

A. Bouajjani and W.-N. Chin (Eds.): ATVA 2010, LNCS 6252, pp. 245–258, 2010.
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place at regular intervals of time, which can be thought of as happening over
very long stretches of the model.

Our first main theorem is that the Pspace upper bound holds even when we
use binary notation to represent the counting, and this can be carried all the
way to a logic LTL+SYM, derived from Baziramwabo et al [1], which generalizes
LTL+MOD to computation in the symmetric groups Sn. Thus we improve on the
model checking procedure developed by Serre for LTL+MOD [15], which gives
an Expspace upper bound for formulas in binary notation. Unlike Serre, we
do not use alternating automata but ordinary NFA and the standard “formula
automaton” construction in our decision procedure.

The word “succinct” in the title of our paper is used in this simple program-
ming sense of being able to use exponentially succinct notation. There are more
sophisticated ways in which succinctness appears in temporal logics, which we
do not address. A complexity theorist might say that we improve the known
complexity of our logic from pseudo-polynomial space to polynomial space.

We have next a technical result showing that the logic LTL[F]+MOD is al-
ready Pspace-hard. Since LTL[F] is Np-complete, this shows that modulo count-
ing is powerful.

So we look to weakening the modulo counting. This is done by only allow-
ing the modulo counting of lengths (rather than the number of times a for-
mula holds). We show that the satisfiability problem of this logic, which we call
LTL[F]+LEN, is exactly at ΣP

3 , the third level of the polynomial-time hierarchy,
again irrespective of whether we use unary or binary notation.

We do not know if our work will make any impact on verification [2,16,20],
since practitioners already know that a binary counter is an inexpensive addition
to a modelchecking procedure. We think the finer analysis is of some theoretical
interest.

2 Counting and Group Extensions of LTL

2.1 Modulo Counting

We begin by extending the LTL syntax with threshold and modulo counting, and
specialization of the latter to length counting. Generalization to computation in
an arbitrary symmetric group following Baziramwabo, McKenzie and Thérien
[1] is described in the next subsection.

δ ::= #α | δ1 + δ2 | δ1 − δ2 | cδ, c ∈ N

φ ::= δ ∼ t | δ ≡ r( mod q), q, r, t ∈ N, q ≥ 2, ∼∈ {<,=, >, �=,≤,≥}
α ::= p ∈ Prop | φ | ¬ α | α ∨ β | Xα | α U β

As usual Fα abbreviates trueUα and Gα is ¬F¬α. We will use the “length” 	 to
abbreviate #true.

We denote by LTL+MOD the logic whose syntax we defined above.
LTL[F]+MOD is a restriction where the U modality is not allowed and threshold
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counting δ ∼ t is not allowed. (Since we will give a lower bound result, we keep
the logic weak and only allow modulo counting.) We also use notation such as
LTL[F]+MOD(q) when the counting is restricted to the modulo divisor q. The
constants c, q, r, t above are given in binary. Our lower bounds continue to hold
even when they are given in unary.

By further restricting the subterm #α in the δ terms to be 	 only, we get
the logic LTL[F]+LEN which can only count lengths rather than occurrences of
propositions or formulae. (We could similarly define LTL[X,U]+LEN.)

We denote by PROP+LEN the logic obtained by removing even the F modal-
ity from the syntax of LTL[F]+LEN, so we have propositional logic (interpreted
over a word) with some length counting operations.

The semantics for LTL is given by a finite state sequence (or word) M over
the alphabet ℘(Prop). Our results also hold for the usual semantics over infinite
words, but some of the examples are more sensible with finite words, so we will
stick to that in the paper and point out how the arguments need to be changed
for infinite words.

M, i |= p iff p ∈ M(i)
M, i |= Xα iff M, i + 1 |= α
M, i |= α U β iff for some m ≥ i : M,m |= β

and for all i ≤ l < m : M, l |= α

For the counting terms, the interpretation of #α at the index i in the word M is
given by the cardinality of the set {1 ≤ l ≤ i | M, l |= α}. The arithmetic opera-
tions in the syntax of δ are then well defined. Other definitions follow, for example:

M, i |= δ ≡ r( mod q) iff the cardinality associated with δ at i in M leaves a
remainder r when divided by q.

Even length words can be expressed in LTL[F]+LEN by FG(	 ≡ 0( mod 2)).
On the other hand an even number of occurrences of the holding of a proposition
p requires an LTL[F]+MOD formula: FG(#p ≡ 0( mod 2)).

The satisfiability problem for a formula α checks if a word model satisfying it
exists, and the model checking problem for a rooted transition system (or Kripke
structure) K = (S,→, L, s0) and a formula α checks whether all runs of the
transition system are models of α.

Variants: We count from the beginning of the word upto and including the present
point where the formula is being evaluated. Supposing we needed the number of
occurrences of the formula α from the present, before we hit β, to be divisible by q.
We could write this using a disjunction of q possibilities, where the present count
of α ≡ i( mod q) and the count at β is also congruent to i( mod q).

We are assured by Baziramwabo et al [1] that LTL[X,U]+MOD is expressively
complete for the logic FO+MOD of Straubing, Thérien and Thomas [18], so we
stick to their simple syntax. In the appendix, we adapt an argument of Straubing
[17] to show that the corresponding logic LTL[X,U]+LEN is expressively com-
plete for a logic FO[Reg] also defined by Straubing. Thus the counting extensions
we have introduced are related to others defined in a different context.
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Laroussinie, Meyer and Petonnet [11] introduce counting in the future by in-
dexed modalities, such as αUδ=tβ, which counts t occurrences of δ from the
present, maintaining the invariant α, until a future occurrence of β. This is
equivalent to an LTL formula which is exponential in the size of the given for-
mula, since t is written in binary, but expressively within first order logic FO.

2.2 Group Extension

Now we follow Baziramwabo, McKenzie and Thérien [1] to generalize the modulo
counting to a kind of computation in symmetric groups. Our syntax above is
extended to allow

φ ::= #G(α1, . . . , αk) = h, h ∈ G

For the semantics, let us define Γ (M, l) = gj if M, l |= ¬α1 ∧ . . .¬αj−1 ∧ αj for
1 ≤ j ≤ k. Also define Γ (M, l) = 1 (the identity element) if none of the formulae
α1, . . . , αk hold at position l. Then:

M, i |= #G(α1, . . . , αk) = h iff (Πi
l=0Γ (M, l)) = h

This generalizes the modulo counting we were doing earlier, which can be thought
of as working with cyclic groups.

The groups G used in the formulae are symmetric groups specified by their
generators. This extension is called LTL+SYM.

For instance, we could specify the symmetric group S5 (shown in Figure 1)
using a syntax such as

group S5(5) generators (2 3 4 5 1), (2 1 3 4 5)

which specifies a permutation group named S5 with two generators defined as per-
mutations of the elements (1, 2, 3, 4, 5)mapping these elements to the values shown.
IngeneralwedefineagroupnamedGwithpermutationsover the set{1, . . . , n}, n ≥
2 and generators g1, . . . , gk. Any group can be embedded in a symmetric group [9],
but while using symmetric groups the group operations are implicit.

Notice that h in the syntax above is a group element, not necessarily a gener-
ator of the group. As with modulo counting, we can have a more succinct syntax
by representing h using binary notation. Using the generators is also a succinct
way of representing groups (see below for a standard argument). For instance,
the symmetric group Sn has n! elements, but can be generated by 2 genera-
tors(as shown in example) each generator being a permutation on n elements.
The analogue while doing modulo counting is to use binary notation to specify
the numbers r and q.

Proposition 1. Any group has a generating set of logarithmic size.

Proof. Let G be a group. For an H ⊆ G, we denote by 〈H〉 the group generated
by the elements H . Take an element g0 ∈ G. Let H0 = {g0}. If 〈H0〉 �= G, take
g1 from G\〈H0〉, and call H0 ∪{g1} as H1. Continue doing this until you find an
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Hk such that 〈Hk〉 = G. We prove that ∀i ≤ k : |〈Hi+1〉| ≥ 2 × |〈Hi〉|. Observe
that since gi+1 /∈ 〈Hi〉, it implies gi+1〈Hi〉 ∩ 〈Hi〉 = φ. Also |gi+1.〈Hi〉| = |〈Hi〉|.
But gi+1.〈Hi〉 ∪ 〈Hi〉 ⊆ 〈Hi+1〉. Therefore |〈Hi+1〉| ≥ 2× |〈Hi〉|. Hence 〈Hlog|G|〉
= G. �

The picture below shows the symmetric group Sn (for n = 5) as the transition
structure of an automaton. The language accepted can be defined by the formula
F (Xfalse∧#S5(a, b) = (12 . . . n)) where the specification of S5 with generators
was shown earlier.

qastart qb

qdqc

qe

a

a

b

a

bb

a

b

a

Fig. 1. An automaton representing the symmetric group S5

3 Succinctness Comes Easy

Our first main theorem shows that the upper bound for LTL satisfiability can be
extended to include the modulo and group counting computations, even when
specified in binary.

Theorem 1. If an LTL[X,U]+SYM formula α0 is satisfiable then there exists
a satisfying model of size exponential in α0 (even using binary notation for the
formula).

Proof. The Fischer-Ladner closure of a formula α0 [5] is constructed as usual,
where we add the following clauses:

1. The closure of #α ≡ r( mod q) includes α and also has #α ≡ s( mod q)
for every s from 0 to q − 1. (Notice that only one of these can be true at a
state.)

2. The closure of #α ∼ t includes α, #α > t and also has #α = c for every
c ≤ t.

3. The closure of #G(α1, . . . , αk) = h includes α1, . . . , αk and also contains the
formulae #G(α1, . . . , αk) = h′ for every element h′ of the group. (Only one
of these can be true at a state.)
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Observe that with binary notation, the closure of a formula α0 can be exponential
in the size of α0, unlike the usual linear size for LTL, since the constants r, q and
h are written in binary notation. A state of the tableau or formula automaton
which we will construct is a maximal consistent subset of formulae from the
closure of α0. However, only one of the potentially exponentially many formulae
of the form #α ≡ s( mod q), 0 ≤ s < q; or of the form #α = c, 0 ≤ c ≤ t,
and #α > t; or of the form #G(α1, . . . , αk) = h, h ∈ G; can consistently hold.
So a state is also exponential in the size of α0. Here is a formal argument, using
induction on structure of α, that the set of states of the formula automaton Mα

is 2O(|α|). We denote by |q| and |G| for the input size (binary notation) and by
Sα the number of states in Mα.

1. α = p ∈ P . This is trivial.
2. α = β ∨ γ. Sα = Sβ × Sγ ≤ 2O(|β|+|γ|) (By IH)
3. α = ¬β. This is just change of final states in Mβ .
4. α = βUγ. Sα = Sβ × Sγ ≤ 2O(|β|+|γ|)

5. α = #β ≡ r( mod q). Since any atom can have only one formula of this
kind, Sα = Sβ × q ≤ 2O(|β|+|q|)

6. α = #β ∼ t. Since any atom can have only one formula of this kind, Sα =
Sβ × (t + 1) ≤ 2O(|β|+|t|)

7. α = #G(α1, . . . , αk) = h. Again any atom can have only one formula of this
kind, Sα = Sα1 × · · · × Sαk

× card(G) ≤ 2O(|α1|+···+|αk|+|G|). �

Corollary 1. LTL[X,U]+SYM satisfiability is in Pspace(using binary nota-
tion for the syntax).

Proof. Since the formula automaton has exponentially many states, each state
as well as the transition relation can be represented in polynomial space. By
using moduli in binary and group generators, a state can be updated along a
transition relation in polynomial time. Now we can guess and verify an accepting
path in Pspace. �

Corollary 2. The complexity of the model checking problem of LTL[X,U]+SYM
is NLogspace in the size of the model and Pspace in the size of the formula.

Proof. Let α0 be a formula in LTL[X,U]+SYM and K a Kripke structure.
Theorem 1 shows that for a formula ¬α0 there is an exponential size formula
automaton M¬α0 . Verifying K |= α0 is equivalent to checking whether the inter-
section of the languages corresponding to K and M¬α0 is nonempty. This can
be done by a nondeterministic algorithm which uses space logarithmic in the
size of both the models. Since M¬α0 is exponentially larger than α0 we get the
upper bounds in the statement of the theorem, using Savitch’s theorem. The
lower bounds are already known for LTL [16]. �

We note that these arguments are not affected by whether we consider finite or
infinite word models.
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3.1 But Modulo Counting Is Hard

Next we consider the logic LTL[F]+MOD. It can express properties which can
be expressed by LTL but not by LTL[F], for example G(p ⇐⇒ 	 ≡ 1( mod 2))
expresses alternating occurrences of p and ¬p. Our next result shows that the sat-
isfiability problem for LTL[F]+MOD, even with unary notation, is Pspace-hard.

Theorem 2. The satisfiability problem for LTL[F]+MOD(2) is Pspace-hard,
even with the modulo formulae restricted to counting propositions.

Proof. Since the satisfiability problem for LTL[X,F] is Pspace-hard [16], it is
sufficient to give a polynomial-sized translation of the modality Xα using count-
ing modulo 2. This is done by introducing two new propositions pE

α and pO
α for

each such formula, and enforcing the constraints below. Let EvenPos abbreviate
	 ≡ 0 mod 2 and OddPos abbreviate 	 ≡ 1 mod 2.

G(α ⇐⇒ ((EvenPos ⊃ pE
α ) ∧ (OddPos ⊃ pO

α )))

G((EvenPos ⊃ #pE
α ≡ 0 mod 2) ∧ (OddPos ⊃ #pO

α ≡ 0 mod 2))

Consider pE
α . Its count has to be an even number at every even position. Since

the count increases by one if even positions satisfy α, it has to increase by one at
the preceding odd position. So at an odd position, Xα holds precisely when the
count of pE

α is odd. Symmetrically, at an even position, Xα holds precisely when
the count of pO

α is odd. So we can replace an occurrence of Xα by the formula

(EvenPos ⊃ #pO
α ≡ 1 mod 2) ∧ (OddPos ⊃ #pE

α ≡ 1 mod 2).

Since α is used only once in the translation, this gives a blowup of the occurrence
of Xα by a constant factor. With one such translation for every X modality, the
reduction is linear.

No threshold counting formulas 	 ∼ t are used in this reduction, as required
in the definition of the syntax. �

4 Length Modulo Counting

We now consider the weaker counting formulae 	 ≡ r( mod q), where 	 abbre-
viates #true. So we can only count lengths rather than propositions, which was
something we needed in the Pspace-hardness proof in the previous section.

Note that the language of alternating propositions p and ¬p is in LTL[F]+LEN.
It is known [16,3,12] that a satisfiable formula in LTL[F] has a polynomial sized
model. Unfortunately LTL[F]+LEN does not satisfy a polynomial model prop-
erty. Let pi be distinct primes (in unary notation) in the following formula:

F((	 ≡ 0( mod p1)) ∧ (	 ≡ 0( mod p2)) ∧ · · · ∧ (	 ≡ 0( mod pn))).

Any model which satisfies this formula will be of length at least the product of the
primes, which is ≥ 2n. We show that the satisfiability problem of LTL[F]+LEN
is in ΣP

3 , the third level of the polynomial-time hierarchy.
We give a couple of technical lemmas concerning the logic PROP+LEN which

will be crucial to our arguments later.
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Lemma 1. Let α be a PROP+LEN formula. Then the following are equivalent.

1. (∀w, |w| = n =⇒ ∃k ≤ n : w, k |= α)
2. (∃k ≤ n, ∀w : |w| = n =⇒ w, k |= α)

Proof. (2 =⇒ 1) : This is trivial.
(1 =⇒ 2) : Assume that the hypothesis is true but the claim is false. Let
S = {w | |w| = n}. Pick a w ∈ S. By the hypothesis ∃i ≤ n : (w, i) � α and
we can assume that there exists some w′ ∈ S such that (w′, i) � α. If this is
not true then we have a witness i, such that ∀w ∈ S : (w, i) � α. Let ui be
the state at the ith location of w′. Replace the ith state in w by ui without
changing any other state in w. Call this new word w′′. Now (w′′, i) � α. Again
by the hypothesis, ∃j ≤ n : (w′′, j) � α. By the same argument given above,
∃w′′′ : (w′′′, j) � α. We can replace the jth state of w′′ by the the jth state from
w′′′ which makes the resultant word not satisfy α at the jth location. We can
continue doing the above procedure. Since n is finite after some finite occurence
of the above procedure, we will get a word v such that ∀k ≤ n : (v, k) � α. But
this implies the hypothesis is wrong and hence a contradiction. �
Our next result is the following. Given a PROP+LEN formula α and two num-
bers m,n in binary, the problem BlockSAT is to check whether there exists a
model M of size m + n such that M,m |= Gα.

Lemma 2. BlockSAT can be checked in ΠP
2 .

Proof. The algorithm takes as input a PROP+LEN formula α, along with two
numbers m,n in binary. Observe that since n is in binary we cannot guess
the entire model. The algorithm needs to check whether there exists a model
w satisfying α at all points between m and m + n, in other words, whether
∃w : ∀k : m ≤ k ≤ m + n, |w| = n ∧ w, k |= α. Take the complement of this
statement, which is ∀w, |w| = n =⇒ ∃k : m ≤ k ≤ m + 1, w, k |= ¬α. By
the previous Lemma 1 we can check this condition by a ΣP

2 machine. Hence
BlockSAT can be verified by a ΠP

2 machine. �

4.1 Succinct Length Modulo Counting Can Be Easier

We show that satisfiability of LTL[F]+LEN can be checked in ΣP
3 , showing that

this restriction does buy us something.
Before proceeding into an algorithm, we need to introduce a few definitions.

Let α be a formula over a set of propositions P , SubF (α) its set of future
subformulae, prd(α) the product over all elements of the set {n | δ ≡ r mod n
is a subformula of α}.

Let M be a model. We define witness index in M for α as {max{j | M, j |=
Fβ} | Fβ ∈ SubF (α) and ∃i : M, i |= β}. A state at a witness index is called a
witness state. We say Fβ is witnessed at i if i = max{j | M, j |= Fβ}. Call all
states other than witness states of M as pad states of M for α.
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We define a model M to be normal for α if between any two witness states
of M (for α) there are at most prd(α) number of pad states. We claim that if α
is satisfiable then it is satisfiable in a normal model.

A normal model of α will be of size ≤ |SubF (α)| × prd(α), which is of size
exponential in α. So guessing the normal model is too expensive, but we can guess
the witness states (the indices and propositions true at these states), which are
polynomial, verify whether the F requirements are satisfied there, and verify if
there are enough pad states to fill the gap between the witness states. We will
argue that we can use a Π2 oracle to verify the latter part. The proof is given
below.

Theorem 3. Modelchecking and satisfiability of LTL[F]+LEN can be checked
in ΣP

3 (with binary notation).

Proof. First of all we observe that modelchecking M |= α reduces to the satis-
fiability of a formula φM ⊃ α using a standard construction (for example, see
[13]).

Now let α be satisfiable. We guess the following and use it to verify whether
there exists a normal word satisfying these guesses.

1. Guess k indices (positions), u1 < u2 < ... < uk, where k ≤ |SubF (α)| and
∀i, ui ≤ prd(α).

2. Guess the propositions true in the states at these k indices.
3. Guess the propositions true at the start state (if already not guessed).
4. For each of the k indices guess the set of Fβ ∈ SubF (α) which are wit-

nessed there. Let the conjunction of all formulae witnessed at uj be called
βj . (Certain future formulae need not be true in any state in the word.)

We need to verify that there exists a word model M which is normal for α and
which satisfies the guesses. Observe that the positions 1, u1 + 1, ..., uk−1 + 1 in
M should all satisfy certain G requirements (the model starts from index 1). If
we have guessed that a future formula Fβ0 is not satisfied in the model, then
the entire word should also satisfy its negation G¬β0. Similary at state ui + 1,
G ∧i

j=0 ¬βj should be true.
To verify that all the F,G requirements are satisfied at the witness states (the

ui indices we guessed), we start verifying from the last state uk. All modalities
can be stripped away and verified against the propositions true at this state and
the location of the state. To verify Fβi at an intermediate state, we know that
only those beyond the current index have been verified in future witness states.
We reduce the verification of the rest to that of a pure PROP+LEN formula by
making passes from the innermost subformulae outward, which can be done in
polynomial time. A more formal description of this algorithm would need to keep
track of the formulae satisfied and not satisfied in the future at every witness state.

To verify that the pad states between two witness states satisfy the current
set of Gβ requirements, we need to check that the pad states should satisfy their
conjunction

∧
β. Stripping modalities which have been verified, this is a pure

PROP+LEN formula γ. What we now need to verify is that at position ui + 1,
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we want a word of length ui+1−ui−1 which satisfies Gγ. From Lemma 2, we see
that this is the BlockSAT property, checkable in ΠP

2 . The algorithm we have
described is an Np procedure which uses a ΠP

2 oracle and hence is in ΣP
3 . �

This algorithm needs to be somewhat modified when considering satisfiability
for infinite word models. First of all, we observe that we can restrict ourselves
to considering “lasso” models where we have a finite prefix followed by an infi-
nite loop, and for convenience in dealing with modulo counts, we can take the
length of the loop body to be a multiple of prd(α). The procedure described
above essentially works for the prefix part of the model, but we have to devise a
further procedure which handles the requirements in the loop part of the model.
Since the key to this procedure is the verification of BlockSAT , which remains
unchanged, the extended procedure for satisfiability over infinite word models
can also be carried out in ΣP

3 and Theorem 3 continues to hold.

4.2 Satisfiability of Length Modulo Counting Is Hard

In this section we show that the satisfiability problem for LTL[F]+LEN is ΣP
3 -

hard, even if we use unary notation and finite word models. We denote by β[φ/p]
the formula got by replacing all occurences of the proposition p by φ.

Let QBF3 be the set of all quantified boolean formulae which starts with
an existential block of quantifiers followed by a universal block of quantifiers
which are then followed by an existential block of quantifiers. Checking whether
a QBF3 formula is true is ΣP

3 -complete. We reduce from evaluation of QBF3

formulae to satisfiability of our logic.

Theorem 4. Satisfiability for LTL[F]+LEN is hard for ΣP
3 , even if unary no-

tation is used for the syntax.

Proof. Let us take a formula β with three levels of alternation and which starts
with an existential block.

β = ∃x1, ..., xk∀y1, ..., yl∃z1, ..., zmB(x1, ..., xk, y1, ..., yl, z1, ..., zm)

We now give a satisifability-preserving LTL[F]+LEN formula β̂ (which can have
constants in unary notation) such that β in ΣP

3 -SAT iff ∃w, (w, 1) � β̂.
Take the first l prime numbers p1, ..., pl. Replace the yjs by 	 ≡ 0( mod pj).

Let the resultant formula be called α. We give the formula β̂ below. It is a
formula over the x and z propositions.

β̂ = G( B[	 ≡ 0( mod pj)/yj ]) ∧ F(∧l
j=1	 ≡ 0( mod pj)) ∧

k∧
i=1

(Gxi ∨ G¬xi)

Thanks to the prime number thorem we do not have to search too far (By the
prime number theorem, asymptotically there are l primes within l log l and hence
finding them can be done in polynomial time.) for the primes, and primality
testing can be done in polynomial time.
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Suppose the quantified boolean formula β is satisfiable. Then there is an as-
signment v to the xis which makes the Π2 subformula (∀∃ part) true. Consider
the formula γ = β[v(xi)/xi]. We can represent an assignment to the yjs by an l
length bit vector. There are 2l different bit vectors possible. For each bit vector s
we can obtain the formula γs, by substituting the yjs with the values from s. But
since β is satisfiable, each of the γss are satisfiable. Hence for all these formulae
there is a satisfying assignment Zs : [m] → {0, 1} to the variables zr, for r = 1,m.

We are going to construct a word model M which will satisfy β̂. Take its
length to be n ≥ Π l

j=1pj so that the future requirement is satisfied (2nd for-
mula). In every state of the word, let the proposition xi take the value v(xi).
Now we define at state t the valuation of zr, r = 1,m, as follows. Let s be the
bitstring represented by (t mod p1 = 0, t mod p2 = 0, ..., t mod pl = 0). Set
the evaluation of zr in the tth state of M to be Zs(r).

Oncewedothis forallt ≤ n,wefindthatM, t � β[	 ≡ 0( mod pj)/yj][v(xi)/xi].
And because n ≥ Π l

j=1pj we have M, 1 � β̂. We have thus shown that there exists
a word model satisfying β̂.

For the converse, suppose there is a word model M of length n which satisfies
β̂. Then n ≥ Π l

j=1pj . Set a valuation v for the x’s as v(xi) = true iff M, 1 � xi.
We have to now show that the formula γ = β[v(xi)/xi] is satisfiable for all 2l

assignments to the yjs. That is, for all 2l assignments to the yj ’s there is an
assignment to the zrs which make γ true. Suppose s is a bitstring of length
l representing an arbitrary assignment to the yj’s. Take a t ≤ n, such that s
equals the bitstring (t mod p1 = 0, t mod p2 = 0, ..., t mod pl = 0). Such a t
exists because n is long enough. Let Zs(r) be the valuation of the zr in the tth

state of M . This assignment to zr makes the formula α true when the yj ’s are
assigned according to s. Hence β is satisfiable. �

5 Discussion

We observed in this paper that when LTL is extended with threshold and modulo
counting, it does not matter if the specification of the thresholds and moduli is in
succinct notation. More generally this holds for computation within a finite sym-
metric group. This seems to have escaped the notice of verification researchers
until now.

Are there other families of automata, where a “standard” enumeration of their
states and transitions can be represented in logarithmic notation, and for which
the Pspace bound will continue to hold? We also ask how far these ideas can
be extended for pushdown systems.

A patent weakness is that LTL+SYM specifications are far from perspicuous,
but we look to demonstrate an idea, and it will take examples from practice to
provide useful patterns for the more expressive logic using specification of group
properties.

Acknowledgment. We would like to thank N.R. Aravind for suggesting a sim-
plification of the proof of Theorem 4.
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A Expressiveness of LTL[X,U]+LEN

In this appendix, we show that the logic LTL[X,U]+LEN is as expressive as
first order logic with regular numerical predicates FO[Reg]. This is standard
first order logic on word models, with binary predicate symbols for order and
equality x < y and x = y, and unary predicate symbols Qa(x) and x ≡ r(
mod q), for every letter a in the alphabet and for r, q ∈ N, q ≥ 2. For more
details on this logic, see Straubing’s book [17].

First, a lemma. Its converse also holds but we do not need it.

Lemma 3 (Straubing). Let L ⊆ A∗ be a regular language. If L ∈ FO[Reg]
then L is recognized by a morphism ηL to a monoid M , such that ∀t > 0, every
semigroup contained in ηL(At) is aperiodic.

Theorem 5. A property of words is expressible in FO[Reg] iff it is expressible
in LTL[X,U]+LEN.

Proof. There is a standard translation from an LTL[X,U]+LEN formula, which
is essentially the definition of the semantics of the modalities of LTL[X,U]+LEN
using an FO[Reg] formula. To prove the other direction, we use the lemma above
and the same proof strategy as in Straubing’s book [17]. Using the lemma, given

a morphism η : A∗ → M and a language L = η−1(X) such that X ⊆ M and
∀t > 0, every semigroup contained in ηL(At) is aperiodic, we have to show that
L can be expressed by an LTL[X,U]+LEN formula.

Consider the following sequence which contains finitely many distinct sets.

η(A), η(A2), ...,

and hence ∃k, r > 0 : ∀p ≥ k, η(Ap) = η(Ap+r) and hence for a p which is a
multiple of r, we have η(Ap) = η((Ap)+) = S is a semigroup of M . From the
property of η, S is aperiodic. Let B = Ap and let us define β : B∗ → S1 by
setting ∀b ∈ B∗ : β(b) = η(b). Now

L =
⋃

0≤|w|<p

wLw

where
Lw = {u ∈ (Ap)∗ : wu ∈ L}.

Assume that each of the Lw can be expressed by an LTL[X,U]+LEN formula φw .
Let φw[k] be a formula which accepts words whose length is shifted by k. This
is inductively defined and the only nontrivial clause is (	 ≡ i( mod p))[k] = 	 ≡
i + k( mod p).

If w = a1a2...ak, wLw can be defined by the following formula.

a1 ∧
k−1∧
i=1

Xiai+1 ∧ Xkφw[k]
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Taking some finite union over such languages we will be able to express L by an
LTL[X,U]+LEN formula.

It remains to show how we can obtain the formula for each language Lw.
Consider a word v ∈ B∗. It belongs to Lw iff

β(v) ∈ {m ∈ S1 : m.η(w) ∈ X}

Thus Lw considered as a subset of B∗ is recognized by an aperiodic monoid. By
the results of Schützenberger [14] and Kamp [10] we know that any language
accepted by a homomorphism to an aperiodic monoid can be expressed by an
LTL formula and hence Lw can be expressed by an LTL formula ψ over the
alphabet B. We give an inductive construction τ from an LTL formula over B∗

to an LTL[X,U]+LEN formula over A∗ as follows. Let b = a1...ap ∈ B∗. Then

τ(b) = (	 ≡ 0 mod p) ∧ a1 ∧
p−1∧
i=1

Xiai+1

τ(¬α) = ¬τ(α)

τ(α1 ∧ α2) = τ(α1) ∧ τ(α2)

τ(Xα) = (	 ≡ 0 mod p) ∧ Xp+1τ(α)

τ(α1Uα2) = ((	 ≡ 0 mod p) =⇒ τ(α1))Uτ(	 ≡ 0 mod p ∧ α2)

Thus τ(ψ) defines Lw. �
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Abstract. This paper proposes a method for automatically inserting

check statements for access control into a given recursive program ac-

cording to a given security specification. A history-based access control

(HBAC) is assumed as the access control model. A security specification

is given in terms of information flow. We say that a program π satisfies

a specification Γ if π is type-safe when we consider each security class in

Γ as a type. We first define the problem as the one to insert check state-

ments into a given program π to obtain a program π′ that is type-safe

for a given specification Γ . This type system is sound in the sense that if

a program π is type-safe for a specification Γ , then π has noninterference

property for Γ . Next, the problem is shown to be co-NP-hard and we

propose an algorithm for solving the problem. The paper also reports

experimental results based on our implemented system and shows that

the proposed method can work within reasonable time.

1 Introduction

A language-based access control is a promising approach to preventing untrusted
modules from accessing confidential data. Stack inspection provided by the Java
virtual machine (JVM) and the common language runtime (CLR) is a typical
successful example. In a language-based access control, a statement for runtime
permission check such as checkPermission of JVM (abbreviated as check state-
ment) is placed just before a statement accessing confidential data. Permissions
to be checked at each check statement are usually set manually; however, an
inappropriate setting of permissions causes either security flaw or unnecessary
abortion of execution. Therefore a systematic method for generating appropriate
check statements is desired.

This paper assumes a (shallow) history-based access control (HBAC) [1,9]
as an access control model and proposes a method for automatically inserting
check statements into a given recursive program according to a given security
specification. In this paper, a security specification is given in terms of informa-
tion flow [6]: a specification is an assignment of a security class (e.g. top secret,
confidential, and unclassified) to each input and output variable (or channel) of
a program. The set of security classes is assumed to be a finite semilattice. Since

A. Bouajjani and W.-N. Chin (Eds.): ATVA 2010, LNCS 6252, pp. 259–275, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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one of the main purposes of access control (especially, mandatory access control)
is to prevent undesirable information leak by deciding which user (or process)
can have access to which resource, it is natural to give a security specification
using the concept of information flow.

We say that a program π satisfies a specification Γ if π is type-safe when we
consider each security class in Γ as a type. This type system is sound in the sense
that if a program π is type-safe for a specification Γ , then π has noninterference
property for Γ (Theorem 1). Noninterference property is a widely-used seman-
tic (but undecidable in general) criterion for the confidentiality. Intuitively, a
program π has noninterference property for a specification Γ if the content of a
variable v in π is not affected by the content of any variable in π whose security
class specified by Γ is higher than v.

Next, we define the problem as follows: for a given program π including zero
or more check statements with permissions to be checked unspecified and a spec-
ification Γ , specify permissions to be checked at each check statements in π so
that the resultant program is type-safe for Γ . This definition does not lose gener-
ality since check statements are usually placed just before access statements and
it can be easily done automatically. Then, the problem is shown to be co-NP-hard
(Theorem 2) and we propose an algorithm for solving the problem using a model
checking method for pushdown systems (PDS). The idea of the proposed method
is simple. If we find an execution trace that violates a specification by analyzing
the PDS derived from an HBAC program, then we add appropriate permissions
to be checked at a check statement nearest to the undesirable access to remove
this execution trace. However, adding new permissions may introduce a new vi-
olation of the specification (known as a covert channel). This covert channel can
be avoided by carefully designed fixpoint operation given in Section 4.2. The pa-
per also reports experimental results based on our implemented system and shows
that the proposed method can generate check statements within reasonable time.

Related Work. Static analysis has been widely studied for programs with
stack inspection (or stack-based access control, SBAC) [4,8,11,12,15] and for
HBAC [21]. Pottier et al. [17] and Besson et al. [5] proposed type systems such
that type safety implies no violation against SBAC. Information flow analysis has
a long history stemming from [6] and has been extensively studied for recursive
programs using type systems [10,13,14,20]. Information flow analysis has been
extended to SBAC [3] and HBAC [2]. The latter showed interesting phenomena
that check statements themselves may cause implicit information flow. The work
of [16] regarded dynamic permissions as a security class, considered that check
statements represent a security specification, and proposed a dynamic control
mechanism of information flow. To the authors’ knowledge, however, this paper
is the first one to deal with the problem of automatic generation of access control
statements from a specification of information flow.

The rest of this paper is organized as follows. In Section 2, the syntax and opera-
tional semantics of an HBAC program is defined. In Section 3, we define a security
specification as well as the notion of type-safety by deriving a pushdown system
(PDS) from a given programπ and a specificationΓ . This PDS in effect constitutes
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a type system for π under Γ . Also it is shown that type-safety implies noninterfer-
ence property. In Section 4, the problem is defined and an algorithm for solving the
problemby PDS model checking is given, followedby the experimental results.Due
to space limitation, formal proofs are omitted. Consult [18] for the proofs.

2 Input Program

2.1 Syntax

A program consists of a set Func of functions, a set In of input channels, a set
Out of output channels, and a set Prm of permissions. The body of each function
is an element of cseq defined by the following BNF specification.

cseq ::= cmd | cmd;cseq
cmd ::= if exp then cseq fi

| if exp then cseq else cseq fi

| out := x | x := in | x := exp
| x := func(exp,...,exp)
| check[P]

exp ::= c | x | θ(exp,...,exp)

In the above BNF specification, out , in, x, c, P , and θ represent an output
channel, an input channel, a variable, a constant, a subset of permissions, and
a built-in operator, respectively. The return value of a function f is stored in a
special variable named retf .

A program interacts with its environment only through the input and output
channels; the starting function (main function) has no arguments or return value.

2.2 Access Control Mechanism

HBAC is proposed to resolve the weakness of the stack inspection such that it
ignores the execution history of functions of which execution is finished [1,2,21].
(See [1] for the design principles of HBAC.)

A subset of permissions is assigned to each function f before runtime. We
call the subset the static permission set of f , denoted as SP(f). For example,
if the set Prm of permissions is {r, w, d}, which are permissions to read, write,
and delete a file, respectively, and a function f has a right to read and write the
file, then SP(f) = {r, w}. The runtime system controls another subset of per-
missions called the current permission set. When a program starts, the current
permission set is initialized as the static permission set of the starting function.
The current permission set is updated when a function is called. The updated
current permission set is the intersection of the old current permission set and
the static permission set of the callee function; that is, every permission not
assigned to the callee function is removed from the current permission set.
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z := g()

check[{p}] check[{q}]

SP(main)={p, q, r}

return

if (y=0)
n1

n0

main()

n3

x := f()

n2

n4 fi

n5

n11

g()

SP(g)={p}

return

SP(f)={p, q}

return

if (w=0)n6

f()

n8n7

n9 fi

n10

z := 1
then else

then else

Fig. 1. Program π0

When the control reaches a check statement check[P], the execution is con-
tinued if the current permission set includes all permissions in P , and the exe-
cution is aborted otherwise.

Hereafter we assume that a program is represented as a control flow graph
(such as Figure 1) in which conditional branches are well-nested.

Example 1. Consider a sample program π0 in Figure 1. The transition of the
call stack and the current permission set of π0 is depicted in Figure 2.

When function g is called at program point n8 in function f , permission q is
removed from the current permission set. After that, when the control reaches
n3 in function main, the execution is aborted because q is not in the current
permission set. Abortion at a check statement does not occur if function g is
never called or the control never reaches n3.

Since the current permission set is uniquely determined by the set of functions
that have invoked so far, we assume that Prm = Func and SP(f) = Prm \ {f}
for each f ∈ Func without loss of generality1. That is, f remains in the current
permission set if and only if f has never been invoked. For readability, we write
pf instead of f when it represents an element of Prm .

2.3 Operational Semantics

For aprogramπ,wedefinea transition systemMπ that represents thebehavior ofπ.
A configuration of Mπ is a pair (σ, ξ), in which σ is a state of the input and output
channels and ξ is a stack. A state of an output channel is a finite sequence of values
1 In the original definition of HBAC programs [1,21], one can specify a grant set and

an accept set for each function call statement, which enable more flexible control

of the current permission set. We omit these parameters to simplify the problem.

With grant and accept sets, the current permission set is not necessarily determined

uniquely by the set of already invoked functions.
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n0

n6 n0

n7 n0

n9 n0

n10 n0

n1

n2

n8 n0

n8 n0n11

{p, q, r}

{p, q}

{p, q}

{p, q}

{p, q}

{p, q}

{p, q}

{p, q}

{p}

n9 n0

n10 n0

n1

n3

{p}

{p}

{p}

{p}

n4

{p, q}

abort!

current permission set

n3

{p, q}

n2

{p}

n4

{p}

n5

{p, q}

n5

{p}

control stack

Fig. 2. Transition of the call stack and current permission set of π0

that have been output so far. A state of an input channel is an infinite sequence of
values that are going to be read out. A stack is a finite sequence of stack frames, and
a stack frame is a triple 〈n, μ, C〉 in which n is a program point, μ is a state of local
variables (including formal parameters and the return value variable retf ), and C
is the current permission set. The leftmost stack frame of a stack is the stack top.

The transition relation � of Mπ is the smallest relation that satisfies the
following inference rules. As mentioned before, we assume that a program is
represented as a control flow graph, and we write n→n′ if there exists a control
flow from a program point n to n′. The program statement of a program point n
is denoted as λ(n). For the end point n of a function, λ(n) = return. The formal
parameter list of a function f is denoted as param(f), and the initial program
point of f is denoted as IT (f). The concatenation of two sequences ξ1 and ξ2
is denoted as ξ1 : ξ2. The state in which every variable is undefined is denoted
as ⊥. For a state μ, μ[x �→ v] is the state that maps x to v and y to μ(y) for
every y �= x. We extend the domain of a state μ to expressions in the usual way,
i.e., μ(θ(e1, . . . , ek)) = θ(μ(e1), . . . , μ(ek)).

λ(n) = out := x, n→ n′, σ′ = σ[out �→ σ(out) : μ(x)]
(σ, 〈n, μ, C〉 : ξ) � (σ′, 〈n′, μ, C〉 : ξ)

(1)

λ(n) = x := in , n→ n′, σ(in) = a : ζ,
μ′ = μ[x �→ a], σ′ = σ[in �→ ζ]
(σ, 〈n, μ, C〉 : ξ) � (σ′, 〈n′, μ′, C〉 : ξ)

(2)



264 Y. Takata and H. Seki

λ(n) = x := e, n→ n′, μ′ = μ[x �→ μ(e)]
(σ, 〈n, μ, C〉 : ξ) � (σ, 〈n′, μ′, C〉 : ξ)

(3)

λ(n) = x := f(e1, . . . , ek), param(f) = (x1, . . . , xk),
μ′ = ⊥[x1 �→ μ(e1), . . . , xk �→ μ(ek)],
C′ = C ∩ SP(f)
(σ, 〈n, μ, C〉 : ξ) � (σ, 〈IT (f), μ′, C′〉 : 〈n, μ, C〉 : ξ)

(4)

λ(n) = x := f(e1, . . . , ek), λ(m) = return, n→ n′,
μ′′ = μ[x �→ μ′(retf )]
(σ, 〈m,μ′, C′〉 : 〈n, μ, C〉 : ξ) � (σ, 〈n′, μ′′, C′〉 : ξ)

(5)

λ(n) = check[P ], P ⊆ C, n→ n′

(σ, 〈n, μ, C〉 : ξ) � (σ, 〈n′, μ, C〉 : ξ)
(6)

λ(n) = if e, n
then→ n′, μ(e) �= false

(σ, 〈n, μ, C〉 : ξ) � (σ, 〈n′, μ, C〉 : 〈n, μ, C〉 : ξ)
(7)

λ(n) = if e, n
else→ n′, μ(e) = false

(σ, 〈n, μ, C〉 : ξ) � (σ, 〈n′, μ, C〉 : 〈n, μ, C〉 : ξ)
(8)

λ(n) = fi, n→ n′

(σ, 〈n, μ, C〉 : 〈m,μ′, C′〉 : ξ) � (σ, 〈n′, μ, C〉 : ξ) (9)

Rule (4) means that when the control is at the program point n of a function
call statement x := f(e1, . . . , ek), a new stack frame is pushed into the stack,
the control moves to IT (f), and the current values of e1, . . . , ek are assigned
to the formal parameters of f . At the same time, the current permission set is
updated to C ∩SP(f). Rule (5) means that when the control is at the end point
m of a function, the stack top is removed from the stack and the value of retf

is returned to the caller. Rule (6) represents the transition for check statements.
Rules (7) and (8) for if statements push a stack frame into the stack, which is
inessential but keeps the soundness theorem (Theorem 1) simple.

An initial configuration of a program π is (σ0, 〈IT (f0),⊥,SP(f0)〉) where σ0

is a state that maps every output channel to the empty sequence and f0 is the
main function. A stack frame 〈n, μ, C〉 is said to be reachable if there exists a
transitions cnf 0 � · · · � (σ, 〈n, μ, C〉 : ξ) for some initial configuration cnf 0 and
some σ and ξ. The above sequence is called an execution trace. Similarly, a node
n is reachable if there is a reachable stack frame 〈n, μ, C〉 for some μ and C.

3 Information Flow Specification

An information flow specification is an assignment of security classes to the input
and output channels.

We assume that the set of security classes, denoted as SC, is an arbitrary finite
semilattice partially ordered by a relation �. The least element of SC is denoted
as L (= Low), and the least upper bound of a, b ∈ SC is denoted as a � b.
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A simple example of SC is {H,L} (High and Low) such that L � H . For this
example, transmitting a value computed using a value from an H input channel
into an L output channel is a violation of the information flow specification.

Absence of the violation of an information flow specification can formally be
defined in terms of noninterference; i.e., no violation exists if values written
to every L output channel do not change even when values read out from an
H input channel change. However, it is well-known that noninterference is an
undecidable property even if access control is absent. Therefore, we define an
abstract system M �

π from a program π and a specification Γ and define the
notion of type safety by regarding each security class as a type. The soundness
of this type system is guaranteed by Theorem 1, which states that type safety
of M �

π implies noninterference of π for Γ .

3.1 Derived Pushdown System and Type Safety

For a given program π and an information flow specification Γ , we define a tran-
sition system M �

π as follows. Intuitively, M �
π represents the behavior of a program

that is the same as π except that each variable x keeps a security class instead of
a value stored in x. Since the set SC of security classes is finite, M �

π is a pushdown
system (PDS), and we can compute the reachable set of stack frames of M �

π [7].
A configuration of M �

π is a stack. While a stack frame of Mπ is a triple 〈n, μ, C〉,
that ofM �

π is 〈n, sc, C〉 in which sc is an assignment of security classes to local vari-
ables and permissions. The transition relation ⇒ of M �

π is the smallest relation
that satisfies the following inference rules, in which e� is the expression obtained
from an expression e by substituting � for every built-in operator in e, and L is
the assignment in which the security class of every variable and permission is L.

λ(n) = out := x, n→ n′

〈n, sc, C〉 : ξ ⇒ 〈n′, sc, C〉 : ξ
(10)

λ(n) = x := in , n→ n′, sc′ = sc[x �→ Γ (in) � sc(νif)]
〈n, sc, C〉 : ξ ⇒ 〈n′, sc′, C〉 : ξ (11)

λ(n) = x := e, n→ n′, sc′ = sc[x �→ sc(e� � νif)]
〈n, sc, C〉 : ξ ⇒ 〈n′, sc′, C〉 : ξ

(12)

λ(n) = x := f(e1, . . . , ek), param(f) = (x1, . . . , xk),
C′ = C ∩ SP(f),
sc′ = L[x1 �→ sc(e�1 � νif), . . . , xk �→ sc(e�k � νif), νif �→ sc(νif)]

[p �→ sc(p � νif) | p ∈ C \ C′]
[p �→ sc(p) | p ∈ Prm and p /∈ C \ C′]

〈n, sc, C〉 : ξ ⇒ 〈IT (f), sc′, C′〉 : 〈n, sc, C〉 : ξ

(13)

λ(n) = x := f(e1, . . . , ek), λ(m) = return, n→ n′

sc′′ = sc[x �→ sc′(retf ) � sc(νif)][p �→ sc′(p) | p ∈ Prm]
〈m, sc′, C′〉 : 〈n, sc, C〉 : ξ ⇒ 〈n′, sc′′, C′〉 : ξ

(14)
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λ(n) = check[P ], P ⊆ C, n→ n′

〈n, sc, C〉 : ξ ⇒ 〈n′, sc, C〉 : ξ
(15)

λ(n) = if e, (n then→ n′ or n
else→ n′), sc′ = sc[νif �→ sc(e� � νif)]

〈n, sc, C〉 : ξ ⇒ 〈n′, sc′, C〉 : 〈n, sc, C〉 : ξ
(16)

λ(n) = fi, n→ n′, sc′′ = sc[νif �→ sc′(νif)]
〈n, sc, C〉 : 〈m, sc′, C′〉 : ξ ⇒ 〈n′, sc′′, C〉 : ξ (17)

An initial configuration and reachable stack frames of M �
π are defined in the

same way as Mπ.
In the above definition of M �

π, each assignment statement is replaced with a
calculation on security classes. For example, an assignment statement z := x+ y
in π is replaced with z := x � y in M �

π, because the security class of z after this
assignment is the maximum of the security classes of x and y.

We use a special variable νif in M �
π for representing the security class of im-

plicit information flow [6,20]. The security class of νif increases at the beginning
of a conditional branch, and the increase is canceled at the end of the branch
(see Rules (16) and (17)). To save the security class of νif before a conditional
branch, a new stack frame is pushed into the stack in Rule (16). In Rules (11)
to (14), the security class of each updated variable becomes higher than or equal
to the security class of implicit flow. In Rule (13), the security class of each
permission removed from the current permission set is also updated.

We have to consider another kind of implicit flow caused by a check statement.
For example, when the following compound statement is executed and p /∈ SP (f)
for the callee function f , one can know whether y = 0 or not because if y = 0
then permission p is removed from the current permission set and the execution
is aborted at the check statement.

if y = 0 then x := f() fi; check[{p}]

In this case, the information on whether y = 0 or not flows into the current per-
mission set, and then the information flows outside by the check statement (even
when the execution is not aborted at the check statement). Hence we take the
security class of each permission p into account as well as that of each variable.
The security class of p represents the security class of information on whether
or not p remains in the current permission set. Moreover, we consider that in-
formation on each permission contained in the argument of a check statement
flows into an insecure output channel; that is, a type error exists if a permission
p whose security class is not L is contained in the argument of a check statement
(cf. type error E3 described below).

Type Error. We say that there exists a type error in M �
π if there exists a

reachable stack frame 〈n, sc, C〉 that satisfies any of the following conditions E1
to E4. If no type error exists in M �

π, then we say that π is type-safe.
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E1) λ(n) = out := x for an output channel out and sc(x � νif) �� Γ (out).
E2) λ(n) = x := in for an input channel in and sc(νif) �� Γ (in).
E3) λ(n) = check[P ] and sc(p) �= L for some p ∈ P .
E4) λ(n) = check[P ] and P �⊆ C and sc(νif) �= L.

E1 represents a situation in which a value of a security class higher than an output
channel out is written to out . E2 represents an information leak through an input
channel. We assume that an attacker can be aware of reading out a value from an
input channel, and thus an implicit flow occurs if the reading out is performed in
a branch of an if-statement. E3 and E4 represent an information leak through
a check statement. E3 represents a situation in which information on the current
permission set flows out. E4 represents a situation in which an attacker is aware
of the current program point because of the abortion at the check statement.

Another kind of information flow may occur when a program does not ter-
minate. For simplicity, we ignore this kind of information flow in this paper
(termination insensitivity). Although we can modify our type-error detection
method so that it becomes sound even for the above kind of information flow,
the modified method may report more false positives because it considers that
every loop may not terminate.

3.2 Soundness

The above type-error detection method using M �
π is sound in the sense that π

satisfies noninterference if M �
π is type-safe (and if π always terminates). This

soundness is guaranteed by Theorem 1 shown below. Note that in Item (2)
(resp. (4)) of the theorem, each side of �∗ (resp. ⇒∗) is a stack with a single
stack frame.

Theorem 1. Let π be an HBAC program, Γ be a specification with SC as the
set of security classes, n be a program point in π, sc be an assignment of security
classes to variables and permissions, and C1 and C2 be subsets of permissions
in π such that

(1) there exists no type error in M �
π if the initial configuration of M �

π is either
〈n, sc, C1〉 or 〈n, sc, C2〉.

Assume the folloing three conditions hold for some n′, σi, σ′
i, μi, μ′

i, C
′
i (i = 1, 2),

sc′, y, and τ .

(2) (σi, 〈n, μi, Ci〉) �∗ (σ′
i, 〈n′, μ′

i, C
′
i〉) (i = 1, 2).

(3) For every variable x, sc(x) � τ implies μ1(x) = μ2(x). For every io ∈ In ∪
Out, Γ (io) � τ implies σ1(io) = σ2(io). For every permission p, sc(p) � τ
implies p ∈ C1 ⇔ p ∈ C2.

(4) For any sc′ such that 〈n, sc, Ci〉 ⇒∗ 〈n′, sc′, C′
i〉 (i = 1 or 2), sc′(y) � τ .

Then, the following two conditions hold.

(5) μ′
1(y) = μ′

2(y) if y is a variable. y ∈ C′
1 ⇔ y ∈ C′

2 if y is a permission.
(6) For every io ∈ In ∪Out, Γ (io) � τ implies σ′

1(io) = σ′
2(io).

Proof (sketch). Let αi = ((σi, 〈n, μi, Ci〉) � · · · � (σ′
i, 〈n′, μ′

i, C
′
i〉)) (i = 1, 2).

This theorem can be proved by induction on the length of α1. �
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4 Proposed Method

4.1 Permission-Check Statement Insertion Problem

Input. A program π and an information flow specification Γ . All check state-
ments in π must be check[∅].

Output. A type-safe program π′ that is obtained from π by modifying the
arguments of arbitrary number of check statements.

Example 2. Consider the program π1 and the information flow specification (i.e.
assignment of security classes to input and output channels) in Figure 3. If
input channel select always gives a non-zero value at program points n0 and n5,
then the execution trace of the program is (a prefix of) the following transition
sequence of stacks, where the three components of each stack frame represent a
program point, a state of variables and permissions, and the current permission
set, respectively. The state of variables and permissions is a tuple of the security
classes of variables x, y, νif , retf , and retg, and permissions pf and pg.

〈n0, (L,L, L, L, L, L, L), {pf, pg}〉
⇒ 〈n1, (L,L, L, L, L, L, L), {pf, pg}〉
⇒ 〈n3, (L,L, L, L, L, L, L), {pf, pg}〉 : 〈n1, (. . .), {. . .}〉
⇒ 〈n15, (L,L, L, L, L, L, L), {pf}〉 : 〈n3, (. . .), {. . .}〉 : 〈n1, (. . .), {. . .}〉
⇒ 〈n16, (L,L, L, L,H,L, L), {pf}〉 : 〈n3, (. . .), {. . .}〉 : 〈n1, (. . .), {. . .}〉
⇒ 〈n4, (L,H,L, L, L, L, L), {pf}〉 : 〈n1, (. . .), {. . .}〉
⇒ 〈n5, (L,H,L, L, L, L, L), {pf}〉
⇒ 〈n6, (L,H,L, L, L, L, L), {pf}〉
⇒ 〈n7, (L,H,L, L, L, L, L), {pf}〉 : 〈n6, (. . .), {. . .}〉
⇒ 〈n8, (L,H,L, L, L, L, L), {pf}〉 : 〈n6, (. . .), {. . .}〉
⇒ 〈n11, (L,H,L, L, L, L, L), {pf}〉 : 〈n6, (. . .), {. . .}〉
⇒ 〈n12, (L,H,L, L, L, L, L), {pf}〉

In the above trace, a type error of E1 occurs in the statement out1 := y at n8.
To remove this error, we can add permission pg to the argument of the check
statement at n7. After this addition, the execution along the above trace is
aborted at n7 since the current permission set {pf} at n7 in that trace does not
contain pg, and the above error is removed. Moreover, this addition does not
bring any other type errors of E3 or E4 because the security classes of pg and
νif at n7 are L in every trace from n0 to n7.

Theorem 2. The permission-check statement insertion problem is co-NP-hard.

Proof (sketch). Reduction from 3UNSAT. For a given set U = {x1, . . . , xn} of
variables and a set C = {c1, . . . , cm} of clauses over U , we construct a program π2

shown in Figure 4. Variables xi0 and xi1 in π2 represent the negative and positive
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SP(main)={pf , pg}

out1 := y

n0

main()

x := select

y := f() y := g()

n13

f()

SP(f)={pg}

g()

SP(g)={pf}

input_channel in1:L,
                        select:L,
                        in2:H;
output_channel out1:L,

                          out2:H;
local_variable x, y;

if (x=0)
n1

n3n2

n4 fi

n5

then else

x := select

check[Ø] check[Ø]

return

if (x≠0)
n6

n9n7

n11 fi

n12

then else

n10n8 out2 := y

n14 return

retf := in1

n15

n16 return

retg := in2

add pg

Fig. 3. Program π1

if low >0

x11:= f10()x10:= f11()

fi
if low >0

x21:= f20()x20:= f21()

fi

...

if low >0

xn1:= fn0()xn0:= fn1()

fi

main()
if low >0

checkcheck

fi

if xc12 >0
checkcheck

fi

if xc13 >0

checkcheck

fi

if xc11 >0

if low <10

fi

fi

...

if low >0

checkcheck

fi

if xcm2 >0
checkcheck

fi

if xcm3 >0

checkcheck

fi

if xcm1 >0

if low <10

fi

fi
y:= h

out:= y

return

input_channel  h:H;
output_channel out:L;
local_variable

        x10,x20,...,xn0,

        x11,x21,...,xn1,low,y;

ret:= h

return

fik()

A

B

C

Fig. 4. Program π2

literal of xi, respectively, and the variables representing the three literals in cj

are denoted by xcj1 , xcj2 , and xcj3 , respectively. In this program, there exists a
path to the type-error statement in part C and νif �= L at every check statement
on the path if and only if C is satisfiable. Moreover, if C is unsatisfiable, then
there is a setting of the arguments of check statements that never causes type
errors and every path to part C is aborted at some check statement. �
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4.2 Algorithm

We call a program point n a check node if λ(n) = check[P ] for some P . On the
permission-check statement insertion problem, all we can do is to add permissions
to the argument of check statements. When a program π′ is obtained from π by
adding permissions to the arguments of check statements, the transition relation
of M �

π′ is a subset of that of M �
π, since the precondition of the inference rule (15)

in Section 3.1 holds for M �
π if it holds for M �

π′ and the other rules do not depend
on check statements. Hence, we can design an algorithm for solving the problem
as follows. For each reachable stack frame fr of M �

π that causes a type error of
E1 or E2, make fr unreachable by adding a permission to the argument of some
check statement in each execution trace α from an initial configuration to fr .
Let α = cnf 0 ⇒ · · · ⇒ 〈n, sc, C〉 : ξ ⇒ · · · ⇒ fr : ξ′ be such a trace where n is the
check node whose argument is to be modified. If a permission p /∈ C is added
to the argument of n, the execution will be aborted at n in α. So if we perform
this modification for every α, then fr becomes unreachable. However, the above
modification may introduce another type error of E3 or E4. Let us fix the node
n for a while. The necessary and sufficient condition to avoid such a type error
as a side effect is: sc(p) = L, sc(νif) = L, and any other stack frame 〈n, sc′, C′〉
for the same n for which p brings a type error (i.e. sc′(p) �= L or (p /∈ C′ and
sc′(νif) �= L)) is unreachable (by possibly modifying the argument of another
check statement).

Based on the above observation, the algorithm consists of two phases:

(1) For each check node n, compute SafeP (n), which is the set of all permissions
that can be added to the argument of n without type error or with type
error that can be removed by other check statements; (SafeP (n) is formally
defined in Phase (1) below.)

(2) For every type-error stack frame fr and a trace α = cnf 0 ⇒ · · · ⇒ fr :ξ′, find
a configuration 〈n, sc, C〉 :ξ in α and a permission p such that n and p satisfy
the condition mentioned in the previous paragraph, by using SafeP (n). If
the addition of p introduces a type error, then repeat Phase (2).

In the following, let cnf 0 be an initial configuration of M �
π, top(fr : ξ) = fr be

the function that answers the stack top, and LP (sc) = { p | sc(p) = L } be the
subset of permissions whose security class is L for a given sc.

Phase (1): Computation of SafeP(n) We define the following two inference
rules (18) and (19).

λ(n) �= check[P] or sc(νif) �= L or (SafeP (n) ∩ LP (sc)) \ C = ∅
¬Stoppable(〈n, sc, C〉) (18)

cnf 0 ⇒ . . . ⇒ cnf � ⇒ 〈n, sc, C〉 : ξ, (sc(p) �= L or
(p /∈ C, sc(νif) �= L)), ¬Stoppable(top(cnf i)) for 0 ≤ i ≤ 	
p �∈ SafeP(n)

(19)
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Since every occurence of Stoppable(·) and SafeP(·) is negative, these two rules
have the greatest fixpoints for these two predicates, which can be computed as
follows. We say that a stack frame fr is stoppable if Stoppable(fr ) holds during
the computation.

(i) Let SafeP (n) = Prm for each check node n (see Section 2.2 for Prm) and
M �′

π be M �
π without any transitions.

(ii) Compute Stoppable(fr ) for each stack frame fr of M �
π by (18) according to

the current SafeP (·), and add transitions to M �′
π from each non-stoppable

frame.
(iii) Compute SafeP (n) for each check node n by (19) according to the current

Stoppable(·). To do this, compute all reachable stack frames of M �′
π based on

a model checking method for pushdown systems. If a stack frame 〈n, sc, C〉
for a check node n is reachable, then remove every permission p satisfying
the second precondition of (19) from SafeP(n).

(iv) Repeat Steps (ii) and (iii) until no more change occurs.

Phase (2): Changing the arguments of check statements. Let M �
ex be the

pushdown system obtained from M �
π by extending the stack frames to 4-tuples

and substituting the following inference rules (20) and (21) for Rule (15) for check
statements. The fourth component of a stack frame is a pair 〈n,Q〉 of a program
point and a subset of permissions. This pair represents that top(cnf ) = 〈n, sc, C〉
for some sc and C such that cnf is the last stoppable configuration on the
execution trace to the current configuration and the execution will be actually
aborted by adding an arbitrary element of Q to the argument of n.

λ(n) = check[P ], P ⊆ C, n→ n′, sc(νif) = L,
Q = (SafeP(n) ∩ LP (sc)) \ C �= ∅
〈n, sc, C,X〉 : ξ ⇒ 〈n′, sc, C, 〈n,Q〉〉 : ξ

(20)

λ(n) = check[P ], P ⊆ C, n→ n′, (sc(νif) �= L or
(SafeP (n) ∩ LP (sc)) \ C = ∅)
〈n, sc, C,X〉 : ξ ⇒ 〈n′, sc, C,X〉 : ξ

(21)

By the following algorithm, the arguments of check statements are modified to
remove type errors.

(i) Let the fourth component of the initial configuration of M �
ex be ⊥, and

compute all reachable stack frames of M �
ex.

(ii) If a type-error stack frame 〈n, sc, C,X〉 is reachable and X = 〈n′, Q〉, then
add an arbitrary element of Q to the argument of the check statement
at n′. Since any element of Q belongs to SafeP (n) and can cause abortion
at n′, no backtracking is needed. If X = ⊥, then notify a user that the
given problem instance has no solution, and halt.

(iii) Repeat Steps (i) and (ii) until no more change occurs.

The algorithm finds one of the solutions if and only if the given problem instance
has at least one solution.
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SP(main)={p1, ..., pk}

out1 := y

main()

x := select

y := f1() y := fk()

f1()

SP(f1)=PRM \ {p1}

security_class L<M1,...,Mk<H;
input_channel select:L,
                        in1:M1, ..., ink:Mk;

output_channel out1:M1, ..., outk:Mk;
local_variable x, y;

if (x)

fi

check[Ø] check[Ø]

return

outk := y

return

ret1 := in1

...

x := select

if (x)

fi

...

fk()

SP(fk)=PRM \ {pk}

return

retk := ink

...

Fig. 5. Program πa(k)

4.3 Experiment

We describe the results of an experiment in which a prototype implementation of
the above algorithm is applied to the following two kinds of problem instances.
Each input program is an extension of program π1 in Figure 3 and represents a
typical information flow control problem in which there are k pairs of input and
output channels and a value from i-th input channel must not be written to the
output channels other than i-th one.
(1) The input program πa(k) in Figure 5 has k functions fi for 1 ≤ i ≤ k, and the
security class of the return value of function fi is Mi. Security classMi (1 ≤ i ≤ k)
satisfies L � Mi � H and Mi �� Mj and Mj �� Mi for every j �= i. Program πa(k)
also has k check statements and k output channels, and the security class of each
output channel out i is Mi. Thus we have to modify the argument of each check
statement so that the return value of fi is written only to out i.

(2) Program πb(k) is a program obtained from πa(k) by splitting the lower
part of the main function into a separate function, which can be arbitrarily
repeated by a tail call to itself.
Figure 6 shows the computation time for πa(k) and πb(k)2. The computa-
tion time for πa(k) is approximately O(k2), and the time for πb(k) is approx-
imately O(k3). Computation of reachable stack frames of M �

ex is dominant in
the proposed algorithm. We adopt an efficient method for computing the set of
reachable stack frames described in [19, Section 4.4], whose computation time is
approximately proportional to the number of reachable stack frames. The num-
ber of reachable stack frames for πa(k) and πb(k) is shown in Figure 7, which
2 The prototype implementation is written in C (GCC 4.1.2). We use a computer with

Intel Core 2 Duo 1.06 GHz, 2GB RAM, and CentOS 5.3.
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plots the same curves as Figure 6. Although Steps (i) and (ii) of Phase (2) of the
algorithm are repeated if the addition to the argument of the check statement at
n′ in Step (ii) causes a new type error, for πa(k) and πb(k) Step (i) was required
only twice. Moreover, the second computation of reachable stack frames needed
much less time than the first one because the increase of the arguments of check
statements much reduces the number of reachable stack frames. These observa-
tions suggest that the time complexity of the proposed algorithm is nearly the
order of the number of reachable stack frames.

Comparison between the proposed implementation and Moped. The
main part of the proposed algorithm is the computation of the set of reachable
stack frames, and it can be performed using existing model checking tools for PDS.
However, those are not optimized for analysis of HBAC programs and their suit-
ability for the permission-check statement insertion problem is unknown. Hence
we measured the computation time required by PDS model checking tool Moped
(version 1.0.14) for computing the set of reachable stack frames ofπa(k) (Figure 8).
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While our implementation required at most two seconds when k ≤ 100, the
computation time of Moped rapidly increases, and it becomes more than several
hours when k ≥ 17. From these results, our implementation is more suitable for
the permission-check statement insertion problem than Moped.

5 Conclusion

In this paper we studied on a problem to automatically insert permission-check
statements for making a given program satisfy a given information flow specifica-
tion. We showed that the problem is co-NP-hard. We also proposed an algorithm
based on a model checking method of pushdown systems. Applying a prototype
implementation to problem instances, we found that the complexity of the pro-
posed algorithm is proportional to the number of reachable stack frames.

Future work includes the followings.

(1) A method for finding the optimal solution: Some problem instances have
more than one solution, and the proposed algorithm does not necessarily
answer an optimal one. We would like to investigate an algorithm to find
the solution that minimize the total size of the argument of check statements.

(2) An algorithm for the original definition of HBAC programs: We would like to
extend the proposed algorithm to the original definition of HBAC programs,
where freedom of the static permission set of each function and the grant
and accept set of each function call statement is imposed.
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Abstract. For proving response properties in systems with compassion

requirements, a deductive rule is introduced in [1]. In order to use the

rule, auxiliary constructs are needed. They include helpful assertions

and ranking functions defined on a well-founded domain. The work in

[2] computes ranking functions for response properties in systems with

justice requirements. This paper presents an approach which extends the

work in [2] with compassion requirements. The approach is illustrated

on two examples of sequential and concurrent programs.

1 Introduction

Model checking is a main verification technique for finite state systems, and has
been successfully applied to proving the correctness of hardware and software
designs. The concept of abstraction helps enhancing the applicability of model
checking to infinite systems. Predicate abstraction [3,4,5], has been useful for the
verification of safety properties in infinite systems. For the verification of liveness
properties, ranking abstraction has been introduced in [6,7,8] recognizing that
the usual state abstraction is often inadequate to capture liveness properties.
Compassion requirements1 are introduced into the abstract system so that the
ranking abstraction preserves the liveness properties under consideration. One
of the common features of these two methods is that we need to extract auxiliary
constructs in order to make the methods successful in proving safety and liveness
properties. In the former case, one needs to construct invariants and in the latter,
one needs to construct ranking functions.

Our focus is on methods for computing ranking functions for proving liveness
properties. Invisible ranking introduced in [9] is one such method for automat-
ically generating helpful assertions and ranking functions for proving liveness

� Supported by the National Natural Science Foundation of China under Grant Nos.

60721061, 60833001, and the CAS Innovation Program.
1 A compassion requirement is a pair of assertions requiring that in a computation,

if the first assertion is satisfied infinitely often, then the second one must also be
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properties in systems with justice requirements2. The method was then extended
to handle a larger class of problems by relaxing restrictions requiring that the
helpful assertions and ranking functions only depend on the local states of a pro-
cess [10]. For proving liveness properties in systems with justice requirements, an
approach is presented in [2] based on graph manipulation for generating helpful
assertions and ranking functions.

Our approach presented in this paper extends that of [2] in order to be
able to compute ranking functions for proving liveness properties in sequen-
tial and concurrent programs with compassion requirements. Our approach may
as well be used for proving liveness properties with the use of predicate abstrac-
tion (when ranking abstraction does not provide additional useful compassion
requirements).

The rest of this paper is organized as follows. In Section 2 we introduce the
basic concepts used in the approach. It includes the computational model FDS
(fair discrete system) and CDS (compassion discrete system) with its related
notions of fairness, the rule RESPONSE [1] for the deductive proof of response
properties of CDS. Section 3 presents the approach for computing the auxiliary
constructs, and Section 4 illustrates the application of the approach on two
examples of sequential and concurrent programs. Finally, concluding remarks
are contained in Section 5.

2 Preliminaries

We introduce the computational model with fairness requirements [11], and the
rule for proving response properties [1].

ComputationalModel. Afair discrete system (FDS) is a quintupleD=〈V,Θ, ρ,J , C〉
where the components are as follows.

– V : A finite set of typed system variables, containing data and control vari-
ables. A set of states (interpretation) over V is denoted by Σ. For a state s
and a system variable v ∈ V , we denote by s[v] the value assigned to v by
the state s.

– Θ : The initial condition - an assertion (state formula) characterizing the
initial states.

– ρ : The transition relation - an assertion ρ(V, V ′), relating the variables in
state s ∈ Σ to the V ′ in a D-successor state s′ ∈ Σ.

– J : A set of justice requirements (weak fairness). The justice requirement
J ∈ J is an assertion which guarantee that every computation should include
infinitely many states satisfying J .

– C : A set of compassion requirements (strong fairness). The compassion re-
quirement 〈p, q〉 ∈ C is a pair of assertions, which guarantee that every
computation should include either only finitely many p-states, or infinitely
many q-states.

2 A justice requirement is an assertion requiring that in a computation, this assertion

must be satisfied infinitely often.
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Computation. A computation of D is an infinite sequence of states σ : s0, s1, s2, . . .,
satisfying the following requirements: (1) s0 |= Θ. (2) For each j = 0, 1, . . . , the
state sj+1 is in a D-successor of the state sj . For each v ∈ V , we interpret v as
sl[v] and v′ as sl+1[v], that is 〈sl, sl+1〉 |= ρ(V, V ′).

Justice. A computation σ is just, if σ contains infinitely many occurrences of
J-states for every J ∈ J . A justice discrete system (JDS) is an FDS with no
compassion requirements.

Compassion. A computation σ is compassionate, if σ contains only finitely many
p-states, or σ contains infinitely many q-states, for every 〈p, q〉 ∈ C. A compassion
discrete system (CDS) is an FDS with no justice requirements.

Proof Rule for Response Properties. For verifying response properties under the
assumption of compassion (strong fairness) requirements over a CDS (since an
FDS is equivalent to a CDS3, it is sufficient to consider CDS only), the deductive
rule RESPONSE which was presented and proved to be sound and complete
in [1], was developed (this rule is hereafter referred to as C-RESPONSE for
emphasizing that it involves compassion requirements). It is shown as follows.

Let p, q be assertions.
Let A : (W,1) be a well-founded domain.
Let {Fi = 〈pi, qi〉 | i ∈ {1, ..., n}} be a set of compassion requirements.
Let {ϕi | i ∈ {1, ..., n}} be a set of assertions.
Let {Δi : Σ → W | i ∈ {1, ..., n}} be a set of ranking functions.

R1 p ⇒ q ∨∨n
j=1(pj ∧ ϕj)

∀i ≤ n:
R2 pi ∧ ϕi ∧ ρ ⇒ q′ ∨∨n

j=1((p
′
j ∧ ϕ′

j)
R3 ϕi ∧ ρ ⇒ q′ ∨ (ϕ′

i ∧Δi = Δ′
i) ∨

∨n
j=1(p

′
j ∧ ϕ′

j ∧Δi 1 Δ′
j)

R4 ϕi ⇒ ¬qi

p ⇒ ♦q

The use of the rule requires: a well-founded domain A, and for each compassion
requirement 〈pi, qi〉, a helpful assertion ϕi and a ranking function Δi : Σ �→ W
mapping states of D to elements of A.

R1 requires that any p-state is either a goal state (i.e., a q-state), or a (pi ∧
ϕi)-state for some i ∈ {1, . . . , n}. It means that the initial states must be a
goal state or in a rank. R2 requires that any step from a (pi ∧ ϕi)-state moves
either directly to a q-state, or to another (pj ∧ ϕj)-state, or stays at a state
of the same type (i.e., a (pi ∧ ϕi)-state). R3 requires that any step from a ϕi-
state moves either directly to a q-state, or to a (pj ∧ ϕj)-state with decreasing
rank, or stay at a state of the same type with the same rank. R4 together with
the previous rules guarantees that if an execution does not satisfy ♦q, then it
3 The justice requirement can be expressed as the degenerate compassion requirement

〈1, J〉, where 1 denotes the assertion True which holds at every state.
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violates the compassion requirement. R3, R4 and the well-founded domain of
the ranks together guarantee that a sequence of moves starting from a state
cannot infinitely often decrease the rank or stay at some states with the same
rank indefinitely, therefore it must go to the goal state.

The rule also implicitly requires a match among the number of compassion
requirements, the number of assertions, and the number of ranking functions.
To be more flexible, we extend the proof rule to allow a compassion requirement
to be matched with more than one assertion and ranking function. The modified
rule is presented as follows.

Let p, q be assertions.
Let A : (W,1) be a well-founded domain.
Let {Fi = 〈pi, qi〉 | i ∈ {1, ..., n}} be a set of compassion requirements.
Let ({Fi |i ∈ {1, ..., n}}, {(F1, k1), ..., (Fn, kn)}) be a multiset, in which ki

is the number of instances of Fi in the multiset, such that Σn
i=1ki = m.

Let {ϕi | i ∈ {1, ...,m}} be a set of assertions.
Let {Δi : Σ → W | i ∈ {1, ...,m}} be a set of ranking functions.

R1 p ⇒ q ∨∨m
j=1(ph(j) ∧ ϕj)

∀i ≤ m:
R2 ph(i) ∧ ϕi ∧ ρ ⇒ q′ ∨∨m

j=1((p
′
h(j) ∧ ϕ′

j)
R3 ϕi ∧ ρ ⇒ q′ ∨ (ϕ′

i ∧Δi = Δ′
i) ∨

∨m
j=1(p

′
h(j) ∧ ϕ′

j ∧Δi 1 Δ′
j)

R4 ϕi ⇒ ¬qh(i)

p ⇒ ♦q
In which h(i) = a, such that a ∈ {1, . . . , n}∧ 0 < i−Σa−1

l=1 kl ≤ ka holds.

The correctness follows from the original rule by viewing one compassion re-
quirement as multiple identical compassion requirements.

3 Proving a Response Property

In order to be able to use the proof rule C-RESPONSE for proving a response
property ψ : p ⇒ ♦q, we have to define a well-founded domain A, and for
each compassion requirement 〈pi, qi〉, define a helpful assertion ϕi and a ranking
function Δi : Σ �→ W mapping states of CDS D to elements of A. The phases for
proving D |= ψ including those of computing the helpful assertions and ranking
functions are as follows:

1. Use ranking abstraction [6,7,2] and construct Dα and ψα from D and ψ, and
then construct a pending graph [2] based on Dα.

2. Construct an initial rank for each node of the pending graph and a set of
compassion requirements associated to each of these nodes.

3. Construct an abstract graph from the pending graph, such that each node
in the abstract graph represents a subset of the nodes of the pending graph,
then construct A, and for each node, construct ϕi and Δi, and make an asso-
ciation of some compassion requirement Fi to the node. Note that according
to the construction, one Fi may correspond to several abstract nodes.
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3.1 Ranking Abstraction and Pending Graph

This step is carried out according to the technique of ranking abstraction [6,7,2]
and pending graph [2].

Ranking abstraction, as explained in [2], is a method of augmenting the
concrete program by a non-constraining progress monitor, which measures the
progress of program execution, relative to a given ranking function. In order to
distinguish this kind of ranking functions from the ranking functions in the proof
rule C-RESPONSE, we call this kind of ranking functions ARFs (augmenting
ranking functions) in the sequel. Once a program is augmented, a conventional
state abstraction can be used. In such a way, the state abstraction can preserve
the ability to monitor progress in the abstract system.

For a system D = 〈V,Θ, ρ,J , C〉 (in which J is empty when CDS is consid-
ered) and a well-founded domain (W,≺), let δ be an ARF over W , let decδ be a
fresh variable, the augmentation of D by δ is

D + δ : 〈V ∪ {decδ}, Θ, ρ ∧ ρδ,J , C ∪ {(decδ > 0, decδ < 0)}〉
where ρδ is defined by

dec′δ =
{ 1 δ 1 δ′

0 δ = δ′

−1 otherwise

A system may be augmented with a set of ARFs {δ1, ..., δk}. Then predicate
abstraction may be applied. In the predicate abstraction, it is not necessary
to abstract variables of the form decδ since it ranges over the finite domain
{−1, 0, 1}, and the abstraction preserves the compassion requirement (decδ >
0, decδ < 0).

Assuming that we have an abstract program Dα from D constructed by the
above process with the abstraction map α, a pending graph is then constructed
from Dα. Let us denote the graph by G = 〈N,E〉. The set of nodes N are those
satisfying pend∨ g where pend characterizes the states reachable from a p-state
by a q-free path, and g is a qα-state reachable from a pending state in one step.
The set of edges E consists of all transitions connecting two pending states and
the edges connecting pend nodes to the goal node g.

The set of nodes of G may be written as {S0, S1, ..., Sm} where S0 = g is the
goal state and S1, ..., Sm are pending states. This is the starting point of our
algorithm for computing the auxiliary constructs for the proof rule.

3.2 Compassion Requirements and Initial Ranks

The ranking functions in the abstract program are represented as a mapping
N → TUPLES, where TUPLES is the type of lexicographic tuples whose ele-
ments are either natural numbers or ARFs. For simplicity, we call such a tuple
as a “rank”. Let Δl and Hl be respectively the rank and the list of compas-
sion requirements for Sl ∈ N . For convenience, we write q for qα, and similarly
for other formulas and constructions. Let F = {F1, . . . , Fn} be a set of origi-
nal compassion requirements and FD = {(decδ > 0, decδ < 0)} be the set of
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Algorithm 1. C-RANK(G)
1: decompose(G) into a set of MSCCs [C0, ..., Ck];

2: for i=0; i ≤ k; i++ do
3: for each Sl of Ci, append i to Δl;

4: end for
5: for i=0; i ≤ k; i++ do
6: if the goal state g is in Ci then
7: continue;

8: end if
9: flag = 0;

10: for each F ∈ F ∪ FD do
11: if not violate(Ci,F ) then
12: continue;

13: end if
14: flag = 1 ;

15: for each Sl of Ci do
16: append F to Hl;

17: end for
18: for each F ∈ FD do
19: for each Sl of Ci do
20: append term(F ) to Δl;

21: end for
22: end for
23: if Ci is a trivial MSCC then
24: break;

25: else
26: remove edge(Ci,F ); C-RANK(Ci); break;

27: end if
28: end for
29: if flag = 0 then
30: terminate unsuccessfully;

31: end if
32: end for

dec-requirements (the compassion requirements introduced by the ranking ab-
straction). The procedure for computing Δl and Hl (which are initially empty)
is described in Algorithm 1. The way of dealing with MSCCs (maximal strongly
connected components) and fairness follows the idea of [12] by Emerson and Lei.
The main functions are explained as follows.

decompose(G). The graph G is decomposed into a set of MSCCs, denoted as
C0, ..., Ck. They are ordered so that if Ci is reachable from Cj , then i < j. For
MSCCs not connected to each other, their indices may be in an arbitrary order.

violate(Ci, F ). The MSCC (may be the trivial one) Ci violates the compassion
requirement F = (p, q), if p is satisfied by some node of the MSCC and q is not
satisfied by any node of the MSCC.
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Algorithm 2. C-GRAPH

1: call C-RANK(G);

2: for each Fi ∈ F do
3: Wi=subgraph(G, Fi);

4: end for
5: for each Wi ∈ {W1, ..., Wn} do
6: create merge nodes(Wi, G

′);
7: end for
8: create edges(G′);

term(F ). For a dec-requirementF of the form 〈decδ > 0, decδ < 0〉, term(F ) = δ.

remove edge(Ci, F ). Given an MSCC Ci and a compassion requirement F =
(p, q), this procedure modifies the MSCC in such a way that one node satisfying
p is identified and all incoming edges of such a node in this MSCC are removed.

3.3 Abstract Nodes, Helpful Assertions and Ranks

According to Hl, we construct the abstract nodes as an assertion Φ by grouping
together certain nodes that need to satisfy the same compassion requirements.
Let G′ be the abstract graph, initially empty, i.e., G′ = ({}, {}). The procedure
for constructing G′ is described in Algorithm 2. The main functions are explained
as follows.

subgraph(G,Fi). In the assignment Wi = subgraph(G,Fi), the variable Wi is
a local variable used to hold a subset of nodes (a subgraph). The nodes of the
subgraph is constructed according to Fi ∈ F (the original compassion require-
ments) as follows: Sl ∈ Wi ⇐⇒ Fi ∈ Hl. Then Wi is considered as a derived
subgraph of G with the nodes as specified.

create merge nodes(Wi, G
′). (1) Wi may contain several different MSCCs vio-

lating Fi. For each such MSCC in Wi, a node representing this MSCC is created
and added to G′. The rank Δl of the abstract node Φl is assigned the rank ob-
tained before the MSCC is split into smaller MSCCs. (2) For the nodes created
previously, they are merges according to the following condition: the states that
the nodes represent differ only in the dec-variables introduced in the ranking ab-
straction. Then the rank of the abstract node is assigned the lowest rank of the
nodes represented by the abstract node. (3) For each node Φl in the final abstract
graph G′, the concrete helpful assertion ϕl = α−1(Φl) is obtained by concretiz-
ing the abstract nodes (viewed as abstract assertions, by making correspondence
between formulas and sets of states).

create edges(G′). For each pair of nodes Φ and Φ′ such that Φ′ �⊂ Φ, if some
node of Φ is connected to some of Φ′, an edge from Φ to Φ′ is created.
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3.4 Correctness of Auxiliary Constructs

For each compassion requirement (pi, qi), several abstract states may be asso-
ciated. This has been made explicit in the modified C-RESPONSE rule, where
we consider the set of original compassion requirements as a multiset, such that
one compassion requirement (pi, qi) has the number of occurrences matching
the number of associated abstract states. Then each (occurrence of a) compas-
sion requirement corresponds to one abstract state (with a rank and a helpful
assertion) associated with it.

Ranking Core. For the correctness, we assume that every ranking function in
ranking abstraction is chosen to be a variable. Such a set of variables (represent-
ing a set of ranking functions) are called ranking core R [6]. It is easily seen that
the proof of the correctness of the above algorithms with this assumption can
be extended to ranking functions that are arithmetic terms. The abstraction of
D according to the abstraction map α and the ranking core R is denoted DR,α.

Theorem. Let CDS D, a ranking core R, an abstraction mapping α and the
property Ψ be given. Let the assertions ϕi and ranking functions Δi be that
successfully extracted by C-GRAPH. If DR,α |= Ψα then R1-R4 of the rule C-
RESPONSE are provable with the extracted auxiliary constructs.

The correctness is established by analyzing the different steps in the construction
of the auxiliary construct. Firstly, two ranks are compared as follows [2]. Let
Δi = (a1, . . . , ar), Δj = (b1, . . . , br). Let gt(Δi, Δj) be defined by:

gt(Δi, Δj) ≡ ∨r
k=1(a1 = b′1) ∧ · · · ∧ (ak−1 = b′k−1) ∧ (ak 1 b′k)

The formula gt(Δi, Δj) formalizes the condition for Δi 1 Δj in the lexicographic
order. We may not be able to decide whether gt(Δi, Δj) is true or false imme-
diately, because ak, bk may be functions such as δk = x or δk = y. Let Δ 1E Δ′

denote that Δ appear after Δ′ according to the lexicographic order with the
following conditions: the lexicographic order is augmented by an environment E
that specifies whether δk 1 δ′k or δk = δ′k. The environment E may be replaced
by a state S that reflects whether the value of a variable is decreased when the
program moves to the state S. Let Δ > Δ′, where Δ,Δ′ represent ranks, denote
that Δ appear after Δ′ according to the lexicographic order in the initial state.

Claim 1. Let Si and Sj be states in the pending graph. The following properties
hold.

– P1. If Δi 1Sj Δj and Δj > Δk, then Δi 1Sj Δk.
– P2. If the states Si and Sj agree on the values of their non-dec variables,

then they have the same set of successors.

P1 is true according to the definition. P2 is true according to the construction
of the pending graph. These properties are the same as those stated in [2].

Claim 2. Let Δi and Δj be the associated ranks of Si and Sj. Then on successful
termination of C-RANK, the following properties hold.
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– P3. For every two states Si, Sj belonging to different MSCCs such that Si

is connected to Sj , there is a rank decrease Δi 1Sj Δj .
– P4. For every two states Si, Sj belonging to one MSCC such that Si is

connected to Sj, there is no rank decrease only if the MSCC violates some
compassion requirement (pk, qk) (non-dec-requirements) and there is at least
one state Sk which Sk |= pk, or the MSCC does not violate any compassion
requirement.

P3 follows from the decomposition of the pending graph into MSCCs. P4 follows
from the way MSCCs being modified when they do not satisfy some compassion
requirements.

Claim 3. Let Δi and Δj be the associated ranks of Φi and Φj. Then on termi-
nation of C-GRAPH, the following properties hold.

– P5. If Φi is connected to Φj in the abstract graph and S ∈ Φj , then there is a
Φk such that S ∈ Φk, Δi 1S Δk and S |= pk where (pk, qk) is the compassion
requirement violated by the MSCC represented by Φk.

– P6. Let s[Δ] be Δ with the variables replaced by their value in the state s.
If concrete states s, s′ satisfy s |= ϕi, and s′ |= ϕj , i �= j and s′ is a D-
successor of s, then there is a ϕk such that s′ |= ϕk ∧ pk and s[Δi] 1 s′[Δk].

P5 follows from the construction of the abstract graph. Φk in P5 is necessarily
a superset of Φj (i.e., Φj ⊆ Φk), when Φk is considered as a set of nodes of the
pending graph. P6 follows from P5 by the soundness of the abstraction.

Proof of the theorem. Let Φ0 = g, Φ1, ..., Φn be the nodes in the abstract graph,
and ϕi, Δi, (pi, qi) be the helpful assertion, rank and compassion requirement
(which has been reorganized into a multiset that matches the number of Φi)
associated to Φi for i = 1, ..., n. Assume Dα |= Ψα. (1) Since Ψα is true, the
disjunction of the abstract states g, Φ1, ..., Φn covers the states in the pending
graph. By the correctness of the abstraction, g ∨∨l

i=1 ϕi covers the state space
represented by the pending graph. The a p-state is either the goal state g or a
state with a progress requirement, i.e. pi∧ϕi for some i ∈ {1, ..., n}. (2) Similarly,
successor states of such a state (excluding g) also satisfy the same condition. (3)
The correctness of R3 follows from property P6. (4) R4 is guaranteed by the
construction of ϕi, since each ϕi represents an MSCC (or a collection of MSCCs
when they are merged) violating the compassion requirement (pi, qi).

3.5 Discussion

Previous works in this directive of research include using deduction rules with
weak fairness (justice) requirements to prove liveness properties of sequential
or simple concurrent programs. They depend on dec-requirements to decide the
ranks of states in just MSCC. We concern deductive rule with strong fairness
(compassion) requirements to prove liveness properties of more complex concur-
rent programs. It depends on compassion requirements to decide the ranks of
states in MSCC.
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4 Application Examples

We illustrate the application of the approach on two programs:

– COND-TERM, a sequential program with a non-deterministic choice of the
values of a variable [1].
This example is supposed to show the approach applied on a verification
problem with ranking abstraction in which some dec-requirement is intro-
duced in the abstraction phase.

– MUX-SEM, a concurrent program for mutual exclusion [13].
This example is supposed to show the approach applied on a concurrent
program.

4.1 Example 1: COND-TERM

The following is the program COND-TERM (conditional termination). The re-
sponse property we wish to establish is Ψ : at l1 ⇒ ♦at l4. The just requirements
are ¬at li for i = 1, 2, 3, 4, and the compassion requirements is F1 = 〈at l3 ∧ x =
0, 0〉. Let Fi+1 be 〈1,¬at li〉 representing the just requirements for i = 1, 2, 3.

x,y: natural init x = 0
l1: while y > 0 do
l2: x:= {0,1}
l3: y := y + 1 − 2x
l4:

Phase 1 (ranking abstraction and pending graph). The ranking core in this case
is chosen to be {y} and the ARF (augmenting ranking function) y is associated
with the natural numbers as the well-founded set. Let Decy = sign(y − y′) in
which y denotes the value of y in the previous state and y′ denotes the value of
y in the current state. The abstraction mapping α is defined by :

α : Π = π,X = (x > 0), Y = (y > 0), decy = Decy

where Π = i denotes at li is true. We construct the pending graph as showing in
Fig. 1. The constraints of the graph include the additional compassion require-
ment FD = 〈decy > 0, decy < 0〉 which is deduced from the condition of the
while loop according to the rank abstraction process. We have FD = {FD}
in this example. The pending graph includes two kinds of uncompassionate
loops, one violating the given compassion and the other violating the compassion
introduced in the abstraction process.

There are 8 states {S0, S1, ..., S7} with S0 = g.

Phase 2 (compassion requirements and initial ranks). Let Δi and Hi be the
rank of Si and the set of compassion requirements associated to Si, respectively,
initially with Δi = [] and Hi = [].
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Fig. 1. The Pending Graph Fig. 2. The Abstract Graph

In the first level of computation, we have 4 MSCCs:

{g}, {S1}, {S2, S3, S4, S5, S6 }, {S7}.
Then Δ0 = [0], Δ1 = [1], Δ2 = Δ3 = Δ4 = Δ5 = Δ6 = [2], Δ7 = [3].

Let C0, C1, C2, C3 denote the 4 MSCCs. Since C0 is the set of the goal state,
we check C1, C2, C3 against the compassion requirements, and obtain Table 1.

Table 1. The MSCCs C1, C2, C3

Component Violation

C1 F2

C2 F1

C3 F2

Table 2. The MSCCs C21, C22, C23

Component Violation

C21 F4

C22 F2

C23 FD

Then we add the respective compassion requirement to H1, ..., H7, and obtain
H1 = H7 = [F2], H2 = H3 = H4 = H5 = H6 = [F1].

Since C2 is not a non-trivial subgraph, we remove the edge (S4 → S3), which
leads into the state satisfying at l3 ∧ x = 0, from C2, and compute again with
the modified subgraph.
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In the second level of computation, we have 3 MSCCs: {S3}, {S6}, {S4, S2,
S5}. Then Δ3 = [2, 2], Δ6 = [2, 1], Δ2 = Δ4 = Δ5 = [2, 0].

Let C21, C22, C23 denote the 3 MSCCs. By checking the MSCCs against the
compassion requirements, we obtain Table 2.

Then we add the respective compassion requirement to H2, ..., H6. In addi-
tion, since C23={S4, S2, S5} violates FD = 〈decy > 0, decy < 0〉, we add y to
Δ2, Δ4, Δ5, and obtain Δ2 = Δ4 = Δ5 = [2, 0, y].

Then since C23 is not a non-trivial subgraph, we remove the edge (S2 → S5),
which leads into the state satisfying decy > 0, from C23, and compute again with
the modified subgraph.

In the third level of computation, we have 3 MSCCs: {S5}, {S4}, {S2}.
The rank to be assigned to the nodes in this level is 2, 1, 0, and we obtain

Δ5 = [2, 1, y, 2], Δ4 = [2, 1, y, 1], Δ2 = [2, 1, y, 0].
Since {S5}, {S4} and {S2} are trivial MSCCs, we add F2, F3, F4 to H5, H4, H2

respectively. The final value of Δi and Hi are as shown in Table 3.

Table 3. The Rank Table of Program COND-TERM

Index i Si Δi Hi

7 S7 [3] [F2]

6 S6 [2, 1] [F1, F2]

5 S5 [2, 0, y, 2] [F1, FD, F2]

4 S4 [2, 0, y, 1] [F1, FD, F3]

3 S3 [2, 2] [F1, F4]

2 S2 [2, 0, y, 0] [F1, FD, F4]

1 S1 [1] [F2]

0 S0 [0]

Phase 3 (abstract nodes, helpful assertions and ranks). According to Hi, we con-
struct the abstract nodes 4 by grouping together nodes that need satisfying the
same compassion requirement merging S6 - S2 as an abstract state Φ2 and by
grouping together nodes that agree with the value of all variables except the dec-
variable: merging S7 and S5 as another abstract state Φ6. The abstract nodes
with their respective ranks are listed in Table 4 and the abstract graph is shown
in Fig. 2.

Finally, we obtain the concrete helpful assertions ϕ1, . . . , ϕ7 by concretizing
the abstract assertions Φ1, . . . , Φ7, and obtain the ranks Δ1, . . . , Δ7 by renum-
bering the respective ranks in Fig. 2. The helpful assertions and the ranks are
shown in Table 5.

The validity of the premises of the rule C-RESPONSE for this example may be
verified by using the constructed auxiliary constructs ϕ1, ..., ϕ7 and Δ1, ..., Δ7.
The reader is referred to the technical report [5] for the details.

4 Note that FD is not involved in the construction of abstract nodes, since it is not

one of the original system constraints.
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Table 4. The Abstract Table of Program COND-TERM

Abstract Node Nodes Rank Compassion Req.

Φ7 S3 [2, 2] F4

Φ6 S6, S7 [2, 1] F2

Φ5 S5 [2, 0, y, 2] F2

Φ4 S4 [2, 0, y, 1] F3

Φ3 S2 [2, 0, y, 0] F4

Φ2 S2, ..., S6 [2] F1

Φ1 S1 [1] F2

Φ0 S0 [0]

Table 5. The Concrete Table of Program COND-TERM

Index Helpful Assertion ϕi Δi

7 at l3 ∧ y > 0 ∧ x = 0 [2, 2]

6 at l1 ∧ y > 0 ∧ x = 0 [2, 1]

5 at l1 ∧ y > 0 ∧ x = 1 [2, 0, y, 2]

4 at l2 ∧ y > 0 ∧ x ∈ {0, 1} [2, 0, y, 1]

3 at l3 ∧ y > 0 ∧ x = 1 [2, 0, y, 0]

2 at l1..3 ∧ y � at l1,2,3 ∧ x ∈ {0, 1} [2]

1 at l1 ∧ y = 0 ∧ x = 1 [1]

4.2 Example 2: MUX-SEM

The following is the concurrent program MUX-SEM. Let at li[j] denotes that
process j is at li (of process j). The response property we wish to establish
is at l2[1] ⇒ ♦at l3[1]. The just requirements are ¬at l4[j] and ¬at l3[j]. The
compassion requirement is F1 = 〈at l2[1]∧y = 1, at l3[1]〉. The just requirements
are special compassion requirements formulated as 〈1,¬at l4[i]〉 and 〈1,¬at l3[i]〉
for i ∈ {1, ..., n}.

local y : boolean init y = 1;

‖n
i=1P [i] ::

⎡⎢⎢⎢⎢⎣
loop forever do

l1 : Noncritical
l2 : request y
l3 : Critical
l4 : release y

⎤⎥⎥⎥⎥⎦
The abstraction mapping α is defined by:

α : Π = π,Π3 = π3, Π4 = π4, Y = (y > 0)

where Π is a function with range {1, 2, 3, 4} (and the domain being the system
states). Π = i denotes that at li[1] is true, for i ∈ {1, ..., 4}. Πk is a function
with range {0, 1} and it is 1 if and only if the following is true:
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n∨
j=2

(at lk[j] ∧
n∧

i=2

((i �= j) ⇒ ¬at lk[i]))

The set of compassion requirements {〈1,¬at l4[i]〉 | i = 1, ..., n} and the set
{〈1,¬at l3[i]〉 | i = 1, ..., n} induce two new compassion requirements F2 =
〈1,¬π4 = 1〉 and F3 = 〈1,¬π3 = 1〉. Then the set of compassion requirements of
the abstract program is F = {F1, F2, F3}.

Let − denote any value in the range of the respective position of the abstract
states. For instance, (1,−,−,−) denotes the abstract states where the value of
(Π,Π3, Π4, Y ) satisfying Π = 1 and the rest of the positions could be any value.
And (2, 1, 0, 0) denotes that process 1 is at l2 and there is another process j at
l3 meanwhile y = 1. Then the abstract states represented by the following tuples
covers the reachable concrete states :

(1,−,−,−), (2, 0, 0, 1), (2, 1, 0, 0), (2, 0, 1, 0), (3,−,−,−), (4,−,−,−)

Let S0, S1, S2, S3 be the set of states represented by respectively

(3,−,−,−), (2, 0, 0, 1), (2, 0, 1, 0), (2, 1, 0, 0).

Then we construct the pending graph with these four states with S0 = g,
and proceed with computing the temporary Δi and Hi for each of the states
S1, S2, S3 using algorithm 1, and obtain (Δ1, Δ2, Δ3) = ([1, 2], [1, 0], [1, 1]). Then
we compute the abstract states and their associated ranks using algorithm 2,
and obtain three abstract nodes (not counting the node representing the goal
state) Φ1 = {S1, S2, S3}, Φ2 = {S2}, Φ3 = {S3} with their respective ranks
[1], [1, 0], [1, 1] and associated compassion requirement F1, F2, F3.

Finally, we obtain the concrete helpful assertions ϕ1, ϕ2, ϕ3 by concretizing the
abstract assertions Φ1, Φ2, Φ3, and obtain the ranks Δ1, Δ2, Δ3 by renumbering
the respective ranks. The concrete assertions ϕ1, ϕ2, ϕ3 and the ranks Δ1, Δ2, Δ3

are shown as follows.

Index i ϕi Δi

3 at l2[1] ∧∨n
j=2(at l3[j] ∧

∧n
i=2((i �= j) ⇒ ¬at l3[i])) ∧ y = 0 [2]

2 at l2[1] ∧∨n
j=2(at l4[j] ∧

∧n
i=2((i �= j) ⇒ ¬at l4[i])) ∧ y = 0 [1]

1 at l2[1] [0]

5 Concluding Remarks

For proving a response property in systems with fairness based on the rule pre-
sented in [1], we need auxiliary constructs. We have presented a method for
extracting such constructs. The method consists of phase 2 and phase 3 de-
scribed in Section 3, while phase 1 is as same as that of [2]. The method extends
that presented in [2] which aimed at proving a response property in systems with
justice. The use of the method has been illustrated by examples of concurrent
and sequential programs. When the system is restricted to only allowing justice
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requirements, the auxiliary constructs we obtained may be different from those
obtained by using the method presented in [2]. For illustrating this, we have also
tried our method on the example of [2] for proving the response property in a
system with justice, the details can be found in the technical report [5].
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Abstract. This paper proposes a new method to compute symbolic

unfoldings for safe Stopwatch Petri Nets (SwPNs), extended with time

parameters, that symbolically handle both the time and the parameters.

We propose a concurrent semantics for (parametric) SwPNs in terms

of timed processes à la Aura and Lilius. We then show how to compute a

symbolic unfolding for such nets, as well as, for the subclass of safe time

Petri nets, how to compute a finite complete prefix of this unfolding.

Our contribution is threefold: unfolding in the presence of stopwatches

or parameters has never been addressed before. Also in the case of time

Petri nets, the proposed unfolding has no duplication of transitions and

does not require read arcs and as such its computation is more local.

Finally the unfolding method is implemented (for time Petri nets) in the

tool Romeo.

Keywords: unfolding, time Petri nets, stopwatches, parameters, sym-

bolic methods.

1 Introduction

The analysis of concurrent systems is one of the most challenging practical prob-
lems in computer science. Formal specification using Petri nets has the advantage
to focus on the tricky part of such systems, that is parallelism, synchronization,
conflicts and timing aspects. Among the different analysis techniques, we chose
to develop the work on unfoldings [9].

Unfoldings were introduced in the early 1980s as a mathematical model of
causality and became popular in the domain of computer aided verification. The
main reason was to speed up the standard model-checking technique based on
the computation of the interleavings of actions, leading to a very large state
space in case of highly concurrent systems. The seminal papers are [14] and [8].
They dealt with basic bounded Petri nets.
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Since then, the technique has attracted more attention, and the notion of
unfolding has been extended to more expressive classes of Petri nets (Petri nets
with read and inhibitor arcs [7,3], unbounded nets [1], high-level nets [12], and
time Petri nets [6]).

Advancing this line of works, we present in this paper a method to unfold safe
parametric stopwatch Petri nets. Stopwatch Petri nets (SwPNs) [5] are a strict
extension of the classical time Petri nets à la Merlin (TPNs) [15,4] and provide
a means to model the suspension and resumption of actions with a memory of
the “work” done before the suspension. This is very useful to model real-time
preemptive scheduling policies for example.

The contribution of this paper is a new unfolding algorithm addressing the
problem for stopwatch and parametric models for the first time. When applied
to the subclass of time Petri nets, it provides an alternative to [6] and improves
on the latter method by providing a more compact unfolding and not requiring
read arcs in the unfolding (if the TPN itself has no read arcs of course). We
also provide a way to compute a finite complete prefix of the unfolding for (safe)
TPNs. Note this is the best we can do as most interesting properties, such as
reachability, are undecidable in time Petri nets in presence of stopwatches [5] or
parameters [16].

While not extremely difficult from a theoretical point of view, we think that
the handling of parameters is of utmost practical importance: adding parameters
in specifications is a real need. It is often difficult to set them a priori: indeed,
we expect from the analysis some useful information about their possible values.
This feature of genericity clearly adds some “robustness” to the modeling phase.
It is important to note that, as for time, we handle these parameters symboli-
cally to achieve this genericity and the unfolding technique synthesizes all their
possible values as linear constraint expressions.

Finally, note that the lack of existence of a finite prefix in the stopwatch or para-
metric cases is not necessarily prohibitive as several analysis techniques, such as
supervision, can do without it [10]. Practical experience also demonstrates that
even for very expressive models, such as Linear Hybrid Automata [11], the unde-
cidability of the interesting problems still allows to analyze them in many cases.

Organization of the paper. Section 2 gives preliminary definitions and Sec-
tion 3 propose an unfolding method of stopwatch parametric Petri nets based
on an original way of determining conflicts in the net. Section 4 shows how to
compute a complete finite prefix of the unfolding of a time Petri net. Finally in
Section 5, we discuss open problems and future work.

2 Definitions

We denote by� the set of non-negative integers, by� the set of rational numbers
and � the set of real numbers. For A ∈ {�,�}, A≥0 (resp. A>0) denotes the
subset of non-negative (resp. strictly positive) elements of A. Given a, b ∈ �
such that a ≤ b, we denote by [a..b] the set of integers greater or equal to a and
less or equal to b. For any set X , we denote by |X | its cardinality.
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For a function f on a domain D and a subset C of D, we denote by f|C the
restriction of f to C.

Let X be a finite set. A (rational) valuation of X is a function from X to
�. A (rational) linear expression on X is an expression of the form a1x1 +
· · · + anxn, with n ∈ �, ∀i, ai ∈ � and xi ∈ X . A linear constraint on X
is an expression of the form LX ∼ b, where LX is a linear expression on X ,
b ∈ � and ∼∈ {<,≤,≥, >}. Given a linear expression L = a1x1 + · · · + anxn

on X and a rational valuation v on X , we denote v(L) the rational number
a1v(x1) + · · · + anv(xn). Similarly for a linear constraint C = L ∼ b, we note
v(C) the Boolean expression (v(L) ∼ b). We extend this notation in the same
way for conjunctions, disjunctions and negations of constraints.

For the sake of readability, when non-ambiguous, we will “flatten” nested
tuples, e.g. 〈〈〈B,E, F 〉, l〉, v, θ〉 will be written 〈B,E, F, l, v, θ〉.

2.1 Unfolding Petri Nets

Definition 1 (Place/transition net). A place/transition net with read arcs
(P/T net) is a tuple 〈P, T,W,Wr〉 where: P is a finite set of places, T is a finite
set of transitions, with P ∩ T = ∅, W ⊆ (P × T ) ∪ (T × P ) is the transition
incidence relation and Wr ⊆ P × T is the read incidence relation

This structure defines a directed bipartite graph such that (x, y) ∈ W ∪Wr iff
there is an arc from x to y.

We further define, for all x ∈ P ∪ T , the following sets: •x = {y ∈ P ∪
T | (y, x) ∈ W}, �x = {y ∈ P ∪ T | (y, x) ∈ Wr} and x• = {y ∈ P ∪ T | (x, y) ∈
W}. These set definitions naturally extend by union to subsets of P ∪ T .

A marking m : P → � is a function such that (P,m) is a multiset. For all p ∈ P ,
m(p) is the number of tokens in the place p. In this paper we restrict our study
to 1-safe nets, i.e. nets such that ∀p ∈ P, m(p) ≤ 1. Therefore, in the rest of
the paper, we will usually identify the marking m with the set of places p such
that m(p) = 1. In the sequel we will call Petri net (with read arcs) a marked
P/T net, i.e. a pair 〈N ,m〉 where N is a P/T net and m a marking of N , called
initial marking.

A transition t ∈ T is said to be enabled by the marking m if •t ∪ �t ⊆ m. We
denote by en(m), the set of transitions enabled by m.

2.2 Semantics of True Concurrency

There is a path x1, x2, . . . , xn in a P/T net iff ∀i ∈ [1..n], xi ∈ P ∪ T and
∀i ∈ [1..n− 1], (xi, xi+1) ∈ W ∪Wr.

In a P/T net, consider x, y ∈ P ∪ T . x and y are causally related, which we
denote by x < y, iff there exists a path in the net from x to y. The causal past of
a transition t is called local configuration and denoted by $t&, and is constituted
by the transitions that causally precede t, i.e. $t& = {t′ ∈ T | t′ < t}.

The addition of the read arcs introduces another causal relation between two
transitions x, y ∈ T , that is called weak causality and denoted by x ↗ y, iff
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x < y ∨ �x∩ •y �= ∅. This notion is already presented in [7]. The relation denotes
that the firing of the transition x happens before the one of y.

The two causal relations induce a relation of conflicts between the transitions
of the net. A set X ⊆ T of transitions are said to be in conflict, noted #X ,
when some transitions consumed the same token, or when the weak causality
defines a cycle in this set. Formally:

#X =
{∃x, y ∈ X : x �= y ∧ •x ∩ •y �= ∅ ∨
∃x0, x1, . . . , xn ∈ X : x0 ↗ x1 ↗ . . . xn ↗ x0

Definition 2 (Occurrence net). An occurrence net is an acyclic P/T net
〈B,E, F, Fr〉:
– finite by precedence (∀e ∈ E, $e& is finite),
– such that each place has at most one input transition (∀b ∈ B, |•b| ≤ 1),
– and such that there is no conflicts in the causal past of each transition (∀e ∈

E, ¬#{e ∪ $e&}).
We use the classical terminology of conditions and events to refer to the places
B and the transitions E in an occurrence net.

Definition 3 (Branching process). A branching process of a Petri net N =
〈P, T,W,Wr,m0〉 is a labeled occurrence net β = 〈O, l〉 where O = 〈B,E, F, Fr〉
is an occurrence net and l : B ∪ E → P ∪ T is the labeling function such that:

– l(B) ⊆ P and l(E) ⊆ T ,
– for all e ∈ E, the restriction l|•e of l to •e is a bijection between •e and •l(e),
– for all e ∈ E, the restriction l|�e of l to �e is a bijection between �e and �l(e),
– for all e ∈ E, the restriction l|e• of l to e• is a bijection between e• and l(e)•,
– for all e1, e2 ∈ E, if •e1 = •e2, �e1 = �e2 and l(e1) = l(e2) then e1 = e2.

E should also contain the special event ⊥, such that: •⊥ = ∅, �⊥ = ∅, l(⊥) = ∅,
and l|⊥• is a bijection between ⊥• and m0.

Branching processes can be partially ordered by a prefix relation. For example,
the process {e1, e2, e3} is a prefix of the branching process in Fig. 1b in which
t1 is fired only once. There exists the greatest branching process according to
this relation for any Petri net N , which is called the unfolding of N . Let β =
〈B,E, F, Fr , l〉 be a branching process.

A co-set in β is a set B′ ⊆ B of conditions that are in concurrence, that
is to say without causal relation or conflict, i.e. ∀b, b′ ∈ B′,¬(b < b′) and
¬#

⋃
b∈B′(•b ∪ $•b&).

A configuration of β is a set of events E′ ⊆ E which is causally closed and
conflict-free, that is to say ∀e′ ∈ E′, ∀e ∈ E, e < e′ ⇒ e ∈ E′ and ¬#E′. In
particular the local configuration $e& of an event e is a configuration.

A cut is a maximal co-set (inclusion-wise). For any configuration E′, we can
define the cut Cut(E′) = E′•\•E′, which is the marking of the Petri net obtained
after executing the sequence of events in E′.
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Fig. 1. A parametric stopwatch Petri net (a) and a branching processes of its underlying

(untimed) Petri net (b). Stopwatch arcs are drawn with a circle tip and read arcs with

a diamond tip.

An extension of β is a pair 〈t, e〉 such that e is an event not in E, •e∪ �e ⊆ B
is a co-set, the restriction of l to •e is bijection between •e and •t, the restriction
of l to �e is bijection between �e and �t, and there is no e′ ∈ E s.t. l(e′) = t,
•e′ = •e and �e′ = �e. Adding e to E and labeling e with t gives a new branching
process.

Example 1. Fig. 1b shows a branching process obtained by unfolding the net
presented in Fig. 1a (ignoring any timing or parameter information). The labels
are figured inside the nodes. The branching process in Fig. 1b includes two firings
of t1 after executing the loop t2, t3. It could be repeated infinitely many times,
leading to an infinite unfolding.

2.3 Stopwatch Petri Nets

A mainstream way of adding time to Petri nets is by equipping transitions with
a time interval. This model is known as Time Petri nets (TPNs) [15,4]. We
use a further extension of TPNs featuring stopwatches, called Stopwatch Petri
nets (SwPNs) and originally proposed in [5]. Stopwatches allow the modelling
of suspension / resumption of actions, which has many useful applications like
modelling real-time preemptive scheduling policies [13].

The added expressivity comes at the expense of decidability: most interesting
problems, such as reachability, liveness, etc. are undecidable for SwTPNs, even
when bounded [5]. They are decidable however when restricting to bounded
TPNs [4].
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Definition 4 (Stopwatch Petri net). A Stopwatch Petri net (with read arcs)
SwPN is a tuple 〈P, T,W,Wr,Ws,m0, eft, lft〉 where: 〈P, T,W,Wr,m0〉 is a Petri
net, Ws ⊆ P × T is the stopwatch incidence relation, and eft : T → �≥0

and lft : T → �≥0 ∪ {∞} are functions satisfying ∀t ∈ T, eft(t) ≤ lft(t), and
respectively called earliest (eft) and latest (lft) transition firing times.

Given a SwPN N = 〈P, T,W,Wr,Ws,m0, eft, lft〉, we denote by Untimed(N ) the
Petri net 〈P, T,W,Wr ∪ Ws,m0〉. Note that in Untimed(N ) stopwatch arcs are
transformed into read arcs. For any transition t, we define the set of its activating
places as ◦t = {p ∈ P | (p, t) ∈ Ws}. A transition is said to be active in marking
M if it is enabled by M and ◦t ⊆ M . An enabled transition that is not active is
said to be suspended.

Intuitively, the semantics of TPN states that any enabled transition measures
the time during which it has been enabled and an enabled transition can only fire
if that time is within the time interval of the transition. Also, unless it is disabled
by the firing of another transition, the transition must fire within the interval:
a finite upper bound for the time interval then means that the transition will
become urgent at some point. For SwPNs, the time during which the transition
has been enabled progresses if and only if all its activating places are marked.
Otherwise the stopwatch is “frozen” and keeps its current value.

More formally, we define the concurrent semantics of SwPNs using the time
processes of Aura and Lilius [2]. Let us first recall the definition of these time
processes:

Definition 5 (Time process). A time process of a Stopwatch Petri net N is a
pair 〈E′, θ〉, where E′ is a configuration of (a branching process of) Untimed(N )
and θ : E′ → �≥0 is a timing function giving a firing date for any event of E′.

Let 〈E′, θ〉 be a time process of a SwPN N = 〈P, T,W,Wr,Ws,m0, eft, lft〉 and
β = 〈B,E, F, Fr , l〉 be the associated branching process of Untimed(N ). We note
∗e = •e∪{b ∈ �e | l(b) ∈ �l(e)} the set of conditions that enabled an event e in the
process E. These conditions are the consumed conditions and the read conditions
due to read arcs, but it excludes the read conditions due to stopwatches.

Let B′ ⊆ E′• be a co-set and t ∈ T be a transition enabled by l(B′). We define
the enabling date of t by B′ as: TOE(B′, t) = max({θ(•b) | b ∈ B′∧l(b) ∈ •t∪�t}).
This means that we measure the time during which the transition has been
enabled. By extension, for any event e, we note TOE(e) = TOE(∗e, l(e)). We also
define the set of events temporally preceding an event e ∈ E′ as: Earlier(e) =
{e′ ∈ E′ | θ(e′) < θ(e)}, and we note Ce = Cut(Earlier(e)).

When dealing with stopwatches, the enabling date is not sufficient to deter-
mine the firing dates of the event, and is replaced by the notion of activity
duration. For any co-set B′, we define its duration up to some date θ as:

dur(B′, θ) = min{ min
e∈B′•

{θ(e)}, θ} − max
b∈B′

{θ(•b)}

Then, for a transition t enabled by a co-set B′, we define its active co-sets
Acos(B′, t) as all the co-sets A s.t.
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– A is in the causal past of B′,
– the conditions that enabled t in B also belong to A,
– t is active in A.

Finally the activity duration of the transition t at some date θ is:

adur(B, t, θ) =
∑

A∈Acos(B,t)

dur(A, θ)

By extension, for any event e, we note Acos(e) = Acos(∗e, l(e)), and adur(e, θ) =
adur(∗e, l(e), θ).

The semantics of a Stopwatch Petri net is then defined using the notion of
validity of time processes.
Definition 6 (Valid time process for SwPNs). A time process is valid iff
θ(⊥) = 0 and the following constraints are satisfied, ∀e ∈ E′ (e �= ⊥):

θ(e) ≥ max({θ(•b) | b ∈ •e ∪ �e}) (1)

adur(e, θ(e)) ≥ eft(l(e)) (2)

∀t ∈ en(l(Ce)), adur(Ce, t, θ(e)) ≤ lft(t) (3)
Condition 1 ensures that time progresses. Condition 2 states that to fire a tran-
sition l(e) by an event e, it must have been active for at least a duration equal
to eft(l(e)) before being fired. Condition 3 states that at the firing date of an
event e, the activity duration of no transition t can exceed its maximum firing
time lft(t). Notice that if the former is purely local to the transition t, the latter
refers to all enabled transitions in the net, which adds causality between events
that are not causally related in the underlying untimed net.

It is easy to see that in the case of TPNs without stopwatches this definition
reduces to the definition of Aura and Lilius [2] since, for any transition t enabled
by a co-set B, we then have Acos(B, t) = B and ∀θ, dur(B, θ) = θ− TOE(B, t).

Note that, in this paper, we consider only Petri nets with non-zeno behavior.
Finally, we extend SwPNs with parameters, a model introduced in [16].

Definition 7 (Parametric Stopwatch Petri net). A Parametric Stopwatch
Petri net (PSwPN) is a tuple N = 〈P, T,W,Wr ,Ws,m0, eft, lft, Π,DΠ〉 where:
〈P, T,W,Wr,m0〉 is a Petri net, Ws is the stopwatch incidence relation as before,
Π is a finite set of parameters (Π ∩ (P ∪T ) = ∅), DΠ is a conjunction of linear
constraints describing the set of initial constraints on the parameters, and eft
and lft are functions on T such that for all t ∈ T , eft(t) and lft(t) are rational
linear expressions on Π (or lft(t) is infinite).

Definition 8 (Semantics of a PSwPN). Let N = 〈P, T,W,Wr,Ws,m0, eft, lft,
Π,DΠ〉. Given a rational valuation v on Π such that v(DΠ) is true, we define
the semantics of N as the SwPN Nv = 〈P, T,W,Wr ,Ws,m0, v(eft), v(lft)〉.
Example 2. Fig. 1a gives an example of a PSwPN. Notice that the time interval
of transition t2 refers to two parameters a and b. The only initial constraint is
DΠ = {a ≤ b}.
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3 Unfolding

The method we propose to unfold parametric stopwatch Petri nets is based on an
original way of determining conflicts in the net. In the non parametric timed case
(no stopwatch), unfoldings built with this method differ in general from those
of [6]. In [6], the emphasis is put on the on-line characteristic of the algorithm:
it is a pessimistic approach that ensures that events and constraints put in
the unfolding cannot be back into question. This leads possibly to unnecessary
duplication of events. In contrast, we propose here an optimistic approach, which
requires to dynamically compute the conflicts, and sometimes to backtrack on
the constraints.

We propose to refine the conflict notion by defining a relation of direct conflict.

Definition 9 (Direct conflict). Let O = 〈B,E, F, Fr〉 be an occurrence net.
Two events e1, e2 ∈ E are in direct conflict, which we denote by e1 conf e2, iff⎧⎨⎩

¬#{e2 ∪ $e2& ∪ $e1&}
¬#{e1 ∪ $e1& ∪ $e2&}
•e1 ∩ •e2 �= ∅

The first two conditions amount to say that •e1 ∪ •e2 is a co-set. Direct conflicts
are central to our study for they are at the root of all conflicts.

Example 3. The branching process presented in Fig. 1b contains direct conflicts
e1 conf e5, e4 conf e5 and e1 conf e4. e1 and e2 are only weakly ordered (e1 ↗ e2).

3.1 Time Branching Processes

We shall now extend the notion of branching process with time information,
allowing us to define the symbolic unfolding of PSwPNs. We do this in a way
similar to extending configurations to time processes, by adding a function la-
beling events with their firing date. In a branching process however, some events
may be in conflict, which means that some of them may not fire at all. We will
account for this situation by labeling an event that never fires with +∞.

The introduction of time in Petri nets reduces the admissible discrete be-
haviors, but induces new kinds of causal relations. For instance, in the TPN of
Fig. 2(a), the firing of t1 is only possible if t3 is fired before t2, which liberates
the conflict between t1 and t2.

In the unfolding method of TPNs proposed in [6] these relations are handled
by using read arcs in the unfolding, so that the firing of an event is duplicated
according to the local state in which it is fired. The drawback in this approach is
that it can lead to numerous unnecessary duplications of an event. For instance,
considering now the TPN of Fig. 2(b), the firing of t4 is possible in the states
(p1, p4), (p2, p4) or (p3, p4), leading to a duplication of the event in each case.
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t1 [5, 5]

p1

t2 [3, 3]

p2

t3 [0, 4]

(a)

p1

t1 [0, 5]

p2

t2 [0, 5]

p3

t3 [5, 5]

p4

t4 [10, 10]

(b)

Fig. 2. Time-induced causality in time Petri nets

In our approach we try to express more local conditions by referring only to
events in direct conflict. In the example of Fig. 2(b), this is expressed by the
relation et3 conf et4 that allows the derivation of the constraints on the firing
date of these two events. The cost of this approach is that until t2 has not been
fired, no restriction is put on the firing of t4, and additional constraints are only
added afterwards.

Definition 10 (Time branching process). Given a SwPN N = 〈P, T,W,Wr

,Ws,m0, eft, lft〉 , a Time Branching Process (TBP) of N is a tuple 〈β, θ〉 where
β = 〈B,E, F, Fr , l〉 is a branching process of Untimed(N ) and θ : E → �≥0∪{∞}
is a timing function giving a firing date for any event in E.

As for time processes we define the notion of validity of the timing function of
time branching process. In the sequel, we will say that a TBP is valid if its timing
function is valid.

Definition 11 (Valid timing function for a TBP). Given a PSwPN N =
〈P, T,W,Wr,Ws,m0, eft, lft, Π,DΠ〉 and a valuation v ∈ DΠ of the parameters,
let Γ = 〈B,E, F, Fr , l, θ〉 be a time branching process of Nv. θ is a valid timing
function for Γ iff θ(⊥) = 0 and ∀e ∈ E (e �= ⊥),[

θ(e) �= ∞ ∧ θ(e) ≥ max({θ(•b) | b ∈ •e ∪ �e}) (4)

∧ adur(e, θ(e)) ≥ v(eft(l(e))) (5)
∧ adur(e, θ(e)) ≤ v(lft(l(e))) (6)
∧ ∀e′ ∈ E s.t. e′ conf e, θ(e′) = ∞ (7)

∧ ∀e′ ∈ E s.t. e ↗ e′, θ(e) ≤ θ(e′)
]

(8)

∨
[
θ(e) = ∞ ∧ ∃b ∈ •e, θ(•b) = ∞

]
(9)

∨
[
θ(e) = ∞ ∧ ∃e′ ∈ E s.t. (e conf e′ ∨ e ↗ e′)

∧ θ(e′) �= ∞∧ adur(e, θ(e′)) ≤ v(lft(l(e)))
]

(10)
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∅⊥

p1 p2

t1

10 ≤ θ(e1) ≤ 16

∧θ(e1) ≤ θ(e2)

∧θ(e5) = +∞
∧θ(e4) = +∞
∨θ(e1) = ∞

e1 t2 a ≤ θ(e2) ≤ be2

p3 p4

t3 5 + a ≤ θ(e3) ≤ 5 + be3

p2t1

15 ≤ θ(e4) ≤ 16

∧θ(e5) = +∞
∧θ(e1) = +∞
∨θ(e4) = ∞

e4

p3

t4

θ(e5) = 16

∧θ(e1) = +∞
∧θ(e4) = +∞
∨θ(e5) = ∞

e5

p5

Fig. 3. A TBP with symbolic constraints for the PSwPN of Fig. 1a

Additionally, if ∃{e0, e1, . . . , en} ⊆ E s.t. e0 ↗ e1 ↗ · · · ↗ en ↗ e0 then
∃i ∈ [0..n] s.t θ(ei) = ∞.

In these constraints, the usual operators are naturally extended to �≥0 ∪ {∞}.
Eq. 4 ensures that time progresses. Eq. 5 constrains the earliest firing date and
Eq. 6 the latest firing date of event e according to the parametric time interval
associated to the transition l(e). Also, an event e has a finite firing date iff it
actually fires: this means that no other event e′ in conflict with e can have a
finite firing date e (Eq. 7). Finally with read arcs, in case the event e is weakly
ordered before an event e′, then with Eq. 8, e must fire before e′.

While Eqs. 5 to 7 define when an event can be fired, i.e. they give it a con-
strained but finite firing date, the last two equations define the cases in which
an event cannot fire at all, giving it an infinite firing date. First, if one of the
preconditions of event e has an infinite production date, then e has an infinite
firing date (Eq. 9). Second, e may have an infinite firing date if it is in direct
conflict with another event that has a finite firing date (Eq. 10). This implies
that this event with a finite firing date will fire before e would have been forced
to fire i.e. before its activity duration reaches the upper bound of the interval.
Note that this is the only way to introduce infinite firing dates in the equation
system. Those will then be propagated by Eq. 9.

Example 4. We consider the PSwPN of Fig. 1a. One of its TBP with symbolic
constraints is presented on Fig. 3. For the values a = 2 and b = 4 of the pa-
rameters, a valid timing that verifies these constraints is θ(e1) = ∞, θ(e2) = 3,
θ(e3) = 8, θ(e4) = 15 and θ(e5) = ∞.
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3.2 Temporally Complete Time Branching Processes

Valid time branching processes as defined by Def. 10 and 11 do not necessarily
contain correct executions, since a TBP is a priori incomplete in the sense that
all timed constraints of the PSwPN may not be included yet in the TBP: by
extending the TBP with additional events, new conflicts may appear that would
add those constraints. We will therefore consider temporally complete TBP as
defined below:

Definition 12 (Temporally complete TBP). Let N = 〈P, T,W,Wr,Ws,m0,
eft, lft, Π,DΠ〉 be PSwPN and v be a valuation of its parameters. A valid TBP
〈B,E, F, Fr , l, θ〉 of Nv is temporally complete if for all the extensions 〈t, e〉 of
〈B,E, F, Fr , l〉,

∀e′ ∈ E s.t. θ(e′) �= ∞, adur(∗e, t, θ(e′)) ≤ v(lft(t)) (11)

This definition basically says that the firing date of all events in the TBP
should be less or equal than the latest firing date of all possible extensions.
Since the conflicts that have not yet been discovered will result from these ex-
tensions, this implies that all the events in the TBP are possible before these
conflicts occur. It further ensures that all the parallel branches in the TBP
have been unfolded to a same date. A similar condition can be stated for time
processes.

Example 5. For the TBP of Fig. 3, the timing given in example 4, although valid,
admits the firing of t2 as an extension after e3, and its maximal firing date is 13
which is inferior to the firing date of e4. Thus, this TPB cannot be complete.

3.3 Extensions of a TBP

We now show how a given TBP can be extended with additional events, even-
tually leading to the construction of the whole unfolding.

Proposition 1. Let N be a PSwPN and v a valuation of its parameters. Let
〈B,E, F, Fr , l, θ〉 be a temporally complete TBP of Nv and let 〈t, e〉 be an exten-
sion of β = 〈B,E, F, Fr , l〉. Let β′ be the branching process obtained by extending
β by 〈t, e〉. Then there exists θ′ such that 〈β′, θ′〉 is a valid TBP of Nv.

While the TBP obtained by the extension 〈t, e〉 is valid, it is not necessarily
temporally complete: only the conflicts present in β′ are considered but e could
be prevented by conflicts that have not yet been added through other extensions.
We have the following result however:

Proposition 2. Let 〈β, θ〉 be a temporally complete TBP of a PSwPN and let
〈t, e〉 be the extension of β with the smallest latest firing date. Then 〈β, θ〉 ex-
tended by 〈t, e〉 is a temporally complete TBP.
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3.4 Symbolic Time Branching Processes

If we consider all the possible valuations of the parameters and all the possible
valid timing functions for a given branching process of Untimed(N ) we obtain
what we call a symbolic TBP.

Definition 13 (Symbolic time branching process). Let N be a PSwPN.
A symbolic time branching process (STBP) Γ is a pair 〈β,D〉 where β =
〈B,E, F, Fr , l〉 is a branching process of Untimed(N ), D is a subset of �|Π| ×
(�∪{+∞})|E| such that for all λ = (v1, . . . , v|Π|, θ1, . . . , θn, . . .) ∈ D, if we note
E = {e1, . . . , en, . . .}, vλ the valuation (v1, . . . , v|Π|) and θλ the timing function
such that ∀i, θλ(ei) = θi, then 〈β, θλ〉 is a valid TBP of Nvλ

.

In practice, the set D can be represented as a union of pairs 〈Ei,Di〉 where Ei is
a subset of the events of β and Di is a rational convex polyhedron (possibly of
infinite dimension) whose variables are the events in Ei plus the parameters of
the net. Each point λ in Di describes a value of the parameters and the finite
values of the timing function on the elements of Ei. For all elements not in Ei,
the timing function has value +∞.

Now we can extend the notion of prefix to STBPs.

Definition 14 (Prefix of an STBP). Let N be PSwPN whose set of param-
eters is Π. Let 〈β,⋃i Ei,

⋃
i Di〉 and 〈β′,

⋃
j E ′

j ,D′〉 be two STBPs of N . 〈β,D〉
is a prefix of 〈β′,D′〉 if β is a prefix of β′ and D is the projection of D′ on the
parameters plus the events of β.

Finally, we can define the symbolic unfolding of a PSwPN.

Definition 15 (Symbolic unfolding). The symbolic unfolding of a PSwPN
N is the greatest STBP according to the prefix relation.

This unfolding has the same size as the one computed for underlying Petri net.
However, some events may not be able to take a finite firing date, in any cir-
cumstances. These events are not possible and will be useless. Thus, it will be
sufficient to compute a prefix of the unfolding in which they are discarded.

3.5 Correctness and Completeness

In this subsection we give two results proving the correctness and completeness
of our symbolic unfolding w.r.t. to the concurrent semantics of (P)SwPNs, that
we have given in Section 2 as time processes.

We first establish a result on the configurations of TBP. For every TBP Γ =
〈B,E, F, Fr , l, v, θ〉, we define the set E<∞ = {e ∈ E | θ(e) < ∞} of all the
events which may fire in the TBP.

Proposition 3. Let Γ = 〈B,E, F, Fr , l, v, θ〉 be valid TBP. Then E<∞ is a
configuration.

The correctness result for our approach states that all the time processes we
can extract from our TBPs, and in particular those contained in the symbolic
unfolding, are valid:



Symbolic Unfolding of Parametric Stopwatch Petri Nets 303

Theorem 1 (Correctness). Let N = 〈P, T,W,Wr,Ws,m0, eft, lft, Π,DΠ〉 be
a parametric stopwatch Petri net and let v ∈ DΠ be a valuation of its parameters.
Let 〈B,E, F, Fr , l, θ〉 be a temporally complete time branching process of Nv. Let
E<∞ = {e ∈ E | θ(e) < ∞} and θ<∞ is the restriction of θ to E<∞.

〈E<∞, θ<∞〉 is a valid time process of Nv.

Finally the following completeness result states that all valid time processes can
be represented by a TBP. Therefore, since the symbolic unfolding contains all
the valid TBPs, it also contains all the time processes of the PSwPN.

Theorem 2 (Completeness). Let N = 〈P, T,W,Wr ,Ws,m0, eft, lft, Π,DΠ〉
be a PSwPN and v ∈ DΠ be a valuation of the parameters. Let 〈B,E, F, Fr , l〉
be a branching process of the underlying Petri net and 〈E, θ〉 be a time process
of the SwPN Nv.

There exists a temporally complete time branching process of Nv, 〈B′, E′, F ′,
F ′

r, l
′, θ′〉, such that ∀e ∈ E, ∃e′ ∈ E′ s.t. l(e) = l′(e′) and θ(e) = θ′(e′).

The idea of the proof is to construct a TBP by adding all the events in conflict
with some events of the time process.

4 Complete Prefixes of the Symbolic Unfolding

In this section, we show how to compute a complete prefix of the symbolic un-
folding of a TPN. Consequently, from now we replace v(eft(t)) by eft(t), v(lft(t))
by lft(t), and we assume that adur(B, t, θ) = θ−TOE(B, t), and ◦t = ∅. In these
conditions, we prove this prefix is finite.

A consistent state of the unfolding 〈B,E, F, Fr , l,D〉 of a TPN N = 〈P, T,W,
Wr,m0, eft, lft〉 is a pair 〈A, λ〉 such that A ⊆ B is a cut and λ ∈ D and

– ∀b ∈ A, θλ(•b) �= ∞,
– ∀t ∈ T, •t ∪ �t ⊆ l(A) ⇒ maxb∈A{θλ(•b)} ≤ TOE(t, A) + lft(t).

To compute a finite prefix we need to consider a finite number of states. How-
ever, the firing dates of the events grow continuously in the unfolding. Therefore,
we define an equivalence relation between two consistent states by considering
the age of the tokens (a reduced age since even ages can grow infinitely). Finally,
we prove that the same transitions are firable from two equivalent states.

Definition 16 (reduced age of a condition). For any co-set A, any timing
function θ, and any condition b ∈ A, we define the (reduced) age of b in A as

age(b, θ, A) = min{max
b′∈A

{θ(•b′)} − θ(•b),max{K(t) | t ∈ T ∧ t ∈ l(b)•}}

where K(t) =
{

eft(t) if lft(t) = +∞
lft(t) otherwise.

Definition 17 (Equivalent consistent states). Two consistent states 〈A1, λ1〉
and 〈A2, λ2〉 are equivalent iff l(A1) = l(A2) and ∀b1 ∈ A1, ∀b2 ∈ A2, s.t. l(b1) =
(b2), age(b1, θλ1 , A1) = age(b2, θλ2 , A2).
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Theorem 3 (Firing a transition in equivalent states). Let s1 = 〈A1, λ1〉
and s2 = 〈A2, λ2〉 be two equivalent consistent states of the unfolding 〈B,E, F, Fr ,
l,D〉 of a TPN N = 〈P, T,W,Wr,m0, eft, lft〉. If a transition t is firable from s1

in an event e1 at a date θλ1(e1) ≥ maxb∈A1(θλ1(•b)), before all the other enabled
transitions (i.e. ∀t ∈ en(l(A1))θλ1(e1) ≤ TOE(t, A1) + lft(t)), then

1. t is firable from s2 in an event e2 at the date θλ1(e1) − maxb∈A1(θλ1(•b)) +
maxb∈A2(θλ2(•b)), before all the other enabled transitions,

2. the states reached after the firing are equivalent.

Knowing that the same behaviors are possible after equivalent states we can stop
the construction of the unfolding by defining the notion of cut-off event.

Definition 18 (Cut-off event). Let N = 〈P, T,W,Wr,m0, eft, lft〉 be a TPN.
and let β = 〈B,E, F, Fr , l,D〉 be a symbolic time branching process of N . An
event e ∈ E is a cut-off event if there exists e′ ∈ E such that:

– e′ < e,
– l(e′) = l(e),
– ∀λ ∈ D, ∃λ′ ∈ D s.t. 〈Ce′ , λ′〉 and 〈Ce, λ〉 are equivalent.

Definition 19 (Cut-off-free maximal prefix). Let N be a TPN and let Γ =
〈β,D〉 be its symbolic unfolding. The cut-off-free maximal prefix CFP (N ). is the
greatest prefix of Γ that does not contain any cut-off events.

We prove that the prefix computed contains at least the firing of each fireable
transition of the unfolding, ad we show that this prefix is finite.

Theorem 4 (Completeness of the prefix). Let N = 〈P, T,W,Wr,m0, eft, lft〉
be a TPN whose symbolic unfolding is 〈B,E, F, Fr , l,D〉. Let CFP (N ) = 〈B∗, E∗,
F ∗, F ∗

r , l
∗,D∗〉. Then ∀λ ∈ D, ∀e ∈ E s.t. θλ(e) �= ∞, ∃λ∗ ∈ D∗, ∃e∗ ∈

E∗, s.t. θλ∗(e∗) �= ∞ and l(e∗) = l(e).

Theorem 5 (Finiteness of the prefix). For any (1-safe) time Petri net N ,
the cut-off-free maximal prefix CFP (N ) is finite.

5 Conclusion

In this paper we have proposed a new technique for the unfolding of safe para-
metric stopwatch Petri nets that allow a symbolic handling of both time and
parameters. To the best of our knowledge, this is the first time that the para-
metric or stopwatch cases are addressed in the context of unfoldings. Moreover,
when restricting to the subclass of safe time Petri nets, our technique compares
well with the previous approach of [6]. It indeed provides a more compact un-
folding, by eliminating the duplication of transitions, and also removes the need
for read arcs in the unfolding. As a tradeoff, the constraints associated with the
firing times of events may seem slightly more complex.
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We have partly implemented the technique in our tool, Romeo, whose 2.9.0
version can currently compute unfoldings of safe time Petri nets. The compu-
tation of the finite prefix is however not yet implemented. We propose instead
to couple the method with a supervision technique that makes the unfolding
finite based on a finite set of observations. This approach, that also works with
parameters and stopwaches, is detailled in [10] with a case study.

Further work includes investigating non-safe bounded models and application
of the unfolding technique to revisit the problems of model-checking and control.
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saufs et dépliages finis des réseaux temporels. In: Proceedings of NOTERE, Tozeur,

Tunisia. IEEE Computer Society Press, Los Alamitos (May-June 2010)

8. Esparza, J.: Model checking using net unfoldings. Science of Computer Program-

ming 23, 151–195 (1994)

9. Esparza, J., Heljanko, K.: Unfoldings, A Partial-Order Approach to Model Check-

ing. In: Monographs in Theoretical Computer Science. Springer, Heidelberg (2008)

10. Grabiec, B., Traonouez, L.-M., Jard, C., Lime, D., Roux, O.H.: Diagnosis using

unfoldings of parametric time Petri nets. In: Proceedings of FORMATS, Vienna,

Austria. LNCS. Springer, Heidelberg (to appear, September 2010)

11. Henzinger, T.A., Kopke, P.W., Puri, A., Varaiya, P.: What’s decidable about hybrid

automata? Journal of Computer and System Sciences 57, 94–124 (1998)

12. Khomenko, V., Koutny, M.: Branching processes of high-level Petri nets. In: Gar-

avel, H., Hatcliff, J. (eds.) TACAS 2003. LNCS, vol. 2619, pp. 458–472. Springer,

Heidelberg (2003)

13. Lime, D., Roux, O.(H.): Formal verification of real-time systems with preemptive

scheduling. Journal of Real-Time Systems 41(2), 118–151 (2009)

14. McMillan, K.L.: Using unfolding to avoid the state space explosion problem in the

verification of asynchronous circuits. In: Probst, D.K., von Bochmann, G. (eds.)

CAV 1992. LNCS, vol. 663, pp. 164–177. Springer, Heidelberg (1993)

15. Merlin, P.M.: A study of the recoverability of computing systems. PhD thesis, Dep.

of Information and Computer Science, University of California, Irvine, CA (1974)

16. Traonouez, L.-M., Lime, D., Roux, O.H.: Parametric model-checking of stopwatch

Petri nets. Journal of Universal Computer Science (J.UCS) 15(17), 3273–3304 (2009)



Recursive Timed Automata

Ashutosh Trivedi and Dominik Wojtczak

Computing Laboratory, Oxford University, UK

Abstract. We study recursive timed automata that extend timed automata
with recursion. Timed automata, as introduced by Alur and Dill, are finite
automata accompanied by a finite set of real-valued variables called clocks.
Recursive timed automata are finite collections of timed automata extended
with special states that correspond to (potentially recursive) invocations of
other timed automata from their collection. During an invocation of a timed
automaton, our model permits passing the values of clocks using both pass-by-
value and pass-by-reference mechanisms. We study the natural reachability and
termination (reachability with empty invocation stack) problems for recursive
timed automata. We show that these problems are decidable (in many cases
with the same complexity as the reachability problem on timed automata)
for recursive timed automata satisfying the following condition: during each
invocation either all clocks are passed by reference or none is passed by
reference. Furthermore, we show that for recursive timed automata that violate
this condition reachability/termination problems are undecidable for automata
with as few as three clocks. We also establish similar results for two-player game
extension of our model against reachability/termination objective.

1 Introduction

Recursion is one of the central ideas in mathematics and computer science. Informally,
recursion is a process in which objects are defined in terms of other objects of same
type. For instance, recursive state machines [1] are defined as collection of rather
peculiar state machines whose states, in addition to being states in usual sense, are
allowed to be other state machines, including themselves; or in other words, some
states may correspond to potentially recursive invocation of other state machines.
Similarly, recursive Markov decision processes [14] are collection of special Markov
decision processes whose states may correspond to the invocation of other Markov
decision processes. Following this line of work, we define recursive extension of timed
automata [2] and study reachability and termination problems for this model.

Timed automata are finite automata—a finite set of locations and a finite set of
transitions—coupled with a finite set of continuous variables, called clocks, which
grow with uniform slope. Simple form of constraints on clocks are allowed to appear
as guards on the transitions and as location invariants. Syntax of timed automata also
permits resetting the clocks to zero. The reachability problem for timed automata with
at least three clocks is known to be PSPACE-complete, while the reachability problem
is NLOGSPACE-complete for timed automata with one clock.

Recursive timed automaton consists of finite number of components where each
component is a special form of timed automaton with specially marked entry and exit
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locations. Moreover components can also have special form of locations, called boxes,
that correspond to recursive invocation of other components. We allow passing the
values of clocks to the invoked component in the sense that the values of these clocks are
available to the invoked component, and passed clocks grow normally while the invoked
component is under execution. Moreover, the passed clocks can be used in guards and
location invariants inside the component, and transitions of the component may reset
these clocks to zero. We allow two different mechanisms of passing the clocks: 1) pass-
by-value, where upon returning from the invoked component clocks assume the value
prior to the invocation; and 2) pass-by-reference, where upon returning from the invoked
component their value is unaltered (it is as if a copy of these clocks is restored in the
calling component). We say that a clock is global if it is always passed by reference,
and it is local if it is always passed by value. Notice that, since there is no bound on
the depth of recursive calls in our model, we will need to be able to analyse potentially
infinitely many clocks, but at any point of the execution only a fixed number of them is
not stopped.

We study reachability and termination (reachability of one of the exits with the empty
calling context) problems on recursive timed automata. We show that the reachability
problem of recursive timed automata is decidable, and EXPTIME-complete, if for every
component, either all clocks of that component are passed by reference or none is passed
by reference. Moreover, we study reachability games on recursive time automata, where
the control state determines which of the two players picks the action to be performed.
The objective of one player is reaching a particular subset of the control states, while the
objective of the other player is complementary, i.e. avoiding them forever throughout
the run of the recursive time automaton. We show that determining the winner of such
games is in 2EXPTIME.

Applications. Much in the same way as recursive state machines can model Boolean
programs [4] (or more general software systems using predicate abstraction [17]),
it can be argued that recursive timed automata can model hard real-time software
systems [8]. The need to use the dense semantics of time is more pressing in the
case of real-time distributed software systems, i.e., computer programs that run on
multiple autonomous computers communicating through computer network. Even after
disallowing concurrency, verifying the correctness of real-time distributed software
is a fantastic challenge as each participating computer has its own physical clock of
varying frequency, while no global clock is available. Under such circumstances it is
impossible to model system using discrete semantics of time without knowing the clock
frequencies of participating computers. Hence it is natural to study these systems with
dense semantics of time.

In [9], the authors study the problem of automatic generation of an optimal controller
for an oil pump by defining this model as a 2-player game played on a time automaton.
The actual controller used in practice for controlling this oil pump was a 400 lines long
C program. Most C programs, apart from the simplest ones, make use of functions
and recursive invocations of one function by another. Parameters to such functions
are either passed by value or by reference (which in C language is done explicitly by
passing a pointer). These kind of controllers operate on variables that are constantly
growing in real-time, e.g. total time, oil pressure, temperature etc. The natural model
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to study correctness of such a system is a game played on recursive timed automaton
with a safety critical objective, i.e. the aim for the controller is to avoid a certain set of
bad states, while the aim of the other player, the “malicious environment”, is trying to
reach one of these states. If the controller has a winning strategy, i.e. no matter what
how the environment behaves, none of the unsafe states will ever be reached, then the
implementation of the controller is correct.

Related work. All the work with pushdown timed automata, see e.g. [10,11], has
considered only global clocks. Bouajjani, Echahed, and Robbana [5] studied linear
hybrid automata with pushdown stack and counters, and showed decidability of
reachability in pushdown timed systems. Emmi and Majumdar [13] showed the
decidability of language inclusion for implementation as timed pushdown automata
and specification as timed automata with one clock; however they proved that it is
undecidable when the specification is visibly pushdown timed automata even with
one clock [13]. The work on timed automata with counters [7] studies extending time
automata with multiple counters. The reachability problem for such systems is already
undecidable without clocks, so the authors study several decidable subclasses of this
model. Context-Free Timed Systems, studied in [6], are less expressive than our model,
and [6] shows decidability of various verification problems for context-free timed
systems with linear-hybrid observers (a variable that cannot be used in the constraints
used on any edge, similar to prices/cost variables in timed automata).

The paper is organised as follows. In the next section we set definitions of key
concepts like labelled transition systems, games, and recursive state machines. In
Section 3 we introduce our model and define problems studied in this paper. In Section 4
we prove the undecidability of termination problem and games on the general model,
while in Section 5 we discuss decidable subclasses and give complexity results.

2 Definitions

2.1 Preliminaries

Notation. We assume, the sets N of non-negative integers, R of reals and R⊕ of
non-negative reals. For n ∈ N, let �n�N and �n�R denote the sets {0, 1, . . . , n}, and
{r ∈ R | 0≤r≤n} respectively.

Labelled Transition System. A labelled transition system (LTS) is a tuple L =
(S,A,X) where S is the set of states, A is the set of actions, and X : S × A → S
is the transition function. We say that an LTS L is finite (discrete) if both S and A are
finite (countable). We write A(s) for the set of actions available at s ∈ S, i.e., the set of
actions a ∈ A for which X(s, a) is non-empty.

We say that (s, a, s′) ∈ S × A × S is a transition of L if s′ = X(s, a) and a
run of L is a sequence 〈s0, a1, s1, . . .〉 ∈ S×(A×S)∗ such that (si, ai+1, si+1) is a
transition of L for all i ≥ 0. We write RunsL (FRunsL) for the sets of infinite (finite)
runs and RunsL(s) (FRunsL(s)) for the sets of infinite (finite) runs starting from state s.
For a finite run r=〈s0, a1, . . . , sn〉 we write last(r)=sn for the last state of the run. A
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strategy in L is a function σ : FRunsL → A such that for all runs r ∈ FRuns we
have that σ(r) ∈ A(last(r)). We write ΣL for the set of strategies in L. For a state
s ∈ S and a strategy σ ∈ ΣL, we write Run(s, σ) for the unique run 〈s0, a1, s1, . . .〉 ∈
RunsL(s) such that s0 = s and for every i ≥ 0 we have that σ(rn) = an+1, where
rn = 〈s0, a1, . . . , sn〉 (here r0 = 〈s0〉). For a set F ⊆ S and a run r = 〈s0, a1, . . .〉 we
define Stop(F )(r) = inf {i ∈ N : si ∈ F}.

Given a state s ∈ S and a set of final states F ⊆ S we say that a final state is
reachable from s0 if there is a strategy σ ∈ ΣL such that Stop(F )(Run(s, σ)) < ∞. A
reachability problem is to decide whether in a given LTS a final state is reachable from
a given initial state.

Games on Labelled Transition Systems. A game arena G is a tuple (L, SAch, STor),
where L = (S,A,X) is an LTS, SAch ⊆ S is the set of states controlled by player
Achilles, and STor ⊆ S is the set of states controlled by player Tortoise. Moreover, sets
SAch and STor form a partition of the set S.

A strategy of player Achilles is a partial function α : FRunsL → A such that for a
run r ∈ FRunsL we have that α(r) is defined if last(r) ∈ SAch, and α(r) ∈ A(last(r))
for every such r. A strategy of player Tortoise is defined analogously. Let ΣL

Ach and
ΣL

Tor be the set of strategies of player Achilles and Tortoise, respectively. The unique
run Run(s, α, τ) from a state s when players use strategies α ∈ ΣL

Ach and τ ∈ ΣL
Tor is

defined in a straightforward manner.
In a reachability game on G, rational players Achilles and Tortoise take turns to

move a token along the states of L. The decision to choose the successor state is made
by the player controlling the current state. The objective of Achilles is to eventually
reach certain states, while the objective of Tortoise is to avoid them forever. For an
initial state s and a set of final states F , the lower value ValLF (s) of the reachability
game is defined as the upper bound on the number of transitions that Tortoise can
ensure before the game visits a state in F irrespective of the strategy of Achilles,
and is equal to supτ∈ΣL

Tor
infα∈ΣL

Ach
Stop(F )(Run(s, α, τ)). The concept of upper value

is Val
L
F (s) is analogous and defined as infα∈ΣL

Ach
supτ∈ΣL

Tor
Stop(F )(Run(s, α, τ)). If

ValLF (s) = Val
L
F (s) then we say that the reachability game is determined, or the value

ValLF (s) of the reachability game exists and it is such that ValLF (s) = ValLF (s)=Val
L
F (s).

We say that Achilles wins the reachability game if ValLF (s) < ∞. A reachability game
problem is to decide whether in a given game arena G, an initial state s and a set of
final states F , player Achilles has a strategy to win the reachability game.

2.2 Recursive State Machines

Recursive state machines (RSMs) generalise LTSs, and can be used to model systems
exhibiting recursion and non-deterministic behaviour.

Definition 1 ([1]). A recursive state machine M = (M1,M2, . . . ,Mk) is a tuple of
components, where for each 1 ≤ i ≤ k componentMi = (Ni, Eni, Exi, Bi, Yi, Ai, Xi)
consists of:

– a finite set Ni of nodes, including the set Eni of entry nodes and the (disjoint from
Eni) set Exi of exit nodes.
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– a finite set Bi of boxes.
– boxes-to-components mapping Yi : Bi → {1, 2, . . . , k} that assigns every box to a

component. To each box b ∈ Bi we associate a set of call ports Call(b), and a set
of return ports Ret(b):

Call(b) =
{
(b, en) : en ∈ EnYi(b)

}
, and Ret(b) =

{
(b, ex) : ex ∈ ExYi(b)

}
.

Let Calli = ∪b∈BiCall(b) and Reti = ∪b∈BiRet(b) be the set of call and return
ports of component Mi. We write Qi = Ni ∪ Calli ∪ Reti for the union of the
set of nodes, call ports and return ports, and we collectively refer to them as the
vertices of the component Mi.

– a finite set Ai of actions.
– a transition function Xi : Qi×Ai → Qi with a condition that call ports and exit

nodes do not have any outgoing transitions.

For the sake of simplicity, we assume that the set of boxes B1, . . . , Bk and set of
nodes N1, N2, . . . , Nk are mutually disjoint. We use symbols N,B,A,Q,X , etc. to
denote the union of the corresponding symbols over all components. For example,
N = ∪k

i=1Ni.

Example 2. The visual presentation of a finite recursive state machine with three
components M1,M2, and M3 is depicted in Figure 1. Components are shown as
thinly framed rectangles with their labels written close to upper right corner, e.g. see
component M1. Nodes of the components are shown as circles with their labels written
inside them, e.g. see node u1. Entry nodes of a component appear on the left of the
component (see u1), while exit nodes appear on the right (see u4). Boxes are shown
as thickly framed rectangles inside components labelled b : M , where b is the label
of the box and M is the component it is mapped to. Call ports of boxes are drawn as
small circles on the left of the box, while return ports are on the right. We omit labelling
the call and return ports as these labels are clear from their position on the boxes. For
example, call port (b1, v1) is the top small circle on the left-hand side of box b1, since
box b1 is mapped to M2 and v1 is the top node on its left-hand side.

Intuitively, a run of an RSM starts at one of the entries of its components and proceeds
via the edges from one state to another until it reaches an entry port of a box or an exit
of the current component. In the former, this box is pushed onto the stack of pending
(recursive) calls and the run starts from the corresponding entry of the component this
box is mapped to. In the latter, if the stack of pending calls is empty then the run

M1

u1

u2

u4

b1 : M2

b2 : M3 u3

M2

v1

v2

v3

v4

c1 : M2

c2 : M3

M3

w1 w2

d : M1

Fig. 1. Example recursive state machine taken from [1]
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terminates; otherwise, it pops the box from the top of the stack and jumps to the exit
port (of the just popped box) corresponding to the just reached exit of the component.

Formally, the semantics of a recursive state machine is given by a discrete LTS,
whose states are pairs consisting of a sequence of boxes, called the context, and a vertex.
The context corresponds to the sequence of unreturned component calls, and the vertex
is a vertex of the current component.

Definition 3 (RSM semantics). Let M = (M1,M2, . . . ,Mk) be an RSM where the
component Mi is (Ni, Eni, Exi, Bi, Yi, Ai, Xi). The semantics of M is the countable
labelled transition system [[M]] = (SM, AM, XM) where:

– SM ⊆ B∗ ×Q is the set of states;
– AM = ∪k

i=1Ai is the set of actions;
– XM : SM×AM → SM is the transition function such that for s = (〈κ〉, q) ∈ SM

and a ∈ AM, we have that s′ = XM(s, a) if and only if one of the following holds:

1. the vertex q is a call port, i.e. q = (b, en) ∈ Call, and s′ = (〈κ, b〉, en);
2. the vertex q is an exit node, i.e. q = ex ∈ Ex and s′ = (〈κ′〉, (b, ex)) where

(b, ex) ∈ Ret(b) and κ = (κ′, b);
3. the vertex q is any other kind of vertex, and s′ = (〈κ〉, q′) and q′ ∈ X(q, a).

A given M and a subset Q′ ⊆ Q of its nodes we define the set [[Q′]]M as the set
{(〈κ〉, v′) : κ ∈ B∗ and v′ ∈ Q′}. We also define the set of terminal configurations
TermM as the set {(〈ε〉, ex) : ex ∈ Ex}.

Given a recursive state machine M, an initial node v, and a set of final vertices
F ⊆ Q the reachability problem on M is defined as the reachability problem on the
LTS [[M]] with the initial state (〈ε〉, v) and the set of final states [[F ]]. We also define
termination problem as the reachability problem of one of the exits with the empty
context. Hence, given a recursive state machineM and an initial node v, the termination
problem on M is defined as the reachability problem on LTS [[M]] with the initial state
(〈ε〉, v) and the set of final states TermM. It is easy to show that the reachability problem
is at least as hard as the termination problem. We can see this on the example in Figure 1:
if we can decide whether state u3 is reachable from (〈ε〉, u2), we will also know whether
it is possible to terminate from (〈ε〉, w1) (simply because it is impossible to reach node
u3 from (〈ε〉, w1)). Hence, all the complexity upper bounds for the reachability problem
in this paper apply also to the termination problem, and all the complexity lower bounds
for the termination problem apply also to the reachability problem.

Games on Recursive State Machines. A partition (QAch, QTor) of vertices Q of an
RSM M (between players Achilles and Tortoise) gives rise to recursive game arena
G = (M, QAch, QTor). Given an initial state, v, and a set of final states, F , the
reachability game on M is defined as the reachability game on the game arena
([[M]], [[QAch]]M, [[QTor]]M) with the initial state (〈ε〉, v) and the set of final states
[[F ]]M. Also, the termination game M is defined as the reachability game on the
game arena ([[M]], [[QAch]]M, [[QTor]]M) with the initial state (〈ε〉, v) and the set of final
states TermM. It is a well known result (see, e.g. [22,15]) that reachability games and
termination games on RSMs are determined.



312 A. Trivedi and D. Wojtczak

Complexity results for RSMs and their subclasses. The two most natural subclasses of
RSMs are 1-box RSMs and 1-exit RSMs. 1-box RSMs are these RSMs that have just
a single component and a single box inside of it (this box of course has to be mapped
to that single component). On the other hand, an RSM is a 1-exit RSM iff each of its
components has just one exit (and hence also all of its boxes), i.e. Exi is a singleton for
all possible i-s. The general class of RSMs is sometimes referred to as multi-exit RSMs.
Table 1 summarises some key results for RSMs and their subclasses.

Table 1. Complexity results for reachability objective for RSMs

# Players 1-box RSMs 1-exit RSMs multi-exit RSMs

1 NLOGSPACE-complete [12] PTIME-complete [3] PTIME-complete [3]

2 PSPACE-complete [20,18] PTIME-complete [22,15] EXPTIME-complete [22]

The results for 1-box RSMs are derived from the corresponding results for one-
counter automata (for their definition, see, e.g. [16]), due to their exact correspondence:
the counter value is equal to the number of boxes in the calling context, calling a box
results in increasing the counter by 1, while reaching an exit corresponds to decreasing
the counter by 1.

3 Recursive Timed Automata

Recursive timed automata (RTAs) extend classical timed automata [2] (TAs) with
recursion feature similar to RSMs. Instead of defining TAs explicitly, we directly define
RTAs whose degenerate case corresponds to TAs. Just as a TA is a finite automaton
with a finite set of clocks (continuous variables), a recursive timed automaton is an
RSM with a finite set of clocks which can be passed to components during invocation
either by value or by reference. Before formally defining the syntax and semantics of
RTA we need to introduce the concept of clock valuations, regions and zones.

3.1 Clocks, Clock Valuations, Regions and Zones

Let C be a finite set of clocks. In the definition of recursive timed automata (and timed
automata [2]) constraints on clocks may appear in the guards on the transitions, where
a clock or the difference of two clocks can be compared against natural numbers (in
general with rational numbers). Let K be the largest such number. The set of clock
constraints over C is the set of conjunctions of simple constraints, which are constraints
of the form c �� i or c−c′ �� i, where c, c′ ∈ C, i ∈ �K�N, and �� ∈ {<,>,=,≤,≥}.
Let SCC be the finite set of simple clock constraints.

A clock valuation on C is a function ν : C → R⊕ and we write V for the set
of clock valuations. For a clock valuation ν ∈ V and delay t ∈ R⊕ we write ν+t
for the clock valuation defined by (ν+t)(c) = ν(c)+t, for all c ∈ C. For a subset
of clocks C ⊆ C and a clock valuation ν′ ∈ V , we write ν[C:=ν′] for the clock
valuation where ν[C:=ν′](c) = ν′(c) if c ∈ C, and ν[C:=ν′](c) = ν(c) otherwise.
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M1

u1

u2

u3b1 : M2(x)

x=1

x<1

x=0

M2

v1 v2

b2 : M2
x=1

x<1, {x}

Fig. 2. Example recursive timed automaton

Clock valuation 0 ∈ V is a special valuation such that 0(c) = 0 for all c ∈ C. Hence,
for C ⊆ C, we write ν[C:=0] for the clock valuation where ν[C:=0](c) = 0 if c ∈ C,
and ν[C:=0](c) = ν(c) otherwise.

A clock region is a maximal set ζ ⊆ V , such that SCC(ν)=SCC(ν′) for all ν, ν′ ∈ ζ.
We write R for the finite set of clock regions. Every clock region is an equivalence
class of the indistinguishability-by-clock-constraints relation, and vice versa. Note that
ν and ν′ are in the same clock region if and only if the integer parts of the clocks and
the partial orders of the clocks, determined by their fractional parts, are the same in ν
and ν′. We write [ν] for the clock region of ν. For a clock region ζ, a subset of clocks
C ⊆ C, and a clock valuation ν, we write ζ[C:=ν] for the set {[ν′[C:=ν]] : ν′ ∈ ζ}.
Observe that if ν = 0 then the set ζ[C:=0] is a singleton, and we sometimes abuse the
notation to write ζ[C:=0] for the unique region.

A clock zone is a convex set of clock valuations, which is a union of a set of clock
regions. We write Z for the set of clock zones. A set of clock valuations is a clock zone
if and only if it is definable by a clock constraint.

3.2 Syntax

Definition 4 (Syntax). A recursive timed automaton T = (C, (T1, T2, . . . , Tk)) is a
pair made of a set of clocks C and a collection of components (T1, T2, . . . , Tk). Each
component Ti = (Ni, Eni, Exi, Bi, Yi, Ai, Xi, Pi, Inv i, Ei, ρi) consists of:

– a finite set Ni of nodes, including the set Eni of entry nodes and the (disjoint from
Eni) set Exi of exit nodes;

– a finite set Bi of boxes;
– boxes-to-components mapping Yi : Bi → {1, 2, . . . , k} that assigns every box to a

component; (Call ports Call(b) and return ports Ret(b) of a box b ∈ Bi, and call
ports Calli and return ports Reti of a component Ti are defined as before. We set
Qi = Ni ∪ Calli ∪Reti and refer to this set as the set of vertices of Ti.)

– a finite set Ai of actions;
– the transition function Xi : Qi×Ai → Qi is with the condition that call ports and

exit nodes do not have any outgoing transitions;
– pass-by-value mapping Pi : Bi → 2C that assigns every box the set of clocks that

are passed by value to the component mapped to the box; (The rest of the clocks
are assumed to be passed by reference.)

– the invariant condition Inv i : Qi → Z;
– the action enabledness function Ei : Qi×Ai → Z; and
– the clock reset function ρi : Ai → 2C.
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We assume that the sets of boxes, nodes, etc. are mutually disjoint and we use symbols
(N,B, Y,Q, P,X , etc.) without a subscript, to denote the union of the corresponding
objects over all components. When we consider an RTA as an input of an algorithm,
its size should be understood as the sum of the sizes of encodings of Q, C, Inv , A, E,
and X . Analogously as for RSMs, we define special subclasses of RTAs: 1-exit RTAs,
for which each component is allowed to have just one exit, and 1-box RTAs, that just
consist of a single component with a single box inside of them.

We say that a recursive timed automaton is glitch-free if for every box either all
clocks are passed by value or none is passed by value, i.e. for each b ∈ B we have that
either P (b) = C or P (b) = ∅. Any general recursive timed automaton with one clock is
trivially glitch-free.

Example 5. The visual presentation of a recursive timed automaton with two compo-
nents M1 and M2, and one clock x is shown in Figure 2. The visual representation is
similar to that in RSMs. However, each transition is labelled with a guard and the clocks
to be reset, (e.g. transition from node v1 to v2 can be taken only when clock x<1, and
after taking this transition, clock x is reset), and a box is labelled as b : M(C) to denote
that box b is mapped to M and all the clocks in the set C are passed by value, and the
rest of the clocks are passed by reference. When the set C is empty, we just write b : M
for b : M(∅).

3.3 Semantics

A configuration of an RTA T is a tuple (〈κ〉, q, ν), where κ ∈ (B × V )∗ is (possibly
empty) sequence of pairs of boxes and clock valuations, q ∈ Q is a vertex and ν ∈ V is
a clock valuation over C such that ν ∈ Inv(q). The sequence 〈κ〉 ∈ (B × V )∗ denotes
the stack of pending recursive calls and the valuation of all the clocks at the moment
that call was made, and we refer to this sequence as the context of the configuration.
Technically, it suffices to store the valuation of clocks passed by value, because other
clocks retain their value after returning from a call to a box, but storing all of them
simplifies the notation. We denote the the empty context by 〈ε〉. For any t ∈ R, we
let (〈κ〉, q, ν)+t equal the configuration (〈κ〉, q, ν+t). Informally, the behaviour of an
RTA is as follows. In configuration (〈κ〉, q, ν) time passes before an available action
is triggered, after which a discrete transition occurs. Time passage is available only if
the invariant condition Inv(q) is satisfied while time elapses, and an action a can be
chosen after time t elapses only if it is enabled after time elapse, i.e., if ν+t ∈ E(q, a).
If the action a is chosen then the successor state is (〈κ〉, q′, ν′) where q′ ∈ δ(q, a) and
ν′ = (ν + t)[ρ(a) := 0]. Formally, the semantics of an RTA is given by an LTS which
has both an uncountably infinite number of states and transitions.

Definition 6 (RTA semantics). Let T = (C, (T1, T2, . . . , Tk)) be an RTA where each
component is of the form Ti = (Ni, Eni, Exi, Bi, Yi, Ai, Xi, Pi, Inv i, Ei, ρi). The
semantics of T is a labelled transition system [[T ]] = (ST , AT , XT ) where:

– ST ⊆ (B × V )∗ × Q × V , the set of states, is such that (〈κ〉, q, ν) ∈ ST if
ν ∈ Inv(q).

– AT = R⊕×A is the set of timed actions;
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– XT : ST × AT → ST is the transition function such that for (〈κ〉, q, ν) ∈ ST
and (t, a) ∈ AT , we have (〈κ′〉, q′, ν′) = XT ((〈κ〉, q, ν), (t, a)) if and only if the
following condition holds:

1. if the vertex q is a call port, i.e. q = (b, en) ∈ Call then t = 0, the context
〈κ′〉 = 〈κ, (b, ν)〉, q′ = en, and ν′ = ν.

2. if the vertex q is an exit node, i.e. q = ex ∈ Ex, 〈κ〉 = 〈κ′′, (b, ν′′)〉,
and let (b, ex) ∈ Ret(b), then t = 0; 〈κ′〉 = 〈κ′′〉; q′ = (b, ex); and
ν′ = ν[P (b):=ν′′].

3. if vertex q is any other kind of vertex, then ν+t′ ∈ Inv(q) for all t′ ∈ [0, t];
ν+t ∈ E(q, a); and 〈κ′〉 = 〈κ〉, q′ ∈ X(q, a), and ν′ = (ν + t)[ρ(a) := 0].

3.4 Reachability (Termination) Problems and Games

For a subset Q′ ⊆ Q of states of recursive timed automaton T we define the set [[Q′]]T
as the set {(〈κ〉, q, ν) ∈ ST : q ∈ Q′}. We also define the set of terminal configuration
TermT as the set TermT = {(〈ε〉, q, ν) ∈ ST : q ∈ Ex}.

Given a recursive timed automaton T , an initial node q and valuation ν ∈ V , and a
set of final vertices F ⊆ Q, the reachability problem on T is defined as the reachability
problem on LTS [[T ]] with the initial state (〈ε〉, q, ν) and the set of final states [[F ]]T . As
with RSMs, we also define termination problem as reachability of one of the exits with
the empty context. Hence, given an RTA T and an initial node q and a valuation ν ∈ V ,
the termination problem on T is defined as the reachability problem on LTS [[T ]] with
the initial state (〈ε〉, q, ν) and the set of final states TermT .

Example 7. Consider the RTA shown in Figure 2. From the vertex u1 of M1 there is no
path that visits the exit node u3 with the empty calling context, as the only transition
available form u1 is to wait until clock x = 1, and then invoking component M2 which
recursively calls itself forever if the value of clock x = 1. On the other hand, from
node u2 there are infinitely many paths that reach u3 with the empty context. Notice
that termination at u3 is possible only when delay at u2 is 0 time-units, as upon exiting
box b clock x is tested against 0. Since clock x was passed by value to component M2,
the current value of clock x is the one before the invocation of M2, and hence the clock
reset inside M2 does not help.

A partition (QAch, QTor) of vertices Q of an RTA T gives rise to a recursive timed game
arena Γ = (T , QAch, QTor). Given an initial vertex q, a valuation ν ∈ V and a set of
final states F , the reachability game on Γ is defined as the reachability game on the
game arena ([[T ]], [[QAch]]T , [[QTor]]T ) with the initial state (〈ε〉, (q, ν)) and the set of
final states [[F ]]T . Also, termination game on T is defined as the reachability game on
the game arena ([[T ]], [[QAch]]T , [[QTor]]T ) with the initial state (〈ε〉, (q, ν)) and the set of
final states TermT .

4 Undecidability Results

The following is one of the key results of this paper.

Theorem 8. Termination problem is undecidable for recursive timed automata with at
least three clocks. Moreover, termination game problem is undecidable for recursive
timed automata with at least two clocks.
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For the undecidability proofs we use reduction from the halting problem of two-
counter Minsky machines [19]. A Minsky machine A is a tuple (L,C,D) where:
L = {	0, 	1, . . . , 	n} is the set of states including the distinguished terminal state 	n;
C = {c1, c2} is the set of two counters; D = {δ0, δ1, . . . , δn−1} is the set of transitions
of the following type:

1. (increment c) δi : c := c + 1; goto 	k,
2. (test-and-decrement c) δi : if (c > 0) then (c := c− 1; goto 	k) else goto 	m,

where c ∈ C, δi ∈ D and 	k, 	m ∈ L.
A configuration of a Minsky machine is a tuple (	, c, d) where 	 ∈ L and c, d are

natural numbers that specify the value of counters c1 and c2, respectively. The initial
configuration is (	0, 0, 0). A run of Minsky machine is a (finite or infinite) sequence
of configurations 〈s0, s1, . . .〉 where s0 is the initial configuration, and the relation
between subsequent configurations is governed by transitions at their respective states.
The run is a finite sequence if and only if the last configuration is the terminal state 	n.
Note that a Minsky machine has only one run starting from the initial configuration.
Termination problem for a Minsky machine asks whether its unique run is finite. It is
well known ([19]) that the termination problem for a two-counter Minsky machine is
undecidable. In the rest of the section we show a reduction from the halting problem of
Minsky machines to the termination games on RTA with two clocks. The reduction to
the termination problem for (1-player) RTAs with three clocks is in the technical report
version of this paper [21].

We fix the clocks set C = {x, y}, and we describe the construction of the
central component HALTA with nodes 	0, 	1, . . . , 	n with the entry node 	0 and the
exit node 	n. A configuration (	i, c, d) of a Minsky machine corresponds to the
configuration (〈ε〉, 	i, ν) such that ν(x) = 2−c · 3−d and ν(y) = 0. Decrementing
and incrementing counter c is simulated by doubling and halving, resp., of the clock
x, while decrementing and incrementing the counter d is simulated by tripling, and
thirding1, resp., the value of clock x. Testing counter c (resp. d) against 0 can be
simulated by multiplying clock x by some power of 3 (resp., 2) and then comparing
it against 3 (resp. 2). The components for doubling (DB) and halving (HF) the value
of clock x, and testing whether the value of clock x is of the form 2−i or 3−i (P2O or
P3O, resp.) are given in Figure 3. Due to space constraints, we omit the description of
components for tripling, TR, and thirding, TH, of clock x. However such components
are very similar to components DB and HF. All components function as intended only
when upon entering them, the value of clock y is 0. The vertices of these components
are partitioned between Achilles and Tortoise: the only vertex controlled by Tortoise
(shown as black squares) is the return port (B8, ex9) in componentM8. The component
DB′, invoked from inside the component M8, is similar to gadget DB, however it
doubles the value of clock y, while assuming that clock x is set to 0. We assume that
the node labelled *̈ has no outgoing transitions. The behaviour of components P2O
and P3O is as follows: if clock x is of the form 2−i and 3−i, resp., a run starting at that
component’s entry will terminate at its bottom exit and if clock x is not of that form then
such a run will terminate at that component’s top exit. Since the precise construction

1 Dividing by three.
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Fig. 3. Components for doubling DB and halving HF the value of clock x, and checking whether
x is of the form 2−i and 3−i

of HALTA is straightforward, we just present in Figure 3 a schema that simulates the
test-and-decrement c operation: δi : if (c > 0) then (c := c− 1; goto 	k) else goto 	m.
Whenever a run reaches node 	i inside HALTA, a box mapped to P3O is called that
tests whether the value of counter c is zero. After returning from P3O both clocks are
restored and the exit port indicates whether clock c is zero or not. If clock c is zero then
the run proceeds straight to node 	m; otherwise the value of the counter c is decremented
by 1 by multiplying clock x by two using component DB and the run proceeds to node
	k. It should be easy to see now how to encode the increment c operation and how to
combine them all into the HALTA component.

To make the proofs more comprehensible, we show a run in an RTA using three

different forms of transitions s
g,C−−→t s′, s 	 s′, and s

M(C)−−−−→∗ s′ defined in the
following way.

1. The transitions of form s
g,C−−→t s′, where s = (〈κ〉, n, ν), s′ = (〈κ〉, n′, ν′) are

configurations of an RTA, g is a clock constraint, C is a set of clocks, and t is a real
number, holds if there is a transition in the RTA from vertex n to n′ with guard g
and clock reset set C, moreover ν′ = (ν + t)[C := 0].
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2. The transitions of the form s 	 s′, where s = (〈κ〉, n, ν), s′ = (〈κ′〉, n′, ν′),
correspond to the following cases:
(a) transitions from a call port to an entry node, i.e. , n = (b, en) for some box

b ∈ B and κ′ = 〈κ, (b, ν)〉 and n′ = en ∈ En, while ν′ = ν.
(b) transition from an exit node to a return port (which also restore the value of

clocks passed by value), i.e. 〈κ〉 = 〈κ′′, (b, ν′′)〉, n = ex ∈ Ex, and n′ =
(b, ex) ∈ Ret(b) and κ′ = κ′′, while ν′ = ν[P (b) = ν′′].

3. The transitions of the form s
M(C)−−−−→∗ s′, called summary edges, where s =

(〈κ〉, n, ν)), s′ = (〈κ′〉, n′, ν′) are such that n = (b, en) and n′ = (b, ex) are
call and return ports, resp., of a box b mapped to M which passes by value to M
the clocks in C.

For the sake of simplicity, in this section instead of presenting the context information in
the form (b, ν) ∈ B×V , we write (b, (ν(x), ν(y))) if some clock is passed by value to b,
else we just write b. We also write a configuration (〈κ〉, n, ν) as (〈κ〉, n, (ν(x), ν(y))).

Proposition 9. For any context κ ∈ (B×V )∗, any box b ∈ B, and x0 ∈ [0, 1] we have

that (〈κ〉, (b, en1), (x0, 0)) DB−−→∗ (〈κ〉, (b, ex1), (2 · x0, 0)).

Proof. Component DB, shown in Figure 3, uses components M2 and M3. The
following is the unique run starting from the configuration (〈κ〉, (b, en1), (x0, 0))
terminating at the configuration (〈κ〉, (b, ex1), (2 · x0, 0)).

(〈κ〉, (b, en1), (x0, 0)) � (〈κ, b〉, en1, (x0, 0))
y=0−−→0 (〈κ, b〉, (B1, en2), (x0, 0)) � (〈κ, b, B1〉, en2, (x0, 0))
y=0−−→0 (〈κ, b, B1〉, (B2, en3), (x0, 0)) � (〈κ, b, B1, B2(x0, 0)〉, en3, (x0, 0))

x=1−−→(1−x0) (〈κ, b, B1, B2(x0, 0)〉, ex3, (1, 1− x0)) � (〈κ, b, B1〉, (B2, ex3), (x0, 1− x0))

x=1,{x}−−−−−→(1−x0) (〈κ, b, B1〉, ex2, (0, 2− 2 · x0)) � (〈κ, b〉, (B1, ex2), (0, 2− 2 · x0))

y=2,{y}−−−−−→(2·x0) (〈κ, b〉, ex1, (2 · x0, 0)).

The intermediate steps of this sequence of transitions can be easily verified. �
Proposition 10. For any context κ ∈ (B × V )∗, any box b ∈ B, and x0 ∈ [0, 1], there
exists a unique strategy of Achilles such that

either (〈κ〉, (b, en7), (x0, 0)) HF−−→∗ (〈κ〉, (b, ex7), (
x0

2
, 0)),

or (〈κ〉, (b, en7), (x0, 0)) HF−−→∗ (〈κ〉, (b, +̈), (x0, x0))).

Moreover, for other strategies of Achilles there exists a strategy of Tortoise such that
component HF does not terminate.

Proof. The main observation here is that, in component HF, starting from the configu-
ration (〈κ〉, (b, en7), (x0, 0)) Achilles has a strategy to terminate only if he chooses to
delay the time by x0

2 in component M9 (called via box B8). The evolution of the run



Recursive Timed Automata 319

from (〈κ〉, (b, en7), (x0, 0)) to (〈κ, b, B7(x0, 0), B8〉, en9, (x0, 0)) is straightforward.
Now, in component M9 Achilles can wait for an arbitrary amount of time before taking
a transition to ex9 and resetting clock x. Let us assume that he waits for t time units, and
hence (〈κ, b, B7(x0, 0)〉, (B8, ex9), (0, t)) is reached which is controlled by Tortoise.
Now Tortoise has a choice between making a transition to ex8 (believing that t = x0

2 )
or invoking the component B′

8 (when suspecting that t �= x0
2 ).

If Tortoise believes that t = x0
2 then he makes a transition to ex8 and thus the system

reaches the configuration (〈κ, b〉, (B7, ex8), (x0, t)) giving rise to the following run:

(〈κ, b〉, (B7, ex8), (x0, t))
x=1,{x}−−−−−→(1−x0) (〈κ, b〉, u1, (0, 1 − x0 + t))

y=1,{y}−−−−−→(x0−t) (〈κ, b〉, ex7, (x0 − t, 0)) 	 (〈κ〉, (b, ex7), (x0 − t, 0)).

Hence if t = x0
2 then the run terminates at configuration (〈ε〉, ex7, (x0

2 , 0)).
On the other hand if Tortoise believes that t �= x0

2 , then he invokes the component
DB′ to double the value of clock y (while keeping the value of clock x equal to 0), and
makes a transition, via exit ex′

8, to the configuration (〈κ, b, B7(x0, 0)〉, ex′
8, (0, 2 · t)).

Since x0 was passed by value, it is restored upon exiting from box B7 and the
configuration reached is (〈κ, b〉, (B7, ex

′
8), (x0, 2 · t)). If Tortoise’s suspicion was right

and t �= x0
2 then the only transition available to Achilles is to move to the *̈

vertex which never terminates. Otherwise Achilles can only move to configuration
(〈κ〉, (b, +̈), (x0, x0)) and terminate. Hence, it is clear that the only winning strategy
for Achilles is to choose t = x0

2 . �
Proposition 11. For any context κ ∈ (B×V )∗, any box b ∈ B, and x0 ∈ [0, 1] we have
that starting from configuration (〈κ〉, (b, en12), (x0, 0)) the component P2O terminates
at (〈κ〉, (b, ex′

12), (x0, 0)) only when x0 = 2−i for some i ∈ N and otherwise it
terminates at (〈κ〉, (b, ex12), (x0, 0)).

From Propositions 9, 10, and 11 (and similar results related to other components) it
follows that Achilles has a strategy to terminate at 	n in component HALTA if and only
if the Minsky machine A terminates.

5 Decidability Results

5.1 Region Abstraction

For every RTA T we define regional equivalence relation ER ⊆ ST × ST in the
following way: For configurations s = (〈κ〉, q, ν) and s′ = (〈κ′〉, q′, ν′) we have
that s, s′ ∈ ER, or equivalently we write [s] = [s′], if q = q′, [ν] = [ν′], and
κ = (b1, ν1), (b2, ν2), . . . , (bn, νn) and κ′ = (b′1, ν′1), (b′2, ν′2), . . . , (b′n, ν′n) are such
that for every 1 ≤ i ≤ n we have [νi] = [ν′i] and bi = b′i.

A relation B ⊆ ST × ST defined over the set of configurations ST of a recursive
timed automaton is a time-abstract bisimulation if for every pair of configurations
s1, s2 ∈ ST such that (s1, s2) ∈ B, for every timed action (t, a) ∈ AT such
that XT (s1, (t, a)) = s′1, there exists a timed action (t′, a) ∈ AT such that
XT (s2, (t′, a)) = s′2 and (s′1, s

′
2) ∈ B.
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Proposition 12. Regional equivalence relation for glitch-free recursive timed automata
is a time-abstract bisimulation.

Proof. Let us fix configurations s = (〈κ〉, q, ν) and s′ = (〈κ′〉, q′, ν′) such that [s] =
[s′], timed action (t, a) ∈ XT such that XT (s, (t, a)) = sa(= (κa, (qa, νa))). We need
to find (t′, a) such that XT (s′, (t′, a)) = s′a(= (κ′

a, (q
′
a, ν

′
a))) and [sa] = [s′a]. There

are following three cases.

1. The vertex q is a call port, i.e. q = (b, en) ∈ Call. In this case t = 0, the context
〈κa〉 = 〈κ, (b, ν)〉, qa = en, and νa = ν. Since q′ = q(= (b, en)) is then also a
call port, we have that t′ = 0, and 〈κ′

a〉 = 〈κ′, (b, ν′)〉, q′a = en, and ν′a = νa. It is
trivial to show that [sa] = [s′a].

2. The vertex q is an exit node, i.e. q = ex ∈ Ex, and let 〈κ〉 = 〈κ∗, (b, ν∗)〉 and
(b, ex) ∈ Ret(b). In this case t = 0; context 〈κa〉 = 〈κ∗〉; qa = (b, ex); and
νa = ν[P (b):=ν∗]. Let the context 〈κ′〉 be 〈κ′

∗, (b, ν
′
∗)〉. Since again q′ = q(= ex)

is also an exit node we have that t′ = 0, 〈κ′
a〉 = 〈κ′

∗〉 and ν′a = ν′[P (b):=ν′∗]. We
need to show that [νa] = [ν′a]. Notice that for glitch-free RTAs there are exactly
two cases to consider:

– P (b) = C. In this case νa = ν∗ and ν′a = ν′∗, and since [ν∗] = [ν′∗] we get that
[νa] = [ν′a].

– P (b) = ∅. In this case νa = ν and ν′a = ν′, and since [ν] = [ν′] we get that
[νa] = [ν′a].

3. if vertex q is of any other kind, then the result follows by classical region
equivalence relation.

The proof is now complete. �
The following proposition follows from the 2nd case in the proof of Proposition 12.

Proposition 13. For general (non glitch-free) RTA with two clocks the successors of
regionally equivalent configurations are not necessarily regionally equivalent.

By using two boxes mapped to DB in a sequence, one is able to construct a new
component D1 that multiplies the value of clock x by 2 · 2 = 220 · 220

= 221
= 4.

(See, e.g. how component DB is exploited in component P2O in Figure 3.) In general,
by using two boxes mapped to Di, one is able to construct a new component Di+1 that
multiplies the value of clock x by 22i · 22i

= 22i+1
. So, to solve reachability problem

for general RTA with two clocks, one needs to consider doubly-exponentially many (in
the size of the RTA) partitions of a region.

Proposition 12 allows us to extend the concept of region abstraction in the setting of
glitch-free RTA. Before we introduce the abstraction, we need to define some notations.

For ζ, ζ′ ∈ R, we say that clock region ζ′ is in the future of clock region ζ, or that ζ
is in the past of ζ′, if there are ν ∈ ζ, ν′ ∈ ζ′ and delay d ∈ R⊕ such that ν′ = ν+d;
we then write ζ −→∗ ζ′. We say that ζ′ is the time successor of ζ if ζ −→∗ ζ′, ζ �=ζ′, and
ζ −→∗ ζ′′ −→∗ ζ′ implies ζ′′=ζ or ζ′′=ζ′ and write ζ −→ ζ′ and ζ′ ←− ζ. Time successor
definition is extended to n-th time successor in a natural way: we say that ζ′ is the n-th
successor of ζ, and write ζ −→+n ζ′, if there is a sequence of regions 〈ζ1, ζ2, . . . , ζn〉
such that ζ1=ζ, ζn=ζ′ and ζi −→ ζi+1 for every 1≤i<n. In this case we also write
[ζ1, ζn] for the union of regions ζ1, . . . ζn.



Recursive Timed Automata 321

Definition 14 (Region Abstraction). Let T = (C, (T1, T2, . . . , Tk)) be a glitch-free
RTA, where each Ti is the tuple (Ni, Eni, Exi, Bi, Yi, Ai, Xi, Pi, Inv i, Ei, ρi). The
region abstraction of T is a finite RSM T RG = (T1

RG, T2
RG, . . . , Tk

RG) where for each
1 ≤ i ≤ k, component Ti

RG = (Ni
RG, Eni

RG, Exi
RG, Bi

RG, Yi
RG, Ai

RG, Xi
RG) consists of :

– a finite set Ni
RG ⊆ (Ni × R) of nodes such that (n, ζ) ∈ Ni

RG if ζ ∈ Inv(n).
Moreover, Ni

RG includes the sets of entry nodes Eni
RG ⊆ Eni ×R and exit nodes

Exi
RG ⊆ Exi ×R;

– a finite set Bi
RG = Bi ×R of boxes;

– boxes-to-componentsmappingYi
RG : Bi

RG → {1, 2, . . . , k} is such that Yi
RG(b, ζ) =

Yi(b). To each box (b, ζ) ∈ Bi
RG we associate a set of call ports CallRG(b, ζ), and

a set of return ports RetRG(b, ζ):

CallRG(b, ζ) =
{
(((b, ζ), en), ζ′) : ζ′ ∈ R and en ∈ EnYi(b)

}
, and

RetRG(b, ζ) =
{
(((b, ζ), ex), ζ′) : ζ′ ∈ R and ex ∈ ExYi(b)

}
.

Let Calli
RG and Reti

RG be the set of call and return ports of component Ti
RG. We

write Qi
RG = Ni

RG ∪ Calli
RG ∪Reti

RG for the vertices of the component Ti
RG.

– Ai
RG ⊆ N×Ai is the set of actions, such that if (h, a) ∈ Ai

RG (here h is number
of region hops before taking a) then h ≤ (2·|C|)K , where K ∈ N is the largest
constant that appears in one of the clock constraints in E or Inv;

– a transition function Xi
RG : Qi

RG×Ai
RG → Qi

RG with the natural condition that
call ports and exit nodes do not have any outgoing transitions. Moreover, for
q, q′ ∈ Qi

RG, (h, a) ∈ Ai
RG we have that q′ = Xi

RG(q, (h, a)) if one of the following
conditions holds:
1. q = (n, ζ) ∈ Ni

RG, there exists a region ζa such that ζ −→+h ζa, [ζ, ζa] ⊆
Inv i(n), ζa ∈ Ei(n, a), and
• if q′ = (n′, ζ′) then ζ′ = ζa[ρi(a) := 0] and Xi(n, a) = n′.
• if q′ = (((b, ζ′), en), ζ′′) then ζ′ = ζ′′ = ζa[ρi(a) := 0] and Xi(n, a) =

(b, en).
2. q = (((b, ζSaved), ex), ζCurr) is a return port of Ti

RG. Let ζ = ζSaved if Pi(b) = C
and ζ = ζCurr otherwise. There exists a region ζa such that ζ −→+h ζa, and
[ζ, ζa] ⊆ Inv i((b, ex)), ζa ∈ Ei((b, ex), a), and
• if q′ = (n′, ζ′) then ζ′ = ζa[ρi(a) := 0] and Xi(n, a) = n′.
• if q′ = (((b, ζ′), en), ζ′′) then ζ′ = ζ′′ = ζa[ρi(a) := 0] and Xi(n, a) =

(b, en).

The following proposition is a direct consequence of Proposition 12 and the definition
of region abstraction.

Proposition 15. Reachability (termination) problems and games on glitch-free RTA T
can be reduced to solving reachability (termination) problems and games, respectively,
on the corresponding region abstraction T RG.

5.2 Computational Complexity

All the results stated here concern glitch-free recursive timed automata only and their
formal proofs can be found in [21]. First, we summarise the complexity results for the
reachability problem for glitch-free RTAs in Table 2.
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Table 2. Complexity results for glitch-free RTAs

# Players RTAs with 1 clock RTAs with at least 2 clocks

1 PTIME-complete EXPTIME-complete

2 EXPTIME-complete 2EXPTIME

By examining the reduction of RTAs to the corresponding RSMs via region
abstraction in the previous section, it can be observed that in the case where all the
clocks are passed by reference (i.e. they are global) only the number of internal nodes
and exits grows exponentially, not the number of boxes. It is simply because the clocks
values are never being restored to the value they had before the box was called and
hence the valuation of the clocks does not have to be stored at the boxes in the region
abstraction. This observation allows us to provide better complexity upper and lower
bounds for the reachability problem and games on 1-box RTAs with global clocks,
summarised in Table 3, because 1-box RSMs can be analysed a lot more efficiently
than multi-exit RSMs. Since the number of exits can grow arbitrarily large after region
abstraction is applied to a 1-exit RTA with just a single global clock, no similar
improvement can be obtained for 1-exit RSMs with only global clocks.

Table 3. Complexity results for 1-box RTAs with only global clocks

# Players 1-box RTAs with 1 global clock 1-box RTAs with at least 2 global clocks

1 PTIME-complete PSPACE (PSPACE-complete for 3+ clocks)

2 PSPACE-complete EXPSPACE (and EXPTIME-hard)

On the other hand, if all clocks are local then only the number of boxes grows
exponentially, not the number of control states (in particular the number of exit ports of
each box does not increase). This allows us to provide a much better complexity upper
and lower bounds for 1-exit RTAs with only local clocks. We summarise the results for
the reachability problem for this subclass of RTAs in Table 4. Again, even if there is
only one single local clock, the number of boxes can grow arbitrarily large after the
region abstraction is applied to such a system, hence no similar improvements can be
achieved when restricting the model to 1-box RTAs with local clocks.

Table 4. Complexity results for 1-exit RTAs with only local clocks

# Players 1-exit RTAs with 1 local clock 1-exit RTAs with at least 2 local clocks

1 PTIME-complete EXPTIME-complete

2 PTIME-complete EXPTIME-complete
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6 Conclusion

We defined a natural extension of boolean programs with real-time clocks. These
clocks, among others, may either correspond to physical time or other continuous values
read from sensors. Just like in any advanced imperative programming language, we
allow to pass these clocks by value or by reference. We showed that unfortunately
arbitrary mixing of these two kinds of variable passing leads to undecidability. On
the other hand, if we disallow it, the model becomes decidable and for many special
subclasses of this model, the computational complexity is not higher than PSPACE for
1 player setting and EXPTIME for 2 players setting, which is the same as the respective
reachability analysis of ordinary finite-state timed automata.
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Probabilistic Contracts for Component-Based
Design�
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Abstract. We define a probabilistic contract framework for the con-

struction of component-based embedded systems, based on the theory

of Interactive Markov Chains. A contract specifies the assumptions a

component makes on its context and the guarantees it provides. Proba-

bilistic transitions allow for uncertainty in the component behavior, e.g.

to model observed black-box behavior (internal choice) or reliability. An

interaction model specifies how components interact.

We provide the ingredients for a component-based design flow, includ-

ing (1) contract satisfaction and refinement, (2) parallel composition of

contracts over disjoint, interacting components, and (3) conjunction of

contracts describing different requirements over the same component.

Compositional design is enabled by congruence of refinement.

1 Introduction

Typical embedded and distributed systems often encompass unreliable software
or hardware components, as it may be technically or economically impossible
to make a system entirely reliable. As a result, system designers have to deal
with probabilistic specifications such as “the probability that this component
fails at this point of its behavior is less than or equal to 10−4”. More generally,
uncertainty in the observed behavior is introduced by abstraction of black-box
— or simply too complex — behavior of components, the environment, or the
execution platform. In this paper we introduce a framework for the design of
correct systems from probabilistic, interacting components.

Figure 1(a) shows a Link system that transmits data between a Client and
a Server. The Link receives a request from the Client and encodes the request
before sending it to the Server. The encoding process fails with probability 0.02.
After receiving a response from the Server, it decodes the data before delivering
it to the Client. To model components, we adopt the discrete time Interactive
Markov Chain (IMC) semantic model [8], which combines Labeled Transition
System (LTS) and Markov Chain. Figure 1(b) shows an IMC describing the
network Link of Figure 1(a). From its initial state l0, the Link goes to state l1 as
soon as it receives (rec) a request from a Client; the probability that it delivers
(del′) this request to the Server is 0.98 and the probability that it fails before
delivering to the Server is 0.02. The Link goes to state l4 immediately after
� Supported by the European project COMBEST no. 215543.
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Client (C) Link (L)
req     rec
res     del

Server (S)
del’     req’
rec’     res’

(a) Client – Link – Server.

l2 l3

l0

l1

l6

l7

l4

l5

l9l8

del′
0.05 rec′

0.95

del′
fail1

0.98rec rec′

fail2

del

0.02

(b) The IMC M� of the Link.

Fig. 1. An example of IMC: a Client-Link-Server

receiving a response (rec′) from the Server; the probability that it delivers (del)
the response to the Client is 0.95 and the probability of failing to do so is 0.05.
In state l8, the Link may still communicate with the Server regarding other
services, but will not deliver any response to the Client.

Components communicate through interactions, that is, synchronized action
transitions. Interactions are essential in component frameworks, as they allow
the modeling of how components cooperate and communicate. We use the BIP
framework [7] to model interactions between components.

Since the deploying context of a component is not known at design time,
we use probabilistic contracts to specify and reason about correct behaviors of
a component. Contracts have first been introduced in [11]. They allow us to
specify what a component can expect from its context, what it must guarantee,
and explicitly limit the responsibilities of both.

The framework we propose here allows us to model components, their inter-
actions, and uncertainty in their observed behavior (§2). It supports different
steps in a design flow: refinement, satisfaction, and abstraction (§3), parallel
composition (§4.1), and conjunction (shared refinement) (§4.2). We prove that
these operations satisfy the desired properties of independent implementability
and congruence for parallel composition, and soundness for conjunction. Thus,

• refinement is compositional, that is, contracts over different components can
be refined and implemented independently;

• the parallel composition of two contracts is satisfied by the parallel compo-
sition of any two implementations of the contracts; and

• several contracts Ci over the same component may be used to independently
specify different requirements, possibly over different subsets of the compo-
nent interactions. The conjunction is a common refinement of all Ci.

As pointed out in [2], conjunction of probabilistic specifications is non trivial, as
a straight-forward approach would introduce spurious behaviors.
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2 Components and Contracts

We give a formal definition to the discrete-time Interactive Markov Chains de-
scribed in [8], used to model the behavior of components.

Definition 1 (Probability distribution). A probability distribution over a
set X is a function f : X → [0, 1] such that

∑
x∈X f(x) = 1.

Definition 2 (Interactive Markov Chain (IMC)). An IMC is a tuple
(Q,A,→, π, s0) where:

• Q is a nonempty finite set of states, partitioned into Qp, the set of proba-
bilistic states, and Qa, the set of action states;

• A is a finite alphabet of actions;
• → ⊆ Qa ×A×Q is an action transition relation;
• π : Qp → (Q → [0, 1]) is a transition probability function such that, for each

s ∈ Qp, π(s) is a probability distribution over Q;
• s0 is the initial state.

IMC may interact with each other by synchronizing on action transitions (details
in §4). Each action state in Qa has outgoing action transitions like those in an
LTS. Each probabilistic state in Qp has outgoing probabilistic transitions like
those in a Markov Chain. Probability distributions on states are memoryless, i.e.,
the future of an IMC depends only on the current state, but not on past choices.
For example, in Figure 1(b), the probabilistic choice that the Link delivers the
response to the Client (i.e., π(l4)(l5) = 0.95) is independent of the probabilistic
choice of delivering a request to the Server (i.e., π(l1)(l2) = 0.98).

Notation: For convenience, we sometimes write the transition probability func-
tion π as a transition relation ��� ⊆ Qp × [0, 1]×Q such that

��� = {(s, p, s′) | s ∈ Qp ∧ s′ ∈ Q ∧ p = π(s)(s′)}

We introduce contracts as a finite specification for a possibly infinite number of
IMCs. In contrast to IMCs, the probabilistic transitions of a contract are labeled
with probability intervals, similar to [9,15]. Moreover, a distinct � state is used
to distinguish assumptions on the use of the component from the guarantees it
provides.

Definition 3 (Contract). A contract is a tuple (Q,A,→, σ, t0) where:

• Q is a nonempty finite set of states, partitioned into Q = Qp ∪ Qa ∪ {�},
where Qp is the set of probabilistic states, Qa is the set of action states, and
� is a distinct state without any outgoing transitions;

• A is a finite alphabet of actions;
• → ⊆ Qa ×A×Q is the action transition relation;
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• σ : Qp → (Q → 2[0,1]) is a transition probability predicate, associating with
each pair of states (s, s′) ∈ Qp ×Q an interval of probabilities;

• t0 is the initial state.

Notations: We also write σ as a transition relation ��� ⊆ Qp × 2[0,1] ×Q such
that ��� = {(s, P, s′) | s ∈ Qp ∧ s′ ∈ Q ∧ P = σ(s)(s′)}. We write q

>0��� q′

if ∃p > 0 : p ∈ σ(q, q′), and
>0���

+

for the transitive closure of
>0���. We extend

arithmetic operations to intervals: [�1, u1] + [�2, u2] = [�1 + �2, u1 + u2].
The meaning of a contract over a component C is the following:

• a transition s
a→ � specifies the assumption of the component C that an

interaction involving action a does not occur in state s;
• in an action state s, an action a labeling a transition not leading to � specifies

the guarantee of the component C that a is enabled in s; conversely, the
absence of any outgoing transition labeled with a specifies the guarantee
that an interaction involving a will not occur;

• the � state represents the fact that the assumption has been violated, and
henceforth, the component C can show arbitrary, uncontrollable behavior;

• a transition s
[a,b]
��� t specifies an interval of allowed transition probabilities.

s1

s0

s3

s2

s4

er2

res′
0.7

res′

0.2

handleres′

0.1
req′

req′ �

t2

t3

t0

t1

req′

req′ [0.9, 1]

[0, 0.1]

res′

(a) IMC Ms for Server (b) Contract Cs for Server

Fig. 2. Contract examples

Example 1. The contract Cs in Figure 2(b) specifies that, after the Server re-
ceives a request req′, the probability that it reaches state t3 is within [0, 0.1]; in
state t3, it assumes that the environment does not give req ′ again; if this occurs,
its implementation is not bound by Cs any more; the probability that it reaches
t2 from t1 is within [0.9, 1]; in state t2, it guarantees to send a response (res′).
In §3, we show how to check that Ms (in Figure 2(a)) satisfies Cs.

From the definitions of IMC and contract, we can see that an IMC can be trivially
converted to a contract. For this, we define a lifting operator 	.
 (Figure 3 (c)).
For the sake of simplicity, we use the same notation ��� to represent both kinds
of probabilistic transitions (i.e., those in an IMC and in a contract).
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Definition 4 (Delimited contract). A contract C = (Q,A,→, σ, t0) is de-
limited [5] iff ∀s ∈ Qp ∀s′ ∈ Q ∀p ∈ σ(s)(s′) : 1 − p ∈∑s′′∈Q\{s′} σ(s)(s′′).

Example 2. Figure 3 (a) shows a delimited contract: for all p ∈ [0, 2, 0.3], we
can find p′ ∈ [0.7, 0.8] such that p + p′ = 1 and vice versa. Figure 3 (b) shows a
contract that is not delimited. However, we can cut [5] the redundant sub-interval
[0.8,0.9] from the interval [0.7,0.9] to obtain a delimited contract.

t2

t1

t0 [0.7, 0.8] b

[0.2, 0.3]

a

t2

t1

t0 [0.7, 0.9] b

[0.2, 0.3]

a

�s1
α−→ s2� = s1

α−→ s2

�s1
p��� s2� = s1

[p,p]
��� s2

(a) Delimited. (b) Non-delimited. (c) Lifting rules.

Fig. 3. Delimited contract and rules for lifting IMC to contract

3 Contract Refinement

System synthesis involves refining a contract several times until an implementa-
tion is obtained. We therefore define formally the notion of contract refinement.

3.1 Refinement and Satisfaction

We first define contract refinement, and give thereafter some explanations.

Definition 5 (Contract refinement). Let C1 = (Q1,A,→1, σ1, s0) and C2 =
(Q2,A,→2, σ2, t0) be two contracts. C1 refines C2 (written C1 ≤ C2) iff s0 ≤ t0,
where ≤ ⊆ Q1 ×Q2 is the greatest relation s.t. for all s ≤ t we have:

1. s = � =⇒ t = �;

2. If (s, t) ∈ Qa
1 × (Qa

2 ∪ {�}) then
(a) ∀t′ �= � ∈ Q2, (t α→2 t′) =⇒ (∃s′ ∈ Q1, s

α→1 s′ ∧ s′ ≤ t′);

(b) ∀s′ ∈ Q1, (s α→1 s′) =⇒ (t = � ∨ ∃t′ ∈ Q2, t
α→2 t′ ∧ s′ ≤ t′).

3. If (s, t) ∈ Qp
1 ×Qp

2 then there exists a function δ : Q1 ×Q2 → [0, 1], which,
for each s′ ∈ Q1, gives a probability distribution δ(s′) over Q2, such that for
every probability distribution f over Q1 with f(s′) ∈ σ1(s)(s′) and ∀t′ ∈ Q2,∑
s′∈Q1

f(s′)∗δ(s′)(t′) ∈ σ2(t)(t′) and ∀s′ ∈ Q1 :
(
δ(s′)(t′) > 0 =⇒ s′ ≤ t′

)
4. If (s, t) ∈ Qa

1 ×Qp
2 then ∃ta ∈ Qa

2 : t
>0���

+

2 ta ∧ s ≤ ta and ∀t′ ∈ Q2,(
t

>0���2 t′ =⇒ s ≤ t′
)
.
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5. If (s, t) ∈ Qp
1 ×Qa

2 then ∃sa ∈ Qa
1 : s

>0���
+

1 sa ∧ sa ≤ t and ∀s′ ∈ Q1,(
s

>0���1 s′ =⇒ s′ ≤ t
)
.

In Definition 5, condition (1) ensures that C1 makes no stronger assumptions on
the context than C2. Condition (2a) says that any transition accepted by C2 must
also be accepted by C1. Similarly, condition (2b) says that each action transition
of C1 must also be enabled in C2, unless C2 is in the � state. Condition (3),
adapted from [9], deals with refinement among probabilistic states. Intuitively,
s ≤ t if there exists a function δ which distributes the probabilities of transitions
from s to s′ onto the transitions from t to t′, such that the sum of the fractions
is in the range σ(t)(t′), as illustrated in Example 3 below. Condition (4) says
that an action state s refines a probabilistic state t if it refines all action states
reachable with a path of positive probability from t. Finally, condition (5) is
symmetrical to condition (4).

Before giving an example of refinement, we define the satisfaction of a contract
by an implementation (an IMC) as the refinement of the contract by the lifted
IMC (i.e., written in the form of a contract).

Definition 6 (Contract satisfaction). An IMC M satisfies a contract C
(written M |= C) iff 	M
 ≤ C.

Example 3. We illustrate how to check 	Ms
 ≤ Cs, in particular, s1 ≤ t1. It is
easy to check s3 ≤ t2, s4 ≤ t2, and s2 ≤ t3. Dashed lines stand for non-negative
distributions δ. Condition (3) in Definition 5 states that s1 ≤ t1 if for each
successor state of s1 there is a function δ (i.e., d1, d2, d3) such that, for each tuple
(p2, p3, p4) satisfying constraints (1) to (4) in Figure 4, the constraints (5) and (6)
are implied. Condition (3) can be checked efficiently by requiring the set inclusion
to hold for the bounds of interval σ(s)(s′), using a linear programming solver. As
δ(s′) is a probability distribution, we obtain for our example d1 = d2 = d3 = 1.
(Note that if we had s2 ≤ t2 as well, say, we had d4 from s2 to t2, we would have
another constraint d3 + d4 = 1.)

Definition 7 (Models of contracts). The set of models of a contract C (writ-
ten M(C)) is the set of IMCs that satisfy C: M(C) = {M | M |= C}.
Definition 8 (Semantical equivalence). Contracts C1 and C2 are semanti-
cally equivalent (written C1 ≡ C2) iff M(C1) = M(C2).

s1

s3

s2

s4 t2

t3

t1
d3

[0.9, 1]d2

[0, 0.1]

[0.2, 0.2]

d1

[0.1, 0.1]

[0.7, 0.7] (1) p2 ∈ [0.1, 0.1]
(2) p3 ∈ [0.7, 0.7]
(3) p4 ∈ [0.2, 0.2]
(4) p2 + p3 + p4 = 1

(5) p3 ∗ d1 + p4 ∗ d2 ∈ [0.9, 1]
(6) p2 ∗ d3 ∈ [0, 0.1]

Fig. 4. Left: Contract refinement s1 ≤ t1. Right: Constraints to be checked.
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Lemma 1 (Monotonicity of satisfaction). For all IMC M and contracts C1

and C2, if M |= C1 and C1 ≤ C2, then M |= C2.

Lemma 2 (Refinement and model inclusion). For all contracts C1 and C2,
C1 ≤ C2 =⇒ M(C1) ⊆ M(C2).

The proofs for all lemmas and theorems in this paper can be found in [14].

3.2 Bisimulation

We adapt the usual notion of bisimulation to contracts, and define reduction of
a contract with respect to bisimulation.

Definition 9 (Bisimulation �). Given a contract C = (Q,A,→, ���, s0), let
� ⊆ Q×Q be the greatest relation such that if s � t then:

1. s = � ⇐⇒ t = �;
2. If (s, t) ∈ Qa ×Qa then

(a) ∀α ∈ A ∀s′ ∈ Q, (s α→ s′ =⇒ ∃t′ ∈ Q, (t α→ t′ ∧ s′ � t′))
(b) ∀α ∈ A ∀t′ ∈ Q, (t α→ t′ =⇒ ∃s′ ∈ Q, (s α→ s′ ∧ s′ � t′))

3. If (s, t) ∈ Qp ×Qp then
(a) there is a function δ : Q × Q → [0, 1], which for each s′ ∈ Q gives a

probability distribution δ(s′) on Q, s.t. for every probability distribution
f over Q with f(s′) ∈ σ(s)(s′) and ∀t′ ∈ Q∑
s′∈Q

f(s′)∗δ(s′, t′) ∈ σ(t)(t′) and ∀s′ ∈ Q :
(
δ(s′, t′) > 0 =⇒ s′ � t′

)
(b) symmetric to (3a);

4. If (s, t) ∈ Qa × Qp then ∃ta ∈ Qa : t
>0���

+

ta ∧ s � ta and ∀t′ ∈ Q, t
>0���

t′ =⇒ s � t′;

5. If (s, t) ∈ Qp × Qa then ∃sa ∈ Qa : s
>0���

+

sa ∧ sa � t and ∀s′ ∈ Q,

s
>0��� s′ =⇒ s′ � t.

In Definition 9, condition (2) is the standard definition for bisimulation. Condi-
tions (3a) and (3b) deal with the probabilistic transitions. Finally, conditions (4)
and (5) say that an action state is bisimilar with a probabilistic state if it is bisim-
ilar with all its successors with non-zero probability, and some action state is
reachable from this probabilistic state.

Definition 10 (Reduction modulo �). Let C = (Q,A,→, σ, s0) be a con-
tract. For all s ∈ Q, let Cs = {q ∈ Q | s � q} be the equivalence class of s.
Let C = {Cs | s ∈ Q}. The reduced contract, written C, is (C,A,→�, σ�, Cs0)
such that, ∀s = {s1, . . . , sm}, t = {t1, . . . , tn} ∈ C, we have: (1) s

a→� t iff
∃i, j : si

a→ tj, and (2) σ�(s, t) =
∑

1≤j≤n σ(s1, tj)).
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Notice that an equivalence class may contain both action and probabilistic states.
By Definition 9, except for probabilistic transitions with probability interval
[0, 0], either all transitions leaving an equivalence class are action transition
and Definition 9 (2) applies, or they are all probabilistic transitions and Defini-
tion 9 (3) applies as follows. For each probabilistic state si ∈ s, the probabilities
of transitions to states tj ∈ t are summed up (it does not matter which of the
transitions is taken since all successors tj are equivalent). This sum is the tran-
sition probability from si to some state in t. By definition of �, the sum is the
same for all si ∈ s, thus we pick σ(s1, tj). For example, we can reduce the con-
tract C2 of Figure 7 (right) by combining the bisimilar states t2 and t3 into one:

t1
[0.2,0.6]
��� {t2, t3}.

Lemma 3 (Model equivalence). For all delimited contracts C, C ≡ C.

3.3 Contract Abstraction

The need of abstraction arises naturally in contract frameworks. We abstract
actions in A \ B that we do not care about by renaming them into internal τ
actions. The contract over the alphabet B ∪ {τ} is then projected on the sub-
alphabet B by using the standard determinization algorithm (see e.g. [1]).

Definition 11 (Projection). Let C = (Q,A,→1, σ, s0) be a contract and
B ⊆ A. Let C′ = (Q,B ∪ {τ},→1, σ, s0) be the contract where all transition
labels in A\B are replaced with τ . The projection of C on B (written πB(C)) is
obtained by τ-elimination (determinization) of C′.

Example 4. In Figure 2, if we do not care how the implementation handles failure
cases, we can check that πAs\{handle}(Ms) |= Cs.

4 Contract Composition

We introduce two composition operations for contracts: parallel composition ||,
parametrized with an interaction set I, and conjunction ∧ (shared refinement).

4.1 Parallel Composition of Contracts

Parallel composition allows us to build complex models from simpler compo-
nents in a stepwise and hierarchical manner. In order to reason about the com-
position of components at the contract level, we introduce parallel composition
of contracts. As in the BIP component framework [7], parallel composition is
parametrized with a set of interactions, where each interaction is a set of compo-
nent actions occurring simultaneously. For instance, an interaction set {a, a|b, c}
says that action a can interleave or synchronize with b; action b must synchronize
with a; action c is a singleton interaction that always interleaves. The symbol “|”
is commutative, which means that a|b is identical to b|a. In Figure 5, the inter-
actions α and β are of the form c, a|b, or a|b|d, and so on.
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Definition 12 (Parallel composition of contracts). Let C1 = (Q1,A1,→1,
���1, s0) and C2 = (Q2,A2,→2, ���2, t0) be two contracts. The parallel com-
position of C1 and C2 on interaction set I (written C1||IC2) is the contract(Q, I,→, ���, (s0, t0)

)
where:

1. Q = Q1 ×Q2 with � = (Q1 ×{�2})∪ ({�1}×Q2) — that is, � of C1||IC2

is an aggregate state reached as soon as C1 or C2 reaches its �i state —,
Qa = Qa

1 ×Qa
2, and Qp = Q \ (Qa ∪ �);

2. → is the least relation satisfying the rules [R1]–[R3] in Figure 5; and
3. ��� is the least relation satisfying the rules [R4]–[R6] in Figure 5.

q1
α→1 q′1 α ∈ I q2 ∈ Qa

2

(q1, q2)
α−→ (q′1, q2)

[R1]
q2

α→2 q′2 α ∈ I q1 ∈ Qa
1

(q1, q2)
α−→ (q1, q

′
2)

[R2]

q1
α→1 q′1 q2

β→2 q′2 α|β ∈ I
(q1, q2)

α|β−−→ (q′1, q
′
2)

[R3]
q1

[p1,p2]
��� 1 q′1 q2

[p3,p4]
��� 2 q′2

(q1, q2)
[p1∗p3,p2∗p4]

��� (q′1, q
′
2)

[R4]

q1
P���1 q′1 q2 ∈ Qa

2

(q1, q2)
P��� (q′1, q2)

[R5]
q2

P���2 q′2 q1 ∈ Qa
1

(q1, q2)
P��� (q1, q

′
2)

[R6]

Fig. 5. Rules for the parallel composition of contracts

Rules [R1] to [R3] are the usual parallel composition rules for interactive pro-
cesses, while the rule [R4] is similar to the typical parallel composition for Markov
chains but on probability intervals. Finally, rules [R5] and [R6] state that proba-
bilistic transition, usually modeling hidden internal behavior, have priority over
action transitions.

Example 5. Figure 6 illustrates the parallel composition of contracts Cs (from
Figure 2(b)) and C� = 	M�
 (where M� is given in Figure 1(b)), with I =
{rec, del, req′|del′, res′|rec′, fail1 , fail2 }. The composed contract Cs ||I C� states
that a failure in the Link component does not prevent it from continuing to
deliver the request req′ to the Server and receiving response from the Server,
but the failure prevents it from delivering the response res′ back to the Client.

We end the section on parallel composition with two essential properties.

(t2, u9)

(t1, u9)

(t2, u3)

(t1, u3)

(t0, u6)

(t0, u8)

(t3, u9)

(t0, u1)

(t0, u0)

(t0, u2)

(t0, u5)

(t0, u4)

(t0, u7)

(t3, u3)

[0.02, 0.02]

[0.9, 1]

[0, 0.1]

req′|del′

rec

[0, 0.05]

[0.95, 1]

fail2

[0, 0.1]

fail1

[0.9, 1]

res′|rec′

res′|rec′

req′|del′

del

[0.98, 0.98]

Fig. 6. Parallel composition of Cs and C�



334 D.N. Xu, G. Gössler, and A. Girault

Theorem 1 (Independent implementability). For all IMCs M, N , con-
tracts C1, C2, and interaction set I, if M |= C1 and N |= C2, then M ||IN |= C1

||IC2.

Theorem 2 (Congruence of refinement). For all contracts C1, C2, C3, and
interaction set I, if C1 ≤ C2, then C1||IC3 ≤ C2||IC3.

4.2 Conjunction of Contracts

A single component may have to satisfy several contracts that are specified
independently, each of them specifying different requirements on the component,
such as safety, reliability, and quality of service aspects. Therefore, the contracts
may use different, possibly overlapping, sub-alphabets of the component. The
conjunction of contracts computes a common refinement of all contracts. Prior
to conjunction, we define similarity of contracts as a test whether a common
refinement exists.

Definition 13 (Similarity (∼)). Let C1 = (Q1,A1,→1, ���1, s0) and C2 =
(Q2, A2,→2, ���2, t0) be two contracts. ∼ ⊆ Q1 ×Q2 is the largest relation such
that ∀(s, t) ∈ Q1 ×Q2, s ∼ t iff (s = � ∨ t = �) or conditions (1) to (4) below
hold:

1. If (s, t) ∈ Qa
1 ×Qa

2 then
(a) for all s′ ∈ Q1, if s

a→ s′, then either t
a→ t′ for some t′ ∈ Q2 and s′ ∼ t′,

or a �∈ A2 and s′ ∼ t; and
(b) for all t′ ∈ Q2, if t

a→ t′, then either s
a→ s′ for some s′ ∈ Q1 and s′ ∼ t′,

or a �∈ A1 and s ∼ t′;
2. If (s, t) ∈ Qp

1 ×Qp
2 then

(a) for all s′ ∈ Q1, if s
P1��� s′, then t

P2��� t′ for some t′ ∈ Q2 with P1∩P2 �= ∅
and (s′ ∼ t′ ∨ 0 ∈ P1 ∩ P2);

(b) for all t′ ∈ Q2, if t
P2��� t′, then s

P1→ s′ for some s′ ∈ Q1 with P1∩P2 �= ∅
and (s′ ∼ t′ ∨ 0 ∈ P1 ∩ P2);

3. If (s, t) ∈ Qp
1 ×Qa

2 then for all s′ ∈ Q1 with s
P���1 s′, (s′ ∼ t ∨ 0 ∈ P );

4. If (s, t) ∈ Qa
1 ×Qp

2 then for all t′ ∈ Q2 with t
P���2 t′, (s ∼ t′ ∨ 0 ∈ P ).

Finally, C1 and C2 are similar, written C1 ∼ C2, iff s0 ∼ t0.

The Pi in Definition 13 refers to a probabilistic interval in the form of [�i, ui].
Any state is similar with the top state (where the contract does not constrain the
implementation in any way). Two action states are similar if they agree on the
enabled actions in the common alphabet, and the successor states are similar
again. Two probabilistic states are similar if the probabilistic transitions can
be matched such that the intervals overlap, and the successor states are either
similar, or can be made unreachable by refining the probability interval to [0, 0].

Definition 14 (Unambiguous contract). A contract C = (Q,A,→, ���, s0)

is unambiguous iff for all r, s, t ∈ Q, if r
>0��� s ∧ r

>0��� t ∧ s ∼ t, then s = t.
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s1

s3

s2

s5

s4

s7

s6

[0, 0.4]

[0, 0.3]

b

[0.8, 1]

[0.7, 1]

b

[0.4, 1]

[0, 0.6]

a

a

s1

s3

s2

b

a

[0.5, 1]

[0, 0.5]

t2

t3

t4

t1

[0, 0.2]

[0.2, 0.4]

a

a

[0.4, 0.8]

b

Fig. 7. Left: ambiguous contract Ca. Middle: C1. Right: C2 where C1 	∼ C2.

A contract is unambiguous if the reachable successor states of any probabilistic
state are pairwise non-similar. In Figure 7 (left), the contract Ca is not unam-
biguous: s2 ∼ s3 (highlighted in gray) but s2 �= s3.

We are now ready to define the conjunction of contracts.

Definition 15 (Conjunction of contracts (∧)). For unambiguous contracts
C1 = (Q1,A1,→1, ���1, s0) and C2 = (Q2,A2,→2, ���2, t0) such that C1 and
C2 are similar, let C1 ∧ C2 be the contract

(Q1 × Q2,A1 ∪ A2,→, ���, (s0, t0)
)

where � = (�1,�2) and

1. → is the least relation satisfying the rules [C1] – [LiftR] in Figure 8, and
2. ��� is the least relation satisfying the rules [C3] – [C4R] in Figure 8 (where

for all other probabilistic transitions (q1, q2)
P��� (q′1, q

′
2), P = [0, 0]).

Rule [C1] requires the contracts to agree on action transitions over the common
alphabet. According to rule [C2L] (resp. [C2R]), the conjunction behaves like
the first (resp. second) contract as soon as the other contract is in �. Rules
[LiftL] and [LiftR] allow the interleaving of action transitions that are not

q1
α→1 q′1 q2

α→2 q′2
(q1, q2)

α−→ (q′1, q
′
2)

[C1]
q1

α→1 q′1
(q1,�)

α−→ (q′1,�)
[C2L]

q2
α→1 q′2

(�, q2)
α−→ (�, q′2)

[C2R]

q1
α→1 q′1 α 	∈ A2 q2 ∈ Qa

2

(q1, q2)
α→ (q′1, q2)

[LiftL]
q2

α→2 q′2 α 	∈ A1 q1 ∈ Qa
1

(q1, q2)
α→ (q1, q

′
2)

[LiftR]

q1
P1���1 q′1 q2

P2���2 q′2 q′1 ∼ q′2

(q1, q2)
P1∩P2��� (q′1, q

′
2)

[C3]

q1
P���1 q′1 q2 ∈ Qa

2 ∪ {�}
q′1 ∼ q2

(q1, q2)
P��� (q′1, q2)

[C4L]

q2
P���2 q′2 q1 ∈ Qa

1 ∪ {�}
q1 ∼ q′2

(q1, q2)
P��� (q1, q

′
2)

[C4R]

Fig. 8. Rules for conjunction of contracts
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s1

s0

s3

s2

�[0.02, 0.02]

del′

fail1

rec [0.98, 0.98]

�

t2

t3

t0

t1

fail2

rec′ [0.95, 1]

[0, 0.05]

del
u1u0

del′

rec′

Fig. 9. Left: C�1. Middle: C�2. Right: C�3

in the common alphabet. Rules [C3] – [C4R] define the probabilistic transi-
tions whose successor states are similar. For non-similar successor states, the
probability interval is refined to [0, 0], according to Definition 15.

Example 6. Figure 9 shows three contracts for the Link component: C�1 specifies
that the implementation should receive a request from the Client and deliver it
to the Server; C�2 specifies that the implementation should receive a response
from the Server and deliver it to the Client; C�3 requires the response (rec′)
received from the Server to occur after the request (del′) delivered to the Server.
We can verify that M� |= (C�1 ∧C�3)∧ (C�2 ∧C�3) (where M� is in Figure 1(b)).

�
t2

t3

t0

t1
[0, 0.5]

[0, 0.1]

a

a

a

[0, 0.4]
v2

v3

�
(t0, t0)

(t1, t1)
[0, 0.1]

a
[0, 1]

a
a

[0, 0.7]
s1

s0

s3

s2

s5s4
b

0.2 a

a a
0.8

(a) Ambiguous contract Cb (b) Cb ∧ Cb (c) A model Mb

Fig. 10. Example where Mb |= Cb ∧ Cb but Mb 	|= Cb

Example 7. As a contract that is not in reduced form is not unambiguous,
contracts should be reduced before performing conjunction. In Figure 7 (left),
contract C2 is non unambiguous, but t2 � t3. If we reduce C2 by applying

Definition 10, we get t1
[0.2,0.6]
��� {t2, t3} a→ {t2, t3}. The reduced contract is un-

ambiguous and s1 ∼ t1, such that conjunction yields a common refinement of
C1 and C2.

Theorem 3 (Soundness of conjunction). For any IMC M and unambiguous
contracts Ci with alphabet Ai, i = 1, 2 such that C1 and C2 are similar, if
M |= C1 ∧ C2 then πAi(M) |= Ci, i = 1, 2.

Example 8. Figure 10 motivates the requirement of conjunction (Definition 15)
for unambiguous contracts. The resulting contract Cb ∧ Cb is reduced such
that the model relation can be seen easily. The node v2 denotes the equiva-
lent class {(s1, s2), (s2, s1), (s2, s2)}; the node v3 denotes the equivalent class
{(s1, s3), (s2, s3), (s3, s1), (s3, s2), (s3, s3)}. As t1 ∼ t2 ∼ t3, duplicated intervals
lead to an unsound result.
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It is interesting to note the similarity of conjunction with discrete controller
synthesis [13], in the sense that conjunction is a refinement of both contracts
making bad states (i.e., pairs of states where both contracts are contradictory)
unreachable. In this analogy, both action transitions and probabilistic transitions
with strictly positive intervals amount to uncontrollable transitions, whereas
transitions whose probability interval contains 0 amount to controllable transi-
tions that can be refined to [0, 0] so as to make bad states unreachable.

5 Case Study

We study a dependable computing system with time redundancy. The system
specification is expressed by the contract CS of Figure 11 (top left), which
specifies that the computation comp should have a success probability of at
least 0.999. If the computation fails, then nothing is specified (state �).

The processor is specified by the contract CP of Figure 11 (top right). Follow-
ing an execution request exe, either the processor succeeds and replies with ok
(with a probability at least p), or fails and replies with nok (with a probability
at most 1 − p). The failure rates for successive executions are independent. The
probability p is a parameter of the contract.

[0, 0.001]
s2

fail

�
CS

success

s0

comp

[0.999, 1]

s1

s3

p1

CP ok

p0

[p, 1]

[0, 1 − p]

p2

p3

nok

exe

CT

q2 q4

q6

q0 q1 q3

q5

ok′

exe′ nok′ exe′

nok′

ok′

success

comp

fail

Fig. 11. Specification CS; processor contract CP ; time redundancy contract CT

We place ourselves in a setting where the reliability level guaranteed by CP

alone (as expressed by p) cannot fulfill the requirement of CS (that is, 0.999), and
hence some form of redundancy must be used. We propose to use time redun-
dancy, as expressed by the contract CT of Figure 11 (bottom). Each computation
comp is first launched on the processor (exe), either followed by a positive (ok)
or negative (nok) answer from the processor. In the latter case, the execution
is launched a second time, therefore implementing time redundancy. The con-
tract CT finally answers with success if either execution is followed by ok, or
with fail is both executions are followed by nok.
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In terms of component-based design for reliability, we wonder what is the
minimum value of p to guarantee the reliability level of CS . To compute this
minimum value, we first compute the parallel composition CT ||ICP , with the
interaction set I = {comp, exe|exe′, ok|ok′, nok|nok′, success, fail}. The reduc-
tion modulo bisimulation of this parallel composition is shown in Figure 12 (top),
where the interactions exe|exe′, ok|ok′, and nok|nok′ have been replaced for con-
ciseness by exe, ok, and nok, respectively. We call this new contract CT ||P . We
then compute the projection of CT ||P onto the set B = {comp, success, fail}.
The result Cπ = πB(CT ||P ) is shown in Figure 12 (bottom left).

q0

comp
q1 q2

[p, 1]

[0, 1 − p]

q3

q5

q4

q6 q7

[0, 1 − p]

[p, 1]

CT ||P = CT ||ICP

q8q9

exe

nok exe

nok

success

fail

ok

Cπ = πB(CT ||P )

q′
0

comp
q′
1

q′
4

[0, 1 − p]

q′
3

[p, 1]

q′
2

[0, 1 − p]

[p, 1]

fail

success

q′′
1

q′′
0

comp
[2p − p2, 1] q′′

2

q′′
3

C̃π

[0, (1 − p)2]

success

fail

˜
Fig. 12. Parallel composition CT ||P ; projection Cπ; transitive closure C̃π

We are thus faced with a contract Cπ having sequences of probabilistic transi-
tions; more precisely, since some probabilistic states have several outgoing tran-
sitions, we have DAGs of probabilistic transitions. We therefore compute the
transitive closure for each such DAG, that is, the equivalent probabilistic transi-
tions from the initial state of the DAG (e.g., q′1 in Cπ) to its final states (e.g., q′2
and q′4 in Cπ). Without entering into the details of this computation, we show
the resulting contract C̃π in Figure 12 (bottom right).

The last step involves checking under which condition on p the contract C̃π

refines the specification CS . We have C̃π ≤ CS ⇔ (1 − p)2 ≤ 0.001. This means
that, with time redundancy and a processor with a reliability level of at least
0.969, we are able to ensure an overall reliability level of 0.999.

6 Discussion

We have introduced a design framework based on probabilistic contracts, and
proved essential properties for the use in component-based design. Our definition
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of contracts is based on the ideas from [9,15,5], although the frameworks in [9,5]
do not support interactions.

Shared refinement of interfaces, and conjunction of modal specifications over
possibly different alphabets have been defined in [4] and [12]. A framework over
modal assume/guarantee-contracts is introduced in [6], for which both paral-
lel composition and conjunction are defined. Probabilistic assume/guarantee-
contracts have been introduced in [3] in terms of traces. [10] introduces a com-
positional framework based on continuous time IMCs, adopting a similar inter-
action model as done in this paper. This framework supports abstraction, par-
allel and symmetric composition, but not conjunction. The recently introduced
Constraint Markov Chains (CMC) [2] generalize Markov chains by introducing
constraints on state valuations and transition probability distributions, aiming
at a similar goal of providing a probabilistic component-based design frame-
work. Whereas CMCs do not support explicit interactions among components,
they allow one to expressively specify constraints on probability distributions.
Conjunction is shown to be sound and complete in this framework.

Future work will encompass implementing the framework and carrying out
case studies. A particularly interesting application would be the design of adap-
tive systems where the probabilistic behavior of components may change over
time, while the overall system must at any time satisfy a set of safety, reliability,
and quality of service contracts.
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6. Gössler, G., Raclet, J.-B.: Modal contracts for component-based design. In: Proc.

SEFM 2009, pp. 295–303. IEEE, Los Alamitos (2009)
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Abstract. Web-TLR is a software tool designed for model-checking

Web applications which is based on rewriting logic. Web applications are

expressed as rewrite theories which can be formally verified by using the

Maude built-in LTLR model-checker. Web-TLR is equipped with a user-

friendly, graphical Web interface that shields the user from unnecessary

information. Whenever a property is refuted, an interactive slideshow

is generated that allows the user to visually reproduce, step by step,

the erroneous navigation trace that underlies the failing model checking

computation. This provides deep insight into the system behavior, which

helps to debug Web applications.

1 Introduction

In recent years, the automated verification of Web applications has become a
major field of research. Nowadays, a number of corporations (including book re-
tailers, auction sites, travel reservation services, etc.) interact primarily through
the Web by means of Web applications that combine static content with dynamic
data produced “on-the-fly” by the execution of Web scripts (e.g. Java servlets,
Microsoft ASP.NET and PHP code). The inherent complexity of such highly
concurrent systems has turned their verification into a challenge [1,6,9].

In [2], we formulated a rich and accurate navigation model that formalizes
the behavior of Web applications in rewriting logic. Our formulation allows us
to specify critical aspects of Web applications such as concurrent Web inter-
actions, browser navigation features (i.e., forward/backward navigation, page
refreshing, and window/tab openings), and Web script evaluations by means of
a concise, high-level rewrite theory. Our formalization is particularly suitable for
verification purposes since it allows in-depth analyses of several subtle aspects
of Web interactions to be carried out. We have shown how real-size, dynamic
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Web applications can be efficiently model-checked using the Linear Temporal
Logic of Rewriting (LTLR), which is a temporal logic specifically designed to
model-check rewrite theories that combines all the advantages of the state-based
and event-based logics, while avoiding their respective disadvantages [8].

This paper describes Web-TLR, which is a model-checking tool that im-
plements the theoretical framework of [2]. Web-TLR is written in Maude and
is equipped with a freely accessible graphical Web interface (GWI) written in
Java, which allows users to introduce and check their own specification of a
Web application, together with the properties to be verified. In the case when
the property is proven to be false (refuted), an online facility can be invoked
that dynamically generates a counter-example (expressed as a navigation trace),
which is ultimately responsible for the erroneous Web application behavior. In
order to improve the understandability and usability of the system and since the
textual information associated to counter-examples is usually rather large and
poorly readable, the checker has been endowed with the capability to generate
and display on-the-fly slideshows that allow the erroneous navigation trace to be
visually reproduced step by step. This graphical facility, provides deep insight
into Web application behavior and is extremely effective for debugging purposes.

Web-TLR focuses on the Web application tier (business logic, and thus han-
dles server-side scripts; no support is given for GUI verification with Flash tech-
nology or other kinds of client-side computations.

2 An Overview of the Web Verification Framework

In this section, we briefly recall the main concepts of the Web verification frame-
work proposed in [2], which are essential for understanding this tool description.

A Web application is thought of as a collection of related Web pages that are
hosted by a Web server and contain a mixture of (X)HTML code, executable
code (Web scripts), and links to other Web pages. A Web application is accessed
over a network such as the Internet by using a Web browser which allows Web
pages to be navigated by clicking and following links. Interactions between Web
browsers and the Web server are driven by the HTTP protocol.

A Web application is specified in our setting by means of a rewrite the-
ory, which accurately formalizes the entities in play (e.g., Web server, Web
browsers, Web scripts, Web pages, messages) as well as the dynamics of the
system (that is, how the computation evolves through HTTP interactions).
More specifically, the Web application behavior is formalized by using labeled
rewrite rules of the form label: WebState ⇒ WebState, where WebState is a triple1

|| || :(Browsers × Message× Server) → WebState that can be interpreted as a
snapshot of the system that captures the current configurations of the active
browsers (i.e., the browsers currently using the Web application), together with
the server and the channel through which the browsers and the server commu-
nicate via message-passing. Given an initial Web state st0, a computation is

1 A detailed specification of Browsers, Message, and Server can be found in [2].
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a rewrite sequence starting from st0 that is obtained by non-deterministically
applying (labeled) rewrite rules to Web states.

Also, formal properties of the Web application can be specified by means of
the Linear Temporal Logic of Rewriting (LTLR), which is a temporal logic that
extends the traditional Linear Temporal Logic (LTL) with state predicates [8],
i.e, atomic predicates that are locally evaluated on the states of the system. Let
us see some examples. Assume that forbid is a session variable that is used to
establish whether a login event is possible at a given configuration. In LTLR,
we can define the state predicate userForbidden(bid), which holds in a Web state
when a browser bid2 is prevented from logging on to the system, by simply
inspecting the value of the variable forbid appearing in the server session that is
recorded in the considered state. More formally,

browsers||channel||server(session((bid, {forbid = true})) |= userForbidden(bid) = true

In LTLR, we can also define the following state predicates as boolean functions:
failedAttempt(bid,n), which holds when browser bid has performed n failed lo-
gin attempts (this is achieved by recording in the state a counter n with the
number of failed attempts); curPage(bid,p), which holds when browser bid is cur-
rently displaying the Web page p; and inconsistentState, which holds when two
browser windows or tabs of the same browser refer to distinct user sessions.
These elementary state predicates are used below to build more complex LTLR
formulas expressing mixed properties that include dependencies among states,
actions, and time. These properties intrinsically involve both action-based and
state-based aspects which are either not expressible or are difficult to express in
other temporal logic frameworks.

3 The Web-TLR System

Our verification methodology has been implemented in the Web-

TLR system using the high-performance, rewriting logic language
Maude [4] (around 750 lines of code not including third-party compo-
nents). Web-TLR is available online via its friendly Web interface at
http://www.dsic.upv.es/~dromero/web-tlr.html. The Web interface frees
users from having to install applications on their local computer and hides a lot
of technical details of the tool operation. After introducing the (or customizing a
default) Maude specification of a Web application, together with an initial Web
state st0 and the LTLR formula ϕ to be verified, ϕ can be automatically checked
at st0. Once all inputs have been entered in the system, we can automatically
check the property by just clicking the button Check, which invokes the Maude
built-in operator tlr check[3] that supports model checking of rewrite theories
w.r.t. LTLR formulas.

In the case when ϕ is refuted by the model-checker, a counter-example is
provided that is expressed as a model-checking computation trace starting from
st0. The counter-example is graphically displayed by means of an interactive

2 We assume that the browser identifier uniquely identifies the user.

http://www.dsic.upv.es/~dromero/web-tlr.html
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Fig. 1. The navigation model of an Electronic Forum

slideshow that allows forward and backward navigation through the computa-
tion’s Web states. Each slide contains a graph that models the structure of (a
part of) the Web application. The nodes of the graph represent the Web pages,
and the edges that connect the Web pages specify Web links or Web script con-
tinuations3. The graph also shows the current Web page of each active Web
browser. The graphical representation is combined with a detailed textual de-
scription of the current configurations of the Web server and the active Web
browsers.

A Case Study of Web Verification. We tested our tool on several complex
case studies that are available at the Web-TLR web page and distribution
package. In order to illustrate the capabilities of the tool, in the following we
discuss the verification of an electronic forum equipped with a number of common
features, such as user registration, role-based access control including moderator
and administrator roles, and topic and comment management.

The navigation model of such an application is formalized by means of the
graph-like structure given in Figure 1. Web pages are modeled as graph nodes.
Each navigation link l is specified by a solid arrow that is labeled by a condition c
and a query string q. l is enabled whenever c evaluates to true, while q represents
the input parameters that are sent to the Web server once the link is clicked.
For example, the navigation link connecting the Login and Access Web pages is
always enabled and requires two input parameters (user and pass). The dashed
arrows model Web application continuations, that is, arrows pointing to Web
pages that are automatically computed by Web script executions. Each dashed
arrow is labeled by a condition, which is used to select the continuation at
runtime. For example, the Access Web page has got two possible continuations
(dashed arrows) whose labels are reg=yes and reg=no, respectively. The former
continuation specifies that the login succeeds, and thus the Index Web page is
delivered to the browser; in the latter case, the login fails and the Login page is
sent back to the browser.

3 To obey the stateless nature of the Web, the structure of Web applications has

traditionally been “inverted”, resembling programs written in a continuation–passing

style [6].
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Using the state predicates given in Section 2, we are able to define and check
sophisticated LTLR properties w.r.t. the considered Web application model. In
the following, we discuss a selection of the properties that we considered.

Concise and Parametric Properties. We can define and verify the login
property “Incorrect login attempts are allowed only k times; then login is denied”,
which is defined parametrically w.r.t. the number of login attempts:

♦(curPage(A, Login) ∧©(♦failedAttempt(A, k))) → �userForbidden(A)

Note the sugared syntax (which is allowed in LTLR) when using relational no-
tation for the state predicates which were defined as boolean functions above.

Unreachability Properties. Unreachability properties can be specified as
LTLR formulas of the form �¬ 〈State〉, where State is an undesired configu-
ration that the system should not reach. This unreachability pattern allows us
to specify and verify a wide range of interesting properties such as the absence
of conflict due to multiple windows, mutual exclusion, link accessibility, etc.

– Mutual exclusion: “No two administrators can access the administration page
simultaneously”.

�¬ (curPage(A, Admin) ∧ curPage(B, Admin)).
– Link accessibility: “All links refer to existing Web pages” (absence of broken

links).
�¬ curPage(A, PageNotFound).

– No multiple windows problem: “We do not want to reach a Web application
state in which two browser windows refer to distinct user sessions”.

�¬ inconsistentState.

The detailed specification of the electronic forum, together with some example
properties are available at http://www.dsic.upv.es/~dromero/web-tlr.html

4 Conclusion

Web-TLR is the first verification engine based on the versatile and well-
established Rewriting Logic/LTLR tandem for specifying Web systems and prop-
erties. Web-TLR distinguishes itself from related tools in a number of salient
aspects: (i) The rich Web application core model which considers the communica-
tion protocol underlying Web interactions as well as common browser navigation
features; (ii) Efficient and accurate model–checking of dynamic properties– e.g.,
reachability of Web pages generated by means of Web script executions– at low
cost. Verification includes both analysis (checking whether properties are satis-
fed) and diagnostic traces demonstrating why a property holds or does not hold;
(iii) Visualization of counter-examples via an interactive slideshow, which allows
the user to explore the model performing forward and backward transitions. At
each slide, the interface shows the values of relevant variables of the Web state.
This on–the–fly exploration does not require installation of the checker itself and
is provided entirely by the GWI.

http://www.dsic.upv.es/~dromero/web-tlr.html
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In recent years, the modeling and verification of Web applications have re-
ceived increasing attention (for a thorough review, please refer to [2]). On the one
hand, a number of model checkers and temporal logics have been proposed to for-
mally check properties of Web systems [5,7,10]. These approaches are generally
equipped with a coarse, static state structure, whereas states in Web-TLR are
generated on-the-fly by evaluating Web scripts, which makes the Web-TLR’s
Web application model more precise and suitable for the verification of real, dy-
namic Web systems. On the other hand, a number of new Web languages have
been proposed that allow safe Web applications to be built [6,11]. Unfortunately,
such languages are often based on nonstandard communication infrastructures
and —albeit rather powerful— are hence of limited use.

As future work, we plan to extend Web-TLR by considering the problem
of synthesizing correct-by-construction Web applications. We also plan to deal
with client-side scripts defined for example by JavaScript-like languages.
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Abstract. Reasoning on the properties of computer systems can often

be reduced to deciding the winner of a game played on a finite graph. In

this paper, we introduce GAVS, an open-source tool for the visualization

of some of the most fundamental games on finite graphs used in theo-

retical computer science, including, e.g., reachability games and parity

games. The main purpose of GAVS is educational, a fact which is em-

phasized by the graphical editor for both defining game graphs and also

visualizing the computation of the winning sets. Nevertheless, the un-

derlying solvers are implemented with scalability in mind using symbolic

techniques where applicable.

1 Introduction

We present GAVS1, a tool which allows to visualize and solve some of the most
common two-player games encountered in theoretical computer science, amongst
others reachability, Büchi and parity games.

The importance of these games results from the reduction of different ques-
tions regarding the analysis of computer systems to two-player games played on
finite graphs. For example, liveness (safety) properties can easily be paraphrased
as a game play on the control-flow graph of a finite program: will the system
always (never) visit a given state no matter how the user might interact with
the system? The resulting games are usually called (co-)reachability if only finite
program runs are considered. Similarly, one obtains (co-)Büchi games when con-
sidering infinite runs. Another well-known example is the class of parity games
which correspond to the model-checking problem of μ-calculus. Advantages of
the game theoretic reformulation of these analysis problems are the easier acces-
sibility and the broadened audience.

The main goal of GAVS is to further enhance these advantages by providing
educational institutions with a graphical tool for both constructing game graphs
and also visualizing standard algorithms for solving them step-by-step. Still,
symbolic methods, where applicable, have been used in the implementation in
order to ensure scalability.

1 Short for “Game Arena Visualization and Synthesis”.
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GAVS is released under the GNU General Public License (v3) and allows
for an easy extension to novel algorithms. The software package is available at
http://www6.in.tum.de/~chengch/gavs

2 Preliminaries and Supported Games

We briefly recapitulate the most important definitions regarding two-player
games on finite graphs before explicitly enumerating the games supported by
GAVS.

A game graph or arena is a directed graph G = (V0 � V1, E) whose nodes are
partitioned into two classes V0 and V1. We only consider the case of two players
in the following and call them player 0 and player 1 for simplicity. A play starting
from node v0 is simply a maximal path π = v0v1 . . . in G where we assume that
player i determines the move (vk, vk+1) ∈ E if vk ∈ Vi (i ∈ {0, 1}). With Occ(π)
/ Inf(π) we denote the set of nodes visited / visited infinitely often by a play π.
A winning condition defines when a given play π is won by player 0; if π is not
won by player 0, it is won by player 1. A node v is won by player i if player i can
always choose his moves in such a way that he wins any resulting play starting
from v; the sets of nodes won by player i are denoted by Wi (i ∈ {0, 1}).

GAVS supports the computation of W0, W1 for the following games:

1. Games defined w.r.t. a set of target states F :
– Reachability game : player 0 wins a play π if Occ(π) ∩ F 	= ∅.
– Co-reachability (safety) game : player 0 wins a play π if Occ(π)∩F = ∅.
– Büchi game : player 0 wins a play π on G if Inf(π) ∩ F 	= ∅.

2. Games defined w.r.t. a coloring c : V → N of G:
– Weak-parity game : player 0 wins a play π if max(c(Occ(π))) is even.
– Parity game : player 0 wins a play π if max(c(Inf(π))) is even.

3. Games defined w.r.t. finite families E = {E1, . . . , Ek} and F = {F1, . . . , Fk}
of subsets of V :
– Staiger-Wagner game : player 0 wins a play π if Occ(π) ∈ F .
– Muller game : player 0 wins a play π if Inf(π) ∈ F .
– Streett game : player 0 wins a play π if

∧k
j=1 Inf(π) ∩ Fi 	= ∅ ⇒ Inf(π) ∩

Ei 	= ∅.
It is well-known that all these games are determined, i.e., W0∪W1 = V . We refer
the reader to [4] for a thorough treatment of these games and their relationship
to each other.

We close this section by recalling the definition of attractor which is at the
heart of many algorithms for solving the games mentioned above: for i ∈ {0, 1}
and X ⊆ V , the map attri(X) is defined by

attri(X) := X ∪ {v ∈ Vi | vE ∩ X 	= ∅} ∪ {v ∈ V1−i | ∅ 	= vE ⊆ X},
i.e., attri(X) extends X by all those nodes from which either player i can move
to X within one step or player 1 − i cannot prevent to move within the next
step. (vE denotes the set of successors of v.) Then Attri(X) :=

⋃
k∈N attrk

i (X)
contains all nodes from which player i can force any play to visit the set X .

http://www6.in.tum.de/~chengch/gavs
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3 Software Architecture

GAVS consists of three major parts: (a) a graphical user interface (GUI), (b)
solvers for different winning conditions, and (c) a two-way translation function
between graphical representations and internal formats acceptable by the engine.
The GUI is implemented using the JGraphX library [3] and acts as a front-end
for the different game solvers. Every game solver is implemented as a separate
back-end. We give a brief description of their implementation where we group
back-ends sharing similar implementation approaches:

– Symbolic techniques: Algorithms of this type are implemented using
JDD [2], a Java-based package for binary decision diagrams (BDDs). The
supported winning conditions include reachability, safety, Büchi, weak-parity,
and Staiger-Wagner.

– Explicit state operating techniques: Algorithms of this type are im-
plemented based on direct operations over the graph structure.

• Parity game. In addition to an inefficient version which enumerates all
possibilities using BDDs, we have implemented the discrete strategy im-
provement algorithm adapted from [5]; the algorithm allows the number
of nodes/vertices to exceed the number of colors in a game.

– Reduction techniques: Algorithms of these games are graph transforma-
tions to other games with different types of winning conditions.

• Muller game. The algorithm performs reductions to parity games using
the latest appearance record (LAR) [4].

• Streett game. The algorithm performs reductions to parity games using
the index appearance record (IAR) [4].

GAVS can easily be extended by additional game solvers. We briefly sketch how
this can be done.

Every game engine interacts with the GUI via the method EditorAction.java.
When invoked, an intermediate object of the data type mxGraph (the predefined
data structure for a graph in JGraphX) is retrieved. We then translate the graph
from mxGraph to a simpler structure (defined in BuechiAutomaton.java) which
offers a simple entry for users to extend GAVS with new algorithms.

For symbolic algorithms, we offer methods for translating the graph to BDDs.
After the algorithm is executed, GAVS contains mechanisms to annotate the
original game graph via the winning region encoded by a BDD, and visualize
the result. To redirect the result of synthesis back to the GUI, a map structure
with the type HashMap<String, HashSet<String>> is required, where the key is
the source vertex and the value set contains destination vertices, describing the
edges that should be labeled by GAVS. For explicit state operating algorithms,
mechanisms follow analogously.
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4 Example: Working with GAVS

Due to page limits, we give two small yet representative examples on using
GAVS. We refer the reader to the GAVS homepage [1] for a full-blown tutorial,
and serveral examples.

4.1 Example: Safety Games

We give a brief description of how to use GAVS for constructing a safety game
and solving it step-by-step with the assist of Figure 1.

In the first step, the user constructs the game graph by simply drawing it
using the graphical interface, similar to Figure 1-a: the states V1 are called plant
states and are of rectangular shape, while the states V0 are called control states
and are of circular shape.

(a) (b)

(c) (d)

v1

v2

v3 v4

v5v6

v7v8

v1

v2

v3 v4

v5v6

v7v8

v1

v2

v3 v4

v5v6

v7v8

v1

v2

v3 v4

v5v6

v7v8

Fig. 1. An example for constructing and executing a safety game

Next, the user specifies the target nodes F , i.e., the nodes which player 0 tries
to avoid. GAVS supports both graphical and textual methods2. In Figure 1-b,
states v4 and v7 are painted by the user with red color, offering an graphical
description of risk states.
2 Graphical specification is only available with reachability, safety, and Büchi winning

conditions; for weak-parity and parity games, colors of vertices can also be labeled

directly on the game graph.
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Step 1

Step 2

v0 v1

[v0v1]0:1 [v1v0]1:4

[v1v0]0:1

[v0v1]1:4

Fig. 2. A Muller game and its synthesized result in the form of the parity game

Finally, GAVS can be used to either compute the winning set W1 immediately
or to guide the user through the computation of W1 step-by-step: the compu-
tation of Attr1({v4, v7}) = attr21({v4, v7}) is shown in Figures 1-b to 1-d with
the corresponding nodes highlighted in red. For games with positional strate-
gies, a winning strategy is shown automatically on the graph (edges labeled
with ”STR”), for instance, Figure 1-d shows the winning strategy for the safety
game: edges (v3, v2) and (v3, v1) are highlighted as safe transitions.

4.2 Example: Muller Games

For Muller and Streett games, instead of generating strategies directly, game
reductions are implemented for clearer understanding regarding the meaning of
strategies. This is due to the fact that the generated FSM strategies for Muller
and Streett games require memory which is factorial to the number of states,
making them difficult for users to comprehend.
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We indicate how Muller game reduction is applied in GAVS. Consider Figure 2,
where a Muller game is shown in step 1 with the winning condition {{v0, v1}}. The
reduced parity game generated by GAVS is shown in step 2, where each vertex
is of the format "[Vertex Permutation] LAR index : Color". By interpreting
the strategy using LAR, it is clear that for player 0, the generated strategy is a
positional move (v1, v0) on vertex v1.

5 Concluding Remarks

As the name of the tool suggests, Game Arena Visualization and Synthesis
(GAVS), which is served for both research and educational purposes, is designed
to provide a unified platform to connect visualization and synthesis for games.
We are also interested in the visualization and the synthesis of pushdown games,
which will be our next step.

Acknowledgments. We thank Javier Esparza, Michael Geisinger, Jia Huang,
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thor is supported by the DFG Graduiertenkolleg 1480 (PUMA).
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Abstract. We present a trace-driven SMT-based symbolic debugging tool for 
MCAPI (Multicore Association Communication API) applications. MCAPI is a 
newly proposed standard that provides an API for connectionless and 
connection-oriented communication in multicore applications. Our tool obtains 
a trace by executing an instrumented MCAPI. The collected trace is then 
encoded into an SMT formula such that its satisfiability indicates the existence 
of a reachable error state such as an assertion failure. 

Keywords: MCAPI, Message Race, Symbolic Analysis, Satisfiability Modulo 
Theories. 

1   Introduction 

As multicore-enabled devices are becoming ubiquitous, development of multicore 
applications is inevitable, and debugging tools that target multi-core applications will 
be in demand. Inter-core communication, in which data is passed between cores via 
messages, is an essential part of multicore applications. The Multicore Association 
has developed the MCAPI standard [1] and a reference runtime implementation for it 
to address inter-core communication needs. In an MCAPI application, a core is 
referred to as a node. Communication between nodes occurs through endpoints. A 
node may have one or more endpoints. An endpoint is uniquely defined by a node 
identifier, and a port number. The MCAPI specification supplies APIs for initializing 
nodes, creating endpoints, obtaining addresses of remote endpoints, and sending and 
receiving messages. Fig. 1 shows a snippet from an MCAPI application in which four 
cores communicate via messages. For brevity, the variables declarations and 
initialization calls are omitted. In this application, each node has one endpoint; hence 
there is no need for different port numbers per node. Endpoints are created by issuing 
the create_ep calls (e.g. lines 5 and 24). To obtain the address of a remote endpoint, 
the get_ep calls are used (e.g. lines 6 and 25). Messages are sent using the msg_send 
call (e.g. lines 8 and 27). Messages are received using the msg_recv call (e.g. lines 16 
and 34). 

 
                                                           
∗ The work was funded in part by NSF grant CCF-0811287 and ONR Grant N000140910740. 
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1 #define PORT 1 19   msg_send(My_ep,C4_ep,Z); //M2 
2 void* C1_routine (void *t) 20 } 
3 { 21 void* C3_routine (void *t) 
4   int Msg=1;  22 { 
5   My_ep=create_ep(PORT); 23   int Msg=10;  
6   C2_ep = get_ep(2,PORT); 24   My_ep = create_ep(PORT); 
7   C4_ep = get_ep(4,PORT); 25   C2_ep = get_ep(2,PORT); 
8   msg_send(My_ep,C2_ep,Msg); //M0 26   C4_ep = get_ep(4,PORT); 
9   msg_send(My_ep,C4_ep,Msg); //M1 27   msg_send(My_ep,C2_ep,Msg); //M3 

10 } 28   msg_send(My_ep,C4_ep,Msg);//M4 
11 void* C2_routine (void *t)  29 } 
12 { 30 void* C4_routine (void *t)  
13   int X,Y,Z;  31 { 
14   My_ep = create_ep(PORT); 32   int U; 
15   C4_ep = get_ep(4,PORT); 33   My_ep = create_ep(PORT); 
16   msg_recv(My_ep,X); 34   msg_recv(My_ep,U); 
17   msg_recv(My_ep,Y); 35   assert(U>0); 
18   Z=X-Y; 36 } 

Fig. 1. A snippet of an MCAPI application 

The MCAPI runtime provides each endpoint with FIFO buffers for incoming and 
outgoing messages. Messages sent from an endpoint  to another endpoint , are 
delivered to  according to their order of transmission from . However, the order at 
which a destination endpoint , receives messages originating from endpoints 1, and 2, is non-deterministic, even if endpoints 1 and 2 belong to the same node. Two 
or more messages are said to be racing if their order of arrival at a destination (i.e. a 
core) is non-deterministic [2]. The msg_recv calls specify only the receiving endpoint, 
which is the reason for the possibility of message races. In Fig. 1, messages M0 and 
M3 are racing towards core C2 and messages M1, M2, and M4 are racing towards 
core C4. There are twelve possible scenarios for the order of arrival of messages at C2 
and C4. In only two scenarios (when M0 beats M3, and M2 beats M1 and M4), there 
will be an assertion failure at C4. 

Testing the application in Fig. 1 by multiple executions does not necessarily 
expose the single scenario that leads to an assertion failure. Even if an assertion 
failure takes place during testing, it is very difficult to find out the specific order of 
messages arrival that caused the assertion failure.  

In this paper we present our tool (CRI) that symbolically explores all possible 
orders of messages arrival in an MCAPI application execution. Our approach is based 
on encoding the trace of an execution as an SMT formula in quantifier-free first order 
logic. This formula can be decided efficiently using any of the available SMT solvers 
such as Yices [3]. 

Our main contributions are 1) the modeling of MCAPI constructs as SMT 
constraints, and 2) developing a tool that generates these constraints from an MCAPI 
application execution trace. Our tool predicts errors that may not be discovered by 
testing and guides an execution to reproduce the same error when an error is detected. 
The rest of this paper is organized as follows: Section 2 describes our tool in detail. 
Section 3 reviews related work. We conclude in Section 4.  
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2   CRI 

Fig. 2 shows the workflow of our tool. An application source code is instrumented so 
that an execution will produce a trace that contains all the statements that has been 
executed such as MCAPI functions calls and C statements. 

 

Fig. 2. CRI Workflow 

The trace is then encoded as an SMT formula. If the formula is satisfiable, then 
there is a reachable error state (e.g. an assertion failure) and the SMT solver solution 
will provide enough information to guide a controlled execution to reach this error 
state.  Otherwise, we can conclude that for all possible execution scenarios involving 
the same statements in the input trace, no error state is reachable. In the following we 
describe the structure of the trace, the variables used in the encoding, and present the 
encoding of some statements. 

A trace consists of a list of nodes: , … , | | , and for every node , a 
set of local variables:  , , … , ,| | , a set of endpoints used in this 
node: , , … , ,| | , and an ordered list of statements: , , … , ,| | . 

For a trace with  statements, there will be 1 symbolic states ( , , …, , … ), such that  is the state before carrying out any statement, and  is the 
state at the th time instant, after carrying out the th statement. A state  is a 
valuation of all symbolic variables at time instant . To capture the 1 states, we 
create 1 copies for the variables in the trace. For example, ,  denotes the 
copy of variable ,  at the th time instant.  

At any instant of time, one statement, called the pending statement, at one node, 
called the active node, will be symbolically carried out. The node selector 
variable  identifies the node that will be active at time instant . At any time 
instant , the value of  is selected by the SMT solver. The selection of  value is 
not totally random, but is governed by scheduling constraints.  

The pending statement in a node  is identified using the node counter variable 
. The domain of a  is {1…| |,  }. =  indicates that the pending 

statement in the node  is  , .  means that all statements in node 
, has been symbolically executed.  

The MCAPI runtime buffers associated with endpoints are modeled as queues. For 
a receiving endpoint ,  that receives a message or more, there will be a 
corresponding queue , .  is the set of all queues needed for the receiving 
endpoints at node . A queue ,  is encoded as an array with two variables ,  and ,  that indicate the head and tail positions in the array.  
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The MCAPI standard provides non-blocking send and receive calls: msg_send_i, 
and msg_recv_i, respectively. MCAPI runtime uses request objects to track the status 
of a non-blocking call. A non-blocking call initiates an operation (i.e. a send or a 
receive operation), sets a request object to pending, and returns immediately. The 
completion of a non-blocking call could be checked by issuing the blocking call wait, 
and passing to it the request object associated with the non-blocking call. The wait 
call will return when the non-blocking call has completed. A non-blocking send is 
completed when the message has been delivered to the MCAPI runtime. A non-
blocking receive is completed when a message has been retrieved from the MCAPI 
runtime buffers. A request object will be encoded as a symbolic variable with three 
possible values: NLL, PND, and CMP. 

Four constraints formulas make up the SMT formula: the initial constraint ( ),  
the statements constraint ( ), the scheduling constraint ( , and the property 
constraint ( ). The initial constraint ( ) assigns the values of the symbolic variables at 

time instant 0. All node counters are initialized to 1.  is expressed as | |1 , ,| | ,| | , 0 , where ,  is the initial value 

for the variable , . Note that the request variables used in a node , are among 
the node local variables ( ), and that they are initialized to NLL in the initial 
constraint. 

The statements constraint ( ) mimics the effect of carrying out a pending 
statement. It is a conjunction of  constraints ( ), such that  corresponds 
to the statement chosen to be carried out at time instant . The  constraint is 
dependent on the statement type. Our tool handles eight types of statements: 
assignment, conditional, assert, blocking send, blocking receive, non-blocking send, 
non-blocking receive, and wait statements.  In this paper we present the encoding of 
five types, and omit the rest. 

1) For an assignment statement in the format of =('assign', , , , , ), 
where  is the identifier of the node to which  belongs,  is the node counter of 
S,  is the node counter of the statement to be executed next in this node (  if S is 
the last statement in ), and  is an expression whose valuation is assigned to 
variable , the corresponding constraint formula is   

. This formula states that, at time instant  , 
if node  is the active node   and node ’s node counter is equal to 

  ), then the node counter in the time instant 1 is set to  
, the value of variable  in the time instant 1 is set to the valuation 

of the expression  at time instant  ( ), and that all local variables 
but  and all queues heads and tails should have in time instant 1, the same values 
they had in time instant  ( ). 

2) For a conditional statement in the format of =('condition', , , , ), 
the corresponding constraint formula is     φ  . Note that we enforce the condition  to be true so only the 
executions with the same control flow in this node are considered. φ  states that all 
variables retain their values from time instant  to 1. 
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3) For a blocking send statement in the format of =('send_b', , , , , , , , ), where ,  is the source endpoint, ,  
is the destination endpoint, and  is the expression whose valuation is being sent,  
the corresponding constraint formula is      , , ,  , 1 , . This 
formula states that, at time instant , if node  is the active node and ’s node 
counter is equal to , then the node counter in the time instant 1 is set to ,  the 
valuation of the sent expression is enqueued to the destination endpoint queue 
( , , ,  , 1), and all local variables and all 

queues heads and tails but ,  should have in time instant 1, the same values 

they had in time instant  ( , ). 
4) For a blocking receive statement in the format of =('recv_b', , , , , ,  ), the corresponding constraint formula is     , ,    ,   , 1 , ,  . In this formula, the relevant queue is dequeued, and the 

dequeued value is assigned to the receiving variable ( , ,    ,   , 1).  
5) For a non-blocking send statement in the format of =('send_nb', , , , , , , , , ), such that  is the request variable associated with 

, the corresponding constraint formula is    , , ,  , 1  , , . In addition to enqueuing the valuation of the sent expression, the 
value of the request variable is set to pending ( ).  

Like the statements constraint, the scheduling constraint (  is the conjunction of  
constraints ( ). Each  constraint consists of four parts which ensure that 1) 
a node that is done carrying out all its statements, will not be an active node, 2) the 
variables of an inactive node will not change, 3) a blocking receive will not take place 
if the relevant queue is empty, and 4) a wait associated with a non-blocking receive, 
will not take place if the relevant queue is empty. Due to the limited space, we present 
only the first ( ) and the third ( _ ) parts of the scheduling constraint. 

 is expressed as: | | . This formula states that:  when 
all the statements in a node have been executed ( ), then this node can’t be an 

active node ( ). _  is expressed as | | , ,
′m_recv_b, , , ,  , , . This 

formula states that: if the pending action in a node is a blocking receive (, , ′m_recv_b, , , ,  ) and the relevant queue is empty 
( , , ), then this node can’t be the active node ( ). 

The property constraint ( ) is derived from either a user-supplied application-
specific property expressed as an assert statement, or from a built-in safety property 
such as “No message races exists”. For an assert statement in the format of =('assert', 

, ,  , ), the corresponding property constraint, is   .  
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The overall formula that is passed to the SMT solver is the conjunction of the 
initial constraint, the statements constraint, the scheduling constraint and the negation 
of property constraint, and is expressed as  . 

3   Related Work 

To the best of our knowledge, the only other tool for analyzing MCAPI applications is 
MCC [4]. MCC explores all possible orders of messages arrival by repeated 
executions. It creates  a scheduling layer above the MCAPI runtime, which  allows 
MCC to discover all potentially matching send/receive pairs by intercepting calls to 
the MCAPI runtime. In [5], C. Wang et al. introduce a symbolic algorithm that detects 
concurrency errors in all feasible permutations of statements in an execution trace. 
They use concurrent static single assignment (CSSA) based encoding to construct an 
SMT formula. The algorithm has been applied to detect concurrency errors in shared 
memory multithreaded C programs.  

4   Conclusion 

We have presented CRI, a tool for symbolically debugging MCAPI applications. Our 
tool builds an SMT formula that encodes the semantics of an MCAPI application 
execution trace.  By such analysis we are able to detect and reproduce errors that may 
not be discovered by traditional testing approaches. Due to the lack of publicly 
available MCAPI benchmarks, we performed experiments on MCAPI applications 
developed by ourselves. For example, the full code of the application in Fig. 1 was 
found to have an assertion failure in 0.03 seconds using Yices [3] as the SMT solver. 
We plan to extend our tool to support connection-oriented calls, and investigate 
optimizations to improve the performance. 
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Abstract. We present MCGP - a tool for generating and correcting

code, based on our synthesis approach combining deep Model Checking

and Genetic Programming. Given an LTL specification, genetic pro-

gramming is used for generating new candidate solutions, while deep

model checking is used for calculating to what extent (i.e., not only

whether) a candidate solution program satisfies a property. The main

challenge is to construct from the result of the deep model checking

a fitness function that has a good correlation with the distance of the

candidate program from a correct solution. The tool allows the user to

control various parameters, such as the syntactic building blocks, the

structure of the programs, and the fitness function, and to follow their

effect on the convergence of the synthesis process.

1 Introduction

With the growing success of model checking for finding bugs in hardware and
software, a natural challenge is to generate automatically correct-by-design pro-
grams. This is in particular useful in intricate protocols, which even skillful
programmers may find difficult to implement. Automatically constructing a re-
active system from LTL specification was shown to be an intractable problem
(in 2EXPTIME) in [12]. For concurrent systems, the situation is even worse, as
synthesizing a concurrent system with two processes from LTL specification is
already undecidable [13]. A related (and similarly difficult) problem is correcting
a piece of code that fails to satisfy its specification.

Genetic programming [1] is a method for automatically constructing pro-
grams. This is a directed search on the space of syntactically limited programs.
Mutating and combining candidate solutions is used for generating new candi-
dates. The search progresses towards a correct solution using a fitness function
that is calculated for the newly generated candidates. Traditionally, the fitness
is based on testing. Recently, we studied the use of model checking as a basis for
providing fitness values to candidates [7]. Experimentally, we learned that the
success of the model checking based genetic programming to synthesize correct
programs is highly dependent on using fitness functions that are designed for
the specific programming goal. One of the main features of our tool is the ability
� This research was supported in part by ISF Science Foundation grant 1262/09.
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to provide the user with flexible ways for constructing the fitness function based
on model checking and various parameters of the desired code.

A central building block of our tool is using deep model checking, which does
not only checks whether a candidate program satisfies a property or not, but
to what extent it does so. This provides a finer analysis, and consequently helps
the convergence of the genetic search. Several levels of satisfactions that we use
are described later. Furthermore, one may want to assign different priorities to
properties (e.g., if a basic safety property does not hold, there is no gain in con-
sidering other satisfied liveness properties), and include other code parameters
(e.g., decreasing fitness according to the length of the code). Our experience
with the method shows that experimenting with fine-tuning the fitness function
is a subtle task; its goal is to anticipate a good correlation between the fitness
of a candidate program and its distance from a correct program, thus helping to
steer the search in the right direction.

In previous work, we used our tool for the synthesis of various protocols. How-
ever, this was done in an ad hoc manner, requiring to dynamically change the
tool for every new synthesis problem. The current presented tool is a general-
ization of our previous experience. It allows the user to automatically synthesize
new protocols by only providing and tuning a set of definitions, without a need
to change the tool itself.

2 Tool Architecture and Configuration

User
Interface

1. Configuration 2. Specification6. Results

Enhanced
GP

Engine

3. Initial population

5. New programs

Enhanced
Model

Checker

4. Verification results

Fig. 1. Tool architecture

The tool is composed of a
server side (written in C++)
responsible for the synthesis
process, and a user interface
used for specifying the re-
quirements, and interactively
observing the synthesis re-
sults. The tool architecture
and information flow are de-
picted in Fig. 1. The server
side combines a deep model
checker and a genetic pro-
gramming engine, both en-
hanced in order to effectively
integrate with each other.
This part can be used directly
from the command line, or by
a more friendly Windows based user interface. In order to synthesize programs,
the user first has to fill in several definitions described throughout this section,
and then initiate the synthesis process described in section 3.

Genetic Programming Definitions. The first step in using the tool is to
define the various process types that will comprise the synthesized programs.
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A program consists of one or more process types containing the execution code
itself, and an init process responsible for creating instances of the other process
types, and initializing global variables. For each process type, the user then has
to choose the appropriate building blocks from which its code can be generated.
The tool comes with a library of building blocks used by common protocols and
algorithms, such as variables, control structures, inter-process communication
primitives, and more. Furthermore, the user can define new building blocks by
combining existing building blocks, and optionally by writing additional C++
code. These building blocks can vary from simple expressions, macros and func-
tions to complex statements that will be later translated into atomic transitions.

Each process type can contain both static parts set by the user, and dynamic
parts, which the tool is required to generate and evolve. Depending on these
settings, the tool can be used for several purposes:

– Setting all parts as static will cause the tool to simply run the deep model
checking algorithm on the user-defined program, and provide its detailed
results, including the fitness score assigned to each LTL property.

– Setting the init process as static, and all or some of the other processes as
dynamic, will order the tool to synthesize code according to the specified
architecture. This can be used for synthesizing programs from scratch, syn-
thesizing only some missing parts of a given partial program, or trying to
correct or improve a complete given program.

– Setting the init process as dynamic, and all other processes as static, is used
when trying to falsify a given parametric program. In this case the tool will
reverse its goal and automatically search for configurations that violate the
specification (see [9]).

– Setting both the init and the program processes as dynamic, is used for
synthesizing parametric programs. It causes the tool to alternatively evolve
various programs, and configurations under which these programs have to
be satisfied [9].

Specification Definitions. At this stage the user should provide a full sys-
tem specification from which the tool can later derive the fitness function as-
signed to each generated program. The specification is mainly based on a list of
LTL properties. The atomic propositions used by these properties are defined as
C expressions representing Boolean conditions. The properties and the atomic
propositions are then compiled into executable code that is later used by the
model checking process (this is inspired by the way the Spin model checker [4]
handles LTL properties). The user can set up a hierarchy between the checked
properties, instructing the tool to start with some basic properties, and only then
gradually check more advanced properties [7]. In addition to the LTL properties,
other quantitative goals can be added, such as minimizing the size of generated
programs. Further advanced model checking options (such as the DFS search
depth, and the use of partial order reduction) can be tuned as well.
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3 The Synthesis Process
After completing the definitions step, the synthesis process can be initiated. First,
using the skeletons and building blocks provided by the user for each process type,
an initial set P of programs is randomly generated. The code of each process type is
stored as a syntactic tree whose nodes are instances of the various building blocks,
representing variables, statements, functions, constants, etc.

Next, an iterative process of improvements begins. At each iteration, a small
subset of μ programs is selected randomly from P . Then, various genetic op-
erations are performed on the selected programs, leading to the generation of
new λ modified programs. The main operation in use is mutation, which basi-
cally adds, removes or changes the program code, by manipulating its syntactic
tree [7]. Deep model checking is then performed on each new program, in order
to measure the degree on which it satisfies the specification.

A probabilistic selection mechanism is then used in order to select new μ
programs that will replace the originally selected μ programs, where a program
has a chance to survive proportionally to its fitness score. The iterative process
proceeds until either a perfect solution is found, or after the maximal allowed
iterations number is reached.

During the process, the user can watch the gradual generation of solutions, by
following the best generated programs, and by navigating through the chain of im-
provements. For each selected program, the generated code is displayed, as well as
the deep model checking results, including the fitness score assigned to each spec-
ification property. Often, watching these results leads to some insights regarding
tuning required to the specification, the building blocks, or other parameters, and
the fitness function based on the above. Fig. 2 shows an example of the tool’s
screen during the synthesis of a mutual exclusion protocol described in [7].

Deep Model Checking. The main challenge in making the model checking
based genetic approach work in practice is to obtain a fitness function that

Fig. 2. The user interface during synthesis of a mutual exclusion algorithm
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correlates well with the potential of the candidate programs. In order to achieve
this, it is not enough just to count the number of LTL properties that hold, as
done in [5]; this gives a coarse indication that behaves poorly under experimen-
tations. With this tool, we introduce different levels or modes of satisfaction for
each LTL property; a property does not necessarily have to be satisfied by all the
executions in order to contribute to the fitness value of the checked candidate.

We consider the following modes of satisfaction:
– None of the program’s executions satisfy the property (level 0),
– some of the program’s executions satisfy the property (level 1),
– each prefix of a program execution can be extended into an execution satis-

fying the property (level 2), and
– all of the program’s executions satisfy the property (level 3).

Model checking algorithms usually only check membership for levels 3. By using
also the formula itself, and not only its negation, we can also check membership
for level 0, leading to a third possible level, where neither level 0 nor level 3 holds.
Further distinction between levels 1 and 2 requires a different kind of analysis,
and in fact, the complexity of checking it is higher than simple model checking:
a reduction in [10] can be used to show that it is in EXPTIME-Complete. One
can use a logic that permits specifying, separately, the LTL properties, and the
modes of satisfaction [11] or develop separate optimized algorithms for each level
as we did [7].

A main concern is the model checking efficiency: while we often try to synthe-
size just basic concurrent programs, with small as possible requirements, they
can still have a large number of states (e.g., tens of thousands). Moreover, model
checking is performed here a large number of times: we may have thousands of
candidates before the synthesis process terminates or fails. Accordingly, in the
latest version of the tool, we decided to slightly change the definition of the
intermediate fitness levels, by adopting a technique similar to probabilistic qual-
itative LTL model checking. We treat the nondeterministic choices as having
some probabilities, and base the distinction between the new levels on the prob-
ability p that the program satisfies the negation of the checked property (p > 0
implies new level 1, and p = 0 implies new level 2). While this new algorithm oc-
casionally shifts the boundary between the two levels (compared to the original
ones), it has the advantage of having PSPACE complexity [2].

In order to compute the fitness function, the following is applied to each LTL
property. The property, and its negation are first translated into standard Büchi
Automata, by running the LTL2BA code [3]. Then these automata are further
extended (in order to fit into our specialized algorithm), and combined with the
program’s automaton, yielding the fitness levels mentioned above. Additional
factors such as implication properties, and deadlocks can affect the fitness scoring
as well [7]. The scoring for all of the LTL properties are finally summed up,
possibly in conjunction with other quantitative measures (such as the program
size) into a final fitness score assigned to the program.

Tool Evaluation. Using our tool, we successfully synthesized correct solutions
to a series of problems, including known [7], and novel [6] two-process mutual
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exclusion algorithms, and parametrized leader election protocols [8]. Recently
we used the tool’s ability of synthesizing architectures, for the automatic discov-
ery and correction of a subtle bug in the complicated α-core protocol [9]. The
synthesis duration usually varies from seconds to hours, depending on many as-
pects of the problems, such as the number of processes, the solutions size, and
the model checking time. The main synthesis algorithm has a large amount of
parallelism, and thus execution time can be greatly improved when running on
multi-core servers. A weakness of the genetic programming based approach is
its probabilistic nature, which does not guarantee convergence into perfect solu-
tions. The duration and success of the synthesis depend on the choices made by
the user for the various building blocks and parameters. Additional information
about the tool, including its freely available latest version, and some running
examples, can be found at: http://sites.google.com/site/galkatzzz/mcgp-tool
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Abstract. We present Ecdar a new tool for compositional design and
verification of real time systems. In Ecdar, a component interface de-
scribes both the behaviour of the component and the component’s as-
sumptions about the environment. The tool supports the important op-
erations of a good compositional reasoning theory: composition, conjunc-
tion, quotient, consistency/satisfaction checking, and refinement. The op-
erators can be used to combine basic models into larger specifications to
construct comprehensive system descriptions from basic requirements.
Algorithms to perform these operations have been based on a game
theoretical setting that permits, for example, to capture the real-time
constraints on communication events between components. The compo-
sitional approach allows for scalability in the verification.

1 Overview

The context. Contemporary IT systems are assembled out of multiple indepen-
dently developed components. Component providers operate under a contract
on what the interface of each component is. Interfaces are typically described
using textual documents or models in languages such as UML or WSDL. Unfor-
tunately, such specifications are subject to interpretation. To avoid the risk of
ambiguity, we recommend mathematically sound formalisms, such as interface
theories, whenever possible. A good interface theory supports refinement check-
ing (whether an interface can be replaced by another one), satisfaction checking
(whether an implementation satisfies the requirements expressed with the in-
terface), consistency checking (whether the interface can be implemented), a
composition operator (structurally combining interfaces), a conjunction operator
(computing a specification whose implementations are satisfying both operands),
and a quotient operation that is the adjoint for composition. It should also guar-
antee important properties such as independent implementability [10].
It has been argued [7,10] that games constitute a natural model for interface

theories: each component is represented by an automaton whose transitions are
typed with input and output modalities. The semantics of such an automaton
is given by a two-player game: the input player represents the environment,
and the output player represents the component. Contrary to the input/output
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model proposed by Lynch [13], this semantic offers (among many other advan-
tages) an optimistic treatment of composition (two interfaces can be composed
if there exists at least one environment in which they can interact together in a
safe way) and refinement (the refined system should accepts at least the same
inputs and not produce more outputs). Game-based interfaces were first devel-
oped for untimed systems [10,8] and the composition and refinement operations
were implemented in tools such as TICC [1] or CHIC [5].

Example. We will demonstrate our tool, ECDAR, by executing a compositional
verification process. To that end we introduce a running example based on a modi-
fied real-time version of Milner’s scheduler [14]. Fig. 1 (left) shows

1

rec1

reci1

(...)

(...) SSi

rec2

1

Mi

Mi

Mireci reci+1

wi

wi

wi

M0

M1

M2

w0

w1

w2

Fig. 1. Overview of Milner’s scheduler ex-
ample and the sub-specification SSi

a single node, which can receive a
start signal on reci. The node subse-
quently begins external work by out-
putting on wi. In parallel to this it can
forward the token by outputting on
reci+1, but only after a delay between
d and D time units. Fig. 1 (right) il-
lustrates a ring of such nodes Mi in
which some nodes have been grouped
together. This grouping exemplifies a
part of the specification, which we will
later be able to replace with an ab-
straction SSi in order to execute a
compositional proof.

The timed case. The above example contains timing requirements that cannot
be handledwith tools such asTICC orCHIC, designed for untimed systems. There
exist timed formalisms but they do not provide a satisfactory notions of composi-
tion and refinement. We have recently proposed the first complete timed interface
theory based on timed games [6]. The idea is similar to the untimed case: com-
ponents are modelled using timed input/output automata (TIOAs) with a timed
game semantics [4]. Our theory is rich in the sense that it captures all the good op-
erations for a compositional design theory. In this paper we go one step further and
presentEcdar, a tool that implements the theory of [6]. We thus propose the first
complete game-based tool for timed interfaces in the dense time setting. Ecdar
implements checkers such as satisfaction/consistency, refinement, and satisfaction
of TCTL formulas. The tool also supports the classical compositional reasoning
operations of conjunction and composition. To the best of our knowledge,Ecdar
is the first tool to propose an implementation of quotient. In addition, it comes
with a user-friendly interface, where errors are reported in an intelligible way.

2 An Integrated Environment for Design and Analysis

The user interface of Ecdar is divided into two parts: 1) the specification in-
terface where automata are specified in a graphical manner, and 2) the query
interface where one can ask verification questions.
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w[i]!

rec[(i+1)%N]!

rec[(i+1)%N]! w[i]!

rec[i]?

x<=D

y>d

x<=D

x<=D

rec[i]?

rec[i]?
x=0,
y=0

rec[i]?

y>d
w[e]!

z=0

rec[e]!

w[0]!

z<=(N+1)*De!=0
e:id_t

e:id_t

Fig. 2. Left: Template for a single node Mi. Right: Template for the overall
specification.

Specification Interface. The specification interface of Ecdar uses the lan-
guage of Uppaal-tiga to describe timed I/O automata (instead of timed game
automata) with input and outputmodalities that are essential in this case. TIOAs
communicate via broadcast channels. Global (shared) variables are not permit-
ted. The user specifies whether the TIOA should be viewed as an implementation
or as a specification. For implementations, the tool checks on-the-fly if every state
respects the independent progress property [6], that progress must be ensured
by the implementation. Details are available at ecdar.cs.aau.dk. The tool has its
own engine, which reuses components of the game engine of Uppaal-tiga to
support the new operators.
We model the scheduler using templates, in an entirely modular way. One only

needs to instantiate more nodes to make a larger instance of the system. A single
node of our scheduler is shown in the left side of Fig. 2. In the initial location of the
specification, it is ready to receive a message on the channel rec[i]?. After this
there are two ways to return to the initial state depending on the order in which it
starts its work (w[i]!) and passes on the token (rec[(i+1)%N]!). The first node
of the systemM0 is instantiated with a different initial location (the bottom-most
one), reflecting the fact that it holds the token initially. The right side of Fig. 2
shows the overall specification S0 of the system. It requires that w[0]! occurs at
least every (N +1) ∗ D time units. Remaining actions can be executed freely.

Query Interface. The query interface provides two main checkers, the refine-
ment checker and the consistency checker. The refinement checker is used to
decide if an implementation satisfies a given specification or if a specification
refines another one. As stated in [6], refinement checking reduces to solving a
safety timed game between the two components. For our example one way to
verify that the scheduler is correct is to verify a property of the type:

refinement: ( M0 || M1 || M2 || M3 || M4 ) <= S0

We call this type of verification monolithic, since it constructs a specification
precisely representing the entire system. The tool provides a strategy to prove
or disprove the property, which can be used to refine the model. The strategy
can be played interactively. The consistency checker is used to check whether a
specification admits at least one implementation. This question reduces to the

ecdar.cs.aau.dk
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one of deciding if there exists a strategy for the output player to avoid reaching
bad states in the specification, i.e., states that do not satisfy the independent
progress property. A pruning facility removes all the states not covered by the
strategy. It can drastically reduce the state-space of the system. Following a
similar principle, it is possible to constrain an interface with a TCTL∗ formula.
For example, like in [11], one can use a Büchi objective to remove states allowing
Zeno behaviours. This is the first time that a tool for compositional reasoning
proposes this feature in the dense time setting.

3 Illustration and Experiment

In our example we have a ring of N nodes. It is natural to verify the monolithic
property in order to show that the composed system refines the overall speci-
fication. Unfortunately, this strategy fails due to state-space explosion. As the
number of components is increased, the state space grows, and more nondeter-
minism and interleaving is introduced in the system.

refinement: M1 <= SS1
refinement: ( SS1 || M2 ) <= SS2
refinement: ( SS2 || M3 ) <= SS3
refinement: ( SS3 || M4 ) <= SS4
refinement: ( SS4 || M0 ) <= S0

Fig. 3. Incremental verification

In order to combat the problem we ap-
ply compositional verification. The idea
is to create N sub-specifications that are
used in a series of refinement steps. First
one shows that M1 ≤ SS1. After this it is
proved for increasing indexes, 1 to N that
SSi||Mi+1 ≤ SSi+1. Finally the property
SSn||M0 ≤ S0 is checked. Fig. 3 gives the
properties for five nodes. The sub-specification aims at capturing the important
aspect of the subsystem needed for the next step in the verification process of
the overall property. It is very important to notice that the sub-specification is
like all the other components in the system created as a template and that thus
it is modelled only once and then instantiated with different indices.

rec[(i+1)%N]!

rec[1]?
rec[(i+1)%N]!

rec[1]?
w[e]!

w[e]!

rec[1]?

rec[1]?

rec[1]?

e:id_t

e>0 && e<=i

e>0 && e<=i

x<=i*D

e:id_t

e:id_t

w[e]!

x=0,
y=0 y<=N*d

x=0, 
y=0

e>0 && e<=ix>=i*d

y>N*d

Fig. 4. The sub-specification SSi that abstracts
the the sub-system M1|| . . . ||Mi

Here the sub-specification SSi,
as shown in Fig. 4, is a model for
a sequence of nodes M1|| . . . ||Mi

(see Fig. 1). Informally SSi is
expressed as following, noting
that the relevant ports for this
subsystem are rec[1]?, w[e]!
(0<e<=i) and rec[i+1]!: Un-
der the assumption that a)
the time elapsing between two
rec[1]? is more than N ∗ d time-
units and b) there are no two
consecutive rec[1]? without a
rec[i+1]!, then it is guaranteed
that rec[i+1]! will occur within
[i ∗ d, i ∗ D] time units from rec[1]?.
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We have performed experiments for different values of N , number of nodes
in the ring, and d the minimum time delay before passing on the token. We
have fixed the upper time limit for passing the token to 30. The results of the
experiments are shown in Table 1. The table shows the time used to check a
given property measured in seconds. For each value of N we have two rows.
The top one represents the verification of all the steps in the compositional
verification while the bottom row represents the verification of one monolithic
property. If the verification took more than 600 seconds we stopped it. We had
one instance where Ecdar ran out of memory which is indicated by om. The
time results that are written in italics are the cases in which the compositional
verification gave a negative result. In these cases one needs to propose more
precise sub-specifications in order to make the compositional verification work.
The monolithic method gives positive results in these cases.
In the case where d is close to D there is very little interleaving in the system

and in this case the verification of the monolithic property is the fastest. The
smaller the d value the more interleaving appears in the system and in these
complex cases the compositional verification shows its strength. The cases where
the compositional verification beats the monolithic are marked by boldface.

4 Related Work

In the untimed setting multiple contributions of Alfaro et al. focus on the oper-
ations of composition and refinement. Hence, tools such as TICC or CHIC only
provide these operations. Theories exists for quotient [3] and conjunction [12],
but they have not been implemented neither in TICC nor in CHIC. More re-
cently, Bauer et al. have proposed a new extension of interface automata with
new definition for composition/compatibility and refinement; these results are

Table 1. Results of the verification experiments

d = 29 20 10 9 8 6 4

n = 5 0.080 0.097 0.191 0.169 0.172 0.151 0.205
monolithic 0.034 0.034 0.073 1.191 1.189 64.933 > 600

n = 6 0.102 0.133 0.231 0.228 0.238 0.238 0.294
monolithic 0.040 0.043 0.095 6.786 6.791 > 600 > 600

n = 8 0.225 0.349 0.516 0.515 0.540 0.600 0.582
monolithic 0.076 0.076 0.230 88.542 88.642 > 600 > 600

n = 12 0.830 1.414 1.802 1.895 1.831 2.079 2.181
monolithic 0.220 0.223 0.843 > 600 > 600 > 600 > 600

n = 20 4.990 9.739 12.377 11.923 12.041 12.438 12.764
monolithic 1.038 1.030 4.523 > 600 > 600 > 600 > 600

n = 30 22.053 45.709 55.728 55.345 55.112 54.702 56.164
monolithic 3.791 3.778 17.652 > 600 > 600 > 600 om
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implemented in the MIO Workbench [2]. This work remains at the level of un-
timed systems, not considering operations such as quotient or pruning.
A first dense time extension of the theory of interface automata has been de-

veloped in [11]. The theory in [11] focuses exclusively on reducing composition
and consistency checking to solving timed games and does not provide any def-
inition and algorithms for refinement, conjunction, and quotient. In [9], Alfaro
and Faella proposed an efficient implementation of the algorithm used to solve
the timed games introduced in [11], but for the discretized time domain only. In
addition, they also proposed an extension of TICC to the timed setting. This
version of TICC does not provide the same services as Ecdar does. First, timed
TICC only supports consistency checking and composition; the usefulness of the
tool for compositional design of real time systems is thus limited. Second, the
tool does not offer a user friendly interface and the interactions with the user
are extremely limited. Last, the tool works on the discretized time domain only.
Hence, all the complications introduced by the dense setting are not studied.

References
1. Adler, B.T., de Alfaro, L., da Silva, L.D., Faella, M., Legay, A., Raman, V., Roy,
P.: Ticc: A tool for interface compatibility and composition. In: Ball, T., Jones,
R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 59–62. Springer, Heidelberg (2006)

2. Bauer, S.S., Mayer, P., Schroeder, A., Hennicker, R.: On weak modal compatibility,
refinement, and the mio workbench. In: Esparza, J., Majumdar, R. (eds.) TACAS
2010. LNCS, vol. 6015, pp. 175–189. Springer, Heidelberg (2010)

3. Bhaduri, P.: Synthesis of interface automata. In: Peled, D.A., Tsay, Y.-K. (eds.)
ATVA 2005. LNCS, vol. 3707, pp. 338–353. Springer, Heidelberg (2005)

4. Cassez, F., David, A., Fleury, E., Larsen, K.G., Lime, D.: Efficient on-the-fly algo-
rithms for the analysis of timed games. In: Abadi, M., de Alfaro, L. (eds.) CONCUR
2005. LNCS, vol. 3653, pp. 66–80. Springer, Heidelberg (2005)

5. Chic (2003), http://www-cad.eecs.berkeley.edu/˜tah/chic/
6. David, A., Larsen, K., Legay, A., Nyman, U., Wąsowski, A.: Timed I/O automata:
a complete specification theory for real-time systems. In: HSCC (accepted 2010)

7. de Alfaro, L.: Game models for open systems. In: Dershowitz, N. (ed.) Verification:
Theory and Practice. LNCS, vol. 2772, pp. 269–289. Springer, Heidelberg (2004)

8. de Alfaro, L., da Silva, L.D., Faella, M., Legay, A., Roy, P., Sorea, M.: Sociable
interfaces. In: Gramlich, B. (ed.) FroCos 2005. LNCS (LNAI), vol. 3717, pp. 81–
105. Springer, Heidelberg (2005)

9. de Alfaro, L., Faella, M.: An accelerated algorithm for 3-color parity games with
an application to timed games. In: Damm, W., Hermanns, H. (eds.) CAV 2007.
LNCS, vol. 4590, pp. 108–120. Springer, Heidelberg (2007)

10. de Alfaro, L., Henzinger, T.A.: Interface-based design. In: Marktoberdorf Summer
School. Kluwer Academic Publishers, Dordrecht (2004)

11. de Alfaro, L., Henzinger, T.A., Stoelinga, M.I.A.: Timed interfaces. In:
Sangiovanni-Vincentelli, A.L., Sifakis, J. (eds.) EMSOFT 2002. LNCS, vol. 2491,
pp. 108–122. Springer, Heidelberg (2002)

12. Doyen, L., Henzinger, T.A., Jobstman, B., Petrov, T.: Interface theories with com-
ponent reuse. In: EMSOFT, pp. 79–88. ACM Press, New York (2008)

13. Lynch, N.A., Tuttle, M.R.: An introduction to input/output automata. Technical
Report MIT/LCS/TM-373, The MIT Press (November 1988)

14. Milner, R.: A Calculus of Communicating Systems. Springer, New York (1982)

http://www-cad.eecs.berkeley.edu/~tah/chic/


Developing Model Checkers Using PAT

Yang Liu, Jun Sun, and Jin Song Dong

School of Computing
National University of Singapore

{liuyang,sunj,dongjs}@comp.nus.edu.sg

Abstract. During the last two decades, model checking has emerged as an effec-
tive system analysis technique complementary to simulation and testing. Many
model checking algorithms and state space reduction techniques have been pro-
posed. Although it is desirable to have dedicated model checkers for every lan-
guage (or application domain), implementing one with effective reduction tech-
niques is rather challenging. In this work, we present a generic and extensible
framework PAT, which facilitates users to build customized model checkers. PAT
provides a library of state-of-art model checking algorithms as well as support
for customizing language syntax, semantics, state space reduction techniques,
graphic user interfaces, and even domain specific abstraction techniques. Based
on this design, model checkers for concurrent systems, real-time systems, prob-
abilistic systems and Web Services are developed inside the PAT framework,
which demonstrates the practicality and scalability of our approach.

1 Introduction

After two decades’ development, model checking has emerged as a promising and pow-
erful approach for automatic verification of hardware and software systems. It has been
used successfully in practice to verify complex circuit design [3], communication pro-
tocols [5] and driver software [2]. Till now, model checking has become a wide area
including many different model checking algorithms catering for different properties
(e.g., explicitly model checking, symbolic model checking, probabilistic model check-
ing, etc.) and state space reduction techniques (e.g., partial order reduction, binary de-
cision diagrams, abstraction, symmetry reduction, etc.).

Unfortunately, several reasons prevent many domain experts, who may not be ex-
perts in the area of model checking, from successfully applying model checking to
their application domains. Firstly, it is nontrivial for a domain expert to learn a gen-
eral purpose model checker (e.g., NuSMV [3], SPIN [5] and so on). Secondly, general
purpose model checkers may be inefficient (or insufficient) to model domain specific
applications, due to lack of language features, semantic models or data structures. For
example, multi-party barrier synchronization or broadcasting is difficult to achieve in
the SPIN model checker. Lastly, the level of knowledge and effort required to create a
model checker for a specific domain is even higher than applying existing ones.

To meet the challenges of applying model checking in new application domains, we
propose a generic and extensible framework called PAT (Process Analysis Toolkit) [1],
which facilitates effective incorporation of domain knowledge with formal verifica-
tion using model checking techniques. PAT is a self-contained environment to support
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Fig. 1. PAT Architecture

composing, simulating and reasoning of system models. It comes with user friendly
interfaces, a featured model editor and an animated simulator. Most importantly, PAT
implements a library of model checking techniques catering for checking deadlock-
freeness, divergence-freeness, reachability, LTL properties with fairness assumptions
[13], refinement checking [11] and probabilistic model checking. Advanced optimiza-
tion techniques are implemented in PAT, e.g., partial order reduction, process counter
abstraction [16], bounded model checking [14], parallel model checking [8] and proba-
bilistic model checking. PAT supports both explicit state model checking and symbolic
model checking (based on BDD or SAT solver). We have used PAT to model and ver-
ify a variety of systems [6]. Previously unknown bugs have been discovered [7]. The
experiment results show that PAT is capable of verifying systems with large number of
states and outperforms the state-of-the-art model checkers in some cases.

2 Architecture Overview

PAT was initially designed to support a unified way of model checking under fair-
ness [13]. Since then, PAT has been extended significantly and completely re-designed.
We have adopted a layered design to support analysis of different systems/languages,
which can be implemented as plug-in modules. Fig. 1 shows the architecture design
of PAT. For each supported domain (e.g., distributed system, real-time system, service
oriented computing and so on), a dedicated module is created in PAT, which identifies
the (specialized) language syntax, well-formness rules as well as formal operational
semantics. For instance, the CSP module is developed for the analysis of concurrent
system modeled in CSP# [12]. The operational semantics of the target language trans-
lates the behavior of a model into LTS (Labeled Transition Systems)1 at runtime. LTS
serves as an implicitly shared internal representation of the input models, which can
be automatically explored by the verification algorithms or used for simulation. To per-
form model checking on LTSs, the number of states in the LTSs needs to be finite. For

1 To be precise, it is a Markov Decision Process when probabilistic choices are involved.
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systems with infinite behavior (e.g., real time clocks or infinite number of processes),
abstraction techniques are needed. Examples of abstraction techniques include data ab-
straction, process counter abstraction, clock zone abstraction, environment abstraction,
etc. The verification algorithms perform on-the-fly exploration of the LTSs. If a coun-
terexample is identified during the exploration, then it can be animated in the simulator.
This design allows new modules to easily be plugged in and out, without recompiling
the core system, and the developed model checking algorithms (mentioned in Section
1) to be shared by all modules. This design achieves extensible architecture as well as
module encapsulation. We have successfully applied this framework in development of
four different modules, each of which targets a different domain. 1). The concurrent sys-
tem module is designed for analyzing general concurrent systems using a rich modeling
language CSP# [12], which combines high-level modeling operators with programmer-
favored low-level features. 2). The real-time system module supports analysis of real-
time systems with compositional behavioral patterns (e.g. timeout, deadline) [15].
Instead of explicitly manipulating clock variables, time related constructs are designed
to build on implicit clocks and discretized using clock zone abstraction [15]. 3). The
Web Services (WS) module offers practical solutions to the conformance checking and
prototype synthesis between WS Choreography and WS Orchestration. 4). The proba-
bilistic module supports the modeling and verification of systems exhibiting random or
probabilistic behavior.

3 Manufacturing Model Checkers

In this section, we discuss how to create a customized model checker for a new domain
using the PAT framework with the help of its predefined APIs, examples and software
packages. A domain often has its specific model description language. It is desirable
that the domain experts can input their models using their own languages. There are
three different ways of supporting a new language in PAT.

– The easiest way is to create a syntax rewriter from the domain specific language
to an existing language. This is only recommended if the domain language is less
expressiveness than the existing languages. For example, we have developed trans-
lators from Promela/UML state diagram to CSP#. Comparing with other tools, pro-
gramming a translator is straightforward in PAT. Because PAT has open APIs for
its language constructs, users only need to generate the language constructs objects
using these APIs, which can guarantee that the generated syntax is correct. This ap-
proach is simple and requires little interaction with PAT codes. However, translation
may not be optimal if special domain specific language features are present. Fur-
thermore, reflecting analysis results back to the domain model is often non-trivial.

– The second way is to extend an existing module if the input languages are similar
and yet with a few specialized features. For example, the probabilistic module is
designed to extend the concurrent system module with one additional language
feature, i.e., probabilistic choices. Knowledge about existing modules is required
and a new parser may be created for the extended language features.



374 Y. Liu, J. Sun, and J.S. Dong

– The third way is to create a new module in PAT. In this case, users firstly need to
develop a parser according to the syntax. The parser should generate a model con-
sisting of ASTs of language construct classes, which encode their operational se-
mantics. Abstract classes2 for system states, language construct classes and system
model are pre-defined in PAT with (abstract) signature methods for communica-
tions with verification algorithms and user interface interactions. Users only need to
develop concrete classes in the new module by inheriting the abstract classes. This
approach is the most complicated compared with the first two. Nevertheless, this
approach gives the most flexibility and efficiency. It is difficult to quantify the ef-
fort required to build a high-quality module in PAT. Experiences suggest that a new
module can be developed in months or even weeks in our team. This approach is
feasible for domain experts who have only the basic knowledge on model checking.
This is because model checking algorithms and state space reduction techniques are
separated from the syntax and semantics of the modeling language.

It is possible that a domain may have its own specialized properties to verify and spec-
ified model checking algorithms. Our design allows seamless integration of new model
checking algorithm and optimization techniques by inheriting base assertion class and
implementing its API. Furthermore, supporting functions, like LTL to Büchi, Rabin,
Streett automata conversion, are provided in PAT to ease the development of new al-
gorithms. For instance, we have successfully developed the algorithms for divergence
checking, timed refinement checking in real-time system module and new deadlock
and probabilistic reachability checking. Furthermore, PAT facilitates customized state
encoding by defining the interfaces methods in system state class. Different verification
algorithms using different state encoding are developed. Currently, PAT supports ex-
plicitly state encoding using hash table and symbolic state representation using BDD.
The choice of the encoding is made by the users in the user interface at runtime.

4 Performance Evaluation

PAT is capable of verifying systems with large number of states and outperforms the
state-of-the-art model checkers in some cases. Experimental results for LTL verification
under fairness and refinement checking are presented in Fig. 2 as an indication of our
effort on optimizing the model checking algorithms.

The table on the left shows the verification results on recently developed leader elec-
tion protocols with different topologies, where the correctness (modeled using LTL
formula) of these protocols requires different notions of fairness. Firstly, PAT usually
finds counterexamples quickly. Secondly, verification under event-level strong fairness
(ESF) is more expensive than verification with no fair, event-level weak fairness (EWF)
or strong global fairness (SGF). Lastly, PAT outperforms SPIN for the fairness veri-
fications. SPIN increases the verification time under weak fairness by a factor that is
linear in the number of processes. SPIN has no support for strong fairness or SGF. PAT
offers comparably better performance on verification under weak fairness and makes it
feasible to verify under strong fairness or SGF.

2 Detailed explanation and usages of the abstract classes are available in PAT’s user manual.
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Model Size EWF ESF SGF
Res. PAT SPIN Res. PAT Res. PAT

LE C 5 Yes 4.7 35.7 Yes 4.7 Yes 4.1
LE C 6 Yes 26.7 229 Yes 26.7 Yes 23.5
LE C 7 Yes 152 1190 Yes 152 Yes 137
LE C 8 Yes 726 5720 Yes 739 Yes 673
LE T 7 Yes 1.4 7.6 Yes 1.4 Yes 1.4
LE T 9 Yes 10.2 62.3 Yes 10.2 Yes 9.6
LE T 11 Yes 68.1 440 Yes 68.7 Yes 65.1
LE T 13 Yes 548 3200 Yes 573 Yes 529

LE OR 3 No 0.2 0.3 No 0.2 Yes 11.8
LE OR 5 No 1.3 8.7 No 1.8 - -
LE OR 7 No 15.9 95 No 21.3 - -
LE R 4 No 0.3 <0.1 No 0.7 Yes 19.5
LE R 5 No 0.8 <0.1 No 2.7 Yes 299
LE R 6 No 1.8 0.2 No 4.6 - -
LE R 7 No 4.7 0.6 No 9.6 - -
LE R 8 No 11.7 1.7 No 28.3 - -
TC R 3 Yes <0.1 <0.1 Yes <0.1 Yes <0.1
TC R 5 No <0.1 <0.1 No <0.1 Yes 0.6
TC R 7 No 0.2 0.1 No 0.2 Yes 13.7
TC R 9 No 0.4 0.2 No 0.4 Yes 640

Models N Property Result PAT FDR
Dining Philosophers 6 P refines S true 0.86 0.07
Dining Philosophers 8 P refines S true 13.7 0.07
Dining Philosophers 10 P refines S true 430 0.11

Reader/Writers 12 P refines S true < 1 0.81
Reader/Writers 14 P refines S true < 1 6.91
Reader/Writers 16 P refines S true < 1 81.2
Reader/Writers 200 P refines S true 77.5 -

Milner’s Cyclic Scheduler 11 P refines S true < 1 89.4
Milner’s Cyclic Scheduler 12 P refines S true < 1 419
Milner’s Cyclic Scheduler 13 P refines S true < 1 -
Milner’s Cyclic Scheduler 200 P [T= S true 60.4 -

5-valued register 2 P refines S true 44.9 NA
6-valued register 2 P refines S true 297 NA
stack of size 14 2 P refines S true 99.4 NA
stack of size 2 3 P refines S true 4321 NA

buggy queue of size 10 2 P refines S false 6.87 NA
buggy queue of size 20 2 P refines S false 41.1 NA
mailbox of 3 operations 2 P refines S true 27.8 NA
mailbox of 4 operations 2 P refines S true 954 NA

SNZI of size 2 2 P refines S true 322 NA
SNZI of size 3 3 P refines S true 6214 NA

Fig. 2. Experiment results on LTL verification under fairness assumption and refinement checking

In addition to temporal logic verification, PAT offers capability of refinement check-
ing (i.e. language inclusion checking). The table on the right shows the performance
using benchmark systems as well as newly developed concurrent algorithms. In the
classic readers/writers problem, reduction in PAT is very effective so that PAT can han-
dle a few hundreds readers/writers. In the Milner’s cyclic scheduling algorithm, multiple
processes are scheduled in a cyclic fashion. PAT is effective for this model to handle
hundreds of processes. For models with complicated data variables (like scalable non-
zero indicator SNZI, see [6] for the details of the examples), PAT is able to show the
linearizability of these examples using refinement checking [6]. FDR [10] performs ex-
tremely well for Dining Philosophers because of the compression strategy developed
for some specialized models. For other examples, PAT is much faster than FDR. Lim-
ited by the modeling language, FDR is rather difficult to model distributed systems
like Stack, mailbox and SNZI. In addition, PAT supports timed refinement checking,
which is beyond existing refinement checkers. In summary, PAT offers a set of well-
optimized model checking languages as well as a framework for developing new model
checkers.

5 Discussion and Summary

As a temporal logic model checker, PAT is related to the tools like NuSMV [3] and
SPIN [5]. Compared to these tools, PAT serves a generic framework for manufacturing
model checkers. It complements existing model checkers with specialized algorithms
for (timed/untimed) refinement checking [11], verification under fairness constraints
(with counter abstraction [16]), etc. PAT has a comparative performance with existing
state-of-art tools, and even out-performs them on some cases. Bogor [4] and LTSA [9]
are two extensible model checker developed as a plug-in of Eclipse. Bogor allows users
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to extend the base language to support new language features, but cannot be fully cus-
tomized with desired syntax and semantic models. LTSA compiles the input language
FSP (based on Process Algebra) into LTS, which is similar to PAT. However all the
modules in LTSA adopt the translation approach to convert the input model (e.g., Mes-
sage Sequence Chart and Web Service) into FSP models. Compared with these two, our
approach takes one step further to allow the development of fully customized model
checkers. Furthermore, the supported libraries in PAT offer user advanced model check-
ing techniques like real-time verification and probabilistic model checking, which are
absent in Bogor and LTSA.

Compared to [13], we redesigned the system to separate the GUI, verification algo-
rithms and modeling languages. Each modeling language is encapsulated into a stand-
alone package, which makes the system extensible. Furthermore, we have added the
support for real-time and probabilistic systems. The enhancement is dramatic. Starting
from 2007, PAT has come to a stable stage with solid testing and various applications.
More than 60 built-in examples and hundreds of test cases are embedded in PAT. PAT
has been used by a number of institutions as a research or educational tool. The main
objective of PAT is to bring sophisticated model checking techniques to a variety of
domains. The existing modules and on-going modules under development have shown
the usefulness and feasibility of this framework.
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Abstract. Probabilistic B (pB) [2,8] extends classical B [7] to incorpo-

rate probabilistic updates together with the specification of quantitative

safety properties. As for classical B, probabilistic B formulates safety as

inductive invariants which can be checked mechanically relative to the

program code. In the case that the invariants cannot be shown to be

inductive, classical B uses model checking to allow experimental inves-

tigation, returning a counterexample execution trace in the case that

the safety condition is violated. In this paper we introduce YAGA which

provides similar support for probabilistic B and quantitative safety spec-

ifications. YAGA automatically interprets quantitative safety and the

pB machine as a model checking problem to investigate the presence of

counterexamples. Since inductive invariants characterise a strong form

of safety, we are able to identify the specific point at which failure oc-

curs as individual counterexample traces, which can then be ranked for

importance, for example according to the probability of occurrence.

Keywords: Probabilistic B, quantitative safety, rewards, failures, diag-

nostic information.

1 Introduction

Probabilistic B (or pB) [2,8] extends classical B [7] by incorporating probabil-
ity; like classical B it permits the specification of abstract systems which can
be incrementally refined by introducing algorithmic detail. Correctness is char-
acterised by the specification of safety conditions and the refinement relation
ensures that those properties are inherited by the refinements. Where probabil-
ity is an issue, quantitative as well as standard safety may be specified. Both
types of safety are characterised by inductive invariants which the pB’s auto-
mated prover is able to check relative to pB’s modeling language. It does this
by generating and discharging a number of proof obligations in much the same
way as classical B but using real- rather than Boolean-valued expressions of the
program state. More details of pB and its application to probabilistic systems
development can be found in [8].
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MACHINE Faulty
SEES Int TYPE, Real TYPE
VARIABLES cc
INVARIANT cc : INT

EXPECTATIONS real(0) � cc

INITIALISATION cc := 0
OPERATIONS

OpX = BEGIN

PCHOICE frac (1, 2) OF cc := cc + 1
OR cc := cc − 1 END;

OpY = cc := 0
END

Fig. 1. A Faulty pB Machine

When pB’s mechanical prover fails to discharge the proof obligations it gen-
erates, the verifier is left with the problem of determining the cause of failure.
There are two possibilities to explore. First is that the invariant needs to be
strengthened, to make it inductive. Second is that the safety property it charac-
terises does not in fact hold because there exist execution traces of the program
model which violate it. Classical B provides diagnostic information by recasting
a classical safety property as a model checking problem and using exhaustive
search to identify faulty execution traces should they exist [3]. Our contribution
in this paper is to do the same for pB and quantitative safety; we have im-
plemented a prototype tool YAGA which provides such diagnostic information
using probabilistic model checking.

1.1 A Brief Introduction to pB and Quantitative Safety

Probabilistic systems in pB are specified by a collection of pB machines which
consist of several operations describing possible program executions, together
with a collection of statements which specify the intended behaviour and con-
text. The example of Fig. 1 illustrates key features of the language. There are
two operations — OpX and OpY which can update a variable cc. In general op-
erations can only execute if their corresponding preconditions hold, but in this
example either operation can execute at any time, although execution of any
operation is atomic. If OpX executes, for example, variable cc is incremented
or decremented with probability 1/2 or (1−1/2) respectively, and OpY cannot
interrupt it. Note that it can happen that the preconditions (if they do exist) of
the operations overlap, and in which case the choice of which operation executes
is made nondeterministically.

The SEES field ascribes more information to the data type of the variables
specified in the VARIABLES field. But in general it is used to define the scope
of a machine’s visibility [8]. The INVARIANT field specifies invariant proper-
ties which are maintained by the operations from the given INITIALISATION.
The proof obligations generated by pB’s prover are designed to check that the
operations comply with the invariants.
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Here we concentrate on the EXPECTATIONS clause, which was introduced
by Hoang [8] as a way to express quantitative invariant properties. The form
of an EXPECTATIONS clause is highlighted in Fig. 1; on the left hand side
of the inequality is a threshold of 0, on the right hand side is an expression of
the program variables, in this case cc. This specifies a safety property that the
expected value of cc as a random variable should never fall below the threshold
0. Here the expected value is relative to the distribution over program states
determined by any (interleaved) execution of the operations OpX and OpY. In
pB the proof obligations for the EXPECTATIONS clause are generated for each
operation and the initialisation in the form of probabilistic Hoare-style triples,
in this case:

{0} cc := 0 {cc}, {cc} Op {cc} . (1)

The first triple represents an obligation for the initialisation: in this case
that the initialisation of the variable cc should ensure that the value of cc is at
least the threshold 0. The second triple captures the notion that the expression
cc must be an inductive invariant relative to each operation. For probabilistic
operations this means that given any state s from which the operation Op may
be executed, the expected value of cc treated as a random variable must be at
least the value of cc from s. For example if Op is taken to be OpX in Fig. 1, then
from any initial value of the variable cc (for example when cc = 0), it generates
a distribution over final states — cc = −1 with probability 1/2 and cc = 1 with
probability 1/2. This means that the expected value of the random variable cc
is 1/2×(−1) + 1/2×1 = 0, and this shows that the expected value of cc has not
decreased (since it was 0 at the initial state cc = 0). In this sense cc is inductively
invariant for OpX after this single transition, and pB can discharge OpX ’s proof
obligation.

However the proof obligation for OpY cannot be discharged, suggesting that
there is a problem with this specification. We shall return to this example in
Sec. 3 to show how YAGA locates a particular execution sequence of OpX
and OpY, providing diagnostic information to illustrate the circumstances under
which the expected value of cc can fall below the threshold 0. Since inductive
invariance is a strong form of safety, we have shown elsewhere [5,9] that failure
corresponds exactly to when there is an “execution trace” which can occur with
non-zero probability (from the initial state) to a state s such that the proba-
bilistic triple with respect to a particular operation does not hold from s. In
the example of Fig. 1, a counterexample is a sequence of (operation, state) pairs
where the final operation in the list fails the right-hand triple in Eqn. 1. Note
that other definitions of counterexample exist for various forms of probabilistic
temporal properties, but because they are not based on an inductive interpreta-
tion, a set of paths is required [1].

A summary of YAGA’s capabilities is as follows:

(a) YAGA first automatically translates the pB model to the PRISM [10] mod-
eling language, and represents the EXPECTATIONS clause as a PRISM
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reward structure [4]. PRISM is a probabilistic model checker which is able to
analyse quantitative safety with real-valued rewards, and as such provide us
with a critical pre-processing stage whereby the quantitative safety property
can be investigated experimentally. Note that PRISM is not able to identify
individual counterexample paths, however it does produce important input
to the counterexamples generator module discussed below.

(b) If faulty behaviour exists, YAGA returns a most useful diagnostic informa-
tion as an (operation, state) pair listing where the final operation breaks the
inductive invariance from its execution point.

(c) Finally, YAGA enables a verifier to “drill-down” to finer details of the faulty
traces by ranking them with respect to either their total probability masses
or their total expected reward.

The rest of this paper is structured as follows: Sec. 2 is an overview of the
architecture of YAGA, and a discussion of its core modules; Sec. 3 summarises
the effect of YAGA on the example of Fig. 1; and finally we conclude in Sec. 4.

Fig. 2. YAGA - Architectural Process Flow

2 YAGA: Architectural Overview

In this section we summarise YAGA and its core modules as shown in Fig.2.
YAGA1 is a Java-based implementation that inputs a pB machine, and gener-
ates its representation in the PRISM modeling language. The underlying feature
of YAGA is its reward structure interpretation of the quantitative safety specifi-
cations of the pB machine framework. Details of this interpretation can be found
in [5,9].

The PRISM temporal logic specification or PCTL [4] formulas over the reward
structure can then be checked by conducting experiments on the transformed

1 The acronym YAGA, coined from an Igbo (a language largely spoken in southeast

Nigeria) word — YAGAzie, which literally means “may it go well ...”, is a designer’s

prayer to positively summarise the fear of impending faults within a pB machine

design. However YAGA could be visualized as Yet Another Gangling Automation.
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model. The experimental results are sufficient to validate (or refute) the quan-
titative safety property specified within the pB specification. In the event that
a faulty behaviour (or counterexample) violating the property of interest is cap-
tured, the verifier is alerted to the results of a k-shortest path analysis identifying
finite traces leading from the root of the resultant failure tree to a faulty state
(i.e. where the invariant is found not to be inductive).

Finally, YAGA implements a rank engine which supplies a verifier with more
specific information about the total probabilities or expectations corresponding
to the faulty execution traces. Below we explain the modules in more detail.

2.1 Translator Module

The translator module provides an exact interpretation of a pB machine in
the PRISM modeling language. A key strategy is to ensure that the pB ma-
chine clauses of interest are given a Markov decision process (MDP) semantic
equivalence in PRISM. The resultant PRISM model is then composed of the
following:

• Machine module: Encapsulates the following features of the resultant PRISM
model: constants, formula list, module name, variables and update state-
ments from the abstract machine’s framework. In addition, its update state-
ments are synchronised with similar update statements constructed from a
counter module (see below).

• Counter module: This is a special module that enables a pB verifier to con-
duct experiments over resulting finite probability distributions of the exe-
cution traces generated by a pB machine, and corresponding to its specific
kth execution. Apart from its own local variables, the effect of synchronis-
ing its update statements with that of the machine module is to record (in
finite steps) any impending faulty behaviour within the machine, where a
MAX COUNT parameter provides details for probing the depth of the tree.

• Reward structure: The associated reward structure captures the exact in-
terpretation of the safety specification embedded within the pB machine
EXPECTATIONS clause [5].

Given this model representation (see Fig.3 for example), the verifier is able to
investigate the safety specification by conducting preliminary experiments. The
experimental results can reveal succinct information about impending faulty
behaviours in the pB machine (as in Fig.4). On discovery of a faulty behavioural
execution, the next two modules provide an exact analysis sufficient to report a
most useful diagnostic information to the pB machine verifier.

2.2 Counterexamples Generator Module

After it inputs a MDP representing a faulty pB machine and constructs its
equivalent reachability reward, the rest of the functionality of the counterexam-
ple generator module could further be divided into two:
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• Model checking the resultant MDP, it then ouputs an adv.tra file which con-
tains the optimal scheduling strategy of the MDP violating a given PCTL
formula. YAGA loads the adv.tra file and constructs a transition probabil-
ity matrix representation of the optimal scheduling strategy identifying the
schedule which exhibits the faulty behaviour [9]. Practical details of gener-
ating this strategy are in [10].

• A key analysis phase of the generator involves the automatic construction
of an additional state-value.txt file from the model’s state space. The state-
value.txt file marks every state of the matrix with (i) the valuation of the pro-
gram’s variables occurring in the reward structure, and (ii) a corresponding
action that is enabled therein. Finally, YAGA analyzes the optimal schedul-
ing strategy via a k-shortest path technique, using the state-value.txt file,
to generate at least a single finite trace as a sequence of actions and their
corresponding state valuations leading from the initial state to a state where
the property is violated.

2.3 Ranking Module

As a utility module, the rank engine enables a verifier “drill-down” to finer de-
tails of the faulty traces by querying YAGA for information relating to: the total
probability masses (from a maximal to a minimal order), and the total expected
values of the rewards (from a minimal to a maximal order) of the traces them-
selves. Traces with high probability masses are possibly more useful for debug-
ging compared with traces with low probability masses. Traces whose expected
values are minimally deviated from the lower bound of the expected value of
the reward properties would constitute more useful diagnostic information than
traces that are maximally deviated from the bound.

3 Experimental Results

Given the PRISM model of Fig.3, we present experimental results that summa-
rize the pB machine of Fig.1. We also interpret the results directly in relation
to the faulty pB machine.

3.1 Preliminary Experiments

The result of the experimental investigation of the EXPECTATIONS clause of
the faulty pB machine is shown in Fig. 4. Since by the safety specification of
Fig. 1, if the machine complies with the statement in the EXPECTATIONS
clause, then the expected value of cc is always at least zero. However, Fig. 4
reveals otherwise. It reports a decreasing value in the expected value of cc right
from the second execution step. This behaviour continues as long as the machine
executes. In the sections that follow, we present a detailed analysis of this faulty
behaviour as well the execution traces corresponding to it.
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const MIN ;
const MAX;
const MAX COUNT ;

module Faulty
cc : [MIN..MAX] init 0;

[OpX] (MIN < cc < MAX) → 0.5 : (cc′ = cc + 1) + 0.5 : (cc′ = cc − 1);
[OpY] true → (cc′ = 0);
endmodule

module Counter
count : [0..MAX COUNT + 1] init 0;
terminate : bool init false;
action : [0..3] init 0;

[OpX] (count + 1 ≤ MAX COUNT + 1) → (count′ = count + 1) & (action′ = 1);
[OpY] (count + 1 ≤ MAX COUNT + 1) → (count′ = count + 1) & (action′ = 2);
[] (count + 1 ≤ MAX COUNT + 1) → (count′ = count + 1) & (action′ = 3);
[T] (count = MAX COUNT + 1) → (terminate′ = true);
endmodule

rewards
[T] (count = MAX COUNT + 1) : cc + MAX COUNT ;
endrewards

Fig. 3. A PRISM representation of the faulty pB model specified in Fig.1

3.2 A Most Informative Diagnostic Trace Located

As a result of the counterexamples generator module’s analysis of the resultant
adv.tra file, it reports a single trace (shown below) responsible for the property
violation. The summary of the report is that, after the machine’s initialisation
INIT, a single machine sequence of the

************ Starting Error Reporting ... ***************
Faulty path located after 2 step(s)

Sequence of operations and state valuations ::>>>
[{INIT} (0), {OPX} (1), {OPY} (0)]
Probability mass of path is:>>>> 0.5

************ Finished Error Reporting ... ***************

operations OPX and OPY respectively would result in the machine’s faulty be-
haviour. Note that the value (cc) denotes the state valuation of the random
variable cc at a state where each of the operations is enabled. This gives the
verifier a snapshot of the first faulty execution history. We see that after OpX, if
cc is 1 then OpY may be executed to set cc to 0, and this is exactly a failure of
the triple at Eqn. 1, since at cc = 1 the value of the expression cc is 1, and the
expected value of cc after executing OpY from there is 0 (= 1× 0). This trace
can occur with probability 0.5. Note that in general there can be several traces
where inductive invariance can fail.
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3.3 Diagnostic Trace “Expectations” Information

Since YAGA has only reported a single faulty trace whose probability mass is
given above, the ranking module also reports a single expectations information
as shown below.

******** Starting Ranking Information By "expectations" ******
Path plus expectations Information::>>>
[{INIT} (0), {OPX} (1), {OPY} (0)]

Path residual expectations is:>>>> -1.0
************ Finished Ranking Information ... ***************

The interpretation is that after execution of the trace, the expected value of
cc is strictly decreased below the specified threshold of zero, hence violating the
statement in the EXPECTATIONS clause. This intuition is enough to guide the
machine designer with improving the correctness of his design. Details of the
underlying theory of YAGA, as well as the algorithmic interpretation of its core
modules i.e. the translator, counterexamples generator and rank modules are
clearly set out at [9].

Fig. 4. Experiment over the EXPECTATIONS clause of Fig.1

This graph was generated in the PRISM pre-processing stage, and displays
the expected value of the expression cc treated as a random variable under
operations of the pB machine. It shows for example that the quantitative safety
property is first violated on the second step, and that the longer the machine
can execute the more negative becomes that expected value.

4 Conclusion and Future Work

So far, we have been able to demonstrate a range of techniques that enable a
pB machine designer explore experimentally, the consequence of the failure of
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a prover to discharge proof obligations arising from the specification of safety
properties within the EXPECTATIONS clause of a pB machine framework. Else-
where [9], we have used YAGA to analyse a probabilistic library machine, as well
as the mincut algorithm [6] whose pB machine constructions were originally pro-
vided by Hoang [8].

Ultimately, the big picture for us is to develop YAGA into a complete and
independent plug-in to be deployed as part of the successor to event-B, the Rodin
toolkit [11].
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Abstract. Theorem proving and model checking are two well-known formal 
methods emerging recently for software verification. Each of them has its own 
advantages and disadvantages. As an attempt to combine the verification 
capabilities of these two methods, in this paper we introduce a verification tool 
known as COMBINE (Combined fOrmal Methods for BINdingly vErification). 
Suggested by its name, COMBINE can verify imperative programs in a 
bindingly manner comprising of two phases: static verification and dynamic 
verification. In fact, COMBINE has been developed as a published Web-based 
system currently being used for teaching programming for students at 
Hochiminh City University of Technology (HCMUT), Vietnam. 

1   Introduction 

A major goal in software engineering today is to enable software systems to be 
developed in a reliable manner regardless their complexity. Formal methods have 
been emerging as a potential approach to fulfill this desire [1]. In the field of software 
verification, there are two popular approaches nowadays having been attracting much 
attention, which are theorem proving and model checking. 

Theorem proving, or automated theorem proving (ATP) [2] is a technique that is 
based on Hoare logic to prove the correctness of a program by means of 
axiomatically processing. However, due to the theoretical complexity of logic-based 
reasoning, those provers suffer major obstacles when dealing with loop-based 
programs as they need to infer the invariants of the loops, which is a tough task 
currently far from being completely solved [3]. The other approach, model checking 
[4], is an automatic verification technique for finite state concurrent systems such as 
sequential circuit designs and communication protocols. The major advantage of 
model checking is its capability of producing traceable counter examples when 
detecting errors. However, the current model checkers suffer the state space 
explosion problem. In addition, the generated counter examples are  not familiar 
and convenient for popular users. 

In this paper, we introduce a verification tool known as COMBINE (Combined 
fOrmal Methods for BINdingly vErification) as an attempt to combine those two 
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approaches of theorem proving and model checking for program verification in two 
phases namely static verification and dynamic verification. The rest of the paper is 
organized as follows. Section 2 gives the overall architecture of COMBINE. Section 3 
presents examples on how COMBINE works. Section 4 summarizes the current status 
of COMBINE. Section 5 presents some related works and Section 6 draws some 
conclusions for the paper. 

2   COMBINE Architecture 

As presented in Figure 1, COMBINE comprises of two phases: static verification and 
dynamic verification, which respectively deploy theorem provers and model checkers 
for verification. When static verification cannot affirm the correctness of an input 
program, dynamic checker is then invoked to check the program again in a dynamic 
manner. Counter-examples can be generated in both phases if necessary when an error 
is detected. 

2.1   Static Verification 

Static verification module performs three main tasks, namely Static Analysis, 
Correctness Proving and Counter-Example Generation. Static Analysis will translate 
the original source code with formal specification to axiomatic description. Formal 
specification is written in a dedicated language such as ANSI/ISO C Specification 
Language (ACSL) [5] which is a behavioral specification language for C program. 
Axiomatic description is performed in C Intermediate Language (CIL) [6] . Then it is 
translated to appropriate verification conditions which are used later for Correctness 
Proving. In order to be compatible with multiple provers employed in the Correctness 
Proving task, these conditions are stored in an Abstract Syntax Tree (AST) and each 
prover will parse them to its own supported language if necessary. Based on 
verification conditions, provers will verify and give the result to programmer. If an 
error is detected, Counter-Example Generation will generate some helpful counter-
examples as a predicate. 

Model Checking Structured Error-
flow Generation

Model Description

Model-oriented
Translation

Code-2-Model Mapping
Table

Raw Counter-Example Structured Error-Flow

Random-guided
Input Generation

Preprocessing

Dynamic Verification

Correctness
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C/C++ Source
Code + ACSL

CIL Translation
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Static Verification

AST Construction
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Fig. 1. COMBINE architecture 
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// Description: Find the absolute value of an integer. 
# pragma JessieIntegerModel(math) 
/*@ ensures (i >= 0 && \result == i) || (i < 0 && \result == -i);*/ 
1: int AbsNumber(int i) { 
2:    if (i < 0) return -i; 
3:    else return i; 
4: }  

(a)  Correct solution of a given problem 
 
// Description: Find the max number between two integers. 
# pragma JessieIntegerModel(math) 
/*@ ensures \result >= x && \result >= y && \forall int z; z >= x 

&& z >= y ==> z >= \result; 
*/ 
1: int MaxNumber(int x, int y) { 
2:    if (x > y) return y; 

  3:    else return y;} 

(b)  Wrong solution of a given problem 
 

// Description: In the given array, return the index of the 1st 
element whose value equals v  
/*@ 
requires \valid_range (t, 0, n-1); 
ensures  
   (0 <= \result < n ==> t[\result] == v) && 
   (\result == n ==> \forall int i; 0 <= i < n ==> t[i] != v) ; */ 
1: int SearchArray(int t[], int n, int v) { 
2:    int j = 0; 
  /*@ loop invariant 0<=j && \forall integer k; 0<=k<j ==> t[k] != v; 
    @ loop variant n – j > 0; */  
3:    while (j < n) { 
4:       if (t[j] == v) break; 
5:       j = j+2; 
6:    } 
7:    return j; 
8:} 

(c)  Loop-based program with an unproved solution 

Listing 1. C codes augmented with formal specifications 

2.2   Dynamic Verification 

After the phase of static verification, dynamic verification will be invoked when 
necessary. As presented in Figure 1, dynamic verification consists of three major tasks 
including Preprocessing, Model Checking, Structured Error-Flow Generation. 
Preprocessing consists of two subtasks, namely Model-oriented Translation, which 
basically translates the original source code into a formalism of a model checker 
description; and Random-Guided Input Generation, which generates a reduced input 
space meaningfully in a random–guided manner. In addition, this step will also 
generate a mapping table between elements of the targeted model checker with those 
of the original program. This mapping table, known as Code-2-Model Mapping Table, 
will be then used later to retrieve the error-flow in case an error is detected. 
Meanwhile, Model Checking performs the normal tasks of a model checker: verifying  
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the model against a property, and producing a model-based counter example, known 
as raw counter-example, when recognizing some erroneous problems. Finally, based 
on the raw counter-example and the Code-2-Model Mapping Table, Structured Error-
Flow Generation generates a structured error-flow represented in the original 
language of the verified program. 

3   Examples 

3.1   Axiomatic Problem Description 

Intended input problem of COMBINE is an imperative program augmented by some 
axiomatic description. In Listing 1 there are 3 C programs to be verified with formal 
specifications annotated in their comments. In Listing 1(a), we define the problem of 
finding the absolute value of a given integer with the correct solution submitted to 
COMBINE. In Listing 1(b), the program submitted to COMBINE is a solution of 
finding the maximal number between two given integers, which is logically wrong as 
the programmer accidentally made a mistake in the last statement. For loop-based 
program, ACSL annotations are more complicated. For instance, the program in 
Listing 1(c) aims at finding an identified element in the given array. The requires-
clause of this program implies that the lower bound and upper bound of the array 
index must be 0 and n-1 respectively. The ensures-clause is also used to specify the 
expected returned value of program. Moreover, we define invariants right before each 
loop iteration. There are two invariants given. The first invariant states that when the 
loop still executes, the searched value does not occur among the processed array 
elements. The second invariant just simply tells that the counter variable will never 
exceed the array size. Those invariants are essentially required by all provers to verify 
the loops. In this example, the loop body has an easily observed mistake. 

3.2   Static Verification Phase: Correctness Proving and Counter-Example 
Generation 

After affirming that the input programs have no syntax error, COMBINE will then 
perform static analysis and transfer these programs to the provers to prove if they 
satisfy the pre-defined requirements or not. Based on the static analysis results, the 
provers produce verification conditions accordingly. For example, with the 
program given in Listing 1(a), there are 2 verification conditions generated, 
corresponding to 2 cases of i >= 0 and i < 0. When verified, all conditions are 
passed by the provers integrated in COMBINE and hence the correctness of the 
program is confirmed1. In Listing 1(b), the source code yields six conditions to be 
verified, among them one is failed when verified. The failure case will be then 
moved to Counter-Example Generation step to be further processed. The counter-
example is generated in a form of a Lisp-like predicate as (AND (EQ return 
y) (< return x)).  

                                                           
1 For the sake of combined proving capability, there are many provers concurrently adopted in 
COMBINE, but only one prover confirming the program correctness is sufficient. 
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By means of axiomatic processing, a program correctness can be easily proven in a 
formal manner if its pre-conditions, post-conditions and invariants are well-written. 
However, in case of incorrectness, things become far complicated, especially for loop-
based programs. For example, in Listing 2(c), all of our tested provers did not 
recognize the mistake in the last increasing statement in the loop body.  

3.3   Dynamic Verification Phase: Model Checking and Structured Error-Flow 
Generation 

In dynamic verification, we firstly translate the original source code into a form of a 
model description language of a model checker. Then, we have the model checker 
verify the translated model. Especially, in COMBINE we developed some tactics of 
random-guided generation of input values. In order to perform random-guided basis 
our strategy is to try to divide the input space into subdomains based on some 
heuristic rules some of which are illustrated in Table 1 [7].  For example, Rule 1 states 
that when encountering a statement of x > a, the system will generate three values of x 
for testing as: {a+ϵ, RANDOM, MAX} where ∈ indicating a very small value, MAX the 
possible maximal value of x and RANDOM a random value between a+ϵ and  MAX. 
While the first five rules give examples of strategies to generate the testing input, the 
last three ones gives examples of generating subdomains. For example, in Rule 7, the 
corresponding subdomain (Mi) is generated by taking into account the condition E and 
other subdomains generated from other if-else clauses previously declared. 

Table 1. Heuristic rules for guided-random input generation 

Rule Statement Subdomain Suggested Sample 
Rule 1 x>a (a, +∞) a+ϵ, RANDOM, MAX 
Rule 2 x>=a [a, +∞) a, RANDOM, MAX 
Rule 3 x<a (-∞, a) MIN, RANDOM, a-ϵ 
Rule 4 x<=a (-∞, a] MIN, RANDOM, a 
Rule 5 x==a {a} a 
Rule 6 if E … M1=Subset(E)  
Rule 7 … elseif E  Mi=Subset(E)∩( ┐Mi-1)∩ …∩( ┐M1)  
Rule 8 … else E  Mi=( ┐Mi-1)∩( ┐Mi-2)∩…∩( ┐M1)  

Remarkably, besides the counter-examples generated in static verification, 
dynamic verification will generate a higher conceptual level of error representation, 
known as structured error-flow [8]. Basically, a structured error-flow is a nested 
graph-based structure reflecting the execution path performed by a program with a 
certain input. In order to generate an error-flow, first we analyze the raw counter-
example returned by the employed model checker when recognizing a system error. 
This raw counter-example just simply gives us all of ordered internal states visited the 
model checker to achieve the error. Using the Code-2-Table mapping generated when 
translating the original program into model description, we are able to retrieve the 
ordered path of the original statements that cause the error. Based on the structural 
analysis of the retrieved statements, we produce the corresponding final structured 
error-flow. For example, in Figure 2(a) is the structured error-flow generated when 
testing the program in Listing 1(b) with the input of x and y being 1 and -1 
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respectively. With these given input, the condition of if-statement is verified and then 
the return statement is executed. Note that in Figure 2(a), node s21 representing the 
return statement is a subnode inside node s2, corresponding to the structural analysis 
stating that this return statement is inside a body of an if-clause. Information in this 
error-flow can be presented to user in a meaningful manner as depicted in Figure 3. 

x>y

s1 s2

return y
s21

(a) A simple flow

i=0

s1 s2

i<=n t[i]==v return i

s3

i=i+2break

(b) A complicated flow  

Fig. 2. Graph-based representations of structured error-flows 

   Input:  x = 1; y = -1 
   Obtained Result: = -1 
   Desired Result: = 1 
   Line 3: If statement   
           Line 3: [x > y] = true 
           Line 4: return y; 

Fig. 3. Error-flow generated for the program given in Listing 1(b) 

4   Status 

The introduced COMBINE tool is being implemented as a Web-based system at 
Faculty of Computer Science and Engineering, Ho Chi Minh City University of 
Technology, Vietnam 2 . In the implemented system, we have adopted numerous 
provers for static verification, including Z3 [9], Simplify [10] and Alt-Ergo [11]; in 
which Simplify is particularly in charge of generating counter-examples. The provers 
are combined using Frama-C platform [12] with Jessie plugin [13] for static 
verification. Meanwhile, Spin [14], a well-known model checker, is adopted for 
dynamic verification. We have handled all programs involving if-clause and 
arithmetic types, including integer and floating-point. Pointer, loop-statement and 
array are also considered. 

The system is intended to improve education performance in the course of 
Programming Methodologies as it can help student to verify their own solutions for 
the given programming exercises. Figure 4 illustrates a screenshot of the system 
generating error-flow for user. In this case, the generated error-flow is quite 
complicated, as given in Figure 2(b). In Figure 4, there is a ‘+’ symbol appearing at 
Line 4 notification, which is corresponding to node s2 in Figure 2(b). When clicking 
on this symbol, users can continue exploring the statements executions corresponding 
to the nested subnodes of s2. 

When using this tool to verify students’ works, we categorized the verified 
problems into four types as indicated in Table 2. Type 1 includes the problems 
involving integer type, linear arithmetic and some simple functions on array of  
 

                                                           
2 One can visit this system as http://www.cse.hcmut.edu.vn/provegroup/prove 
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Fig. 4. COMBINE is being employed as a Web-based system 

Table 2. Verification results on students work (√ indicates successful verification, whereas ∗ 
failed cases) 

Problems Static  Dynamic  Combination 
Type 1 √ √ √ 
Type 2 ∗ √ √ 
Type 3 √ ∗ √ 
Type 4 ∗ ∗ ∗ 

 
 

integers. Both static and dynamic verifications worked well in this case. However, 
static verification was not able to prove the functions in Type 2 including non-linear 
arithmetic and loop-based programs, which dynamic verification was able to handle. 
Type 3 contains some simple functions involving floating-point number or recursive 
algorithm. Static verfication performed well in this case, but dynamic verifcation 
could not solve them. Our system still experiences problems with functions of Type 4 
which involves pointer or complex structured types. 

5   Related Works 

There are many theorem provers introduced specially for software verification, 
notably including Z3 [9], Simplify [10], Coq [15], Isabelle [16], Alt-Ergo [11] and 
Redlog [17]. In particular, some systems, such as Frama-C [12], Why [18] and HIP 
[19] have been developed to deploy multi-provers in order to make full use of their 
combined proving capabilities. Our tool is an extension of the emerging Frama-C 
platform which not only combines multi-provers in our systems but also employ 
model checking for dynamic verification. 

Spin is adopted in our system for dynamic verification. Apart from this model 
checker, another emerging model checkers include Java Pathfinder (JPF) [20], 
NuSMV [21] and PAT [22]. Especially, in BLAST [23], model checking method is 
also used for testing C program to reduce the input space, BLAST relies on lazy 
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predicate abstraction technique, which means that false alarm may be alerted due to 
the abstraction. Moreover, counter-examples generated in BLAST are still more or 
less of state-based formalism, which may cause difficulty for ordinary programmers 
to follows. COMBINE is not hindered by those limitations. 

Our approach on combining static analysis and dynamic analysis is similar to 
Flanagan’s hybrid type checking [24] where both static and dynamic checking are 
combined and are decided by the system to be executed resepectively when necessary. 
However, Flanagan’s system mainly aim at resolving type checking problem whereas 
our COMBINE tool is meant to generally verify if a program fulfills a properties 
semantically represented as logic predicates.  

It is also noted that our approach on random-guided input generation is similar to 
that on the well-known technique of QuickCheck [25]. However, when developing 
heuristic rules, we make possibility to embed logic in higher levels into program flow 
analysis, through which the semantic of program functions and modules can be 
captured and reasoned to generate more meaningful testsuits, in an automatic manner.  

6   Conclusion 

This paper introduces a tool known as COMBINE which combines two popular 
formal methods, theorem proving and model checking, for verifying imperative 
programs in a bindingly manner. We have tried to make full use of the advantages and 
partially overcome the disadvantages of the adopted methods. Our COMBINE tool 
has been developed as a Web-based system used to teach programming to students 
which gains some promising initial results.  
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Marc Solé1 and Josep Carmona2

1 Computer Architecture Department, UPC

msole@ac.upc.edu
2 Software Department, UPC

jcarmona@lsi.upc.edu

Abstract. The theory of regions was introduced in the nineties to enable

the transformation of an automata into a Petri net. From very restrict-

ing initial requirements, the theory has evolved in several dimensions in

the last two decades, widening the scope of application to more general

scenarios. In contrast, few tools have appeared to support these new

theories, thus relegating the potential of the area only to the academic

domain. This paper introduces rbminer, a tool that combines the theory

of regions with linear algebra to compute a basis of state regions. Due

to its light space requirements, this approach may contribute to bridge

the gap between the theory of regions and its industrial application.

1 Introduction

In this paper we present rbminer, a tool that transforms a state-based represen-
tation of a system, a transition system (TS) [1], into an event-based model such
as a Petri net (PN) [2]. This tool is based on an extension of the theory of regions,
which was introduced by Ehrenfeucht and Rozenberg in the seminal paper [3].
The underlying theory of the paper can be found in a recent publication [4].

The derivation of a PN from a TS has many applications, ranging from hard-
ware synthesis [5] to Process mining [6]. In Process mining, the problem is to
derive a PN from a set of logs (traces of a real system). These logs can be easily
converted into a TS where rbminer can be applied. Another application is visu-
alization: large TSs exhibiting a high degree of concurrency may be succinctly
summarized in the form of a PN.

Related work [7,8] includes approaches based on regions of languages [9], for
which some comparison can be found in [4], and tools based on the same under-
lying region theory such as petrify [5] and genet [10]. The former can only be
used for the synthesis of safe PNs, while the latter can both synthesize (bisimilar-
ity is guaranteed) and mine (only language inclusion is guaranteed) k-bounded
PNs.

2 Overview of the Theory Behind rbminer

Intuitively, a region is a set of states in a transition system that has a homoge-
neous relation with respect to the events, i.e. every event either enters this set,

A. Bouajjani and W.-N. Chin (Eds.): ATVA 2010, LNCS 6252, pp. 396–402, 2010.
� Springer-Verlag Berlin Heidelberg 2010
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or exits it, or never crosses its boundary. A region corresponds to a place in the
derived Petri net. In rbminer, the notion of general region is used, where the
corresponding place can have up to k tokens.

Let us use the example of Fig. 1 to illustrate the theory. The method assumes
that a k is initially given for the search of a k-bounded Petri net. The basic idea
is that regions are represented by multisets (i.e. a state might have multiplicity
greater than one). Fig. 1(a) depicts a TS with 9 states and 3 events. After
synthesis, the Petri net in (b) is obtained. For illustration purposes, we label
each state with a 3-digit label that corresponds to the marking of places p1, p2

and p3 in the reachability graph of the PN. The shadowed states represent the
general region that characterizes place p2. Each red tone represents a different
multiplicity of the state (4 for the darkest and 1 for the lightest). Each event has
a constant gradient with respect to this region (+2 for a, -1 for b and 0 for c).
The gradient indicates how the event changes the multiplicity of the state after
firing, and is usually denoted as a vector, e.g. (2,-1,0) for the region of place
p2. Gradients are used to weight the arcs between places and transitions in the
derived PN: the gradient +2 for event a in the region shown corresponds to the
arc with weight 2 between the transition a and the place p2, meaning that every
time the transition a fires, it puts two tokens into p2.

What differentiates rbminer from other tools based on the same theory is the
use of a state region basis: any region can be expressed as a linear combination of
a small subset of regions1, called basis. Formally, any region r can be expressed
as
∑

i ci ·ri, where ri are regions in the basis and ci ∈ Z. Our tool computes such
basis, and then derives new regions by producing combinations of the regions
in the basis. The algorithm for exploring the region space via combination of
regions in the basis is a crucial element in our tool. Although this algorithm
is not described in this paper, its basic parameters are described in the next
section. In the example of Fig. 1 the basis has only two regions, with gradients
r1 = (−2, 1, 0) and r2 = (−1, 0, 1), which can produce, by linear combination, the
gradients of the three places in the net, e.g. p1 = r2, p2 = −r1 and p3 = r1−2r2.
Refer to [4] for further details on the theory.

1 The number of regions in the basis is bounded by the number of events [4].
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3 Features of the Tool

The typical workflow of the tool can be seen in Fig. 2. Any object whose behavior
might be mapped into a TS can be considered. Several tools exist that are
able to perform this kind of conversions. Additionally, together with rbminer
we provide some helper applications, like log2ts, which converts a log into a
TS.

rbminer is implemented in C++, and uses the STL library for data structures
and input parsing. The tool has the following features:

Explicit compact representation. Regions are represented as vectors of
integers, in which the multiplicity of one state corresponds to one vector
position. Although this imposes a limit on the size of the TS that can be
mined, it turns out that this strategy is usually more effective than using a
symbolic representation, as the experiments show.

Mining of k-bounded PNs. The use of general regions enables the derivation
of k-bounded PNs [2], where the parameter k is selected by the user.

Parameterized search. The tool contains three parameters that control the ex-
ploration of the region basis: the aggregation factor (agg), and the allowed val-
ues for the combination coefficients (minval and maxval). Since any region r
can be expressed as

∑
i ci · ri, the algorithm will only explore combinations in

which minval ≤ ci ≤ maxval and the number of non-zero ci coefficients is, at
most, agg.

Removal of redundant regions. Regions whose removal does not change the
behavior of the derived PN are removed. These regions correspond to re-
dundant places in the PN, and therefore the structure of the net is
simplified.

Efficient conversion of logs into TSs. The log2ts tool has three conversion
modes available, namely sequential, multiset and CFM. The latter method
is able to dramatically reduce the size of the obtained TS at the cost of
producing more overapproximated nets in some cases [4].

Causality heuristic search. Analyzing the causality between the events in
the TS, important relations between events can be detected and later be
used to speed up the exploration of the region space. This is a new feature
with respect to the original implementation of [4].
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1 r, s, sb, p, ac, ap, c

2 r, sb, em, p, ac, ap, c

3 r, sb, p, em, ac, rj, rs, c

4 r, em, sb, p, ac, ap, c

5 r, sb, s, p, ac, rj, rs, c

6 r, sb,p, s, ac, ap, c

7 r, sb, p, em, ac, ap, c

(a)

r

sb

s

em

p

ac

rj

ap

rs

c

(b)

Fig. 3. Process mining: (a) log, (b) Mined Petri net

4 Examples

Process Mining

Imagine that we have a set of traces and want a PN that covers all these traces:
this is one of the big challenges of Process Mining [6]. Fig. 3(b) shows a small
log describing the process of handling customer orders. The log contains seven
traces with the following activities: r=register, s=ship, sb=send bill, p=payment,
ac=accounting, ap=approved, c=close, em=express mail, rj=rejected, and rs=
resolve. By using the helper application log2ts, a TS can be obtained (not
shown) for which rbminer derives the PN in Fig. 3(b). The region basis for the
example contained only 8 regions.

Synthesis of Concurrent Systems

As Figure 2 shows, several models for concurrent systems can be mapped to a
state-based representation like the transition system. However, due to the well
known state explosion problem, the TS representation of these systems is typically
large and not good for visualization. In contrast, a PN is often a very good model
for concurrent systems, given that concurrency is represented explicitly. Fig. 4(a)
shows a complex TS describing a concurrent system. The region basis found by
rbminer contains only 7 regions, and the gradients for each region in the basis
are shown in (b) (order (a0, a1, . . . , a7)). Finally, by exploring this region basis,
rbminer is able to derive the 2-bounded PN in (c) that synthesizes the TS.
Clearly, the succinctness of the PN model in representing large and concurrent
systems is very nicely illustrated in this example.

5 Experiments

We compare the performance and the quality of rbminer with respect to two
other tools for similar purposes: the Parikh miner in the ProM tool and genet.
The Parikh miner [11] uses the language-based theory of regions combined with
ILP, genet implements the classical TS-based approach with a symbolic repre-
sentation of the TSs, and the rbminer tool implements two methodologies, the
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Fig. 4. (a) A TS with 8 events and 2187 states (b) The gradients of the 7 regions in

the basis (c) Mined PN

standard approach rbminer-std of [4], and a novel causality heuristic approach
named rbminer-causal which was developed recently.

The first set of experiments uses some logs from [11]. Since genet and rbminer
need a TS as an input, we have used the log2ts application to build the
TSs. For each method we provide the number of places (column P) of the
mined PN, the time in seconds to compute it, and its appropriateness [12].
This metric quantifies to which extent the model describes the log and the
simplicity of the net using a number between 0 (poor) and 1 (excellent). We
limited the amount of memory and time available to 1Gb and 10000 seconds,
respectively.

The benefits of using basis of regions are twofold. First, the memory con-
sumption is very low: in all cases the maximum amount of memory used by
rbminer was 10Mb. This is a clear advantage over other approaches, notably
genet, which is very memory demanding. Second, the running times are, in
general, much lower, while the quality is quite similar across all tools.

In addition to these experiments on logs, we have also mined cyclic TSs that
represent: a system with shared resources (SR), a producer-consumer environ-
ment (PC), and a pipeline of n processes (BP).

Table 1. Mining of large logs, with parameters agg = 4, minval = −1, maxval = 1

and k = 1 for rbminer

genet Parikh rbminer-std rbminer-causal

Log P Time App. P Time App. P Time App. P Time App.

a32f0n00 5 31 1 0.95 31 112 0.93 31 2 0.95 31 1 0.95

t32f0n00 5 memout 30 9208 0.99 30 5 0.92 30 4 0.92

a42f0n00 5 timeout 44 1557 1.0 46 33 1.0 46 26 1.0
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Table 2 compares the mining capabilities of genet and rbminer, since Parikh
cannot handle cyclic TSs. In both cases, no extra behavior was included in
the PN, but the nets were very different in terms of compactness. In all cases
rbminer could reconstruct the original PNs from which the TSs were derived.
The aggregation factor was set in each case to the value where synthesis was
achieved. For some benchmarks these values are quite low, showing that in
some cases a very shallow exploration of the region space might suffice. This
contributes to a better performance of rbminer, since the methods underly-
ing are dominated by the aggregation factor and the number of regions in the
basis.

Table 2. Mining of cyclic TSs

genet rbminer-std rbminer-causal

Bench. P Time Agg P Time Agg P Time

PC(9,6) 62 332 10 20 1 10 20 1

SR(7,5) 241 1190 7 29 1565 7 29 52

BP(10) timeout 2 20 0.1 2 20 1

6 Conclusions, Tool Availability and Acknowledgements

This paper presents rbminer, a tool to support the discovery of PNs from TSs.
The tool has reached a mature state after incorporating recent enhancements to
the theory with respect to [4]. There is a web page for the tool:

http://www.lsi.upc.edu/{$\sim$}jcarmona/rbminer/rbminer.html

where related papers, a tutorial and the Linux binaries can be obtained. This
work has been supported by projects TIN2007-66523 and TIN2007-63927.
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