

Lecture Notes in Computer Science 6084
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Martin Wirsing Martin Hofmann
Axel Rauschmayer (Eds.)

Trustworthly
Global Computing

5th International Symposium, TGC 2010
Munich, Germany, February 24-26, 2010
Revised Selected Papers

13

Volume Editors

Martin Wirsing
LMU München
Institut für Informatik
Oettingenstr. 67
80538 Munich, Germany
E-mail: wirsing@pst.ifi.lmu.de

Martin Hofmann
LMU München
Institut für Informatik
Oettingenstr. 67
80538 Munich, Germany
E-mail: mhofmann@informatik.uni-muenchen.de

Axel Rauschmayer
LMU München
Institut für Informatik
Oettingenstr. 67
80538 Munich, Germany
E-mail: axel.rauschmayer@ifi.lmu.de

Library of Congress Control Number: 2010933643

CR Subject Classification (1998): K.6.5, D.4.6, C.2, F.4, E.3, D.2

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

ISSN 0302-9743
ISBN-10 3-642-15639-8 Springer Berlin Heidelberg New York
ISBN-13 978-3-642-15639-7 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

springer.com

© Springer-Verlag Berlin Heidelberg 2010
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper 06/3180

Preface

Global computing refers to computation over “global computers,” i.e., compu-
tational infrastructures available globally and able to provide uniform services
with variable guarantees for communication, cooperation and mobility, resource
usage, security policies and mechanisms, etc., with particular regard to exploit-
ing their universal scale and the programmability of their services. As the scope
and computational power of such global infrastructures continue to grow, it be-
comes more and more important to develop methods, theories and techniques
for trustworthy systems running on global computers.

This book constitutes the thoroughly refereed proceedings of the fifth edi-
tion of the International Symposium on Trustworthy Global Computing (TGC
2010) that was held in Munich, Germany, February 24-26, 2010. The Symposium
on Trustworthy Global Computing is an international annual venue dedicated
to safe and reliable computation in global computers. It focuses on providing
frameworks, tools, and protocols for constructing well-behaved applications and
on reasoning rigorously about their behavior and properties. The related models
of computation incorporate code and data mobility over distributed networks
with highly dynamic topologies and heterogeneous devices.

At the symposium, there were seven invited talks by Gilles Barthe, Rocco
De Nicola, Ugo Montanari, Giuseppe Persiano, Davide Sangiorgi, Don Sannella,
and Vladimiro Sassone. They resulted in six papers that are included in this
book. It also contains carefully revised versions of the 17 contributed papers;
these versions take into account the referees’ reports. The Program Committee
selected these papers from 31 submissions. Every submission was reviewed by
three members of the Program Committee. In addition, the Program Committee
sought the opinions of additional referees, selected because of their expertise in
particular topics.

Many persons contributed to the success of TGC 2010. We offer sincere thanks
to all of them. We are grateful to Andrei Voronkov for his EasyChair system that
helped us to manage the submissions, the reviewing process, and the discussions
of the Program Committee. We would like to thank the authors who submitted
papers to the symposium, the members of the Program Committee, and the
additional reviewers for their excellent work. We would also like to thank the
invited speakers to TGC 2010. We are particularly grateful to the local organizers
Nora Koch, Marianne Busch, Sonja Harrer, Anton Fasching, Christian Kroiß,
Philip Mayer, Axel Rauschmayer, and Gefei Zhang for their invaluable work
and effort in preparing and running the symposium. We are grateful to Springer
for their helpful collaboration and assistance in producing this volume. Finally,
we thank all symposium participants for the lively discussions and their deep
insights into the subject matter.

May 2010 Martin Hofmann
Martin Wirsing

Organization

Steering Committee

Gilles Barthe IMDEA Software, Madrid, Spain
Rocco De Nicola Università di Firenze, Italy
Christos Kaklamanis University of Patras, Greece
Ugo Montanari Università di Pisa, Italy
Davide Sangiorgi Università di Bologna, Italy
Don Sannella University of Edinburgh, UK
Vladimiro Sassone University of Southampton, UK
Martin Wirsing LMU München, Germany

Program Chairs

Martin Hofmann LMU München, Germany
Martin Wirsing LMU München, Germany

Programme committee

Gilles Barthe IMDEA Software, Madrid, Spain
Roberto Bruni Università di Pisa, Italy
Rocco De Nicola Università di Firenze, Italy
Howard Foster Imperial College, UK
Samir Genaim Universidad Complutense de Madrid, Spain
Stefania Gnesi Istituto di Scienza e Tecnologie

dell’Informazione “A. Faedo”, Pisa, Italy
Martin Hofmann LMU München, Germany (Co-chair)
Thomas Jensen IRISA, Rennes, France
Christos Kaklamanis University of Patras, Greece
Alberto Marchetti-Spaccamela Università di Roma “La Sapienza”, Italy
Paddy Nixon University College Dublin, Ireland
Giuseppe Persiano Università di Salerno, Italy
Geppino Pucci Università di Padova, Italy
Paola Quaglia Università di Trento, Italy
Don Sannella University of Edinburgh, UK
Vladimiro Sassone University of Southampton, UK
Maria J. Serna Universitat Politècnica de Catalunya, Spain
Carolyn Talcott SRI International, USA
Emilio Tuosto University of Leicester, UK
Nobuko Yoshida Imperial College London, UK

VIII Organization

Martin Wirsing LMU München, Germany (Co-chair)
Franco Zambonelli Università di Modena e Reggio Emilia, Italy

Local Organization

Marianne Busch
Anton Fasching
Sonja Harrer
Nora Koch (Chair)
Christian Kroiß
Philip Mayer
Axel Rauschmayer
Gefei Zhang

External Reviewers

Lucia Acciai
Carme Alvarez
Martin Berger
Nathalie Bertrand
Laura Bocchi
Chiara Bodei
Michele Boreale
Andrea Bracciali
Sara Capecchi

Marco Carbone
Ehab ElSalamouny
Massimo Felici
Rémy Haemmerlé
Daniel Hedin
César Kunz
Diego Latella
Alberto Lluch Lafuente
Michele Loreti

Kenneth MacKenzie
Franco Mazzanti
Carlo Montangero
Alberto Pettarin
Rosario Pugliese
Jaroslav Sevcik
Francesco Tiezzi

Table of Contents

I Invited Talks

Symbolic and Analytic Techniques for Resource Analysis of Java
Bytecode . 1

David Aspinall, Robert Atkey, Kenneth MacKenzie, and
Donald Sannella

Perspectives in Certificate Translation . 23
Gilles Barthe and César Kunz

Uniform Labeled Transition Systems for Nondeterministic,
Probabilistic, and Stochastic Processes . 35

Marco Bernardo, Rocco De Nicola, and Michele Loreti

Toward a Game-Theoretic Model of Grid Systems . 57
Maria Grazia Buscemi, Ugo Montanari, and Sonia Taneja

Functions as Processes: Termination and the λ̄μμ̃-calculus 73
Matteo Cimini, Claudio Sacerdoti Coen, and Davide Sangiorgi

Predicate Encryption for Secure Remote Storage (Abstract) 87
Giuseppe Persiano

Trust in Crowds: Probabilistic Behaviour in Anonymity Protocols 88
Vladimiro Sassone, Ehab ElSalamouny, and Sardaouna Hamadou

II Types and Processes

Expressiveness of Generic Process Shape Types . 103
Jan Jakub̊uv and J.B. Wells

A Java Inspired Semantics for Transactions in SOC 120
Laura Bocchi and Emilio Tuosto

Responsive Choice in Mobile Processes . 135
Maxime Gamboni and António Ravara

A Model of Evolvable Components . 153
Fabrizio Montesi and Davide Sangiorgi

X Table of Contents

III Games and Concurrent Systems

The Impact of Altruism on the Efficiency of Atomic Congestion
Games . 172

Ioannis Caragiannis, Christos Kaklamanis,
Panagiotis Kanellopoulos, Maria Kyropoulou, and
Evi Papaioannou

Stressed Web Environments as Strategic Games: Risk Profiles and
Weltanschauung . 189

Joaquim Gabarro, Peter Kilpatrick, Maria Serna, and Alan Stewart

An Algebra of Hierarchical Graphs . 205
Roberto Bruni, Fabio Gadducci, and Alberto Lluch Lafuente

Property-Preserving Refinement of Concurrent Systems 222
Liliana D’Errico and Michele Loreti

IV Certification of Correctness

Certificate Translation for the Verification of Concurrent Programs 237
César Kunz

Certified Result Checking for Polyhedral Analysis of Bytecode
Programs . 253

Frédéric Besson, Thomas Jensen, David Pichardie, and
Tiphaine Turpin

V Tools and Languages

A Novel Resource-Driven Job Allocation Scheme for Desktop Grid
Environments . 268

Paolo Bertasi, Alberto Pettarin, Michele Scquizzato, and
Francesco Silvestri

A Framework for Rule-Based Dynamic Adaptation 284
Ivan Lanese, Antonio Bucchiarone, and Fabrizio Montesi

CarPal: Interconnecting Overlay Networks for a Community-Driven
Shared Mobility . 301

Vincenzo Ciancaglini, Luigi Liquori, and Laurent Vanni

Refactoring Long Running Transactions: A Case Study 318
Gianluigi Ferrari, Roberto Guanciale, Daniele Strollo, and
Emilio Tuosto

Table of Contents XI

VI Probabilistic Aspects

Approximate Model Checking of Stochastic COWS 335
Paola Quaglia and Stefano Schivo

Probabilistic Aspects: Checking Security in an Imperfect World 348
Chris Hankin, Flemming Nielson, and Hanne Riis Nielson

A Tool for Checking Probabilistic Properties of COWS Services 364
Igor Cappello and Paola Quaglia

Author Index . 379

Symbolic and Analytic Techniques for Resource
Analysis of Java Bytecode

David Aspinall1, Robert Atkey2, Kenneth MacKenzie1, and Donald Sannella1

1 School of Informatics, The University of Edinburgh, Edinburgh
2 Computer and Information Sciences, University of Strathclyde, Glasgow

Abstract. Recent work in resource analysis has translated the idea of

amortised resource analysis to imperative languages using a program

logic that allows mixing of assertions about heap shapes, in the tradition

of separation logic, and assertions about consumable resources. Sepa-

rately, polyhedral methods have been used to calculate bounds on num-

bers of iterations in loop-based programs. We are attempting to combine

these ideas to deal with Java programs involving both data structures

and loops, focusing on the bytecode level rather than on source code.

1 Introduction

The ability to move code and other active content smoothly between execution
sites is a key element of modern computing platforms. However, it presents
huge security challenges, aggravating existing security problems and presenting
altogether new ones. One challenging security issue in this context is control of
resources (space, time, etc.), particularly on small devices, where computational
power and memory are very limited.

A promising approach to security is proof-carrying code [31], whereby mo-
bile code is equipped with an independently verifiable certificate consisting of a
condensed proof of its security properties. A major advantage of this approach
is that it sidesteps the difficult issue of trust: there is no need to trust either
the code producer, or a centralized certification authority. Work on the PCC
approach to resource security includes [35] and [7].

This approach requires infrastructure on the side of the code producer as
well as the code consumer. The code producer needs to produce not just down-
loadable code, as before, but also a proof of its security properties. The code
consumer needs a way of checking such proofs. Arbitrarily complex methods
may be used by the code producer to construct proofs, while their verification
by the code consumer is a straightforward check of validity. The burden for the
code producer is considerably eased by the use of a certifying compiler which em-
ploys static analysis of the source code alongside standard compilation to supply
the information required to produce these proofs automatically. The information
provided by the analysis — in the case of resource analysis, concerning upper
bounds on usage of space, time, etc. — is potentially of great interest to the
code producer as an aid to the development of high-quality code, prior to and
independent of its use for producing security certificates.

M. Wirsing, M. Hofmann, and A. Rauschmayer (Eds.): TGC 2010, LNCS 6084, pp. 1–22, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

2 D. Aspinall et al.

Recent developments in static analysis methods now makes it feasible to con-
sider an alternative but related approach to security. Instead of requiring the
code producer to supply a proof, whether via static analysis of source code or
by other means, one can perform an analogous analysis directly on the down-
loadable bytecode to determine its properties. This could be done by the code
consumer on receipt of downloadable code, dispensing with the need for a proof.
Alternatively, the code producer could perform the analysis and use the result
to produce a proof certificate. An interesting third alternative is that an in-
termediary, for example a software distributor, could perform such an analysis
on uncertified bytecode, transforming it to proof-carrying code. The fact that
the original source code is not required is essential to making this feasible in
commercial practice.

Here we consider two quite different approaches to the analysis of resource
consumption of Java bytecode. The first, in §2, translates the idea of amortised
resource analysis to imperative languages to enable automated resource analysis
of programs that iterate through data structures. The second, in §3, uses poly-
hedral methods to calculate resource bounds of iterative procedures controlled
by numerical quantities. In §4 we briefly describe some ideas for future work
and plans for integrating the two kinds of analysis to deal with Java programs
involving both data structures and loops.

2 Amortised Resource Analysis

Amortised resource analysis is a technique for specifying and verifying resource
bounds of programs by exploiting the tight link between the structure of the
data that programs manipulate and the resources they consume. For instance,
a program that iterates through a list doing something for every element can
either be thought of as requiring n resources, where n is the length of list, or
as requiring 1 resource for every element of the list, where we never know the
global length property of the list. Taking the latter view can simplify both the
specification and the verification of programs’ resource usage.

This work conceptually builds on the work of Tarjan and Sleator on amor-
tised complexity analysis [36], where “credits” and “debits” may be virtually
stored within data structures and used to pay for expensive operations. By stor-
ing up credit for future operations in a data structure, we amortise the cost
of operations on the data structure over time. Hofmann and Jost [21] applied
this technique to first-order functional programs to yield an automated resource
analysis. Atkey [3] has recently adapted this work to integrate with Separation
Logic [22,34] to extend the automated technique to pointer-manipulating imper-
ative programs. In this section we give an overview of Atkey’s work and describe
some examples.

2.1 Integrating the Banker’s Method and Separation Logic

Separation Logic is built upon a notion of resources and their separation. The
assertion A ∗ B holds for a resource if it can be split into two resources that

Symbolic and Analytic Techniques for Resource Analysis of Java Bytecode 3

make A true and B true respectively. Resource separation enables local reasoning
about mutation of resources; if the program mutates the resource associated with
A, then we know that B is still true on its separate resource.

For the purposes of complexity analysis, we want to consider resource con-
sumption as well as resource mutation, e.g. the consumption of time as a program
executes. To see how Separation Logic-style reasoning about resources helps in
this case, consider the standard inductively defined list predicate from Separa-
tion Logic, augmented with an additional proposition R denoting the presence
of a consumable resource for every element of the list:

listR(x) ≡ x = null ∧ emp

∨∃y, z. [x data�→ y] ∗ [x next�→ z] ∗ R ∗ listR(z)

See Atkey [3] for a complete description of the assertion logic. We can represent
a heap H and a consumable resource r that satisfy this predicate graphically:

H

r

null
a

R

b

R

c

R

d

R

So we have r, H |= listR(x), assuming x points to the head of the list. Here
r = R · R · R · R—we assume that consumable resources form a commutative
monoid—and r represents the resource that is available for the program to use
in the future. We can split H and r to separate out the head of the list with its
associated resource:

H1

r1

H2

r2

null
a

R

b

R

c

R

d

R

This heap and resource satisfy r1 ·r2, H1	H2 |= [x data�→ a]∗ [x next�→ y]∗R∗ listR(y),
where H1	H2 = H , r1 ·r2 = r and we assume that y points to the b element. Now
that we have separated out the head of the list and its associated consumable
resource, we are free to mutate the heap H1 and consume the resource r1 without
affecting the tail of the list, so the program can move to a state:

H1 H2

r2

null
A b

R

c

R

d

R

where the head of the list has been mutated to A and the associated resource
has been consumed; we do not need to do anything special to reason that the
tail of the list and its associated consumable resource are unaffected.

4 D. Aspinall et al.

The combined assertion about heap and consumable resource describes the
current shape and contents of the heap and also the available resource that
the program may consume in the future. By ensuring that, for every state in
the program’s execution, the resource consumed plus the resource available for
consumption in the future is less than or equal to a predefined bound, we can
ensure that the entire execution is resource bounded.

Intermixing resource assertions with Separation Logic assertions about the
shapes of data structures, as we have done with the resource-carrying listR pred-
icate above, allow us to specify amounts of resource that depend on the shape of
data structures in memory. By the definition of listR, we know that the amount of
resource available to the program is proportional to the length of the list, with-
out having to do any arithmetic reasoning about lengths of lists. The association
of resources with parts of a data structure is exactly the banker’s approach to
amortised complexity analysis proposed by Tarjan [36].

In the exposition above we have used a list predicate listR(x) that describes a
list on the heap with a fixed number of resources per element. Using this predicate
only allows the specification of resource usage that is linear in the lengths of lists.
Recent work by Hoffmann and Hofmann [20] on amortised resource analysis for
polynomial bounds lifts this restriction. Preliminary experiments with combining
the two techniques have been promising.

2.2 Implementation

The combination of Separation Logic and amortised resource analysis has been
implemented in two stages. We have formalised and mechanically checked a
proof of soundness for the combined program logic for a simplified subset of
Java bytecode in Coq with a shallowly embedded assertion logic. On top of
this we have implemented a Coq-verified verification condition generator for a
deeply embedded assertion logic and extracted this to OCaml. In OCaml we
have implemented a proof search procedure that solves verification conditions
using a similar technique to other automated verification tools for Separation
Logic [11]. See Atkey [3] for more details. In our proof search implementation,
we can leave resource annotations, e.g. the resource associated with each element
of a list, as variables to be filled in by a linear program solver. Our tool requires
annotation of programs with loop invariants, but can infer the resource portion.
This process is demonstrated in the next section.

2.3 A More Complex Example

The example shown in the previous section, where a program iterates through
a list consuming resources as it proceeds, only demonstrates an extremely sim-
ple, albeit common, pattern. We now describe a more complex list manipulat-
ing program that shows the benefits of the amortised approach. This example

Symbolic and Analytic Techniques for Resource Analysis of Java Bytecode 5

demonstrates the combination of reasonably complex pointer manipulation with
resource reasoning. Most of the technical details arise from dealing with the
heap-shape behaviour of the program; the resource bounds simply drop out of
shape constraints thanks to the inference of resource annotations.

Consider the Java method declaration shown in Figure 11 that describes the
inner loop of an in-place merge sort algorithm for linked lists. The method takes
two arguments: list, a reference to the head node of a linked list; and k, an
integer. The integer argument dictates the sizes of the sublists that the method
will be merging in this pass. In short, the method steps through the list 2*k
elements at a time, merging the two length k sublists each time. The outer loop
does the 2*k stepping, and the inner loop does the merging. To accomplish a full
merge sort, this method would be called log2(n) times with doubling k, where n
is the length of the list.

Assume that we wish to account for the number of swapping operations per-
formed by this method, i.e. the number of times that the third branch of the if
statement in the inner loop is executed. We accomplish this in our implementa-
tion by inserting a special consume instruction at this point.

The pre- and post-conditions of the method are as follows:

Pre(mergeInner) : list
= null∧ (lseg(x, list, null) ∗ Ry)
Post(mergeInner) : lseg(0, retval, null)

The precondition states that the first argument points to a list segment ending
with null, with x amount of resource associated with every element of the list,
and y amount of additional resource that may be used. The values of x and y will
be inferred by a linear program solver. The condition list
= null is a safety
condition required for the method to not throw a null pointer exception.

The outer loop in the method needs a disjunctive invariant corresponding to
whether this is the first iteration or a later iteration.

(lseg(o1, list, tail) ∗ [tail next�→ ?] ∗ [tail data�→ ?] ∗ lseg(o2, p, null) ∗ Ro3)
∨ ((list = null ∧ tail = null) ∗ lseg(o4, p, null) ∗ Ro5)

The first disjunct is used on normal iterations of loop: the variable list points to
the list that has been processed so far, ending at tail; p points to the remainder
of the list that is to be processed. We have annotated these lists with the resource
variables o1 and o2 that will contain the resources associated with each element
of these lists. The second disjunct covers the case of the first iteration, when
list and tail are null and p points to the complete list to be processed.

Moving on, we consider the first inner loop that advances the pointer q by k
elements forward, thus splitting the list ahead of p into a k-element segment and
the rest of the list. The next loop will merge the first k-length segment with the

1 Adapted from the C code at

http://www.chiark.greenend.org.uk/~sgtatham/algorithms/listsort.html.

http://www.chiark.greenend.org.uk/~{}sgtatham/algorithms/listsort.html

6 D. Aspinall et al.

public static Node mergeInner (Node list, int k) {

Node p = list;

Node tail = null;

list = null;

while (p != null) {

Node q = p;

for (int i = 0; i < k; i++) {

q = q.next;

if (q == null) break;

}

Node pstop = q;

int qsize = k;

while (p != pstop || (qsize > 0 && q != null)) {

Node e;

if (p == pstop) {

e = q;

q = q.next;

qsize--;

} else if (qsize == 0 || q == null) {

e = p;

p = p.next;

} else if (p.data <= q.data) {

e = p;

p = p.next;

} else {

e = q;

q = q.next;

qsize--;

}

if (tail != null)

tail.next = e;

else

list = e;

tail = e;

}

p = q;

}

tail.next = null;

return list;

}

Fig. 1. Inner loop of an in-place linked-list merge sort

Symbolic and Analytic Techniques for Resource Analysis of Java Bytecode 7

k-length prefix of the second segment. It is convenient for our implementation
to split out this inner loop into another method2, with the following signature:

public static Node advance (Node l, int k)

The argument l points to a linked list, and the method will advance k elements
through the list (or until the end) and return a pointer to the split point. The
pre- and post-condition of this method are:

Pre(advance) : lseg(a0, l, null)
Post(advance) : lseg(a0, l, retval) ∗ lseg(a0, retval, null)

Again, we have left the resource annotation on the elements of the list as a
variable a0, to be filled in by the linear solver. The appearance of the same
variable in the pre- and post-condition implies that we expect this resource to
be preserved by the method.

Proceeding though our main method, the invariant of the inner loop is as
follows, again in two pieces according to whether it is the first or second iteration
of the outer loop:

(lseg(i1, list, tail) ∗ [tail next�→ ?] ∗ [tail data�→ ?]
∗ lseg(i2, p, pstop) ∗ lseg(i3, q, null) ∗ Ri4)

∨ ((list = null∧ tail = null) ∗ lseg(i5, p, pstop) ∗ lseg(i6, q, null) ∗ Ri7)

The first part of each disjunct is as before, stating that list to tail contains
the part of list that has been processed. Since we have now split the remainder
of the list into two pieces we have two separate list segments referenced by p and
q pointing to the parts of the list that are to be merged.

Running this example through our implementation produces the solution x =
1, y = 0 for the precondition resource annotations. This indicates that each
element of the list needs to contain one resource for every element. For the outer
loop’s invariant, we obtain o2 = o4 = 1 and all the others are 0. This indicates
that the list we have processed has had all its resources consumed, while the
list remaining to be processed still has associated resources. This is as expected
for a loop iterating through a list. The specification of advance is completed by
inferring a0 = 1, indicating that advance preserves the resources associated with
the list. Finally the inner loop’s invariant has i2 = i3 = i5 = i6 = 1 and all others
0, indicating that the two list segments that are remaining to be processed have
associated resources, while the processed segments do not.

Comparisons to other techniques. While we have had to work to supply
the loop invariants for our implementation, we note that these invariants may be
inferred by other tools, for example [11], and the resource variables automatically
inserted on the list segment parts. The key to the amortised approach is the
tight connection between shape invariants, which is a complex but well-studied
problem, and resource usage.
2 This is because our implementation works on unstructured bytecode, and so cannot

easily apply Separation Logic’s frame rule to modularise the reasoning about the

loop. Using a separate method allows application of the frame rule.

8 D. Aspinall et al.

Most other techniques for resource usage analysis that handle data structures
do so by considering the sizes of structures. The SPEED system of Gulwani
et al [19] can infer resource bounds for programs manipulating heap-based data
structures, but only via abstract interfaces. The specifications for these abstract
interfaces record the effect of the operations on the size of the data structure.
Thus, the technique is unable to cope with the kind of program that we have
presented above that uses direct pointer manipulation. Nevertheless, Gulwani et
al report impressive results on real-world Microsoft product code.

The COSTA system [2] can deal with some uses of direct pointer manipulation,
but accounts for the sizes of heap-based data structures by counting the length
of the longest path from a given reference. Thus, it cannot deal with programs
that demonstrate sharing on the heap; the Java method described above has
three pointers all pointing the same list in the inner loop.

One might also consider the use of Separation Logic to deal with sharing on
the heap, augmented with information on the sizes of heap-base data structures
to account for resource usage. So one would have a predicate lsegn(x, y) that
describes a list segment of length n from x to y, plus a “ghost variable” that
accounts for the consumed resources. We argue that the amortised approach
described here is simpler due to the differences in reasoning between the global
property of the length of a whole list, and the local property of each list element
having an associated amount of resource to be used. For example, consider the
specification of the advance method using sized structures:

Pre(advance) : lsegn
(l, null)

Post(advance) : ∃n1, n2. n1 + n2 = n ∧ (lsegn1(l, retval) ∗ lsegn2(retval, null))

We have had to introduce two existential variables indicating the sizes of the
lists returned by the method. These additional values have to then be related
back to the length of the original list by the calling method, and thence to
the resource consumption, requiring non-straightforward arithmetic reasoning.
The amortised approach exploits the shape-reasoning already present in Sepa-
ration Logic to account for resources. For further elaboration of this point, and
a demonstration of the use of amortised specification to improve information
hiding in specifications, see the functional queues example in [3].

3 Iteration and Geometry

The previous section has described a technique which can be used to analyse
the resource usage of procedures which manipulate heap-based data structures.
Here we will describe a mathematical technique which can be used to study
iterative procedures controlled by numerical quantities. One of our main interests
is in producing certifying analyses, and our description of the mathematics will
highlight aspects which are relevant to this problem.

We will look at some examples of Java methods which use iteration. For
simplicity, we will look at the problem of deciding how often the printlnmethod
is called, but we could equally be looking at object allocation or the transmission
of SMS messages.

Symbolic and Analytic Techniques for Resource Analysis of Java Bytecode 9

Here is an example with nested loops:

public static void m1() {
for (int i=1; i<=9; i++)

for (int j=1; j<=i && j<=7; j++)
System.out.println ("Hello");

}

For a more complicated example, consider this Java method where both loops
are controlled by method arguments:

public static void m2 (int p, int q) {
for (int i=0; i<=p; j++)

for (int j=0; j<=9 && i+j<=q; j++)
System.out.println ("Hello");

}

How can one tell how many times println is called in these methods? Consider
m1 again. Every time we visit the println statement we have the following
constraints on the program variables i and j:

1 ≤ i ≤ 9
1 ≤ j ≤ i

1 ≤ j ≤ 7.

Considered as inequalities over the real numbers, these define a trapezoidal region
P in the (i, j)-plane, and it is easy to see that the number of times the println
statement is executed is equal to |P ∩ Z2|, the number of lattice points3 within
the polygon P .

Fig. 2. Polygon P for method m1 Fig. 3. Lattice points in P

There is a rich mathematical theory of the enumeration of lattice points in
polytopes (the generalisation of polygons to higher dimensions) and we will
describe some aspects of this theory and its relations to program analysis.
3 i.e. points with integral coordinates.

10 D. Aspinall et al.

3.1 Halfspaces, Polyhedra, and Polytopes

Fix an integer d ≥ 0 and a1, . . . , ad ∈ R. We will be interested in solutions
(x1, . . . , xn) ∈ Rd of inequalities of the form

a1x1 + · · · + adxd ≤ b. (1)

In our applications, such inequalities will arise in the form of linear constraints
on program variables. Putting a = (a1, . . . , ad) and x = (x1, . . . , xd) we can
rewrite (1) as a · x ≤ b, and if a
= 0 then the set of x satisfying the inequality
defines a halfspace in Rd. For example, in R2 a halfspace consists of all points
lying on one side of some line.

A convex polyhedron in Rd is the intersection of a finite number of halfspaces,
and a bounded polyhedron (a polyhedron of finite extent, i.e. one which is con-
tained in some sphere) is called a polytope. It can be shown that a polytope
can equivalently be defined as the convex hull4 of a finite set of points in Rd

(the vertices of P). Moreover, if the constants in the inequalities defining P are
all rational (as will be the case in all of our applications), the vertices of P all
have rational co-ordinates. A convex polyhedron is thus the set of simultaneous
solutions to a system of n inequalities:

a11x1 + · · · + a1dxd ≤ b1

a21x1 + · · · + a2dxd ≤ b2

...
an1x1 + · · · + andxd ≤ bn.

The general theory of polyhedra has many applications in mathematics and in
computer science. See [6] for a survey of applications in computer science.

Note that if we restrict to natural numbers, then linear inequalities of the type
considered above are exactly the type of inequalities that occur in Presburger
arithmetic. It follows that the lattice point enumeration problem subsumes the
problem of counting solutions to systems of Presburger inequalities. This point
of view is examined in greater depth by Pugh in [33].

3.2 Ehrhart Polynomials

Many applications of polytope methods have been based on the work of Eugène
Ehrhart [17,18], who studied the problem of how the number of lattice points
inside a polytope grows as the size of the polytope increases. More precisely, let

P = conv{y1, . . . ,ym}
be a polytope and for n ∈ N, let

nP = conv{ny1, . . . , nym}
be the n-fold dilate of P . Ehrhart showed that |nP ∩Zd| is a quasipolynomial in
n, which may be thought of as a number of polynomials cyclically interleaved.
4 We denote the convex hull of a set X by conv X.

Symbolic and Analytic Techniques for Resource Analysis of Java Bytecode 11

Definition. A quasipolynomial of degree d is a function f : Z → Z of the form

f(n) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
f0(n) if n ≡ 0 (mod k)
f1(n) if n ≡ 1 (mod k)

...
fk−1(n) if n ≡ k − 1 (mod k).

where each fj is a polynomial of the usual kind and max{deg f0, . . . , deg fk−1} =
d. The (minimal) number k of polynomial components is called the quasiperiod
of f .

Theorem. Let P = conv{y1, . . . ,yn} be a rational convex polytope in Zd and
let

EP (n) = |nP ∩ Zd|.
Then EP (n) is a quasipolynomial of degree dim P and quasiperiod equal to the
greatest common denominator of the coordinates of the vertices of P .

The original proof of this theorem can be found in [17]; see also [9, Chapter 3].
There is a considerable amount of research applying Ehrhart polynomials to

program analysis and optimisation, especially in the field of high-performance
computing involving array calculations. One of the first papers in this area is due
to Clauss [14], with application to problems such as counting the flops executed
by a loop, the number of memory locations touched by a loop, the array elements
that must be transmitted from one processor to another during parallel array
computations, the maximum parallelism induced by a loop from a given time-
schedule, and several others. Further work appears in [25,15,38] for example.

The methods of Clauss seem to have remained largely within the high-
performance/parallel computing community (see [24,32] for example) until 2006,
when Braberman et al [13] (and see also [12]) showed how to adapt these tech-
niques to predict the memory usage of (iterative) Java programs; at present this
appears to be the only application of polytope methods within the programming
language community.

3.3 Drawbacks of Ehrhart Polynomials

The standard method used to compute Ehrhart polynomials is interpolation,
where the coefficients of a polynomial f of degree d are derived from the values
of the polynomial at d+1 distinct points: this data gives a (d+1)×(d+1) system
of linear equations in the coefficients of f which can then be solved by Gaussian
elimination or some other technique. In the case of a quasipolynomial of period
k and degree d, this requires us to solve k systems of (d+1)× (d+1) equations.
Recalling that the period k of the Ehrhart polynomial associated with a rational
polytope P is the greatest common denominator of the coefficients of the vertices

12 D. Aspinall et al.

of P , it becomes clear that a considerable amount of computation can be required
to calculate EP (n). In addition to this, the initial d+1 values of the k polynomial
components of the quasipolynomial have to be computed by explicitly counting
the number of lattice points in the dilates 0P, P, 2P, . . . , (d + 1)P . The number
k can be very large, even for relatively simple polytopes. For example, for the
triangular polytope

P = conv{(1
4 , 2

5), (5
7 , 2

11), (8
9 , 1

12)}

the quasiperiod of EP (n) is 13,680. Calculating the Ehrhart polynomial of P thus
requires the solution of 13,680 3 × 3 systems of linear equations, which would
be reasonably time-consuming. In fact, even if the dimension d is fixed, the time
taken to compute (via interpolation) the Ehrhart polynomial of a polytope with
n vertices can grow exponentially with n (see [38, §2.3]), whereas the methods
presented in the next section are polynomial in fixed dimension.

The sheer amount of data required to specify an Ehrhart function is also
something of a barrier in the context of certified resource analysis, where such
functions would have to be recorded in certificates accompanying mobile pro-
grams. This may not in fact be an insurmountable problem. One could possibly
find simpler functions which are upper bounds for the exact Ehrhart function
(see [30]); this would save space at the expense of a (hopefully small) loss of pre-
cision. Another issue is that Ehrhart functions are not arbitrary quasipolynomi-
als: for example it is clear that they are increasing functions, whereas a general
quasipolynomial can have polynomial components which are completely unre-
lated, leading to a function whose value oscillates drastically. It is conceivable
that the quasipolynomials arising as Ehrhart functions have special properties
which would enable them to be specified by a relatively small amount of data.
Unfortunately, it seems that very little is known about exactly which quasipoly-
nomials can occur as Ehrhart polynomials (see [28,10] for some partial results)
so at present it is difficult to be precise about the minimum of data required
to explicitly specify an Ehrhart function. However, the results discussed in the
next section may enable us to bypass this problem.

3.4 Generating Functions

The difficulty of computing Ehrhart polynomials suggests that they would be
unsuitable for polytope-based analyses in a certifying framework, but fortunately
some more recent results provide a much more efficient means of enumerating
lattice points. The basic tool in this theory is the generating function of a poly-
tope, which is a multivariate polynomial with a term for every lattice point in
the polytope. More concretely, suppose we have a polytope P in Rd. We will
consider polynomials in the variables x1, . . . , xd. Given v = (v1, ..., vd) ∈ Zd we
define

xv = xv1
1 xv2

2 · · ·xvd

d

Symbolic and Analytic Techniques for Resource Analysis of Java Bytecode 13

and the generating function of P is then defined by

GP (x) =
∑

{xv : v ∈ P ∩ Zd}

It is easy to see that the number of lattice points in P is given by GP (1, . . . , 1).
The obvious difficulty here is that the polynomial GP (x) will in general be enor-
mous and costly to compute. Recall our earlier example, which gave rise to a
trapezoidal region in R2:

for (i=1; i<=9; i++)
for (j=1; j<=i && j<=7; j++) B

For this relatively small example, the full generating function is

GP (x, y) = xy + x2y + x3y + x4y + x5y + x6y + x7y + x8y + x9y

+x2y2
+ x3y2

+ x4y2
+ x5y2

+ x6y2
+ x7y2

+ x8y2
+ x9y2

+x3y3
+ x4y3

+ x5y3
+ x6y3

+ x7y3
+ x8y3

+ x9y3

+x4y4
+ x5y4

+ x6y4
+ x7y4

+ x8y4
+ x9y4

+x5y5
+ x6y5

+ x7y5
+ x8y5

+ x9y5

+x6y6
+ x7y6

+ x8y6
+ x9y6

+x7y7
+ x8y7

+ x9y7

which is already quite unwieldy.
However, Alexander Barvinok [8] has recently shown how to express the gen-

erating function as a sum of short rational functions which are easily determined
from local information at the vertices of P . In the case above, we have

GP (x, y) =
xy

(1 − x)(1 − xy)
+

x9y

(1 − x−1)(1 − y)

+
x9y7

(1 − y−1)(1 − x−1)
+

x7y7

(1 − x)(1 − x−1y−1)

This function is easily computed if one knows the vertices and edges of the
polytope. Space constraints prevent us from describing the computation in detail
here, but a full explanation can be found in [8] or [9].

There is a problem here, though. To find |P ∩Z2| we have to evaluate GP (1, 1),
and the denominators of all of the terms above vanish at (1, 1). However, this
can be overcome. The singularity at (1, 1) is a removable singularity[1, §3.1], and
various techniques can be used to find lim(x,y)→(1,1) GP (x, y). For example, we
can find a common denominator to obtain

GP (x, y) =
xy − xy2 − x10y + x11y2 + x10y8 − x11y9 − x8y8 + x8y9

(1 − x)(1 − y)(1 − xy)

=
xy − xy2 − x10y + x11y2 + x10y8 − x11y9 − x8y8 + x8y9

1 − x − y + x2y + xy2 − x2y2

14 D. Aspinall et al.

and then repeatedly apply L’Hôpital’s rule5 to obtain∣∣P ∩ Z2
∣∣ = GP (1, 1)

= lim
(x,y)→(1,1)

xy − xy2 − x10y + x11y2 + x10y8 − x11y9 − x8y8 + x8y9

1 − x − y + x2y + xy2 − x2y2

= lim
(x,y)→(1,1)

∂
∂y

(xy − xy2 − x10y + x11y2 + x10y8 − x11y9 − x8y8 + x8y9)

∂
∂y

(1 − x − y + x2y + xy2 − x2y2)

= · · ·
=

−2 + 22 + 560 − 792 − 448 + 576

−2

= 42

which is indeed equal to the number of lattice points in Figure 3.
This calculation may appear to be quite complex in relation to our relatively

small example, but it is easy to automate6. Note also that the complexity of the
calculation depends only on the shape of the polytope, and not its size. If we
took a region of a similar shape but many times larger, all that would change
would be the exponents of x and y in the numerator of the generating function;
the calculation required to determine the number of lattice points would be
essentially identical to that above.

We have only considered Barvinok’s construction for integral polytopes here,
but the theory can be extended to rational polytopes as well. it is also possible
to recover most of the theory of Ehrhart polynomials, which is useful for the
study of parametric bounds. This approach is developed in detail by De Loera
et al in [26], which describes the implementation of Barvinok’s techniques in
the LattE package. De Loera’s work is applied to program analysis problems
in [38], where much of Clauss’ work is recast in terms of Barvinok’s methods.
Generating-function methods have recently been applied to the problem of Worst
Case Execution Time in [27]. See also [9] for an exposition of the mathematics
of the Barvinok theory.

3.5 Implementation

We have implemented (in OCaml) a Java compiler which uses lattice point enu-
meration techniques to calculate resource bounds for simple imperative pro-
grams. This is a preliminary implementation, but the results it produces are
quite promising; it can successfully (and automatically) produce precise bounds
for realistic matrix manipulation programs, for example (see Appendix A for
some examples).

5 If f and g are continuous at a and limx→a f(x) = limx→a g(x) = 0 then

limx→a f(x)/g(x) = limx→a f ′(x)/g′(x).
6 The calculation works particularly well for our example because our polygon is spe-

cially shaped; in the general case a more complex (but still tractable) computation

is required.

Symbolic and Analytic Techniques for Resource Analysis of Java Bytecode 15

Inferring linear constraints. The first phase of the compiler converts the
source program to an expression-based form in which all names have been re-
solved. This form is very similar to the source program, and preserves the explicit
control-flow structures of Java.

Our first task is to infer systems of linear constraints on program variables.
The expression-based form is converted into a control-flow graph and then be-
tween every pair of expressions we infer a polyhedron which bounds the values
of the integral variables in the program. This is done using a well-known tech-
nique due to Cousot and Halbwachs which involves abstract interpretation over
a domain of polyhedra. See [16] for details.

A number of polyhedral operations are required to perform this process. It is
necessary to have some representation of polyhedra and the means to convert
between vertex and facet representations, and methods for combining polyhe-
dra in various ways (intersection, join (polyhedral hull), widening, . . .) are also
needed. These can be difficult to program, but fortunately there are a number
of high-quality libraries available. We have chosen to use the Parma Polyhedra
Library (PPL) [5], which is a large C++ library providing all of the operations
we require, including polyhedral widening operators (see [4]) necessary to en-
sure termination of the abstract interpretation process. The PPL also provides
an OCaml interface which was convenient for linking with our OCaml-based
compiler.

Using the PPL it was a relatively straightforward task to implement the
Cousot-Halbwachs technique and obtain linear bounds on program variables.

Enumerating lattice points. Having determined polytopes controlling loop
iteration, it is necessary to enumerate lattice points in order to find bounds on
the number of loop executions. We have done this using the barvinok library7 of
Sven Verdoolaege, which implements the generating-function methods described
in §3.4, and this enables us to automatically find our desired resource bounds.

There are certain difficulties in this approach however; in particular, it can
be difficult to decide which variables control iterations, and what the dimension
of the relevant polytope should be. Our prototype compiler works with a repre-
sentation which has a fairly explicit representation of the loop structure of the
input program, and we have developed heuristics which enable us to determine
the relevant polytopes. This works well in practice, with realistic code examples,
but it is possible to devise examples which cause the analysis to give incorrect
results. However, we believe that this problem can be solved by methods which
will be described below.

3.6 Analysing Compiled Bytecode

We are currently attempting to apply lattice-point methods to the resource anal-
ysis of JVM bytecode methods. A basic problem here is that it can be difficult
to determine the precise loop structure of a program by examining the bytecode.
Consider the following examples.
7 http://freshmeat.net/projects/barvinok/

http://freshmeat.net/projects/barvinok/

16 D. Aspinall et al.

int i=0; int j=9; int k=0;

while (i<5) {

j=9;

while (j>0) {

println ("Hello");

j--;

}

i++;

}

Fig. 4.

int i=0; int j=100;

while (i<j) {

println ("Hello");

if (...) i++;

else j--;

}

Fig. 5.

In Figure 4, the entire inner loop is executed once for each iteration of the
outer loop, and the println method is called a total of 45 times; however, if the
statement j=9 is altered to k=9 then the “inner” loop is executed once only, so
println is executed only 9 times. This example shows that a very small change
(only a single instruction in the compiled bytecode will change) can have a major
effect on the resource usage of a program. The two versions of the program even
have identical control-flow graphs, so it is not easy to see how to perform an
accurate analysis of resource usage.

In Figure 5 the loop is controlled by two variables, but the iteration is one-
dimensional. How can we recognise such patterns?

Instrumenting the code with counters. Gulwani et al [19] have proposed a
technique for instrumenting with counter variables which can then be used for
resource analysis. The example in Figure 5 would become

int i=0; int j=100; int c=0;

while (i<j) {

println ("Hello");

if (...) {i++; c++;}

else {j--; c++}

}

The Cousot-Halbwachs technique can successfully analyse this example to
deduce that 0 ≤ c ≤ 99, allowing us to conclude that the loop is executed at
most 100 times.

An algorithm is described in [19] which automatically discovers a collection
of counters which can be used to instrument the back-edges in a control-flow
graph and then used to analyse the resource usage. The algorithm also gives
dependencies between counters which enable one to attack nested structures
such as the one in Figure 4 above. However, the results of the analysis can
be somewhat imprecise due to the fact that bounds associated with “nested”
counters are simply multiplied together to obtain an overall bound.

Symbolic and Analytic Techniques for Resource Analysis of Java Bytecode 17

We believe that the Gulwani algorithm can be refined to provide more pre-
cise relations between counters which can then be analysed using lattice-point
methods to give more precise bounds on loop iterations.

We are currently implementing an analysis for compiled JVM bytecode which
will combine the instrumentation technique of Gulwani with lattice-point meth-
ods and amortised analysis, and we hope that this will allow us to automatically
analyse the resource consumption of many programs.

4 Further Work

The lattice-point techniques described above only apply to single methods. We
would like to integrate our work with existing techniques to enable analysis of
complete Java applications (including recursion).

Some of the geometrical algorithms are computationally expensive; in par-
ticular, the complexity of certain polyhedral operations grows exponentially as
the dimension increases. We would like to develop certifying versions of these
algorithms so that the output can be verified without excessive effort.

Polyhedral libraries are written in C++ and are very large and complex (PPL
is over 100,000 lines long), and also depend on a number of external libraries
(for example the gmp library for unlimited-precision arithmetic). This provides
a lot of opportunities for bugs to creep in, and certifying algorithms would have
the added benefit that they would allow us to be sure of the correctness of the
output without having to trust the correctness of the libraries. See [29,23] for
more on this point of view.

One of our motivations is to measure memory consumption of Java programs.
A common assumption in research on this topic is that all objects from a given
class are of the same size. However, this will not always be the case: for example,
the Java BigInteger class represents integers with unlimited precision, and the
size of an object will depend on the integer involved. Furthermore, the size
of an object returned by a method may depend on the method arguments —
consider the BigInteger multiply method. We are not aware of any previous
research which is able to deal with this type of behaviour. However, there is
some recent work by Verdoolaege and Bruynooghe [37] on weighted generating
functions for polytopes, in which instead of considering the usual generating
function

∑{xv : v ∈ P ∩ Zd}, one considers a function of the form
∑{f(v)xv :

v ∈ P ∩Zd} in which each lattice point is weighted according to some function f .
This corresponds to the situation in which a nest of loops indexed by i1, . . . , id
allocates an amount of memory given by the function f(i1, . . . , id). It seems
plausible that this work would be useful for attacking the problem of “dependent
allocation” of the type discussed above.

Examination of a large number of examples suggests that most methods which
involve loops deal either with iteration over data structures or with iteration
controlled by integer variables, but that it is unusual to encounter situations
which involve both simultaneously, the most common such situation being the
conversion of a list to an array or vice versa. This makes us hopeful that a

18 D. Aspinall et al.

straightforward combination of our two techniques will enable the automatic
analysis of a substantial proportion of Java methods. There are however certain
situations where it is difficult to determine the amount of iteration required in
advance — for example, worklist algorithms where processing one element of a
queue may add an unpredictable number of new elements to the end of the queue,
or iterative floating-point numerical algorithms where the number of iterations
required is very sensitive to input data — and these remain beyond the scope of
our methods at present.

Acknowledgments

This work was funded in part by the Sixth Framework programme of the Euro-
pean Community under the MOBIUS project FP6-015905. This report reflects
only the author’s views and the European Community is not liable for any use
that may be made of the information contained therein.

This work was funded in part by the ReQueST grant (EP/C537068) from the
EPSRC e-Science Programme, and by the RESA grant (EP/G006032/1) from
the EPSRC Follow-on Fund.

References

1. Ahlfors, L.: Complex Analysis. International Series in Pure and Applied Mathe-

matics. McGraw-Hill, New York (1979)

2. Albert, E., Arenas, P., Genaim, S., Puebla, G., Zanardini, D.: COSTA: Design and

implementation of a cost and termination analyzer for Java bytecode. In: de Boer,

F.S., Bonsangue, M.M., Graf, S., de Roever, W.-P. (eds.) FMCO 2007. LNCS,

vol. 5382, pp. 113–132. Springer, Heidelberg (2008)

3. Atkey, R.: Amortised resource analysis with separation logic. In: Gordon, A.D.

(ed.) Programming Languages and Systems. LNCS, vol. 6012, pp. 85–103. Springer,

Heidelberg (2010)

4. Bagnara, R., Hill, P.M., Ricci, E., Zaffanella, E.: Precise widening operators for

convex polyhedra. Science of Computer Programming 58(1-2), 28–56 (2005)

5. Bagnara, R., Hill, P.M., Zaffanella, E.: The Parma Polyhedra Library: Toward a

complete set of numerical abstractions for the analysis and verification of hardware

and software systems. Science of Computer Programming 72(1-2), 3–21 (2008)

6. Bagnara, R., Hill, P.M., Zaffanella, E.: Applications of polyhedral computations to

the analysis and verification of hardware and software systems. Theor. Comput.

Sci. 410(46), 4672–4691 (2009)

7. Barthe, G., Beringer, L., Crégut, P., Grégoire, B., Hofmann, M., Müller, P., Poll,

E., Puebla, G., Stark, I., Vétillard, E.: MOBIUS: Mobility, ubiquity, security —

objectives and progress report. In: Montanari, U., Sannella, D., Bruni, R. (eds.)

TGC 2006. LNCS, vol. 4661, pp. 10–29. Springer, Heidelberg (2007)

8. Barvinok, A., Pommersheim, J.E.: An algorithmic theory of lattice points in poly-

hedra. In: New Perspectives in Algebraic Combinatorics (Berkeley, CA, 1996-1997).

Math. Sci. Res. Inst. Publ, vol. 38, pp. 91–147. Cambridge Univ. Press, Cambridge

(1999)

Symbolic and Analytic Techniques for Resource Analysis of Java Bytecode 19

9. Beck, M., Robins, S.: Computing the Continuous Discretely. Undergraduate Texts

in Mathematics, p. 226. Springer, Heidelberg (2007)

10. Beck, M., Sam, S., Woods, K.: Maximal periods of (Ehrhart) quasi-polynomials.

J. Combin. Theory Ser. A 115, 517–525 (2008)

11. Berdine, J., Calcagno, C., O’Hearn, P.W.: Symbolic execution with separation

logic. In: Yi, K. (ed.) APLAS 2005. LNCS, vol. 3780, pp. 52–68. Springer, Heidel-

berg (2005)

12. Braberman, V., Fernández, F., Garbervetsky, D., Yovine, S.: Symbolic prediction

of dynamic memory requirements. In: ISMM (2008)

13. Braberman, V., Garbervetsky, D., Yovine, S.: A static analysis for synthesizing

parametric specifications of dynamic memory consumption. Journal of Object

Technology 5(5), 31–58 (2006)

14. Clauss, P.: Counting solutions to linear and nonlinear constraints through Ehrhart

polynomials: applications to analyze and transform scientific programs. In: ICS

1996: Proceedings of the 10th International Conference on Supercomputing,

Philadelphia, Pennsylvania, United States, pp. 278–285 (1996)

15. Clauss, P., Loechner, V.: Parametric analysis of polyhedral iteration spaces. Journal

of VLSI Signal Processing 19, 179–194 (1998)

16. Cousot, P., Halbwachs, N.: Automatic discovery of linear restraints among variables

of a program. In: POPL 1978: Proceedings of the 5th Annual ACM Symposium on

Principles of Programming Languages, pp. 84–97. ACM Press, New York (1978)

17. Ehrhart, E.: Sur un problème de géométrie diophantienne linéaire. I. Polyèdres et

réseaux. J. Reine Angew. Math. 226, 1–29 (1967)

18. Ehrhart, E.: Sur un problème de géométrie diophantienne linéaire. II. Systèmes

diophantiens linéaires. J. Reine Angew. Math. 227, 25–49 (1967)

19. Gulwani, S., Mehra, K.K., Chilimbi, T.M.: SPEED: precise and efficient static esti-

mation of program computational complexity. In: POPL 2009: Proceedings of the

36th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-

guages, pp. 127–139 (2009)

20. Hoffmann, J., Hofmann, M.: Amortized resource analysis with polynomial po-

tential. In: Gordon, A.D. (ed.) Programming Languages and Systems. LNCS,

vol. 6012, pp. 287–306. Springer, Heidelberg (2010)

21. Hofmann, M., Jost, S.: Static prediction of heap space usage for first-order func-

tional programs. In: POPL 2003: Proceedings of the 30th ACM SIGPLAN-SIGACT

Symposium on Principles of Programming Languages, pp. 185–197 (2003)

22. Ishtiaq, S., O’Hearn, P.W.: BI as an assertion language for mutable data structures.

In: POPL 2001: Proceedings of the 28th ACM SIGPLAN-SIGACT Symposium on

Principles of Programming Languages, pp. 14–26 (January 2001)

23. Kratsch, D., McConnell, R.M., Mehlhorn, K., Spinrad, J.P.: Certifying algorithms

for recognizing interval graphs and permutation graphs. In: SODA 2003: Proceed-

ings of the Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms,

pp. 158–167 (2003)

24. Lengauer, C.: Loop parallelization in the polytope model. In: Best, E. (ed.) CON-

CUR 1993. LNCS, vol. 715, pp. 398–416. Springer, Heidelberg (1993)

25. Loechner, V., Wilde, D.K.: Parameterized polyhedra and their vertices. Int. J. of

Parallel Programming 25, 25–26 (1997)

26. De Loera, J.A., Hemmecke, R., Tauzer, J., Yoshida, R.: Effective lattice point

counting in rational convex polytopes. Journal of Symbolic Computation 38, 1273–

1302 (2004)

20 D. Aspinall et al.

27. Lokuciejewski, P., Cordes, D., Falk, H., Marwedel, P.: A fast and precise static loop

analysis based on abstract interpretation, program slicing and polytope models. In:

CGO 2009: Proceedings of the 2009 International Symposium on Code Generation

and Optimization, pp. 136–146 (2009)

28. McAllister, T.B.: Coefficient functions of the Ehrhart quasi-polynomials of rational

polygons. In: ITSL, pp. 114–118. CSREA Press (2008)

29. K. Mehlhorn, A. Eigenwillig, K. Kanegossi, D. Kratsch, R. McConnel, U. Meyer,

J. Spinrad. Certifying algorithms (a paper under construction) (2005),

http://www.mpi-inf.mpg.de/~mehlhorn/ftp/CertifyingAlgorithms.pdf

30. Meister, B.: Approximations of polytope enumerators using linear expansions.

Technical report, Universite Louis Pasteur (May 2007)

31. Necula, G.C.: Proof-carrying code. In: POPL 1997: Proceedings of the 24th ACM

SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pp.

106–119 (1997)

32. Pouchet, L.-N., Bastoul, C., Cohen, A., Cavazos, J.: Iterative optimization in the

polyhedral model: part II, multidimensional time. SIGPLAN Not. 43(6), 90–100

(2008)

33. Pugh, W.: Counting solutions to Presburger formulas: how and why. In: PLDI 1994:

Proceedings of the ACM SIGPLAN 1994 Conference on Programming Language

Design and Implementation, pp. 121–134. ACM, New York (1994)

34. Reynolds, J.C.: Separation logic: A logic for shared mutable data structures. In:

Proceedings of 17th Annual IEEE Symposium on Logic in Computer Science,

Copenhagen, Denmark (2002)

35. Sannella, D., Hofmann, M., Aspinall, D., Gilmore, S., Stark, I., Beringer, L., Loidl,

H.-W., MacKenzie, K., Momigliano, A., Shkaravska, O.: Mobile resource guaran-

tees. In: Trends in Functional Programming, vol. 6, pp. 211–226. Intellect, Bristol

(2007)

36. Tarjan, R.E.: Amortized computational complexity. SIAM Journal on Algebraic

and Discrete Methods 6(2), 306–318 (1985)

37. Verdoolaege, S., Bruynooghe, M.: Algorithms for weighted counting over paramet-

ric polytopes: A survey and a practical comparison. In: The 2008 International

Conference on Information Theory and Statistical Learning, pp. 60–66 (2008)

38. Verdoolaege, S., Seghir, R., Beyls, K., Loechner, V., Bruynooghe, M.: Analyti-

cal computation of Ehrhart polynomials: Enabling more compiler analyses and

optimizations. In: Proceedings of the 2004 International Conference on Compil-

ers, Architecture, and Synthesis for Embedded Systems (CASES), pp. 248–258

(September 2004)

http://www.mpi-inf.mpg.de/~mehlhorn/ftp/CertifyingAlgorithms.pdf

Symbolic and Analytic Techniques for Resource Analysis of Java Bytecode 21

A Appendix: Examples of Polyhedral Analysis

A.1 Gaussian Elimination

The code below is an implementation of Gaussian elimination for the solution
of simultaneous linear equations. This is based on code which was downloaded
from the WWW 8, but it has been modified by adding println methods to give
the analysis something to count, and by replacing references to A.length by an
integer N since our analysis currently only takes account of program variables,
and cannot deal with fields.

public static double[] lsolve(double[][] A, double[] b, int N) {

for (int p = 0; p < N; p++) { System.out.println ("Loop 1");

int max = p;

for (int i = p; i < N; i++) { System.out.println ("Loop 2");

if (Math.abs(A[i][p]) > Math.abs(A[max][p]))

max = i;

}

double[] temp = A[p]; A[p] = A[max]; A[max] = temp;

double t = b[p]; b[p] = b[max]; b[max] = t;

if (Math.abs(A[p][p]) <= EPSILON) // EPSILON = 10e-6

throw new RuntimeException("Matrix is singular or nearly singular");

for (int i = p+1; i < N; i++) { System.out.println ("Loop 3");

double alpha = A[i][p] / A[p][p];

b[i] -= alpha * b[p];

for (int j = p; j < N; j++) { System.out.println ("Loop 4");

A[i][j] -= alpha * A[p][j];

}

}

}

double[] x = new double[N];

for (int i = N - 1; i >= 0; i--) { System.out.println ("Loop 5");

double sum = 0.0;

for (int j = i + 1; j < N; j++) { System.out.println ("Loop 6");

sum += A[i][j] * x[j];

}

x[i] = (b[i] - sum) / A[i][i];

}

return x;

}

The output from the analysis appears below, with bounds on the number of
calls to each println statement in the same order as in the program text. The
analysis successfully finds tight bounds for the various nested loops.
8 http://www.cs.princeton.edu/introcs/95linear/GaussianElimination.java.

html

http://www.cs.princeton.edu/introcs/95linear/GaussianElimination.java.html
http://www.cs.princeton.edu/introcs/95linear/GaussianElimination.java.html

22 D. Aspinall et al.

==== method lsolve ====

Calls to java.io.PrintStream.println (java.lang.String):

N {1 <= N, 0 <= 1}

Calls to java.io.PrintStream.println (java.lang.String):

N^2 {1 <= N, 0 <= 1}

Calls to java.io.PrintStream.println (java.lang.String):

-N/2 + N^2/2 {2 <= N, 0 <= 1}

Calls to java.io.PrintStream.println (java.lang.String):

-N/3 + 0 + N^3/3 {2 <= N, 0 <= 1}

Calls to java.io.PrintStream.println (java.lang.String):

N {1 <= N, 0 <= 1}

Calls to java.io.PrintStream.println (java.lang.String):

-N/2 + N^2/2 {2 <= N, 0 <= 1}

A.2 Multiple Parameters

We also include a simple example involving multiple parameters which demon-
strates the strength of the mathematical techniques underlying our analysis.

public static void f (int p, int q) {

for (int i=0; i <= p; i++)

for (int j=0; j <= 9 && i+j <= q; j++)

System.out.println ("Hello");

}

The number of iterations depends on the relative values of the arguments p
and q, with different Ehrhart polynomials applying for different combinations of
arguments. The barvinok library is able to calculate these automatically, and
comparatively little programming effort was required on our part to enable the
analysis to find results of this type.

Calls to java.io.PrintStream.println (java.lang.String):

5 domains in R^2

-35 + 10q {q <= p, 10 <= q, 0 <= 1}

1 + (3/2)q + q^2/2 {q <= p, 0 <= q, q <= 9}

(1 + q) + (1/2 + q)p + -p^2/2 {q <= 9, 0 <= p, p+1 <= q}

10 + 10p {0 <= p, p+10 <= q, 0 <= 1}

(-35 + (19/2)q + -q^2/2) + (1/2 + q)p + -p^2/2 {p+1 <= q, q <= p+9, 10 <= q}

Perspectives in Certificate Translation

Gilles Barthe and César Kunz

IMDEA Software, Spain

Abstract. Certificate translation is a general mechanism to transfer

evidence across abstraction layers, from source code to executable code.

We review the general principles behind certificate translation and the

main results achieved so far, and outline directions for future work.

1 Introduction

Certificate translation aims to provide the benefits of (typically interactive)
source code verification to code consumers, building upon the notion of cer-
tificate used in Proof Carrying Code [14]. More precisely, the primary goal of
certificate translation is to transform certificates of source programs into cer-
tificates of compiled programs. By design, certificate translation is very general
and can be used to enforce arbitrarily complex properties of programs, provided
they can be expressed and formally established using source code verification
frameworks.

The problem of certificate translation can be expressed informally in a very
general form. Consider two programming languages, a source language Progs

and a target language Progt, each equipped with a specification language, re-
spectively Specl and Spect, and with a verification framework. We assume that
the verification frameworks are equipped with a notion of proof object, a.k.a.
certificate, and axiomatize the verification frameworks as ternary relations for
certificate checkers, written c : p |= s, stating that c is a certificate that p adheres
to s, where p is a program belonging to Progs (resp. Progt), s is a specification
belonging to Specs (resp. Spect) and c belongs to the set Prfs of source cer-
tificates (resp. Prft of target certificates). Assuming a compiler for programs
C : Progs → Progt, and a compiler for specifications Cspec : Specs → Spect, the
problem is to find a certificate translation, i.e. a function Ccert : Prfs → Prft such
that for all source programs p, policies s, and certificates c,

c : p |= s =⇒ Ccert(c) : C(p) |= Cspec(s)

The formal study of certificate translation requires that all the parameters are
instantiated, and defined formally: source and target programming and specifica-
tion languages, certificate checkers for source and compiled programs, and finally
compilers for programs, specifications, and certificates. Our work focuses on veri-
fication infrastructures that rely on verification condition generators (VC Genera-
tor), which are used in many interactive verification environments at source level,
and in automated verification tools at compile level. A VC Generator can be seen

M. Wirsing, M. Hofmann, and A. Rauschmayer (Eds.): TGC 2010, LNCS 6084, pp. 23–34, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

24 G. Barthe and C. Kunz

Program

VCGen Proof
Checker

φ1

...

Specification

φ2

φn

c1

c2

cn

...

Fig. 1. Verification Infrastructure

as a strategy of applying the rules of an Hoare logic, and extracts automatically
a set of proof obligations from an annotated program—annotations include loop
invariants, preconditions and postconditions. There are several advantages to ver-
ification condition generators, other than their predominance in verification tools:
the proof obligations are expressed in the specification language, abstracting away
from the programming language; moreover, the certificate does not need to store
the application of the rules of the Hoare logic, since the strategy is fixed; hence,
standard notions of proof objects can be used as certificates. Figure 1 considers a
program verification infrastructure for a specific programming language. The VC
Generator takes a program and specification and produces a set of proof obliga-
tions attesting the adherence of the program to its specification. A certificate c
consists of a set of proof objects (ci)i∈I such that each proof obligation generated
by the VC Generator is validated by a proof object ci.

Non-
optimizing
compiler

high level

Source code
Specification

Certificate

intermediate level

Compilation step

Program
optimization

Certificate
translation

Compilation step

Program
optimization

Certificate
translationIntermediate

representation
Specification

Certificate

Compilation step

Program
optimization

Certificate
translation

Code
generation

Certificate
translation

executable level

Executable
code

Specification
Certificate

Fig. 2. Overall picture of the Optimizing Infrastructure

Perspectives in Certificate Translation 25

Optimizing compilers typically perform several passes over programs and rely
on various intermediate program representations. In general, the first pass is
handled by a non optimizing that compiler generates, from a source program,
a sequence of instructions at the intermediate level language. Then, a series of
optimizations are performed successively over the intermediate program, possi-
bly changing the representation language. Finally, executable code is generated
from an optimized intermediate representation. In this setting, one must define
and prove correct a certificate translator for each validation phase; concretely, it
involves: i) defining for each intermediate program representation a verification
condition generator; ii) defining for each optimization pass an algorithm to trans-
form specifications and certificates; iii) proving that the certificate transformer
is sound. Certificate transformers compose naturally. Figure 2 depicts the overall
compilation schema, where the sequence of optimization phases is justified by
certificate transformers.

2 Main Results

We have explored certificate translation in different settings: imperative, object-
oriented, concurrent and parallel programs, both for non-optimizing and opti-
mizing compilers.

Preservation of proof obligations. The first compilation pass typically trans-
forms programs to an intermediate format, without performing any optimization.
Such non-optimizing compilation preserves proof obligations in a very strong
sense [7,2]. Let p be a program and C(p) the result of non-optimizing compila-
tion; typically p is written in a high-level imperative language and C(p) is written
in some intermediate language such as Register Transfer Language (RTL). As-
sume that a VC Generator vcgen generates a set of proof obligations from a
program and its specification s, both at source and intermediate levels. If the
set of proof obligations for the original and compiled programs coincide, i.e. the
proof obligations are equal up to syntactic equality:

vcgen(p, s) = vcgen(C(p), s)

then one can reuse the certificates of the source code program for the interme-
diate program. Formally, one can define Ccert as the identity function since:

c : p |= s ⇐⇒ c : C(p) |= s

Preservation of proof obligations requires that proof obligations are syntactically
equal, which may be a strong requirement in practice. Often proof obligations are
preserved up to minor differences; for example, variable conventions may differ in
the source and target languages (named variables vs. indexes), or datatypes may
be handled differently (booleans compiled to integers), or syntactic optimizations

26 G. Barthe and C. Kunz

are performed (e.g. transformations that can be proved sound from the syntax
of the programs, such as transforming conditionals with true or false guards).
In [1], we report on a prototype compiler from a simple structured language to
RTL and show that proof obligations coincide up to minor differences that are
easily handled.

Preservation of proof obligations is relevant in the setting of non-optimizing
compilation from source code to bytecode that can be executed by a virtual
machine. Such compilers are standard for Java or .NET bytecode, where opti-
mizations are delegated to a JIT compiler that operates on the consumer side.
Barthe, Grégoire and Pavlova [3] show that proof obligations are preserved for
the compilation of Java programs to JVM bytecode, in a simplified setting that
avoids the issues of naming, datatype representations, and simple optimizations.

Optimizing compilation. Preservation of proof obligations is invalidated by com-
piler optimizations. Consider the following piece of code:

y := 2;
while b do y := y + 2;
if (even(y)) then c1 else c2;

with loop invariant Inv and postcondition post. One of the proof obligations re-
turned by the VC Generator is:

Inv ∧ ¬b ⇒ (even(y) ⇒ wp(c1, post)) ∧ (¬even(y) ⇒ wp(c2, post))

One can transform the program by redundant conditional elimination into:

y := 2;
while b do y := y + 2;
c1;

A VC Generator for the same specification returns the proof obligation

Inv ∧ ¬b ⇒ wp(c1, post)

which does not coincide syntactically with the original one, and thus, the certifi-
cate cannot be reused. Furthermore, the transformed proof obligation may become
invalid if Inv∧¬b does not imply even(y). To recover a valid proof obligation, one
must strengthen annotations with the results of the static analyses that are used
for justifying the program transformation. In the example above, one must rein-
force the invariant with the condition even(y) that is inferred by the analyzer.

Invariant strengthening introduces an additional set of proof obligations that
must be discharged; for the above example, we must in particular prove that
even(y) is an invariant of the loop. These additional proof obligations are valid
if the analyzer is correct. Nevertheless, this is not sufficient for our purpose: one
must also provide independently verifiable certificates of their validity. For most

Perspectives in Certificate Translation 27

textbook optimizations, one can implement certifying analyzers that produce, in
addition to analysis results, a certificate of their correctness in the underlying
verification logic [2]. In the program above, one must assume that the analyzer
can produce a certificate of the loop invariant even(y). This requires discharging
the proof obligations even(2) and even(y) ⇒ even(y + 2).

Given a certifying analyzer, one can define a certificate translator that merges
the proof of the analysis with the original proof to build a certificate for the op-
timized program. There are two possible approaches for merging certificates; the
first approach is generic and relies on a well-founded induction principle that
one can extract from the structure of programs—the verification framework as-
sumes that programs are sufficiently annotated, i.e. all loops must go through
an annotated program point. This approach has been applied over a sequence
of compilation steps, that includes many program optimizations found on com-
piler textbooks. The second, so-called direct, approach focuses on optimizations
defined as arithmetic simplification, that includes for instance Constant Prop-
agation, Loop Induction Variable Strength Reduction, Common Subexpression
Elimination, Copy Propagation. Certificate translation is defined in these cases
as an ad-hoc strategy that syntactically compares the transformed proof obli-
gation with the original ones, and computes a set of sufficient conditions un-
der which the proof obligations are equivalent. For this class of optimizations,
proof obligations differs on substitutions of expressions. The advantage of this
technique is that the certificate translator is not necessarily embedded into the
compiler, since proof obligations are analyzed as black-boxes after the optimiza-
tion. In addition, experimental results show that the size of the final certificate
is greatly reduced, and that it is easy to discharge the required proof obligations.

Prototype implementation. A prototype implementation of certificate transla-
tion using the direct approach has been implemented [1]. The prototype takes
as input a certified imperative program and returns a certified RTL representa-
tion. It applies first a non-optimizing transformation from the source language
to RTL, and then a sequence of compilation steps that rely on arithmetic sim-
plification. The prototype has been used to show the applicability of certificate
translation a common class of textbook optimizations. The additional verifica-
tion effort required for a certificate translator has been automatically discharged
by application of the Coq ring tactic.

Abstract interpretation model. While certificate translators are strongly coupled
to a programming language, a verification setting and a compiling infrastruc-
ture, it is of interest to develop results asserting a general theory of certificate
translation.

Abstract interpretation [9] is a general framework that has been used for au-
tomatically analyzing programs, and more globally for reasoning about program
analysis and verification methods. Abstract interpretation is a natural setting
to model certificate translation, since it provides a common model for the ver-
ification environment and the analysis framework used for certifying analysis.

28 G. Barthe and C. Kunz

y := 2

b

y := y + 2

even(y)

¬even(y)

c1

c2

¬b

Fig. 3. Program representation as a transition system

A model of certificate translation based on abstract interpretation is developed
in [4], allowing to cover a wider range of programming languages, verification
settings, and optimizations.

In this work, programs are represented as transition systems, that is, as di-
rected graphs in which nodes represent program points and edges are labeled
with a relation that characterizes the program semantics. A transition system
representation of the program above is shown in Fig. 3.

Both the verification and analysis frameworks are defined as abstract inter-
pretations, using a very mild extension of the standard framework in which cer-
tificates are used to witness the correctness of a solution. In the abstract setting,
annotations are represented as partial labellings from program nodes to abstract
values and verification consists in checking whether the labeling satisfies a set
of inequalities in the abstract domain. We exploit the generality of the abstract
interpretation framework to obtain results that apply to backwards verification
frameworks such as Verification Condition Generation as well as forward verifi-
cation frameworks such as Symbolic Execution.

The main results of [4] are a set of sufficient conditions for the existence of
certifying analyzers, and of certificate translators. For the latter, we consider
basic transformations rather than a particular set of program optimizations; the
basic transformations include replacing an edge by another (structure-preserving
optimization), duplicating code (loop unrolling, function inlining), and coalesc-
ing nodes into a single one (dead code, code motion). These basic transforma-
tions can be combined to define many common optimizations, including those
considered in [2].

Hybrid verification. Program verification environments typically combine veri-
fication condition generation with static analyses. The VC Generator exploits
the information of the analysis in two useful ways: on the one hand, verifica-
tion conditions that originate from spurious edges in the control-flow graph are
discarded. This leads to fewer and smaller proof obligations. Furthermore, the
VC Generator adds the results of the analysis as additional assumptions to help
prove the verification conditions. In the following example, the procedure f is
invoked for every element in the range [0, N) of the array a:

Perspectives in Certificate Translation 29

i := 0
while (i < N) {

f(a[i]);
i := i + 1

}
Let Inv stand for the loop invariant, |a| denote the length of the array, and
assume N ≤ |a|. A weakest-precondition function that ensures the absence of
run-time errors may return a proof obligation of the form

Inv ∧ (i < N) ⇒ 0 ≤ i < |a| ∧ Inv′

for some formula Inv′. One can simplify such proof obligation by relying on a
static analysis that infers that i holds values inside the bounds of the array a.

Thus, hybrid verification methods simplify the task of program verification;
however, hybrid verification methods can be embedded into standard methods.
In [5], we define a compiler that transforms a hybrid specification (merging
logical assertions and analysis results) into a standard one by giving a logical
interpretation of the analysis results. This result ensures soundness of the hybrid
verification method from the soundness of the standard VC Generator.

Moreover, [5] extends preservation of proof obligations to hybrid verification
methods. One well-known difficulty for achieving such a result is the loss of
precision of static analysis results by compilation [13]. To solve this difficulty,
we achieve preservation of solutions by defining at bytecode level a symbolic
execution that decompiles stack instructions, in the style of [8].

Concurrency and parallelism. We have conducted two preliminary studies of cer-
tificate translation for concurrent and parallel programming languages. The first
extension [6] deals with parallel divide-and-conquer programs over hierarchical
memories. It is based on the Sequoia programming language, whose construc-
tions support high-performance computing on modern computer architectures.
We use the framework of abstract interpretation to design analysis and verifica-
tion frameworks to reason about Sequoia programs. A main component of this
framework is an analysis that checks whether subtasks operate over disjoint por-
tions of the memory. We use the framework of abstract interpretation to design
analysis and verification frameworks to reason about Sequoia programs, and de-
fine certificate translation procedures for typical optimizations, including SPMD
distribution, Exec Grouping and Copy grouping.

The second extension [10] deals with concurrent programs executing over a
shared-memory model. In this setting, sequential components of the concurrent
program are defined as simple while programs and optimizations are applied
to the sequential program components. In this execution model, the concurrent
interference on the shared state space may affect the validity of local specifi-
cations. Program verification is thus carried in two steps: first, each program
component is certified against its local specification, then the local specifications
are proved stable with respect to the global concurrent environment. We extend

30 G. Barthe and C. Kunz

certifying analyzers to produce, in addition to a local certificate, a formal proof
of stability with respect to the concurrent environment. Similarly, certificate
translation must deal with the effect that a local component optimization has
on the verification conditions for global stability.

3 Issues

Our work on certificate translation has mostly focused on program optimizations
in intermediate compiler phases. We briefly review some open issues.

Loop optimizations. Our work has considered a number of loop transforma-
tions, e.g., strength reduction, unrolling, and loop-invariant code motion. How-
ever, loop optimizations that change the iteration order, or that merge or split
loops, are challenging. For instance, it is common to deal with programs of the
form:

i := 0;
while i < N do {

c;
i := i + 1

}

For such programs the verification of the invariant depends on the execution
order: verifying an invariant ϕ(i) involves discharging the goals Inv(0) and
Inv(i) ∧ i < N ⇒ ϕ′(i + 1), for some ϕ′. Although reversing the iteration
order when every pair of iterations are interference-free is semantics-preserving,
adapting the original verification result is a hard problem en general.

Assembly code. Our results consider the compilation of source code to an in-
termediate format. This may be sufficient in a Proof Carrying Code scenario
where applications are distributed as interpretable bytecode. However, there is
a need to consider certificate translation for the remaining compiler phases, that
generates native code from an intermediate representation.

There are a number of issues for extending certificate translation to machine
code. First, one must consider a transformation that performs register alloca-
tion. In this compilation phase, pseudo-registers used in the intermediate RTL
representation are mapped to real machine registers. Since there are a finite
number of real registers, the compiler may need to temporarily store some of
the pseudo-registers in memory (spilling). A further transformation step is the
linearization of the control flow graph. In this step, the control flow graph is flat-
tened as a list of instructions, in which each instruction determines explicitly the
set of successor program points. This simple step does not introduce changes in
the proof obligations and thus certificates can be reused. Additionally, a compiler
step must transform the basic RTL arithmetic operations to the corresponding
machine operations. This process is part of the compiler backend and depends
on the target executing architecture.

Perspectives in Certificate Translation 31

Concurrency. Parallelization techniques exploit the analysis of program inter-
ference, allowing the concurrent execution of program fragments that access dis-
joint regions of the memory space. Parallelizing program transformations have
a significant effect on the program structure, making difficult the reuse of ver-
ification results. Certificate translation commonly needs to establish a strong
connection between the analysis that justifies a program transformation and the
verification framework. It seems convenient then to consider a common frame-
work that enables an explicit reasoning on the memory space independence, such
as separation logic [18], which has been used recently to discover parallelization
opportunities [17].

4 Related Work

The purpose of this section is to compare certificate translation and related
techniques from the perspective of an application scenario. A more technical
comparison is found e.g. in [2].

4.1 Application Scenario

Certificate translation is useful in scenarios where the reliability and security
of software must be independently verifiable: outsourcing safety and security-
critical software is an important application, especially for application domains
where software must be approved by certification authorities. The purpose of
this section is to suggest a possible application scenario.

The scenario involves a software developer, a software integrator, and a soft-
ware validator. The software developer is a smallish IT company which has
developed highly efficient and reliable tools for a specific problem. Their tools
are very generic and they can be specialized to many settings according to the
needs of their customers. The software developer sells specialized solutions, and
does not want to reveal his know-how.

The software integrator is a big company that produces large-scale systems
for embedded systems or avionics. The company outsources the production of
several critical components of their systems to external software developers, and
pass them on the need of producing verifiable evidence of the correctness of
their components. Thus, the software developer must provide an independently
verifiable correctness proof of the executable code it delivers. Using certificate
translation, the software developer can provide verifiable evidence without re-
vealing information about its compiler. Moreover, the software developer is able
to reason on the source code, avoiding duplication of efforts for programs that
are compiled to multiple platforms.

Finally, the software integrator is able to combine the different certificates to
provide verifiable evidence that the system is globally correct, and submit the
software system together with the accompanying verifiable evidence to a software
validator that can check global correctness.

32 G. Barthe and C. Kunz

Sw integrator 1

Software integrator

Compiled
component

Certificate

Certificate

Compiled
component

Compiled
System

Certificate

Sw validator
Developer 1

Source
code

Certificate

Policy Software integrator

Compiled
code

Verify

Certificate

Policy

Developer 2

Source
Code

Certificate

Policy

Global policy

Software validator

Certificate
Checker

Policy

A related scenario involves a software developer, a service provider, and a
end-user [7]. The service provider is a mobile phone operator that must decide
whether or not to endorse a new application for mobile phones. For liability rea-
sons, the mobile phone operator does not want to see the source code and does
not want to engage in costly verification. On the other hand, the mobile phone
operator cannot simply release the code without warranty because the permis-
sions of the program will depend on him endorsing the code. Using certificate
translation, the software developer can prove that his source code ensures the
policy advertised by the mobile phone operator, and rely on certificate transla-
tion to obtain verifiable evidence for the code that he eventually ships to the
mobile phone operator.

4.2 Related Work from an Application Scenario Perspective

The initial motivation for certificate translation is Proof Carrying Code [14].
Therefore, certificate translators share fundamental characteristics with certify-
ing compilers [14], namely targeting the same certificate checking infrastructure
on the consumer side, and not forming part of the Trusted Computing Base.
However, certificate translators differ from certifying compilers in their scope,
and in their level of automation; while certifying compilers focus on generating
automatically certificates for a small set of established policies, such as memory
safety, type safety or even non-interference, certificate translation aims to pro-
vide certificates for arbitrarily rich policies, at the cost of giving up automatic
generation of certificates.

Certified compilation [11,12] advocates using proof assistants for verifying com-
piler correctness. Certified compilation involves: i) defining formally the source,
intermediate and target languages; ii) formally specifying the operational se-
mantics of these languages; iii) formally defining the compiler passes, and prov-
ing that they preserve the semantics of programs. There are close connections
between certificate translation and certified compilation; these connections are

Perspectives in Certificate Translation 33

captured explicitly in [11,12], where Leroy defines abstract versions of certificate
translation and certified compilation and show their equivalence. Nevertheless
for our application scenario there are important practical differences between
both approaches. Concretely, certificate translation based on certified compila-
tion requires that the software developer provides the source program and the
compiler to the software integrator, which is an issue. Moreover, certified compi-
lation is restricted to input/output properties of programs; unfortunately, many
interesting properties of programs must be specified using assertions or ghost
variables. Finally, generating certificates from certified compilation entails that
certificates of executable programs embed the correctness proof of the compiler,
which is undesirable.

Translation validation is an alternative to certified compilation that aims at
showing, for each individual run of the compiler, that the resulting target pro-
gram implements correctly the source program, i.e. it has the same semantics.
There are two styles of translation validation: in the work of Pnueli, Siegel and
Singerman [16], the correctness of the compiler run is established using general
purpose verification tools. In contrast, the work of Necula [15] relies on specific
and certified verification tools. In comparison with certified compilation, some
issues with our application scenarios are overcome with translation validation,
e.g. the size of certificates might be significantly smaller. However, issues such
as providing source code remain.

Acknowledgments. Thanks to Benjamin Grégoire, Sylvain Heraud, Anne Pacalet,
Mariela Pavlova, David Pichardie, Ando Saabas, Jorge Sacchini, Julian Sam-
borski and Tamara Rezk, who contributed to the development of certificate
translation. This work benefited from discussion with members of the MOBIUS
project. This work is partially funded by the EU projects Mobius and HATS, the
Spanish project Desafios 10, and the Community of Madrid project Prometidos.

References

1. Barthe, G., Grégoire, B., Heraud, S., Kunz, C., Pacalet, A.: Implementing a direct

method for certificate translation. In: Breitman, K., Cavalcanti, A. (eds.) ICFEM

2009. LNCS, vol. 5885, pp. 541–560. Springer, Heidelberg (2009)

2. Barthe, G., Grégoire, B., Kunz, C., Rezk, T.: Certificate translation for optimiz-

ing compilers. ACM Transactions on Programming Languages and Systems 31(5),

18:1–18:45 (2009)

3. Barthe, G., Grégoire, B., Pavlova, M.: Preservation of Proof Obligations from Java

to the Java Virtual Machine. In: Armando, A., Baumgartner, P., Dowek, G. (eds.)

IJCAR 2008. LNCS (LNAI), vol. 5195, pp. 83–99. Springer, Heidelberg (2008)

4. Barthe, G., Kunz, C.: Certificate translation in abstract interpretation. In:

Drossopoulou, S. (ed.) ESOP 2008. LNCS, vol. 4960, pp. 368–382. Springer, Hei-

delberg (2008)

5. Barthe, G., Kunz, C., Pichardie, D., Samborski-Forlese, J.: Preservation of proof

obligations for hybrid verification methods. In: Cerone, A., Gruner, S. (eds.) Soft-

ware Engineering and Formal Methods, pp. 127–136. IEEE Press, Los Alamitos

(2008)

34 G. Barthe and C. Kunz

6. Barthe, G., Kunz, C., Sacchini, J.L.: Certified reasoning in memory hierarchies.

In: Ramalingam, G. (ed.) APLAS 2008. LNCS, vol. 5356, pp. 75–90. Springer,

Heidelberg (2008)

7. Barthe, G., Rezk, T., Saabas, A.: Proof obligations preserving compilation. In:

Dimitrakos, T., Martinelli, F., Ryan, P.Y.A., Schneider, S. (eds.) FAST 2005.

LNCS, vol. 3866, pp. 112–126. Springer, Heidelberg (2005)

8. Besson, F., Jensen, T., Pichardie, D., Turpin, T.: Result certification for relational

program analysis. Research Report 6333, IRISA (September 2007)

9. Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice model for static

analysis of programs by construction or approximation of fixpoints. In: Principles

of Programming Languages, pp. 238–252 (1977)

10. Kunz, C.: Certificate translation for the verification of concurrent programs. In:

Hofmann, M., Wirsing, M. (eds.) TGC 2010. LNCS, vol. 6084, pp. 238–253.

Springer, Heidelberg (2010)

11. Leroy, X.: Formal certification of a compiler back-end or: programming a compiler

with a proof assistant. In: Morrisett, J.G., Peyton Jones, S.L. (eds.) Principles of

Programming Languages, pp. 42–54. ACM Press, New York (2006)

12. Leroy, X.: A formally verified compiler back-end. J. Autom. Reasoning 43(4), 363–

446 (2009)

13. Logozzo, F., Fähndrich, M.: On the relative completeness of bytecode analysis

versus source code analysis. In: Hendren, L. (ed.) CC 2008. LNCS, vol. 4959, pp.

197–212. Springer, Heidelberg (2008)

14. Necula, G.C.: Compiling with Proofs. PhD thesis, Carnegie Mellon University (Oc-

tober 1998), Available as Technical Report CMU-CS-98-154

15. Necula, G.C.: Translation validation for an optimizing compiler. ACM SIGPLAN

Notices 35(5), 83–94 (2000)

16. Pnueli, A., Singerman, E., Siegel, M.: Translation validation. In: Steffen, B. (ed.)

TACAS 1998. LNCS, vol. 1384, pp. 151–166. Springer, Heidelberg (1998)

17. Raza, M., Calcagno, C., Gardner, P.: Automatic parallelization with separation

logic. In: Castagna, G. (ed.) ESOP 2009. LNCS, vol. 5502, pp. 348–362. Springer,

Heidelberg (2009)

18. Reynolds, J.C.: Separation logic: A logic for shared mutable data structures. In:

Logic in Computer Science. IEEE Press, Los Alamitos (July 2002)

Uniform Labeled Transition Systems
for Nondeterministic, Probabilistic,

and Stochastic Processes

Marco Bernardo1, Rocco De Nicola2, and Michele Loreti2

1 Dipartimento di Matematica, Fisica e Informatica – Università di Urbino, Italy
2 Dipartimento di Sistemi e Informatica – Università di Firenze, Italy

Abstract. Rate transition systems (RTS) are a special kind of transition

systems introduced for defining the stochastic behavior of processes and

for associating continuous-time Markov chains with process terms. The

transition relation assigns to each process, for each action, the set of

possible futures paired with a measure indicating the rates at which they

are reached. RTS have been shown to be a uniform model for providing

an operational semantics to many stochastic process algebras. In this

paper, we define Uniform Labeled TRAnsition Systems (ULTraS) as a

generalization of RTS that can be exploited to uniformly describe also

nondeterministic and probabilistic variants of process algebras. We then

present a general notion of behavioral relation for ULTraS that can

be instantiated to capture bisimulation and trace equivalences for fully

nondeterministic, fully probabilistic, and fully stochastic processes.

1 Introduction

Process algebras have been successfully used in the last thirty years to model the
behavior and prove properties of concurrent systems. The basic ingredients of
these formalisms, apart from specific syntactic operators used to define the term
algebra, are labeled transition systems (LTS) and behavioral relations in the form
of equivalences or preorders. By exploiting the so-called structural operational
semantics, a LTS is “compositionally” associated with each term. LTS possibly
corresponding to terms describing systems at different levels of abstraction are
then compared according to one of the many behavioral relations that have been
proposed in the literature.

Initially, the behavioral relations were mainly designed to assess whether two
systems have comparable functional (extensional) behavior, i.e., whether they
could perform similar actions. However, soon after witnessing the success of the
process algebraic approach, it was noticed that other aspects of concurrent sys-
tems are at least as important as the functional ones. Thus, many variants of
process algebras have been introduced to take into account quantitative aspects
of concurrent systems and we have seen proposals of (deterministically) timed
process algebra, probabilistic process algebras, and stochastic(ally timed) process

M. Wirsing, M. Hofmann, and A. Rauschmayer (Eds.): TGC 2010, LNCS 6084, pp. 35–56, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

36 M. Bernardo, R. De Nicola, and M. Loreti

algebras. Their semantics has then been rendered in terms of richer LTS quo-
tiented with new behavioral relations and we have read of (deterministically)
timed, probabilistic, and stochastic(ally timed) relations.

The line of research targeted to stochastic variants of process algebras has been
particularly productive due to the importance of shared-resource systems. The
main aim has been the integration of qualitative descriptions with quantitative
(especially performance) ones in a single mathematical framework by building
on the combination of LTS and continuous-time Markov chains (CTMC), one
of the most successful approaches to modeling and analyzing the performance
of computer systems and networks. The common feature of the most prominent
stochastic process algebra proposals is that the actions used to label transitions
are enriched with rates of exponentially distributed random variables character-
izing their duration. Although the same class of random variables is assumed in
many languages, the underlying models and notions are significantly different,
in particular with respect to the issue of the correct representation of the race
condition principle when modeling the choice operator (see, e.g., [7]).

In [5], two of the authors of the present paper, together with D. Latella and
M. Massink, proposed a variant of LTS, namely rate transition systems (RTS),
as a tool for providing semantics to some of the most representative stochastic
process languages. Within LTS, the transition relation describes the evolution of
a system from one state to another as determined by the execution of specific ac-
tions, thus it is a set of triples (state, action, state). Within RTS, the transition
relation � associates with a given state P and a given transition label (action)
a a function, say P, mapping each term into a nonnegative real number. The
transition P

a� P has the following meaning: if P(Q) = v with v �= 0, then
Q is reachable from P by executing a, the duration of such an execution being
exponentially distributed with rate v; if P(Q) = 0, then Q is not reachable from
P via a.

RTS have been used for providing a uniform semantic framework for modeling
many of the different stochastic process languages. This facilitates reasoning
about them and throwing light on their similarities as well as on their differences.
In [4], we considered a limited number of significant stochastic process calculi.
We provided the RTS semantics for TIPP [6], EMPA [3], PEPA [9], and IML [8]
as representatives of the class of stochastic languages based on the CSP-like,
multipart interaction paradigm. Moreover, we also considered stochastic CCS
and stochastic π-calculus [14] as examples of languages based on the two-way
interaction paradigm.

In this paper, we aim at performing a step further in the direction of providing
a uniform characterization of the semantics of different process calculi. We pro-
pose a framework more general than RTS, which can be instantiated to model
both classical process algebras usually handled via LTS and process algebras with
quantitative information like probability and time. We will introduce ULTraS

– Uniform Labeled TRAnsition Systems – as a generalization of RTS and show
that they can be used to uniformly describe the nondeterministic, probabilistic,
and stochastic variants of process algebras. We will then introduce a general

Uniform Labeled Transition Systems 37

notion of equivalence that can be instantiated to capture the nondeterministic,
probabilistic, and stochastic versions of trace and bisimulation equivalence.

Within ULTraS, the transition relation associates with a state and a given
transition label a function mapping each (next) state into an element of a do-
main D. In order to be uniform with classical nondeterministic calculi, we do
encode quantitative information inside the next-state function. More precisely,
rather than having transition leading to a next state, we do work with a notion
of next-state distribution, meaning that we quantify the possibility of having
every process term as the next state after executing a certain action.

By appropriately changing the domain D, we can capture different models of
concurrent systems. For example, we will see that if D is the Boolean algebra B
consisting of the two values � and ⊥ we can capture classical LTS, while if D
is the set R[0,1] we do capture fully probabilistic models, and when D is the set
R≥0 we do capture fully stochastic models.

The advantage of the proposed uniform modeling is twofold. On the one hand,
we show that the way the semantics for calculi with quantitative information
has been defined so far is indeed the natural extension of the definition of the
semantics for calculi with only qualitative information. On the other hand, we
make calculi with quantitative information more understandable for those people
with a process algebraic background who are not familiar with probability/time.

Of course, modeling state transitions and their annotations is one of the key
ingredients; however, we need also to worry about how they are combined to
obtain computations and how we do deem that from two states we can obtain
“equivalent” computation trees. In order to do that, we introduce the notion
of trace and measured trace. Based on them, we define trace equivalence and
bisimulation equivalence over ULTraS and study their relationships with the
corresponding equivalences in the literature once we “appropriately” instantiate
the domain D to capture well-studied models.

One of the key ingredients of the equivalence definition is a measure function
that associates a suitable value with every triple composed of a state s, a trace α,
and a state subset S′. To capture classical equivalences over nondeterministic
systems, the measure of a computation labeled with α from state s to a state in S′

yields � if the computation does exist and ⊥ otherwise. To capture probabilistic
equivalences, the measure yields a value in R[0,1] that represents the probability
of the set of computations labeled with trace α that reach a state in S′ from
state s. For stochastic equivalences, we consider two cases: the end-to-end delay
and the step-by-step delay of traces. In the first case, the measure function yields
the probability that the set of computations labeled with trace α lead to a state
in S′ from state s within t time units. In the second case, the measure function
considers, instead, the probability of the set of computations labeled with α that
go from s to S′ within a certain number of time units for each single step.

The rest of the paper is organized as follows. In Sect. 2, we introduce
ULTraS and bisimulation and trace equivalences over them. In Sect. 3, we in-
stantiate ULTraS to obtain, in a row, fully nondeterministic processes (i.e., clas-
sical LTS), fully probabilistic processes (i.e., classical action-labeled discrete-time

38 M. Bernardo, R. De Nicola, and M. Loreti

Markov chains – ADTMC), and fully stochastic processes (i.e., classical action-
labeled continuous-time Markov chains – ACTMC). In Sects. 4, 5, and 6, we prove
that bisimulation and trace equivalences for the various instantiations of ULTraS

coincide with the corresponding equivalences defined in the literature for LTS,
ADTMC, and ACTMC, respectively. Finally, Sect. 7 concludes the paper and out-
lines future work.

2 Uniform Labeled Transition Systems

LTS consist of a set of states, a set of transition labels, and a transition relation.
States correspond to the configurations processes can reach. Labels describe the
actions processes can perform internally or that are used to interact with the
environment. The transition relation describes process evolution as determined
by the execution of specific actions.

In this section, we introduce a generalization of LTS that aims at providing
a uniform framework that can be used for defining the behavior of different
kinds of process. In the new model, named ULTraS from Uniform Labeled
TRAnsition Systems, the transition relation associates with any source state
and any transition label a function mapping each possible target state into an
element of a domain D. The definition of ULTraS is provided in Sect. 2.1, while
in Sect. 2.2 we show how to define behavioral equivalences on ULTraS.

2.1 Definition of the Uniform Model

In the following, we assume that D is a complete partial order with ⊥ being
its least element. We also denote by [S → D] the set of functions from S to D,
which is ranged over by D.

Definition 1. A uniform labeled transition system on D (D-ULTraS for short)
is a triple:

U = (S, A, −−−→)
where:

– S is a countable set of states.
– A is a countable set of transition-labeling actions.
– −−−→ ⊆ S × A × [S → D] is a transition relation.

We say that the D-ULTraS U is functional iff −−−→ is a function from S × A
to [S → D].

Every transition (s, a, D) is written s
a−−−→ D, with D(s′) being a D-value quan-

tifying the reachability of s′ from s via the execution of a. In order to avoid
ambiguity, when considering functional ULTraS we will often write Ds,a(s′) to
denote the same value.

Uniform Labeled Transition Systems 39

2.2 Behavioral Equivalences on the Uniform Model

We now show how two behavioral equivalences lying at the opposite end points
of the linear-time/branching-time spectrum [16] like trace equivalence and bisim-
ilarity can be defined on ULTraS. Later on, we will see that they coincide with
their classical definitions in the case of fully nondeterministic, fully probabilistic,
and fully stochastic processes when mapping these processes into ULTraS.

In order to define the two equivalences on ULTraS, first of all we have to
introduce traces and measure functions. The former are sequences of actions and
identify possible observable computations in ULTraS. The latter give measures
of reachability of elements in a set of states S′ ⊆ S starting from a state s ∈ S
via a fixed trace α ∈ A∗.

Definition 2. Let U = (S, A, −−−→) be a D-ULTraS. A trace α for U is a
finite sequence of transition labels in A∗, where α = ε denotes the empty sequence
while operation “ ◦ ” denotes sequence concatenation.

Definition 3. Let U = (S, A, −−−→) be a D-ULTraS and M be a lattice.
A measure function for U is a function MM : S × A∗ × 2S → M .

In the setting of ULTraS, both trace equivalence and bisimilarity are parame-
terized with respect to a measure function. Indeed, different measure functions
can induce different equivalences on the same D-ULTraS depending on the
support set and the operations of M . Although D and M may share the same
support set, this is not necessarily the case as we will see when addressing fully
stochastic processes. In fact, while D-values encode one-step reachability, M -
values are measures computed (on the basis of D-values) along computations.

Trace equivalence is straightforward: two states are trace equivalent if every
trace has the same measure with respect to the entire set of states S when
starting from the two considered states.

Definition 4. Let U = (S, A, −−−→) be a D-ULTraS and MM be a mea-
sure function for U . We say that s1, s2 ∈ S are MM -trace equivalent, written
s1 ∼Tr,MM s2, iff for all traces α ∈ A∗:

MM (s1, α, S) = MM (s2, α, S)

While trace equivalence simply compares any two states without taking into
account the states reached at the end of the trace, a bisimulation relation also
poses constraints on the final states.

Definition 5. Let U = (S, A, −−−→) be a D-ULTraS and MM be a measure
function for U . An equivalence relation B over S is an MM -bisimulation iff,
whenever (s1, s2)∈B, then for all traces α∈A∗ and equivalence classes C ∈S/B:

MM (s1, α, C) = MM (s2, α, C)
We say that s1, s2 ∈ S are MM -bisimilar, written s1 ∼B,MM s2, iff there exists
an MM -bisimulation B over S such that (s1, s2) ∈ B.

40 M. Bernardo, R. De Nicola, and M. Loreti

3 Mapping Classical Models into the Uniform Model

In this section, we show how classical models used for describing fully non-
deterministic, fully probabilistic, and fully stochastic processes can be defined
in terms of ULTraS. In particular, we consider labeled transition systems in
Sect. 3.1, action-labeled discrete-time Markov chains in Sect. 3.2, and action-
labeled continuous-time Markov chains in Sect. 3.3.

3.1 A Fully Nondeterministic Specialization: LTS

Fully nondeterministic processes are traditionally represented through state-
transition graphs in which every transition is labeled with the action determining
the corresponding state change. In these graphs, there is no information about
how to choose among the various transitions departing from a state.

Definition 6. A labeled transition system (LTS for short) is a triple (S,A,−−−→)
where:

– S is a countable set of states.
– A is a countable set of transition-labeling actions.
– −−−→ ⊆ S × A × S is a transition relation.

Every transition (s, a, s′) is written s
a−−−→ s′ and means that it is possible to

reach s′ from s by executing a.
It is straightforward to see that a LTS is a functional B-ULTraS – where

B = {⊥, �} is the Boolean algebra – in which, given a transition s
a−−−→ D,

D(s′) = ⊥ means that it is not possible to reach s′ from s by executing a,
whereas D(s′) = � means that it is possible.

3.2 A Fully Probabilistic Specialization: ADTMC

Fully probabilistic processes, also called generative probabilistic processes ac-
cording to the terminology of [17], can be represented through state-transition
graphs in which every transition is labeled with both the action and the prob-
ability of the corresponding state change. In other words, each such process
can be represented as a discrete-time Markov chain [15] whose transitions are
additionally labeled with actions. 1

In the following, we use {| and |} to delimit multisets. We also assume that
the summation over an empty multiset of numbers is zero.

Definition 7. An action-labeled discrete-time Markov chain (ADTMC for short)
is a triple (S, A, −−−→) where:

1 The name discrete-time Markov chain is used here for historical reasons. Since time

does not come into play, a name like time-abstract Markov chain would be better.

A discrete-time interpretation is appropriate only when all state changes occur at

equidistant time points.

Uniform Labeled Transition Systems 41

– S is a countable set of states.
– A is a countable set of transition-labeling actions.
– −−−→ ⊆ S × A × R(0,1] × S is a transition relation.
– For all s, s′ ∈ S and a ∈ A, whenever (s, a, p1, s

′), (s, a, p2, s
′) ∈ −−−→, then

p1 = p2.
– For all s ∈ S, it holds that

∑{| p ∈ R(0,1] | ∃a ∈ A, s′ ∈ S. (s, a, p, s′) ∈
−−−→ |} ∈ {0, 1}.

Every transition (s, a, p, s′) is written s
a,p−−−→ s′, with p being the probability

with which s′ is reached from s by executing a.
It is straightforward to see that an ADTMC is a functional R[0,1]-ULTraS in

which
∑

a∈A

∑
s′∈S Ds,a(s′) ∈ {0, 1} for all s ∈ S. Given a transition s

a−−−→ D,
D(s′) = 0 means that it is not possible to reach s′ from s by executing a, whereas
D(s′) ∈ R(0,1] means that it is possible with probability D(s′).

3.3 A Fully Stochastic Specialization: ACTMC

Fully stochastic processes in which the notion of time is formalized by means of
exponentially distributed durations, also called Markovian processes, can be rep-
resented through state-transition graphs in which every transition is labeled with
both the action and the rate of the corresponding state change. In other words,
each such process can be represented as a continuous-time Markov chain [15]
whose transitions are additionally labeled with actions.

This Markov chain can be viewed as an ADTMC in which every state s has
associated with it an exponentially distributed sojourn time, which is uniquely
identified by a positive real number E(s) called rate, whose reciprocal coincides
with the average sojourn time in s. Assuming that transition firing is governed
by a race policy, this is equivalent to replacing the probability labeling each
transition departing from s with a rate given by E(s) multiplied by the transition
probability. Consistent with the fact that the minimum of a set of exponentially
distributed random variables is exponentially distributed with rate equal to the
sum of the original rates, the sum of the transition rates is equal to E(s).

Definition 8. An action-labeled continuous-time Markov chain (ACTMC for
short) is a triple (S, A, −−−→) where:

– S is a countable set of states.
– A is a countable set of transition-labeling actions.
– −−−→ ⊆ S × A × R>0 × S is a transition relation.
– For all s, s′ ∈ S and a ∈ A, whenever (s, a, λ1, s

′), (s, a, λ2, s
′) ∈ −−−→, then

λ1 = λ2.

Every transition (s, a, λ, s′) is written s
a,λ−−−→ s′, with λ being the rate at which

s′ is reached from s by executing a.
It is straightforward to see that an ACTMC is a functional R≥0-ULTraS.

Given a transition s
a−−−→ D, D(s′) = 0 means that it is not possible to reach

42 M. Bernardo, R. De Nicola, and M. Loreti

s′ from s by executing a, whereas D(s′) ∈ R>0 means that it is possible at
rate D(s′).

4 Equivalences for Fully Nondeterministic Processes

In this section, we instantiate the two behavioral equivalences of Sect. 2.2 – i.e.,
bisimilarity and trace equivalence – for fully nondeterministic processes repre-
sented as functional B-ULTraS. This is accomplished by introducing a measure
function MB that associates a suitable constant B-valued function with every
triple composed of a state, a trace, and a state subset.

Definition 9. Let U = (S, A, −−−→) be a functional B-ULTraS. The measure
function MB : S × A∗ × 2S → B for U is inductively defined as follows:

MB(s, α, S′) =

⎧⎪⎨⎪⎩
∨

s′∈S

Ds,a(s′) ∧ MB(s′, α′, S′) if α = a ◦ α′

� if α = ε and s ∈ S′

⊥ if α = ε and s /∈ S′

The value MB(s, α, S′) establishes whether there exists a computation labeled
with trace α that leads to a state in S′ from state s. If such a computation exists,
then MB(s, α, S′) = �, otherwise MB(s, α, S′) = ⊥.

We now show that each of the two resulting behavioral equivalences ∼B,MB

and ∼Tr,MB
on functional B-ULTraS coincides with the corresponding behav-

ioral equivalence defined in the literature on LTS.
Given two LTS (Si, Ai, −−−→i), i = 1, 2, with S1 ∩ S2 = ∅, consider the LTS

(S, A, −−−→) where S = S1 ∪ S2, A = A1 ∪ A2, and −−−→ = −−−→1 ∪ −−−→2 .
Bisimilarity for LTS [13] captures the ability of two states of mimicking each

other’s behavior step by step.

Definition 10. A binary relation B over S is a bisimulation iff, whenever (s1, s2)
∈ B, then for all actions a ∈ A:

– Whenever s1

a−−−→ s′1, then s2

a−−−→ s′2 with (s′1, s
′
2) ∈ B.

– Whenever s2

a−−−→ s′2, then s1

a−−−→ s′1 with (s′1, s
′
2) ∈ B.

We say that s1, s2 ∈ S are bisimilar, written s1 ∼B s2, iff there exists a bisimu-
lation B over S such that (s1, s2) ∈ B.

Theorem 1. For all s1, s2 ∈ S:
s1 ∼B s2 ⇐⇒ s1 ∼B,MB

s2

Proof. The proof is divided into two parts:

– Let s1, s2 ∈ S be such that s1 ∼B s2. From s1 ∼B s2, it follows that there
exists a bisimulation B over S such that (s1, s2) ∈ B. Observing that the
reflexive and transitive closure B′ of B is still a bisimulation over S such
that (s1, s2) ∈ B′, it turns out that B′ is an MB-bisimulation and hence

Uniform Labeled Transition Systems 43

s1 ∼B,MB
s2. In fact, for all s′1, s

′
2 ∈ S, whenever (s′1, s

′
2) ∈ B′, then for all

α ∈ A∗ and C ∈ S/B′:
MB(s′1, α, C) = MB(s′2, α, C)

as we now prove by proceeding by induction on |α|:
• If |α| = 0, then for all C ∈ S/B′ it holds that:

MB(s′1, α, C) = � = MB(s′2, α, C)
whenever s′1, s

′
2 ∈ C and:

MB(s′1, α, C) = ⊥ = MB(s′2, α, C)
whenever s′1, s

′
2 /∈ C.

• Let |α| = n ∈ N>0 and assume that the result holds for all traces of length
n − 1. Supposing α = a ◦ α′, we note that for all s ∈ S and C ∈ S/B′ it
holds that:

MB(s, α, C) =
∨

s′∈S

Ds,a(s′) ∧ MB(s′, α′, C)

=
∨

C′∈S/B

∨
s′∈C′

Ds,a(s′) ∧ MB(s′, α′, C)

=
∨

C′∈S/B
MB(sC′ , α′, C) ∧ ∨

s′∈C′
Ds,a(s′)

=
∨

C′∈S/B
MB(sC′ , α′, C) ∧ (∃s′ ∈ C′. s

a−−−→ s′)

where sC′ ∈ C′ and the factorization of MB(sC′ , α′, C) stems from the
application of the induction hypothesis on α′ to all states of each equiv-
alence class C′. Since ∃s′ ∈ C′. s′1

a−−−→ s′ iff ∃s′ ∈ C′. s′2
a−−−→ s′ by

virtue of (s′1, s′2) ∈ B′, we derive that for all C ∈ S/B′:
MB(s′1, α, C) = MB(s′2, α, C)

– Let s1, s2 ∈ S be such that s1 ∼B,MB
s2. From s1 ∼B,MB

s2, it follows that
there exists an MB-bisimulation B over S such that (s1, s2) ∈ B. It turns out
that B is also a bisimulation and hence s1 ∼B s2. In fact, for all s′1, s

′
2 ∈ S

such that (s′1, s
′
2) ∈ B, from the definition of MB-bisimulation it follows in

particular that for all a ∈ A and C ∈ S/B:
MB(s′1, a, C) = MB(s′2, a, C)

Since for all s ∈ S, a ∈ A, and C ∈ S/B it holds that:

MB(s, a, C) =
∨

s′∈C

Ds,a(s′) = (∃s′ ∈ C. s
a−−−→ s′)

we immediately derive that for all a ∈ A:
• Whenever s′1

a−−−→ s′′1 , then s′2
a−−−→ s′′2 with (s′′1 , s′′2) ∈ B.

• Whenever s′2
a−−−→ s′′2 , then s′1

a−−−→ s′′1 with (s′′1 , s′′2) ∈ B.

Trace equivalence for LTS [10] compares the traces labeling the computations
executable from two states. We lift the transition relation −−−→ from actions to
action sequences by letting s

ε====⇒ s and s
a1...an====⇒ s′ ≡ s

a1−−−→ s1 . . . sn−1

an−−−→ s′

for n ∈ N>0. Given s ∈ S and α ∈ A∗, we also write s
α====⇒ to denote the

existence of s′ ∈ S such that s
α====⇒ s′.

Definition 11. We say that s1, s2 ∈ S are trace equivalent, written s1 ∼Tr s2,
iff for all traces α ∈ A∗:

s1
α====⇒ iff s2

α====⇒

44 M. Bernardo, R. De Nicola, and M. Loreti

Theorem 2. For all s1, s2 ∈ S:
s1 ∼Tr s2 ⇐⇒ s1 ∼Tr,MB

s2

Proof. Let s1, s2 ∈ S be such that s1 ∼Tr s2. The fact that s1 ∼Tr s2 is equivalent
by definition to the fact that for all α ∈ A∗:

s1
α====⇒ iff s2

α====⇒
Since for all s ∈ S it holds that:

(s α====⇒) =

⎧⎨⎩
∨

s′∈S

Ds,a(s′) ∧ (s′ α′
====⇒) if α = a ◦ α′

� if α = ε
and hence:

(s α====⇒) = MB(s, α, S)
we immediately derive that the fact that for all α ∈ A∗ s1

α====⇒ iff s2
α====⇒ is

equivalent to to the fact that for all α ∈ A∗:
MB(s1, α, S) = MB(s2, α, S)

which in turn is equivalent by definition to s1 ∼Tr,MB
s2.

5 Equivalences for Fully Probabilistic Processes

In this section, we extend the work in the previous section by additionally taking
into account the execution probability of transitions. More precisely, we instan-
tiate the two behavioral equivalences of Sect. 2.2 for fully probabilistic processes
represented as functional R[0,1]-ULTraS. This is accomplished by introducing a
measure function that associates a suitable constant R[0,1]-valued function with
every triple composed of a state, a trace, and a state subset.

Definition 12. Let U = (S, A, −−−→) be a functional R[0,1]-ULTraS. The mea-
sure function MR[0,1] : S×A∗×2S → R[0,1] for U is inductively defined as follows:

MR[0,1](s, α, S′) =

⎧⎪⎨⎪⎩
∑

s′∈S

Ds,a(s′) · MR[0,1](s
′, α′, S′) if α = a ◦ α′

1 if α = ε and s ∈ S′

0 if α = ε and s /∈ S′

The value MR[0,1](s, α, S′) is the probability of the set of computations labeled
with trace α that lead to a state in S′ from state s. If there are no such compu-
tations, then MR[0,1](s, α, S′) = 0, otherwise MR[0,1](s, α, S′) ∈ R(0,1].

We now show that each of the two resulting behavioral equivalences ∼B,MR[0,1]

and ∼Tr,MR[0,1]
on functional R[0,1]-ULTraS coincides with the corresponding

behavioral equivalence defined in the literature on ADTMC.
Given two ADTMC (Si, Ai, −−−→i), i = 1, 2, with S1 ∩ S2 = ∅, consider

the ADTMC (S, A, −−−→) where S = S1 ∪ S2, A = A1 ∪ A2, and −−−→ =
−−−→1 ∪ −−−→2 .

Bisimilarity for ADTMC [12] relies on the comparison of state exit probabil-
ities. 2 The exit probability of a state s ∈ S is the probability with which s can
2 To be precise, probabilistic bisimilarity was defined in [12] for reactive probabilistic

processes, but the same definition applies to fully probabilistic processes too.

Uniform Labeled Transition Systems 45

execute transitions labeled with a certain action a ∈ A that lead to a certain
destination S′ ⊆ S: probe(s, a, S′) =

∑{| p ∈ R(0,1] | ∃s′ ∈ S′. s
a,p−−−→ s′ |}.

Definition 13. An equivalence relation B over S is a probabilistic bisimulation
iff, whenever (s1, s2) ∈ B, then for all actions a ∈ A and equivalence classes
C ∈ S/B:

probe(s1, a, C) = probe(s2, a, C)
We say that s1, s2 ∈ S are probabilistic bisimilar, written s1 ∼PB s2, iff there
exists a probabilistic bisimulation B over S such that (s1, s2) ∈ B.

Theorem 3. For all s1, s2 ∈ S:
s1 ∼PB s2 ⇐⇒ s1 ∼B,MR[0,1]

s2

Proof. The proof is divided into two parts:

– Let s1, s2 ∈ S be such that s1 ∼PB s2. From s1 ∼PB s2, it follows that there
exists a probabilistic bisimulation B over S such that (s1, s2) ∈ B. It turns
out that B is also an MR[0,1]-bisimulation and hence s1 ∼B,MR[0,1]

s2. In fact,
for all s′1, s

′
2 ∈ S, whenever (s′1, s

′
2) ∈ B, then for all α ∈ A∗ and C ∈ S/B:

MR[0,1](s
′
1, α, C) = MR[0,1](s

′
2, α, C)

as we now prove by proceeding by induction on |α|:
• If |α| = 0, then for all C ∈ S/B it holds that:

MR[0,1](s
′
1, α, C) = 1 = MR[0,1](s

′
2, α, C)

whenever s′1, s
′
2 ∈ C and:
MR[0,1](s

′
1, α, C) = 0 = MR[0,1](s

′
2, α, C)

whenever s′1, s
′
2 /∈ C.

• Let |α| = n ∈ N>0 and assume that the result holds for all traces of length
n − 1. Supposing α = a ◦ α′, we note that for all s ∈ S and C ∈ S/B it
holds that:

MR[0,1](s, α, C) =
∑

s′∈S

Ds,a(s′) · MR[0,1](s
′, α′, C)

=
∑

C′∈S/B

∑
s′∈C′

Ds,a(s′) · MR[0,1](s
′, α′, C)

=
∑

C′∈S/B
MR[0,1](sC′ , α′, C) · ∑

s′∈C′
Ds,a(s′)

=
∑

C′∈S/B
MR[0,1](sC′ , α′, C) · probe(s, a, C′)

where sC′ ∈ C′ and the factorization of MR[0,1](sC′ , α′, C) stems from
the application of the induction hypothesis on α′ to all states of each
equivalence class C′. Since probe(s

′
1, a, C′) = probe(s

′
2, a, C′) by virtue of

(s′1, s
′
2) ∈ B, we derive that for all C ∈ S/B:

MR[0,1](s
′
1, α, C) = MR[0,1](s

′
2, α, C)

– Let s1, s2 ∈ S be such that s1 ∼B,MR[0,1]
s2. From s1 ∼B,MR[0,1]

s2, it follows
that there exists an MR[0,1]-bisimulation B over S such that (s1, s2) ∈ B. It
turns out that B is also a probabilistic bisimulation and hence s1 ∼PB s2. In
fact, for all s′1, s′2 ∈ S such that (s′1, s′2) ∈ B, from the definition of MR[0,1]-
bisimulation it follows in particular that for all a ∈ A and C ∈ S/B:

46 M. Bernardo, R. De Nicola, and M. Loreti

MR[0,1](s1, a, C) = MR[0,1](s2, a, C)
Since for all s ∈ S, a ∈ A, and C ∈ S/B it holds that:

MR[0,1](s, a, C) =
∑

s′∈C

Ds,a(s′) = probe(s, a, C)

we immediately derive that for all a ∈ A and C ∈ S/B:
probe(s′1, a, C) = probe(s′2, a, C)

Trace equivalence for ADTMC [11] is based on the comparison of the execution
probabilities of analogous computations. Given s ∈ S, we denote by Cf(s) the set
of finite-length computations of s and by |c| the length of any c ∈ Cf(s). We say
that two distinct computations in Cf(s) are independent of each other iff neither
is a proper prefix of the other one. The probability of executing c ∈ Cf(s) is the
product of the execution probabilities of the transitions of c:

prob(c) =

{
1 if |c| = 0

p · prob(c′) if c ≡ s
a,p−−−→ c′

which is lifted to C ⊆ Cf(s) as follows:
prob(C) =

∑
c∈C

prob(c)

whenever C is finite and all of its computations are independent of each other.
Indicating with trace(c) the sequence of actions labeling the transitions of c ∈
Cf(s), we say that c is compatible with α ∈ A∗ iff trace(c) = α and we denote
by CC(s, α) the set of computations in Cf(s) that are compatible with α.

Definition 14. We say that s1, s2 ∈ S are probabilistic trace equivalent, written
s1 ∼PTr s2, iff for all traces α ∈ A∗:

prob(CC(s1, α)) = prob(CC(s2, α))

Theorem 4. For all s1, s2 ∈ S:
s1 ∼PTr s2 ⇐⇒ s1 ∼Tr,MR[0,1]

s2

Proof. Let s1, s2 ∈ S be such that s1 ∼PTr s2. The fact that s1 ∼PTr s2 is equiv-
alent by definition to the fact that for all α ∈ A∗:

prob(CC(s1, α)) = prob(CC(s2, α))
Since for all s ∈ S it holds that:

prob(CC(s, α)) =

{ ∑
s′∈S

Ds,a(s′) · prob(CC(s′, α′)) if α = a ◦ α′

1 if α = ε
and hence:

prob(CC(s, α)) = MR[0,1](s, α, S)
we immediately derive that the fact that for all α ∈ A∗ prob(CC(s1, α)) =
prob(CC(s2, α)) is equivalent to the fact that for all α ∈ A∗:

MR[0,1](s1, α, S) = MR[0,1](s2, α, S)
which in turn is equivalent by definition to s1 ∼Tr,MR[0,1]

s2.

6 Equivalences for Fully Stochastic Processes

In this section, we further extend the work in the previous two sections by
additionally taking into account a notion of time formalized by means of the

Uniform Labeled Transition Systems 47

exponentially distributed durations of transitions. More precisely, we instantiate
the two behavioral equivalences of Sect. 2.2 for fully stochastic processes involv-
ing only exponential distributions – i.e., fully Markovian processes – represented
as functional R≥0-ULTraS. Unlike the previous two sections, when defining the
measure function we distinguish between two cases. In Sect. 6.1 we take into
account the end-to-end delay of traces, whereas in Sect. 6.2 we consider the
step-by-step delay of traces.

6.1 The End-To-End Case

The measure function for the end-to-end case associates a suitable R[0,1]-valued
function with every triple composed of a state, a trace, and a state subset, which
is parameterized with respect to the end-to-end delay t ∈ R≥0 of the trace.

Definition 15. Let U = (S, A, −−−→) be a functional R≥0-ULTraS. The end-
to-end measure function Mete : S×A∗×2S → [R≥0 → R[0,1]] for U is inductively
defined as follows:

Mete(s, α, S′)(t) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

t∫
0

E(s) · e−E(s)·x · ∑
s′∈S

Ds,a(s′)
E(s) · Mete(s′, α′, S′)(t − x) dx

if α = a ◦ α′ and E(s) > 0
1 if α = ε and s ∈ S′

0 if α = ε and s /∈ S′ or
α �= ε and E(s) = 0

Note that subscript “ete” is a symbolic shorthand for [R≥0 → R[0,1]]. The value
Mete(s, α, S′)(t) is the probability of the set of computations labeled with trace α
that lead to a state in S′ from state s within t time units. If there are no such
computations, then Mete(s, α, S′)(t) = 0, otherwise Mete(s, α, S′)(t) ∈ R(0,1].
In the case α = a◦α′ and E(s) > 0, this value is computed as the convolution of
probability distributions. Assuming to spend x ∈ R[0,t] time units in state s, the
first operand of the convolution is the exponentially distributed density func-
tion quantifying the sojourn time in s, i.e., the derivative with respect to t of
1−e−E(s)·t evaluated in x. For each state s′ reachable from s by executing a, the
first operand is multiplied by the probability of the set of computations labeled
with the remaining trace α′ that lead to a state in S′ from state s′ within the
remaining t − x time units.

We now show that each of the two resulting behavioral equivalences ∼B,Mete

and ∼Tr,Mete on functional R≥0-ULTraS coincides with the corresponding be-
havioral equivalence defined in the literature on ACTMC.

Given two ACTMC (Si, Ai, −−−→i), i = 1, 2, with S1 ∩ S2 = ∅, consider
the ACTMC (S, A, −−−→) where S = S1 ∪ S2, A = A1 ∪ A2, and −−−→ =
−−−→1 ∪ −−−→2 .

Bisimilarity for ACTMC [9] relies on the comparison of state exit rates. The
exit rate of a state s ∈ S is the rate at which s can execute transitions labeled
with a certain action a ∈ A that lead to a certain destination S′ ⊆ S, which is
the sum of the rates of those transitions due to the fact that transition firing is

governed by the race policy: ratee(s, a, S′) =
∑{| λ ∈ R>0 | ∃s′ ∈ S′. s

a,λ−−−→ s′ |}.

48 M. Bernardo, R. De Nicola, and M. Loreti

Definition 16. An equivalence relation B over S is a Markovian bisimulation
iff, whenever (s1, s2) ∈ B, then for all actions a ∈ A and equivalence classes
C ∈ S/B:

ratee(s1, a, C) = ratee(s2, a, C)
We say that s1, s2 ∈ S are Markovian bisimilar, written s1 ∼MB s2, iff there
exists a Markovian bisimulation B over S such that (s1, s2) ∈ B.

Lemma 1. For all s1, s2 ∈ S:
s1 ∼MB s2 =⇒ E(s1) = E(s2)

Proof. It stems from the fact that for all s ∈ S:
E(s) =

∑
a∈A

ratee(s, a, S) =
∑

a∈A

∑
C∈S/∼MB

ratee(s, a, C)

Lemma 2. For all s1, s2 ∈ S:
s1 ∼B,Mete s2 =⇒ E(s1) = E(s2)

Proof. Let s1, s2 ∈ S be such that s1 ∼B,Mete s2 and assume E(s1) > 0 and
E(s2) > 0 in order to avoid trivial cases. Since for all s ∈ S and a ∈ A it holds
that:

Mete(s, a, S) =
∑

C∈S/∼B,Mete

Mete(s, a, C)

from s1 ∼B,Mete s2 it follows that:∑
a∈A

Mete(s1, a, S) =
∑

a∈A

Mete(s2, a, S)

Since for all s ∈ S such that E(s) > 0 and t ∈ R≥0 it holds that:∑
a∈A

Mete(s, a, S)(t) =
∑

a∈A

t∫
0

E(s) · e−E(s)·x · ∑
s′∈S

Ds,a(s′)
E(s) dx

=
∑

a∈A

∑
s′∈S

Ds,a(s′)
E(s) ·

t∫
0

E(s) · e−E(s)·x dx

= 1
E(s) · ∑

a∈A

∑
s′∈S

Ds,a(s′) · (1 − e−E(s)·t)

= 1 − e−E(s)·t

we derive:
1 − e−E(s1)·t = 1 − e−E(s2)·t

and hence:
E(s1) = E(s2)

Lemma 3. Let s1, s2 ∈ S. Whenever s1 ∼B,Mete s2, then for all a ∈ A and
C ∈ S/∼B,Mete : ∑

s′∈C

Ds1,a(s′) =
∑

s′∈C

Ds2,a(s′)

Proof. Let s1, s2 ∈ S be such that s1 ∼B,Mete s2 and assume E(s1) > 0 and
E(s2) > 0 in order to avoid trivial cases. From s1 ∼B,Mete s2, it follows in
particular that for all a ∈ A and C ∈ S/∼B,Mete :

Mete(s1, a, C) = Mete(s2, a, C)
Since for all s ∈ S such that E(s) > 0 and t ∈ R≥0 it holds that:

Uniform Labeled Transition Systems 49

Mete(s, a, C)(t) =
t∫
0

E(s) · e−E(s)·x · ∑
s′∈C

Ds,a(s′)
E(s) dx

= (
t∫
0

E(s) · e−E(s)·x dx) · 1
E(s) · ∑

s′∈C

Ds,a(s′)

= 1−e−E(s)·t
E(s) · ∑

s′∈C

Ds,a(s′)

we derive:
1−e−E(s1)·t

E(s1)
· ∑

s′∈C

Ds1,a(s′) = 1−e−E(s2)·t
E(s2)

· ∑
s′∈C

Ds2,a(s′)

and hence: ∑
s′∈C

Ds1,a(s′) =
∑

s′∈C

Ds2,a(s′)

by virtue of Lemma 2.

Theorem 5. For all s1, s2 ∈ S:
s1 ∼MB s2 ⇐⇒ s1 ∼B,Mete s2

Proof. The proof is divided into two parts:

– Let s1, s2 ∈ S be such that s1 ∼MB s2 and assume E(s1) > 0 and E(s2) > 0
in order to avoid trivial cases. From s1 ∼MB s2, it follows that there exists
a Markovian bisimulation B over S such that (s1, s2) ∈ B. It turns out that
B is also an Mete-bisimulation and hence s1 ∼B,Mete s2. In fact, for all
s′1, s

′
2 ∈ S, whenever (s′1, s

′
2) ∈ B, then for all α ∈ A∗ and C ∈ S/B:

Mete(s′1, α, C) = Mete(s′2, α, C)
as we now prove by proceeding by induction on |α|:

• If |α| = 0, then for all C ∈ S/B and t ∈ R≥0 it holds that:
Mete(s′1, α, C)(t) = 1 = Mete(s′2, α, C)(t)

whenever s′1, s
′
2 ∈ C and:
Mete(s′1, α, C)(t) = 0 = Mete(s′2, α, C)(t)

whenever s′1, s
′
2 /∈ C.

• Let |α| = n ∈ N>0 and assume that the result holds for all traces of
length n − 1. Supposing α = a ◦ α′, we note that for all s ∈ S such that
E(s) > 0, C ∈ S/B, and t ∈ R≥0 it holds that Mete(s, α, C)(t) is equal to:

t∫
0

E(s) · e−E(s)·x · ∑
s′∈S

Ds,a(s′)
E(s) · Mete(s′, α′, C)(t − x) dx

=
t∫
0

e−E(s)·x · ∑
C′∈S/B

∑
s′∈C′

Ds,a(s′) · Mete(s′, α′, C)(t − x) dx

=
t∫
0

e−E(s)·x · ∑
C′∈S/B

Mete(sC′ , α′, C)(t − x) · ∑
s′∈C′

Ds,a(s′) dx

=
t∫
0

e−E(s)·x · ∑
C′∈S/B

Mete(sC′ , α′, C)(t − x) · ratee(s, a, C′) dx

where sC′ ∈ C′ and the factorization of Mete(sC′ , α′, C)(t − x) stems
from the application of the induction hypothesis on α′ to all states of each
equivalence class C′. Since E(s′1) = E(s′2) by virtue of (s′1, s

′
2) ∈ B and

50 M. Bernardo, R. De Nicola, and M. Loreti

Lemma 1 and ratee(s′1, a, C′) = ratee(s′2, a, C′) by virtue of (s′1, s
′
2) ∈ B,

we derive that for all C ∈ S/B and t ∈ R≥0:
Msbs(s′1, α, C)(t) = Msbs(s′2, α, C)(t)

– Let s1, s2 ∈ S be such that s1 ∼B,Mete s2. From s1 ∼B,Mete s2, it follows that
there exists an Mete-bisimulation B over S such that (s1, s2) ∈ B. It turns
out that B is also a Markovian bisimulation and hence s1 ∼MB s2. In fact,
for all s′1, s

′
2 ∈ S such that (s′1, s

′
2) ∈ B, from Lemma 3 it follows that for all

a ∈ A and C ∈ S/B: ∑
s′∈C

Ds′
1,a(s′) =

∑
s′∈C

Ds′
2,a(s′)

Since for all s ∈ S, a ∈ A, and C ∈ S/B it holds that:∑
s′∈C

Ds,a(s′) = ratee(s, a, C)

we immediately derive that for all a ∈ A and C ∈ S/B:
ratee(s′1, a, C) = ratee(s′2, a, C)

Trace equivalence for ACTMC is based on the comparison of the execution
probabilities and the average durations of analogous computations. Here, by
average duration of a computation we intend its end-to-end average duration [2].
Given s ∈ S, the probability of executing c ∈ Cf(s) is the product of the rate-
based execution probabilities of the transitions of c: 3

prob(c) =

{
1 if |c| = 0

λ
E(s) · prob(c′) if c ≡ s

a,λ−−−→ c′

The end-to-end average duration of c is the sum of the average sojourn times in
the states traversed by c:

timea,ete(c) =

{
0 if |c| = 0

1
E(s) + timea,ete(c′) if c ≡ s

a,λ−−−→ c′

and we denote by C≤t the set of computations in C ⊆ Cf(s) whose end-to-end
average duration is not greater than t ∈ R≥0.

Definition 17. We say that s1, s2 ∈ S are end-to-end Markovian trace equiv-
alent, written s1 ∼MTr,ete s2, iff for all traces α ∈ A∗ and amounts of time
t ∈ R≥0:

prob(CC≤t(s1, α)) = prob(CC≤t(s2, α))

Theorem 6. For all s1, s2 ∈ S:
s1 ∼MTr,ete s2 ⇐⇒ s1 ∼Tr,Mete s2

Proof. Given s ∈ S, we define the end-to-end duration of c ∈ Cf(s) as the sum
of the random variables quantifying the average sojourn times in the states tra-
versed by c:

timed,ete(c) =

{
Det0 if |c| = 0

ExpE(s) + timed,ete(c′) if c ≡ s
a,λ−−−→ c′

3 With abuse of notation, we use the same name prob employed in the ADTMC case.

Uniform Labeled Transition Systems 51

where Det0 is the random variable equal to 0 with probability 1, while ExpE(s)

is the exponentially distributed random variable with rate E(s). Moreover, we
define the probability distribution of executing a computation in C ⊆ Cf(s) within
t ∈ R≥0 time units by letting:

probd,ete(C, t) =
∑
c∈C

prob(c) · Pr{timed,ete(c) ≤ t}
whenever C is finite and all of its computations are independent of each other.

Let s1, s2 ∈ S be such that s1 ∼MTr,ete s2 and assume E(s1) > 0 and
E(s2) > 0 in order to avoid trivial cases. The fact that s1 ∼MTr,ete s2 is equiva-
lent by definition to the fact that for all α ∈ A∗ and t ∈ R≥0:

prob(CC≤t(s1, α)) = prob(CC≤t(s2, α))
which in turn is equivalent by virtue of [2] to the fact that for all α ∈ A∗ and
t ∈ R≥0:

probd,ete(CC(s1, α), t) = probd,ete(CC(s2, α), t)
Since for all s ∈ S such that E(s) > 0, α ∈ A∗, and t ∈ R≥0 it holds that:

probd,ete(CC(s, α), t) =

⎧⎪⎪⎨⎪⎪⎩
∑

s′∈S

Ds,a(s′)
E(s) ·

t∫
0

E(s) · e−E(s)·x ·
· probd,ete(CC(s′, α′), t − x) dx if α = a ◦ α′

1 if α = ε
and hence:

probd,ete(CC(s, α), t) = Mete(s, α, S)(t)
we immediately derive that the fact that for all α ∈ A∗ and t ∈ R≥0

probd,ete(CC(s1, α), t) = probd,ete(CC(s2, α), t) is equivalent to the fact that for
all α ∈ A∗:

Mete(s1, α, S) = Mete(s2, α, S)
which in turn is equivalent by definition to s1 ∼Tr,Mete s2.

6.2 The Step-By-Step Case

The measure function for the step-by-step case associates a suitable R[0,1]-valued
function with every triple composed of a state, a trace, and a state subset, which
is parameterized with respect to the step-by-step delay θ ∈ (R≥0)∗ of the trace.

Definition 18. Let U = (S, A, −−−→) be a functional R≥0-ULTraS. The step-
by-step measure function Msbs : S × A∗ × 2S → [(R≥0)∗ → R[0,1]] for U is
inductively defined as follows:

Msbs(s, α, S′)(θ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

(1 − e−E(s)·t) · ∑
s′∈S

Ds,a(s′)
E(s) · Msbs(s′, α′, S′)(θ′)

if α = a ◦ α′ and θ = t ◦ θ′ and E(s) > 0
1 if α = ε and s ∈ S′

0 if α = ε and s /∈ S′ or
α �= ε and θ = ε or
α �= ε and θ �= ε and E(s) = 0

Note that subscript “sbs” is a symbolic shorthand for [(R≥0)∗ → R[0,1]]. The
value Msbs(s, α, S′)(θ) is the probability of the set of computations labeled with
trace α that lead to a state in S′ from state s, such that the delay of the i-th

52 M. Bernardo, R. De Nicola, and M. Loreti

transition of any computation is not greater than θ[i] for each i ranging from
1 to the length of the computation. If there are no such computations, then
Msbs(s, α, S′)(θ) = 0, otherwise Msbs(s, α, S′)(θ) ∈ R(0,1]. In the case α = a◦α′

and θ = t◦θ′ and E(s) > 0, this value is computed on the basis of the probability
of leaving state s within t time units, i.e., 1−e−E(s)·t. For each state s′ reachable
from s by executing a, this probability is multiplied by the probability of the set
of computations labeled with the remaining trace α′ that lead to a state in S′

from state s′ within the remaining time steps θ′.
We now show that each of the two resulting behavioral equivalences ∼B,Msbs

and ∼Tr,Msbs on functional R≥0-ULTraS coincides with the corresponding be-
havioral equivalence defined in the literature on ACTMC. In the case of bisimi-
larity, we consider the same equivalence ∼MB as Sect. 6.1.

Lemma 4. For all s1, s2 ∈ S:
s1 ∼B,Msbs s2 =⇒ E(s1) = E(s2)

Proof. Similar to the proof of Lemma 2, with the following different calculation
for all s ∈ S such that E(s) > 0 and θ = t ◦ θ′ ∈ (R≥0)∗:∑

a∈A

Msbs(s, a, S)(θ) =
∑

a∈A

(1 − e−E(s)·t) · ∑
s′∈S

Ds,a(s′)
E(s)

= (1 − e−E(s)·t) · 1
E(s) · ∑

a∈A

∑
s′∈S

Ds,a(s′)

= 1 − e−E(s)·t

Lemma 5. Let s1, s2 ∈ S. Whenever s1 ∼B,Msbs s2, then for all a ∈ A and
C ∈ S/∼B,Msbs: ∑

s′∈C

Ds1,a(s′) =
∑

s′∈C

Ds2,a(s′)

Proof. Similar to the proof of Lemma 3, with the following different calculation
for all s ∈ S such that E(s) > 0 and θ = t ◦ θ′ ∈ (R≥0)∗:

Msbs(s, a, C)(θ) = (1 − e−E(s)·t) · ∑
s′∈C

Ds,a(s′)
E(s)

= 1−e−E(s)·t
E(s) · ∑

s′∈C

Ds,a(s′)

followed by the exploitation of Lemma 4.

Theorem 7. For all s1, s2 ∈ S:
s1 ∼B,Mete s2 ⇐⇒ s1 ∼B,Msbs s2

Proof. The proof is divided into two parts:

– Let s1, s2 ∈ S be such that s1 ∼B,Mete s2 and assume E(s1) > 0 and
E(s2) > 0 in order to avoid trivial cases. From s1 ∼B,Mete s2, it follows
that there exists an Mete-bisimulation B over S such that (s1, s2) ∈ B. It
turns out that B is also an Msbs-bisimulation and hence s1 ∼B,Msbs s2. In
fact, for all s′1, s′2 ∈ S, whenever (s′1, s′2) ∈ B, then for all α ∈ A∗ and
C ∈ S/B:

Msbs(s′1, α, C) = Msbs(s′2, α, C)
as we now prove by proceeding by induction on |α|:

Uniform Labeled Transition Systems 53

• If |α| = 0, then for all C ∈ S/B and θ ∈ (R≥0)∗ it holds that:
Msbs(s′1, α, C)(θ) = 1 = Msbs(s′2, α, C)(θ)

whenever s′1, s′2 ∈ C and:
Msbs(s′1, α, C)(θ) = 0 = Msbs(s′2, α, C)(θ)

whenever s′1, s
′
2 /∈ C.

• Let |α| = n ∈ N>0 and assume that the result holds for all traces of
length n − 1. Supposing α = a ◦ α′, there are two cases for θ ∈ (R≥0)∗:

∗ If θ = ε, then for all C ∈ S/B it holds that:
Msbs(s′1, α, C)(θ) = 0 = Msbs(s′2, α, C)(θ)

∗ Let θ = t ◦ θ′. For all s ∈ S such that E(s) > 0 and C ∈ S/B it holds
that Msbs(s, α, C)(θ) is equal to:

(1 − e−E(s)·t) · ∑
s′∈S

Ds,a(s′)
E(s) · Msbs(s′, α′, C)(θ′)

= 1−e−E(s)·t
E(s) · ∑

C′∈S/B

∑
s′∈C′

Ds,a(s′) · Msbs(s′, α′, C)(θ′)

= 1−e−E(s)·t
E(s) · ∑

C′∈S/B
Msbs(sC′ , α′, C)(θ′) · ∑

s′∈C′
Ds,a(s′)

where sC′ ∈ C′ and the factorization of Msbs(sC′ , α′, C)(θ′) stems
from the application of the induction hypothesis on α′ to all states of
each equivalence class C′. Since E(s′1) = E(s′2) by virtue of (s′1, s

′
2) ∈

B and Lemma 2 and
∑

s′∈C′ Ds′
1,a(s′) =

∑
s′∈C′ Ds′

2,a(s′) by virtue
of (s′1, s′2) ∈ B and Lemma 3, we derive that for all C ∈ S/B:

Msbs(s′1, α, C)(θ) = Msbs(s′2, α, C)(θ)
– The proof of the second part is similar to the proof of the first part, with the

following calculation of Mete(s, α, C)(t) in the induction case for all s ∈ S
such that E(s) > 0, C ∈ S/B, and t ∈ R≥0:

t∫
0

E(s) · e−E(s)·x · ∑
s′∈S

Ds,a(s′)
E(s) · Mete(s′, α′, C)(t − x) dx

=
t∫
0

e−E(s)·x · ∑
C′∈S/B

∑
s′∈C′

Ds,a(s′) · Mete(s′, α′, C)(t − x) dx

=
t∫
0

e−E(s)·x · ∑
C′∈S/B

Mete(sC′ , α′, C)(t − x) · ∑
s′∈C′

Ds,a(s′) dx

followed by the exploitation of Lemmas 4 and 5.

Corollary 1. For all s1, s2 ∈ S:
s1 ∼MB s2 ⇐⇒ s1 ∼B,Mete s2 ⇐⇒ s1 ∼B,Msbs s2

With regard to trace equivalence for ACTMC, unlike Sect. 6.1 here the average
duration of a computation is intended as its step-by-step average duration [18].
Given s ∈ S, the step-by-step average duration of c ∈ Cf(s) is the sequence of
the average sojourn times in the states traversed by c:

timea,sbs(c) =

{
ε if |c| = 0

1
E(s) ◦ timea,sbs(c′) if c ≡ s

a,λ−−−→ c′

and we denote by C≤θ the set of computations in C ⊆ Cf(s) whose step-by-step
average duration is not greater than θ ∈ (R≥0)∗, i.e., C≤θ = {c ∈ C | |c| ≤ |θ|
∧ ∀i = 1, . . . , |c|. timea,sbs(c)[i] ≤ θ[i]}.

54 M. Bernardo, R. De Nicola, and M. Loreti

Definition 19. We say that s1, s2 ∈ S are step-by-step Markovian trace equiv-
alent, written s1 ∼MTr,sbs s2, iff for all traces α ∈ A∗ and sequences of amounts
of time θ ∈ (R≥0)∗:

prob(CC≤θ(s1, α)) = prob(CC≤θ(s2, α))

Theorem 8. For all s1, s2 ∈ S:
s1 ∼MTr,sbs s2 ⇐⇒ s1 ∼Tr,Msbs s2

Proof. Given s ∈ S, we define the step-by-step duration of c ∈ Cf(s) as the
sequence of the random variables quantifying the average sojourn times in the
states traversed by c:

timed,sbs(c) =

{
Det0 if |c| = 0

ExpE(s) ◦ timed,sbs(c′) if c ≡ s
a,λ−−−→ c′

where Det0 and ExpE(s) are the same as those in the proof of Thm. 6. Moreover,
we define the probability distribution of executing a computation in C ⊆ Cf(s)
within a sequence θ ∈ (R≥0)∗ of time units by letting:

probd,sbs(C, θ) =
|c|≤|θ|∑
c∈C

prob(c) ·
|c|∏
i=1

Pr{timed,sbs(c)[i] ≤ θ[i]}

=
|c|≤|θ|∑
c∈C

prob(c) ·
|c|∏
i=1

(1 − e−θ[i]/timea,sbs(c)[i])

whenever C is finite and all of its computations are independent of each other.
Let s1, s2 ∈ S be such that s1 ∼MTr,sbs s2 and assume E(s1) > 0 and

E(s2) > 0 in order to avoid trivial cases. The fact that s1 ∼MTr,sbs s2 is equiva-
lent by definition to the fact that for all α ∈ A∗ and θ ∈ (R≥0)∗:

prob(CC≤θ(s1, α)) = prob(CC≤θ(s2, α))
which in turn is equivalent by virtue of [1] to the fact that for all α ∈ A∗ and
θ ∈ (R≥0)∗:

probd,sbs(CC(s1, α), θ) = probd,sbs(CC(s2, α), θ)
Since for all s ∈ S such that E(s) > 0, α ∈ A∗, and θ ∈ (R≥0)∗ it holds that:

probd,sbs(CC(s, α), θ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∑

s′∈S

Ds,a(s′)
E(s) · (1 − e−E(s)·t) · probd,sbs(CC(s′, α′), θ′)

if α = a ◦ α′ and θ = t ◦ θ′

1 if α = ε
0 if α �= ε and θ = ε

and hence:
probd,sbs(CC(s, α), θ) = Msbs(s, α, S)(θ)

we immediately derive that the fact that for all α ∈ A∗ and θ ∈ (R≥0)∗

probd,sbs(CC(s1, α), θ) = probd,sbs(CC(s2, α), θ) is equivalent to the fact that for
all α ∈ A∗:

Msbs(s1, α, S) = Msbs(s2, α, S)
which in turn is equivalent by definition to s1 ∼Tr,Msbs s2.

It is worth observing that ∼MTr,ete and ∼MTr,sbs do not coincide. In fact, the
latter is finer than the former, because it is somehow able to keep track of the time

Uniform Labeled Transition Systems 55

instants at which the various actions of a trace start/complete their execution.
As an example, if we consider the following two ACTMC taken from [1]:

where λ < μ and b �= d, it turns out that s1 ∼MTr,ete s2 while s1 �∼MTr,sbs s2

because prob(CC≤θ(s1, α)) = 1
2 �= 0 = prob(CC≤θ(s2, α)) when α = g ◦ a ◦ b and

θ = 1
2·γ ◦ 1

λ ◦ 1
μ . Therefore, ∼MTr,Mete and ∼MTr,Msbs do not coincide either.

7 Conclusions and Future Work

In this paper, we have introduced ULTraS as a general framework to uniformly
describe the operational semantics of fully nondeterministic, fully probabilistic,
and fully stochastic variants of process algebras. Within ULTraS, the transition
relation associates with a state and a given transition label a function mapping
each state into an element of a domain D. Elements in D are used to associate a
weight with each transition. By appropriately changing the domain D, different
models of concurrent systems can be represented.

We have then defined two of the most classical notions of behavioral equiv-
alences, namely bisimulation and trace equivalences, over ULTraS and have
studied their impact on the characterization as ULTraS of three classical pro-
cess models: LTS, ADTMC, and ACTMC. In particular, we have shown that the
bisimulation and trace equivalences on the models obtained via the
ULTraS characterization of LTS, ADTMC, and ACTMC are in full agreement
with those specifically considered in the literature for the three different models.
We consider this general characterization and the proof of correspondence of the
equivalences as a vindication for the originally proposed models.

In the near future, we plan to investigate the applicability of the ULTraS

framework to further classes of processes – like deterministically timed pro-
cesses and processes where nondeterminism and probability or nondetermin-
ism and stochasticity are intertwined – as well as other behavioral equivalences
in the linear-time/branching-time spectrum – especially testing equivalences.
Moreover, we plan to use ULTraS for describing the operational semantics of
a few of the many process description languages that have been proposed in the
literature, in order to assess their relative expressiveness of specific operators
and establish general properties for the different languages.

Acknowledgment.We would like to thank Diego Latella and Mieke Massink for
their useful comments on a draft of this paper. We would also like to thank Martin
Wirsing and Martin Hoffman for having given us the stimulus and the opportunity
to write this paper. This work has been funded by MIUR-PRIN project PaCo –
Performability-Aware Computing: Logics, Models, and Languages.

56 M. Bernardo, R. De Nicola, and M. Loreti

References

1. Aldini, A., Bernardo, M., Corradini, F.: A Process Algebraic Approach to Software

Architecture Design. Springer, Heidelberg (2010)

2. Bernardo, M., Cleaveland, R.: A theory of testing for Markovian processes. In:

Palamidessi, C. (ed.) CONCUR 2000. LNCS, vol. 1877, pp. 305–319. Springer,

Heidelberg (2000)

3. Bernardo, M., Gorrieri, R.: A tutorial on EMPA: A theory of concurrent processes

with nondeterminism, priorities, probabilities and time. Theoretical Computer Sci-

ence 202(1-2), 1–54 (1998)

4. De Nicola, R., Latella, D., Loreti, M., Massink, M.: On a uniform framework for

the definition of stochastic process languages. In: FMICS 2009. LNCS, vol. 5825,

pp. 9–25. Springer, Heidelberg (2009)

5. De Nicola, R., Latella, D., Loreti, M., Massink, M.: Rate-based transition systems

for stochastic process calculi. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y.,

Nikoletseas, S., Thomas, W. (eds.) ICALP 2009, Part II. LNCS, vol. 5556, pp.

435–446. Springer, Heidelberg (2009)

6. Götz, N., Herzog, U., Rettelbach, M.: Multiprocessor and distributed systems de-

sign: The integration of functional specification and performance analysis using

stochastic process algebras. In: Donatiello, L., Nelson, R. (eds.) SIGMETRICS

1993 and Performance 1993. LNCS, vol. 729. Springer, Heidelberg (1993)

7. Haverkort, B.: Performance of Computer Communication Systems. The Weizmann

Institute of Science (1999)

8. Hermanns, H. (ed.): Interactive Markov Chains. LNCS, vol. 2428. Springer, Hei-

delberg (2002)

9. Hillston, J.: A Compositional Approach to Performance Modelling. Cambridge

University Press, Cambridge (1996)

10. Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall, Englewood

Cliffs (1985)

11. Jou, C.-C., Smolka, S.A.: Equivalences, congruences, and complete axiomatizations

for probabilistic processes. In: Baeten, J.C.M., Klop, J.W. (eds.) CONCUR 1990.

LNCS, vol. 458, pp. 367–383. Springer, Heidelberg (1990)

12. Larsen, K.G., Skou, A.: Bisimulation through probabilistic testing. Information

and Computation 94, 1–28 (1991)

13. Milner, R.: Communication and Concurrency. Prentice-Hall, Englewood Cliffs

(1989)

14. Priami, C.: Stochastic π-Calculus. The Computer Journal 38(7), 578–589 (1995)

15. Stewart, W.J.: Introduction to the Numerical Solution of Markov Chains. Princeton

University Press, Princeton (1994)

16. van Glabbeek, R.J.: The linear time – branching time spectrum I. In: Handbook

of Process Algebra, pp. 3–99. Elsevier, Amsterdam (2001)

17. van Glabbeek, R.J., Smolka, S.A., Steffen, B.: Reactive, generative and stratified

models of probabilistic processes. Information and Computation 121, 59–80 (1995)

18. Wolf, V., Baier, C., Majster-Cederbaum, M.: Trace machines for observing

continuous-time Markov chains. In: Proc. of the 3rd Int. Workshop on Quanti-

tative Aspects of Programming Languages (QAPL 2005). ENTCS, vol. 153(2), pp.

259–277. Elsevier, Amsterdam (2005)

Toward a Game-Theoretic Model
of Grid Systems�

Maria Grazia Buscemi1, Ugo Montanari2, and Sonia Taneja1,2,3

1 IMT Lucca Institute for Advanced Studies, Italy

{m.buscemi,s.taneja}@imtlucca.it
2 Dipartimento di Informatica, University of Pisa, Italy

ugo@di.unipi.it
3 Istituto Nazionale di Fisica Nucleare, Sezione di Pisa, Italy

sonia.taneja@pi.infn.it

Abstract. Computational Grid is a promising platform that provides

a vast range of heterogeneous resources for high performance comput-

ing. To grasp the full advantage of Grid systems, efficient and effective

resource management and Grid job scheduling are key requirements. Par-

ticularly, in resource management and job scheduling, conflicts may arise

as Grid resources are usually owned by different organizations, which

have different goals. In this paper, we study the job scheduling problem

in Computational Grid by analyzing it using game theoretic approaches.

We consider a hierarchical job scheduling model that is formulated as a

repeated non-cooperative game among Grid sites, which may have selfish

concerns. We exploit the concept of Nash equilibrium as a stable solution

for our game which eventually is convenient for every player.

1 Introduction

Recent years have witnessed dramatic progress of network technology that led
to growing interests in distributed computing approaches. As a result, Grid and
Global Computing have stood out as preferred research areas. Both of these
approaches try to address the problem of utilizing scattered idle resources con-
nected across a network. Grid computing [5] aims at creating an illusion of a sim-
ple and yet large virtual computer from a great set of heterogeneous computers
sharing various resource types to benefit a (virtual) organization. Grid Tech-
nologies enable sharing, exchange, discovery, selection and aggregation of geo-
graphically or Internet-wide distributed heterogeneous resources-such as sensors,
computers, databases, visualization devices and scientific instruments. Though
the research communities of Grid and Global Computing have different con-
cerns, both fields have common focal points such as performance, heterogeneity,
scalability, fault tolerance, security, etc.

Game Theory [8] is a mathematical-economic discipline that studies situa-
tions in which multiple independent agents take decisions and try to maximize

� Research supported by the EU IST-FP6 16004 Integrated Project Sensoria.

M. Wirsing, M. Hofmann, and A. Rauschmayer (Eds.): TGC 2010, LNCS 6084, pp. 57–72, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

58 M.G. Buscemi, U. Montanari, and S. Taneja

their returns. Game Theory attempts to formally capture behaviors in strategic
situations, in which an individual agent’s success in making choices depends on
the choices of others. A game model consists of three ingredients - a set of play-
ers, a set of actions, and a set of player’s payoffs. At each round of the game,
every player chooses an action and gets a payoff in return. A player’s strategy
is a sequence of actions such that each action refers to a round of the game. A
central notion in Game Theory is that of Nash Equilibrium [7], a situation in
which no player can improve its own payoff by unilaterally changing its strategy.
Game Theory is important as its model can be applied in several situations.

Distributed computing and Game Theory share common problems such as,
dealing with systems where there are many agents facing uncertainty, and pos-
sibly having different goals. In the context of Grid resource management and
job scheduling, game theoretic modeling seems a promising approach. Indeed, in
a Grid job scheduling problem, there are Grid sites (or nodes) that may have
conflicting interests as, for instance, some site may prefer first to execute its own
local jobs over the Grid jobs, in order to minimize the sum of completion time
of its own jobs. Nevertheless, for a Grid to properly work, sites should be in-
centivated to collaborate for optimizing global objective performance measures
such as to minimize the makespan, i.e. the sum of completion times of all Grid
jobs. We consider that all sites choose their strategies at the same time. Hence,
while taking a decision, a site cannot observe the actions of other players. This
context can be thought as a non-cooperative Grid scheduling game where a set
of players try to optimize their own objective functions, and there is no cooper-
ation in making decision. In such non-cooperative systems, since Grid sites are
not under control of a centralized broker, optimization does not amount to max-
imizing/minimizing a unique common function, but to find a stable situation in
which, for instance, sites guarantee to equally treat remote and local jobs.

The main contribution of this work is to propose a rigorous model to reason
about job scheduling mechanisms in Grid systems by exploiting key concepts
of Game Theory. Specifically, we formulate a repeated non-cooperative Grid
scheduling game in which Grid sites are considered as players of the game, while
the actions that are available to players range over various job scheduling policies.
The state of each player is given by a non-negative number expressing for how
many time units the site will be busy (thus not being able to start new job
executions). Each time a Grid job is ready to be executed, it is assigned to the
site that is able to guarantee the minimum possible completion time for that
job among all the other sites that are bidding for executing that job. For l the
length of a Grid job, a site p that is elected to execute that job receives a payoff
amounting to l and increases its state by l − 1, given that p will be busy for
further l units of time and that one time unit has passed. Similarly, if at a given
round of the game, a site p is willing to execute a local job of length l that is
in its dispatch queue, p earns a payoff l and its state is increased by l − 1. Of
course, a site cannot accept a local and a Grid job simultaneously at the same
time stamp. We consider Earliest estimated Response Time (ERT) as one of
the strategies adopted by players, which gives an estimation of the time interval

Toward a Game-Theoretic Model of Grid Systems 59

between the job submission and the beginning of the job execution. Note that
ERT gives the same result as the Minimum Completion Time strategy since
we assume that no preemption is allowed. Moreover, minimizing the completion
time of a job will eventually lead to minimal total completion time for all Grid
jobs, which eventually contributes to minimizing the makespan.

We first study a general scenario in which sites can execute either local jobs or
Grid jobs and we conjecture that in this case the selfish strategy profile, in which
every site chooses to execute a local job if there is any in its queue and otherwise
bids for executing a Grid job offering its ERT, is a Nash Equilibrium. Next, we
restrict to a special case in which there are no local jobs. We give a formal proof
that, under the above hypothesis, the strategy profile where every site bids its
ERT upon arrival of a new Grid job is a Nash Equilibrium. Note that there
is a key assumption in both the cases above: during the whole repeated game,
every job has the same fixed length. Such a requirement is crucial in proving that
each site has no benefit (with respect to its payoff) in declining to execute a job
(either local or global), while this is not true if jobs may have different length.
Indeed, in this last case, a site can benefit from refusing to execute a job in order
to be available to accept another job of greater length that might arrive at a
subsequent round of the game, hence receiving a higher payoff. Furthermore, in
the proof of the special case we require that the Grid are heavily loaded, namely
the state of each site cannot be zero for two or more consecutive rounds.

Related work. Recently there has been a great interest in game theoretic ap-
proaches for analyzing the Grid resource management and job scheduling prob-
lems. Regev and Nisan [9] propose a new system, POPCORN, which uses single
and double auction schema for job scheduling. Kwok et al. [6] study the impact
of local cluster scheduling policies and the selfish behavior at the machine level
using Game Theory. In [6] the strategies that are analyzed are those that selfish
computers should take inside a Grid site to maximize their utility. It is assumed
that each computer is selfish in the way that it only wants to execute jobs from
local users, but does not contribute to the execution of Grid jobs. They derive
three kinds of strategy namely, Optimal, Nash and random. It is shown that the
Optimal strategy consistently outperforms the Random and Nash strategies, and
the Nash strategy is very poor. By contrast, our approach focuses on the self-
ishness at the site level rather than at the machine level and on finding Nash
strategies. Local cluster scheduling policies do have impact on Grid scheduling.
Wiriyaprasit et al. [12] reported a significant impact of local policies on response
time of jobs. A greedy approach has also been proposed to overcome this be-
havior. Though the techniques reported gives good results, the method adopted
is simplistic. The resource management problem in computational Grid is also
addressed by Trystram et al. [10] show that when local schedulers change their
schedules locally, the game is analogous to Prisoner’s Dilemma game. Scheduling
the jobs selfishly by executing local jobs first is the only Nash equilibrium for
one shot, non-cooperative Grid scheduling game. The scheduling game is ana-
lyzed by considering off-line scheduling with dedicated processors. Unlike their
approach, we focus on the online scheduling.

60 M.G. Buscemi, U. Montanari, and S. Taneja

Synopsis. The remainder of the paper is organized as follows. In §2, we describe
the main features of our reference Grid system. §3 outlines the main assumptions
of the Grid model we consider in §5. In §4, we introduce a general framework
based on the notion of Labeled Transition Games. In §5 we instantiate the general
setting to define a non-cooperative Grid scheduling game and we present the
main results. In §6 we draw some conclusions.

2 The Grid System

In this section we introduce the main features of our reference Grid system.
We adopt a Grid structure based on the architecture proposed by the World-
wide LHC Computing Grid (WLCG) [3] for our study. The WLCG and the
Enabling Grids for E-sciencE (EGEE) [1] projects operate in conjunction and
share a large part of their infrastructure. For this reason, we will refer to it as
the WLCG/EGEE infrastructure. WLCG/EGEE is a global collaboration link-
ing Grid infrastructures and computer centers worldwide with the purpose of
distributing, storing and analyzing the immense amount of data being gener-
ated by Large Hadron Collider (LHC) at CERN (European Organization for
Nuclear Research). Hence, the WLCG/EGEE project provides computing and
analysis infrastructure for thousands of researchers all over the world, from high
energy physics community. WLCG/EGEE has deployed a worldwide computa-
tional Grid service covering all the computational and storage need of LHC ex-
periments. The WLCG/EGEE is composed of three main layers, or tiers, which
are made up of computer centres [4] that contribute to different aspects. By
using these tiers, the LHC data are processed, stored and analyzed around the
globe. The users of a Grid infrastructure are generally divided into Virtual Or-
ganizations (VOs), abstract entities grouping users, institutions and resources in
the same administrative domain. The Grid middleware used is gLite middleware
[2]. One of the important components of middleware related to job management
is the Workload Management System (WMS). The WMS is responsible for the
management of jobs submitted by users; it matches the job requirements to
the available resources and schedules the job for execution on an appropriate
computing cluster; then, it tracks the job status and allows the user to retrieve
the job output when ready. WMS is built on different components, one of them
being the Resource Broker (RB), which is being referred to as global sched-
uler in this paper. The Information System (IS) provides information about the
WLCG/EGEE resources and their statuses. The informations are published by
the individual resources and copied into central databases; it is used by the WMS
to match the resources against the job requirements and to rank them. Below,
we comment on the main features of our reference Grid.

Overall structure. The Grid consists of several sites or resource centers, each
of which may provide computational and data-storage resources for user sub-
mitted jobs. Each site consists of zero or more storage elements (SE), which
handle the storage services, and zero or more computing elements (CE), which
take care of computing resources and distribute jobs among the worker nodes

Toward a Game-Theoretic Model of Grid Systems 61

(which are the execution machines). The Grid sites are connected by a com-
munication network. Each site may contain an arbitrary number of identical
processors. Furthermore, each site manages its resources in the form of a cluster
with its own Local Resource Management System (LRMS), and the machines
in a cluster are connected via a high-bandwidth link. Beside the sites, the Grid
includes a central global scheduler that is responsible for the scheduling of jobs
to computing elements, with the main goal of improving the overall throughput
of the Grid. The global scheduler is usually in charge for resource discovery,
resource selection, and job assignment to ensure that the user requirements and
resource owner objectives are met. A key feature of Grids is transparency, i.e.
the Grid appears to the users as a single, unified resource. The broker acts
as a mediator between users and resources by providing centralized access to
distributed resources. In fact, the user requests for executing jobs cannot be
submitted directly to the Grid sites but rather to global scheduler.

Hierarchical structure. The physical structure of the reference Grid is hierar-
chical. Accordingly, the scheduling model is two-level and schedulers are im-
plemented at both levels [11], as shown in Fig. 1. At the first level, the global
scheduler allocates the jobs to different sites by selecting a site for each job,
keeping in mind the effective distribution of workload among the sites. At the
second level, if a job is assigned to a given site, the local cluster scheduler of that
site schedules the job on one of the worker nodes participating in the cluster,
by using some scheduling policy. The model we study in the subsequent sec-
tions is only dealt with the first level of scheduling while disregarding the local
scheduling mechanism at machine level. The information about the parameters,
like number of free CPU’s, number of running and waiting jobs, total available
storage space, estimated response time etc. are available to the global scheduler
for selecting an appropriate site for the job, though the current load of the whole

Fig. 1. Operational flow in hierarchical Grid job scheduling

62 M.G. Buscemi, U. Montanari, and S. Taneja

Grid is also taken into account for efficient distribution of workload. One of the
most critical issues in the effective utilization of the computational Grid is the
efficiency of the scheduling of jobs. The global scheduler does not have any hold
over the local cluster schedulers as at each site different scheduling policies may
be employed on its cluster according to given priorities. While processing a job
for scheduling, the global scheduler only knows global capability parameters of
each Grid site as a whole represented in the form of computational or storage
capability parameters, without regard to details within the sites. Of course, such
information are mediated by the local cluster scheduler of each Grid site, which
collects the static and dynamic data about the status of participating machines.
Jobs are submitted to the global scheduler via the User Interface (UI) specifying
the job requirements in the form of Job Description Language (JDL). In JDL,
the Requirements attribute represents the job requirements on resources in the
form of an expression. The global scheduler evaluates this expression during the
site selection or matchmaking process. After the matchmaking is done, the job is
scheduled to the appropriate site’s CE. If two or more sites satisfy the Require-
ments expression then the global scheduler has to resolve such a tie. While the
job runs, any data files required can be accessed either directly from a storage
element (SE) or after copying them to the local filesystem on the worker node.
After the successful completion of the job, the output is transferred back to the
global scheduler’s storage and then to the UI. At this point the user can retrieve
the output from the UI.

3 System Model

In this section we outline some basic assumptions of the model that we consider
in §5 with respect to the reference Grid System described above.

Local and Grid jobs. At any time unit, an arbitrary number of Grid/local jobs
can be ready to be executed. We assume that every job can be computed on
every cluster (namely, machines are not dedicated). We distinguish among local
and remote jobs. Jobs produced by the local users within a site intending to
utilize the Grid resources are considered as local jobs while all other jobs coming
via Grid infrastructure components are referred to as remote jobs or Grid jobs.
In §5 we consider a general model in which there are both kinds of jobs and a
restricted model that only includes Grid jobs.

We assume that jobs have all the same fixed length. Hence, in turn we assume
that jobs can be partitioned into a set of independent sub-tasks of fixed length
which can be executed independently on the resources one after the other. After
all subtasks end their execution, the result is conjugated as a final output. The
above fixed-length requirement plays a crucial role in proving our results. Indeed,
suppose that jobs may have different lengths and that the reward assigned to a
site for accepting the execution of a job is the length of that job. Then, a site
could benefit from refusing the execution of a current job and let its resources
free for executing a longer job that might arrive later, thus increasing its gain.

Toward a Game-Theoretic Model of Grid Systems 63

Site states. We consider a discrete-time model in which at each time unit the set
of free/busy CPU slots of each site is updated (the time elapses). Every site may
have busy slots at any time unit. We assume that if a given job is assigned to a
site, than the site’s slots will be busy until the end of the execution of that job.

Another key requirement of our model concerns the load of the Grid. We
assume the Grid system is heavily loaded, in the sense that at any time unit
there must be enough incoming jobs so that every site that is free and willing to
execute a Grid job cannot be inactive. Roughly, the reason for such a heavy-load
requirement is that absence of heavy load could change the order (according to
their ERT policies) of the sites that are bidding for executing a given job, thus
making the evolution of the system hard to predict.

4 Labeled Transition Games

In this section we introduce the basics of our theory, which combines Game
Theory and Labeled Transition Systems. Game Theory [8] can be regarded as
a multi-agent decision problem, which means that there are many entities con-
tending for limited rewards/payoffs. These entities have to follow certain rules
while making their moves/actions and their payoff depends on those moves. Each
player is supposed to behave rationally, i.e. each player tries to maximize its pay-
off irrespective to what other players are doing. A key issue of Game Theory is
that each player has to decide a set of moves which are in accordance with the
rules of the game and which maximize its payoff.

Definition 1 (LTS). A labeled transition system is a tuple 〈S, L, →〉, where S
is a set of states, L is a set of labels and →⊆ S × L × S is a ternary relation
(of labeled transitions). If p, q are in S and a ∈ L, we write p

a−→ q to mean
(p, a, q) ∈→.

Hereafter by kkk we denote a tuple of elements kkk = 〈k1, . . . , kn〉 and by SSS we de-
note a Cartesian product SSS = Sn. Furthermore, the usual arithmetic operations
over integers, such as summation, extend to tuples by applying the operations
elementwise. A Labeled Transition Game is meant to model a game in which n
players, given a global input g and a tuple of local inputs lll, make a transition
from a state to another such that every player simultaneously takes an action
ai from its respective set of actions. As a result of the execution of a transition,
two values are computed: a local payoff ui that is assigned to each player i, and
a global payoff v that represents the benefit for the whole Grid.

Definition 2 (Labeled Transition Game (LTG)). A Labeled Transition
Game is a tuple Γ = (n, Q,q0q0q0, G, L, A, R, →) where

– n is the number of players.
– Q is the set of states, ranged over by p,q, . . .
– q0q0q0 ∈ Qn is the vector of initial states.
– G, L are sets of global/local inputs, ranged over by g and l, respectively.

64 M.G. Buscemi, U. Montanari, and S. Taneja

– A is a set of player’s actions (or moves), ranged over by a.
– R is a set of payoffs (or rewards), ranged over by u, v, . . .
– → is a relation →⊆ (QQQ × G × LLL × AAA × QQQ × RRR × R). Moreover, given ppp, g, lll

and aaa, the relation → is functional.

By ppp
g,lll,aaa uuu,v−−−−→ qqq we mean that (ppp, g, lll,aaa,uuu, v,qqq) ∈ →.

In accordance with the definition of labeled transition systems we have defined
→ above as a relation, However, we impose the above requirement on the de-
terminism of the relation as the underlying idea is to have a function that takes
ppp, g, lll and aaa as input and gives in output both a tuple of local payoffs uuu and a
global payoff v.

In a multi-agent scenario, every player has a set of actions available and has
to choose an action at each transition step. The decision that a player makes is
called the player’s policy, which is a function that, given a global input, a local
input and the state of the player, returns a given action. It would be possible
to consider more general policies that also depend on the states and the local
inputs of the other players. However, in our framework, it is more reasonable to
consider the former kind of policies.

Definition 3 (Policies). Given an LTG, for every player i, we define a policy
σ as a function σ : Q×G×L → A. Given n players, a policy profile is an n-uple
of policies σσσ(ppp, g, lll) = 〈σ1(p1, g, l1), . . . , σn(pn, g, ln)〉.

By ppp
g,lll uuu,v−−−→σσσ qqq we mean that ppp

g,lll,aaa uuu,v−−−−→ qqq and σσσ(ppp, g, lll) = aaa.
In this work, we are interested in games that can be repeated for an arbitrary

number of times. To this purpose, we generalize the concepts of policies and
LTG’s to be repeated for a given number of rounds. The strategy of a player is
a sequence of policies that dictates the player’s actions at the different points in
the game. The strategies can be pure or mixed. In pure strategies the decision is
deterministic while mixed strategies specify the probability distribution used to
select the action that the player will perform. In this paper, we only deal with
pure strategies. A Repeated Labeled Transition Game consists of the repetition
of LTGs for an arbitrary number of rounds, in which at each round players
accumulate their payoffs.

Definition 4 (strategies). For N a natural number representing the number
of rounds of a game, a strategy σN is a sequence of length N of policies σN =
σ1 · . . . · σN . Given n players, a strategy profile is an n-uple of strategies σσσN =
〈σN,1, . . . , σN,n〉.
Hereafter, if the number of rounds N is clear from the context or irrelevant, we
drop the index N and simply denote strategies and strategy profiles as σ and σσσ.
Furthermore, for τ a strategy, by σσσ[τ/σi] we denote the strategy profile obtained
from σσσ by replacing the strategy σi of the i-th player with τ .

Toward a Game-Theoretic Model of Grid Systems 65

Definition 5 (Repeated Labeled Transition Game (RLTG)). ARepeated

Labeled Transition Game (RLTG) ppp
g,lll uuu,v
===⇒σσσ rrr is defined by the following inference

rules:
ppp

g,lll uuu,v−−−→σσσ rrr

ppp
g,lll uuu,v
===⇒σσσ rrr

ppp
g,lll uuu,v
===⇒σσσ qqq and qqq

g,lll uuu,v−−−→σσσ rrr

ppp
gg,llllll uuuuuu,vv−−−−−−→σσσσσσ rrr

In a game, the goal of each player is to maximize the payoff it accumulated during
the whole game. Below, we define two types of gains a player can receive: the
local gain represents the payoff of each player while the global gain reflects how
effectively the global objective performance measure is achieved. As expected,
local and global gains are computed by summing up the local payoffs uuu and the
global payoffs v, respectively.

Definition 6 (global/local gain). For an LTGN ppp
g,lll uuu,v
===⇒σ rrr, the local gain

and the global gain are defined respectively as:

– lgainlgainlgain(g, lll,σσσ) =
∑

j∈N uuuj.
– ggain(g, lll,σσσ) =

∑
j∈N vj.

A central notion in Game Theory is that of Nash equilibrium [7], a situation
in which no player can improve its own payoff function or reward by unilater-
ally changing its strategy. The optimal strategy is the profile of strategies that
optimizes the system goal or the global objective performance measure.

Definition 7 (Nash Equilibrium). Assume an LTGN ppp
g,lll uuu,v
===⇒σσσ rrr. The strat-

egy profile σσσ is a Nash equilibrium, written Nash(σσσ) iff

∀g, lll, τ , i lgain(g, lll,σσσ)
i

≥ lgain(g, lll,σσσ[τ/σi])i
.

Definition 8 (Optimal strategy). The strategy profile σσσ of length N is Op-
timal, written as Opt(σσσ) iff

∀g, lll, τττ ggain(g, lll,σσσ) ≥ ggain(g, lll, τττ).

5 A Game-Theoretic Model for Grid

In this section we focus on formulating a Non-cooperative Grid Scheduling (NGS)
game, in which each site/organization at each time unit can choose whether to
accept executing local or Grid jobs. We exploit the framework developed in §4
to study under which conditions the behavior of sites, in long runs, will be (i)
either selfish as, for instance, they prefer to first execute their own local jobs over
the Grid jobs, in order to minimize the sum of completion times of their own
jobs, or (ii) cooperative, thus contributing toward a proper working of the Grid
system. Specifically, assuming M is the fixed length of all jobs, we give a notion
of M -LTG, whose players are the Grid sites, actions are dictated by scheduling
algorithms, and global and local inputs represent the presence of Grid/local jobs
to be executed, respectively.

66 M.G. Buscemi, U. Montanari, and S. Taneja

Definition 9 (An M-LTG for Grid). Assuming jobs have all a fixed length
M , an M -LTG for Grid is a tuple Γ = (n, Q,q0q0q0, G, L, A, R, →) where

– n is a set of Grid sites.
– Q is a set of natural numbers. Every state qi ∈ Q represents the number

of future time slots in which site i will be busy according to the present
commitments.

– q0q0q0 ∈ QQQ is the tuple of initial states.
– G = L = {true, false}, where g = true (resp. g = false) indicates the

presence (resp. absence) of a Grid job that is ready to be executed. Similarly,
li = true (resp. li = false) expresses that there is (resp., there is not) a job
ready to be executed in the queue of site i.

– A = {loc, glo,no}, where ai = glo (resp., ai = loc) means that the site i,
with 1 ≤ i ≤ n, bids for executing an incoming Grid job (resp., i is ready to
execute a local job); ai = no means that site i does not accept to execute any
job.

– R is a set of natural numbers representing the set of payoffs. A local payoff ui

is assigned to player i for executing a local/Grid job, while the global payoff v
expresses at which time unit the execution of the Grid job will be completed.

– → is the relation defined in Def. 10.

Definition 10 (M-LTG relation →). Assuming jobs have all a fixed length

M , we define the relation → for Grid as ppp
g,lll,aaa uuu,v−−−−→ qqq, which is computed as

follows:

1. qqq := ppp; uuu := 000; v := 0; k := 0; (initialization)
2. if g then

(a) k := min(n, {h|ah = glo, ∀i ai = glo ⇒ qh ≤ qi}); (choose the winner)
(b) qk := qk + M ; uk := M ; v := −(qk + M); (award the winner)

3. ∀i �= k. if li ∧ (ai = loc) then qi := qi + M ; ui := M;
(rewards for local executions)

4. ∀i. if qi �= 0 then qi := qi − 1; stop. (time elapses)

In the above procedure, step 2 states that if there is a Grid job in the dispatch
queue (g = true), the global scheduler assigns the job to the site that, among
the sites that bid for that job, offers the earliest response time (which eventually
leads to lowest completion time, since the model is without preemption and
all jobs have the same length). Ties are resolved in favor of the bidder with
lowest index. The winner k is granted a payoff amounting to the length M of
the job and its state is increased by M (with the intended meaning that k will
be busy for further M time units). We assume here that, for every incoming
job, there is at least one player, i.e player n, who is always bound to accept the
Grid job. Moreover, the global payoff v is assigned the value −(qk + M): this
fact means that the execution of the job will end after qk + M time units and
that from the Grid perspective it is more convenient that the global executions
are completed as soon as possible. Step 3 dictates that every site i that is not
selected for executing the current Grid job and which accepts executing a job in

Toward a Game-Theoretic Model of Grid Systems 67

its local dispatch queue, receives a payoff M and increases its states by M . Step 4
decreases every non-zero state by one, thus simulating that time elapses.

In the present Grid setting, a player’s policy is a scheduling algorithm that
specifies what jobs that player/site accepts. As mentioned above, once a state
qi, a global input g, and a local input li are given, the policy of site i returns a
unique action ai. For instance, if we assume a policy ‘Grid Job Otherwise Local
Job’, i.e. σi(pi, g, li) = if g then glo else loc, if there is a Grid job ready to
be executed then i bids for that job (ai = glo), otherwise i accepts executing a
local job in its dispatch queue (ai = loc).

For M the length of jobs, a repeated LTG for Grid, M -RLTG, is defined by
instantiating Def. 5 to the M -LTG for Grid given in Def. 9.

Definition 11. We define the policy ‘Local Job Otherwise Grid Job’ (LJOGJ)
as a θ : Q × G × L → A such that

θ(q, g, l) = if l then loc else glo

We formulate below a conjecture about the policy LJOGJ being Nash. First we
give an example that shows the evolution of a repeated game for Grid.

Example 1. Consider a two-round game with jobs of length 5, namely a 5-RLTG
with two rounds. In Fig. 2 we summarize the evolution of the game (left-hand
table) and report the local and global gains (right-hand table). Specifically, in the
left-hand table there are three rows for each time stamp, the first one contains
the states of sites qi’s, the second one the boolean values li’s, the third one the
players’s actions ai; the value in the last column represents the boolean value
g at each round. The game has three players 1, 2 and 3. Players 1 and 2 can
start the execution of a new job after time unit 1, while 3 can start immediately.
Suppose that at time stamp 0 there is a Grid job that is ready to be executed.
Assume that sites 1 and 2 have no local jobs available while 3 has a job in its
dispatch queue (i.e. l1 = l2 = false, l3 = true) and that their policies are LJOGJ,
namely σi = if li then loc else glo, for i = 1, 2, 3. Hence, 1 and 2 will bid for
the Grid job and have the same state but 1 has a smaller index. Hence, according
to the rule of the game, the Grid job is assigned to 1, u1 = 5 (amounting to the
length of the job) and u2 = 0. On the other hand, 3 opts for executing a local job

Nodes 1 2 3

Time stamp 0

1 1 0

truefalse false true

glo glo loc

Time stamp 1

5 0 4

truefalse false false

glo glo glo

Time stamp 2 4 4 3

Gains uuu v

Nodes 1 2 3

Time stamp 0 5 0 5 -6

Time stamp 1 0 5 0 -5

Fig. 2. A 5-RLTG for Grid with 3 nodes

68 M.G. Buscemi, U. Montanari, and S. Taneja

and, so, u3 = 5. The global gain v is −(1 + 5). Then, at time stamp 1, the next
free CPU slots of 1 and 3 will be at time stamp 1+5−1 and 0+5−1, respectively
(with −1 referring to the fact that one time unit has passed). Hence, the states of
the sites 1, 2, and 3 will be updated to 5, 0, 4, respectively. Now, assume at time
stamp 1 another Grid job of length 5 is ready to be executed and none of the
sites has a local job in its queue. Assuming the scheduling policies are LJOGJ
as at the previous round, the Grid job will be assigned to 2 because it has the
minimum state (i.e. 2 is announcing the minimum response time). Consequently,
the local gain of 2 is 5 while the other players receive a null payoff, and the global
gain v for round 2 is −(0 + 5). Furthermore, the states are updated to be 4, 4
and 3, respectively.

Conjecture 1. Consider the M -RLTG for Grid given in Def. 9 and a strategy
profile θθθ = 〈θ1, . . . , θn〉, where each strategy θi is a sequence of LJOGJ policies
θ as defined in Def. 11. Then, Nash(θθθ).

Example 2. Consider the 5-RLTG depicted in Fig. 3. The left-hand table repre-
sents the evolution of the game if all players play the LJOGJ strategy. Suppose
that initially there are three players whose states are q1 = 1, q2 = 1, q3 = 0.
Moreover, assume that at the first round there is a job that is ready to be ex-
ecuted and all players are bidding for this job. According to the rule of the
game, the job is assigned to player 3 and, so, the local payoffs are u3 = 5 and
u1 = u2 = 0 (payoffs are not reported in the picture) and the states are updated
to be q1 = 0, q2 = 0, and q3 = 4. At the second round, again there is a job ready
to be executed and every players bids for that job. The job is assigned to 1
(remark that ties are resolved in favor of the player with lowest index), the local
payoffs are u1 = 5 and u2 = u3 = 0 and the states are q1 = 4, q2 = 0, and q3 = 3.
As mentioned above, the basic idea behind the concept of Nash Equilibrium is
to show that any player has no incentive in unilaterally deviating from its own
strategy. Suppose now that at the first round, 3 deviates from its policy θ3 by
adopting a policy θ′3 = if l3 then loc else no, while the other players maintain
their LJOGJ policies. The evolution of the game is described in the right-hand
table of Fig. 3. It is easy to see that at the first round the Grid job will be
assigned to 1 rather than to 3. At the next round, 2 exhibits the minimum state.
Hence, the local gain of 3 in the deviating case is 0 rather than 5.

This example shows a case in which players have no incentive in deviating from
the LJOGJ strategy. Furthermore, this example gives evidence of the importance
of the heavy load assumption, which requires that the states of players cannot
be zero for two or more consecutive rounds (see Def. 15 below). Indeed, suppose
that a player i deviates from its strategy and refuses to execute a job, which is
assigned to the second favorite player j. The heavy load assumption guarantees
that the order of the states of the players is maintained. Hence, if eventually a
new job is ready to be executed, this job will be assigned to i. As a consequence,
after an arbitrary number of rounds, the case of the deviating strategy and the
case of the original strategies both lead to a situation in which every player has
the same state and payoff. By contrast, in this example, if 3 refuses to execute the
incoming job at the first round, the job arriving at the second round is assigned

Toward a Game-Theoretic Model of Grid Systems 69

Nodes 1 2 3

Time stamp 0

1 1 0

truefalse false false

glo glo glo

Time stamp 1

0 0 4
true

false false false

glo glo glo

Time stamp 2 4 0 3

Nodes 1 2 3

Time stamp 0

1 1 0

truefalse false false

glo glo no

Time stamp 1

5 0 0

truefalse false false

glo glo glo

Time stamp 2 4 4 0

Fig. 3. Another 5-RLTG

to 2 rather than to 3, since the order of the states has changed and 2 is now the
most favorite player. This scenario is formalized in Lemma 1, which in fact does
not hold in absence of the heavy load assumption.

5.1 A Special Case

In this section we restrict the theory developed in §5 by introducing the ad-
ditional requirement that the scheduling problem only takes into account Grid
jobs while disregarding local jobs. To this purpose, in the following we adapt
some basic concepts defined above to the new ‘only-global’ setting.

Definition 12 (An only-global M-LTG for Grid). An only-global M -LTG
for Grid is a tuple Γ = (n, Q,q0q0q0, G, A, R, →) where

– n is a set of Grid sites.
– Q is a set of natural numbers. Every state qi ∈ Q represents the number of

future time slots in which site i will be busy.
– q0q0q0 ∈ QQQ is the tuple of initial states.
– G = {true, false}.
– A = {glo,no}.
– R is a set of natural numbers representing the set of payoffs.
– → is the relation defined in Def. 13.

Definition 13 (An only-global LTG relation →). The relation → for only-
global Grid, represented as ppp

g,aaa uuu−−→ qqq, is defined as in Def. 10 apart that local
input and global payoff are discarded:

1. qqq := ppp;uuu := 000;
2. if g then k := min(n, {h|ah = glo, ∀i ai = glo ⇒ qh ≤ qi});

qk := qk + M ; uk := M ;
3. ∀i. if qi �= 0 then qi := qi − 1; stop.

In absence of local jobs, policies and strategies are restricted to be functions
that only depend on states and global inputs. For σσσ a policy, by ppp

g uuu−→σσσ qqq we
mean that ppp

g,aaa uuu−−→ qqq and σσσ(ppp, g) = aaa. Below, we consider a variant of the policy
Earliest Response Time (ERT) and we give a formal proof that a strategy profile

70 M.G. Buscemi, U. Montanari, and S. Taneja

consisting of ERT’s policies is a Nash equilibrium. This result exploits the heavy
load assumption, which amounts to requiring that the state of each player cannot
be zero for two or more consecutive rounds of the game.

Definition 14. We define a policy Earliest Response Time (ERT) as
ε : Q × G → A such that ε(q, g) = glo.

Hereafter, by (www,ppp) we mean that every player i is in state pi and has accumu-
lated a payoff wi and we write (www,ppp)

g−→σσσ (www +uuu,qqq) in place of ppp
g uuu−→σσσ qqq, with wi

and wi + ui the payoffs of the i-th player before and after the execution of the
transition, respectively. We will use similar notations for sequences of transitions.

Definition 15 (heavy load assumption). An M -RLTG for Grid has heavy
load if, for every player i and for every transition ppp

g uuu−→σσσ qqq, whenever pi = 0
then qi �= 0.

Lemma 1. Suppose that the heavy load assumption holds and that, for some σ,
with σ �= ε and ε as in Def. 14

(www,ppp)
g−→εεε (zzz,qqq) and (www,ppp)

g−→εεε[σ/εi] (xxx,rrr).

1. If qk = rk for all k then zi = xi.
2. If ∃j such that qj �= rj then zi > xi and, if the game continues, there exist

two sequences of transitions such that

(zzz,qqq)
g1−→εεε (zzz1, qqq1) . . .

gP−→εεε (zzzP , qqqP) and (xxx,rrr)
g1−→εεε (xxx1, rrr1) . . .

gP−→εεε (xxxP , rrrP)

and (i) either the game stops at the P -th round and xP,i ≤ zP,i or (ii) the
game continues and qP,k = rP,k for all k = 1, . . . , n, and xP,i = zP,i.

Proof. If qk = rk for all k, it means that the deviating strategy σ has not changed
the winner of the game at that round. Hence, the payoff of the i-th player is the
same, i.e. zi = xi. Conversely, suppose that there exists j such that qj �= rj . Since
every player k with k �= i is only allowed to play the strategy εk, necessarily the
players are in a precise order given by their states in which i is the most favorite
candidate and j is the second favorite, namely qi ≤ qj ≤ ql1 ≤ . . . qln−2. Hence,
by deviating from its strategy εi, i-th player is not a winner any longer and,
so, zi > xi and zj < xj . If the game continues there are two cases. If there is a
sequence of rounds in which there is no new job to be executed followed by a last
round in which an incoming Grid job arrives, then the heavy load assumption
ensures that the order of the players will remain unchanged, namely, in the case
of the deviating policy profile εεε[σ/εi] the job will necessarily be assigned to i,
while in the case of the original policy profile εεε the game will be assigned to
j. Hence, i and j arrive in the same state in the two cases and zP,i = xP,j .
Conversely, if the game ends before such a job arrives, the payoff of i remains
greater than in the deviating case, i.e. xP,i ≤ zP,i.

Toward a Game-Theoretic Model of Grid Systems 71

Theorem 1. Consider the only-global M -RLTG for Grid given in Def. 12 and
the strategy profile εεε = 〈ε1, . . . , εn〉, where each strategy εi is a sequence of ERT
policies ε as defined in Def. 14. If the heavy load assumption holds, then Nash(εεε).

Proof. Starting from the initial state of the game, consider the tree of all the
strategy profiles. We propose a proof by induction on the depth N of tree, namely
on the number of rounds of the game. Without loss of generality, we can assume
that the deviating strategy is applied for the first time at round 1 of the game.
Indeed, if this is not the case and the deviating strategy is initially applied at
the m-th round, we can discard the first m − 1 rounds as the payoffs in the two
cases will be the same.

Base case. If the game does not start, the thesis trivially holds.
Inductive case. We have to prove the result for N + 1 rounds. By induction

hypothesis, the theorem holds for every tree of depth N . Hence, any strategy
profile of length N ′ that contains at least a σi with σi �= εi is ‘dominated’
by the strategy profile εεεN ′ , namely the local gain of the i-th player arising
from the deviating strategy is not strictly greater than the local gain of
i in the ERT strategy εi. Consequently, we only have to prove that, for
any deviating policy σi �= εi, the strategy profile εεε1[σi/εi] · εεε2 · . . . · εεεN+1 is
dominated by εN+1. Suppose that the game starts and that (000, ppp)

g−→εεε1 (zzz,qqq),
(000, ppp)

g−→εεε1[σi/εi] (xxx,rrr). We apply Lemma 1.

1. If qk = rk for all k then zi = xi. If the game stops the thesis trivially
follows by the inductive hypothesis. If the game continues, the theorem
holds because all the players have the same positions qk, for all k, in the
two sequences and the continuations are sequences of only strategy ε.

2. If ∃ j such that qj �= rj , then zi > xi. If the game stops, the theorem
trivially holds as zi > xi. If the game continues, by Lemma 1, there exist
two sequences of transitions such that

(zzz,qqq)
g1−→εεε (zzz1, qqq1) . . .

gP−→εεε (zzzP , qqqP) and (xxx,rrr)
g1−→εεε (xxx1, rrr1) . . .

gP−→εεε (xxxP , rrrP)

and either the game stops and xP,i ≤ zP,i or the game continues and
qP,k = qP,k for all k = 1, . . . , n, and xP,i = zP,i. If the game stops
now, xP,i ≤ zP,i and the thesis is proved. If the game continues, as in
the above case, all the players have the same positions qP,k in the two
sequences and the continuations are both sequences of only strategy ε.
Hence, again, the theorem holds.

6 Conclusions

In this work, we have addressed the job scheduling problem in heterogeneous
computational Grids, by exploiting the concept of Nash Equilibrium in Game
Theory. Specifically, we formulated a non-cooperative Grid job scheduling game
in which players are Grid sites and actions performed by players are dictated by

72 M.G. Buscemi, U. Montanari, and S. Taneja

scheduling algorithms. In the more general scenario including local jobs beside
Grid jobs, we have conjectured that the selfish strategy profile is a Nash Equi-
librium. By contrast, in the restricted case in which there are no local jobs we
have given a formal proof that the strategy profile where every node offers its
ERT is a Nash equilibrium. Note that in both the above cases we have required
that every job (either Grid or local) must have the same length during the whole
repeated game. In the restricted case we have introduced the further requirement
that the system must be heavily loaded. Such assumptions are crucial in proving
our results. Our future work includes a deeper study of the general scenario in
which the above two restrictions have been removed.

References

1. Enabling Grids for E-science in Europe, http://www.eu-egee.org

2. gLite Middleware, http://glite.web.cern.ch/glite/

3. Worldwide LHC Computing Grid, http://lcg.web.cern.ch/LCG/public/

4. Arezzini, S., Boccali, T., Calzolari, F., Ciampa, A., Marini, S., Mazzoni, E., Sarkar,

S., Taneja, S., Terreni, G.: Il Grid Data Center Dell’INFN di Pisa. Internal report,

http://www.lnf.infn.it/sis/preprint/pdf/

getfile.php?filename=INFN-CCR-09-2.pdf

5. Foster, I.T., Kesselman, C.: The Grid, Blueprint for a New Computing Infrastruc-

ture. Morgan Kaufmann Publishers, San Francisco (1999)

6. Kwok, Y., Song, S., Hwang, K.: Selfish grid computing: Game-theoretic modeling

and NAS performance results. In: Proc. CCGrid, pp. 9–12 (2005)

7. Nash, J.: Non-cooperative games. The Annals of Mathematics 54(2), 286–295

(1951)

8. Osborne, M.J.: An introduction to game theory. Oxford Univ. Press, New York

(2004)

9. Regev, O., Nisan, N.: The POPCORN market—an online market for computational

resources. In: Proc. ICE, pp. 148–157. ACM, New York (1998)

10. Rzadca, K., Trystram, D., Wierzbicki, A.: Fair game-theoretic resource manage-

ment in dedicated grids. In: Proc. CCGRID, pp. 343–350. IEEE Computer Society,

Los Alamitos (2007)

11. Tchernykh, A., Ramı́rez, J.M., Avetisyan, A., Kuzjurin, N., Grushin, D., Zhuk, S.:

Two level job-scheduling strategies for a computational grid. In: Wyrzykowski, R.,

Dongarra, J., Meyer, N., Waśniewski, J. (eds.) PPAM 2005. LNCS, vol. 3911, pp.

774–781. Springer, Heidelberg (2005)

12. Wiriyaprasit, S., Muangsin, V.: The impact of local priority policies on grid schedul-

ing performance and an adaptive policy-based grid scheduling algorithm. In: Proc.

HPCASIA, pp. 343–346. IEEE Computer Society, Los Alamitos (2004)

http://www.eu-egee.org
http://glite.web.cern.ch/glite/
http://lcg.web.cern.ch/LCG/public/
http://www.lnf.infn.it/sis/preprint/pdf/getfile.php?filename=INFN-CCR-09-2.pdf
http://www.lnf.infn.it/sis/preprint/pdf/getfile.php?filename=INFN-CCR-09-2.pdf

Functions as Processes: Termination and the
λ̄μμ̃-Calculus�

Matteo Cimini1, Claudio Sacerdoti Coen2, and Davide Sangiorgi2,3

1 School of Computer Science, Reykjavik University, Iceland
2 Department of Computer Science, University of Bologna, Italy

3 INRIA, France

Abstract. The λ̄μμ̃-calculus is a variant of the λ-calculus with significant dif-
ferences, including non-confluence and a Curry-Howard isomorphism with the
classical sequent calculus.

We present an encoding of the λ̄μμ̃-calculus into the π-calculus. We establish
the operational correctness of the encoding, and then we extract from it an ab-
stract machine for the λ̄μμ̃-calculus. We prove that there is a tight relationship
between such a machine and Curien and Herbelin’s abstract machine for the λ̄μμ̃-
calculus. The π-calculus image of the (typed) λ̄μμ̃-calculus is a nontrivial set of
terminating processes.

1 Introduction

In his seminal paper [10], Milner gave accurate compilations from the call-by-value and
call-by-name λ-calculi into the π-calculus. The study of embeddings of λ-calculi into a
process calculus has then been continued, by a number of researchers (see [14] for a tu-
torial), and is interesting for several reasons. From the process calculus point of view, it
is a significant test of expressiveness, and helps in getting deeper insight into its theory.
From the λ-calculus point of view, it provides the means to study λ-terms in contexts
other than purely sequential ones, and with the instruments available in the process cal-
culus. For example, an important behavioural equivalence upon process terms gives rise
to an interesting equivalence upon λ-terms. Moreover, the relevance of those λ-calculus
evaluation strategies which can be efficiently encoded is strengthened. The study can
also be useful to provide a semantic foundation for languages which combine concur-
rent and functional programming and to develop parallel implementations of functional
languages.

Last but not least, the study can give insights into the transfer of results or techniques
from the λ-calculus into the process calculus. An example are results about termination
of programs. Termination has been studied extensively in the λ-calculus, where it is
often called strong normalisation. Termination is also important in concurrency. For
instance, if we interrogate a server, we may want to know that the interrogation does not
cause an infinite computation in the server. Compared to the λ-calculus, results about

� Cimini’s work is supported by the project ”New Developments in Operational Semantics” (nr.
080039021) of the Icelandic Research Fund.; Sangiorgi’s by the EU projects Sensoria and
Hats.

M. Wirsing, M. Hofmann, and A. Rauschmayer (Eds.): TGC 2010, LNCS 6084, pp. 73–86, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

74 M. Cimini, C.S. Coen, and D. Sangiorgi

termination in the π-calculus are fairly rare [20,15,6,5]. Other interesting results in the
λ-calculi concern the Curry-Howard isomorphism, in the sense of [7,17], between the
formulae of a logic and the the types of a calculus. An example of a technique widely
used in the λ-calculus and that would be interesting to transport onto the π-calculus are
logical relations. The technique is used in the λ-calculus to establish various properties
including termination, parametricity and representation independence. It remains rather
unclear how to transport the technique onto a concurrent language so to capture also
processes that are ‘non-functional’ and non-confluent.

In the present work, we explore the embedding into π-calculus of a variant of the
λ-calculus, namely the λ̄μμ̃-calculus [4]. The λ̄μμ̃-calculus presents some striking dif-
ferences with respect to the ordinary λ-calculus. A major interest of the λ̄μμ̃-calculus is
that its typed version is Curry-Howard isomorphic to classical sequent calculus. While
in the present work we focus on the untyped version, the Curry-Howard correspon-
dence is still reflected in the untyped calculus in several ways. We discuss all these
aspects below.

First of all, the λ̄μμ̃-calculus, being Curry-Howard isomorphic to a sequent calculus
(as the simpler λ̄-calculus of Herbelin [8]), can be seen as a calculus whose terms are
reduction machine states. In particular, and contrary to the λ-calculus, all head reduc-
tions only involve the outermost parts of the term. In the λ-calculus, even in the case of
head reduction, the parts of the λ-term that interact need not be at the outermost level,
as shown in the term ((λx. M)N)P. Encodings of the λ-calculus into π-calculus have to
bring the interacting terms to a topmost position to allow interaction between them. This
forces, for instance, the encoding of λ-terms to be parametric on the channels used to in-
teract, which have to be provided dynamically. In the λ̄μμ̃-calculus, in contrast, a redex
is always at top level. For instance, the previous example becomes 〈λx. M | N · (P · α)〉:
the λ-abstraction and its argument N are in the outermost parts of the term. The topmost
property allows us to avoid the channel parametrization in the encoding into π-calculus:
only three channels are needed for reduction, each one corresponding to a different kind
of redex.

Secondly, the λ̄μμ̃-calculus is strongly normalizing, but non-confluent, as required by
Girard’s example of non-confluence for cut elimination in classical logic. Thus, one may
hope that the subset of the π-calculus obtained as the image of the encoding, restricted to
well-typed terms, is a nontrivial example of a non-confluent but strongly normalizing
set of processes. In order to achieve non-confluence, the λ̄μμ̃-calculus includes the μ
control operator that behaves like the μ control operator of Parigot’s λμ-calculus [12],
introducing a critical pair in the reduction system. The critical pair, however, is only
a symptom of a more interesting phenomenon: each topmost subterm (that becomes
a process in π-calculus) can always express two different behaviours: either it can be
bound and delayed, acting in a passive way, or it can continue its normal behaviour,
for instance by capturing another topmost subterm. Moreover, the subterm is actually
captured only if it interacts with a capturing term. Since each one is a context for the
other and determines the other subterm behaviour, the subterms involved in a reduction
interact in an essentially synchronous way. We can see indeed the (encoding of the) λ̄μμ̃-
calculus as a calculus of peers where each peer can initiate the communication, whereas
the λ-calculus (with a fixed strategy) follows the client-server model. These synchrony

Functions as Processes: Termination and the λ̄μμ̃-Calculus 75

aspects explain why our encoding of the λ̄μμ̃-calculus exploits the synchronous features
of the π-calculus, notably mixed choice, i.e. a choice between an input and an output
action.

A finally reason of interest for the λ̄μμ̃-calculus is that the application of the logi-
cal relation technique to it is technically quite different from that for the ordinary λ-
calculus. This is partly due to the non-confluence properties of the λ̄μμ̃-calculus and
partly, but more significantly, to its control operators. These aspects make us believe
that the logical relations in the λ̄μμ̃-calculus can offer insights for the transport of logi-
cal relations onto a concurrent calculus such as the π-calculus, though we do not pursue
this line of work in the present paper.

Figure 1 is a summary of the main results. Following the work of Vasconcelos in
[19], we identify the reduction machine M1 implemented by the encoding and we put
it in relation with a previously known reduction machine for the λ̄μμ̃-calculus given by
Curien and Herbelin in [4], here called M2. The operational behaviour of the encoding
π-terms is precisely captured by the reduction machine M1 (derived in a straightfor-
ward way from the λ̄μμ̃-to-π encoding). This machine M1 is essentially equivalent to
M2. Hence the diagram in the figure commutes and all encodings are correct and com-
plete. Moreover, we also show that some encodings (those marked ‘1-1,1-1’) are strong
operational correspondences, i.e. the encoding is bijective and every reduction step of
the encoded term corresponds exactly to one step of the encoding term and vice versa.

Besides the synchronous encoding, we also present an encoding into the asynchronous
π-calculus. As expected, we need to resolve the mixed choice by introducing an arbiter,
which yields an heavier encoding. The arbiter is responsible for breaking the critical pair,
and it can be biased in order to always give precedence to one side of the pair. Being
able to consistently resolve the critical pairs allows to exploit Curien and Herbelin’s two
encodings of the λ-calculus into the λ̄μμ̃-calculus that yields respectively a call-by-value
and a call-by-name reduction.

Proofs and examples are here omitted and can be found in [3].

Structure of the paper. In Section 2 we recall the definitions of the λ̄μμ̃-calculus and
of the Curien and Herbelin’s abstract machine. In Section 3 we provide the encoding
to π-calculus. Section 4 is devoted to presenting the machine M1, whose relationship
to the encoding is then addressed in Section 5. In Section 6 we finally prove the corre-
spondence between M1 and M2, making the diagram of Figure 1 commute. In Section
7 we provide an asynchronous version of the encoding. Conclusions and future work
are discussed in Section 8.

2 Preliminaries

2.1 The λ̄μμ̃-Calculus

Assuming familiarity with the λ-calculus [1], in this section we recall the definitions
of the λ̄μμ̃-calculus. A precise description of the λ̄μμ̃-calculus is out of the scope of
this paper and can be found in [4]. The calculus is characterized by three syntactic
categories: terms, contexts (dual to terms) and commands. Syntax and the operational
semantics are defined as follows.

76 M. Cimini, C.S. Coen, and D. Sangiorgi

1-n, Correctness:
≤1-1 - if M → N then �M�→ N′

where (N,N′) ∈ R
- if �M�→ N then ∃N′, M →≤1 N′ ∧ (N′,N) ∈ R

where R is 1 − n and modelled after Milner [10]
n-1, Correctness:
1-≤ 1 - if M → N then �M�→≤1 �N�

- if �M�→ N then ∃N′, M → N′ ∧ �N′� = N
where �·� = · is n − 1 and equal to R−1

1-1, Strong Operational Correspondence:
1-1 - M → N iff �M�→ �N�

Fig. 1. The main results on the embedding of λ̄μμ̃-terms into π-terms

Syntax: Reduction rules:
Command c = 〈v | e〉 λ − reduction : 〈λx. v1 | v2 · e〉 → 〈v2 | μ̃x. 〈v1 | e〉〉

Term v = x | λx. v | μβ. c μ − reduction : 〈μβ. c | e〉 → c[e/β]
Context e = α | v · e | μ̃x. c μ̃ − reduction : 〈v | μ̃x. c〉 → c[v/x]

A command is a closed system containing both the program and the context where
it is evaluated. Besides the usual λ-abstraction the calculus has few constructs which
deserve some words:

– μ̃x. c: The (context or continuation) variable β is bound in c. Semantically, the μ̃
operator is the standard local definition operator of ML: 〈· | μ̃x. c〉 is equivalent to
let x := · in c; operationally, it can capture the term in dot position and substitute
it in place of x in c, actually delaying its evaluation in a call-by-name fashion.

– μβ. c: The (term) variable x is bound in c. Dually to μ̃, the μ operator binds its eval-
uation context (like Parigot’s μ operator [12] and similarly to the call/cc operator
of Scheme) and, operationally, it can capture the context substituting it in place
of β in c, actually delaying its evaluation and bringing c in topmost position, in a
call-by-value fashion.

– v · e: Called the cons operator, it is a context for a λ-abstraction that feeds the input
v to the λ-abstraction and collects the result of the evaluation by matching it against
the context e; operationally, a β-redex is not reduced by performing an immediate
substitution (that would correspond to call-by-name): the argument is put in head
position and matched by a μ̃-context that can be fired (like in call-by-name) or that
can be delayed (like in call-by-value, if the argument becomes a μ-term).

Functions as Processes: Termination and the λ̄μμ̃-Calculus 77

The reduction takes place at the topmost position, performing the so called topmost
reduction. This is consistent with the game-theoretic view of the calculus where terms
and contexts are players interacting each other in order to perform a computational
step. The two players are at the top of the abstract syntax tree and a reduction step is
responsible to make them vanish and bring (possibly from the lower levels) the new
term and the new context ready to interact again.

As mentioned in the introduction, the calculus is non-confluent. Commands of the
form 〈μβ. c1 | μ̃x. c2〉 allow indeed for both μ-reduction and μ̃-reduction to take place
and may result into two different reducts:

〈μβ. c1 | μ̃x. c2〉 → c1[μ̃x. c2/β]

〈μβ. c1 | μ̃x. c2〉 → c2[μβ. c1/x]

with c1[μ̃x. c2/β] and c2[μβ. c1/x] possibly distinct normal forms.
Finally, it is worth noting the dualities between μ/μ̃ and term/context variables. In

[4] particular attention is devoted to such dualities. Discussing them in detail is out of
the scope of this paper and the interested reader is invited to refer to [4].

2.2 The Reduction Machine M2

In [4], Curien and Herbelin also provide a reduction machine for the λ̄μμ̃-calculus.
Before embarking in the definition of such a machine, the formal notion of reduction
machine from [19] is repeated here.

Definition 1 (Reduction Machine). A reduction machine is a triple 〈S ,→s,≈s〉, where
S is a set (the set of states),→s⊂ S ×S (the reduction relation), and≈s is an equivalence
relation in S × S , such that ≈s→s ⊆ →∗s≈s.

Definition 1 slightly differs from [19] for the author treats exclusively deterministic
machines. We have just dropped the deterministic clause, keeping the name.

The mentioned Curien and Herbelin’s machine, here called M2 for simplicity, is
presented below.

Definition 2 (States and Environments of the machine M2)

S tate s = 〈vcl | ecl〉
Term Closure vcl = v in ρ

Context Closure ecl = e in ρ

Environment ρ = ∅ | [varv = vcl] + ρ | [vare = ecl] + ρ

with varv and vare term and context variables, respectively. We write S M2 to refer to the
set of the states of the machine M2.

The operational behaviour of the machine M2 is described by means of the reduction
relation −→M2⊂ S M2 × S M2.

78 M. Cimini, C.S. Coen, and D. Sangiorgi

Definition 3 (The reduction relation −→M2)

〈μβ. c in ρ1 | e in ρ2〉 −→M2 c in ρ1 + [β = e in ρ2]

〈v in ρ1 | μ̃x. c in ρ2〉 −→M2 c in ρ2 + [x = v in ρ1]

〈x in ρ1 + [x = v in ρ2] | e in ρ3〉 −→M2 〈v in ρ2 | e in ρ3〉
〈v in ρ1 | β in ρ2 + [β = e in ρ3]〉 −→M2 〈v in ρ1 | e in ρ3〉

〈λx. v1 in ρ1 | v2 · e in ρ2〉 −→M2 〈v1 in ρ1 + [x = v2 in ρ2] | e in ρ2〉
The first four rules are simply obtained by replacing immediate substitution with de-
layed substitution, implemented by means of local explicit substitutions for the topmost
term and context. The last rule is more involved: in order to maintain the invariant that
the local substitution is applied only to topmost terms and contexts, the λ-reduction rule
is twisted a bit. In the rest of the paper we consider a variant of the reduction machine
obtained by dropping the twisted rule and by replacing it with the following one, that
captures λ-reduction more closely at the price of allowing explicit substitutions on a
subterm:

〈λx. v1 in ρ1 | v2 · e in ρ2〉 −→M2 〈v2 in ρ2 | μ̃x. 〈v1 in ρ1 | δ in [δ = e in ρ2]〉〉
States in S M2 are considered up-to the following equivalence relation ≡M2.

Definition 4 (The equivalence relation ≡M2)

t in ρ1 + [var1 = cl1] + [var2 = cl2] + ρ2 ≡M2 t in ρ1 + [var2 = cl2] + [var1 = cl1] + ρ2

t in ρ1 + [var = cl] + ρ2 ≡M2 t[var′/var] in ρ1 + [var′ = cl] + ρ2

i f var′ � FV(t)

t in ρ1 + [var = cl] + ρ2 ≡M2 t in + ρ1 + ρ2 i f var � FV(t)

Intuitively, the equivalence relation ≡M2 identifies explicit substitutions up to commu-
tativity, α-equivalence of environment entry names and garbage collection of unused
substitutions.

The reduction machine M2 is the triple 〈S M2,→M2,≡M2〉.

3 From λ̄μμ̃ to π

We assuming the reader familiar with the π-calculus [11,16]. We encode the λ̄μμ̃-
commands into the dialect of the π-calculus with internal mobility, namely the πI-
calculus [13], where only the output of fresh new channels is allowed. We employ such
a calculus admitting both replication !P and recursion Rec X. P. The encoding is the
following one, the reader should bear in mind that, as usual in the πI-calculus, we write
x(y). P for νy (x〈y〉. P).

�〈v | e〉� = �v� | �e�
�μβ. c� = Rec Y. (μ(β). �c� + μ̃(x). !x. Y)

�μ̃x. c� = Rec Y. (μ̃(x). �c� + μ(β). !β. Y)

Functions as Processes: Termination and the λ̄μμ̃-Calculus 79

�x� = Rec Y. (x + μ̃(z). !z. Y)

�β� = Rec Y. (β + μ(β). !β. Y)

�λx. v1� = Rec Y. (λ(δ). �μ̃x. 〈v1 | δ〉� + μ̃(z). !z. Y)

�v2 · e� = Rec Y. (λ(δ). (�v2� | !δ. �e�) + μ(β). !β. Y)

The encoding of a command is simply the parallel composition between the encoding of
the topmost term and its context, according to the game-theoretic reading of the calculus
where every player becomes a process. This property is disrupted in the asynchronous
encoding we present in Section 7, which is based on an arbiter.

As for the λ-calculus, substitution is immediate in the λ̄μμ̃-calculus, but needs to be
delayed both in reduction machines (to achieve efficiency) and in encodings into first
order process calculi. We achieve this using the standard technique, already used by
Milner, of binding terms by creating fresh channel names and activating them lazily by
interacting on the channel. Differently from Milner, however, we let the binding term
generate the fresh channel, reusing the variable name coming from the λ-term and thus
avoiding to parameterize the encoding or to use syntactical substitution operators.

The encoding uses three selected channels, named μ, μ̃ and λ to mimic the corre-
sponding redexes. The μ-reduction is implemented by letting every context encoding
be of the form Rec Y. (· +μ(β). !β. Y) and letting the encoding of μβ. c fire a fresh chan-
nel β over μ to its context, activating the right part of the mixed choice and delaying
the execution of Y that waits over β for (multiple) activation. A perfectly dual solution
is used to mimic μ̃-reduction, leading to the critical pair obtained by the translation of
�〈μβ. c | μ̃x. c′〉� where two mixed choices can interact both on the μ and the μ̃ chan-
nels to perform either μ-reduction or μ̃-reduction. In a precise sense, we can see the
(encoding of the) λ̄μμ̃-calculus as a calculus of peers where each peer can initiate the
communication, whereas the λ-calculus (with a fixed strategy) follows the client-server
model. It is thus not surprising that the encoding requires a synchronous calculus.

The λ-reduction is more involved since �v1� and �e�, that belong to different pro-
cesses, must behave as �〈v1 | e〉� where 〈v1 | e〉 is not a sub-term of the original process,
and neither e is accessible in the encoding of λx. v1 nor the other way around. We solve
the problem by handling �e� as an argument, guarding its execution by δ and sending δ
to the encoding of λx. v1 by means of the channel λ.

The reader may have noticed that having both replication and recursion, albeit un-
usual and redundant, captures in a natural manner two different behaviours of the pro-
cesses: bound processes waiting to be activated will be replicated; processes in mixed
choice that need to receive a channel and replicate their behaviour on that channel need
to be implemented using recursion.

In [3] we provide an example of encoding and we show its reduction steps. The
reader can find in [3] also the proof of the correctness of the encoding (the right-headed
arrow in Figure 1). In order to establish this result we employ the same technique al-
ready used by Milner in [10], that consists in relating (via a relation R) each λ̄μμ̃-term
M not only to �M�, but to a larger family of π-terms that are all representations of
M up to “delayed substitutions”. Indeed, since the π-calculus is first order, the encod-
ing cannot capture precisely immediate substitution, and thus it captures an explicit
form of delayed substitution. Thus, during reduction, the same λ̄μμ̃-term M receives

80 M. Cimini, C.S. Coen, and D. Sangiorgi

multiple representations that are all π-processes that are not observationally equivalent,
but that can still be “identified” by relating them via R to M. Formally, R is the min-
imal one-to-many relation such that (M, P) ∈ R for all M, P,M′,Ni, xi such that M =
M′[N1/x1; . . . ; Nn/xn] and P = νx1, x2, . . . , xn (�M′� | !x1. �N1� | . . . | !xn. �Nn�).

A few points are worth a mention:

– The dualities mentioned in Section 2.1 are preserved. The reader may notice that
the encodings concerningμ- and μ̃-abstractions, as well as the ones concerning term
and context variables, are the same modulo the exchange of the channels μ and μ̃.

– Contrary to the λ-calculus, the encoding is not parametrized.
– The synchronous nature of the λ̄μμ̃-calculus discussed in Section 2.1 is reflected by

the employment of a synchronous calculus, which uses mixed choice.

4 The Reduction Machine Induced from �·�
Following the work of Vasconcelos [19] we now question ourself about what reduc-
tion machine we are implicitly mimicking through the encoding �·�. In this section we
present the machine M1 constructed by inspecting the way the compilation �·� simu-
lates the λ̄μμ̃-calculus.

By the considerations made in the introduction and at the end of Section 3, it is
not surprising that M1 turns out to be an environment-based machine. The reader may
consider the process

P = (νx, β)(�〈x | β〉� | !x. �v� | !β. �e�).

P represents the encoding of the command 〈x | β〉 when executed in an environment
where x is bound to v and β is bound to e. We can think of P as �〈x | β〉 in [x = v, β = e]�.

The states of the machine M1 are thus pairs consisting of a command and a global
environment that maintains the bindings for its free variables. The states of the machine
M1 are defined as follows.

Definition 5 (States and Environments of the machine M1)

S tate s = c in ρ

Environment ρ = ∅ | [varv = v] + ρ | [vare = e] + ρ

with varv and vare term and context variables, respectively. We write S M1 to refer to the
set of the states of the machine M1.

The operational behaviour of the machine M1 is described by means of the reduction
relation −→M1⊂ S M1 × S M1.

Definition 6 (The reduction relation −→M1)

〈μβ. c | e〉 in ρ −→M1 c[β′/β] in ρ + [β′ = e]

〈v | μ̃x. c〉 in ρ −→M1 c[x′/x] in ρ + [x′ = v]

〈x | e〉 in ρ + [x = v] −→M1 〈v | e〉 in ρ + [x = v]

〈v | α〉 in ρ + [α = e] −→M1 〈v | e〉 in ρ + [α = e]

〈λx. v1 | (v2 · e)〉 in ρ −→M1 〈v2 | μ̃x. 〈v1 | δ〉〉 in ρ + [δ = e]

with β′, x′ and δ f resh

Functions as Processes: Termination and the λ̄μμ̃-Calculus 81

To understand why a variable change is performed in the first two rules, the reader
may consider the way in which the encoding simulates the μ-reductions. In the process
�〈μβ. c | e〉�, the encoding of the μ-abstraction sends a fresh new channel to the
encoding of e, which we model by means of an α-conversion to a fresh variable.

States in S M1 are considered up-to the following equivalence relation ≡M1.

Definition 7 (The equivalence relation ≡M1)

c in ρ1 + [var1 = t1] + [var2 = t2] + ρ2 ≡M1 c in ρ1 + [var2 = t2] + [var1 = t1] + ρ2

c in ρ1 + [var = t] + ρ2 ≡M1 c[var′/var] in ρ1 + [var′ = t] + ρ2

i f var′ � FV(c)

c in ρ1 + [var = t] + ρ2 ≡M1 c in + ρ1 + ρ2 i f var � FV(c)

Intuitively, the equivalence relation ≡M1 identifies the states of the machine M1 up to
commutativity of environment entries, α-equivalence of environment entry names and
garbage collection of unused entries.

The reduction machine M1 is the triple 〈S M1,→M1,≡M1〉.

5 The Relationship between Encoded Terms and M1

In the previous section we have extracted the reduction machine M1 from the encoding
�·� following simple intuitions concerning the way it operates. In this section we anal-
yse the relationship between encoded π-calculus terms and terms of the machine M1,
deferring to Section 6 the question whether M1 is a correct abstract machine for the
λ̄μμ̃-calculus.

Intuitively, an operational correspondence holds whenever a reduction step in the
source machine is mimicked by a sequence of steps in the target machine. In our setting
we are able to establish a stronger correspondence between the execution of terms in
the machine M1 and the behaviour of their encoding; we are able in fact to exhibit a 1-1
correspondence between the two.

We set up the notion of strong operational correspondence, summarized in Figure 1
and defined here more accurately.

Definition 8 (Strong Operational Correspondence). Given the two reduction ma-
chines S = 〈S tS ,→s,≈s〉 and R = 〈S tR,→r,≈r〉, a mapping �·� : S tS → S tR is a
strong operational correspondence between S and R whenever for all s and s’ in S tS

s →s s′ ⇔ �s� →r �s′�

where states from S and R are considered equal up-to relations ≈s and ≈r, respectively.

Proving a mapping �·� to be a strong operational correspondence is strongly demanding
since R is required to step-by-step simulates S through the mapping �·�.

In order to prove the strong operational correspondence between M1 states and π-
terms, we need to make explicit the bijective mapping between M1 states and images
in the π-calculus. The encoding �·� is thus completed as follows:

82 M. Cimini, C.S. Coen, and D. Sangiorgi

�c in ρ� = νvar1, var2, . . . , varn (�c� | �ρ�)
with ρ = [var1 = t1, var1 = t2 . . . varn = tn]

�∅� = ∅
�[var = t] + ρ� = !var. �t� | �ρ�

As in the work of Vasconcelos [19], we need to set the π-fragment of Figure 1 as a
reduction machine. We denote such a reduction machine by π, which consists of the
triple 〈P,→π,≡π〉, where P is the codomain of �·�, →π is the reduction relation of
the π-calculus and ≡π is the structural congruence, see [11,16]. The following theorem
ensures that encoded terms and states of the machine M1 are (operationally) intimately
related to each other.

Theorem 1 (Strong Operational Correspondence between M1 and π). �·� is a
strong operational correspondence between M1 and π, i.e for all s and s’

s →M1 s′ ⇔ �s� →π �s′�

where states from M1 and π are considered equal up-to relations ≡M1 and ≡π,
respectively.

6 The Relationship between M1 and M2

Clearly, the machine M1 and Theorem 1 are useful only when we prove that the machine
M1 is correct w.r.t. the operational semantics of the λ̄μμ̃-calculus. In this section we
prove this by showing a strong operational correspondence between the machine M2
and the machine M1.

The machine M1 and M2 are essentially the same, except that the former makes use
of a global environment while the latter makes use of local explicit substitutions where
terms and contexts carry their own private environment.

The strong operational correspondence is thus proved by mapping the explicit substi-
tutions of M2 into the global environment of M1, caring that name clashes are avoided.
We denote such a mapping by �·�M.

Theorem 2 (Strong Operational Correspondence between M2 and M1). �·�M is a
strong operational correspondence between M2 and M1, i.e for all s and s’

s →M2 s′ ⇔ �s�M →M1 �s′�M

where states from M2 and M1 are considered equal up-to relations ≡M2 and ≡M1, re-
spectively.

Theorem 2 makes the diagram of Figure 1 commute. The final result of Figure 1, which
is the strong operational correspondence between M2 and images in π-calculus, follows
by composition of Theorems 1 and 2.

Functions as Processes: Termination and the λ̄μμ̃-Calculus 83

7 An Asynchronous Encoding

In this section we provide an encoding of the λ̄μμ̃-calculus into the asynchronous π-
calculus Aπ [9,2]. Such an encoding is necessary in order to provide a distributed im-
plementation of the calculus. We employ a variant of the polyadic Aπ-calculus able to
perform both match and mismatch of channel names. The mapping �·�a is defined below.

�〈v | e〉�a = νv, e (�v�a
v | �e�a

e | arbiter(v, e))

�μβ. c�a
v = νx, y (v〈μ, x, y〉 | !x(v). v〈μ, x, y〉 | !y(β, βTest). �c�a)

�μ̃x. c�a
e = νx, y (e〈μ̃, x, y〉 | !x(e). e〈μ̃, x, y〉 | !y(x, xTest). �c�a)

�λx. v1�a
v = νx, y (v〈λ, x, y〉 | !x(v). v〈λ, x, y〉 | !y(e, δ, δTest). �μ̃x. 〈v1 | δ〉�a

e)

�v2 · e�a
e = νx, y (e〈cons, x, y〉 | !x(e). e〈cons, x, y〉 | !y(v, δ). (�v2�a

v | !δ(e). �e�a
e))

�z�a
v = νx (v〈var, x, z〉 | v〈xTest〉 | !x(v). v〈var, x, z〉)

�β�a
e = νx (e〈var, x, β〉 | e〈βTest〉 | !x(v). e〈var, x, β〉)

arbiter(v, e) = v(typev, xv, yv). e(typee, xe, ye).

[typev = μ]. [typee � var or μ̃]. yv〈xe, yes〉 |
[typee = μ̃]. [typev � μ or var]. ye〈xv, yes〉 |
[typev = μ]. [typee = μ̃]. νa (a | a. yv〈xe〉 | a. ye〈xv〉) |
[typev = var]. v(bound).

[bound = yes]. νnewv, newe (yv〈newv〉 | newe〈typee, xe, ye〉)
| arbiter(newv, newe)

[bound � yes]. νnewv, newe (newv〈varNotBound, xv, yv〉 |
newe〈typee, xe, ye〉 | arbiter(newv, newe))

[typee = var]. [typev � var]. v(bound).

[bound = yes]. νnewv, newe (ye〈newe〉 | newv〈typev, xv, yv〉
| arbiter(newv, newe))

[bound � yes]. νnewv, newe (newe〈varNotBound, xe, ye〉 |
newv〈typev, xv, yv〉 | arbiter(newv, newe))

[typev = λ]. [typee = cons].

νnewv, newe, δ (yv〈newe, δ, yes〉 | ye〈newv, δ〉 | arbiter(newv, newe))

The encoding of commands is the parallel execution of the term, the context and a
third process that acts like an arbiter. Terms and contexts are indeed supposed not to
interact each other directly as in the previous encoding, but to interact with an arbiter
that mediates the communications. The encoding is parametrized by a channel name
that is the channel the term and context use to communicate with the arbiter. Every
term and context send to the arbiter three information:

– The type of the construct. This information is discriminated by the name of the
channel. For examples μ-abstractions send the channel μ, and cons contexts send
the channel cons. The full association is straightforward and not listed.

84 M. Cimini, C.S. Coen, and D. Sangiorgi

– The private channel x. This channel denotes where the term or context is located.
– The private channel y. The arbiter uses this channel to perform the task associated

to the meaning of the term or context.

The arbiter, once taken these information, performs a matching over the names of chan-
nels in order to detect the type of the term and context involved. With this information
it can discriminate the correct use of the channels xs and ys in order to perform the
expected reduction.

The management of the variables is more involved. Every variable needs to carry the
information about whether it is bound or it is not. For example the variable x recovers
this information by means of the channel named xTest; if the variable is bound, the
arbiter would set this channel to the distinguished channel yes, exactly dedicated to this
purpose. Otherwise, the channel name remains xTest and the arbiter can discriminate
the two situations by means of the match and mismatch operator, i.e. whether xTest is,
or is not, equal to yes. To understand the reason of such a management, the reader may
consider the variables treatment in the arbiter code; when an arbiter does know that a
variable is linked to some term or context, it can safely perform an output to liberate
a process. If the variable is free, then such an output would just stop the computation
even in commands where it is not supposed to, as in 〈y | μ̃x. c〉, with y free. When the
arbiter does know that y is not bound, it iterates again the arbiter tagging the variable as
not bound, so at least it will be available for capture the second time. Solutions to offer
the desired behaviour in a single go using no mixed choices seems to necessarily lead
to potential loops in iterating the arbiter.

In order to provide an asynchronous encoding we need to resolve somehow the mixed
choice of the previous encoding. This is reflected by introducing an arbiter that mediates
the communications between the two players who thus no longer interact directly with
each other.

It is worth noting that by straightforward modifications we can bias the arbiter in
order to always give the precedence to μ- or μ̃-reductions when the critical pair occurs.
The arbiter can indeed detect such a pair and acts consistently. Being able to resolve the
critical pair allows to exploit Curien and Herbelin’s two encodings of the λ-calculus into
the λ̄μμ̃-calculus that yields respectively a call-by-value and a call-by-name reduction.

8 Conclusions and Future Works

We have provided the first encoding of the λ̄μμ̃-calculus in π-calculus and, following
the ideas by Milner and the technique by Vasconcelos, we have extracted from the
encoding and studied a reduction machine M1 based on a global environment. The
reduction machine turns out to be operationally equivalent to (a variant of) another
reduction machine M2 previously given for the same calculus.

The λ̄μμ̃-calculus, which in its typed version is Curry-Howard isomorphic to classi-
cal sequent calculus, has a number of peculiarities that make the study of its embedding
into the π-calculus worthwhile: λ̄μμ̃-terms are close to machine states (being isomor-
phic to sequent calculus), and thus the encoding need not be parametric on the channels
along which terms interact; terms (and contexts) are fully symmetric and interact in

Functions as Processes: Termination and the λ̄μμ̃-Calculus 85

a peer-to-peer way, which makes it useful the use of synchronous features of the π-
calculus such as mixed choice in the encoding.

We have provided an asynchronous encoding, which, as expected, needs to resolve
the mixed choice and makes use of an arbiter. Such an encoding, albeit less efficient,
is easily customisable to tune the reduction strategy and can be a basis for distributed
implementations based on asynchronous primitives.

Finally, the reduction in the λ̄μμ̃-calculus is strongly normalizing (being isomorphic
to cut elimination for classical logic), therefore the encoding into π-calculus may help
understanding termination in the π-calculus.

The closest work is due by Cardelli, van Bakel, and Vigliotti in [18], where the
authors provide an encoding from theX-calculus into π-calculus. TheX-calculus shares
with the λ̄μμ̃-calculus similar roots; also the former is indeed Curry-Howard isomorphic
to classical sequent calculus, but the details of the two calculi are significantly different.

A main objective of future work is the study of the expressiveness of the strongly
normalizing π-fragment identified. Related to this, we would like to study whether the
techniques for termination in the λ̄μμ̃-calculus can be transported onto the π-calculus
so to to be able to prove termination properties for larger subsets of processes. In this
direction, we first plan to study an extension of the λ̄μμ̃-calculus admitting several terms
and contexts interacting all together. Whether the new calculus would retain strong
normalization for typed terms and contexts appears to be a nontrivial problem.

Another line of future work is the study of typed version of the encodings. In the syn-
chronous case, since three global channels are used to implement the three reduction of
the calculus and since redexes of terms with different types are met during reduction, we
expect the typing of the global π-channels to pose some difficulties. In the asynchronous
case the scenario is even worse: a given channel may be used to accomplish different
tasks and also to transmit and receive different numbers of arguments, depending on the
particular term or context involved at runtime.

Finally, the symmetry of the calculus suggests that fusion-like calculi might also be
interesting target calculi for the encoding.

References

1. Barendregt, H.: The Lambda Calculus: Its Syntax and Semantics. Studies in Logic and the
Foundations of Mathematics, vol. 103. North-Holland, Amsterdam (1984) (revised edition)

2. Boudol, G.: Asynchrony and the pi-calculus. Technical Report RR-1702, INRIA (1992)
3. Cimini, M., Coen, C.S., Sangiorgi, D.: Online appendix,
http://nemendur.ru.is/matteo/appendixForFaPTaL.pdf

4. Curien, P.-L., Herbelin, H.: The duality of computation. In: Proceedings of the Fifth ACM
SIGPLAN International Conference on Functional Programming (ICFP 2000), Montreal,
Canada, September 18-21. SIGPLAN Notices, vol. 35(9), pp. 233–243. ACM, New York
(2000)

5. Demangeon, R., Hirschkoff, D., Sangiorgi, D.: Mobile processes and termination. In: Pals-
berg, J. (ed.) Semantics and Algebraic Specification. LNCS, vol. 5700, pp. 250–273.
Springer, Heidelberg (2009)

6. Deng, Y., Sangiorgi, D.: Ensuring termination by typability. Inf. Comput. 204(7), 1045–1082
(2006)

http://nemendur.ru.is/matteo/appendixForFaPTaL.pdf

86 M. Cimini, C.S. Coen, and D. Sangiorgi

7. Girard, J.-Y., Lafont, Y., Taylor, P.: Proofs and Types. Cambridge Tracts in Theoretical Com-
puter Science. Cambridge University Press, Cambridge (1989)

8. Herbelin, H.: A lambda-calculus structure isomorphic to Gentzen-style sequent calculus
structure. In: Pacholski, L., Tiuryn, J. (eds.) CSL 1994. LNCS, vol. 933, pp. 61–75. Springer,
Heidelberg (1994)

9. Honda, K., Tokoro, M.: An object calculus for asynchronous communication. In: America,
P. (ed.) ECOOP 1991. LNCS, vol. 512, pp. 133–147. Springer, Heidelberg (1991)

10. Milner, R.: Functions as processes. In: Paterson, M. (ed.) ICALP 1990. LNCS, vol. 443, pp.
167–180. Springer, Heidelberg (1990)

11. Milner, R., Parrow, J., Walker, D.: A calculus of mobile processes, part I. Information and
Computation (I&C) 100(1), 1–40 (1992); An earlier version of this paper appeared as Tech-
nical Report ECS-LFCS-89-85 of University of Edinburgh (1989)

12. Parigot, M.: Lambda-mu-calculus: An algorithmic interpretation of classical natural deduc-
tion. In: Voronkov, A. (ed.) LPAR 1992. LNCS, vol. 624, pp. 190–201. Springer, Heidelberg
(1992)

13. Sangiorgi, D.: Internal mobility and agent passing calculi. In: Fülöp, Z., Gecseg, F. (eds.)
ICALP 1995. LNCS, vol. 944, pp. 672–684. Springer, Heidelberg (1995)

14. Sangiorgi, D.: From lambda to pi; or, rediscovering continuations. Mathematical Structures
in Computer Science 9(4), 367–401 (1999)

15. Sangiorgi, D.: Termination of processes. Mathematical Structures in Computer Sci-
ence 16(1), 1–39 (2006)

16. Sangiorgi, D., Walker, D.: The π-calculus: A Theory of Mobile Processes. Cambridge Uni-
versity Press, Cambridge (2001)

17. Sørensen, M.H., Urzyczyn, P.: Lectures on the Curry-Howard Isomorphism. Studies in Logic
and the Foundations of Mathematics, vol. 149. Elsevier Science Inc., New York (2006)

18. van Bakel, S., Cardelli, L., Vigliotti, M.G.: From X to Pi: Representing Classical Sequent
Calculus in Pi-calculus. In: International Workshop on Classical Logic and Computation
(CLC 2008) (2009)

19. Vasconcelos, V.T.: Lambda and pi calculi, cam and secd machines. Journal of Functional
Programming 15(1), 101–127 (2005)

20. Yoshida, N., Berger, M., Honda, K.: Strong normalisation in the π-Calculus. In: 16th Annual
IEEE Symposium on Logic in Computer Science (LICS 2001), pp. 311–322. IEEE Computer
Society, Los Alamitos (2001)

Predicate Encryption for Secure Remote Storage

Giuseppe Persiano

Università di Salerno

Abstract. Predicate encryption is a special encryption method that

allows one to release keys to compute specific predicates of the plaintext

without having to decrypt. This cryptographic primitive is instrumental

for executing search on encrypted data and enables remote storage of

data. Predicate encryption dispenses with the need of downloading and

decrypting the whole data set whenever a search needs to be performed.

In this talk, the author overviewed security models and constructions

proposed and suggested a few applications.

M. Wirsing, M. Hofmann, and A. Rauschmayer (Eds.): TGC 2010, LNCS 6084, p. 87, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Trust in Crowds:
Probabilistic Behaviour in Anonymity Protocols

Vladimiro Sassone, Ehab ElSalamouny, and Sardaouna Hamadou

School of Electronics and Computer Science
University of Southampton, United Kingdom

Abstract. The existing analysis of the Crowds anonymity protocol assumes that
a participating member is either ‘honest’ or ‘corrupted.’ This paper generalises
this analysis so that each member is assumed to maliciously disclose the identity
of other nodes with a probability determined by her vulnerability to corruption.
Within this model, the trust in a principal is defined to be the probability that she
behaves honestly. We investigate the effect of such a probabilistic behaviour on
the anonymity of the principals participating in the protocol, and formulate the
necessary conditions to achieve ‘probable innocence.’ Using these conditions,
we propose a generalised Crowds-Trust protocol which uses trust information to
achieves ‘probable innocence’ for principals exhibiting probabilistic behaviour.

1 Introduction

Anonymity protocols often use random mechanisms. It is therefore natural to think
of anonymity in probabilistic terms. Various notions of such probabilistic anonymity
have been proposed and a recent line of work in the literature explores formalising
these notions through information-theoretic concepts (e.g. [1, 4–6, 12, 15, 18]). Such
approaches usually assume that participants in the protocol can be partitioned in two
classes: honest members, who always behave correctly, and attackers, who try to break
the protocol. Although a clear separation between trustworthy members and attackers
makes the analysis easier, it is not a realistic assumption for open and dynamic sys-
tems in the era of ubiquitous computing. Indeed, traditional approaches to security base
on authentication and roles are not sufficient in open systems. A promising approach
is to base security and privacy decisions on attributes linked to some level of trust a
principal can provide evidence for. The principals participating in a protocol will in
general have individual trust judgements; accordingly, interactions between any two of
them are governed by their mutual levels of trust. As an illustrating example, consider
the social network of Facebook, where members can require some of their activities or
information to be accessible only to members who they explicitly accepted as friends.
This could easily (and does) give misplaced confidence to Facebook users, and encour-
ages them to share sensitive information with ‘trusted’ friends, without considering
that those friends’ security system may just be vulnerable to attacks: even though they
would not maliciously reveal a user’s privata data, friends provide different levels of
vulnerability according to the robustness of their security systems, such as the strength
of their passwords, the quality of their anti-viruses, and so on. In other words, at each

M. Wirsing, M. Hofmann, and A. Rauschmayer (Eds.): TGC 2010, LNCS 6084, pp. 88–102, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Trust in Crowds: Probabilistic Behaviour in Anonymity Protocols 89

interaction with user i, there is a probability ti that she is not corrupted and hence acts
honestly, and a corresponding probability 1− ti that instead she is corrupted. Moreover,
between any given two interactions with a given user, her state may change from hon-
est to corrupted (e.g., as a result of being infected) and vice versa (e.g., as a result of
running an antiviral software). In this paper we postulate such probabilistic behavioural
model for principals, and investigate its effect on the security of anonymity protocols
such as Reiter and Rubin’s Crowds protocol [16].

Crowds allows Internet users to perform anonymous web transactions by sending
their messages through a random chain of users participating in the protocol. Each
user in the ‘crowd’ establishes a path between her and a set of servers by selecting
randomly other users to act as routers. The random selection process is performed in
such a way that when a user in the path relays a message, she does not know whether
or not the sender is the initiator (or originator) of the message, or just another for-
warder. Each user only has access to messages routed through her. It is well known that
Crowds cannot ensure strong anonymity [3, 16] in presence of corrupted participants;
yet, when the number of corrupted users is sufficiently small, it provides a weaker notion
of anonymity known as probable innocence: informally, a sender is probably innocent
if to an attacker she is no more likely to be the originator than not to be.

This paper is to the best of our knowledge the first to investigate the impact on the
security of Crowds of principals alternating in probabilistically between honest and
corrupt behaviours.

Related work. The research on quantitative approaches to information-hiding has re-
cently become very active and fruit-bearing. Several formal definitions and frame-
works have been proposed for reasoning about secure information flow analysis (e.g.,
[7, 8, 19]), side-channel analysis (e.g., [13]) and anonymity. Our work follows a recent
trend in the analysis of anonymity protocols directed to the application of information-
theoretic notions (e.g., [1, 2, 4–6, 9, 12, 15, 17, 18]), whereby the work closer to the
present one are those by Reiter and Ruben [16], Halpen and O’Neill [10], Chatzikoko-
lakis and Palamidessi [3], and a recent paper Hamadou et al [12].

In [16] the authors propose a formal definition of probable innocence predicated over
the probability of certain observable events induced by the actions of anonymous users
participating in the protocol. They require that the probability of an anonymous user
producing any observable to be less than one half. In [10] the authors formalise proba-
ble innocence in terms of the adversary’s confidence that a particular anonymous event
happened, after performing an observation. Their definition requires that the probability
of an anonymous event should be at most one half, under any observation. In [3] the
authors argue that the definition of [16] makes sense only for systems satisfying cer-
tain properties, whilst the definition of [10] depends on the probabilities of anonymous
events external to the protocol. Thus they propose a definition of probable innocence
that combines both by considering both the probability of producing some observable
and the adversary’s confidence after the observation.

In [12] the authors first generalise the concepts of probable innocence and relate it
to Smith’s concept of protocol vulnerability [19]. Instead of just comparing the proba-
bility of being innocent with the probability of being guilty, they compare such proba-
bilities against a parameter α. Informally, a protocol is α-probable innocent if for any

90 V. Sassone, E. ElSalamouny, and S. Hamadou

anonymous user the probability of being innocent is less than or equal to α. Then, they
extend the definition to deal with the adversary’s extra knowledge about the correlation
between anonymous events and some observables independent of the protocol. The lat-
ter is meant to arise from an independent source such as the environment in which
the protocol is executed. The paper shows that the presence of extra knowledge makes
probable innocence more difficult to achieve, and quantifies such difficulty.

The main difference between these approaches and the one we present in this paper
is that we consider the scenario where each participant in the protocol exhibits honest
or malicious behaviours according to a fixed probability. In our opinion, such a scenario
is a highly likely in ubiquitous computing. This paper is not intended to propose a new
definition of probable innocence; rather, we are interested in studying the impact on
the protocol’s security of its participants’ probabilistic behaviour. To this end, we first
extend the scenario of attack by associating to each principal a trust level t ∈ [0, 1]
denoting her robustness against corruption. We then modify the protocol accordingly;
rather, than selecting a forwarding node uniformly, the forwarding process is governed
by a policy where the probability of selecting a node depends on her trust level. We
then establish necessary and sufficient criteria for choosing an appropriate policy of
forwarding between members in order to achieve probable innocence. It is important to
observe that the trust levels t are parameters representing the real world, and not part of
the protocol. However, as will be made clear below, the protocol participants will need
to have estimates of them. There are well-studied distributed methods for that, based
e.g. on Bayesian analysis (cf. [14]), whilst in the current centralised implementation of
Crowds, observation leading to the estimation of t can be made by the mechanism which
manages crowd membership, the so-called ‘blender.’ We do not cover such issues and
the related techniques in the current exposition, as we consider them largely orthogonal
and scarcely relevant to the focus of this paper.

Structure of the paper. The paper is organised as follows: in §2 we fix some basic nota-
tions and recall the fundamental ideas and properties of the Crowds protocol, including
the notion of probable innocence. In §3 we present our first main contribution: Crowds
protocol extended with trust information of its participating members; §4 delivers our
second main contribution by studying the anonymity provided by the extended protocol
and establishing necessary and sufficient conditions for achieving probable innocence.

2 Background

This section describes our conceptual framework and revises the Crowds protocol and
its notion of probable innocence. We use capital letters A, B to denote discrete random
variables, small letters a, b and calligraphic letters A, B for their values and set of
values, respectively. We denote by P(a) the probability of a and by P(a, b) the joint
probability of a and b. The conditional probability of a given b is defined as

P(a | b) =
P(a, b)
P(b)

Trust in Crowds: Probabilistic Behaviour in Anonymity Protocols 91

Bayes’ theorem relates the conditional probabilities P(a | b) and P(a | b) as follows

P(a | b) =
P(b | a) P(a)

P(b)
(1)

We consider a framework commonly used in probabilistic approaches to anonymity and
information flow (e.g. [5, 11, 15, 19]). This focuses on total protocols and programs
with one high level (or anonymous) input A, a random variable over a finite set A,
and one low level output (observable) O, a random variable over a finite set O. We
represent a protocol/program by the matrix of the conditional probabilities P(o j | ai),
where P(o j | ai) is the probability that the low output is o j given that the high input
is ai. We assume that the high input is generated according to an a priori publicly-
known probability distribution. An adversary or eavesdropper can see the output of a
protocol, but not the input, and she is interested in deriving the value of the input from
the observed output.

2.1 The Crowds protocol

Crowds is a protocol proposed by Reiter and Rubin in [16] to allow Internet users to
perform anonymous web transactions, i.e., to protect their identities as originators of
request messages. The central mechanism is that the originator forwards the message to
a randomly-selected user, which in turn forwards the message to another user, and so on
until the message reaches its destination (the end server). This routing process ensures
that when a user is detected sending a message, there is a substantial probability that
she is not acting for herself but simply forwarding it on behalf of somebody else.

More specifically, a crowd is a fixed number of users participating in the protocol.
Some members (users) in the crowd may be corrupted (the attackers), and they can
collaborate in order to discover the originator’s identity. The purpose of the protocol is
to protect the identity of the message originator from the attackers. When an originator
– also referred to as initiator – wants to communicate with a server, she creates a random
path between herself and the server through the crowd by the following process.

– Initial step: the initiator selects randomly a member of the crowd (possibly herself)
and forwards the request to her. We refer to the latter user as the forwarder.

– Forwarding steps: a forwarder, upon receiving a request, flips a biased coin. With
probability 1 − p f she delivers the request to the end server or, with probability
p f , she selects randomly a new forwarder (possibly herself) and relays the original
request to her, to repeat the forwarding process again.

The response from the server to the originator follows the same path in the opposite
direction. Users (including corrupted ones) are assumed to have only access to mes-
sages routed through them, so that they only know the identities of their immediate
predecessors and successors in the path, and of the destination server.

2.2 Probable Innocence

In [16] Reiter and Rubin have proposed a hierarchy of anonymity notions in the context
of Crowds. These range from ‘absolute privacy,’ where the attacker cannot perceive

92 V. Sassone, E. ElSalamouny, and S. Hamadou

the presence of communication, to ‘provably exposed,’ where the attacker can prove the
sender and receiver relationship to third parties. Clearly enough, Crowds cannot ensure
absolute privacy in presence of attackers or corrupted users; it can only provide weaker
notions of anonymity. In particular, in [16] the authors propose an anonymity notion
called probable innocence and prove that, under suitable conditions on the parameters
of the protocol, Crowds ensures the probable innocence property to the originator. In-
formally, they define it as follows:

A sender is probably innocent if, from the attacker’s
point of view, the sender appears no more likely to
be the originator than to not be the originator.

(2)

In other words, the attacker may have good reasons to consider the sender more likely
than any other user to be the originator, yet it still appears at least as likely that she is not.

Let n be the number of users participating in the protocol and let c and m be the
number of the corrupted and honest users, respectively, with n = m+c. Since anonymity
makes only sense for honest users, we define the set of anonymous events as A =
{a1, a2, . . . , am}, where ai indicates that user i is the initiator of the message.

As it is usually the case in the analysis of Crowds, we assume that attackers will
always deliver a request to forward immediately to the end server, since forwarding it
any further cannot help them learn anything more about the identity of the originator.
Thus in any given path, there is at most one detected user: the first honest member to
forward the message to a corrupted member. We therefore define the set of observable
events as O = {o1, o2, . . . , om}, where o j indicates that user j forwarded a message to a
corrupted user. In this case we also say that user j is detected by the attacker.

Reiter and Rubin formalise their notion of probable innocence via the conditional
probability P(I |H) that the initiator is detected given that any user is detected at all.
Here H denotes the event that there is an attacker in the path (and thus the user before
it will be detected), whilst I is the event that precisely the initiator will forward the
message to the attacker.1 Probable innocence holds if P(I |H) ≤ 1/2.

In our setting the probability that user j is detected given that user i is the initiator,
can be written simply as P(o j | ai). As we are only interested in the case in which a
user is detected, for simplicity we do not write such condition explicitly. Therefore, the
notion of probable innocence proved in [16] translates in our setting as:

P(oi | ai) ≤ 1
2

for all i = 1, . . . ,m (3)

Reiter and Rubin proved in [16] that the following property holds for Crowds.

P(o j | ai) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1 − m − 1

n
p f i = j

1
m

p f i � j
(4)

Therefore, probable innocence (3) holds if and only if

m ≥ c − 1
p f − 1/2

p f .

1 Observe that this does not necessarily mean that the attacker is the second user in the path, as
the originator could herself be selected as a forwarder in the path she initiated!

Trust in Crowds: Probabilistic Behaviour in Anonymity Protocols 93

As previously noticed in several papers (e.g., [3]), there is a mismatch between the
idea of probable innocence expressed informally in (2) and property (3) actually proved
by Reiter and Rubin. Indeed, the former seems to correspond to the following interpre-
tation given by Halpern and O’Neill [11]:

P(ai | oi) ≤ 1
2

for all i = 1, . . . ,m (5)

Properties (3) and (5) however coincide under the standard assumption in Crowds that
the a priori distribution is uniform, i.e., that each honest user has equal probability of
being the initiator.

Finally we recall that the concept of probable innocence was recently generalised in
[12]. Instead of just comparing the probability of being innocent with the probability of
being guilty, loc. cit. considers, so to say, ‘degrees’ of innocence. Formally, given a real
number α ∈ [0, 1], a protocol satisfies α-probable innocence if and only if

P(ai | oi) ≤ α for all i = 1, . . . ,m (6)

Clearly, α-probable innocence coincides with the probable innocence for α = 1/2.

3 Using Trust Information

In the previous section, we have revised the fundamental ideas of the Crowds protocol
and its properties under the assumption that each user participating in the protocol is
either always honest or always an attacker, and all members are treated equally. How-
ever, as observed in §1, this is not a realistic assumption for open and dynamic systems
in ubiquitous computing. Indeed, open and dynamic systems often use attributes related
to some level of trust to enhance security and privacy. In this section we reformulate
Crowds under the novel scenario where interaction between users is governed by their
level of trust. We then study the effect of such probabilistic principals’ behaviour on the
security of the protocol.

3.1 Crowds Protocol Extended

We now extend the Crowds protocol to take into account the trust levels of its partic-
ipating members. We associate a trust level ti j ∈ [0, 1] to each pair of users i and j
to indicate the trust of user i in user j according to evidence provided by j. Here ti j

denotes the probability that when the principal i chooses principal j as a forwarder, j
behaves honestly and protects i’s identity. Accordingly, each user i defines her policy of
forwarding to other members (including herself) based on her trust of them. A policy
of forwarding for a user i is probability distribution {qi1, qi2, · · · , qin}, such that for all i,∑n

j=1 qi j = 1. Here qi j denotes the probability that j is chosen as a forwarder by i (given
that i has decided to forward the message).

Defining trust as an individual judgement as we did above matches the current as-
sumptions in the research on trust (cf. [14]) and is certainly desirable in general. How-
ever for some applications – specifically the Crowds protocol – it is more reasonable

94 V. Sassone, E. ElSalamouny, and S. Hamadou

to consider a simplified notion where trust in a user is common to everybody. In other
words ti j = tk j for all i and k. Indeed, in the case of the Crowds protocol, we want a
trust in a user to reflect her robustness to becoming corrupt (a.k.a. infected). Allowing
each member to adopt her own level of trust would make the value of trust subjective
and could hardly reflect the user’s actual robustness against corruption.

We therefore assume that a trust in a user is shared. Its value could be established
cooperatively by the members of the crowd, or by a suitable local authority (e.g., the
blender in case of Reiter and Rubin’s implementation of Crowds) based on evidence
provided by the user. Accordingly, in the rest of the paper, we will simply write ti to
denote the trust level of user i. Similarly, we require the policy of forwarding to be
common to all members of the crowds. This means that all participants treat any given
user in the same way, as all of them have the same trust in her. We therefore write
{q1, q2, · · · , qn} to represent the common forwarding policy.

Under these assumptions, we extend the protocol. When an initiator wants to com-
municate with a server, she creates a random path between herself and the server
through the crowd by the following process.

– Initial step: With probability q j the initiator selects a member j of the crowd (pos-
sibly herself) according to the policy of forwarding {q1, q2, · · · , qn} and forwards
the request to her. We refer to the latter user as the forwarder.

– Forwarding steps: a forwarder, upon receiving a request, flips a biased coin. With
probability 1 − p f she delivers the request to the end server or, with probability
p f · qk, she selects a new forwarder k (possibly herself) and relays the original
request to her, to repeat the forwarding process again.

3.2 Probable Innocence Revisited

In order to study the anonymity provided by the extended protocol, we first spell out
the hypotheses of our analysis. As is the previous section, we assume that corrupted
members will always deliver a request immediately to the end server, since forwarding
it any further cannot help the attacker learn anything more about the identity of the
originator. Consequently, when an infected user initiates a transaction, her message is
delivered directly to the end server.2

We also assume that server replies are short, so that the status of each user in an
anonymous paths from users to servers is maintained for the time it takes for the reply
to travel back from server to originator. That is, we do not consider the case where users
on a given path may switch to become corrupt (or indeed honest) between request and
answer, which might happen if the server’s replies are very long or very slow. From
servers to users so which would normally follow the same paths in reverse direction.
Under these assumptions, there is always at most one corrupted member on a path, it
occupies its last position, and detection always occurs while forwarding a request and
not while relaying a reply.3

2 Her anonymity is broken at the start, so there is no need to continue the anonymity protocol.
3 We are currently working on a refined protocol where this assumption is dropped. This means

that there can be users on a path which while not infected in the forward direction, become cor-
rupt by the time they receive the response from the server. Hence they report their predecessor
as the detected user.

Trust in Crowds: Probabilistic Behaviour in Anonymity Protocols 95

Finally since each user i has probability ti of being honest when she initiates a re-
quest, we extend the set of anonymous events ai and observable events oi to the whole
set of participating members.

Under these assumption we study the privacy level ensured to each member partic-
ipating in the protocol, i.e., P (ai | oi). We remind the reader that by Bayes’ theorem
(Eq. 1) we have

P (ai | oi) =
P(ai, oi)

P(oi)
(7)

We first evaluate the denominator in the above expression. Let Hk be the event that the
first corrupted node in the message path to the server occupies the kth position, where
k ≥ 0. Note that H0 means that the initiator itself is corrupted.

P(oi,Hk) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
n

(1 − ti) k = 0

1
n

ti
n∑

j=1

q j(1 − t j) k = 1

n∑
j=1

1
n

t j

⎛⎜⎜⎜⎜⎜⎜⎝
n∑

j=1

q jt j

⎞⎟⎟⎟⎟⎟⎟⎠
k−2

·

qiti
(∑n

j=1 q j(1 − t j)
)
· pk−1

f k ≥ 2

(8)

The above equation for the case k ≥ 2 is implied by the fact that the message is initiated
by any honest participant, forwarded to k − 2 honest principals before it is passed to the
detected principal i, and finally to a corrupted one. For convenience, we will write T
for

∑n
j=1 q jt j and S for

∑n
j=1 t j. Since the joint events {oi,Hk}, for k ≥ 0 are mutually

exclusive, we evaluate P(oi) as follows.

P(oi) =
∞∑

k=0

P(oi,Hk)

=
1
n

(1 − ti) +
1
n

ti(1 − T)

+

∞∑
k=2

1
n

S T k−2 · qiti (1 − T) · pk−1
f

=
1
n

(
1 − tiT + S p f qiti

(
1 − T

1 − p f T

))
(9)

From Equation (9), it is worth noticing that P(oi) = 0 only if T = 1 and ti = 1. Observe
that T = 1 means that t j = 1 for all participants j where q j � 0, i.e., all forwarders are
always honest. In this case i is never detected by any forwarder. If moreover ti = 1, the
principal i is never detected by herself. Thus in the case where T = 1 and ti = 1 the
principal i is never detected by any corrupted node.

Now we turn to evaluating the probability P(ai, oi) appearing as the numerator in
Equation (7). To such purpose, we first formulate the probability P(ai,Hk, oi), i.e., the
probability that i is the initiator and is also detected by a corrupted node at position k in
the message path.

96 V. Sassone, E. ElSalamouny, and S. Hamadou

P(ai,Hk, oi) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
n

(1 − ti) k = 0

1
n

ti
n∑

j=1

q j(1 − t j) k = 1

1
n

ti

⎛⎜⎜⎜⎜⎜⎜⎝
n∑

j=1

q jt j

⎞⎟⎟⎟⎟⎟⎟⎠
k−2

·

qiti
(∑n

j=1 q j(1 − t j)
)
· pk−1

f k ≥ 2

(10)

Similar to the argument of Equation (8), the formula in the case k ≥ 2 is implied by the
fact that the message is initiated by the principal i, forwarded to k − 2 honest principals
before it is passed back to i, and finally to a corrupted principal. Since the joint events
{ai,Hk, oi}, for k ≥ 0 are mutually exclusive, we evaluate P(ai, oi) as follows.

P(ai, oi) =
∞∑

k=0

P(ai,Hk, oi)

=
1
n

(1 − ti) +
1
n

ti(1 − T)

+

∞∑
k=2

1
n

tiT
k−2 · qiti (1 − T) · pk−1

f

=
1
n

(
1 − tiT + p f qit

2
i

(
1 − T

1 − p f T

))
(11)

Assuming P(oi) � 0, we substitute Equations (9) and (11) in Equation (7), and we
therefore get,

P (ai | oi) =
1 − tiT + p f qit2

i

(
1−T

1−pf T

)

1 − tiT + S p f qiti
(

1−T
1−pf T

) (12)

From Equation (12), we observe that for a detectable principal i (i.e., P(oi) � 0), it
holds that P(ai | oi) > 0. That is, there is always a non zero probability that i is the
initiator if she is detected. This confirms that Crowds never achieves the highest degree
of anonymity known as absolute privacy in [16].

3.3 Provably Exposed Principals

It would also be interesting to investigate the conditions under which the protocol can
only ensure the degree of anonymity known as provably exposed to a given principal i.
Such a degree, defined in [16], represents the lowest level of anonymity where an at-
tacker can prove the identity of the message initiator. This happens when i is the only
possible initiator, given that i is detected, i.e., P(ai | oi) = 1. These conditions are
precisely stated by the following proposition.

Proposition 1 (Provably exposed). For all user i such that P(oi) � 0, we have that
P(ai | oi) = 1 if and only if one of the following conditions holds:

Trust in Crowds: Probabilistic Behaviour in Anonymity Protocols 97

– p f = 0 ;
– ti = 0 ;
– qi = 0 ;
– T = 1 ;
– S = ti .

Proof. Solving the following equation P(ai | oi) = 1 using the formula given by Equa-
tion (12) yields only the above conditions.

The following paragraphs discuss the meaning of these results. Firstly, we observe that
p f = 0 implies that, provided she is not corrupt, the initiator will pick her first forwarder
according to the forwarding policy {q1, · · · , qn}, who then delivers directly the message
to the end server, regardless of her being corrupt or not. Thus, in this case a path is
always at most of length 2, excluding the end server. Hence, i can only be detected at
position 0 (by herself if she is initially corrupted) or at position 1 by her forwarder when
the latter is corrupted. Therefore, in both cases, i is the only possible initiator. That is if
a principal i is detected, then she must be the initiator.

In the case where ti = 0, i is always corrupted and therefore when she initiates a
message, she will detect herself and deliver the message directly to the end server (by
assumption). Hence nobody except herself will detect her, and i will be detected if and
only if she is the initiator.

Consider the case where qi = 0. This implies that i is never chosen as a forwarder. In
this case, i is detected only if she initiates a message and is corrupted at the same time,
i.e., she detects herself. Thus, the detection of i implies that i is the initiator.

The case T = 1 happens if and only if t j = 1 for all q j � 0, which means that only
honest members can be chosen as forwarders. In this case too, i is detected only if she
originates a message and is corrupted at the same time: she detects herself. Thus, the
fact that i is detected, implies that i is the initiator.

Finally, suppose that S = ti. Here t j = 0 for all j � i, that is all participants other than
i are corrupted. In this case if i is detected then it is the only possible initiator because
otherwise the initiator would just detect herself at the start of the protocol. Therefore,
once again, if i is detected, she must be the initiator.

It is worth noticing that the original Crowds protocol is the protocol obtained by
assuming that each principal i is either always honest or always corrupted, i.e., ti ∈
{0, 1}, and by choosing a uniform forwarding policy, that is for all j,

q j =
1
n
.

Thus when the number of corrupted principals is c, we have

T =
n∑

j=1

q jt j =
n − c

n
,

and

S =
n∑

j=1

t j = n − c .

98 V. Sassone, E. ElSalamouny, and S. Hamadou

By substituting the values of q j, T and S in Equation (12) for a honest initiator i, i.e.,
one for which ti = 1, we get

P (ai | oi) = 1 − p f

(
n − c − 1

n

)
.

which is the same expression derived in [16] for standard Crowds and given by (4).

4 Achieving Probable Innocence

For any fixed number of principals n, the extended protocol described in the previous
section has three main parameters: the forwarding probability p f , members’ trust values
{t1, · · · , tn}, and the forwarding policy {q1, · · · , qn}. We study in this section how each
of them affect the anonymity of participating members. We begin by the probability of
forwarding.

4.1 Probability of Forwarding

The following result states that for fixed trust values {t1, · · · , tn} and forwarding policy
{q1, · · · , qn}, the probability P(ai | oi) for any participant i is a monotonically decreasing
function with respect to the forwarding probability p f .

Theorem 1 (Monotonicity). For all i = 1, . . . , n,

∂P(ai | oi)
∂p f

≤ 0

Proof. By differentiating P(ai | oi) as given by Equation (12) with respect to p f , we
have

∂P(ai | oi)
∂p f

=
ti qi (1 − T) (1 − tiT) (ti − S)(

(1 − p f T)(1 − tiT) + p f S qiti(1 − T)
)2
. (13)

Given that 0 ≤ t j ≤ 1 for each principal j, and that T =
∑n

j=1 q jt j, we have 0 ≤ T ≤ 1
and 0 ≤ tiT ≤ 1. We have also ti ≤ S , because S =

∑n
j=1 t j, and therefore

∂P(ai | oi)
∂p f

≤ 0 ,

i.e., P(ai | oi) is either fixed or decreasing with respect to p f .

From Equation (13) above, P(ai | oi) is fixed irrespectively of p f if and only if i is
always corrupted (ti = 0), i is never used as a forwarder (qi = 0), all forwarders are
honest (T = 1), or all participants other than i are corrupted (S = ti). It has been shown
by Proposition 1 in the previous section that P(ai | oi) = 1 in these cases.

Theorem 1 justifies using a high value of p f as it decreases the probability of identi-
fying the initiator and therefore enhance her privacy. However, large p f implies longer
message path to the server, and therefore the performance of the protocol is degraded.
Thus a trade-off is required for choosing the forwarding probability p f .

Trust in Crowds: Probabilistic Behaviour in Anonymity Protocols 99

Corollary 1 (Anonymity range). For all i = 1, . . . , n,

1 ≥ P(ai | oi) ≥ 1 − qiti
∑n

j�i t j

1 − ti
∑n

j�i q jt j + qiti
∑n

j�i t j

Proof. By Theorem 1, and taking into account that 0 ≤ p f ≤ 1, the above range for
P(ai | oi) is obtained by substituting p f = 0 and p f = 1 in Equation (12).

The corollary above describes the range of probabilities that a principal i is the initiator
given that i is detected. Observe that with p f = 0 the message is passed directly to the
server, and therefore if i is detected, then she must be the initiator and also detected by
herself. Taking p f = 1 minimises P(ai | oi), but in this case the message never reaches
the server.

4.2 Trust Values

We now turn our focus to the trust values. Observe that the anonymity of a member i,
indicated by P(ai | oi), is affected by the trust values t j of all participating members.
Therefore, the above lower bound can be used as a criterion to decide whether a new
member i is accepted to join the network or not based on her trust ti. For instance, such a
criterion can be chosen to achieve the α-probable innocence according to the following
theorem.

Theorem 2 (α-probable innocence). Let α ∈ [0, 1] be a positive value. If for all i =
1, . . . , n

qiti
∑n

j�i t j

1 − ti
∑n

j�i q jt j + qiti
∑n

j�i t j
≥ 1 − α ,

then the extended protocol ensures α-probable innocence to all its participating mem-
bers.

Proof. Results from Corollary 1 and Definition 6.

4.3 Forwarding Policy

We now propose a strategy for choosing a forwarding policy {q1, · · · , qn} based on the
trust information {t1, · · · , tn} in order to achieve α-probable innocence for a given degree
of privacy α. The key idea is that the forwarding probabilities q j are adjusted depending
on the given trust information t j.

Choosing the forwarding policy qi for a given user i can then be done by maintaining
the lower bounds of P (ai | oi) below a chosen threshold α, i.e., by achieving α-probable
innocence. By Theorem 2 the plausible values of qi are obtained by solving the follow-
ing system of linear inequalities.

1 − α ≤ qiti
∑n

j�i t j

1 − ti
∑n

j�i q jt j + qiti
∑n

j�i t j
1 ≤ i ≤ n

1 =
n∑

i=1

qi

100 V. Sassone, E. ElSalamouny, and S. Hamadou

Example 1. Consider an instance of Crowds-Trust protocol where three principals are
involved. Let the trust values in these principals be:

t1 = 0.70, t2 = 0.97, t3 = 0.99

Solving the above problem for α = 1
2 yields the two solutions:

0.2479 ≤ q2 ≤ 0.2620

1.1411− 3.4138 q2 ≤ q3 ≤ 0.5479 − 1.0206 q2

q1 = 1 − q2 − q3

and

0.2620 ≤ q2 ≤ 0.3074

0.3197− 0.2784 q2 ≤ q3 ≤ 0.5479 − 1.0206 q2

q1 = 1 − q2 − q3 .

Thus the following forwarding distribution satisfies the 1
2 -probable innocence:

q1 = 0.4575, q2 = 0.2620, q3 = 0.2805 .

However, if the uniform distribution is used (as in the original Crowds protocol), i.e.,
q1 = q2 = q3 =

1
3 , probable innocence is not achievable because according to Corollary

1 the minimum value of P(a1 | o1) is 0.543, which is greater than 1
2 . Note that such sets

of constraints are not always solvable, in which case the required level of anonymity
cannot be provided to all members.

Observe that the forwarding distribution above increases the frequency at which the
less reliable user 1 will be involved in a message path, so as to make it more difficult
for an attacker to detect her with a high degree of confidence. The higher security for 1
is of course achieved at the price of a lower overall security for other two, more reliable
users, and can therefore considered a ‘social’ approach to crowds membership. The
flexibility of the protocol means that the forwarding policy can be chosen to provide a
lower degree of anonymity to a subset of the members to guarantee probable innocence
to a larger crowd (‘social strategy’), or to reject principals having the low trust values
who, therefore, exhibit a greater threat to others (‘rational strategy’).

5 Conclusion

In this paper we focused on the Crowds anonymity protocol and asked the question of
how its existing analyses are affected by postulating that each principal behaves hon-
estly or becomes corrupt according to a given probability (as opposed to being either
honest or malicious once and for all). This amounts to providing each member i of the
crowd with a trust level ti denoting her robustness against corruption, and a preference
level of forwarding qi denoting the probability of choosing her as the next forwarder in
the routing process. Given a probability of forwarding p f , a level of anonymity α, and
the trust levels t1, t2, · · · , tn of the crowd’s members, we have identified the conditions

Trust in Crowds: Probabilistic Behaviour in Anonymity Protocols 101

on the probability of choosing a forwarder which are necessary to achieve α-probable
innocence. Thus, in presence of untrusted members, the protocol users can exploit these
results to derive an interaction policy q1, q2, · · · , qn, if any exists, that guarantees a sat-
isfactory level of anonymity; and in doing so, they can act both ‘rationally’ or ‘socially.’

In conclusion, we remark that although the scenario in which members participating
in a protocol can exhibit probabilistic behaviours is highly likely in real-world scenar-
ios, this is the first paper to deal with the question in the context of anonymity protocols.
In the near future, we expect to tackle even more interesting scenarios, in particular by
extending this work to the case where a possibly slow or long response from the server
may follow in the reverse direction to the initiator, as the honesty status of the users on
the path has changed since the request was forwarded to the server.

References

1. Bhargava, M., Palamidessi, C.: Probabilistic anonymity. In: Abadi, M., de Alfaro, L. (eds.)
CONCUR 2005. LNCS, vol. 3653, pp. 171–185. Springer, Heidelberg (2005)

2. Braun, C., Chatzikokolakis, K., Palamidessi, C.: Compositional methods for information-
hiding. In: Amadio, R.M. (ed.) FOSSACS 2008. LNCS, vol. 4962, pp. 443–457. Springer,
Heidelberg (2008)

3. Chatzikokolakis, K., Palamidessi, C.: Probable innocence revisited. Theor. Comput.
Sci. 367(1-2), 123–138 (2006)

4. Chatzikokolakis, K., Palamidessi, C., Panangaden, P.: Probability of error in information-
hiding protocols. In: CSF, pp. 341–354. IEEE Computer Society, Los Alamitos (2007)

5. Chatzikokolakis, K., Palamidessi, C., Panangaden, P.: Anonymity protocols as noisy chan-
nels. Inf. Comput. 206(2-4), 378–401 (2008)

6. Chatzikokolakis, K., Palamidessi, C., Panangaden, P.: On the Bayes risk in information-
hiding protocols. Journal of Computer Security 16(5), 531–571 (2008)

7. Clark, D., Hunt, S., Malacaria, P.: A static analysis for quantifying information flow in a
simple imperative language. Journal of Computer Security 15(3), 321–371 (2007)

8. Clarkson, M.R., Myers, A.C., Schneider, F.B.: Belief in information flow. In: CSFW, pp.
31–45. IEEE Computer Society, Los Alamitos (2005)

9. Deng, Y., Pang, J., Wu, P.: Measuring anonymity with relative entropy. In: Dimitrakos, T.,
Martinelli, F., Ryan, P.Y.A., Schneider, S. (eds.) FAST 2006. LNCS, vol. 4691, pp. 65–79.
Springer, Heidelberg (2007)

10. Halpern, J.Y., O’Neill, K.R.: Anonymity and information hiding in multiagent systems. Jour-
nal of Computer Security 13(3), 483–512 (2005)

11. Halpern, J.Y., O’Neill, K.R.: Anonymity and information hiding in multiagent systems. Jour-
nal of Computer Security 13(3), 483–512 (2005)

12. Hamadou, S., Palamidessi, C., Sassone, V., ElSalamouny, E.: Probable Innocence in the pres-
ence of independent knowledge. In: Degano, P., Guttman, J.D. (eds.) FAST 2009. LNCS,
vol. 5983, pp. 141–156. Springer, Heidelberg (2010)

13. Köpf, B., Basin, D.A.: An information-theoretic model for adaptive side-channel attacks.
In: Ning, P., di Vimercati, S.D.C., Syverson, P.F. (eds.) ACM Conference on Computer and
Communications Security, pp. 286–296. ACM, New York (2007)

14. Krukow, K., Nielsen, M., Sassone, V.: Trust models in ubiquitous computing. Philosophical
Transactions of the Royal Society A 366, 3781–3793 (2008)

15. Malacaria, P., Chen, H.: Lagrange multipliers and maximum information leakage in different
observational models. In: Erlingsson, Ú., Pistoia, M. (eds.) PLAS, pp. 135–146. ACM, New
York (2008)

102 V. Sassone, E. ElSalamouny, and S. Hamadou

16. Reiter, M.K., Rubin, A.D.: Crowds: Anonymity for web transactions. ACM Transactions on
Information and Systems Security 1(1), 66–92 (1998)

17. Serjantov, A., Danezis, G.: Towards an information theoretic metric for anonymity. In: Din-
gledine, R., Syverson, P.F. (eds.) PET 2002. LNCS, vol. 2482, pp. 41–53. Springer, Heidel-
berg (2002)

18. Shmatikov, V., Wang, M.-H.: Measuring relationship anonymity in mix networks. In: Juels,
A., Winslett, M. (eds.) WPES, pp. 59–62. ACM, New York (2006)

19. Smith, G.: On the foundations of quantitative information flow. In: de Alfaro, L. (ed.) FOS-
SACS 2009. LNCS, vol. 5504, pp. 288–302. Springer, Heidelberg (2009)

Expressiveness of Generic Process Shape Types

Jan Jakub̊uv and J.B. Wells

Heriot-Watt University

Abstract. Shape types are a general concept of process types which

work for many process calculi. We extend the previously published

Poly✶ system of shape types to support name restriction. We evalu-

ate the expressiveness of the extended system by showing that shape

types are more expressive than an implicitly typed π-calculus and an

explicitly typed Mobile Ambients. We demonstrate that the extended

system makes it easier to enjoy advantages of shape types which include

polymorphism, principal typings, and a type inference implementation.

1 Introduction

Many type systems for many process calculi have been developed to statically
guarantee various important properties of processes. Types differ among these
systems and their properties, such as soundness, have to be proved separately
for each system. Shape types are a general concept of polymorphic process types
which can express and verify various properties of processes. Poly✶ [12,11] is a
general framework which, for a wide range of process calculi, can be instantiated
to make ready-to-use sound type systems which use shape types. Only rewriting
rules satisfying common syntactic conditions are needed for instantiating Poly✶.

Many process calculi share semantically equivalent constructions, such as,
parallel composition (“|”), prefixing a process with an action (sometimes called
a capability) (“.”), and name restriction (“ν”). Specific calculi differ mainly in
the syntax and semantics of actions (capabilities). Meta✶ [12,11] is metacal-
culus which fixes semantics of the shared constructions and provides a way to
describe syntax and semantics of actions by a description R of rewriting rules.
Given R, Meta✶ makes the calculus CR and Poly✶ makes the type system
SR for CR. R can describe many calculi including, e.g., the π-calculus, Mobile
Ambients, numerous variations of these, and other systems. All instantiations of
Poly✶ share shape predicates which describe allowed syntactic configurations of
Meta✶ processes. Shape (R-)types of SR are shape predicates whose meaning is
guaranteed by a simple test to be closed under rewriting with R. Every SR has
desirable properties such as subject reduction, the existence of principal typings
[17], and an already implemented type inference algorithm1.

1 http://www.macs.hw.ac.uk/ultra/polystar (includes a web demonstration)

M. Wirsing, M. Hofmann, and A. Rauschmayer (Eds.): TGC 2010, LNCS 6084, pp. 103–119, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

104 J. Jakub̊uv and J.B. Wells

1.1 Contributions

This paper extends the Poly✶ system to support name restriction and also
proves Poly✶ shape types are more expressive than some previous systems for
specific calculi. The contributions are as follows. (1) Sec. 2 presents the extended
Poly✶ system. Sections 3, 4 show (2) how to easily use shape types with well-
known calculi (the π-calculus [14,13], Mobile Ambients [3]), (3) demonstrate
polymorphic abilities of shape types, and (4) prove that shape types are more
expressive than predicates of two type systems (implicitly typed π-calculus [16],
explicitly typed Mobile Ambients [4]) custom designed for the above calculi.
Finally, (5) we advocate a generic notion of shape types and show that they can
be used instead of predicates of many other systems. We consider contributions
(4) & (5) to be the main contribution of the paper.

Contribution (2) shows how to use Poly✶ and shape types without needing
to fully understand all the details of the underlying formalism. Thus it helps to
bridge over the problem of complexity of Poly✶ which is inevitably implied by
its high generality and which has been daunting to some readers of earlier papers.
Contribution (3) shows an aspect of shape types which is not common for other
systems. An accompanying technical report [9] (TR), which extends this paper
and contains proofs of main theorems, additionally shows how to use shape types
for flow analysis of BioAmbients and proves its superior expressiveness to an
earlier flow analysis system [15]. This work was left out for space reasons. For all
the three systems we have proven not only that shape types are more expressive
but also that they can be used to achieve exactly the same results as the original
systems which might be important for some of their applications. We believe that
the diversity of the mentioned systems and their intended applications provides
a reasonable justification for contribution (5).

1.2 Notations and Preliminaries

Let i, j, k range over natural numbers. Pfin(U) is the set of all finite subsets of
a set U , “\” denotes set subtraction. Let u �→ v be an alternate pair notation
used in functions. f [u �→ v] stands for the function that maps u to v and other
values as f . Moreover, U → V (U →fin V) is the set of all (all finite) functions
f with dom(f) ⊆ U and rng(f) ⊆ V .

2 Metacalculus Meta✶ and Generic Type System Poly✶

2.1 General Syntax of Processes

Meta✶ process syntax, presented in Fig. 1, allows embeddings of many calculi.
A name ai is a pair of a basic name a and a natural number i. The basic part
of a name x is denoted x, that is, ai = a. When α-converting, we preserve the
basic name and change the number. We write a instead of a0 when no confusion
can arise.

Processes are built from the null process “0” by prefixing with an action (“.”),
by parallel composition (“|”), by name restriction (“ν”), and by replication

Expressiveness of Generic Process Shape Types 105

a, b ∈ BasicName ::= a | b | · · · | in | out | open | · · · | [] | • | · · ·
x, y ∈ Name ::= ai

F ∈ Form ::= x0 . . . xk

M ∈ Message ::= F | 0 | M0.M1

E ∈ Element ::= x | (x1, . . . , xk) | <M1, . . . , Mk>

A ∈ Action ::= E0 . . . Ek

P, Q ∈ Process ::= 0 | A.P | (P | Q) | νx.P | !P

Fig. 1. Syntax of Meta✶ processes

P | Q ≡ Q | P P | (Q | R) ≡ (P | Q) | R P | 0 ≡ P
0 ≡ !0 νx.νy.P ≡ νy.νx.P !P ≡ P | !P

A.νx.P ≡ νx.A.P if x �∈ fn(A) ∪ bn(A) P | νx.Q ≡ νx.(P | Q) if x �∈ fn(P)

Fig. 2. Meta✶ structural equivalence (structural rules omitted)

(“!”). Actions can encode prefixes from various calculi such as π-calculus com-
munication actions, Mobile Ambients capabilities, or ambient boundaries. The
abbreviation “x1 . . . xk[P]”, which further supports ambient syntax, stands for
“x1 . . . xk[].P” ([] is a single name).

Process constructors have standard semantics. “0” is an inactive process,
“A.P” executes the action A and continues as P , “P | Q” runs P and Q in
parallel, “νx.P” behaves as P with private name x (i.e., x differs from all names
outside P), and “!P” acts as infinitely many copies of P in parallel (“P |P |· · · ”).
Let “.” and “ν” bind more tightly than “|”. These constructors have standard
properties given by structural equivalence ≡ (Fig. 2), e.g., “|” is commutative,
adjacent “ν” can be interchanged, etc. In contrast, the semantics of actions is
defined by instantiating Meta✶ (see below). Currently, Meta✶ does not sup-
port the choice operator “+” as a built in primitive. However, “P + Q” can
be encoded as “ch.(P | Q)” provided rewriting rules are extended to use this
encoding.

All occurrences x in “νx.P” are (ν-)bound. When the action A contains an
element “(x1, . . . , xk)” then all occurrences of the xi’s in “A.P” as well as in
A on its own are called (input-)bound. An occurrence of x that is not bound is
free. The occurrence of a in ai is bound (resp. free) when this occurrence of ai

is. A bound occurrence of ai can be α-converted only to aj with a the same. We
identify α-convertible processes. The set of free names of P is denoted fn(P).
The set fbn(P) (resp. ibn(P), nbn(P)) contains free (resp. input-bound, ν-bound)
basic names of P . The set of bound names of A is written bn(A).

A process P is well scoped when (W1) fbn(P), ibn(P), and nbn(P) do not
overlap, (W2) nested input binders do not bind the same basic name, and (W3)

no action contains an input-binding of a basic name more than once. These
conditions are important for type inference. We allow only well scoped processes.

106 J. Jakub̊uv and J.B. Wells

A Meta✶ substitution σ is a finite function from Name to Message. Applica-
tion of σ to P , written Pσ, behaves as usual except the following. (1) It places
a special name “•” at positions that would otherwise be syntax errors (e.g.,
(in x.0){x �→ out b} = in •.0). (2) When a composed message M is substituted
for a single name action x in “x.P”, then M ’s components are pushed from right
to left onto Pσ (e.g., (x.0){x �→ (a.b).c} = a.b.c.0). The full definition of Pσ is
in the TR.

2.2 Instantiations of Meta✶

Meta✶ provides syntax to describe rewriting rules that give meaning to actions
and also defines how these rules yield a rewriting relation on processes. The
syntax is best explained by an example. The following rule description (in which
“{̊x := n̊}̊Q” describes substitution application)

rewrite{ c̊<̊n>.̊P | c̊(̊x).̊Q ↪→ P̊ | {̊x := n̊}̊Q }

directly corresponds to the standard π-calculus communication rule “c<n>.P |
c(x).Q ⇒ P | Q{x �→ n}”. The circle-topped letters stand at the place of
name, message, and process metavariables. Given a set R of rule descriptions
in the above syntax, Meta✶ automatically infers the rewriting relation

R
↪−→

which incorporates structural equivalence and congruence rules (e.g., “P
R

↪−→Q ⇒
νx.P

R
↪−→νx.Q”). A rules description instantiates Meta✶ to a particular calculus,

e.g., the set R containing only the above rule description instantiates Meta✶

to the π-calculus.
Further examples of Meta✶ instantiations are given in Sec. 3.3 and 4.3. A

rule description can also contain a concrete Meta✶ name (e.g. “out”) when an
exact match is required. We require that these names are never bound in any
process. Complete definitions of the syntax of rewriting rules and of the rewriting
relation

R
↪−→ is left to the TR [9, Sec. 2.2].

2.3 Poly✶ Shape Predicates and Types for Meta✶

A shape predicate describes possible structures of process syntax trees. When
a rewriting rule from R is applied to a process, its syntax tree changes, and
sometimes the new syntax tree no longer satisfies the same shape predicates. All
Poly✶ (R-)types are shape predicates that describe process sets closed under
rewriting using R. For feasibility, types are defined via a syntactic test that
enforces rewriting-closedness. Intuitively, the syntactic test tries to apply the
rules from R to all active positions in a shape graph and checks whether all
the edges newly generated by this application are already present in the graph.
Further restrictions are used to ensure the existence of principal typings.

Fig. 3 defines shape predicate syntax. Action types are similar to actions
except that action types are built from basic names instead of names, and com-
pound messages are described up to commutativity, associativity, and repetitions
of their parts. Thus an action type describes a set of actions. A shape predicate

Expressiveness of Generic Process Shape Types 107

Syntax of Poly✶ shape predicates:
ϕ ∈ FormType ::= a0 . . . ak

Φ ∈ FormTypeSet = Pfin(FormType)
μ ∈ MessageType ::= Φ* | a
ε ∈ ElementType ::= a | (a1, . . . , ak) |

<μ1, . . . , μk>

α ∈ ActionType ::= ε0 ε1 . . . εk

χ ∈ Node ::= X | Y | Z | · · ·
η ∈ Edge ::= χ0

α−→ χ1

G ∈ ShapeGraph = Pfin(Edge)
π ∈ ShapePredicate ::= 〈G, χ〉

Rules for matching Meta✶ entities against shape predicates:

ai : a
(ai1
1 , . . . , aik

k) : (a1, . . . , ak) (
M0 : Φ &
M1 : Φ)⇒
M0.M1 : Φ

0 : Φ (
F : ϕ & ϕ ∈ Φ)⇒
F : Φ (M �∈ Name &
M : Φ)⇒
M : Φ*

(∀i ≤ k :
Ei : εi)⇒
E0 . . . Ek : ε0 . . . εk

(∀i : 0 < i ≤ k &
Mi : μi)⇒
<M1, . . . , Mk> : <μ1, . . . , μk>

0 : π

P : π⇒
νx.P : π

P : π⇒
 !P : π

(
P : π &
Q : π)⇒
P | Q : π

((χ0
α−→ χ1) ∈ G &
A : α &
P : 〈G, χ1〉)⇒
A.P : 〈G, χ0〉

Fig. 3. Syntax and semantics of Poly✶ shape predicates

〈G, χ〉 is a directed finite graph with root χ and with edges labeled by action
types. A process P matches π when P ’s syntax tree is a “subgraph” of π. Shape
predicate can have loops and thus describe syntax trees of arbitrary height.

Fig. 3 also describes matching Meta✶ entities against shape predicates. The
rule matching actions against action types also matches forms against form types.
Matching entities against types does not depend on R, i.e., it works the same in
any Meta✶ instantiation. The meaning �π� of the shape predicate π is the set
{P | �P : π} of all processes matching π.

A shape predicate π is semantically closed w.r.t. a rule set R when �π� is
closed under R-rewritings, i.e., when � P : π and P

R
↪−→ Q imply � Q : π for any

P and Q. Because deciding semantic closure w.r.t. an arbitrary R is nontrivial,
we use an easier-to-decide property, namely syntactic closure, which by design
is algorithmically verifiable. R-types are shape predicates syntactically closed
w.r.t. R. A type π of P is a principal typing of P when �π� ⊆ �π0� for any other
type π0 of P . There are width and depth restrictions to ensure principal typings.
Details are left to our TR [9, Sec. 2.4].

2.4 Proving Greater Expressiveness of Poly✶

We now discuss how to consider some process calculus C and its type system SC

and prove the greater expressiveness of the related Meta✶ and Poly✶ instantia-
tions. Sections 3 and 4 follow this approach. Usually SC defines predicates (ranged
over by ϕ) which represent properties of processes (ranged over by B) of C. Then
SC defines the relation �B : ϕ which represents statements “B has the property
ϕ” and which is preserved under rewriting of B in C. The Meta✶ description R
of C’s rewriting rules gives us the calculus CR and its shape type system SR.

Firstly we need to set up a correspondence between C and CR, that is, we
need an encoding ([·]) of processes B into Meta✶ which preserves C’s rewriting

108 J. Jakub̊uv and J.B. Wells

relation →. The following property, which is usually easy to prove, formulates
this modulo ≡ because structural equivalences of different calculi might differ.

Property 1. When B0 → B1 then ∃B′
0, B

′
1 such that B0 ≡ B′

0 & ([B′
0])

R
↪−→ ([B′

1]) &
B′

1 ≡ B1. When ([B0])
R

↪−→ P1 then ∃B1 such that B0 → B1 & ([B1]) ≡ P1.

Predicates ϕ of SC are commonly preserved under renaming of bound basic
names, that is, �(νx)B : ϕ usually implies �(νa0)(B{x �→ a0}) :ϕ (for a not
in B). Predicates of similar systems can not be directly translated to Poly✶

shape types with the corresponding meaning because shape types do not have
this property. In other words, the difference in handling of bound names between
Poly✶ and other systems makes some straightforward embeddings impossible.

We investigate two reasonable ways to embed SC in SR, that is, to decide
�B : ϕ using SR’s relation “�”. (1) In Sec. 4.4 about Mobile Ambients, we
translate ϕ together with information about bound basic names of B into a
shape type. (2) In Sec. 3.4 about the π-calculus, we show how to decide � B :ϕ
by a simple check on a principal shape type of B. The fact that both embeddings
of predicates ϕ depend on a process B is not a limitation because B is known
for desirable applications like type checking.

We stress that these embeddings serve the theoretical purpose of proving
greater expressiveness and are not necessary for a practical use of shape types.
When SC is designed to verify a certain fixed property of processes which can be
expressed as a property of shape types, then we can use SR directly for the same
purposes as SC without any embedding. We show how to do this for the two
systems in Sec. 3.3 and 4.3. We can also design a property of processes directly
on shape types without any reference to another analysis system. Our TR [9,
Sec. 3] discusses this further.

2.5 Discussion

Poly✶ presented above extends the previously published Poly✶ [12] with name
restriction. The previously published system [12] supports restriction only in
Meta✶ but no processes with ν are typable in Poly✶ instantiations. An earlier
attempt in a technical report [11] to handle name restriction was found inconsis-
tent [8, Sec. 3.2-4] and furthermore inadequate [8, Sec. 4] to carry out the proofs
of greater expressiveness in sections 3 and 4.

The difficulty with name restriction is because a shape type represents a syn-
tactic structure of a process, and thus presence of bound names in a process
has to be somehow reflected by a shape graph. Because bound names can be α-
renamed, Poly✶ needs to establish a connection between positions in a process
and a shape graph which is preserved by α-conversion. This connection is pro-
vided by basic names which are the key concept of name restriction handling in
this paper. For example, for the action “a<a>” there is the corresponding action
type “a<a>” in its shape type. When the name a were ν-bound and α-renamed
to some other name then the correspondence between the action in the process
and the action type would be lost. This problem is solved by building shape
types from basic names which are preserved under α-conversion.

Expressiveness of Generic Process Shape Types 109

Syntax of the π-calculus processes:
c, n, m ∈ PiName = Name \ {•}

N ∈ PiAction ::= c(n1, . . . , nk) | c<n1, . . . , nk>

B ∈ PiProcess ::= 0 | (B0 | B1) | N.B | !B | (νn)B

Rewriting relation of the π-calculus (≡ is standard defined in TR [9, Fig. 8]):
c(n1, . . . , nk).B0 | c<m1, . . . , mk>.B1 → B0{n1 �→ m1, . . . , nk �→ mk} | B1

B0 → B1 ⇒ (νn)B0 → (νn)B1 B′
0 ≡ B0 & B0 → B1 & B1 ≡ B′

1 ⇒ B′
0 → B′

1

B0 → B1 ⇒ B0 | B2 → B1 | B2

Fig. 4. The syntax and semantics of the π-calculus

The handling of input-bound names in the previous Poly✶ was reached by
disabling their α-conversion which is possible under certain circumstances. But
α-conversion of ν-bound names can not be avoided and thus a new approach has
been developed.

3 Shape Types for the π-Calculus

3.1 A Polyadic π-Calculus

The π-calculus [14,13] is a process calculus involving process mobility developed
by Milner, Parrow, and Walker. Mobility is abstracted as channel-based commu-
nication whose objects are atomic names. Channel labels are not distinguished
from names and can be passed by communication. This ability, referred as link
passing, is the π-calculus feature that most distinguishes it from its predecessors.
We use a polyadic version of the π-calculus which supports communication of
tuples of names.

Fig. 5 presents the syntax and semantics of the π-calculus. Processes are built
from Meta✶ names. The process “c(n1, . . . , nk).B”, which (input)-binds the
names ni’s, waits to receive a k-tuple of names over channel c and then behaves
like B with the received values substituted for ni’s. The process “c<n1, . . . , nk>.B”
sends the k-tuple n1, . . ., nk over channel c and then behaves like B. Other con-
structors have the meaning as in Meta✶ (Sec. 2.1). The sets of names fn(B),
fbn(B), ibn(B), nbn(B) are defined as in Meta✶.

Processes are identified up to α-conversion of bound names which preserves
basic names. A substitution in the π-calculus is a finite function from names to
names, and its application to B is written postfix, e.g., “B{n �→ m}”. A process
B is well scoped when (S1) fbn(B), ibn(B), and nbn(B) do not overlap, (S2)

nested input binders do not bind the same basic name, and (S3) no input action
contains the same basic name more then once. Henceforth, we require processes
to be well scoped (well-scopedness is preserved by rewriting).

Example 1. Let B = !s(x, y).x<y>.0 | s<a, n>.0 | a(v).v(p).0 | n<o>.0 |
|s<b, m>.0 | b(w).v(q, r).0 | m<o, o>.0

Using the rewriting relation → sequentially four times we can obtain (among
others) the process “!s(x, y).x<y>.0 | n(p).0 | n<o>.0 | m(q, r).0 | m<o, o>.0”.

110 J. Jakub̊uv and J.B. Wells

Syntax of Tpi types:
β ∈ PiTypeVariable ::= ı | ı’ | ı” | · · ·
δ ∈ PiType ::= β | ↑[δ1, . . . , δk]

Δ ∈ PiContext = BasicName →fin PiType

Typing rules of Tpi:
Δ
 0 Δ
 B0 & Δ
 B1 ⇒ Δ
 B0 | B1

Δ
 B ⇒ Δ
 !B Δ[n �→ δ]
 B ⇒ Δ
 (νn)B

Δ(c) = ↑[δ1, . . . , δk] & Δ[n1 �→ δ1, . . . , nk �→ δk]
 B ⇒ Δ
 c(n1, . . . , nk).B
Δ(c) = ↑[Δ(n1), . . . , Δ(nk)] & Δ
 B ⇒ Δ
 c<n1, . . . , nk>.B

Fig. 5. Syntax of Tpi types and typing rules

3.2 Types for the Polyadic π-Calculus (Tpi)

We compare Poly✶ with a simple type system [16, Ch. 3] for the polyadic π-
calculus presented by Turner which we name Tpi. Tpi is essentially Milner’s
sort discipline [13]. In the polyadic settings, an arity mismatch error on channel
c can occur when the lengths of the sent and received tuple do not agree, like in
“c(n).0|c<m, m>.0”. Processes which can never evolve to a state with a similar
situation are called communication safe. Tpi verifies communication safety of
π-processes.

The syntax and typing rules of Tpi are presented in Fig. 5. Recall that n
denotes the basic name of n. Types δ are assigned to names. Type variables β
are types of names which are not used as channel labels. The type “↑[δ1, . . . , δk]”
describes a channel which can be used to communicate any k-tuple whose i-th
name has type δi. A context Δ assigns types to free names of a process (via their
basic names). The relation Δ � B, which is preserved under rewriting, expresses
that the actual usage of channels in B agrees with Δ. When Δ � B for some Δ
then B is communication safe. The opposite does not necessarily hold.

Example 2. Given B from Ex. 1 we can see that there is no Δ such that Δ � B.
It is because the parts s<a, n> and s<a, m> imply that types of n and m must be
equal while the parts n<o> and m<o, o> force them to be different. On the other
hand B is communication safe. We check this using Poly✶ in Sec 3.3.

3.3 Instantiation of Meta✶ to the π-Calculus

The π-calculus syntax from Sec. 3.1 already matches the Meta✶ syntax and
thus only the following P is needed to instantiate Meta✶ to the calculus CP
and Poly✶ to its type system SP . Sec. 3.4 shows that CP is essentially identical
to the above π-calculus.

P =
⋃∞

k=0

{
rewrite{ c̊<̊M1, . . . , M̊k>.̊P|c̊(̊a1, . . . , åk).̊Q ↪→ P̊|{̊a1:= M̊1, . . . , åk:= M̊k }̊Q }

}
Each communication prefix length has its own rule; in our implementation, a
single rule can uniformly handle all lengths, but the formal Meta✶ presentation

Expressiveness of Generic Process Shape Types 111

The set of expected and actual channel types of G:

chtypes(Δ,G)={(Δ(a), ↑[Δ(b1), . . . , Δ(bk)]): (χ
a(b1,...,bk)−−−−−−→χ′)∈G∨(χ

a<b1,...,bk>−−−−−−→χ′)∈G}
Context Δ and shape type π agreement relation ∼=:

Write Δ ∼= 〈G, χ〉 when there is some Δ′ with the domain disjoint from Δ such that

chtypes(Δ ∪ Δ′, G) is defined and is an identity.

Fig. 6. Property of shape types corresponding to
 of Tpi

is deliberately simpler. The next example shows how to check communication
safety in SP without using Tpi.

◦
◦ ◦

◦ ◦ ◦
R ◦ ◦

◦ ◦ ◦
◦ ◦
◦

s(x,y) x<y>

a(v)

v(p)

b(w
)

w(q,r)

n(p)

n<o>

m(q,r)

m<o,o>

s<a,n>

a<n>

s<b,m>

b<m>

Example 3. Let P be a Meta✶ equivalent
of B from Ex. 1. We can compute a prin-
cipal P-type πP of P which is displayed on
the right. Node R is its root. The type πP

contains all computational futures of P in
one place. Thus, because there are no two
edges from R labeled by “a(b1, . . . , bk)” and
“a<b′1, . . . , b

′
j>” with k �= j, we can conclude

that P is communication safe which Ex. 2
shows Tpi can not do. Our implementation
can be instructed (using an additional rule) to insert the error name • at the
place of communication errors. Any type of P without • then implies P ’s com-
munication safety.

3.4 Embedding of Tpi in Poly✶

Using the terminology from Sec. 2.4 we have that C is the π-calculus, SC is
Tpi, predicates ϕ of SC are contexts Δ, and SC ’s relation � B : ϕ is Δ � B.
Moreover R is P which was introduced with CP and SP in Sec. 3.3. This section
provides a formal comparison which shows how to, for a given B and Δ, answer
the question Δ � B using SP .

As stated in Sec. 2.4, to relate Tpi and SP we need to provide an encoding
([·]) of π-processes in Meta✶. This ([·]), found in TR [9, Fig. 10] , is almost an
identity because the π-calculus syntax (Fig. 4) already agrees with Meta✶. Thus
([·]) mainly changes the syntactic category. Prop. 1 holds in the above context.

Given Δ, we define a shape type property which holds for the principal type
πB of ([B]) iff Δ � B. The property is given by the relation Δ ∼= π from
Fig. 6. The set chtypes(Δ, G) contains pairs of Tpi types extracted from G.
Each pair corresponds to an edge of G labeled by an action type “a(b1, . . . , bk)”
or “a<b1, . . . , bk>”. The first member of the pair is a’s type expected by Δ, and
the second member computes a’s actual usage from the types of bi’s. The set
chtypes(Δ, G) is undefined when some required value of Δ is not defined. The
context Δ′ from the definition of ∼= provides types of names originally bound in

112 J. Jakub̊uv and J.B. Wells

B. These are not mentioned by Δ but are in G. The following theorem shows
how to answer Δ � B by ∼=.

Theorem 1. Let no two different binders in B bind the same basic name, πB

be a principal (P-)type of ([B]), and dom(Δ) = fbn(B). Then Δ � B iff Δ ∼= πB.

The requirement on different binders (which can be achieved by renaming) is not
preserved under rewriting because replication can introduce two same-named
binders. However, when all binding basic names differ in B0, then the theorem
holds for any successor B1 of B0 even when the requirement is not met for B1.
We want to ensure that the derivation of Δ � B does not assign different types
to different bound names. A slightly stronger assumption of Thm. 1 simplifies
its formulation. The theorem uses principal types and does not necessarily hold
for a non-principal P-type π of ([B]) because π’s additional edges not needed to
match ([B]) can preclude Δ ∼= π.

3.5 Conclusions

We showed a process (Ex. 1) that can not be proved communication safe by
Tpi (Ex. 2) but can be proved so by Poly✶ (Ex. 3). Thm. 1 implies that
Poly✶ recognizes safety of all Tpi-safe processes. Thus we conclude that Poly✶

is better in recognition of communication safety then Tpi. Thm. 1 allows to
recognize typability in Tpi: B is typable in Tpi iff ∅ ∼= πB . This is computable
because a Poly✶ principal type can always be found (for SP in polynomial
time), and checking ∼= is easy.

Turner [16, Ch. 5] presents also a polymorphic system for the π-calculus which
recognizes B from Ex. 1 as safe. However, with respect to our best knowledge, it
can not recognize safety of the process “B | s<n, a>.0” which Poly✶ can do. We
are not aware of any process that can be recognized safe by Turner’s polymorphic
system but not by Poly✶. It must be noted, there are still processes which
Poly✶ can not prove safe, for example, “a(x).a(y, z).0 | a<o>.a<o, o>.0”.

Other π-calculus type systems are found in the literature. Kobayashi and
Igarashi [7] present types for the π-calculus looking like simplified processes
which can verify properties which are hard to express using shape types (race
conditions, deadlock detection) but do not support polymorphism. One can ex-
pect applications where Poly✶ is more expressive as well as contrariwise. Shape
types, however, work for many process calculi, not just the π-calculus.

4 Shape Types for Mobile Ambients

4.1 Mobile Ambients (Ma)

Mobile Ambients (Ma), introduced by Cardelli and Gordon [3], is a process
calculus for representing process mobility. Processes are placed inside named
bounded locations called ambients which form a tree hierarchy. Processes can
change the hierarchy and send messages to nearby processes. Messages contain
either ambient names or hierarchy change instructions.

Expressiveness of Generic Process Shape Types 113

Syntax of Ma processes:
n ∈ AName = Name \ {•}
N ∈ ACapability ::= ε | n | in N | out N | open N | N.N ′

ω ∈ AMessageType ::= definition postponed to Fig. 8

B ∈ AProcess ::= 0 | (B0 | B1) | N[B] | N.B | !B | (νn :ω)B |
<N1, . . . , Nk> | (n1 :ω1, . . . , nk :ωk).B

Rewriting relation of Ma (≡ is standard defined in TR [9, Fig. 12]):
n[in m.B0 | B1] | m[B2] → m[n[B0 | B1] | B2]

m[n[out m.B0 | B1] | B2] → n[B0 | B1] | m[B2]

open n.B0 | n[B1] → B0 | B1

(n1 :ω1, . . . , nk :ωk).B | <N1, . . . , Nk> → B{n1 �→ N1, . . . , nk �→ Nk}
B0 → B1 ⇒ n[B0] → n[B1] B0 → B1 ⇒ (νn :ω)B0 → (νn :ω)B1

B0 → B1 ⇒ B0 | B2 → B1 | B2 B′
0 ≡ B0 & B0 → B1 & B1 ≡ B′

1 ⇒ B′
0 → B′

1

Fig. 7. Syntax and semantics of Tma

Fig. 7 describes Ma process syntax. Executing a capability consumes it and
instructs the surrounding ambient to change the hierarchy. The capability “in n”
causes moving into a sibling ambient named n, the capability “out n” causes
moving out of the parent ambient n and becoming its sibling, and “open n”
causes dissolving the boundary of a child ambient n. In capability sequences,
the left-most capability will be executed first.

The constructors “0”, “|”, “.”, “!”, and “ν” have standard meanings. Binders
contain explicit type annotations (Sec. 4.2 below). The expression n[B] de-
scribes the process B running inside ambient n. Capabilities can be communi-
cated in messages. <N1, . . . , Nk> is a process that sends a k-tuple of messages.
(n1 : ω1, . . . , nk : ωk).B is a process that receives a k-tuple of messages, substi-
tutes them for appropriate ni’s in B, and continues as this new process. Free and
bound (basic) names are defined like in Meta✶. Processes that are α-convertible
are identified. A substitution σ is a finite function from names to messages and
its application to B is written Bσ. Fig. 7 also describes structural equivalence
and semantics of Ma processes. The only thing the semantics does with type an-
notations is copy them around. We require all processes to be well-scoped w.r.t.
conditions S1-3 from Sec. 3.1, and the additional condition (S4) that the same
message type is assigned to bound names with the same basic name. Ambients
and capabilities where N is not a single name, which the presentation allows for
simplicity, are inert and meaningless.

Example 4. In this example, packet ambient p delivers a synchronization mes-
sage to destination ambient d by following instructions x. As we have not yet
properly defined message types, we only suppose ωp = Amb[κ] for some κ.

B = <in d> | (νp :ωp)(d[open p.0] | (x : ωx).p[x.<>]) →
(νp :ωp)(d[open p.0] | p[in d.<>]) → (νp :ωp)(d[open p.0 | p[<>]]) → d[<>]

114 J. Jakub̊uv and J.B. Wells

Syntax of Tma types:
ω ∈ AMessageType ::= Amb[κ] | Cap[κ]
κ ∈ AExchangeType ::= Shh | ω1 ⊗ · · · ⊗ ωk

Δ ∈ AEnvironment = AName →fin AMessageType

Typing rules of Tma:
Δ(n) = ω ⇒ Δ
 n : ω
Δ
 N : Amb[κ′]⇒ Δ
 in N : Cap[κ]
Δ
 N : Amb[κ′]⇒ Δ
 out N : Cap[κ]
Δ
 N : Amb[κ]⇒ Δ
 open N : Cap[κ]

Δ
 ε : Cap[κ]
Δ
 N : Cap[κ] & Δ
 N ′ : Cap[κ]⇒

Δ
 N.N ′ : Cap[κ]

Δ
 B : κ ⇒ Δ
 !B : κ
Δ
 0 : κ

Δ
 N : Cap[κ] & Δ
 B : κ ⇒ Δ
 N.B : κ
Δ
 N : Amb[κ] & Δ
 B : κ ⇒ Δ
 N[B] : κ′

Δ
 B0 : κ & Δ
 B1 : κ ⇒ Δ
 B0 | B1 : κ

Δ[n �→ Amb[κ′]]
 B : κ ⇒ Δ
 (νn :Amb[κ′])B : κ
∀i : 0 < i ≤ k & Δ
 Ni : ωi ⇒ Δ
 <N1, . . . , Nk> : ω1 ⊗ · · · ⊗ ωk

Δ[n1 �→ ω1, . . . , nk �→ ωk]
 B : ω1 ⊗ · · · ⊗ ωk⇒
Δ
 (n1 :ω1, . . . , nk :ωk).B : ω1 ⊗ · · · ⊗ ωk

Fig. 8. Syntax of Tma types and typing rules

4.2 Types for Mobile Ambients (Tma)

An arity mismatch error, like in “<a, b>.0|(x).in x.0”, can occur in polyadic Ma.
Another communication error can be encountered when a sender sends a capa-
bility while a receiver expects a single name. For example “<in a>.0|(x).out x.0”
can rewrite to a meaningless “out (in a).0”. Yet another error happens when a
process is to execute a single name capability, like in “a.0”. Processes which can
never evolve to a state with any of the above errors are called communication
safe. A typed Ma introduced by Cardelli and Gordon [4], which we name Tma,
verifies communication safety.

Tma assigns an allowed communication topic to each ambient location and
ensures that processes respect the topics. Fig. 8 describes Tma type syntax.
Exchange types, which describe communication topics, are assigned to processes
and ambient locations. The type Shh indicates silence (no communication). ω1 ⊗
· · ·⊗ωk indicates communication of k-tuples of messages whose i-th member has
the message type ωi. For k = 0 we write 1 which allows only synchronization
actions <> and (). Amb[κ] is the type of an ambient where communication
described by κ is allowed. Cap[κ] describes capabilities whose execution can
unleash exchange κ (by opening some ambient). Environments assign message
types to free names (via basic names). Fig. 8 also describes the Tma typing rules.
Types from conclusions not mentioned in the assumption can be arbitrary. For
example, the type of N[B] can be arbitrary provided B is well-typed. It reflects
the fact that the communication inside N does not directly interact with N ’s
outside. Existence of some Δ and κ such that Δ does not assign a Cap-type to
any free name and Δ � B : κ holds implies that B is communication safe.

Expressiveness of Generic Process Shape Types 115

Example 5. Take B from Ex. 4, Δ = {d �→ Amb[1]}, and ωp = Amb[1], and
ωx = Cap[1]. We can see that Δ � B : Cap[1] but, for example, Δ �� B : 1.

4.3 Instantiation of Meta✶ to Ma

When we omit type annotations, add “0” after output actions, and write capa-
bility prefixes always in a right associative manner (like “in a.(out b.(in c.0))”),
we see that the Ma syntax is included in the Meta✶ syntax. The following set
A instantiates Meta✶ to Ma.

A =
{

active{ P̊ in å[̊P] },
rewrite{ å[in b̊.̊P | Q̊] | b̊[̊R] ↪→ b̊[̊a[̊P | Q̊] | R̊] },
rewrite{ å[̊b[out å.̊P | Q̊] | R̊] ↪→ å[̊R] | b̊[̊P | Q̊] },
rewrite{ open å.̊P | å[̊R] ↪→ P̊ | R̊ }

} ∪⋃∞
k=0

{
rewrite{ <̊M1, . . . , M̊k>.̊P | (̊a1, . . . , åk).̊Q ↪→ P̊ | {̊a1:= M̊1, . . . , åk:= M̊k} Q̊ }

}
The active rule lets rewriting be done inside ambients. It corresponds to the
rule “B0 → B1 ⇒ n[B0] → n[B1]”. Each communication prefix length has its
own rule as in the case of the π-calculus. A defines the calculus CA and the type
system SA.

Communication safety of P can be checked on an A-type as follows. Two
edges with the same source labeled by (a1, . . . , ak) and <b1, . . . , bj> with k �= j
indicates an arity mismatch error (but only at active positions). Every label
containing • (introduced by a substitution) indicates that a capability was sent
instead of a name. Moreover, an edge labeled with a name a �∈ ibn(P) at active
position indicates an execution of a single name capability. A type of P not
indicating any error proves P ’s safety. Checking safety this way is easy.

◦ R ◦ ◦

◦ ◦ ◦

◦ ◦ ◦ ◦

d[
]

p[]

in d

op
en

p

<
>

p[]

<>

in
d

<>

<{in d}*> (x) p[]

x
<
>

d[
] in

d

Example 6. CA’s equivalent of B from Ex. 4 is
P = <in d>.0 | νp.(d[open p.0] | (x).p[x.<>.0]). Its
principal A-type is displayed on the right. Its root
is R and other node names are omitted. Checking
the edge labels as described above easily proves P ’s
safety. The edge labeled by x is not a communication
error because x is input-bound in P .

4.4 Embedding of Tma in Poly✶

Using the notation from Sec.2.4 we have that C is Ma, SC is Tma, predicates
ϕ are pairs (Δ, κ), and SC ’s relation � B : ϕ is Δ � B : κ. Moreover R is A
which was introduced with CA and SA in Sec. 4.3. This section provides an
embedding which shows how to, for a given B, Δ, and κ, answer the question
Δ � B : κ using SA. We stress that it is primarily a theoretical embedding for
proving greater expressiveness which is not intended for use in practice.

An encoding ([·]) of Ma processes in Meta✶, found in TR [9, Fig. 14], is again
almost an identity except for the following. (1) Meaningless expressions allowed
by Ma’s syntax are translated using the special name •, e.g., “([in (out a)]) =
in •”. (2) The encoding erases type annotations which is okay because Ma’s

116 J. Jakub̊uv and J.B. Wells

rewriting rules only copy them around. The type embedding below recovers
type information by different means. Prop. 1 holds in the given context.

As discussed in Sec. 2.4, we can not translate (Δ, κ) to a shape type with
an equivalent meaning because � is preserved under renaming of bound basic
names. Nevertheless this becomes possible when we specify the sets of allowed
input- and ν-bound basic names and their types. These can be easily extracted
from a given process B. An environment Δν

B (resp. Δin
B) from the top part of

Fig. 9 describes ν-bound (resp. input-bound) basic names of B. The definition
reflects that ν-bound names in typable processes can only have Amb-types. For
a given Δ, B, and κ we construct the shape type 〈[Δ ∪ Δν

B , Δin
B, κ]〉 such that

Δ � B : κ iff � ([B]) : 〈[Δ ∪ Δν
B , Δin

B, κ]〉. The construction needs to know which
names are input-bound and thus they are separated from the other names. The
well-scopedness rules S1-4 ensure that there is no ambiguity in using only basic
names to refer to typed names in a process. The type information I (Fig. 9, 2nd
part) collects what is needed to construct a shape type. For I = (Δ∪Δν

B , Δin
B, κ)

we define ΔI , Δin
I , and κI such that ΔI describes types of all names in Δ and

B, and Δin
I describes types of B’s input-bound names, and κI is simply κ.

Example 7. Δ, B, and κ from the previous examples (Ex. 4 and Ex. 5) give us
I = (Δ ∪ Δν

B , Δin
B, Cap[1]) and we have:

Δ ∪ Δν
B = {d �→ Amb[1], p �→ Amb[1]} Δin

I = {x �→ Cap[1]} ΔI = Δ ∪ Δν
B ∪ Δin

I

The main idea of the construction of the shape type 〈[I]〉 from I is that 〈[I]〉 con-
tains exactly one node for every exchange type of some ambient location, that is,
one node for the top-level type κI , and one node for κ′ whenever Amb[κ′] is in
I. The top-level type corresponds to the shape type root. Each node correspond-
ing to some κ has self-loops which describe all capabilities and communication
actions which a process of the type κ can execute. When ΔI(d) = Amb[1] then
every node would have a self-loop labeled by “in d” because in-capabilities can
be executed by any process. On the other hand only the node corresponding to
1 would allow “open d” because only processes of type 1 can legally execute it.
Finally, following an edge labeled with “d[]” means entering d. Thus the edge
has led to the node χd that corresponds to 1. In the above example, the shape
graph would contain edges labeled with “d[]” from any node to χd.

The construction starts by building the node set of a shape predicate (Fig. 9,
3rd part). All the exchange types of ambient locations are gathered in the set
typesI . These types are put in bijective correspondence with the set nodesI .

Example 8. Our example gives typesI = {Cap[1],1}. Let us take nodesI = {R, 1}
and define the bijections such that nodeofI(Cap[1]) = R and nodeofI(1) = 1.

The 4th part of Fig. 9 defines some auxiliary functions. The set namesofI(ω) con-
tains all basic names declared with the type ω by I. The set allowedinI(κ) contains
all Poly✶ action types which describe (translations of) all capabilities and action
prefixes which are allowed to be legally executed by a process of the type κ. The
set allowedinI(κ) consists of three parts: movesI , opensI(κ), and commsI(κ). The
action types in movesI describe all in/out capabilities constructible from ambient

Expressiveness of Generic Process Shape Types 117

Extraction of types of bound names:

Δin
B(a) = ω iff B has a subprocess (. . . , ai : ω, . . .).B0

Δν
B(a) = ω iff ω=Amb[κ]&B has a subprocess (νai :ω)B0

Type information:

I ∈ TypeInfo = AEnvironment × AEnvironment × AExchangeType

For a given I = (Δ0, Δ1, κ) we write ΔI for Δ0 ∪Δ1, and Δin
I for Δ1, and κI for κ.

Set of nodes of a shape graph (and correspondence functions):

typesI = {κI} ∪ {κ : Amb[κ] ∈ rng(ΔI)} nodeofI = typeof−1
I

Let nodesI be an arbitrary but fixed set of nodes such that there exist the bijection

typeofI from nodesI into typesI .

Action types describing legal capabilities:

namesofI(ω) = {a : ΔI(a) = ω} allowedinI(κ) = movesI ∪ opensI(κ) ∪ commsI(κ)

movesI = {in a, out a : ∃κ. a ∈ namesofI(Amb[κ])}
opensI(κ) = {open a : a ∈ namesofI(Amb[κ])} ∪ namesofI(Cap[κ])
msgsI(Amb[κ]) = namesofI(Amb[κ])
msgsI(Cap[κ]) = namesofI(Cap[κ]) ∪ {(movesI ∪ opensI(κ))*}
commsI(Shh) = ∅ commsI(ω1 ⊗ · · · ⊗ ωk) = {<μ1, . . . , μk> : μi ∈ msgsI(ωi)}∪

{(a1, . . . , ak) : Δin
I (ai) = ωi & (i �= j ⇒ ai �= aj)}

Construction of shape predicates:

〈[I]〉 = 〈〈|I|〉, nodeofI(κI)〉 〈|I|〉 = {χ α−−→ χ:α∈allowedinI(typeofI(χ))&χ∈nodesI} ∪
{χ a[]−−→ χ′:a∈namesofI(Amb[typeofI(χ

′)])&χ, χ′∈nodesI}

Fig. 9. Construction of Poly✶ type embedding

basic names in I. The set does not depend on κ because in/out capabilities can be
executed by any process. The set opensI(κ) describe open-capabilities which can
be executed by a process of the type κ. The second part of opensI(κ) describes
names of the type Cap[κ] which might be instantiated to some executable capa-
bilities. The set commsI(κ) describes communication actions which can be exe-
cuted by a process of the type κ. Its first part describes output- and the second
input-actions. The auxiliary set msgsI(ω) describes all messages of the type ω con-
structible from names in I.

Example 9. Relevant sets for our example are:

namesofI(Amb[1]) = {d, p} opensI(1) = {open d, open p, x}
namesofI(Cap[1]) = {x} opensI(Cap[1]) = ∅
commsI(1) = {<>, ()} movesI = {in d, in p, out d, out p}
commsI(Cap[1]) = {<x>, <{in d, in p, out d, out p, open d, open p, x}*>, (x)}

The bottom part of Fig. 9 constructs the shape graph 〈|I|〉 and the shape predicate
〈[I]〉 from I. The first part of 〈|I|〉 describes self-loops of χ which describe actions
allowed to be executed by a process of typeofI(χ). The second part of 〈|I|〉 describe

118 J. Jakub̊uv and J.B. Wells

transitions among nodes. Any edge labeled by “a[]” always leads to the node
which corresponds to the exchange type allowed inside a.

Example 10. The resulting shape predicate 〈[I]〉 = 〈G, R〉 in our example is as
follows. We merge edges with the same source and destination using “|”.

R 1
d[]|p[]in d|out d|in p|out p|<x>|(x)|

<{x,in d,in p,out p,
out d,open d,open p}*>

in d | out d | open d |
in p | out p | open p |
x | <> | () | p[] | d[]

Correctness of the translation is expressed by Thm. 2. The assumptions ensure
that no ν-bound name is mentioned by Δ or has a Cap-type assigned by an
annotation. Here we just claim that 〈[I]〉 is always an A-type.

Theorem 2. Let dom(Δ) ∩ nbn(B) = ∅ and dom(Δν
B) = nbn(B). Then it holds

that Δ � B : κ if and only if �([B]) : 〈[(Δ ∪ Δν
B, Δin

B, κ)]〉.

5 Conclusions

We embedded Tma’s typing relation in SA (Sec. 4.4) and showed how to recog-
nize communication safety in SA directly (Sec. 4.3). The type 〈[I]〉 constructed
in Sec. 4.4 can also be used to prove the safety of B. But then, it follows from
the properties of principal types, that the safety of B can be recognized directly
from its principal A-type. Thus any process proved safe by Tma can be proved
safe by SA on its own.

Some processes are recognized safe by SA but not by Tma. For example,
“(x : ω).x.0 | <in a>” is not typable in Tma but it is trivially safe. Another
examples show polymorphic abilities of shape types, for example, the CA process

!(x, y, m).x[in y.<m>.0] | <p, a, c>.0 | a[open p.0] | <q, b, in a>.0 | b[open q.0]

can be proved safe by Poly✶ but it constitutes a challenge for Tma-like non-
polymorphic type systems. We are not aware of other type systems for Ma and
its successors that can handle this kind of polymorphism.

The expressiveness of shape types 〈[I]〉 from Sec. 4.4 can be improved. In
subsequent work [1], Cardelli, Ghelli, and Gordon define a type system which
can ensure that some ambients stay immobile or that their boundaries are never
dissolved. This can be achieved easily by removing appropriate self loops of
nodes. We can also assign nodes to (groups of) ambients instead of exchange
types. This gives us similar possibilities as another Tma successor [2]. Moreover,
we can use shape type polymorphism to express location-dependent properties
of ambients, like that ambient a can be opened only inside ambient b.

6 Conclusions and Future Work

We discussed already the contributions (Sec. 1.1, 2.5). Conclusions for the em-
beddings were given separately (Sec. 3.5, 5). Future work is as follows. For exten-
sions, priorities are better handling of choice (e.g., because of its use in biological

Expressiveness of Generic Process Shape Types 119

system modeling), and handling of rec which is in many calculi more expressive
than replication and better describes recursive behavior. Moreover we would like
to generalize actions so that calculi with structured messages, like the Spi calcu-
lus [5], can be handled. For applications, we would like to (1) relate shape types
with other systems which also use graphs to represent types [18,10], and (2) to
study the relationship between shape types and session types [6].

References

1. Cardelli, L., Ghelli, G., Gordon, A.D.: Mobility types for mobile ambients. In: Wie-

dermann, J., Van Emde Boas, P., Nielsen, M. (eds.) ICALP 1999. LNCS, vol. 1644,

pp. 230–239. Springer, Heidelberg (1999)

2. Cardelli, L., Ghelli, G., Gordon, A.D.: Ambient groups and mobility types. In:

Watanabe, O., Hagiya, M., Ito, T., van Leeuwen, J., Mosses, P.D. (eds.) TCS

2000. LNCS, vol. 1872, pp. 333–347. Springer, Heidelberg (2000)

3. Cardelli, L., Gordon, A.D.: Mobile ambients. In: Nivat, M. (ed.) FOSSACS 1998.

LNCS, vol. 1378, pp. 140–155. Springer, Heidelberg (1998)

4. Cardelli, L., Gordon, A.D.: Types for mobile ambients. In: POPL, pp. 79–92 (1999)

5. Gordon, M.A.D.: A calculus for cryptographic protocols: The spi calculus. Inf. &

Comp. 148(1), 1–70 (1999)

6. Honda, K.: Types for dyadic interaction. In: Best, E. (ed.) CONCUR 1993. LNCS,

vol. 715, pp. 509–523. Springer, Heidelberg (1993)

7. Igarashi, A., Kobayashi, N.: A generic type system for the pi-calculus. In: POPL,

pp. 128–141 (2001)

8. Jakub̊uv, J.: A Second Year Report. Heriot-Watt Univ., MACS (2009),

http://www.macs.hw.ac.uk/~jj36
9. Jakub̊uv, J., Wells, J.B.: The expressiveness of generic process shape types. Tech-

nical Report HW-MACS-TR-0069. Heriot-Watt Univ. (July 2009)

10. König, B.: Generating type systems for process graphs. In: Baeten, J.C.M., Mauw,

S. (eds.) CONCUR 1999. LNCS, vol. 1664, pp. 352–367. Springer, Heidelberg

(1999)

11. Makholm, H., Wells, J.B.: Instant polymorphic type systems for mobile process

calculi: Just add reduction rules and close. Technical Report HW-MACS-TR-0022.

Heriot-Watt Univ. (November 2004)

12. Makholm, H., Wells, J.B.: Instant polymorphic type systems for mobile process

calculi: Just add reduction rules and close. In: Sagiv, M. (ed.) ESOP 2005. LNCS,

vol. 3444, pp. 389–407. Springer, Heidelberg (2005)

13. Milner, R.: Communicating and Mobile Systems: The π-Calculus. Cambridge

Press, Cambridge (1999)

14. Milner, R., Parrow, J., Walker, D.: A calculus of mobile processes. Inf. &

Comp. 100(1), 1–77 (1992)

15. Nielson, F., Nielson, H.R., Priami, C., Rosa, D.: Control flow analysis for bioam-

bients. ENTCS 180(3), 65–79 (2007)

16. Turner, D.N.: The Polymorphic Pi-Calculus: Theory and Implementation. PhD

thesis, Uni. of Edinburgh (1995) Rep. ECS-LFCS-96-345

17. Wells, J.B.: The essence of principal typings. In: Widmayer, P., Triguero, F.,

Morales, R., Hennessy, M., Eidenbenz, S., Conejo, R. (eds.) ICALP 2002. LNCS,

vol. 2380, pp. 913–925. Springer, Heidelberg (2002)

18. Yoshida, N.: Graph types for monadic mobile processes. In: Chandru, V., Vinay, V.

(eds.) FSTTCS 1996. LNCS, vol. 1180, pp. 371–386. Springer, Heidelberg (1996)

http://www.macs.hw.ac.uk/~jj36

A Java Inspired Semantics for Transactions in SOC�

Laura Bocchi and Emilio Tuosto

Department of Computer Science, University of Leicester, UK

Abstract. We propose a formal semantics for distributed transactions inspired
by the attribute mechanisms of the Java Transaction API. Technically, we model
services in a process calculus featuring transactional scope mechanisms borrowed
from the so called container-managed transactions of Java. We equip our calcu-
lus with a type system for our calculus and show that, in well-typed systems, it
guarantees absence of run-time errors due to misuse of transactional mechanisms.

1 Introduction

The Service-Oriented Computing (SOC) paradigm envisages distributed systems as
loosely-coupled computational entities which dynamically discover each other and bind
together. Although appealing, SOC has imposed to re-think, among other classic con-
cepts, the notion of transaction. The long lasting and cross-domain nature of SOC makes
typically unfeasible to adopt ACID transactions, which are implemented by locking the
involved resources. The investigation of formal semantics of SOC transactions (often
referred to as long-running transactions) has been a topic of focus in the last few years
(see � 6 for a non-exhaustive overview). Central to this investigation is the notion of
compensation (a weaker and “ad hoc” version of the classic rollback of database sys-
tems) which has mainly been studied in relation to mechanisms of failure propagation.

In this paper we address an orthogonal topic, namely the semantics of dynamic re-
configuration of transactions in SOC which, to the best of our knowledge, has not been
explicitly considered. In SOC, the configuration of a system can change at each service
invocation to include a new instance of the service in the ongoing computation. There is
still a lack of agreement on how the run-time reconfiguration should a�ect the relation-
ships between existing and newly created transactional scopes. To illustrate the main
problems, we consider the following example:

�������� s�P � �C��� with s implemented as Q (1)

where a process in a transactional scope (represented by the angled brackets) with com-
pensation C invokes a service s and then behaves like P; the invocation triggers a (pos-
sibly remote) instance Q of the service s. Should the system in (1) evolve to a trans-
actional scope that includes Q (i.e., ��P � Q � �C���)? Should instead Q be running in a

� This work has been partially sponsored by the project Leverhulme Trust Award ”Tracing Net-
works”. The authors also thank Hernan Melgratti for his valuable comments on a preliminary
draft of this paper.

M. Wirsing, M. Hofmann, and A. Rauschmayer (Eds.): TGC 2010, LNCS 6084, pp. 120–134, 2010.
c� Springer-Verlag Berlin Heidelberg 2010

A Java Inspired Semantics for Transactions in SOC 121

di�erent scope (i.e., ��P � �C��� � ��Q��)? Or should Q be executed outside any transac-
tional scope (i.e., ��P � �C��� � Q) or else raise an exception triggering the compensation
C? Notice that each alternative is valid and has an impact on failure propagation.

Enterprise Java Beans (EJB) promote Container Managed Transactions (CMT) as
a mechanism to control dynamic reconfigurations. We take inspiration from the EJB
mechanism and adapt it to SOC transactions. A container can be used to publish objects
and can specify:

– the transactional modality of method calls (e.g., “calling the method ������ from
outside a transactional scope throws an exception”),

– how the scope of transactions dynamically reconfigure (e.g., “������ is always
executed in a newly created transactional scope”).

A limitation of CMT is that it only permits to declare transactional modalities for the
methods to be invoked and does not allow invokers to specify their own requirements
on the needed transactional support. On the contrary service invocations are resolved
at run-time and di�erent providers may publish di�erent implementations of a service.
Hence, it is natural to give the invoker the opportunity to express some requirements on
the transactional behaviour of the invoked services. For instance, in (1) the invocation
to s may require that Q must be executed in the same transactional scope of P.

We do not aim to provide a semantics for CMT but rather investigate how CMT could
be borrowed to address the issues described above for SOC transactions. We promote
some CMT inspired primitives for SOC which allow invokers (and not just callees) to
specify their own transactional requirements. Furthermore, we give a typing discipline
to ensure that invocations do not yield run-time errors due to the incompatibility of the
transactional modalities required by callers and those guaranteed by callees.

Our main contributions are

1. a semantics to specify dynamic reconfiguration of SOC transactions inspired by
the CMT mechanisms of EJB; namely, we introduce a CCS-like process calculus
called ATc (after Attribute-based Transactional calculus)

2. a type system that guarantees that no error will occur for a method invocation due
to the incompatibility of the transactional scopes of caller and callee

3. a methodology for designing SOC transactions based on our typing discipline.

Synopsis. The transactional mechanisms of EJB are summarised in � 2. The syntax and
semantics of ATc are introduced in � 3. The typing discipline of ATc is in � 4. In � 5 we
give a gist of how our type system can be used to design systems correct wrt dynamic
reconfigurations of transactions. Conclusions and related work are discussed in � 6.

2 EJB Transactional Attributes

Roughly, a Java bean can be thought of as on object amenable to be executed in a
specialised run-time environment called container (see e.g., [19,18]). An EJB container
supports typical functionalities to manage e.g. the life-cycle of a bean and to make
components accessible to other components by binding it to a naming service1.

1 ����������	
	��
��
��������	�����������������
��������

122 L. Bocchi and E. Tuosto

For the sake of this paper, we focus on the transactional mechanisms o�ered by EJB-
containers. Specifically, we consider Container Managed Transactions (CMT) whereby
a container associates each method of a bean with a transactional attribute specifying
the modality of reconfiguring transactional scopes. We denote the set of EJB transac-
tional attributes as

(EJB Transactional Attributes) �
def
� ��� �� �� ��� 	� 	��

where, following the EJB terminology, � stands for mandatory, � for supported, � for
never, �� for not supported, 	 for requires, and 	� for requires new.

The intuitive semantics of EJB attributes � (ranged over by a� a1� a2� � � �) is illus-
trated in Figure 1 where each row represents the behaviour of one transactional attribute
and shows how the transactional scope (represented by a rectangular box) of the caller
(represented by a filled circle) and callee (represented by an empty circle) behave upon
invocation. The first two columns of Figure 1 represent, respectively, invocations from
outside and from within a transactional scope. More precisely, (1) a callee supporting 	
is always executed in a transactional scope which happens to be the same as the caller’s
if the latter is already running in a transactional scope; (2) a callee supporting 	� is
always executed in a new transactional scope; (3) a callee supporting �� is always exe-
cuted outside a transactional scope; (4) the invocation to a method supporting � fails if
the caller is not in a transactional scope (first column of the fourth row in Figure 1), oth-
erwise the method is executed in the transactional scope of the caller; (5) the invocation
to a method supporting � is successful only if the caller is outside a transactional scope,
and it fails if the caller is running in a transactional scope (in this case an exception is
triggered in the caller); (6) a method supporting � is executed inside (resp. outside) the
caller’s scope if the caller is executing in (resp. outside) a scope.

In this paper, we adapt the transactional model of EJB to the context of SOC, where
each provider can be thought of as a container specifying a number of services together
with their transactional attribute. A transactional attribute declares whether a published
service must or must not be executed within a transactional scope and the modality of

callee supports
r (Requires)

invoker is not in a
transactional scope

X

callee supports
rn (Requires New)

callee supports
ns (Not Supported)

callee supports
m (Mandatory)

callee supports
n (Never)

callee supports
s (Supported)

invoker is in a
transactional scope

X

(1)

(2)

(3)

(4)

(5)

(6)

Fig. 1. EJB transactional attributes synopsis

A Java Inspired Semantics for Transactions in SOC 123

dynamic reconfiguration of the transactional scope (e.g., whether a new scope has to
be created, how the scope of the invoking party has to be extended, etc.). We formally
model the behaviour illustrated in Figure 1 by embedding EJB attributes in a simple
process calculus to give a general model for SOC2. Hereafter, according to this inter-
pretation, the terms service provider and container will be used interchangeably.

3 Attribute-Based Transaction Calculus (ATc)

The ATc calculus is built on top of two layers; processes (� 3.1) and systems (� 3.2).
The former specify how communication takes place in presence of (nested) transac-
tional scopes while the latter provide a formal framework for defining and invoking
transactional services and the run-time reconfiguration of the transactional scopes.

3.1 ATc Processes

An ATc process is a CCS-like process with three additional capabilities: service invoca-
tion, transactional scope, and compensation installation. Let � and 	 be two countably
infinite and disjoint sets of names for service and channel, respectively.

Definition 1. The set ATc processes
 is defined by following grammar:

P� Q ::� 0 empty process � ::� x input��� �x P channel restriction
��� x output��� P � Q parallel��� !P replication A � ���� s � A�P service invocation s� s�� � � � range over ���� ��P � �Q��� transactional scope x� y� z� � � � range over 	��� ��Q��P compensation installation u ranges over � � 	

Restriction �x P binds x in P and the sets of free and bound channels of P

 are
defined as usual and respectively denoted by fc(P) and bc(P). Finally, we assume � � �.

The standard process algebraic syntax is adopted for idle process, restriction, parallel
composition, and replication. Process s � A�P invokes a service s required to support a
transactional attributes in A � �; a transactional scope ��P � �Q��� consists of a running
process P and a compensation Q (confined in the scope) executed only upon failure;
��Q��P executes � and installs the compensation Q in the enclosing transactional scope
then behaves as P. Service definition and invocation are dealt with in � 3.2.

Definition 2. The structural congruence ��
�
, is the smallest equivalence relation
containing �-renaming, the monoidal axioms for � and 0, and satisfying:

!P � P �!P ��0 � �Q��� � 0 � �0� �P���Q� � �P�Q�

if P � Q then ��P�� � ��Q�� and �P� � �Q�

�x ��P�� � ���x P�� �x �y P � �y �x P �x 0 � 0 �x (P � Q) � (�x P) � Q� if x � fc(Q)

Hereafter, ��P stands for ��Q��P when Q � 0 and trailing occurrences of 0 are omitted.

2 We refer to the service-oriented paradigm in a technology-agnostic way, abstracting from its
actual realisations (e.g., the Web Service Architecture).

124 L. Bocchi and E. Tuosto

In ATc, transactional scopes can be nested up to an arbitrary level. The fact that a
process is inside a transactional scope does not alter its communication capabilities,
since we assume that transactional scopes influence the behaviour of processes only in
case of failure. To model the semantics of communications we use contexts3.

Definition 3. A context is a term generated by the following productions:

C[] ::�
��� 0

��� �� � P � �Q���
��� P � C[]

��� C[] � P

A context C[] is scope-avoiding if there are no P� Q

 and context C�[] such that
C[] � C�[�� � P � �Q���].

Definition 3 does not consider �x C[] to avoid name capture while prefix contexts
��C[] (where � is either of the prefixes of ATc) are ruled out as they prevent inner
reductions. The semantics of ATc is defined by means of two reduction relations, one
(Definition 4) for process communication and the other (Definition 6) for service invo-
cations (and, correspondingly, reconfigurations of transactional scopes).

Definition 4. The reduction relation of ATc processes is the smallest relation��
�

closed under the following axioms and rules:

C[����Q��P � �R���] � C�[���̄�Q���P� � �R����] � C[��P � �R � Q���] � C�[��P� � �R� � Q����]
C[����Q��P � �R���] � C�[�̄�Q���P�] � C[��P � �R � Q���] � C�[P�]� if C�[] is scope-avoiding

C[��Q��P] � C�[�̄�Q���P�] � C[P] � C�[P�]� if C[] and C�[] are scope-avoiding

P � P�

P � R � P� � R

P � P�

�x P � �x P�

P � P� � Q� � Q

P � Q

Notice that sender and receiver synchronise regardless the relative nesting of transac-
tional scopes. As in [12], when communication actions are executed compensations are
installed in parallel to the other compensations of the enclosing transactional scope if
any, otherwise they are discarded. In case of failure, only the actions executed before
the failure are compensated, as illustrated by Example 1.

Example 1. Consider the transactional scope PbookNight � ��Ptheatre � Pdinner�� where:

Ptheatre � askSeat�getSeat�pay�getRefund� Pdinner � askTable�getTable�confirm�freeTable�
Action getRefund compensates pay and action freeTable compensates confirm.
The process dynamically installs the compensations of its actions. The two ex-
ecutions show that di�erent compensations may be executed in case of failure.

〈〈getTable.confirm�freeTable� | �getRefund�〉〉 ∗ ��
〈〈Ptheatre | Pdinner〉〉

∗ ��

∗ ��

〈〈0 | �freeTable | getRefund�〉〉
〈〈getSeat.pay�getRefund� | �freeTable�〉〉 ∗

��

�

3 Other and more standard techniques could have been used (e.g., LTS); however, contexts en-
able us to easily define the semantics of communication and service invocation of ATc.

A Java Inspired Semantics for Transactions in SOC 125

3.2 ATc Systems

The semantics of transactional scoping of service invocations is given at the level of
systems (Definition 5). Systems can be thought of as an abstraction for EJB and consist
of processes wrapped by containers defined as a partial finite maps � : � � � �
;
containers assign a transactional attribute and a process (the “body”) to service names.
When defined, �(s) � (a� P) ensures that, if invoked in �, the service s supports the
attribute a and activates an end-point that executes as P.

Definition 5. A system in ATc is a pair � � P where the environment � is a set of
containers and is derived by the productions in Definition 1 augmented with P ::� �		

to represent erroneous processes. Also, the following axioms

!�		 � �		 �x �		 � �		 ���		 � �Q��� � �		

extend the congruence relation to erroneous processes.

Given A � �, P
 �(s� A) shortens ��
 � �a
 A : �(s) � (a� P) and P
 �(s� �a�) is
abbreviated as P
 �(s� a). Hereafter, we use P, Q to range over both
 and erroneous
processes. We rule out terms where compensations contain �		; basically, �		 repre-
sent a run-time error and cannot be used by the programmer. A service invocation is
transactional (resp. non-transactional) if it is (resp. not) executed a transaction scope.

Definition 6 formalises the informal presentation in Figure 1 of the CMT mecha-
nisms which are rendered in SOC by allowing environments � to o�er di�erent im-
plementations of the same service possibly with di�erent attributes. This results in a
non-deterministic semantics where one of several possible reductions is chosen.

Definition 6. The reduction relation of ATc systems is the smallest relation � closed
under the following rule and axioms of Figure 2 where C[] � 0 and C[] is scope
avoiding in ���	1 � 3
.

Axioms
���
��� rule non-transactional invocations;
���
� states that an invoca-
tion results in an error when a service supporting attribute � is required4; when a non-
transactional invocation is made to a service supporting either �, or �, or ��, by
�����,
the end-point of the service is executed in parallel with the continuation of the caller;
finally by
�����, the end-point of a service supporting 	 or 	� will be executed in a
new scope (initially with idle compensation).

Axioms
��
��� determine how transactional invocations modify the scope; by

��
�, the end-point of the service is executed in the same scope of the caller when the
requested attribute is �� �� or r; instead by
����, transactional invocations to a service
supporting � yields a failure which triggers the compensation of the caller; by
���� a
transactional invocation requesting �� will let the service end-point to run outside the

4 Axiom ����� may seem odd as it introduces an error even if � may o�er a service supporting
other attributes in A. An actual implementation may in fact select more suitable services with
an appropriate negotiation in the search phase. Here, more simply, we define the conditions to
correctly use attributes avoiding errors in any possible environment; therefore ����� models
the worst case scenario. As shows in � 4, in well-typed processes, invocations requiring
 never
occur in scope-avoiding contexts.

126 L. Bocchi and E. Tuosto

����� � � C[s � A�P] � � � C[�!!]
 � A

����" � � C[s � A�P] � � � C[P] � R R � �(s� 		��� �	
 � A)

����� � � C[s � A�P] � � � C[P] � ��R�� R � �(s� 	!�!�
 � A)

����
P � C[��s � A�P1 � P2 � �Q���] bc(P) � fc(R) � �

� � P � � � C[��P1 � P2 � R � �Q���] R � �(s� 	
� 	� !
 � A)

���" � � C[��s � A�P1 � P2 � �Q���] � � � C[Q] � � A

���� � � C[��s � A�P1 � P2 � �Q���] � � � C[��P1 � P2 � �Q���] � R �	 � A
 R � �(s� �)

���# � � C[��s � A�P1 � P2 � �Q���] � � � C[��P1 � P2 � �Q���] � ��R�� !� � A
 R � �(s� !�)

�	��
P � P�

� � P � � � P�

Fig. 2. Semantics of ATc

caller’s scope; finally,
���� states that a transactional invocation requesting 	� will let
the service end-point to run in a new scope with idle compensation.

Rule
���� lifts process reduction relation to systems.
Communication failures occurring within transactional scopes trigger compensations

while those occurring outside result in an error. Formally, this can be achieved by adding
to Definition 6 the axioms

C[����Q��P � �R���] � C[Q] and C[��Q��P] � C[�]� if C[] is scope avoiding (2)

For simplicity, we gloss over this point in order to focus on failures due to misuse
of transactional attributes and scope reconfigurations. We are currently working on a
semantics of communication failures for ATc systems briefly outlined in � 6. The se-
mantics of failures is based on the notion of testing equivalence [10] (see [5] for an
extended report of this paper including further details).

3.3 Some Examples of Failing Invocations

The following examples motivate the need of a disciplined use of transactional at-
tributes. The typing system presented in � 4 ensures that a well-typed process will incur
in errors due to the fact that the attributes required by an invoker do not match those
guaranteed by the service.

Example 2. Let PbookTheatre � ��stickets � ����Ptheatre � �scompensate � ������ be a process
that invokes stickets and behaves as Ptheatre � askSeat�getSeat�pay�getRefund�. If a com-
munication of Ptheatre fails (i.e., the left-most axiom in (2) is applied), then the com-
pensation is executed outside a transactional scope. Therefore, the non-transactional
invocation to scompensate will result in an error. �

A Java Inspired Semantics for Transactions in SOC 127

Example 3. Let Ptheatre as in Example 2 and consider

PbookTheatre � stickets � 	
� 	� �� �	� !� !�
�Ptheatre Ptickets � askSeats�getSeats�sbank � 	

The non-transactional invocation stickets in a � for which Ptickets
 �(stickets� �) causes
Ptickets to run outside a transactional scope; hence, invoking sbank leads to an error. �

A provider must guarantee that none of its services yield errors; namely, the execution
of (the body of) a service in any context resulting from its supported attributes should
be safe. For instance, since stickets in Example 3 supports �, the execution Ptickets should
be safe regardless it will run inside or outside a transactional scope. In fact, whether or
not Ptickets will be running in a scope depends on the caller.

4 A Type System for Transactional Services

This section yields a type system for ATc that can determine if a system may fail for a
service invocation due to misuse of the transactional attributes. We give an algebra of
types (� 4.1), then define a type system for ATc (� 4.2), and finally we give a suitable
notion of well-typedness for ATc systems (� 4.3) which is preserved by the reduc-
tion relation (Theorem 1) and ensures error-freedom (Corollary 1). All the proofs are
reported in [5].

4.1 Types for ATc

Our types record which transactional attributes may be required�supported in service
invocations of processes. Basically, for each possible invocation, a type specifies if it is
transactional or not and which transactional attributes are declared for the invocation.

Definition 7. Let I � ��� ����where labels � and � are the transactional modalities used
to keep track of transactional and non-transactional invocations, respectively. Types are
defined as

(Types) t ::� 0
��� (I� t� t)

Let P � t state that P

 has type t. If P � 0 then P does not make any invocations; if
P � (I� tc� tu),

I records the transactional modality�attribute pairs of the service invocations of P;
tc collects the transactional modality�attribute pairs relative to the service invocations

in the compensations of the transactional scopes of P;
tu yields modality�attribute pairs for the invocations in the compensation installation

prefixes5 of P;

Example 4. Consider P2 � s � A�y�P1� with P1 � t1. As more clear in � 4.2, P2 � t2 �
(����A� 0� t1). In fact, the invocation in P2 is non-transactional and the third component
of t2 is t1 as P1 is used to compensate prefix y. �

Types of processes become more complex in presence of nested scopes.

5 By Definition 6 compensations vanish for synchronisations outside transactional scopes.

128 L. Bocchi and E. Tuosto

Example 5. Take the process P3 � ��P2 � �s� � A���� � ����P2 � �s� � A�������, where P2 is
defined in Example 4. The type of P3 is

t3 � (��� � (A � A��)� (��� � A�� 0� 0)� 0)

In fact, the invocations in P2 and in the nested compensation in the rightmost scope of
P3 will be transactional; therefore the first component of t3 is ��� � (A � A��). Moreover,
the leftmost scope of P3 may possibly have a non-transactional invocation (thereby the
second component of t3). �

The next example illustrates the installation of a non-trivial compensation.

Example 6. The type of P4 � z�s1 � A1����z�s1 � A1� � �s2 � A2�z�s3 � A3���� is

t4 � (0� (��� � (A1 � A2)� 0� ��� � A3)� ��� � A1)

In fact, P4 does not invoke services but installs compensations that do so. Observe that
the third component of t4 corresponds to the first installation of P4, while the second
component of t4 is the type of the scope occurring in P4. �

It is convenient to treat types as binary trees whose nodes are labelled with subsets of
��� �� � �. More precisely, the type (I� tc� tu) can be represented as a tree where the root
is labelled I, tc is the left child, and tu is the right child (0 is the empty tree which is
conventionally labelled with the empty set). The operators �, �, and ? are used to
“traverse” types and � to “sum” them as per the following definitions:

0� � �� 0� � 0? � 0 (I� tc� tu)� � I� (I� tc� tu)� � tc� (I� tc� tu)? � tu

0 � t � t� (I� tc� tu) � (I�� t�c� t
�
u) � (I � I�� tc � t�c� tu � t�u)

We assume that � has lower precedence than unary operators.
Propositions 1 and 2 will be tacitly used in the proofs of the lemmas and Theorem 1.

Proposition 1. The operator � is idempotent, associative and commutative.

Proposition 2. Operators �, �, and ? distribute over � and (t1 � t2)� � t1� � t2�.

4.2 Typing ATc

This section introduces a typing system for ATc. We recall that the ATc programmer
has to write non-erroneous processes for which we give the following typing rules.

Definition 8. The typing rules for non-erroneous processes (cf. Definition 5) are

(idle)
0 � 0

(res)
P � t
νx P � t

P � t P′ � t′

P | P′ � t ⊕ t′
(par)

P � t
!P � t

(repl)

(inv)
P � tp I = {o} × A

s � A.P � (I ∪ tp
� , tp

↓, tp
?)

P � tp Q � tq

π�Q�.P � (tp
�, tp

↓, tq ⊕ tp
?)
(comp)

(scope1)
P � (I, tc, tu) Q � tq

〈〈P | �Q�〉〉 � ((I ∪ tc
�) o 	→ i , tu ⊕ tc

↓ ⊕ tc
? ⊕ tq, 0)

P � 0

〈〈P | �Q�〉〉 � 0
(scope2)

where, for I � ��� �� � �, I�� �� ��
def
� �(�� a) : (�� a)
 I� � (I � ��� � �).

A Java Inspired Semantics for Transactions in SOC 129

The first five rules are straightforward. Rule
����� states that the type of the instal-
lation of a compensation Q records the invocations in Q as possible invocations of P
by adding them to the third component of the type of ��Q��P. The last two rules regu-
late the typing of transactional scopes. By rule
�����1�, when P is in a transactional
scope the invocations done by the compensations installed by P (recorded in tu) become
possible; therefore they are removed from the third component and added to the second
component with the compensations nested in P (recorded in tc� and tc?) and to those of
Q (recorded in tq). Also, tc� records the invocation of the compensation of P when P is
itself defined s a transactional scope (e.g., P � ��Q � �C���); in this case the compensa-
tions of P will be surely executed inside a transactional scope thus they are included in
the first component with the substitution �� �� ��. A transactional scope whose process
does not invoke�install anything is simply typed as 0 by rule
�����2�.

Example 7. Consider the process P � �1�Q� where

Q � �2�R� and R � s1 � A1��3�s2 � A2�

The typing of P is t � (0� 0� (0� 0� (I1� 0� I2))) as proved by the type inference below.

I2 � ��� � A2 0 � 0
�����

s2 � A2 � (I2� 0� 0) 0 � 0
����	�

�3�s2 � A2� � (0� 0� I2) I1 � ��� � A1
�����

s1 � A1��3�s2 � A2� � (I1� 0� I2) 0 � 0
����	�

�2�R� � (0� 0� (I1� 0� I2)) 0 � 0
����	�

�1�Q� � (0� 0� (0� 0� (I1� 0� I2)))
�

Proposition 3. For each non-erroneous P

 there is a unique type t such that P � t.

Proposition 4. For any non-erroneous P� Q

, if P � Q and P � t then Q � t.

Definition 9. Let t be a type. The flat type�t of t is defined as follows:

�0 � � �t � t� � F������(t�)� if t � 0

F������(0) � � F������(t) � t� � F������(t�) � F������(t?)� if t � 0

Notice that �t1 � t2 � �t1 � �t2. In the interpretation of t as a tree, the flat type of t is the
union of the set labelling all the nodes of t, excluding those of the subtree t? which
corresponds to dead code (cf. Example 8); in other words, either the typed process is
outside a scope (in which case its pending compensations can be ignored) or the typed
process is inside a scope (hence t? is empty because of rule
�����
�).

4.3 Well-Typedness in ATc

The definition of well-typedness requires some care. In ATc, invocations to services
can be statically typed as transactional or not. However, there is a di�erent notion of
well-typedness to adopt for services.

130 L. Bocchi and E. Tuosto

If P is not published as a service then it is possible to determine the nature of the
service invocations of P by inspecting its code. Therefore, it suÆces to specify, for
each service invocation, the attributes for which no run-time errors are possible. This
enables us to adopt the following definition.

Definition 10. Let P

 such that P � t. The process P is well-typed i� (�� �) ��t.

Example 8. Process P in Example 7 is (trivially) well-typed since �t � �. In fact, the
only service invocations of P are in the compensations to install (that are dead code
since P is not included in any transactional scope). �

Correctness depends on the (correctness of the) services invoked by a process. Remark-
ably, the fact that the invoked service is well-typed could be guaranteed by the service
provider (as part of the service interface) and required as an obligation by the service
requester in the service discovery phase. Namely, negotiation of transactional attributes
should be part of the “contract” between requester and provider. The study of the mech-
anisms used to require�negotiate�certify transactional aspects of published services is
out of the our scopes. However, our type system provides an e�ective framework to
certify compatibility of transactional aspects between services and invokers.

Ensuring correctness for services is a bit more complex. Whether or not the invo-
cations in the body of (the end-point of) a service, say s, are transactional depends on
which attribute s supports and if the invocation to s happened from within or outside a
transactional scope. Therefore, well-typedness of services takes into account both cases.

Definition 11. Let � be a container and s be a service such that �(s) � (a� P) for some
a
 � and P

. Service s is well-typed in �, if both (3) and (4) below hold.

��P�� � t � a
 �	� 	�� �� �� �� (�� �) ��t (3)

P � t � a
 ��� �� ��� �� (�� �) ��t (4)

An environment � is well-typed i� all the services in the domain of any �
 � are
well-typed.

We only consider the errors generated by the invocation of a service when attributes and
transactional scopes mismatch. Errors due to other causes (e.g., failure of a communi-
cation channel) have been modelled in [5] by introducing observers, namely processes
which can interfere in communications.

Example 9. Let the process P in Example 7 be the body of a service s supporting �
 �.
Both the well-typedness of P and of ��P�� must be checked. As argued in Example 8, P
is well-typed while for ��P�� we just need to apply rule
�����
� as follows:

�1�Q� � (0� 0� (0� 0� (I1� 0� I2))) 0 � 0
�
��	�
�

���1�Q� � �0��� � (0� (0� 0� (I1� 0� I2))� 0)

Clearly, well-typedness of ��P�� depends on whether (�� �)
 I1 � I2 or not. �

A Java Inspired Semantics for Transactions in SOC 131

Theorem 1. Let P

 be well-typed. For every well-typed environment �, if � � P �
� � Q then Q is well-typed.

A straightforward corollary of Theorem 1 is

Corollary 1. If � and P

 are well-typed and � � P � � � Q then Q is a non-
erroneous process.

Our notion of well-typedness is stricter than necessary. In fact, a weaker notion can
be adopted by taking a definition of flat type where the labels of some of the ‘right
children’ of types are not considered. Though yielding less restrictive types, this would
make the theory more complex, therefore we opted for simplicity rather than generality.

5 ATc Type System at Work

The type system in � 4 checks that any possible invocation to a service requires a safe
set of attributes so to avoid errors due to misuse of transactional scopes and attributes.

The design of SOC transactions could be easier if we knew, for each service invoca-
tion in a process, the maximal set of attributes that satisfies the typing. As a matter of
fact, specifying a larger set of attributes in a service invocation increases the chances of
finding a suitable service supporting one of the attributes. The trade-o� is however that
a too large set of attributes may cause a run-time error due to a service instance running
in a wrongly nested transactional scopes.

Arguably, non well-typed processes can be turned into well-typed ones by changing
the attributes of some invocations. We show through an example a method for designing
a well-typed process based on an alternative usage of the typing system in � 4. First,
consider the types obtained as in Definition 7 but for set � which is replaced by an
infinite countable set 	 of symbolic identifiers. A symbolic process corresponding to
P

 is a term sym(P) obtained by replacing each set of attributes with a distinct
formal identifier in 	 meant to be substituted by a subset of �.

Example 10. A symbolic process corresponding to PbookTheatre in Example 2 is

sym(PbookTheatre) � ��stickets � X1�askSeat�getSeat�pay�getRefund� � �scompensate � X2���

(the sets of attributes in PbookTheatre are replaced by X1 and X2). �

A maximal process is a well-typed process for which augmenting any of the sets of
attributes of its invocations yields the same process or a non-well typed process. Given
a well-typed P

, max(P) is the maximal process corresponding to P. (Notice that if
P does not make any invocation then P � max(P).)

The typing system of Definition 8 is adapted to symbolic processes by replacing rule

���� with

�������

P � tp I � ��� � X

s � X�P � (I � tp
� � tp

�� tp
?)
� where X not occurs in P

132 L. Bocchi and E. Tuosto

Example 11. By straightforward application of the typing system for symbolic pro-
cesses sym(PbookTheatre) � tsym, where tsym � (��� � X1� (��� � X2� 0� 0)� 0� 0). Hence, the
flattened type of sym(PbookTheatre) is�tsym � �(�� X1)� (�� X2)�. �

Finally, the maximal process is obtained by replacing each formal identifies with a
suitable set of attributes. For example,

max(PbookTheatre) � ��stickets � ��askSeat�getSeat�pay�getRefund� � �scompensate � � � 	

���

is obtained by replacing X1 with � and X2 with � � ��� in sym(PbookTheatre). In fact,
the invocation to stickets (i.e., the one associated with X1) can possibly contain all at-
tributes since they are transactional while the other invocation (i.e., the one to scompensate

associated with X2) can contain all attributes except �.
In general, one is interested only in some policies for transactional scopes and will

typically choose, for each invocation in a process P, a subset of the attributes of the
corresponding invocation in max(P).

6 Concluding Remarks and Related Work

An original contribution of this paper is the definition of mechanisms to determine
and control the dynamic reconfiguration of distributed transactions. Namely, we embed
a few primitives for managing the dynamic reconfiguration of transactional scopes in
ATc to generalise the transactional mechanisms of EJB to SOC so to have consistent and
predictable failure propagation. We give a type system that guarantees absence of fail-
ures due to misuse of transactional attributes. Since both dynamic reconfiguration and
LRT are a key aspects in SOC, it is crucial to provide a formal account of their inter-
relationships and to understand and control the mechanisms of failure. The aim of this
paper is to address the lack of agreement on the semantics of dynamic reconfigurations
of transactional scopes in SOC. In fact, service invocations cause systems reconfigura-
tion as they may dynamically introduce new transactional scopes or rearrange the old
ones. Such problem is amplified when services support and rely on di�erent kinds of
transactional behaviour.

Languages for service orchestration (e.g., WS-BPEL [16]) providing support for dis-
tributed transactions have been modelled extending some process calculi like those
in [3,11,13,14] with primitives that allow a party to define the scopes, failure han-
dlers, and compensation mechanisms (see [20] for an overview and a comparison of
such approaches). StAC [8] and CJoin [6] are process calculi which model arbitrar-
ily nested transactions and focus on the separation of process management with er-
ror�compensation. The latter o�ers a mechanism to merge di�erent scopes but it is not
o�ering the flexibility of the transactional attributes of ATc. At the best of our knowl-
edge, none of the proposed framework has been given a type system as the one proposed
here (a formal comparison of di�erent approaches for compensations in flow composi-
tion languages can be found in [7]). The existing literature addresses only part of the
dynamic aspects involved in error management. For example, [12] proposes a model
for dynamic installations of compensation processes, however, dynamic reconfigura-
tions of transactional scopes have not been considered.

A Java Inspired Semantics for Transactions in SOC 133

We are currently extending ATc with a theory of testing [10] where observers can
cause communication failures. The aim is to test the correctness of the system be-
haviour, including failure handling and compensations. On this basis it is possible to
define a notion of equivalence for ATc systems. The intuition is that two systems are
equivalent if they satisfy the same set of tests; some preliminary results are summarised
below (the interested reader is referred to [5] for a detailed presentation). The theory
of testing of ATc shows that under some conditions some transactional attributes are
equivalent. Namely, it is possible to replace a transactional attribute with an equiva-
lent one without altering the behaviour of the system. Notice that this also allows one
to specify a larger set of transactional attributes for service invocations. For example,
��s � A�P � �Q��� maintain the same behaviour if A is any of the subsets of �	� �� �� since
the invocation of s happens inside a transaction.

A limitation of our approach is the lack of link mobility à la �-calculus; extending
ATc with name passing is left as future work. We argue that the type discipline proposed
here can be simply adapted to a name passing version of ATc. In fact, our type system
is orthogonal to the communication mechanisms. On the contrary, the testing theory
of ATc will be greatly a�ected by the introduction of name passing features. Allowing
attributes to be communicated is anther interesting extension of ATc also, a primitive
enabling a service s to make a parametrised invocation to a service s� using the same
attribute supported by s (attributes are set when services are published in containers).
Such extensions increase expressiveness but require more sophisticated type disciplines.

An orthogonal topic is the modelling of protocols for deciding the outcome of dis-
tributed transactions (e.g., the work in [1]). Some standards like Business Transaction
Protocol (BTP) [15] and Web Service Transaction (WS-Tx [17]) have been proposed for
LRTs. Such protocols involve a more general scenario than the classic atomic commit:
the global consensus is no longer necessary and is substituted by weaker constraints.
In [2,4] BTP cohesion along with the properties ensured by the “weakened” constraints
have been studied via a formalisation in the asynchronous �-calculus (see [9] for an
overview on the cohesion-base approach of BTP). The present paper provides a high
level semantics of failure propagation, compensation and scope reconfiguration, while
abstracting from protocols necessary to implement them. Consider, for example, the
process ��s � �	��P � �Q��� invoking a service s whose body is x�P���Q�. Since service s
supports the attribute 	, its body is executed inside the same scope (if any) of the caller,
according to Definition 6.

� � ��s � �	��P � �Q��� �� � � ��P � P� � �Q � Q����

The same above includes compensations of di�erent possibly cross-domain and dis-
tributed processes. Noteworthy, the mechanism that trigger Q and Q� are not trivial The
higher level perspective we adopted has the advantage of providing a concise but rigor-
ous understanding of dynamic scope reconfigurations. We leave the investigation of the
underneath coordination protocols, which would provide a skeleton for the implemen-
tation of the higher level mechanisms, as a future work. (We remark that this issue is
common to any theory of distributed transactions.)

134 L. Bocchi and E. Tuosto

References

1. Berger, M., Honda, K.: The two-phase commitment protocol in an extended pi-calculus.
Electr. Notes Theor. Comput. Sci. 39(1) (2000)

2. Bocchi, L.: Compositional nested long running transactions. In: Wermelinger, M., Margaria-
Ste�en, T. (eds.) FASE 2004. LNCS, vol. 2984, pp. 194–208. Springer, Heidelberg (2004)

3. Bocchi, L., Laneve, C., Zavattaro, G.: A calculus for long-running transactions. In: Najm, E.,
Nestmann, U., Stevens, P. (eds.) FMOODS 2003. LNCS, vol. 2884, pp. 124–138. Springer,
Heidelberg (2003)

4. Bocchi, L., Lucchi, R.: Atomic commit and negotiation in service oriented computing. In:
Ciancarini, P., Wiklicky, H. (eds.) COORDINATION 2006. LNCS, vol. 4038, pp. 16–27.
Springer, Heidelberg (2006)

5. Bocchi, L., Tuosto, E.: A Java Inspired Semantics for Transactions in SOC, extended report
(2009), http:��www.cs.le.ac.uk�people�lb148�javatransactions.html

6. Bruni, R., Melgratti, H.C., Montanari, U.: Nested commits for mobile calculi: extending Join.
In: Lévy, J.-J., Mayr, E., Mitchell, J. (eds.) IFIP TCS 2004, pp. 563–576. Kluwer, Dordrecht
(2004)

7. Bruni, R., Melgratti, H.C., Montanari, U.: Theoretical foundations for compensations in flow
composition languages. In: POPL, pp. 209–220. ACM, New York (2005)

8. Butler, M., Ferreira, C.: An operational semantics for StAC, a language for modelling long-
running business transactions. In: De Nicola, R., Ferrari, G.-L., Meredith, G. (eds.) COOR-
DINATION 2004. LNCS, vol. 2949, pp. 87–104. Springer, Heidelberg (2004)

9. Dalal, S., Temel, S., Little, M., Potts, M., Webber, J.: Coordinating business transactions on
the web. IEEE Internet Computing 7(1), 30–39 (2003)

10. De Nicola, R., Hennessy, M.C.B.: Testing equivalences for processes. Theoretical Comput.
Sci. 34(1-2), 83–133 (1984)

11. Guidi, C., Lanese, I., Montesi, F., Zavattaro, G.: On the interplay between fault handling and
request-response service invocations. In: ACSD, pp. 190–198. IEEE, Los Alamitos (2008)

12. Guidi, C., Lanese, I., Montesi, F., Zavattaro, G.: Dynamic error handling in service oriented
applications. Fundam. Inf. 95(1), 73–102 (2009)

13. Laneve, C., Zavattaro, G.: Foundations of web transactions. In: Sassone, V. (ed.) FOSSACS
2005. LNCS, vol. 3441, pp. 282–298. Springer, Heidelberg (2005)

14. Mazzara, M., Lanese, I.: Towards a unifying theory for web services composition. In:
Bravetti, M., Núñez, M., Zavattaro, G. (eds.) WS-FM 2006. LNCS, vol. 4184, pp. 257–272.
Springer, Heidelberg (2006)

15. Business Transaction Protocol (BTP) (2002)
16. Web Services Business Process Execution Language (WS-BPEL). Technical report (2007)
17. Web Services Transaction (WS-TX) (2009)
18. Panda, D., Rahman, R., Lane, D.: EJB 3 in action. Manning (2007)
19. Sun Microsystems. Enterprise JavaBeans (EJB) technology (2009),

http:��java.sun.com�products�ejb�.
20. Vaz, C., Ferreira, C., Ravara, A.: Dynamic recovering of long running transactions. In: Kakla-

manis, C., Nielson, F. (eds.) TGC 2008. LNCS, vol. 5474, pp. 201–215. Springer, Heidelberg
(2008)

Responsive Choice in Mobile Processes

Maxime Gamboni and António Ravara

SQIG, Instituto de Telecomunicações and Mathematics Dept.

IST, Technical University of Lisbon

Abstract. We propose a general type notation, formal semantics and

a sound, compositional, and decidable type system to characterise some

liveness properties of distributed systems. In the context of mobile pro-

cesses, we define two concepts, activeness (ability to send/receive on a

channel) and responsiveness (ability to reliably conduct a conversation

on a channel), that make the above properties precise. The type system

respects the semantic definitions of the concepts, in the sense that the

logical statements it outputs are, according to the semantics, correct de-

scriptions of the analysed process. Our work is novel in two aspects. First,

since mobile processes can make and communicate choices, a fundamen-

tal component of data representation (where a piece of data matches

one of a set of patterns) or conversations (where the protocol may per-

mit more than one message at each point), our types and type system

use branching and selection to capture activeness and responsiveness

in process constructs necessary for such usage patterns. Secondly, con-
ditional properties offer compositionality features that permit analysing

components of a system individually, and indicate, when applicable, what

should be provided to the given process before the properties hold.

Keywords: π-calculus, liveness properties, choice, static analysis.

1 Introduction

When describing a distributed or service-oriented system using mobile pro-
cesses [12,15], it is important to provide a number of liveness guarantees, such
as, from a client’s point of view, “If I send a request, will it eventually be re-
ceived? Will it eventually be processed, and will I eventually obtain an answer?”,
or, from a server’s point of view, “Will I eventually receive a request? Will my
clients respect my communication protocol?”. The work we present herein en-
sures these properties statically, allowing, e.g., to guarantee reliability of actual
software or distributed protocols, or to prove validity of calculus encodings. The
main contribution of this work is an integration of choice with activeness and
responsiveness, through a general type notation, formal semantics and a sound,
compositional, and decidable type system. This work has three main ingredients:

First, activeness (ability to establish a connection) and responsiveness (ability
to conduct a conversation for each connection) are liveness properties that have

� CITI and Dep of Informatics, FCT, New University of Lisbon.

M. Wirsing, M. Hofmann, and A. Rauschmayer (Eds.): TGC 2010, LNCS 6084, pp. 135–152, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

136 M. Gamboni and A. Ravara

been studied, in more restricted forms, under the names of receptiveness [14],
lock-freedom [8] or responsiveness [1]. Activeness is a generalisation of receptive-
ness both because communication is not required to succeed immediately but
also because we may talk of output activeness, whereas receptiveness is only for
inputs. Activeness of a channel end point (henceforth called port) is equivalent
to lock-freedom of every instance of the complement port (including those in the
environment). Acciai and Boreale’s responsiveness is actually closer to what we
call activeness than our concept of responsiveness.

Secondly, conditional properties are statements of the form Δ�Θ, where Δ and
Θ are logical statements on channel activeness meaning that “Δ holds provided
Θ is made available (e.g. through parallel composition)”.

Thirdly, the language of processes, as well as the language of types, support the
concepts of selection (or “internal choice”) and branching (or “external choice”),
abstract descriptions of choices made and communicated by processes.

Conversations are an example where responsiveness and choice appear to-
gether. A conversation is a sequence of exchanges between a server and a client,
guided by a protocol that describes what data type may be transmitted and in
which direction, as well as choices that may be performed and by which party.
The following example (in a π-calculus extended with numbers and a multiplica-
tion operator) is a multiplication service that receives numbers and returns their
product. At every step the client selects to send more numbers (“more”) or re-
quest the result (“done”). Input (respectively, output) responsiveness of channel
prod in this scenario means that the server (respectively, the client) will keep
progressing until reaching a terminal state, i.e. until t is sent over r.

Server = ! prod(s).p0〈s, 1〉 | ! p0(s, t).s(νmore, done).(
more(s, n).p0〈s, t × n〉 + done(r).r〈t〉)

Client = prod(νs).s(more, done).more(νs, 2).s(more, done).more(νs, 5).

s(more, done).done(νr).r(t).print〈t〉
A second application is Milner’s encoding of Boolean values in the π-calculus
[11], which represents them as receivers on two parameter channels: True replies
to queries with a signal on the first parameter (! b(tf).t̄) and False on the second
one (! b(tf).f̄). A Boolean is (input) active if it is able to receive a request, and
(input) responsive if it is able to reply to all requests. Those two processes are
instances of selection because they pick one behaviour out of a set of mutually
exclusive permissions, by sending a signal to one parameter rather than to the
other. A Random Boolean can be written ! b(tf).(νx) (x̄ | (x.t̄+x.f̄)), in which
the selection is performed “at run-time” by the sum (“+”). A selection made
by one process may cause branching in another process. Branching is typically
implemented with the π-calculus sum operator, as in b(νtf).(t.P+f.Q), which
runs P if b is True, and Q if b is False. The “r = a and b” logical circuit is
implemented as follows.

A = ! r(tf).a(νt′f ′).(t′.b〈tf〉+f ′.f̄) (1)

Responsive Choice in Mobile Processes 137

Upon receiving a request on r, process A first queries a. If it returns True (t′)
then the process returns on b the same channels received on r. If a returns False
instead (f ′), the process returns False (f̄). So, depending on a and b’s behaviour,
either a signal will be sent on t, or one will be sent on f (but never both). We
shall use this process as a running example in the course of this paper. First
by formally stating the property “r is responsive provided that both a and b
are active and responsive” into a type, then we will prove that this statement is
correct using semantic definitions, and finally, to illustrate our type system, we
will show how to automatically infer that property from the process alone (and
given that a, b and r are all Booleans).

To the best of our knowledge, no existing work is able to perform a static
analysis of processes such as (1). The usual approach for deciding whether names
are active is to assign a single numerical level to name occurrences. But this
does not allow for conditional properties, and moreover does not deal nicely with
choice (specifically, with selection). In this case, when analysing r’s continuation,
as t̄ may never get triggered (in case r returns False), it would require an infinite
level, and similarly for f̄ . In other words, all a level-based system is able to say
is “neither t̄ nor f̄ is guaranteed to ever be fired”. We need a typing system able
to capture the fact that exactly one of t̄ and f̄ will eventually get triggered when
r is queried. In contrast to level-based analysis, dependency-based systems as
we have been developing naturally incorporate choice and branching operators,
to express that sort of properties (a short abstract presents the approach [5]).

These three ingredients, responsiveness, choice and conditional properties, are
put together into behavioural statements. Given a process and for every channel a
channel type specifying its communication protocol, the type system constructs
a process type containing a behavioural statement describing every property it
was able to infer from the process (unless the process risks violating constraints
such as linearity or arity of a channel, in which case it is rejected).

This extended abstract is intended as only an overview of our work, and some
technical details have been deliberately left out or put in appendices. A complete
technical report including proofs can be found on-line [6].

Section 2 describes our type syntax and algebra, Section 3 gives precise se-
mantics for our types and finally Section 4 presents our type system.

2 Processes, Types and Dependencies

After a word on the process calculus used, we describe in this section our type
syntax and algebra in detail.

2.1 Processes

Our target process calculus is the synchronous polyadic π-calculus with mixed
guarded sums and replication, according to the grammar given in Table 1. The
symbol σ (hereafter usually omitted) stands for x’s channel type, whose definition
is given later. The letters a, b, c, d, r, x, y, z denote channel names (sometimes

138 M. Gamboni and A. Ravara

Table 1. Process Syntax

Processes: P ::= (P |P)
∣∣ (νx : σ) P

∣∣ S
∣∣ 0

Components of a parallel composition: S ::= (S+S)
∣∣ G.P

Guards: G ::= T
∣∣ !T

Non-replicated guards: T ::= (νz : σ) T
∣∣ a(ỹ)

∣∣ a〈x̃〉

simply called names), taken from a countable set. Every channel x has two ports,
its input (x) and output (x̄) end points. Letter p ranges over ports.

Free names fn(P) of a process P are defined as usual, binders being (νx)P
(binding x in P) and a(ỹ).P (binding ỹ in P). A guard G has a subject port
sub(G), defined by the axioms sub(! T)def= sub((νx : σ)T)def= sub(T), sub(a(ỹ))def= a

and sub(a〈x̃〉) def= ā, and a set of object names obj(G), defined by obj(! T) def=
obj((νx : σ)T) def= obj(T), obj(a(ỹ)) def= {ỹ} and obj(a〈x̃〉) def= {x̃}, of which the
bound names bn(G) are a subset: bn(a(ỹ)) def= {ỹ} and bn((ν z̃) a〈x̃〉) def= {z̃}.
Finally, the multiplicity #(G) of a guard G is ω if it is replicated, or 1 other-
wise. The operational semantics of the calculus is given, as usual, by a labelled
transition system (Appendix A).

2.2 Syntax of Types

Types contain annotations on channels to record the liveness properties they
enjoy (activeness and/or responsiveness), as well as the number of times they
may be used: Activeness and multiplicities specify, respectively, lower and upper
bounds on the number of times a port is going to be used. We write pm, where p
is a port and m is a multiplicity that can be 0, 1, ω (one replicated occurrence)
or � (unbounded), to specify an upper bound on the use of p. We write pA to
specify a non-zero lower bound on the use of p. Note that multiplicity is a safety
property (broken by using a channel too often), while activeness is a liveness
property, satisfied once a message is ready to be sent or received. We focus on
liveness properties, and use multiplicities merely as a tool for establishing them.

Behavioural statements. Just like pA, activeness of a port p, tells that a p-
guarded process eventually comes to top-level1, activeness of a branching sA

where s =
∑

i pi requires a sum to eventually come to top-level, with one pi-
guarded branch for each i.

A port a or ā is responsive in a process (written aR or āR) if a-receivers (or
ā-senders) respect the channel protocol. Protocols, expressed using channel types,
will be described later on.

These three expressions — pm, sA and pR — are the fundamental building
blocks of behavioural statements, logical expressions describing the behaviour of
a process. The dependency statement Δ� Θ (read “Δ if Θ” and also called rely-
guarantee construct in the literature), says that whenever Θ holds in a process’s

1 Q is at top-level in P if P ≡ (ν z̃) (P | Q).

Responsive Choice in Mobile Processes 139

Table 2. Behavioural Statement Syntax

Behavioural statements Δ ::= Δ ∨Δ
∣∣ Δ ∧Δ

∣∣ Δ� Δ
∣∣ γ

∣∣ pm
∣∣ ⊥ ∣∣ �

Resources γ ::= sA

∣∣ pR

Sums s ::= s + s
∣∣ p

environment, Δ will hold in that process. For instance aA � b̄A holds for the
process b.a because, should a third-party process provide an output at b (“b̄A”),
this process will provide an input at a (“aA”). Dependency “Δ� Θ” can be
understood as an implication “Δ ⇐ Θ”, and indeed shares many properties
with logical implication.

The usual logical connectives ∨ (disjunction), ∧ (conjunction), � (truth) and
⊥ (falsity) are used to build complex behavioural statements (ranged over by ε,
Δ, Θ or Ξ and given by the grammar in Table 2) about a process. In this work,
multiplicities pm may appear neither on the left nor on the right of a� connective,
and in Δ� Θ, Δ and Θ may not themselves use the � connective. By convention
ε denotes the dependencies of a particular resource. We often group statements
about a particular port into a single abbreviated expression: pm

A
def= pm ∧ pA

(“p is used at least once and at most m times”) and pAR
def= pA ∧ pR (“p is

active and responsive”). For instance p1
A is a linear port (used precisely once),

p

A is a port used at least once, and p1 is a port used at most once.

Channel Types give, separately for the input and output ports of a channel,
behavioural statements that must hold for every receiver, respectively sender,
at the corresponding channel, using natural numbers (starting from 1) to refer
to the parameter channels. Specifically, multiplicities indicate which capabilities
(input or output) of the parameters may be used, activeness resources tell which
parameter must be active, selection “∨” tells what choices may be performed,
and branching “+” tells what branching they must offer. Note how the type
of some channel a only talks about the parameters carried on a — it does not
include a’s multiplicities or activeness which are given by the process type.

The input port of a Boolean channel (such as r, a and b in (1)) has type

1̄1
A ∨ 2̄1

A (2)

that says that either the first parameter (“1”) must be output (“1̄”) active (“A”),
and the second parameter unused, or (“∨”) the opposite (“2̄1

A”) — by convention
we don’t mention ports with multiplicity zero. The output port has type(

11 ∨ 21
) ∧ (1 + 2)A, (3)

which has a similar meaning, but where one of its parameters (t and f in the
example) should be input rather than output. Additionally (“∧”), inputs at
the parameters (“1” and “2”) must be the guards of a sum (“+”). A Boolean
channel is now said input (resp., output) responsive if its input port (resp.,
output port) respects this protocol. A channel type σ is a triple (σ̃; ξI; ξO) where

140 M. Gamboni and A. Ravara

σ̃ are the types of the parameters, ξI and ξO are behavioural statements (only
using numbers for channels) standing for the behaviour required respectively of
inputs and outputs at that channel. For instance, abbreviating the parameter-
less channel type (∅; �; �) as (), the Boolean type gathers (2) and (3) as

Bool
def=

(
()() ; 1̄1

A ∨ 2̄1
A ; (11 ∨ 21) ∧ (1 + 2)A

)
The type σp of channel prod in the conversation example from the introduction
nicely illustrates how a channel type describes the protocol used at a channel:

1. Connection: σp = (σs; 1̄AR; 1AR),
2. Client selects m or d: σs = (σm, σd; 1̄AR ∨ 2̄AR; (1 + 2)A ∧ (1R ∨ 2R)),
3. If m, client sends a number: σm = (σs, Int; 1̄AR; 1AR),
4. If d, client requests result: σd = (σr; 1̄AR; 1AR),
5. Server returns result: σr = (Int; �; �).

Process Types are similar to channel types, but refer to channels by names
rather than parameter numbers. A process type Γ is a structure (Σ ; ΞL � ΞE)
where Σ = ã : σ̃ is the channel type mapping giving the channel types of free
names used by the process, while ΞL and ΞE are behavioural statements us-
ing names in ã, respectively the local component (constraints what the process
does) and the environment component (constraints what any third-party process
may do). Unless specified otherwise, ΞE contains no activeness or responsiveness
statements.

Typing the running example. The process (1) can be given the following type,
where the local component says that r is active with multiplicity ω (i.e. has
precisely one occurrence and it is replicated), and its responsiveness depends on
both a and b being active and responsive. The environment component specifies
that a and b must both have at most one replicated instance, and there are no
additional input on r.

ΓA =
(
a : Bool, b : Bool, r : Bool; rω

A ∧ (
rR� (aAR ∧ bAR)

)
� aω ∧ bω ∧ r0

)
(4)

Apart from some informal descriptions, behavioural statements have so far been
purely syntactical constructs. Some operators and relations we present ahead
clarify their semantics: (1) equivalence and weakening relations highlight their
logical aspect (a statement may imply another); (2) composition, restriction and
prefixing operators highlight their spatial aspect by mirroring process constructs;
and (3) the transition operator and the typed transition relation highlight their
dynamical aspect (types, like processes, may evolve over time).

2.3 Logical Aspects

We define weakening and reduction relations on behavioural statements.

A weakening relation on behavioural statements (and, by extension, on process
types) builds on the idea that a statement A can be said weaker than a statement

Responsive Choice in Mobile Processes 141

B (written A � B) if all worlds (processes) satisfying B also satisfy A. Similarly,
statements are equivalent (written A ∼= B) if they hold in the same set of worlds
(i.e., if A � B and B � A).

The weakening relation is inductively defined by the rules in Appendix B. We
present now the most significant rules, useful to analyse the running example.

– Δ1∧Δ2 � Δ1 � Δ1∨Δ2, and ⊥�Δ��. Δ∧(Δ1∨Δ2) ∼= (Δ∧Δ1)∨(Δ∧Δ2).
– ∧ and ∨ are commutative, associative and idempotent, up to ∼=.
– On multiplicities, pm1 � pm2 if m1 = 0 or m2 ∈ {m1, �}. Also, p
 ∼= �.
– (γ� ε1) ∧ (γ� ε2) ∼= γ� (ε1 ∨ ε2) and (γ� ε1) ∨ (γ� ε2) ∼= γ� (ε1 ∧ ε2).

The Technical report (“Weakening Decidability” in [6], Section 2) describes a
way to decide if two behavioural statements are related by weakening. From
now on we consider process types and dependencies up to ∼= as equal, since
every operator and relation considered commutes with ∼= (Lemma “Types may
be seen up to ∼=” in [6], Section 2).

Dependency reduction. Another relation highlighting the logical aspect of be-
havioural statements is the reduction relation, analogous to the modus ponens
rule in logic. It occurs with process composition which may create dependency
chains that must then be reduced. For example a.b̄ and b.c̄ satisfy respectively
b̄A�āA and c̄A�b̄A, while their composition a.b̄ | b.c̄ satisfies (b̄A�āA)∧(c̄A�b̄A)∧
(c̄A� āA) (where the underlined statement was derived from the other two) or,
applying type equivalence, (b̄A� āA) ∧ (

c̄A� (āA ∨ b̄A)
)
. More generally:

Definition 1 (Dependency Reduction). The reduction relation ↪→ on be-
havioural statements is a partial order relation satisfying
1. (sA� ε) ∧ (γ� ε′) ↪→ (sA� ε) ∧ (γ� ε′{ε{⊥/γ}∨sA/sA}),
2. (pR� ε) ∧ (γ� ε′) ↪→ (pR� ε) ∧ (γ� ε′{ε{⊥/γ}∧pR/pR}).
A closure of a behavioural statement Ξ, written close (Ξ), is Ξ ′ such that Ξ ↪→
Ξ ′ and if Ξ ′ ↪→ Ξ ′′ then Ξ ′ ∼= Ξ ′′.

The different treatment of activeness and responsiveness (in γ’s dependencies,
the former gets a ∨ and the latter a ∧), can be understood as follows: If two
processes P1 and P2 both provide an a-input, it is enough that one of them is
able to receive a request to have a active in P1|P2. On the other hand, they must
both be responsive in order to guarantee that all a-requests will get a response.
Also note how self-dependencies γ � γ are replaced by γ � ⊥. Activeness self-
dependencies are found in deadlocks such as ā.! b | b̄.! a where aA and bA depend
on each other, and responsiveness self-dependencies are found in livelocks such
as ! a(x).b〈x〉 | ! b(x).a〈x〉 where aR and bR depend on each other.

Most operators commute with the logical connectives: A logical homomor-
phism is a function f on behavioural statements or process types such that
f(X ∨ Y) = f(X) ∨ f(Y) and f(X ∧ Y) = f(X) ∧ f(Y). It is now sufficient to
describe how operators behave on behavioural statements not using ∧ or ∨, as
the general behaviour can be derived from the above.

142 M. Gamboni and A. Ravara

2.4 Spatial Aspects

Every process constructor has a corresponding operator on types, which is the
essence of any syntax directed type system such as ours. We focus on the (par-
allel) composition operation “Γ1 � Γ2” that, given the types Γ1 and Γ2 of two
processes P1 and P2, constructs the type of P1|P2. On behavioural statements,
� is the logical homomorphism such that:

1. (pm) � (pm′
) def= pm+m′

2. (sA� ε) � (sA� ε′) def= (sA� ε) ∨ (sA� ε′)
3. (pR� ε) � (pR� ε′) def= (pR� ε) ∧ (pR� ε′)
4. When they don’t have resources in common, Ξ � Ξ ′ def= Ξ ∧ Ξ ′.

When composing full process types, the local component of the whole is the
composition of the local components of the parts, and the environment of the
whole is the environment of one part, without the local component of the other
part (we omit the formal definition of “\” that does just that). Formally:

(Σ;ΞL1 �ΞE1)�(Σ; ΞL2 � ΞE2)
def= (Σ; ΞL1 � ΞL2 � (ΞE1 \ ΞL2) ∧ (ΞE2 \ ΞL1))

The � operator is associative, commutative and has (∅; � � �) as a neutral
element (Lemma “Composition Properties” in [6], Section 2). See Sections 2.5
and 4 for examples.

2.5 Dynamical Aspects

We describe in this section a transition operator “Γ μ” on types, to answer to
the following question: If a process P has type Γ , and P

μ−−→ P ′, what is the
type of P ′? The motivation for such an operator is three-fold:

Ruling out transitions that a well-behaved third party process can’t cause
and that force a process to misbehave. E.g. interference on a linear channel
(a transition l|l̄ l−−→ l̄ is ruled out, as it contradicts l̄0 in the environment)

and channel mismatches (a(x).x〈3〉 | b(yz)
a(b)−−−−→ b〈3〉 | b(yz) introduces an arity

mismatch and is ruled out, as a’s parameter type is incompatible with b’s type).
Secondly, to avoid semantics with universal quantification on third-party pro-

cesses, we characterise the � connective with labelled transitions. However, those
change the properties of processes: assume P and E represent a process and its

environment. A request P
a〈b〉−−−−→ is then received as E

a(b)−−−−→ E′, and if a was re-
sponsive in E then b̄ is active and responsive and a is no longer active in E′ (for
linear a with a typical input-output-alternating channel type). The transition
operator predicts the evolution of both the process and its environment.

Thirdly, to prove that the previous point is sound, subject reduction works
with arbitrary labelled-transitions (see Proposition 1 on page 147).

Responsive Choice in Mobile Processes 143

For transitions not carrying parameters, we have the following equality:

(Σ; ΞL � ΞE) p
def= (Σ; ΞL \ p � ΞE \ p̄)

Based on � and channel type instantiation σ[x̃] (which transforms a channel type
σ into a process type, essentially by substituting parameter references 1 . . . n by
x1 . . . xn, but with extra care in case two xi are equal), input transitions are
simulated as follows. Let Γ = (Σ; ΞL � ΞE) with Σ(a) = σ.

Γ a(x̃) def= Γ a � σ[x̃]� (aR � āR)

The Γ � (aR � āR) operation makes Γ ’s local component depend on aR and
its environment component depend on āR. An output transition can be done by
swapping the local and environment components, doing an input transition, and
swapping the two resulting components back. We illustrate the above operator

on the transition A
r(uv)−−−−−→ A′ = A | a(νt′f ′).(t′.b〈uv〉+f ′.v̄) where A is (1) and

its type (4) is ΓA =
(
Σ ; rω

A ∧ rR� (aAR ∧ bAR) � aω ∧ bω ∧ r0
)
:

ΓA r(uv) = ΓA r � (
u : (), v : (); (ūA ∨ v̄A)� rR � (u1 ∨ v1) ∧ (u + v)A� r̄R

)
1. The “ r” part has no effect as rω \ r = rω and r̄
 \ r̄ = r̄
.
2. The channel type mapping is Σ′ = a : Bool, b : Bool, r : Bool, u : (), v : ().
3. the remote component “ΞE” is just the conjunction of

(
aω ∧ bω ∧ r0

)
from

ΓA and
(
(u1 ∨ v1) ∧ (u + v)A� r̄R

)
.

4. The local component is ΞL =
(
rω
A ∧ rR� (aAR ∧ bAR)

)
�
(
(ūA ∨ v̄A)� rR

)
=(

rω
A ∧ rR� (aAR ∧ bAR)

)
∧
(
(ūA ∨ v̄A)� rR

)
.

5. Closure of ΞL reduces the (ūA ∨ v̄A)� rR ∧ rR� (aAR ∧ bAR) dependency
chain into (ūA ∨ v̄A)� (rR ∧ aAR ∧ bAR).

6. Finally, because of r0 in the remote side ΞE, the dependency on rR can be
replaced2 by � in the above statement, resulting in (ūA ∨ v̄A)� (aAR ∧bAR).

7. Omitting irrelevant parts, we end up with(
Σ′; (ūA ∨ v̄A)� (aAR ∧ bAR) � aω ∧ bω ∧ r0 ∧ (u1 ∨ v1)

)
(5)

as a type for A | a(νt′f ′).(t′.b〈uv〉+f ′.v̄), where the local component is read as
“if active and responsive a and b inputs are provided, then an output will be
sent on (exactly) one of u and v,” which is indeed a correct statement for that
process A′. Remember that this type was not obtained by analysing A′, but is

a prediction of the effect of a transition
r(uv)−−−−−→ on a process of type ΓA.

Transitions on types and on processes are combined to form transitions on
typed processes : (Γ ; P)

μ−−→ (Γ μ; P ′) if P
μ−−→ P ′ and Γ μ is well-defined.

2 An unused port is vacuously responsive. Inversely, rA could be replaced by ⊥.

144 M. Gamboni and A. Ravara

3 Activeness and Responsiveness

In this section we define correctness of a type Γ for a process P , denoted Γ |= P .
The projection relation “↘” permits extracting an “elementary” part of a

process type for testing its validity. It simulates selections done by the envi-
ronment by reducing any Δ1 ∧ Δ2 . . . to Δi and any γ � (ε1 ∨ ε2 . . .) to γ � εj

for some i and j. Then, proving that a projection
∨

i γi � εi is correct for P is
done with a strategy — a function f mapping typed processes to pairs of tran-
sition labels and typed processes such that f(Γ ; P) = (μ; Γ ′; P ′), also written

(Γ ; P)
f−−→ (Γ ′; P ′), implies (Γ ; P)

μ−−→ (Γ ′; P ′). For (Γ ; P) �∈ dom(f) we write

(Γ ; P)
f−−→ (Γ ; P). A valid strategy “leads to” a process where one of the γi

is immediately available, using no more external resources than declared in εi.
While projections deal with disjunctions on the right of the � connective, dis-
junctions on its left need to be handled specially: (Ξ1 ∨ Ξ2) |= P is weaker than
(Ξ1 |= P) ∨ (Ξ2 |= P) as it could be that the selection is not yet decided in P ,
but will only be after a few transitions. This is addressed by first picking a full
transition sequence and then only requiring the outcome of the selection to be
decided, which can be seen in the definition in “∃α s.t.”. Correctness is stated
similarly to the usual notion of fairness (“if a particular transition is constantly
available, it will eventually occur”) but with a strategy instead of a particular
transition. Note how the transition sequence interleaves single invocations of the
strategy between arbitrarily long transition sequences: this permits stating re-
sults in presence of divergence but still correct with a stochastic scheduler. The
“eventually” aspect of activeness is given by “∃n s.t.”. “Immediately correct”
essentially means the corresponding port or sum is at top-level.

If a type Γ is correct for a process then so is any Γ ′ with Γ ′ � Γ (Lemma
“Bisimulations and Type Equivalence” in [6], Section 4).

Definition 2 (Correctness). Let Γ be a type and P a process. We say that
or Γ is correct for P if, for some strategy f , for any infinite sequence of the

form (Γ ; P) = (Γ0; P0)
μ̃0−−−→↘ (Γ ′

0; P ′
0)

f−−→ (Γ ′
1; P ′

1) · · · μ̃i−−−→↘ (Γ ′
i ; P

′
i)

f−−→
(Γi+1; Pi+1) · · · : Let (for all i) pi be the subject of the (Γ ′

i ; P
′
i)

f−−→ (Γi+1; Pi+1)
transition (or “τ” if it is the identity or a τ-transition). Then there is a number
n and a resource α such that:

1. for all i with pi �= τ , (α� piA) � Γ ′
i

2. For some ε with (α� ε) � Γn, α� ε is immediately correct for (Γn; Pn).

We now sketch a proof that ΓA given in (4) is a correct type for A given in
(1). We only pick a representative transition sequence, but of course a complete
proof would have to take all possible transitions into account. Following the
pattern given in Definition 2 we alternate arbitrary transition sequences μ̃i (odd-
numbered steps) and those provided by the strategy (even-numbered steps).

Responsive Choice in Mobile Processes 145

1. We first send a request μ̃0 = r(uv). The resulting type is (5) on page 143.
2. The strategy executes a(νt′f ′) to bring the process closer to an output on u

or v. This is allowed, as the subject’s complement a is active in the dependen-
cies. The local dependency network is now (ūA∨v̄A)�(aAR∧(t̄′A∨f̄ ′

A)∧bAR).
3. As we do not want to help the strategy find the way out we set μ̃1 = ∅.

However we must still do a projection “↘”, i.e. simulate the choice made by
the a-input. Let’s pick f̄ ′: (ūA ∨ v̄A)� (aAR ∧ f̄ ′

A ∧ bAR).
4. The process is now A | (t′.b〈uv〉+f ′.v̄), so the strategy is just to consume the

f ′ prefix, which is permitted because its complement is active (f̄ ′
A).

5. We are now at A|v̄. If we set μ̃2 = ∅ at this point, n = 2 satisfies the
requirement as v̄ is at top-level. If instead we consume v̄ with μ̃2 = v̄, the
transition operator removes activeness of both ū and v̄, and the process type
becomes (ūA ∨ v̄A)� ⊥ ∼= � which is vacuously correct.

4 Type System

Given a process P , a mapping Σ of channel types for all free names, and option-
ally multiplicities for some names, our type system constructs a process type Γ
for P . Processes that may violate multiplicity constraints or mismatch channel
types are rejected. Typing is decidable and sound, but necessarily not com-
plete (may reject safe processes, or construct a behavioural statement weaker
than what is actually correct for the process). Most rules of the type system
are straightforward (every process constructor has a corresponding process type
operator). Appendix C presents the full system.

We focus on the prefix rule. It �-composes five statements, in order: subject
type and total multiplicities, subject activeness, continuation, expected remote
behaviour and subject responsiveness.

Γ � P sub(G) = p obj(G) = x̃
(#(G) = 1 and m′ = �) ⇒ ε = ⊥(

p : σ; � pm ∧ p̄m′
)

�(
; p#(G)

A � ε �
)

�
!if #(G) = ω (νbn(G))

(
Γ � p̄A �

σ[x̃]� p̄AR �
(; pR� σ[x̃] �)

) � G.P

(R-Pre)

We illustrate the five factors in order with the derivation of rR� (aAR ∧ bAR) as
a type for (1) on page 136. We omit parts not needed to get rR’s dependencies.

Subject type, multiplicities and activeness. The parameter-less output f̄ is typed
using (R-Pre). The name is linear (m = m′ = 1) and, since there are no
parameters or continuation, all but the first two factors of the typing are empty,
leaving us with:

(
f : (); � f̄1 ∧ f1

) � (
; f̄1

A� � �
)
, or:

Γ6 =
(
f : (); f̄1

A � f̄0 ∧ f1
) � f̄ (6)

146 M. Gamboni and A. Ravara

Continuation. A sequence G.P is typed like composition G|P , except that ac-
tiveness resources in P additionally depend on p̄A, p being G’s subject port.
Here, f ′.f̄ is again typed with (R-Pre), where the first three terms are now
non-null: (

f ′ : (); � f ′1 ∧ f̄ ′1
)

�
(
; f ′1

A� � �
)

� Γ6� f̄ ′
A � f ′.f̄

Dropping the unneeded f ′1
A statement we get

ΓT =
(
f : (), f ′ : (); f̄A� f̄ ′

A � f̄0 ∧ f1 ∧ f ′0 ∧ f̄ ′1
)

� f ′.f̄ (7)

Remote behaviour plays two roles, respectively through the local and environ-
ment parts of the instantiated channel σ[tf]. First, if the input on a channel is
active and responsive, it will behave according to the protocol specified in the
channel type whenever queries are sent to it. For b〈tf〉, this is (t̄A ∨ f̄A)� bAR,
where the left side is (3) from page 139 with t and f replacing 1 and 2. Second,
it sets upper bounds on the local side’s use of parameters ports. In this case we
get t1 ∨ f1 in the environment side, which effectively prevents any part of the
process to do at t and f anything more than an input-guarded sum at t and f .
Together with the subject b handled as in (6), we get the following:(

b : Bool, t : (), f : (); (t̄A ∨ f̄A)� bAR � (t1 ∨ f1) ∧ (b̄
 ∧ bω)
) � b〈tf〉 (8)

As in (7), the t′-prefix adds a dependency on t̄′A to all activeness resources:

ΓF =
(
Σ; (t̄A ∨ f̄A)� (bAR ∧ t̄′A) � (t1 ∨ f1) ∧ (b̄
 ∧ bω)

) � t′.b〈tf〉 (9)

A sum T +F is given the type (t′ + f ′)A ∧ (ΓT ∨ ΓF), where ΓT (here (7)) and
ΓF (here (9)) are respectively the types of T and F , and t′, f ′ their guards:
the process offers a branching t′+f ′, and (“∧”) selects (“∨”) one of ΓT and ΓF

(we use (Σ; ΞL1 � ΞE1) ∨ (Σ; ΞL2 � ΞE2)
def= (Σ; ΞL1 ∨ ΞL2 � ΞE1 ∧ ΞE2) for

ΓT ∨ ΓF). The decoupling between the guards and the continuations is done to
make explicit which channels must be used to make the process branch.

(
Σ; (t′ + f ′)A ∧

((
(t̄A ∨ f̄A)� (bAR ∧ t̄′A)

) ∨ (
f̄A� f̄ ′

A

))
�(

f̄0 ∧ f ′0 ∧ f̄ ′1
)

∧
(
(t1 ∨ f1) ∧ b̄
 ∧ bω

)) � t′.b〈tf〉+f ′.f̄ (10)

We run (R-Pre) once more for the full a-output. Now two names are bound
(bn(a(νt′f ′)) = {t′, f ′}), and we only need the third and fourth factors:

Remote behaviour
(
t′: (), f ′: (); (t̄′A ∨ f̄ ′

A)� aAR � t′1 ∨ f ′1
)

and

Continuation
(
Σ; (t̄A ∨ f̄A)� (bAR ∧ t̄′A ∧ aA)∨ (f̄A� (f̄ ′

A ∧ aA)) �
(t1 ∨ f1) ∧ b̄
 ∧ bω ∧ f̄0 ∧ f ′0 ∧ f̄ ′1).

Responsive Choice in Mobile Processes 147

The � operator now does some dependency reduction (Definition 1 on
page 141): The remote behaviour provides (t̄′A � aAR) ∨ (f̄ ′

A � aAR), and the
continuation (t̄A ∨ f̄A)� t′A ∨ (f̄A� f ′

A). Remember that (pA� γ) ∧ (α� pA) ↪→
(pA� γ) ∧α� (pA ∨γ), so the two dependency statements in the continuation be-
come respectively (t̄A∨f̄A)�(t′A∨aAR) and f̄A�(f ′

A∨aAR). Therefore composing
remote behaviour and continuation and binding (dropping) t′ and f ′ yields:(

a : Bool, t : (), f : (); (t̄A ∨ f̄A)� (bAR ∧ aAR) ∨ f̄A� aAR �
aω ∧ (t1 ∨ f1)

) � a(νt′f ′).(t′.b〈tf〉+f ′.f̄) (11)

Subject responsiveness. A port is responsive if it provides all resources given in
the channel type, which is what the last statement in the (R-Pre) rule states.
For r(tf), this is written rR � (t̄A ∨ f̄A), where the right hand side is just (2)
from page 139 with t and f replacing 1 and 2. Composing with (11) reduces the
dependency chain and we obtain rR� (bAR ∧ aAR), as required.

The type system sketched above has two important properties. It agrees with
the transition operator on the type of a process after a transition. . .

Proposition 1 (Subject Reduction). (Γ ; P)
μ−−→ (Γ μ; P ′) implies ∃Γ ′ s.t.

Γ ′ � Γ μ and Γ ′ � P ′.

. . . and decidable typability implies undecidable correctness.

Proposition 2 (Type Soundness). If Γ � P then Γ |= P .

5 Related Works

Acciai and Boreale’s work on Responsiveness [1] (essentially our activeness, ex-
cept that they work in a reduction-based setting, while we have to take the
environment into account) addresses concerns very close to ours. It does not
support choice or conditional properties, as it uses numerical levels to track de-
pendencies, but presents an extension for recursive processes, in that it permits
handling unbounded recursion such as a “factorial” function. Our dependency
analysis would reject such a process, as the recursive call would create a depen-
dency fR�fR, that reduces to fR�⊥. We conjecture that “delayed dependencies”
[6] would permit integrating their recursion analysis with our work.

Kobayashi’s Livelock-Freedom Type System (implemented as TyPiCal [8,9]),
does a very fine analysis of channel usages. Instead of counting how many times
a port may be used, they permit arbitrary channel usages that describe using
a CCS-like language in what way and order the two ports of a channel may be
used. This permits describing usages such as “every input must be followed by
an output”. Using numerical levels, basic dependency relations can be forced
between elements of the usages of different channels. This prevents encoding of
selection and branching as it amounts to having no “∨” in behavioural state-
ments, but permits analysing other usage patterns such as semaphores, which
the present work would dismiss as unreliable �-multiplicities.

148 M. Gamboni and A. Ravara

Kobayashi and Sangiorgi’s Hybrid Type System for lock-freedom [10] combines
(arbitrary) deadlock, termination and confluence type systems on sub-processes
of the one being analysed (thereby permitting analysis of globally divergent
processes). This work uses typed transitions reminiscent of ours, and their “ro-
bust” properties are analogous to our semantics permitting arbitrary transi-
tion sequences μ̃i. Channel usages are like those used by Kobayashi in previous
works [8,9], with the same expressive power and limitations. The typing rules
discard those processes that rely on the environment in order to fulfil their obli-
gation. Hence well-typed processes are lock-free without making any assumption
on the environment. Advanced termination type systems such as those proposed
by Deng and Sangiorgi [4] permit this hybrid system to deal with complex re-
cursive functions like tree traversal.

The three following papers have a generic approach, as opposed to the pre-
vious ones (and the present paper) that are aimed at specific properties. They
have to be instantiated with the desired property, expressed in various ways.

Kobayashi’s Generic Type System [7] is a general purpose type system that
can be instantiated with a subtyping relation and a consistency condition on
types, resulting in type systems for various safety properties (unlike activeness
which is a liveness property). Types are CCS-like abstractions of the process, and
the consistency condition verifies that the type enjoys the desired property. Its
types use “+” in essentially the same sense as we do, and “&” corresponds pre-
cisely to our ∨. The paper includes as examples of instantiations, arity-mismatch
checking, race-freedom and deadlock-freedom type systems. However, simply by
providing a subtyping relation and a consistency predicate one does not get the
desired results “for free”. It is still necessary to prove several technical lemmas.

Caires and Vieira’s Spatial Logic Model Checker [3] checks processes for a wide
range of properties, expressed by expressions in a spatial logic. Activeness of a
port p can be written μX.(〈p〉∨��X). Responsiveness of a port depends on the
channel type, but it should be possible to give an inductive translation of channel
types to modal formulæ corresponding to responsiveness on it. The selection
connective ∨ is also present, with the same meaning. There is no direct equivalent
of � , so conditional properties need to be encoded by modifying the activeness
formulæ, which may become too complex with dependencies on responsiveness
as in rR�(aAR∧bAR) (Section 4). Both its strengths and limitations come from it
being a model checker. On the one hand, it takes logical formulæ in input rather
than constructing them, it has a large complexity due to exhaustively exploring
the state space, and doesn’t terminate when given unbounded processes (our
type system is polynomial in the process size and always terminates). On the
other hand it is complete for bounded processes, and recognises activeness in
cases deemed unsafe by our system due to over-approximation.

Acciai and Boreale’s Spatial Type System [2] combines ideas from Kobayashi’s
Generic Type System (types abstract the behaviour of processes) and Spatial
Logic, by performing model checking with spatial formulæ on the types rather
than on the processes. This results in a generic type system able to characterise
liveness properties such as activeness and supporting choice, both through the

Responsive Choice in Mobile Processes 149

process constructor + and logical connective ∨. It is parametrised by “shallow”
(without direct access to the object parts of transitions) logical formulæ, that
it verifies using model-checking. Being based on model checking, it suffers from
the same limitations as the previous work, in terms of computation complex-
ity, and difficulty of expressing conditional properties or responsiveness (again,
“responsiveness” in that paper corresponds to our “activeness”). On the other
hand, restricting it to shallow logic formulæ allows working on the abstracted
process, making it more efficient than a fully general model checker. Like the
previous work and unlike the Generic Type System, it doesn’t require proving
soundness of a consistency predicate, as it is based on a fixed formula language.

6 Conclusion

We described a type notation and semantics that combine statements about live-
ness properties (sA and pR), choice (through branching (p + q)A and selection
Δ∨Δ) and conditional properties (Δ�Θ). Then the type system outlined in Sec-
tion 4 is able, given a process P , channel types and optionally port multiplicities,
to construct a process type whose local component ΞL contains all information
the type system was able to gather about P ’s behaviour. As the type system is
sound and decidable, it is necessarily incomplete, but still powerful enough to
recognise activeness and responsiveness in many important applications such as
data representation or conversation-based programming. We chose to focus on
choice itself, leaving out features like recursivity [1] subtyping [13], and complex
channel usages such as locks [8], well explored before in a choice-less context.

References

1. Acciai, L., Boreale, M.: Responsiveness in process calculi. Theoretical Computer

Science 409(1), 59–93 (2008)

2. Acciai, L., Boreale, M.: Spatial and behavioral types in the pi-calculus. In: van

Breugel, F., Chechik, M. (eds.) CONCUR 2008. LNCS, vol. 5201, pp. 372–386.

Springer, Heidelberg (2008)

3. Caires, L.: Behavioral and spatial observations in a logic for the π-calculus. In:

Walukiewicz, I. (ed.) FOSSACS 2004. LNCS, vol. 2987, pp. 72–89. Springer, Hei-

delberg (2004)

4. Deng, Y., Sangiorgi, D.: Ensuring termination by typability. Information and Com-

putation 204(7), 1045–1082 (2006)

5. Gamboni, M., Ravara, A.: Activeness and responsiveness in mobile pro-

cesses. In: 7th Conference on Telecommunications, pp. 429–432. Instituto de

TelecomunicaÇões (2009)

6. Gamboni, M., Ravara, A.: Responsive choice in process calculi. Technical report,

SQIG — IT and IST, UTL Portugal (2009), http://gamboni.org/i.pdf

7. Igarashi, A., Kobayashi, N.: A generic type system for the Pi-calculus. ACM SIG-

PLAN Notices 36(3), 128–141 (2001)

8. Kobayashi, N.: A type system for lock-free processes. Information and Computa-

tion 177(2), 122–159 (2002)

http://gamboni.org/i.pdf

150 M. Gamboni and A. Ravara

9. Kobayashi, N.: Typical 1.6.2 (2008)

10. Kobayashi, N., Sangiorgi, D.: A hybrid type system for lock-freedom of mobile

processes. In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 80–93.

Springer, Heidelberg (2008)

11. Milner, R.: The polyadic π-calculus: A tutorial. In: Logic and Algebra of Specifi-

cation, Proceedings of the International NATO Summer School (Marktoberdorf,

Germany, 1991). NATO ASI Series F, vol. 94, Springer, Heidelberg (1993)

12. Milner, R., Parrow, J., Walker, D.: A calculus of mobile processes, i and ii. Infor-

mation and Computation 100(1), 1–77 (1992)

13. Pierce, B.C., Sangiorgi, D.: Typing and subtyping for mobile processes. In: Pro-

ceedings of LICS 1993, pp. 376–385. IEEE Computer Society, Los Alamitos (1993)

14. Sangiorgi, D.: The name discipline of uniform receptiveness. Theoretical Computer

Science 221(1-2), 457–493 (1999)

15. Sangiorgi, D., Walker, D.: PI-Calculus: A Theory of Mobile Processes. Cambridge

University Press, Cambridge (2001)

Responsive Choice in Mobile Processes 151

A Labelled Transition System

The labelled transition system is inductively defined by the following rules.
Labels, ranged over by μ, are τ , input a(x̃) and output (ν z̃ : σ̃) a〈x̃〉 where
a �∈ z̃ ⊆ x̃.

−
a〈x̃〉.P a〈x̃〉−−−−→ P

(Out)
−

a(ỹ).P
a(x̃)−−−−→ P{x̃/̃y} (Inp)

P
(νỹ:θ̃) a〈x̃〉−−−−−−−−−→ Q z ∈ x̃ \ ({a} ∪ ỹ)

(νz : σ)P
(νz:σ,ỹ:θ̃) a〈x̃〉−−−−−−−−−−−−→ Q

(Open)

P
μ−−→ P ′

!P
μ−−→ P ′ | !P

(Rep)
P

μ−−→ Q z �∈ n(μ)
(νz : σ)P

μ−−→ (νz : σ)Q
(New)

P
μ−−→ P ′ bn(μ) ∩ fn(Q) = ∅

P | Q μ−−→ P ′ | Q Q | P μ−−→ Q | P ′ (Par)

P
(νz̃:σ̃) a〈x̃〉−−−−−−−−−→ P ′ Q

a(x̃)−−−−→ Q′ z̃ ∩ fn(Q) = ∅

P | Q τ−−→ (ν z̃ : σ̃) (P ′ | Q′)
Q | P τ−−→ (ν z̃ : σ̃) (Q′ | P ′)

(Com)

P
μ−−→ P ′

P+Q
μ−−→ P ′ Q+P

μ−−→ P ′ (Sum)

P ≡α P ′ P ′ μ−−→ Q′ Q′ ≡α Q

P
μ−−→ Q

(Cong)

B Weakening on behavioural statements

Definition 3 (Weakening Relation).
Relation � is the smallest preorder defined by the following rules, where ∼= is

its symmetric closure.

1. On behavioural statements or process types (ranged over by η):
– η1 ∧ η2 � η1 � η1 ∨ η2, and ⊥�η��. η ∧ (η1 ∨ η2) ∼= (η ∧ η1) ∨ (η ∧ η2).
– ∧ and ∨ are commutative, associative and idempotent, up to ∼=.
– If η1 � η2 then η ∧ η1 � η ∧ η2 and η ∨ η1 � η ∨ η2.
– If η1

∼= η2 then γ � η1
∼= γ � η2, (η � η1) ∼= (η � η2) and (η1 � η) ∼=

(η2 � η).

152 M. Gamboni and A. Ravara

2. On multiplicities, m1 � m2 and pm1 � pm2 if m1 = 0 or m2 ∈ {m1, �}.
Also, p
 ∼= �.

3. On dependency statements: (γ�ε1)∧(γ�ε2) ∼= γ� (ε1 ∨ε2), (γ�ε1)∨(γ�ε2) ∼=
γ� (ε1 ∧ ε2) and γ� ⊥ ∼= �

C Type System

The type system is constituted by the following rules. (R-Pre) is detailed in
Section 4, and the reader is invited to have a look at the technical report for a
detailed discussion of the notation and operators used in the other rules.

−
(∅; � � �) � 0

(R-Nil)

∀i : Γi � Pi

Γ1 � Γ2 � P1 | P2
(R-Par)

Γ � P Γ (x) = σ

(νx)Γ � (νx : σ)P
(R-Res)

∀i :
(
sub(Gi) = {pi}, (Σi; ΞLi � ΞEi) � Gi.Pi

)
ΞE � ∧

i ΞEi(
ΞE has concurrent environment pi′

) ⇒ ε = ⊥(∧
i Σi; (

∑
i pi)A � ε ∧ ∨

i ΞLi � ΞE

) � ∑
i Gi.Pi

(R-Sum)

Γ � P sub(G) = p obj(G) = x̃
(#(G) = 1 and m′ = �) ⇒ ε = ⊥(

p : σ; � pm ∧ p̄m′
)

�(
; p#(G)

A � ε �
)

�
!if #(G) = ω (νbn(G))

(
Γ � p̄A �

σ[x̃]� p̄AR �
(; pR� σ[x̃] �)

) � G.P

(R-Pre)

In the rule (R-Sum), a process type having no “concurrent environment pi′”
prevents a third-party process to attempt selecting more than one branch of the
sum, and, by contraposition, guarantees that any attempt to select a branch of
the sum (by communicating with its guard) will succeed, which is what activeness
of the branching means.

A Model of Evolvable Components�

Fabrizio Montesi and Davide Sangiorgi

Focus Research Team, Inria/University of Bologna

Abstract. We present a model of components following the process cal-

culus approach. The main problem was isolating primitives that capture

the relevant concepts of component-based systems. The key features of

the calculus are: a hierarchical structure of components; a prominent

role to input/output interfaces; the possibility of stopping and capturing

components; a mechanism of channel interactions, orthogonal to the ac-

tivity of components, which may produce tunneling effects that bypass

the component hierarchy.

We present the calculus, explain the syntax, formulate its operational

semantics and a basic type system. We show a number of examples of

use of the calculus, with particular emphasis to common evolvability

patterns for components.

1 Introduction

Complex software systems, in particular distributed systems, are often being
thought and designed as structured composition of computational units referred
to as components. These components are supposed to interact with each other
following some predefined patterns or protocols. The notion of component is
widely used in industry but there is no single answer to the question of what
is, exactly, a software component. In industry, the following informal definition,
from Szyperski et al. [SGM02], is often used: “A software component is a unit of
composition with contractually specified interfaces and explicit context depen-
dencies. An interface is a set of named operations that can be invoked by clients.
Context dependencies are specifications of what the deployment environment
needs to provide, such that the components can function.” Key ingredients of a
component are therefore their input and output interfaces. Moreover, to promote
composition, the structure of a component system is often hierarchical.

In this paper we study models of components following the process calcu-
lus approach. Process calculi have been successfully employed in the modeling,
analysis, and verification of concurrent and distributed systems. In recent years,
proposals of calculi for distributed systems have been put forward with explicit
notions of location, or site. While locations may be suggestive components, the
differences between the two concepts remain noticeable. In particular locations
do not have explicit input and output interfaces.

An important issue in complex software system is evolvability. The needs and
the requirements on a system change over time. This may happen because the
� Work supported by the EU project “Hats”.

M. Wirsing, M. Hofmann, and A. Rauschmayer (Eds.): TGC 2010, LNCS 6084, pp. 153–171, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

154 F. Montesi and D. Sangiorgi

original specification was incomplete or ambiguous, or because new needs arise
that had not been predicted at design time. As designing and deploying a system
is costly, it is important that the system be capable of adapting itself to changes in
the surrounding environment. Evolvability was another major target in this work.

The challenge in the formalisation of a calculus of components was to isolate
key aspects of component-based systems and reflect these into specific constructs.
The main features that we have decided to retain are: a hierarchical structure
of components; a prominent role to input/output interfaces; the possibility of
stopping and capturing components to produce dynamicity; a mechanism of
channel interactions, orthogonal to the activity of components, with tunneling
effects that bypass the component hierarchy. Interactions along channels may
be triggered when a method in the input interface of a component is invoked.
Channels can be used to implement sessions of interactions between components.

Components are stopped by means of a construct, extract, reminiscent of the
passivation operator of calculi such as Kell [SS05] and Homer [HGB04, BHG06].
The extract operator is the only one that permits modifications of the structure
of components, which is otherwise static.

In the paper we first present the calculus and explain the syntax. Then we
formulate its operational semantics. We found it convenient to formulate the
component activity by means of a reduction semantics, and channel interaction
by means of a labelled semantics. We equip the calculus with a basic type system
to avoid run-time errors. A number of examples of use of the calculus are pre-
sented. In particular, we show how various patterns of evolvability of components
are captured.

2 Syntax

Table 1 presents the syntax of the calculus, MECo (Model of Evolvable Compo-
nents). Components are the unit of composition. Each component has: an identity;
a set of input ports that represent the functionalities that the component offers to
the environment; a set of output ports that specify the dependencies of the com-
ponents, that is, what the deployment environment has to provide for the compo-
nents to function; an internal structure, itself containing components (which gives
the hierarchical structure). Thus the general form of a component is

a {i∈1..h mi = (x). Pi} [P]{ j∈1..k nj �→ fj } , (1)

where: a is the component identity; mi is an input port and mi = (x). Pi the
method implementing the port; nj is an output port and nj �→ fj a link specifying
the binding for the port; P is the internal structure of the component. Both the
mi’s and the nj ’s should all be distinct. The method bodies Pi may refer to
inner components (i.e., components inside P) as well as to the output ports
nj ’s. An output port of the component may be bound to the input port of a
sibling component or to an output port of the enclosing component. The set of
input ports form the input interface; the set of output ports form the output
interface.

A Model of Evolvable Components 155

Table 1. The syntax of the calculus

Input/output ports m,n
Unit value �

Names a, b, . . . , p, q . . . , r, s . . . , x, y

Method set I ::= m = (x).P, I method

| ∅ empty list

Link set O ::= m �→ f, O link

| ∅ empty list

Skeleton K ::= { I }[P]

Values v ::= p | K | �

Process P ::= P | P parallel comp.

| νp P restriction

| v w{O } component

| extract v as x in P passivation

| f v call

| v w.P channel output

| v(x).P channel input

| 0 nil

Call subject f ::= v m method selection

| m port

The activity of components is local: when the body of the method of a compo-
nent is executed, calls may only be issued to inner components or to components
that are reachable via output port bindings. In particular, the environment sur-
rounding a component a may call a but not components internal to a. Such com-
ponents may only be reached if some input port of a forwards messages to them.

Other than through component methods, interactions can take place through
channels. When a component calls another one, the first may pass a private
channel to the second; this channel may be used for further interactions, thus
creating sessions of interaction between the two components (other components
may actually get involved, if the channel is sent around). Creation and commu-
nication of channels may have tunneling effects: for instance a component a may
call a component b and this may forward the message to some inner component
c. If the message contains a channel, then a and c may use the channel for direct
interactions.

In a link m �→ f , the binding f for the output port m can either be of the form
a n, meaning that m is bound to the input port n of the sibling component a, or
n, meaning that m is bound to the output port n of the enclosing component.

On the terminology, we should stress that an input interface refers to the
signature of the methods of a components, excluding their actual implementation
as a method set. Similarly for output interface with respect to link sets.

156 F. Montesi and D. Sangiorgi

In (1), the body [P] of the component together with its set of methods form
its skeleton. The extract construct permits to stop a component and extract its
skeleton. This skeleton may then be manipulated, as a first-class value. Skeleton
extraction is a form of passivation as found in calculi such as Kell and Homer,
and is the basis for expressing modifications of components and thus modelling
evolvability.

The set of values includes, besides skeletons, also component identities, chan-
nels, and the unit value � (other basic values such as integers and booleans could
be added). In contrast, input and output ports are not values; this because the
ports associated to a component are specified by the type of the component.
Similarly, method and link sets are not values; this is both for simplicity in the
calculus, and because it is unclear how useful this extensions would be (given
that the calculus is typed). We discuss types in the next section.

The syntax does not distinguish between channels and component identities:
they are all names. The distinction will be made by the typing. However, in
examples and explanations, a, b will be component identities and r, s channels.
Similarly, as in the π-calculus, we do not have a separate syntactic class for
variables. In Table 1, in the definitions of method, channel input, and extract,
variable x is bound in P . Similarly, a restriction νpP binds the free occurrences
of p in P . The definitions of free (fn) and bound name (bn) of a term are as
expected. We use i, j, h, k for integers.

We require that a method p = (x). P has no free channels: the only channels
that the method can use are those provided by the callee, and those that are
created in P itself. This constraint will be enforced by the type system.

The forwarding action of output ports makes calls to components naturally
asynchronous; hence the call construct, f v, has no continuation. In contrast,
channel interaction could be asynchronous or synchronous; we have preferred it
synchronous because it fits well with the use of channels for session interactions.

3 Operational Semantics

The operational meaning of a process calculus is usually explained either by
means of a reduction semantics, or by means of a labelled transition semantics.
A reduction semantics uses the auxiliary relation of structural congruence, with
which the participants of an interaction are brought into contiguous positions.
This makes it possible to express interaction by means of simple term-rewriting
rules. In a labelled transition semantics, by contrast, the rules are given in a
purely SOS style, without a prior rewriting of the structure of terms. The par-
ticipants of an interaction therefore need not be contiguous. This makes it nec-
essary to define also transitions that describe the potential interaction of a term
with its environment (the input and output actions of CCS and π-calculus).

For our calculus, we explain component activities (use of input and output
ports, passivation) by means of a reduction semantics, whereas we explain chan-
nel interaction by means of a labelled semantics. The reason for the separa-
tion is that component activity is local, whereas channel interaction is global

A Model of Evolvable Components 157

(the component structure is transparent to them). A reduction semantics makes
it possible to express component activity in a simple and neat way. A reduction
semantics for channel interaction, in contrast, would be more complex; due to
tunneling, interacting particles could be located far away in the structure of a
term. To bring such particles into contiguous positions we would have to al-
low, in the structural congruence, the possibility of moving them in and out of
a component. This is however unsound in presence of passivation (unsound in
the sense that one could derive undesired reductions). For the same reasons, in
structural congruence restrictions cannot escape the boundaries of components.

We write P −→R P ′ for an internal step of the process P that is derived using
the reduction semantics, and that therefore represents a component activity;
and P

τ−→ P ′ for an internal step derived using the labeled semantics, and that
therefore represents a channel interaction. Finally, −→ is the unions of the two
relations −→R and τ−→, and =⇒ is the reflexive and transitive closure of −→.
Relation −→R and τ−→ are explained in the following two sections. We assume
that at any point bound names can be renamed (alpha-conversion).

3.1 Component Activity

Structural congruence As explained above, the presence of passivation makes
the component boundaries rigid for structural congruence. The structural con-
gruence relation is written ≡, and defined as the smallest congruence satisfying
the following rules:

P1 | P2 ≡ P2 | P1 P1 | (P2 | P3) ≡ (P1 | P2) | P3

P | νp Q ≡ νp (P | Q) if p �∈ fn(P) νp νq P ≡ νq νp P

Reduction rules. There are three reduction axioms. The first axiom shows a call
to an input port. The second axiom explains the forwarding action of an output
port. The third axiom is a skeleton extraction. In calculi with passivation, some
care is needed when extruding restricted names out of “boxes” that may be
passivated: the extrusion takes place only when messages containing that name
are sent. This corresponds to the extrusion of names p̃ in rule R-Oport below.

[R − Iport]
m = (x). Q ∈ I

a m v | a { I }[P]{ O } −→R a { I }[P | Q{v/x}]{ O }

[R − Oport]
m �→ f ∈ O p̃ ⊆ fn(v)

a { I }[νp̃ (P | m v)]{ O } −→R νp̃ (a { I }[P]{ O } | f v)

[R − extract]
a K{ O } | extract a as x in P −→R P{K/x}

Now the inference rules for reduction. Reduction can occur within a parallel
composition, a restriction, or a component boundary. The final rule introduces
structural congruence.

158 F. Montesi and D. Sangiorgi

[R − par]
P −→R P ′

P | Q −→R P ′ | Q

[R − res]
P −→R P ′

νp P −→R νp P ′

[R − comp]
P −→R P ′

a { I }[P]{ O } −→R a { I }[P ′]{ O }

[R − equiv]
P ≡ P ′ −→R P ′′ ≡ P ′′′

P −→R P ′′′

3.2 Channel Interaction

Communications along channels is explained with an LTS. The rules are en-
tirely standard, following the SOS of message-passing calculi such as π-calculus
and Higher-Order π-calculus, as channel communications are independent of the
component hierarchy. The label (or action) of a transition can be τ , rv (input),
and (νp̃)r v (output). In the output label, p̃ are private names, appearing free
in v, that are being extruded. We use μ to range over actions. The bound names
of an action μ, written bn(μ), is the empty set for an input or silent action, they
are p̃ for an output action (νp̃)r v. We omit the definitions of free names and
names of μ, respectively written fn(μ) and n(μ), which are the expected ones.
We have omitted the symmetric of L-parR and L-comR.

[L − out]
r v. P r v−−→ P

[L − inp]
r(x). P rv−−→ P{v/x}

[L − parR]
P

μ−→ P ′ bn(μ) ∩ fn(Q) = ∅
P | Q

μ−→ P ′ | Q

[L − comR]
P

rv−−→ P ′ Q
(νp̃)r v−−−−−→ Q′ p̃ ∩ fn(P) = ∅

P | Q
τ−→ νp̃ (P ′ | Q′)

[L − res]
P

μ−→ P ′ p �∈ n(μ)

νp P
μ−→ νp P ′

[L − open]
P

(νp̃)r v−−−−−→ P ′ p �= r p ∈ fn(v) − p̃

νp P
(νp,p̃)r v−−−−−−→ νp P ′

[L − comp]
P

μ−→ P ′ bn(μ) ∩ (a ∪ fn(I, O)) = ∅
a { I }[P]{ O } μ−→ a { I }[P ′]{ O }

A Model of Evolvable Components 159

4 Types

We comment the form of types with which the terms of the calculus are typed.
The syntax is in Table 2. An input (or output) interface is a set of ports, say
m1. . mh. The type [j∈1..h mj : Tj] of such an interface shows what are the ports
and, for each of them, say mj, the type Tj of the values that may be sent along
mj . We use A, B to range over interface types.

A skeleton has type A�B, in which A is the type of the input interface of the
skeleton, and B the type of its output interface. This means that a component
using such skeleton offers the functionalities specified in A, and requires binders
for the output ports as specified in B. Using H for a skeleton type, "H is then
the type of the name of a component whose skeleton has type H .

We also assign a skeleton type to sets of methods or links; in this case a type
A�B means that the methods or links implement an (input or output) interface of
type A and their body use output ports in the interface B. The type of a process
is an interface type; it tells us the use of output ports made from the process.

The assignment of an output interface type A to a term means that the term
uses output ports in A; it need not use all of them, though. This implicitly
introduces a form of subtyping. We deliberately avoid however subtyping judge-
ments. As in object-oriented languages, so here subtyping brings in subtle issues,
outside the scope of the present paper.

The type
 T for channels is as in π-calculus: T is the type of the values that
may be carried along that channel.

Table 2. The syntax of types

Value types T ::= � T channel type

| H skeleton type

| 	H component id. type

| unit unit type

Interface type A,B ::= [j∈1..h mj : Tj]

Skeleton type H ::= A � B

4.1 Typing

Typing environments, ranged over by Γ , are partial functions from names to
value types; dom(Γ) is the domain of Γ , i.e., the set of names on which Γ is
defined. A typing judgement Γ � P : A says that under the assumptions in Γ ,
process P has an output interface type A. Similarly for other syntactic objects
of the calculus. In the typing rules:

160 F. Montesi and D. Sangiorgi

– we write m : T ∈ A if the type A has a component m : T (that is, A is
[j∈1..h mj : Tj] and, for some j, m = mj and T = Tj);

– we write Γ (a m) = T if a is typed in Γ as a component identity with an input
interface in which there is a method m of type T ; that is, Γ (a) = "(A � B)
and m : T ∈ A.

Typing rules for methods, links, and values. In rule T-method-set, a skeleton
type A�B is assigned to a set of methods. The rule checks that the set implements
the input interface A and that the body of each method only needs output ports
in B. In the premise of the rule, Γ/ch indicates the removal from Γ of all names
with a channel type. This constraint ensures us that the methods of a component
have no free channels.

Rule T-link-set, for typing a set of links, is similar. A case distinction is made
in the premise of the rule for the two possible forms of a link (binding to an out-
put port or to the input port of another component). In T-skeleton, for typing a
skeleton, we check that the skeleton offers the correct input interface A, and that
both the methods and the body of the skeleton use output ports in B.

T − method− set
∀j Γ/ch, xj : Tj � Pj : B

Γ � {j∈1..h mj = (xj). Pj} : [j∈1..h mj : Tj] � B

T − link − set
∀j either fj =n and n : Tj ∈ B, or fj = p n and Γ (p n)=Tj

Γ � {j∈1..h mj �→ fj} : [j∈i..h mj : Tj] � B

T − unit
Γ � � : unit

T − skeleton
Γ � I : A � B Γ � P : B

Γ � { I }[P] : A � B

T − names
Γ (p) = T

Γ � p : T

Typing rules for processes. The interesting rules for processes are those for com-
ponents and for the extract construct. In T-comp, we check that the types of
the component identity and of the skeleton agree, and that the skeleton can be
composed with the links. In T-extract, we type the body P under the typing
extended with the skeleton type for the variable x derived from the type of the
component identity p. The remaining rules are the usual one of process calculi.

T − comp
Γ (p) = "(A � B′) Γ � v : A � B′ Γ � O : B′ � B

Γ � p v{ O } : B

A Model of Evolvable Components 161

T − extract
Γ (p) = "H Γ, x : H � P : B

Γ � extract p as x in P : B

T − par
Γ � Pi : B i = 1, 2

Γ � P1 | P2 : B

T − res1
Γ, p : "H � P : B

Γ � νp P : B

T − res2
Γ, p :
 T � P : B

Γ � νp P : B

T − call− Iport
Γ (p m) = T Γ � v : T

Γ � p m v : B

T − call− Oport
m : T ∈ B Γ � v : T

Γ � m v : B

T − out
Γ (p) =
 T Γ � v : T Γ � P : B

Γ � p v. P : B

T − inp
Γ (p) =
 T Γ, x : T � P : B

Γ � p(x). P : B

T − nil
Γ � 0 : B

Suppose Γ � P : B. Then P is closed if the type of each name in Γ is either a
channel type or a component identity type.

4.2 Soundness

Lemma 1 (Weakening). If Γ � P : A and p �∈ dom(Γ) then also Γ, p : T �
P : A, for any T .

The fundamental theorem for typing is Subject Reduction. It is stated for ar-
bitrary processes, though it would be reasonable to admit reductions only on
closed processes.

Theorem 1 (Subject Reduction). If Γ � P : A and P −→P ′, then Γ�P ′ : A.

The proof of the theorem is along the lines of Subject Reduction theorems in
process calculi. Thus one first establishes invariance for typing under structural
congruence.

In the calculus, there are four kinds of values: component identities, channels,
skeletons, unit. Each of them has a specific role, and a use in wrong places may
produce run-time errors. Typing guarantees absence of run-time errors. This is
proved by defining a tagged semantics of the calculus as follows. Given a well-
typed process P and a typing derivation for it, we tag each occurrence of a

162 F. Montesi and D. Sangiorgi

value in P with one of the symbols
, ", �, unit, depending on whether in the
typing derivation the value is assigned a channel type, a component identity
type, a skeleton type, or the unit type. The operational semantics of tagged
processes is defined as that of ordinary processes except that the following rules
are added. They indicate the appearance of a run-time error by the introduction
of the special process wrong. The rules are added to the reduction semantics
(they could have been equally placed in the labeled semantics). There is one
rule for each process construct making use of values. We use γ, δ to range over

, ", �, unit.

– vγ wδ{ O } −→R wrong, if γ �= " and δ �= �;
– extract vγ as xδ in P −→R wrong, if γ �= " and δ �= �;
– vγ m wδ −→R wrong, if γ �= ";
– vγ wδ. P −→R wrong, if γ �=
;
– vγ(xδ). P −→R wrong, if γ �=
.

We then say that a well-typed process P has a run-time error if there is a typing
derivation for P and a tagging R of P under the typing derivation such that
R =⇒ R′ for some tagged R′ containing wrong. Exploiting type information
and a correspondence between the two semantics (that in turn, uses Subject
Reduction and tag preservation under substitutions), we prove that no run-time
error can occur.

Theorem 2. If P is well-typed then P has no run-time error.

Other forms of error that typing avoids are: emission on an output port that is
not bound, that is, the appearance of a process

a { I }[νp̃ (P | m v)]{ O }
where O contains no link at m; calls to a component that exists but does not
have the expected method, that is, the appearance of a process

a m v | a { I }[P]{ O }
where I contains no m method.

The absence of such run-time errors can be formalised similarly to above,
using the special process wrong; in this case, however, we do not need tagged
processes, as the rules producing wrong can be inserted directly into the ordinary
operational semantics.

The type system can be refined in various ways, following existing type sys-
tems for process calculi. In particular, using linearity, one can enforce unicity of
component identities, which may often be a desirable feature.

5 Examples

In this section we discuss some simple examples. The first is about mutable
storage, the others are evolvability-related patterns. The examples show the

A Model of Evolvable Components 163

various constructs of the language, including tunneling on channels. They also
show how to implement atomicity constrains on methods via a lock mechanism.
We present a larger example in Section A. We omit the typing judgements, as
they are very simple. We write r. P and r. P for inputs and outputs of unit type;
we omit trailing 0, e.g., writing r v for r v.0.

5.1 Store

Cell〈v, P 〉 is a memory cell that stores the value v. It is realised as a component,
called cell, with a single method read, whose parameter is a channel on which the
stored value is sent. As we shall see, it is also useful to have a second parameter
for the cell, as a process P that runs inside the cell:

Cell〈v, P 〉 def= cell { read = (r). r v }[P]{ ∅ }
We can use this component to implement a mutable variable Var〈v〉. This be-
comes a component var, with methods get and set for reading and changing the
value stored, and with intial value v. Return channels in the methods implement
a rendez-vous synchronisation with the callees.

Var〈v〉 def= var{ get = (r). cell read r,
set = (y, s). extract cell as x in (s | Cell〈y, νa a x{ ∅ }〉) }
[Cell〈v,0〉] {∅}

The skeleton x resulting from the extract of cell is run inside the new cell because
x may contain uncompleted calls to the read method. Note the tunneling on the
get method: the callee of the var component receives the answer directly from
the inner cell component. As an example, we show an evolution of a system
composed by Var〈5〉, a reader, and a writer; we abbreviate the methods of var
as I, and those of cell as I ′; we omit empty output interfaces.

(νr, s)(var get r. r(x). P
| var set 〈3, s〉. s. Q)
| var { I }[Cell〈5,0〉]

−→−→ (νr, s)(r(x). P
| var set 〈3, s〉. s. Q
| var { I }[Cell〈5, r 5〉])

−→−→ (νr, s)(r(x). P | s. Q
| var { I }[s | Cell〈3, νa a { I ′ }[r 5]〉])

−→−→ (νr, s)(P{5/x} | Q
| var { I }[Cell〈3, νa a { I ′ }[0]〉])

P{5/x} | Q
| var { I }[Cell〈3,0〉]{ ∅ }

where # is barbed congruence [SW01], defined in the expected way, and obtained
by application of the garbage-collection law νa a{I }[0]{O} # 0, and assuming
r, s not free in P and Q.

164 F. Montesi and D. Sangiorgi

Next we implement a counter, initially set to v; it offers methods for reading
and incrementing its internal value. There is an atomicity issue now: multiple
executions of the increment method should not be allowed as they might interfere
with each other. This synchronisation is achieved by means of a lock. We use,
as abbreviations, remove a . P for extract a as x in P if x not free in P , and
νr a m r. r. P for νr (a m r | r. P).

Counter〈v〉 def
=

counter{ read = (r). var get r,
incr = (s). remove lock .νr var get r. r(x).νr′ var set 〈x+ 1, r′〉. r′. (s | Lock) }

[Var〈v〉 | Lock]
{ ∅ }

and with Lock
def= lock { ∅ }[0]{ ∅ }. The use of locks could also be forced on the

read method.
A different design for the counter exploits var as an external (rather than

internal) component reachable via output ports oget and oset:

CAux
def
= counter{ read = (r). oget r,

incr = (s). remove lock .νr oget r. r(x).νr′ oset 〈x+ 1, r′〉. r′. (s | Lock) }
[Lock]
{ oget �→ var get, oset �→ var set }

and then the system is

Counter′〈v〉 def= ν var (CAux | Var〈v〉)

The difference between Counter〈v〉 and Counter′〈v〉 is similar to that between
interceptors and wrappers discussed in Section 5.3.

5.2 Rebinding

Rebinding is a tecnique for modifying the output port bindings of a component at
runtime. This is done by extracting the component and putting it into execution
with the new output port definitions. Below, the component is c, its current
output binders are O, and the new ones are O′.

c { I }[P]{ O } | extract c as x in c x{ O′ } −→ c { I }[P]{ O′ }

5.3 Interceptors and Wrappers

Both the interceptor and the wrapper patterns are about modifications of the
functionality of a given legacy component. The two techniques are similar in their
basic concepts but the structures resulting from their applications are different,
and this may affect the interactions with other components, as commented at
the end of the section.

A Model of Evolvable Components 165

Interceptors. There are two kinds of interceptors: input interceptors and out-
put interceptors. Input interceptors are used to adapt the input interface of the
legacy component by intercepting calls for it from other components, whereas
output interceptors intercept calls coming out of the output ports of the legacy
component. Below the legacy component is c{i∈1..hmi(x). Pi}[P]{j∈1..knj �→ fj}.

Input interceptors. The simplest input interceptor is the direct forwarder. It
exposes the same input interface as the legacy component and simply forwards
method calls to it. For this, the output port of the forwarder are mapped onto
the input ports of the legacy component:

a {i∈1..h mi = (x). ni x}[0]{ j∈1..h nj �→ c mj }

Direct forwarders can be used for making the same component available under
multiple identities. Input interceptors can also be used for exposing a different
interface; there are three possible cases: offering a new method (the system may
have more requirements than what the legacy component supports); hiding a
method (for encapsulation or security purposes); changing the behaviour of a
method. In the first two cases, and sometimes also in the third, the types of the
direct forwarder and of the legacy component are different.

Exposing a new method mh+1(x). Ph+1, where mh+1 was not in the input
interface of the legacy component, can be done by augmenting the interface of
the direct forwarder:

a {i∈1..h mi = (x). ni x, mh+1 = (x). Ph+1}[0]{ j∈1..h nj �→ c mj, Onew }

where Onew collects all the links necessary for the execution of Ph+1.
Hiding a method can be done by removing this, and its related link, from the

definition of the forwarder. The following is an example that hides method mh:

a {i∈1..h−1 mi = (x). ni x}[0]{ j∈1..h−1 nj �→ c mj }

The case in which the body of a method is modified is similar — we change the
body of such method in the definition of the forwarder.

Output interceptors. Output interceptors are supposed to capture outgoing calls
issued by the legacy component and then trigger some actions.

We consider a component a that relies on a mail server b for its functioning.
In particular, a makes use of the sendMail method of b in some of its method
bodies. This system is:

a {i∈1..h mi(x). Pi}[0]{ sendMail �→ b sendMail }
| b { sendMail = (x). PsendMail }[Q]{ O }

Now we want to log how many times a makes use of the sendMail functionality.
Doing this with an input interceptor could be hard, because we do not know,
a priori, how many times the execution of a method mi will cause sendMail

166 F. Montesi and D. Sangiorgi

to be invoked. Instead, we contruct an output interceptor c that is responsible
for executing process Plog whenever it receives a call for method sendMail and
we rebind component a so that its link for sendMail points to c. Process Plog

is executed together with a forwarding of the original sendMail request to the
mail server b. These modifications are realised by the extract construct below:

Sys
def
=

a {i∈1..h mi = (x).Pi}[0]{ sendMail �→ b sendMail }
| b { sendMail = (x).PsendMail }[Q]{O }
| extract a as x in (a x{ sendMail �→ c sendMail }

| c { sendMail = (x). (Plog | sendMail x) }[0]{ sendMail �→
b sendMail })

We have:

Sys −→ b { sendMail = (x).PsendMail }[Q]{ O }
| a {i∈1..h mi = (x).Pi}[0]{ sendMail
→ c sendMail }
| c { sendMail = (x). (Plog | sendMail x) }[0]{ sendMail
→ b sendMail }

Wrappers. While interceptors execute as siblings of the legacy component, a
wrapper captures the legacy component (the wrapped component) and executes
it as an inner component of another one (the wrapper), that is responsible for
offering a modified view of the wrapped component. Wrapping can be applied in
all the scenarios considered above with interceptors. For brevity, we only analyze
the case of addition a method to a component interface.

As usual, the given legacy component is LC def= c{i∈1..hmi = (x). Pi}[P]{ j∈1..k

nj �→ fj }. We want to use this component so to create a new one, called a, that
exposes an additional method mh+1(x). Ph+1. We do so by wrapping the legacy
component inside a new component a that implements the new method and for-
wards calls for the other methods to the legacy component:

WR
def= extract c as x in

a{i∈1..h mi(x). c mi x, mh+1 = (x). Ph+1}
[c x{ j∈1..k nj �→ n′

j }]
{j∈1..h n′

j �→ fj , Onew}
where Onew collects the output port binders necessary for the execution of Ph+1.
The wrapper defines, in its output ports, all the links needed by the wrapped
component, whereas the output ports of the wrapped component refer to the
wrapper for communicating with the outside world. We have:

LC | WR −→ a{i∈1..h mi = (x). c mi x, mh+1 = (x). Ph+1}
[c {i∈1..h mi = (x). Pi}[P]{ j∈1..k nj �→ n′

j }]
{j∈1..h n′

j �→ fj , Onew}

A Model of Evolvable Components 167

A client that invokes a at one of the “old” methods will have its message for-
warded to c; then the client will be able to start a dialogue directly with c,
exploiting the tunneling effect of channels.

Discussion. There are important differences between interceptors and wrappers
when adapting a legacy component. A wrapper has a tighter control on the legacy
component since only with the wrapper the legacy component becomes an inner
component. It can thus be captured by the wrapper with the extract operator.
Moreover, wrapping and wrapper components can be treated as a single unit.
For instance, in the wrapping example above, we can throw this unit away thus:

extract a as x in 0 | a { . . }[. .]{ . . } −→ 0

This is not possible with interceptors, as these are run in parallel with the legacy
components and therefore both components are reachable from the environment.

On the other hand, a wrapped legacy component is not anymore reachable
from the rest of the system other than through the wrapper itself, whereas with
interceptors the legacy component remains reachable by those components that
know its identity.

6 Conclusions and Extensions

We have presented a basic calculus of components, MECo, that tries to formalise
the notion of component and evolvability patterns for components. We have
experimented with a number of operators, especially related to adaptability and
evolvability: those retained for MECo seemed to us a reasonable compromise
between practical component needs (as in, e.g., Fractal component systems)
and conciseness. Key component concepts that we wished to have were input
and output interfaces, hierarchical structures, local interaction with possibile
tunneling sessions that bypass the hierarchy. On top of this, for evolvability,
MECo has a construct that allows one to stop a component and extract its
skeleton.

The study of MECo is, admittedly, in a preliminary stage; for instance, as
discussed below, typing is very rigid, and behavioural equivalences remain unex-
plored. We hope however that the work reported conveys the idea of component
that MECo tries to formalise, and that this may trigger further study.

The closest process calculi to ours are Kell [SS05] and Homer [HGB04, BHG06].
These are calculi of mobile distributed processes in which computational entities
may move in a dynamic hierarchy of locations. They have passivation opera-
tors that behave similarly to the extract of MECo. We may also see these
calculi as calculi of components, thinking of locations as component boundaries
(indeed, one of the main motivations behind Kell is to provide a model for Frac-
tal components [Fra]). The main differences between Kell/Homer and MECo
is the explicit use of input/output interfaces in MECo (input interfaces make
MECo components look like objects, in fact, more than Kell/Homer locations;

168 F. Montesi and D. Sangiorgi

but even in objects the notion of output interface is usually absent). Another
difference is the presence of channels in MECo; the resulting tunneling effects
are not possible in Kell or Homer where communication is local. The relations
of MECo with other process calculi with locations, e.g., Ambients [CG98] and
Seal [VC99], is weaker. The following are component models more loosely related
(in particular they are not process calculi): Barros et al. [BHM05], also inspired
by Fractal, model component behaviours as hierarchical synchronised transition
systems and a composite system as a product of these, with the goal of applying
model-checking techniques; Pucella [Puc02] proposes a form of typed λ-calculus
targeted to modeling execution aspects of Microsoft Component Object Model;
van Ommering et al. [vOvdLKM00] give an account of the architecture of Philips
Koala component systems; Larsen et al. [LNW06], building on earlier work by de
Alfaro and Henzinger [dAH01], study an interface language based on automata
that separates the behavioural assumptions and guarantees for a component
towards its environment.

Among the directions for future work, we are interested in exploring refine-
ment of the basic type system, especially subtyping. Ideas from object-oriented
languages should be useful here too, though output interfaces will require extra
care. This may also lead to refining the present channel interactions of MECo into
notions of session from Service-Oriented calculi, e.g., [CHY07, LMVR07, Vas09].

On another direction, we would like to examine stronger forms of run time
error, whereby if a m appears in a process, then one is ensured that a component
a capable of consuming the message exists. For this one would probably have
to record the set of components that a process needs for its execution. This is
non-trivial, as component identities may be communicated and components may
be passivated.

Another issue to study in MECo may be behavioural equivalence; for instance,
one may be able to establish behavioural properties on the evolvability patterns
of Section 5. For this, recent advances in bisimulation for higher-order process
calculi (e.g., [LSS09, SKS07, JR05]) should be useful.

MECo has been partly inspired by the Fractal component system [Fra]. Mod-
elling in MECo some of the applications built in Fractal should be useful both
to understand the expressiveness of MECo and to provide a formal description
of such applications.

Acknowledgements. We have benefited from discussions and many useful sug-
gestions from A. Poetzsch-Heffter, I. Lanese, A. Schmitt, and J.-B. Stefani.

References

[BHG06] Bundgaard, M., Hildebrandt, T.T., Godskesen, J.C.: A cps encoding

of name-passing in higher-order mobile embedded resources. Theor.

Comput. Sci. 356(3), 422–439 (2006)

[BHM05] Barros, T., Henrio, L., Madelaine, E.: Behavioural models for hierar-

chical components. In: Godefroid, P. (ed.) SPIN 2005. LNCS, vol. 3639,

pp. 154–168. Springer, Heidelberg (2005)

A Model of Evolvable Components 169

[CG98] Cardelli, L., Gordon, A.D.: Mobile ambients. In: Nivat, M. (ed.) FOS-

SACS 1998. LNCS, vol. 1378, pp. 140–155. Springer, Heidelberg (1998)

[CHY07] Carbone, M., Honda, K., Yoshida, N.: Structured communication-

centred programming for web services. In: De Nicola, R. (ed.) ESOP

2007. LNCS, vol. 4421, pp. 2–17. Springer, Heidelberg (2007)

[dAH01] de Alfaro, L., Henzinger, T.A.: Interface automata. In:

ESEC/SIGSOFT FSE, pp. 109–120 (2001)

[Fra] The fractal project, http://fractal.ow2.org
[HGB04] Hildebrandt, T., Godskesen, J.C., Bundgaard, M.: Bisimulation con-

gruences for homer, a calculus of higher order mobile embedded re-

sources. Technical Report ITU-TR-2004-52, IT University of Copen-

hagen (2004)

[JR05] Jeffrey, A., Rathke, J.: Contextual equivalence for higher-order pi-

calculus revisited. Logical Methods in Computer Science 1(1) (2005)

[LMVR07] Lanese, I., Martins, F., Vasconcelos, V.T., Ravara, A.: Disciplining or-

chestration and conversation in service-oriented computing. In: SEFM

2007, pp. 305–314. IEEE, Los Alamitos (2007)

[LNW06] Larsen, K.G., Nyman, U., Wasowski, A.: Interface input/output au-

tomata. In: Misra, J., Nipkow, T., Sekerinski, E. (eds.) FM 2006.

LNCS, vol. 4085, pp. 82–97. Springer, Heidelberg (2006)

[LSS09] Lenglet, S., Schmitt, A., Stefani, J.-B.: Howe’s method for calculi with

passivation. In: Bravetti, M., Zavattaro, G. (eds.) CONCUR 2009.

LNCS, vol. 5710, pp. 448–462. Springer, Heidelberg (2009)

[Puc02] Pucella, R.: Towards a formalization for com part i: the primitive cal-

culus. In: OOPSLA, pp. 331–342 (2002)

[SGM02] Szyperski, C., Gruntz, D., Murer, S.: Component Software: Beyond

Object-Oriented Programming. Addison-Wesley, Reading (2002)

[SKS07] Sangiorgi, D., Kobayashi, N., Sumii, E.: Environmental bisimulations

for higher-order languages. In: LICS 2007, pp. 293–302. IEEE Comp.

Soc., Los Alamitos (2007)

[SS05] Schmitt, A., Stefani, J.-B.: The kell calculus: A family of higher-order

distributed process calculi. In: Priami, C., Quaglia, P. (eds.) GC 2004.

LNCS, vol. 3267, pp. 146–178. Springer, Heidelberg (2005)

[SW01] Sangiorgi, D., Walker, D.: The π-calculus: a Theory of Mobile Pro-

cesses. Cambridge University Press, Cambridge (2001)

[Vas09] Vasconcelos, V.T.: Fundamentals of session types. In: Bernardo, M.,

Padovani, L., Zavattaro, G. (eds.) SFM 2009. LNCS, vol. 5569, pp.

158–186. Springer, Heidelberg (2009)

[VC99] Vitek, J., Castagna, G.: Seal: A framework for secure mobile compu-

tations. In: Bal, H.E., Cardelli, L., Belkhouche, B. (eds.) ICCL-WS

1998. LNCS, vol. 1686, p. 47. Springer, Heidelberg (1999)

[vOvdLKM00] van Ommering, R.C., van der Linden, F., Kramer, J., Magee, J.: The

koala component model for consumer electronics software. IEEE Com-

puter 33(3), 78–85 (2000)

A An Electronic Store Example

In the example in this section, a music store wants to build an E-Commerce
business by means of an online service. The store already possesses a simple ap-
plication for handling their products and selling them to customers. We represent
such application as a component:

http://fractal.ow2.org

170 F. Montesi and D. Sangiorgi

STORE
def= store{ buy = (data, r). Pbuy ,

listProducts = (r). PlistProducts,
Istore }

[Pstore]
{ j∈1..h nj �→ fj }

Component STORE offers a method buy(data, r), for buying a product (where
data contains both the name of the product and the money that the client is
willing to spend for it) and performing the appropriate bank transaction; then
STORE confirms the execution of the transaction along channel r. STORE also
offers method listProducts(r) which sends a list of the available products at r.
Other methods may be available at STORE, indicated by Istore. The set of links
in STORE, namely j∈1..h nj �→ fj , represent its deployment requirements.

Component STORE was designed to run in a local environment that guarantees
at most one buy transaction (one execution of the buy method) at a time.

Now we reuse STORE to implement a new component, E-STORE, that is meant
to be exposed on a public network (e.g. the Internet). Other than adapting the
behaviour of the legacy component, we want E-STORE to offer a new method
getV isits for reading the number of visits received by the online store. The
implementation of E-STORE with its explanation follows. The parameter z is the
skeleton of the inner store component.

E− STORE(z)
def
=

estore{ buy = (data, r). extract lock as x in νs (store buy 〈data, s〉 | s. r. Lock),
listProducts = (r).νs (counter incr s | s. store listProducts r),
getV isits = (r). counter read r

[store z { j∈1..h nj
→ n′
j } | Lock | Counter(0)]

{ j∈1..h n′
j
→ fj}

Components Lock and Counter〈v〉 are defined in Section 5. concurrent invoca-
tions of buy are prevented using a lock mechanism. Whenever buy is called, we
first extract the Lock component. Thus other concurrent invocations of method
buy will not proceed because lock is not anymore available and their extract
instructions is blocking. After extracting lock, the necessary data exchanges be-
tween the client and the legacy component are performed; the final message
from the legacy component is however intercepted; this is necessary because we
need to know when we can put Lockback into execution and allow for another
instance of buy in E-STORE to continue.

We take the number of received visits that should be monitor as the number
of invocations for method listProducts. This number, v, is stored in the counter
Counter〈v〉.

A Model of Evolvable Components 171

We can finally obtain the desired system using the extract instruction:

extract store as z in E − STORE(z) | STORE
−→ { buy = (data, r). extract lock as x in νs (store buy 〈data, s〉 | s. r. Lock),

listProducts = (r). νs (counter incr s | s. store listProducts r),
getV isits = (r). counter read r

[store { . . . }[. . .] { j∈1..h nj �→ n′
j } | Lock | Counter(0)]

{ j∈1..h n′
j �→ fj}

Note that the use of channels enables direct communications between a client
and inner components. For instance, when a client calls method getV isits the
answer is sent back directly from component cell situated inside component
counter; this can be seen graphically in Figure 1 (which, for the sake of clarity,
does not report communications with the internal lock).

Fig. 1. An abstract graphical representation of the communication flow of method

getV isits

The Impact of Altruism on the Efficiency
of Atomic Congestion Games�

Ioannis Caragiannis, Christos Kaklamanis, Panagiotis Kanellopoulos,
Maria Kyropoulou, and Evi Papaioannou

Research Academic Computer Technology Institute and

Department of Computer Engineering and Informatics

University of Patras, 26504 Rio, Greece

Abstract. We study the effect of combining selfishness and altruism in

atomic congestion games. We allow players to be partially altruistic and

partially selfish and determine the impact of this behavior on the overall

system performance. Surprisingly, our results indicate that, in general,

by allowing players to be (even partially) altruistic, the overall system

performance deteriorates. Instead, for the class of symmetric load bal-

ancing games, a balance between selfish and altruistic behavior improves

system performance to optimality.

1 Introduction

Congestion games provide a natural model for antagonistic resource allocation in
large-scale systems and have recently played a central role in algorithmic game
theory. In a congestion game, a set of non-cooperative players, each control-
ling an unsplittable unit demand, compete over a set of resources. All players
using a resource experience a latency (or cost) given by a non-negative and non-
decreasing function of the total demand (or congestion) of the resource. Among
a given set of resource subsets (or strategies), each player selects one selfishly
trying to minimize her individual total cost, i.e., the sum of the latencies on the
resources in the chosen strategy. Load balancing games are congestion games in
which the strategies of the players are singletons. Load balancing games in which
all players have all resources as singleton strategies are called symmetric.

A typical example of a congestion game stems from antagonistic routing on
a communication network. In this setting, we have several network users, where
each user wishes to send traffic between a source-destination pair of network
nodes. Each user may select among all possible paths connecting her source-
destination pair of nodes. A natural objective for a user is to route her traffic
using as less congested links as possible. This situation can be modelled by a
congestion game where the users of the network are the players and the com-
munication links correspond to the resources. In a load balancing game, we may
� This work is partially supported by the European Union under IST FET Integrated

Project FP6-015964 AEOLUS and Cost Action IC0602 “Algorithmic Decision The-

ory”, and by a “Caratheodory” basic research grant from the University of Patras.

M. Wirsing, M. Hofmann, and A. Rauschmayer (Eds.): TGC 2010, LNCS 6084, pp. 172–188, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

The Impact of Altruism on the Efficiency of Atomic Congestion Games 173

think of the resources as servers and the players as clients wishing to get served
by one of the servers. Then, the load balancing game is used to model the inher-
ent selfishness of the clients in the sense that each of them desires to be served
by the least loaded server.

Anatural solution concept that captures stable outcomes in a (congestion) game
is that of a pure Nash equilibrium (PNE), a configuration where no player can
decrease her individual cost by unilaterally changing her strategy. Rosenthal [13]
proved that the PNE of congestion games correspond to the local optima of a natu-
ral potential function, and thus every congestion game admits a PNE. Much of the
recent literature on congestion games has focused on quantifying the inefficiency
due to the players’ selfish behavior. It is well known that a PNE may not optimize
the system performance, usually measured by the total cost incurred by all play-
ers.The main tool for quantifying and understanding the performance degradation
due to selfishness has been the price of anarchy, introduced by Koutsoupias and
Papadimitriou [10] (see also [12]). The price of anarchy is the worst-case ratio of
the total cost of a PNE to the optimal total cost.

Many recent papers have provided tight upper and lower bounds on the
price of anarchy for several interesting classes of congestion games, mostly con-
gestion games with linear and polynomial latencies. Awerbuch et al. [2] and
Christodoulou and Koutsoupias [7] proved that the price of anarchy of conges-
tion games is 5/2 for linear latencies and dΘ(d) for polynomial latencies of degree
d. Subsequently, Aland et al. [1] obtained exact bounds on the price of anarchy
for congestion games with polynomial latencies. Caragiannis et al. [4] proved
that the same bounds hold for load balancing games as well. For symmetric load
balancing games, Lücking et al. [11] proved that the price of anarchy is 4/3.

In this paper, we are interested in the impact of altruistic behavior on the
efficiency of atomic congestion games with linear latency functions. We assume
that a player with completely altruistic behavior aims to minimize the total
latency incurred by the other players. We also consider types of behavior that
lie between completely altruistic behavior and selfishness. In this respect, we
use a parameter ξ ∈ [0, 1] and consider a player to be ξ-altruistic is she aims
to minimize the linear combination of the total latency incurred by the other
players and her latency with coefficients ξ and 1 − ξ respectively. Hence, an
1-altruistic player acts completely altruistically while a 0-altruistic one is selfish.

Intuitively, altruism should be considered as a synonym for trustworthy be-
havior. In contrast to this intuition, we demonstrate rather surprising results.
We show that having players that behave completely altruistically may lead to a
significant deterioration of performance. More importantly, even a small degree
of altruism may have a negative effect on performance compared to the case of
selfish players. These results hold for general atomic congestion games in which
players may have different strategy sets. This asymmetry seems to be incompat-
ible with altruism. On the contrary, in simpler games such as symmetric load
balancing games, we prove that a balance between altruism and selfishness in
the players’ behavior leads to optimal performance.

174 I. Caragiannis et al.

In technical terms, we show the following results which extend the known
bounds on the price of anarchy of games with selfish players to games with
ξ-altruistic ones:

– The price of anarchy of atomic congestion games with ξ-altruistic players is
at most 5−ξ

2−ξ when ξ ∈ [0, 1/2] and at most 2−ξ
1−ξ when ξ ∈ [1/2, 1]. These

bounds are proved to be tight for all values of ξ. The corresponding lower
bound proofs are based on the construction of load balancing games with
the desired price of anarchy.

– For symmetric load balancing games, we show that the price of anarchy
with ξ-altruistic players is at most 4(1−ξ)

3−2ξ when ξ ∈ [0, 1/2] and at most
3−2ξ

4(1−ξ) when ξ ∈ [1/2, 1]. These bounds are proved to be tight as well; the
lower bound constructions are very simple and use symmetric load balancing
games with two machines and two players.

Surprisingly, our first set of results indicates that altruism may be harmful in
general since the price of anarchy increases from 5/2 to unbounded as the degree
of altruism increases from 0 to 1. Hence, selfishness is more beneficial than
altruism in general. Our second set of results establishes a different setting for
symmetric load balancing games. Interestingly, a balance between altruistic and
selfish behavior leads to optimal performance (i.e., the price of anarchy is 1 and
the equilibria reached are optimal). This has to be compared to the tight bound
of 4/3 on the price of anarchy with selfish players. Again, completely altruistic
behavior leads to an unbounded price of anarchy.

In our upper bound proofs, we follow the standard high-level analysis ideas
that have been used in the literature (see [3]) in order to compare the cost of
equilibria to the cost of optimal assignments but adapt it to the case of altruistic
players. For each player, we express with an inequality its preference to the
strategy she uses in the equilibrium instead of the one she uses in the optimal
assignment. For general atomic congestion games, by summing these inequalities
over all players, we obtain an upper bound on the cost of the equilibrium in terms
of quantities characterizing both the equilibrium and the optimal assignment.
Then, we need to use new inequalities on the non-negative integers in order to
obtain a direct relation between the cost of the equilibrium and the optimal
assignment. In symmetric load balancing, we exploit the symmetry in order to
obtain a better relation between the cost of the equilibrium and the optimal cost.
In our analysis, we use the inequalities expressing the preference of a carefully
selected set of players and develop new inequalities over non-negative integers
in order to obtain our upper bound.

Chen and Kempe [6] have considered similar questions in non-atomic con-
gestion games, i.e., games with an infinite number of players each controlling
a negligibly small amount of traffic. Our findings are inherently different than
theirs as in non-atomic congestion games the system performance improves as
the degree of altruism of the players increases. Hoefer and Skopalik [9] consider
atomic congestion games using a slightly different definition of altruism, which
corresponds to ξ-altruistic behavior with ξ ∈ [0, 1/2] in our model. They mainly

The Impact of Altruism on the Efficiency of Atomic Congestion Games 175

present complexity results for the computation of equilibria in the corresponding
congestion games and do not address questions related to the price of anarchy.

The rest of the paper is structured as follows. We begin with preliminary
definitions and properties of altruistic players in Section 2. Our upper bounds
for atomic congestion games and the corresponding lower bounds are presented
in Sections 3 and 4, respectively. Section 5 is devoted to our results regarding
symmetric load balancing. We conclude in Section 6 with a discussion on possible
extensions of our work.

2 Preliminaries

In this section we formally define the model and establish characteristic inequal-
ities that capture the players’ behavior.

In atomic congestion games there is a set E of resources, each resource e having
a non-negative and non-decreasing latency function fe defined over non-negative
numbers, and a set of n players. Each player i has a set of strategies Si ⊆ 2E

(each strategy of player i is a set of resources) and controls an unsplittable
unit demand. An assignment A = (A1, ..., An) is a vector of strategies, one
strategy for each player. The cost of player i for an assignment A is defined
as costi(A) =

∑
e∈Ai

fe(ne(A)), where ne(A) is the number of players using
resource e in A, while the social cost of an assignment is the total cost of all
players. An assignment is a pure Nash equilibrium if no player has an incentive
to unilaterally deviate to another strategy, i.e., costi(A) ≤ costi(A−i, s) for any
player i and for any s ∈ Si, where (A−i, s) is the assignment produced from
A if player i deviates from Ai to s. This inequality is also known as the Nash
condition. A congestion game is called symmetric when all players share the
same set of strategies. Load balancing games are congestion games where the
strategies of the players are singleton sets. The price of anarchy of a congestion
game is defined as the ratio of the maximum social cost over all Nash equilibria
over the optimal cost. The price of anarchy for a class of congestion games is
simply the highest price of anarchy among all games belonging to that class.

In this paper, we consider latency functions of the form fe(x) = αex + βe for
each resource e, where αe, βe are non-negative constants. Then, the cost of a
player i for an assignment A becomes costi(A) =

∑
e∈Ai

(αene(A) + βe), while
the social cost becomes∑

i

costi(A) =
∑

i

∑
e∈Ai

(αene(A) + βe) =
∑

e

(
αen

2
e(A) + βene(A)

)
.

We now proceed to modify the model so that altruism is taken into account.
We assume that each player i is partially altruistic, in the sense that she tries
to minimize a function depending on the total cost of all other players and the
total latency she experiences. We say that player i following a strategy Ai is
ξ-altruistic, where ξ ∈ [0, 1], when her cost function is

costi(A) = ξ

(∑
e

(
αen

2
e(A) + βene(A)

)− ∑
e∈Ai

(αene(A) + βe)

)

176 I. Caragiannis et al.

+ (1− ξ)
∑
e∈Ai

(αene(A) + βe).

Clearly, when ξ = 0 then player i wishes to minimize her total latency, while
when ξ = 1 player i wishes to minimize the total latency of all other players.

Now, consider two assignments A and A′ that differ in the strategy of player
i and let p1 and p2 be the strategies of i in the two assignments. Furthermore,
by slightly abusing notation, we let ne = ne(A) and n′

e = ne(A′).
Assume that assignment A is an equilibrium; the cost of player i under A is

costi(A) = ξ

(∑
e

(
αen

2
e + βene

)−∑
e∈p1

(αene + βe)

)
+ (1− ξ)

∑
e∈p1

(αene + βe)

= ξ

⎛⎝ ∑
e/∈p1�p2

(
αen

2
e + βene

)
+

∑
e∈p1�p2

(
αen

2
e + βene

)⎞⎠
+ (1− 2ξ)

⎛⎝ ∑
e∈p1∩p2

(αene + βe) +
∑

e∈p1\p2

(αene + βe)

⎞⎠ ,

where � is the symmetric difference operator in set theory, i.e., for two sets a, b
it holds that a� b = (a \ b) ∪ (b \ a).

Consider now the second assignment A′ = (A−i, p2) in which player i has
changed her strategy from p1 to p2. Observe that n′

e = ne + 1 for e ∈ p2 \ p1,
n′

e = ne − 1 for e ∈ p1 \ p2 and n′
e = ne otherwise. Her cost under the second

assignment is

costi(A′) = ξ

(∑
e

(
αen

′2
e +βen

′
e

)−∑
e∈p2

(αen
′
e + βe)

)
+ (1− ξ)

∑
e∈p2

(αen
′
e + βe)

= ξ

⎛⎝ ∑
e/∈p1�p2

(
αen

′2
e + βen

′
e

)
+

∑
e∈p1�p2

(
αen

′2
e + βen

′
e

)⎞⎠
+ (1− 2ξ)

⎛⎝ ∑
e∈p1∩p2

(αen
′
e + βe) +

∑
e∈p2\p1

(αen
′
e + βe)

⎞⎠
= ξ

⎛⎝ ∑
e/∈p1�p2

(
αen

2
e + βene

)
+

∑
e∈p1\p2

(
αe (ne − 1)2 + βe (ne − 1)

)

+
∑

e∈p2\p1

(
αe (ne + 1)2 + βe (ne + 1)

)⎞⎠
+ (1− 2ξ)

⎛⎝ ∑
e∈p1∩p2

(αene + βe) +
∑

e∈p2\p1

(αe (ne + 1) + βe)

⎞⎠ .

The Impact of Altruism on the Efficiency of Atomic Congestion Games 177

Since player i has no incentive to change her strategy from p1 to p2, we obtain
that costi(A) ≤ costi(A′), i.e.,

ξ
∑

e∈p1�p2

(
αen

2
e + βene

)
+ (1− 2ξ)

∑
e∈p1\p2

(αene + βe) ≤

ξ

⎛⎝ ∑
e∈p1\p2

(
αe (ne − 1)2 + βe (ne − 1)

)
+

∑
e∈p2\p1

(
αe (ne + 1)2 + βe (ne + 1)

)⎞⎠
+ (1− 2ξ)

∑
e∈p2\p1

(αe (ne + 1) + βe),

which implies that∑
e∈p1\p2

(αe (ne − ξ) + βe (1− ξ)) ≤
∑

e∈p2\p1

(αe (ne + 1− ξ) + βe (1− ξ))

=
∑

e∈p2\p1

(αe (n′
e − ξ) + βe (1− ξ)),

and, equivalently,∑
e∈p1

(αe (ne − ξ) + βe (1− ξ)) ≤
∑
e∈p2

(αe (n′
e − ξ) + βe (1− ξ)).

Observe that when ξ = 0, the above inequality is merely the Nash condition. In
general, this condition implies that, given an assignment A−i of the remaining
players, a ξ-altruistic player i aims to select a strategy s from Si such that the
expression ∑

e∈s

(αe (ne(A−i, s)− ξ) + βe (1− ξ))

is minimized.
In the rest of this paper, we will assume, without loss of generality, that βe = 0

for all resources. Our lower bound constructions exhibit this property, while the
proofs of our upper bounds carry over even with non-zero values of βe.

3 Upper Bounds for Atomic Congestion Games

In this section we describe our upper bounds concerning the price of anarchy
for atomic congestion games and ξ-altruistic players. In our proofs we use the
following two technical lemmas.

Lemma 1. For all integers x, y ≥ 0 and ξ ∈ [0, 1/2] it holds that

xy + (1− ξ) y + ξx ≤ 1 + ξ

3
x2 +

5− ξ

3
y2.

178 I. Caragiannis et al.

Proof. Consider the function

f(x, y) =
1 + ξ

3
x2 +

5− ξ

3
y2 − xy − (1− ξ) y − ξx.

It suffices to prove that f(x, y) ≥ 0 when x, y are non-negative integers and
ξ ∈ [0, 1/2].

We start with the case x = y = k. Then,

f(x, y) = f(k, k) = k2 − k ≥ 0.

We now consider the case x = k and y = k + z, where k ≥ 0 and z ≥ 1. Then,

f(x, y) = f(k, k + z)

= f(k, k) +
5− ξ

3
(
z2 + 2zk

)− kz − (1− ξ) z

= f(k, k) + z

(
5− ξ

3
z +

7− 2ξ

3
k − 1 + ξ

)
.

Since f(k, k) ≥ 0, z ≥ 1 and ξ ∈ [0, 1/2], we conclude that f(x, y) ≥ 0, when
y > x.

Finally, we consider the case where x = k + z and y = k, where k ≥ 0 and
z ≥ 1. Then,

f(x, y) = f(k + z, k)

=
1 + ξ

3
(k + z)2 +

5− ξ

3
k2 − (k + z)k − (1− ξ) k − ξ (k + z)

= k2 − k + z

(
1 + ξ

3
(z + 2k)− k − ξ

)
.

If z > k, then

f(x, y) ≥ k2 − k + z

(
(1 + ξ) k +

1 + ξ

3
− k − ξ

)
≥ 0,

since k ≥ 0 and ξ ∈ [0, 1/2].
If z = k, then

f(x, y) = k2 − k + k ((1 + ξ) k − k − ξ) ≥ 0,

since k = z ≥ 1 and ξ ∈ [0, 1/2].
Finally, if z < k, then

f(x, y) = k2 − k + z

(
1 + ξ

3
z − ξ

)
+ z

(
1 + ξ

3
2k − k

)
.

Since z
(

1+ξ
3 z − ξ

)
≥ 0 for z ≥ 1 and ξ ∈ [0, 1/2], and k2 − k − zk ≥ 0 for

z ≤ k − 1, the lemma follows. �	

The Impact of Altruism on the Efficiency of Atomic Congestion Games 179

Lemma 2. For all integers x, y ≥ 0 and ξ ∈ [1/2, 1] it holds that

xy + (1− ξ) y + ξx ≤ ξx2 + (2− ξ) y2.

Proof. Consider the function

f(x, y) = ξx2 + (2− ξ) y2 − xy − (1− ξ) y − ξx.

To prove the lemma it suffices to show that f(x, y) ≥ 0 when x, y are non-
negative integers and ξ ∈ [1/2, 1].

We first consider the case where x = y = k. Then,

f(x, y) = f(k, k) = k2 − k ≥ 0.

We now consider the case x > y and let x = k + z and y = k, where k ≥ 0 and
z ≥ 1. Then,

f(x, y) = f(k + z, k)
= f(k, k) + ξ

(
z2 + 2kz

)− kz − ξz

= f(k, k) + z (zξ + 2ξk − k − ξ)
= f(k, k) + z (ξ (z − 1) + k (2ξ − 1)) .

Since f(k, k) ≥ 0, z ≥ 1 and ξ ∈ [1/2, 1], it holds that f(x, y) ≥ 0 when x > y.
Finally, we consider the case y > x and let x = k and y = k + z, where k ≥ 0

and z ≥ 1. Then,

f(x, y) = f(k, k + z)
= f(k, k) + (2− ξ)

(
z2 + 2kz

)− kz − (1− ξ)z
= f(k, k) + z ((2− ξ) (z + 2k)− k − 1 + ξ)
= f(k, k) + z ((2− ξ) z + (3− 2ξ) k − 1 + ξ) .

Since f(k, k) ≥ 0, z ≥ 1 and ξ ∈ [1/2, 1], it holds that f(x, y) ≥ 0 also when
y > x. �	
We note that the above lemmas also hold for the more general case of possibly
negative x and y, but it suffices to consider non-negative values for our purposes.
We are now ready to state the main result of this section.

Theorem 1. The price of anarchy of atomic congestion games with ξ-altruistic
players is at most 5−ξ

2−ξ if ξ ∈ [0, 1/2] and at most 2−ξ
1−ξ if ξ ∈ [1/2, 1].

Proof. Consider a pure Nash equilibrium and an optimal assignment, and denote
by ne and oe the number of players using resource e in the two assignments.
Furthermore, let pi1 and pi2 be the strategies of player i in the two assignments.
Since player i is a ξ-altruistic player, it holds that∑

e∈pi1

αe (ne − ξ) ≤
∑

e∈pi2

αe (ne + 1− ξ).

180 I. Caragiannis et al.

For the total latency of the pure Nash equilibrium, it holds that

cost =
∑

e

αen
2
e =

∑
i

∑
e∈pi1

αene

=
∑

i

∑
e∈pi1

(αe (ne − ξ) + αeξ)

≤
∑

i

∑
e∈pi2

αe (ne + 1− ξ) +
∑

i

∑
e∈pi1

αeξ

=
∑

e

αeneoe + (1− ξ)
∑

e

αeoe + ξ
∑

e

αene

=
∑

e

αe (neoe + (1− ξ) oe + ξne).

So, for the case where ξ ∈ [0, 1/2], from Lemma 1 we obtain that∑
e

αe (neoe + (1− ξ) oe + ξne) ≤ 1 + ξ

3

∑
e

αen
2
e +

5− ξ

3

∑
e

αeo
2
e,

and, thus, ∑
e

αen
2
e ≤

1 + ξ

3

∑
e

αen
2
e +

5− ξ

3

∑
e

αeo
2
e

which leads to
2− ξ

3

∑
e

αen
2
e ≤

5− ξ

3

∑
e

αeo
2
e.

So, we obtain that the price of anarchy for this case is∑
e αen

2
e∑

e αeo2
e

≤ 5− ξ

2− ξ
.

Similarly, for the case where ξ ∈ [1/2, 1], from Lemma 2 we obtain that∑
e

αe (neoe + (1− ξ) oe + ξne) ≤ ξ
∑

e

αen
2
e + (2− ξ)

∑
e

αeo
2
e,

and, thus, ∑
e

αen
2
e ≤ ξ

∑
e

αen
2
e + (2− ξ)

∑
e

αeo
2
e

which leads to
(1− ξ)

∑
e

αen
2
e ≤ (2− ξ)

∑
e

αeo
2
e.

So, we obtain that the price of anarchy for this case is∑
e αen

2
e∑

e αeo2
e

≤ 2− ξ

1− ξ
.

�	
We observe that altruism is actually harmful, since the price of anarchy is min-
imized when ξ = 0, i.e., in the absence of altruism. Furthermore, when ξ = 1,
i.e., players are completely altruistic, the price of anarchy is unbounded.

The Impact of Altruism on the Efficiency of Atomic Congestion Games 181

4 Lower Bounds for Atomic Congestion Games

In this section we state our lower bounds on the price of anarchy. The construc-
tions in the proofs are load balancing games and are similar to a construction
used in [4]. In these constructions, we represent the load balancing game as a
graph. In this graph, each node represents a machine, and each edge represents
a player having as possible strategies the machines corresponding to the nodes
defining the edge.

Theorem 2. For any ε > 0 and ξ ∈ [0, 1/2], there is a load balancing game with
ξ-altruistic users whose price of anarchy is at least 5−ξ

2−ξ − ε.

Proof. We construct a graph G, consisting of a complete binary tree with k + 1
levels and 2k+1 − 1 nodes, with a line of k + 1 edges and k + 1 additional nodes
hung at each leaf. So, graph G has 2k + 2 levels 0, . . . , 2k + 1, with 2i nodes at
level i for i = 0, . . . , k and 2k nodes at levels k + 1, . . . , 2k + 1. The machines
corresponding to nodes of level i = 0, . . . , k − 1, have latency functions fi(x) =
(2−ξ
3−ξ)ix, the machines corresponding to nodes of level i = k, . . . , 2k, have latency

functions fi(x) = (2−ξ
3−ξ)k−1(1−ξ

2−ξ)i−kx, and the machines corresponding to nodes
of level 2k+1, have latency functions f2k+1(x) = (2−ξ

3−ξ)k−1(1−ξ
2−ξ)kx. Consider the

assignment where all players select machines corresponding to the endpoint of
their corresponding edge which is closer to the root of graph G. It is not hard to
see that this is a Nash equilibrium, since machines corresponding to nodes of level
i = 0, . . . , k − 1, have two players and latency 2(2−ξ

3−ξ)i, machines corresponding
to nodes of level i = k, . . . , 2k, have one player and latency (2−ξ

3−ξ)k−1(1−ξ
2−ξ)i−k,

and machines corresponding to nodes of level 2k + 1, have no player. Therefore,
due to the definition of the latency functions, a player assigned to a machine
corresponding to a node of level i = 0, . . . , 2k, would experience exactly the
same latency if she changed her decision and chose the machine corresponding
to the node of level i + 1. The cost of the assignment is

cost =
k−1∑
i=0

4 · 2i

(
2− ξ

3− ξ

)i

+
2k∑

i=k

2k

(
2− ξ

3− ξ

)k−1 (1− ξ

2− ξ

)i−k

= 4

(
2(2−ξ)
3−ξ

)k

− 1
4−2ξ
3−ξ − 1

+ 2k

(
2− ξ

3− ξ

)k−1

⎛⎜⎝1−
(

1−ξ
2−ξ

)k+1

1− 1−ξ
2−ξ

⎞⎟⎠
=

4 (3− ξ)
1− ξ

((
2 (2− ξ)

3− ξ

)k

− 1

)
+ (2− ξ)

(
3− ξ

2− ξ

)(
2 (2− ξ)

3− ξ

)k

−(2− ξ)2k

(
2− ξ

3− ξ

)k−1 (1− ξ

2− ξ

)k+1

= (3− ξ)
(

5− ξ

1− ξ

)(
2 (2− ξ)

3− ξ

)k

− (3− ξ) (1− ξ)
2− ξ

(
2− 2ξ

3− ξ

)k

− 4 (3− ξ)
1− ξ

.

182 I. Caragiannis et al.

To compute the upper bound on the cost of the optimal assignment it suffices
to consider the assignment where all players select the machines corresponding
to nodes which are further from the root. We obtain that the cost opt of the
optimal assignment is

opt ≤
k−1∑
i=1

2i

(
2− ξ

3− ξ

)i

+
2k∑

i=k

2k

(
2− ξ

3− ξ

)k−1 (1− ξ

2− ξ

)i−k

+2k

(
2− ξ

3− ξ

)k−1 (1− ξ

2− ξ

)k

=
3− ξ

1− ξ

((
2(2− ξ)
3− ξ

)k

− 1

)
− (2− ξ)2k

(
2− ξ

3− ξ

)k−1
((

1− ξ

2− ξ

)k+1

− 1

)

+2k

(
2− ξ

3− ξ

)k−1 (1− ξ

2− ξ

)k

− 1

=
3− ξ

1− ξ

((
2(2− ξ)
3− ξ

)k

− 1

)
− 1 + (2− ξ)

(
3− ξ

2− ξ

)(
2(2− ξ)
3− ξ

)k

−2(2− ξ)
(

1− ξ

2− ξ

)k+1 (2(2− ξ)
3− ξ

)k−1

+ 2k

(
2− ξ

3− ξ

)k−1 (1− ξ

2− ξ

)k

=
(

3− ξ

1− ξ
+ 3− ξ

)(
2(2− ξ)
3− ξ

)k

− 2(2− ξ)
(

1− ξ

2− ξ

)k+1 (2(2− ξ)
3− ξ

)k−1

+2k

(
2− ξ

3− ξ

)k−1 (1− ξ

2− ξ

)k

− 3− ξ

1− ξ
− 1.

Hence, for any ε > 0 and for sufficiently large k, the price of anarchy of the game
is larger than

cost

opt
≥

(3−ξ)(5−ξ)
1−ξ

(3−ξ)(2−ξ)
1−ξ

− ε =
5− ξ

2− ξ
− ε. �	

We notice that this lower bound is tight for ξ ∈ [0, 1/2]. In order to prove a tight
lower bound for the case ξ ∈ [1/2, 1], it suffices to focus on one line of k + 2
nodes and k+1 edges hanging from the binary tree of the aforementioned graph
(including the corresponding leaf).

Theorem 3. For any ε > 0 and ξ ∈ [1/2, 1], there is a load balancing game with
ξ-altruistic users, whose price of anarchy is at least 2−ξ

1−ξ − ε.

Proof. Consider the construction used in the proof of the previous theorem. We
remind that the machine located at the node of the 2k+1 level, has latency func-
tion f2k+1(x) = (2−ξ

3−ξ)k−1(1−ξ
2−ξ)kx, and the machines corresponding to nodes of

levels i = k, . . . , 2k have latency functions fi(x) = (2−ξ
3−ξ)k−1(1−ξ

2−ξ)i−kx. Simi-
larly, the assignment, where all players select the machine corresponding to the

The Impact of Altruism on the Efficiency of Atomic Congestion Games 183

node closer to the root, is a Nash equilibrium, whereas the players are optimally
assigned to the machine corresponding to the node further from the root (con-
sidering the endpoints of the corresponding edge). Using similar analysis, we
obtain that

cost =
2k∑

i=k

(
2− ξ

3− ξ

)k−1 (1− ξ

2− ξ

)i−k

=
k∑

i=0

(
2− ξ

3− ξ

)k−1 (1− ξ

2− ξ

)i

=
(

2− ξ

3− ξ

)k−1 (1−ξ
2−ξ)k+1 − 1

1−ξ
2−ξ − 1

= (2 − ξ)
(

2− ξ

3− ξ

)k−1
(

1−
(

1− ξ

2− ξ

)k+1
)

,

and

opt ≤
2k∑

i=k+1

(
2− ξ

3− ξ

)k−1 (1− ξ

2− ξ

)i−k

+
(

2− ξ

3− ξ

)k−1 (1− ξ

2− ξ

)k

=
k∑

i=1

(
2− ξ

3− ξ

)k−1 (1− ξ

2− ξ

)i

+
(

2− ξ

3− ξ

)k−1 (1− ξ

2− ξ

)k

=
(

2− ξ

3− ξ

)k−1 (1−ξ
2−ξ)k+1 − 1−ξ

2−ξ

1−ξ
2−ξ − 1

+
(

2− ξ

3− ξ

)k−1 (1− ξ

2− ξ

)k

= (2− ξ)
(

2− ξ

3− ξ

)k−1 1− ξ

2− ξ

(
1−

(
1− ξ

2− ξ

)k
)

+
(

2− ξ

3− ξ

)k−1 (1− ξ

2− ξ

)k

= (1− ξ)
(

2− ξ

3− ξ

)k−1
(

1−
(

1− ξ

2− ξ

)k
)

+
(

2− ξ

3− ξ

)k−1 (1− ξ

2− ξ

)k

.

We conclude, that for any ε > 0, and sufficiently large k, the price of anarchy of
the game is larger than 2−ξ

1−ξ − ε. �	

5 Symmetric Load Balancing Games

In this section, we consider the important class of symmetric load balancing
games with ξ-altruistic players. In our proof, we make use of the following two
technical lemmas.

Lemma 3. For any integers x, y ≥ 0 and any ξ ∈ [0, 1/2] it holds that, when
x < y,

xy + (1− ξ) y − (1− ξ)x ≤ 1 + 2ξ

4
x2 + (1− ξ) y2,

and, when x ≥ y,

xy + ξx− ξy ≤ 1 + 2ξ

4
x2 + (1− ξ) y2.

184 I. Caragiannis et al.

Proof. We begin with the case x < y. Consider the function

f(x, y) =
1 + 2ξ

4
x2 + (1− ξ) y2 − xy − (1− ξ) y + (1− ξ) x.

It suffices to show that f(x, y) ≥ 0. Let y = x + z, where z is a positive integer.
Then

f(x, y) = f(x, x + z)

=
1 + 2ξ

4
x2 + (1− ξ)

(
x2 + z2 + 2xz

)− x2 − xz + (1− ξ)x− (1− ξ)x

− (1− ξ) z

=
(

1 + 2ξ

4
+ 1− ξ − 1

)
x2 + (1− ξ) z2 + (2− 2ξ − 1)xz − (1− ξ) z

=
1− 2ξ

4
x2 + (1− ξ) z2 + (1− 2ξ)xz − (1− ξ) z

≥ 0,

since x ≥ 0, z ≥ 1 and ξ ∈ [0, 1/2].
We now consider the case x ≥ y. Consider the function

g(x, y) =
1 + 2ξ

4
x2 + (1− ξ) y2 − xy − ξx + ξy.

In order to complete the proof, we have to show that g(x, y) ≥ 0. Since x ≥ y,
let x = y + z, where z is a non-negative integer. Then,

g(x, y) = g(y + z, y)

=
1 + 2ξ

4
(y + z)2 + (1− ξ) y2 − (y + z) y − ξ (y + z) + ξy

=
1 + 2ξ

4
y2 +

1 + 2ξ

4
z2 +

1 + 2ξ

2
yz − ξy2 − yz − ξz

=
1− 2ξ

4
y2 +

1 + 2ξ

4
z2 − 1− 2ξ

2
yz − ξz

=
1
4
(y2 + z2 − 2yz)− ξ

2
(y2 − z2 − 2yz)− ξz

=
1
4
(y − z)2 − ξ

2
(y2 + z2 − 2yz) + ξz2 − ξz

=
1
4
(y − z)2 − ξ

2
(y − z)2 + ξz(z − 1)

≥ 0

since z ≥ 0 and ξ ∈ [0, 1/2]. �	
Lemma 4. For any integers x, y ≥ 0 and any ξ ∈ [1/2, 1] it holds that when
x < y

xy + (1− ξ) y − (1− ξ) x ≤ ξx2 +
3− 2ξ

4
y2,

The Impact of Altruism on the Efficiency of Atomic Congestion Games 185

and when x ≥ y

xy + ξx− ξy ≤ ξx2 +
3− 2ξ

4
y2.

Proof. The proof follows from Lemma 3. Note that the two inequalities of Lemma
3 can be transformed to those of Lemma 4 by replacing ξ by 1−ξ and exchanging
x and y. Furthermore, the two inequalities become identical when x = y. �	
Again, these two lemmas also hold when x, y can be negative. We are now ready
to prove the main result of this section.

Theorem 4. The price of anarchy for symmetric load balancing games with
ξ-altruistic players is 4(1−ξ)

3−2ξ when ξ ∈ [0, 1/2] and 3−2ξ
4(1−ξ) when ξ ∈ [1/2, 1].

Proof. Consider a pure Nash equilibrium and an optimal assignment and let nj

and oj be the number of players in machine j in the equilibrium and the optimal
assignment, respectively. Consider the sets H and L of machines j such that
nj > oj and nj < oj , respectively. Denote by S the set of players consisting of
nj − oj players that are in machine j ∈ H in equilibrium, for every machine
j ∈ H . Observe that

∑
j∈H (nj − oj) =

∑
j∈L (oj − nj). Hence, we can associate

each player of S with a machine in L such that oj−nj players of S are associated
to each machine j ∈ L.

Consider a player in S that lies in machine j ∈ H in equilibrium and let j′ ∈ L
be the machine of L she is associated with. By the ξ-altruistic condition, we have
that αj(nj − ξ) ≤ αj′ (nj′ − ξ + 1). By summing up the ξ-altruistic conditions
for each player in S, we obtain that∑

j:nj>oj

αj(nj − ξ)(nj − oj) ≤
∑

j:nj<oj

αj(nj − ξ + 1)(oj − nj). (1)

Now using (1), the fact that nj and oj are integers, and the definition of the
latency functions, we obtain that

∑
j

αjn
2
j =

∑
j:nj>oj

αjn
2
j +

∑
j:nj≤oj

αjn
2
j

=
∑

j:nj>oj

αj (nj − ξ) (nj − oj) +
∑

j:nj>oj

(αjnjoj + αjξnj − αjξoj)

+
∑

j:nj≤oj

αjn
2
j

≤
∑

j:nj<oj

αj(nj − ξ + 1)(oj − nj) +
∑

j:nj>oj

(αjnjoj + αjξnj − αjξoj)

+
∑

j:nj≤oj

αjn
2
j

=
∑

j:nj<oj

(
αjnjoj − αjn

2
j − αjξoj + αjξnj + αjoj − αjnj

)

186 I. Caragiannis et al.

+
∑

j:nj>oj

(αjnjoj + αjξnj − αjξoj) +
∑

j:nj≤oj

αjn
2
j

=
∑

j:nj<oj

αj (njoj − ξoj + ξnj + oj − nj) +
∑

j:nj>oj

αj (njoj + ξnj − ξoj)

+
∑

j:nj=oj

αjn
2
j

=
∑

j:nj<oj

αj (njoj + (1− ξ) (oj − nj)) +
∑

j:nj≥oj

αj (njoj + ξ (nj − oj)).

When ξ ∈ [0, 1/2], by Lemma 3 we obtain that∑
j

αjn
2
j ≤

∑
j

αj

(
1 + 2ξ

4
n2

j + (1− ξ) o2
j

)
which yields that the price of anarchy is∑

j αjn
2
j∑

j αjo2
j

≤ 4 (1− ξ)
3− 2ξ

.

When ξ ∈ [1/2, 1], by Lemma 4 we obtain that∑
j

αjn
2
j ≤

∑
j

αj

(
ξn2

j +
3− 2ξ

4
o2

j

)
which yields that the price of anarchy is∑

j αjn
2
j∑

j αjo2
j

≤ 3− 2ξ

4 (1− ξ)
. �	

We note that when ξ = 0, i.e., for the case of totally selfish players this result
implies the known 4/3 upper bound on the price of anarchy [11], while when ξ =
1, i.e., for completely altruistic players, the ratio is unbounded. Furthermore, as
ξ increases from 0 to 1/2 the ratio improves from 4/3 to 1, and then deteriorates
as ξ approaches 1; note that when ξ = 0.7 the ratio is again 4/3.

It is not hard to show that these bounds are tight. It suffices to consider a
load balancing game with two machines with latency functions f1(x) = (2− ξ)x
and f2(x) = (1− ξ)x and two players. Two assignments are equilibria in this
setting: either assigning both players to the second machine (where the total
latency is 4 (1− ξ)) or assigning one player at each machine (where the total
latency is 3− 2ξ).

6 Extensions and Open Problems

In this paper, we have studied the impact of altruism on the system performance
in atomic congestion games and have noticed that, surprisingly, altruism can be

The Impact of Altruism on the Efficiency of Atomic Congestion Games 187

harmful in general. For the special case of symmetric load balancing games, we
observe that altruism can be helpful in some cases; in particular, compared to
selfishness, we have shown that altruism helps in decreasing the price of anarchy
when ξ ∈ [0, 0.7] but is harmful when ξ ∈ (0.7, 1]. We note that for ξ = 1/2,
symmetric load balancing games with ξ-altruistic players admit only optimal
solutions as equilibria.

Following [6], we have also briefly considered the case in which players are
simultaneously selfish and spiteful (as opposed to altruistic). Similarly to the
model in the current paper, we can define ξ-spiteful players for particular values
of the parameter ξ. In this setting, player i aims to select a strategy s ∈ Si so
that the quantity ∑

e∈s

(αe (ne(A−i, s) + ξ) + βe (1 + ξ))

is minimized given the strategies A−i of the other players. This is equivalent
to assuming that all players are selfish and each of them is forced to pay a tax
equal to ξαe for each resource e she uses (this particular tax definition is called a
universal tax function in [5]). Then, the cost of a player is the sum of her latency
and the taxes she pays and the equilibria of the corresponding game are those
assignments in which no player has an incentive to deviate in order to decrease
her cost. Caragiannis et al. [5] have proved that the universal tax function with
ξ = 3

2

√
3 − 2 ≈ 0.598 yields the best possible price of anarchy which is equal

to 1 + 2/
√

3 ≈ 2.155. This result implies the rather surprising conclusion that
ξ-spiteful behavior for the particular value of ξ leads to the best possible price
of anarchy.

In our study herein, we have assumed that all players are unweighted, i.e.,
each controls a unit demand, and homogeneous, i.e., each player is ξ-altruistic
(or ξ-spiteful) for the same value of ξ. It would be interesting to study the case
of heterogeneous players with different behavior, i.e., each player i is ξi-altruistic
(or ξi-spiteful). Furthermore, an interesting question from the system designer’s
point of view is whether the behavior of the players can be coordinated in order
to always force them to reach efficient equilibria. Even in this case, one cannot
hope to achieve a price of anarchy smaller than 2.012 in general. This value
matches the tight bound on the price of anarchy of load balancing games with
identical latency functions of the form f(x) = x on all resources [4,14]; in this
case, any combination of selfish and altruistic or spiteful behavior of a player is
actually equivalent to selfishness.

We plan to elaborate on the two claims above in the final version of the paper.

References

1. Aland, S., Dumrauf, D., Gairing, M., Monien, B., Schoppmann, F.: Exact price

of anarchy for polynomial congestion games. In: Durand, B., Thomas, W. (eds.)

STACS 2006. LNCS, vol. 3884, pp. 218–229. Springer, Heidelberg (2006)

188 I. Caragiannis et al.

2. Awerbuch, B., Azar, Y., Epstein, A.: The price of routing unsplittable flow. In:

Proceedings of the 37th Annual ACM Symposium on Theory of Computing (STOC

2005), pp. 57–66 (2005)

3. Bilò, V., Caragiannis, I., Fanelli, A., Flammini, M., Kaklamanis, C., Monaco, G.,

Moscardelli, L.: Game-theoretic approaches to optimization problems in commu-

nication networks. In: Graphs and Algorithms in Communication Networks, pp.

241–263. Springer, Heidelberg (2009)

4. Caragiannis, I., Flammini, M., Kaklamanis, C., Kanellopoulos, P., Moscardelli, L.:

Tight bounds for selfish and greedy load balancing. In: Bugliesi, M., Preneel, B.,

Sassone, V., Wegener, I. (eds.) ICALP 2006, Part I. LNCS, vol. 4051, pp. 311–322.

Springer, Heidelberg (2006)

5. Caragiannis, I., Kaklamanis, C., Kanellopoulos, P.: Taxes for linear atomic conges-

tion games. ACM Transactions on Algorithms (to appear)

6. Chen, P.-A., Kempe, D.: Altruism, selfishness and spite in traffic routing. In: Pro-

ceedings of the 9th ACM Conference on Electronic Commerce (EC 2008), pp.

140–149 (2008)

7. Christodoulou, G., Koutsoupias, E.: The price of anarchy of finite congestion

games. In: Proceedings of the 37th Annual ACM Symposium on Theory of Com-

puting (STOC 2005), pp. 67–73 (2005)

8. Fotakis, D., Spirakis, P.: Cost-balancing tolls for atomic network congestion games.

In: Deng, X., Graham, F.C. (eds.) WINE 2007. LNCS, vol. 4858, pp. 179–190.

Springer, Heidelberg (2007)

9. Hoefer, M., Skopalik, A.: Altruism in atomic congestion games. In: Fiat, A.,

Sanders, P. (eds.) ESA 2009. LNCS, vol. 5757, pp. 179–189. Springer, Heidelberg

(2009)

10. Koutsoupias, E., Papadimitriou, C.: Worst-case equilibria. In: Meinel, C., Tison,

S. (eds.) STACS 1999. LNCS, vol. 1563, pp. 404–413. Springer, Heidelberg (1999)

11. Lücking, T., Mavronicolas, M., Monien, B., Rode, M.: A new model for selfish

routing. Theoretical Computer Science 406(2), 187–206 (2008)

12. Papadimitriou, C.: Algorithms, games and the internet. In: Proceedings of the 33rd

Annual ACM Symposium on Theory of Computing (STOC 2001), pp. 749–753

(2001)

13. Rosenthal, R.: A class of games possessing pure-strategy Nash equilibria. Interna-

tional Journal of Game Theory 2, 65–67 (1973)

14. Suri, S., Tóth, C., Zhou, Y.: Selfish load balancing and atomic congestion games.

Algorithmica 47(1), 79–96 (2007)

Stressed Web Environments as Strategic Games:
Risk Profiles and Weltanschauung�

Joaquim Gabarro1, Peter Kilpatrick2, Maria Serna1, and Alan Stewart2

1 ALBCOM, LSI Dept., Universitat Politècnica de Catalunya, Barcelona

{gabarro,mjserna}@lsi.upc.edu
2 School of Computer Science, The Queen’s University of Belfast, Belfast

{a.stewart,p.kilpatrick}@qub.ac.uk

Abstract. We consider the behaviour of a set of services in a stressed

web environment where performance patterns may be difficult to pre-

dict. In stressed environments the performances of some providers may

degrade while the performances of others, with elastic resources, may

improve. The allocation of web-based providers to users (brokering) is

modelled by a strategic non-cooperative angel-daemon game with risk

profiles. A risk profile specifies a bound on the number of unreliable ser-

vice providers within an environment without identifying the names of

these providers. Risk profiles offer a means of analysing the behaviour of

broker agents which allocate service providers to users. A Nash equilib-

rium is a fixed point of such a game in which no user can locally improve

their choice of provider – thus, a Nash equilibrium is a viable solution

to the provider/user allocation problem. Angel daemon games provide a

means of reasoning about stressed environments and offer the possibility

of designing brokers using risk profiles and Nash equilibria.

1 Introduction

A web-based computation involves the discovery and utilisation of services. It is
often the case that a service is made available by a number of providers. The per-
formance of a provider can vary greatly over time (although service level agree-
ments (SLAs) may provide information about “normal” expected performance).
Brokers [2] are often used to monitor provider performance and to provide an
interface to the “best” current provider.

It is usually the case that the performance of a provider deteriorates as demand
increases (although “elastic” providers may call on extra servers in times of
peak demand – thus, in such (stressed) situations performance can conceivably
improve). The goal of this paper is to study the behaviour of a set of service
providers in a stressed environment with the hope that a clearer understanding
of stressed behaviour may aid the design of intelligent brokers.

� J. Gabarró and M. Serna are partially supported by FET pro-active Integrated

Project 15964 (AEOLUS), TIN-2007-66523 (FORMALISM), TIN-2005-25859-E and

SGR 2009-2015 (ALBCOM).

M. Wirsing, M. Hofmann, and A. Rauschmayer (Eds.): TGC 2010, LNCS 6084, pp. 189–204, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

190 J. Gabarro et al.

Here we adopt the point of view that providers should be treated in toto
since web users alternate between providers in times of high usage. We also
assume that users behave in a non-cooperative way (in that the behaviour of
others is, usually, irrelevant). Given these assumptions it is reasonable to model
the behaviour of a set of providers (resources) in a stressed environment as a
strategic situation in algorithmic game theory [8,11,12]. The notion of a Nash
equilibrium is used to derive an efficient broker allocation of providers to users
(see Example 1).

Example 1. Brokering in an idealised environment. Consider a situation
where a set of users {1, . . . , n} submit jobs for execution to a broker. Suppose that
the broker uses multiple predictable service providers (resources) R = {r1, . . . rk}
to meet demand. The broker allocates service providers to jobs in such a way as
to minimise user delay. This situation can be modelled by a non-cooperative game
with n players in which users “move” in sequence by allocating (or reallocating)
their job to a provider. Providers may have modified work loads and delays as
a consequence of a sequence of “moves”. A Nash equilibrium is an allocation
schedule in which no user can improve their situation by making a move1. �	
The web is comprised of a very diverse range of resources. Such heterogeneity
contributes to the complexity of a web environment. Performance variability and
sporadic unavailability of underlying networks provide further complications.
Conventionally, unreliability is treated from a probabilistic viewpoint [9,1,10].
In contrast, we investigate a variety of provider behaviours within a stressed
web environment using non-cooperative game theory (see Example 2).

Example 2. Brokering in a stressed environment. Now consider a more
realistic refinement of the brokering example 1 where provider and network be-
haviour is less predictable. The following assumptions are made about stressed
web environments:

1. stress is non-uniformly distributed across the web;
2. patches of stress can move dynamically in response to users moving jobs

from stressed regions to more responsive providers;
3. the performance of certain providers may be highly vulnerable to heavy work

loads; other providers may incorporate autonomic behaviour which increases
the number of servers on offer in response to increased demand (elasticity).
Consequently, some providers may be associated with increased unreliability
at times of stress while others may exhibit robust behaviour.

An extended form of non-cooperative game is used to reason about brokering in
stressed environments; in addition to the n users the game additionally contains
two extra players: a daemon player who selects a number of sites to be stressed so
as to maximise the delay associated with the game (in a sense the daemon player

1 A set of users may individually find service providers without utilising a broker; this

process also corresponds to a game which may reach a Nash equilibrium. The broker

model acts as an abstraction of this alternative allocation problem.

Stressed Web Environments as Strategic Games 191

models the deterioration of a stressed network at a set of vulnerable points); and
an angel who selects a number of sites so as to minimise delay (in some sense
the angel models the capacity of a network to modify its behaviour so as to
improve throughput). Unreliability is described by the notion of a risk profile
which specifies (a priori) possible angel and daemon behaviours; given a risk
profile the behaviour of a broker in a stressed environment can be described by
an associated n + 2 player game. �	
Risk profiles were introduced in [3,4,5] to analyse network behaviour when a
bounded number of services failed. However, risk profiles are sufficiently rich to
allow the analysis of stressed web environments where networks may be under the
influence of competing tendencies (one destructive, the other self-correcting). In a
risk profile bounds are placed on both the constructive and destructive capacities
(for example, an unreliable network may have no self-correcting behaviour and
no angel player). As far we know the use of risk profiles to model stressed web
environments is new.

The paper is structured as follows. Basic models of resource allocation games
are given in § 2, with particular attention placed on uniform unit allocation
games. In § 3 risk profiles are defined and Weltanschauungs are used to model
stress in allocation problems. In § 4 angel-daemon games are defined and used
to analyse stressed resource allocation problems. Snapshots are used in § 5 to
provide a condensed description of strategy profiles; these are used to study pure
Nash equilibria. In § 6 we consider the structure of pure Nash equilibria in angel-
daemon games. In § 7 the idea of a risk-aware broker is developed. Finally in § 8
some open questions are raised.

2 Resource Allocation Games

We consider a basic resource allocation game introduced by Koutsoupias and
Papadimitriou in [11,8] as a means of modelling simple competitive situations.

A resource allocation game (also called load balancing game) is a tuple

C = 〈N, R, (wi)i∈N , (dr)r∈R, (Ai)i∈N , 〉
where the set of players is N = {1, . . . , n}. Player i ∈ N has to execute a
job (or work) wi. The set of resources is R = {1, . . . , k}. Each resource r ∈ R
has a delay function dr. For each player 1 ≤ i ≤ n, Ai is the set of possible
allocations for work wi, with Ai ⊆ R. A strategy si (or action) for a player i
is an element of Ai, (player i chooses a resource). A strategy profile is a tuple
s = (s1, . . . , sn). Given a player i and a strategy profile s = (s1, . . . , sn) we
denote by s−i = (s1, . . . , si−1, si+1, . . . , sn) the profile where the strategy si is
missing. Given a strategy profile s = (s1, . . . , sn) ∈ A1 × · · · × An, the set of
players using resource r ∈ R is Lr(s) = {i ∈ N | r = si} and the load of
resource r is the weight of the players using r, that is �r(s) =

∑
i∈Lr(s) wi. The

cost for player i of strategy profile s, is defined as ci(s) = dsi(�si(s)). Following
J. Bentham, 1748-1832, the social cost of a strategy profile s is defined additively

192 J. Gabarro et al.

as cs(s) =
∑

i∈N ci(s). In some examples, in order to simplify matters, costs are
defined as ci(s) = �dsi(�si(s))� and cs(s) =

∑
i∈N�dsi(�si(s))�.

Given a strategy profile s = (s1, . . . , sn) we define the load map of strategy s
as the vector �(s) = (�1(s), . . . , �k(s)) which describes macroscopically the load
of each resource under strategy profile s. Observe that in load maps part of the
information contained in a strategy profile is lost: we do not know which player
is using a given resource.

Resource allocation games are a particular case of strategic games [6]. Strate-
gic games can be used to model non-cooperative behaviour: a solution to a game
corresponds to identifying Nash equilibria [6]. A pure Nash equilibrium (PNE
for short) is a strategy profile s∗ such that for any player i ∈ N and for any
strategy si ∈ Ai, ci(s∗) ≤ ci(s∗−i, si), where (s∗−i, si) denotes the strategy profile
in which s∗i is replaced by si.

We are interested in analysing some specific natural types of delay functions,
non-negative and monotone, and in particular affine functions, that is dr(x) =
dr x with 0 < dr <∞.

Example 3. Consider an allocation game Fortran&MPI Servers defined in Fig-
ure 1. The web environment comprises four servers R = {1, 2, 3, 4} with delays
d1 = 1/2, d2 = 1/4, d3 = 1/4 and d4 = 1/8. Cost functions and social cost are
defined using ceiling functions. Resources 1, 2, 3 can execute Fortran programs.
Resources 1, 3, 4 can execute MPI programs. There are 5 jobs to be executed
(superindices are used to denote the type of a job).

wMPI
1 = 10, wF

2 = 5, wF
3 = 6, wMPI

4 = 15, wF
5 = 3

Thus job 1 can be executed using resources (servers) 1, 2 and 3 etc. and so
A1 = A4 = {1, 3, 4} and A2 = A3 = A5 = {1, 2, 3}. Consider a strategy profile
s = (1, 1, 1, 4, 3), where s5 = 3 denotes that “job wF

5 is mapped to resource 3”.
The load map of this profile is �(s) = (21, 0, 3, 15). In s the cost of player 1 is
high because c1(s) = � 12 (wMPI

1 + wF
2 + wF

3)� = 11, therefore player 1 has a strong
incentive to move his job to another server with lower current cost. Suppose that

player 1 moves to server 3 (denoted by 1
wMPI

1→ 3): the cost to player 1 improves
from 11 to 4 and therefore s is not a PNE. By performing a sequence of similar
kinds of move we finally get a PNE (3, 2, 3, 4, 1) with social cost 13. This PNE
is non-unique: for instance (4, 2, 3, 4, 2) is a PNE having a social cost 14. �	

In some cases (uniform) all the resources have the same capability. This forces
Ai = R for 1 ≤ i ≤ n, and moreover all the resources have the same delay func-
tion. We are specially interested in uniform affine delays dr(x) = dx, 0 < d <∞.
We distinguish the case where all players have the same unit weight works (or
jobs), i.e. wi = 1 for all i ∈ N . Inspired by [11], let Unitn,k,d be the unit re-
source allocation game with n players, k resources and uniform affine delays with
coefficient d. For unit weight games load maps provide enough information to
describe a family of “equivalent” strategy profiles. The following lemma captures
a widely-observed result.

Stressed Web Environments as Strategic Games 193

Fortran&MPI Servers

Resources

1 2 3 4

Services

F, MPI F F, MPI MPI

Delay

1/2 1/4 1/4 1/8

Initial strategy

s
wMPI

1 = 10 wF
5 = 3 wMPI

4 = 15

wF
2 = 5

wF
3 = 6

Cost 11 1 2

Moves

1
wMPI

1→ 3
wF

2 = 5 wMPI
1 = 10 wMPI

4 = 15

wF
3 = 6 wF

5 = 3

Cost 6 4 2

1
wF

3→ 3

wF
2 = 5 wMPI

1 = 10 wMPI
4 = 15

wF
3 = 6

wF
5 = 3

Cost 3 5 2

3
wF

5→ 1
wF

2 = 5 wMPI
1 = 10 wMPI

4 = 15

wF
5 = 3 wF

3 = 6

Cost 4 4 2

1
wF

2→ 2
wF

5 = 3 wF
2 = 5 wMPI

1 = 10 wMPI
4 = 15

wF
3 = 6

Cost 2 2 4 2

3
wF

3→ 2
wF

5 = 3 wF
2 = 5 wMPI

1 = 10 wMPI
4 = 15

wF
3 = 6

Cost 2 3 3 2

Fig. 1. Allocation game Fortran&MPI Servers . Servers 1 and 3 offer Fortran and MPI

services. Server 2 offers Fortran services and server 4 offers MPI services. An initial

allocation s = (1, 1, 1, 4, 3) is displayed. A sequence of moves which end with the PNE

(3, 2, 2, 4, 1) is also displayed.

Lemma 1. In the Unitn,k,d game, a strategy profile s = (s1, . . . , sn) is a PNE,
iff �(s) has n%k resources with load �n/k� and the remaining resources have load
�n/k� and the social cost is (�n/k� n + �n/k� n%k) d.

Proof. Consider a game Unitn,k,d with n unit jobs (or works) wi = 1, 1 ≤ i ≤ n
and r servers (or resources). The broker allocates �n/k� jobs into each server.
After that there remain n%k jobs to allocate. As n%k < n, the broker spreads
these into the different servers (one per server). After such allocation, there are
n%k servers with load �n/k� and r−n%k server with load �n/k�. We can easily
prove that such allocation is a PNE. Moreover any other “type” of allocation is
not a PNE. In such cases there exists an oveloaded server and any job in such a
server has interest to migrate.

194 J. Gabarro et al.

Let us consider the social cost. The n%k servers contribute a social cost of
(n%d)�n/k�2d. The remaining k−n%k servers contribute a cost (n−n%k)�n/k�2d.
The social cost is dk�n/k�2 + d(n%k)(�n/k�2 − �n/k�2) A little thought allows
us to see (n%k)(�n/k�2 − �n/k�2) = (n%k)(2�n/k� + 1) and the social cost is
rewritten as dk�n/k�2 + d(n%k)(2�n/k�+ 1). As k�n/k�+ n%k = n we rewrite
as d�n/k�(n%k) + dn%k. As n%k(�n/k� + 1) = n%k�n/k� we get the final
expression. �	

3 Risk Profiles and Weltanschauung

Risk profiles [5] are used to describe stressed environments in which two compet-
ing forces act on resources. Assume that the set of resources R in an allocation
game is partitioned into two subsets A andD such that R = A∪D andA∩D = ∅.

Subset A is controlled by an agent a called the angel ; A is used to model
resources which behave robustly under stress. When a resource r is selected by
the angel it runs under the angelic delay function dAr . The angel can force angelic
behaviour only for a limited number of resources fA. The angel’s objective is to
improve system behaviour as much as possible.

Subset D is controlled by another agent d called the daemon that exhibits
malicious behaviour. When r is selected by the daemon it runs under the dae-
monic delay function dDr . Again the daemon can affect only a limited number of
resources, fD. The daemon’s objective is to maximise system delay.

We summarize all these ideas into the following definition of risk profile:

Definition 1. Given C = 〈N, R, (wi)i∈N , (dr)r∈R, (Ai)i∈N 〉, a risk profile for
C is a tuple R = 〈C,A,D, fA, fD, (dAr)r∈A, (dDr)r∈D〉.
Risk profiles can model highly non-uniform network behaviour with extreme and
diverse stress levels. For instance, consider two resources r and r′, with delays
dr and dr′ , controlled by the angel. The way that the angel influences r and r′

may be very different: it may be the case that dAr = �√dr� while dAr′ = �ln dr′�.
Some concrete instances of abnormal (angel and daemon) uniform delay func-

tions are considered and the resulting situations (world views) are analysed us-
ing the notion of Weltanschauung. A Weltanschauung defines one uniform type
of stress for the angel and another uniform stress for the daemon. The set of
Weltanschauungs W that are used in the paper are formalised below:

In the first classification the angel and daemon have two possible sensitivities 2

with respect to the environment: an extreme sensitivity (denoted by E) or a
moderate one (denoted by M). The set W combines these sensitivity types. The
set of joint sensitivities is S = {E-E, E-M, M-E, M-M}. At a second level, both

2 In this paper the words sensitivity and moral are used in a mathematical context

which, nevertheless, mimics the usual meaning of these words. In [7] sensitive is

defined as quick to detect, respond to, or be affected by slight changes, signals, or
influences. An alternative meaning (especially well-adapted to the daemon) is easily
offended or upset. It is assumed that angel and daemon act instantaneously on the

environment.

Stressed Web Environments as Strategic Games 195

the angel and the daemon have a joint psychological view of the environment
called here the moral3. A moral is associated with both, the angel and the
daemon conjointly; the set of morals formed by the basic types is:

M = {Crash, Benevolent, Polarized, Schizophrenic}

Formally the set of Weltanschauungs is W = S × M and a Weltanschauung is
written as w ∈ W. Depending on the sensitivity and moral, the angel and the
daemon stress the delay functions of a resource in the following way:

Crash Benevolent Polarized Schizophrenic
E-E dAr =∞ dAr = 0 dAr = 0 dAr =∞

dDr =∞ dDr = 0 dDr =∞ dDr = 0
E-M dAr =∞ dAr = 0 dAr = 0 dAr =∞

dDr = βdr dDr = βdr dDr = βdr dDr = βdr

M-E dAr = αdr dAr = αdr dAr = αdr dAr = αdr

dDr =∞ dDr = 0 dDr =∞ dDr = 0
M-M dAr = αdr dAr = αdr dAr = αdr dAr = αdr

dDr = βdr dDr = βdr dDr = βdr dDr = βdr

1 < α <∞ 0 < α < 1 0 < α < 1 1 < α <∞
1 < β <∞ 0 < β < 1 1 < β <∞ 0 < β < 1

A Weltanschauung w for the case E-E is the list of pairs: (∞,∞), (0, 0), (0,∞)
and (∞, 0). When the angel and daemon have a moderate behaviour (case M-M)
we assume that dAr = αdr dDr = βdr. The values that α and β take depend on
the morals. As we can associate a risk profile to a given w ∈W and as we know
how to stress dr into dAr or dDr , then we can extend the definition of risk profile
to incorporate Weltanschauung:

Definition 2. Let C = 〈N, R, (wi)i∈N , (dr)r∈R, (Ai)i∈N 〉 be a resource allo-
cation game and let w ∈ W be a Weltanschauung. A risk profile is a tuple
R = 〈C,A,D, fA, fD, w〉 where A ∩D = ∅ and A ∪D = R.

Example 4. Consider a risk profile for the game Fortran&MPI Servers (see Ex-
ample 3). Suppose that the angel a controls servers 1 and 2 (i.e. A = {1, 2}) and
the daemon d controls servers 3 and 4 (i.e. D = {3, 4}). Assume that both the
angel and the daemon have limited capacity to act over the game: for instance
fA = fD = 1. Consider the following scenario (where cost functions are again
rounded by the ceiling function):

– The angel a controls a number of servers: assume that one of these servers
fails when put under stress i.e. dAr =∞.

– The daemon d controls a number of robust servers. However, one server’s
performance is degraded under stress and so dDr = βdr where β = 3/2 (note
that β > 1).

3 In [7] moral is defined as conforming to accepted standards of behaviour. In this paper

the moral determines the joint social behaviour of the angel and the daemon.

196 J. Gabarro et al.

This situation is a Crash Weltanschauung w = (∞, 3/2) of type E-M and can be
used to describe the risk profile

Stop&Slow = 〈Fortran&MPI Servers , {1, 2}, {3, 4}, 1, 1, (∞, 3/2)〉. �	
Example 5. A dual scenario arises when the roles of a and d are interchanged:
A = {3, 4}, D = {1, 2} and fA = fD = 1. Now the angel a increases its delay
by a factor 3/2. The daemon d can close a service (d is delighted with such a
possibility). This situation is a Crash Weltanschauung (3/2,∞) with risk profile
Slow&Stop = 〈Fortran&MPI Servers , {3, 4}, {1, 2}, 1, 1, (3/2,∞)〉. �
Both scenarios are analysed using game theory below.

4 Angel-Daemon Games

A risk profile R reflects a strategic situation that can be analysed by an angel-
daemon game4. In such a game, the stress actions are taken by two active players
the angel a and the daemon d. The subset of resources A in R is controlled by
an agent a called the angel. The angel tries to improve the behaviour as much as
possible. To do that, a selects a subset a of fA resources in A. When a resource
r is selected (formally r ∈ a) it runs under the angelic delay function dAr (x).
The angelic cost ca is defined as the (entire) social network cost calculated using
updated (stressed) delays. Thus, ca(σ) ≥ 0. Dually, D in R is controlled by
another agent d called the daemon D. The daemon tries to make the situation
deteriorate as much as possible by choosing fD resources in D. When r is selected
by d, it has a delay dDr (x). The cost to the daemon is defined as cd = −ca. Note
that the definition of the angel and daemon cost functions give rise to opposite
behaviours of a and d: the goal of a is to minimise the overall social cost whereas
d has the opposite strategy. Below is the formal definition of an angel-daemon
game with an associated risk profile:

Definition 3. Given C = 〈N, R, (wi)i∈N , (dr)r∈R, (Ai)i∈N 〉 and a risk profile
R = 〈C,A,D, fA, fD, w〉, the angel-daemon game associated to R is Γ (R) =
〈N ∪ {a, d}, (Ai)i∈N , Aa, Ad, (ci)i∈N , ca, cd〉 where Aa = {a ⊆ A | |a| = fA} and
Ad = {b ⊆ D | |b| = fD}. Given (a, d) ∈ Aa ×Ad the cost function of a resource
r is defined as follows.

dr[a, d] =

⎧⎪⎨⎪⎩
dAr if r ∈ a.
dDr if r ∈ d.
dr if r /∈ (a ∪ d).

Given a strategy profile σ = (s, a, d), player i ∈ N incurs a cost ci(σ) =
dsi [a, d](�si(s)), the angel cost is ca(σ) =

∑
i∈N ci(σ) and the daemon cost is

cd(σ) = −ca(σ).
4 We define a game using the notation given in [6]. A game is a tuple Γ =

〈N, (Ai)i∈N , (ci)i∈N〉 such that N is the set of players, Ai is the set of actions for

player i and ci is the cost of player i.

Stressed Web Environments as Strategic Games 197

Example 6. Consider a one player game SimpleCloud in which a cloud user
wishes to execute a job w with weight 16. Two cloud services can execute w
(i.e. R = {1, 2} and A1 = {1, 2}). The services have delays 1/2 and 1/8, respec-
tively (i.e. d1 = 1/2 and d2 = 1/8). The two possible strategies for job placement
are s1 = 1 or s1 = 2. Suppose that SimpleCloud is stressed using a moderate
sensitivity (type M-M) Crash Weltanschauung w = (2, 2) with two associated
risk profiles, Angel and Daemon .

In the Angel profile the angel controls both resources, A = R, but can act
over only one, fA = 1. Since D = ∅ (and fD = 0) the only strategy for d is
d = ∅. As d cannot “move” the game Γ (Angel) has only two “active players”,
the user and the angel a. If the angel chooses the first service (a = {1}) then
the delays are d1[{1}, ∅] = 2 ∗ 1/2 and d2[{1}, ∅] = 1/8; otherwise a = {2} and
d1[{2}, ∅] = 1/2 and d2[{2}, ∅] = 1/4. Game Γ (Angel) is

user

a
{1} {2}

1 16, 16 8, 8
2 2, 2 4, 4

Γ (Angel)

user

d
{1} {2}

1 16,−16 8,−8
2 2,−2 4,−4

Γ (Daemon)

The strategy (2, {1}, ∅) is the only PNE in Γ (Angel). In this equilibrium, a
increases the delay of the slower service while the job is placed on the faster one.

Given Daemon = 〈Small , ∅, {1, 2}, 0, 1, w〉, the associated game Γ (Daemon),
has again only two effective players (the user and d); Γ (Daemon) has only one
PNE: (2, ∅, {2}). In this case d increases the delay of the faster service and job
w is also allocated to service 2. �	
Example 7. Consider SimpleCloud again (see Example 6). Suppose that a mod-
erate beneficial stress is applied to the game, w = (1/2, 1/2). With risk profile
Angel ′ = 〈SimpleCloud , {1, 2}, ∅, 1, 0, w〉, game Γ (Angel ′) has a PNE (2, {2}, ∅).
With Daemon ′ = 〈SimpleCloud , ∅, {1, 2}, 0, 1, w〉 game Γ (Daemon ′) has a unique
PNE, (2, ∅, {1}). �	
Example 8. Consider game Γ (Stop&Slow) (from Example 4). Consider a risk
profile for Fortran&MPI Servers (Example 3) where the set of players is N ∪
{a, d}, fA = fD = 1 Aa = {{1}, {2}} and Ad = {{3}, {4}}. Suppose that jobs are
allocated using the schedule s = (3, 2, 3, 4, 1). The angel a closes site 1 (a = {1})
while the daemon d chooses to deteriorate the performance of site 3 (d = {3}).
The stressed delay functions dr[a, d] are:

d1[{1}, {3}] =∞, d2[{1}, {3}] = d2 = 1/4,

d3[{1}, {3}] = βd3 = 3/4× 1/4, d4[{1}, {3}] = d4 = 1/8

The preceding profile is not a PNE because wF
5 can improve its situation by

moving from server 1. However, σ = ((3, 2, 2, 4, 2), {1}, {3}) is a PNE. We have
c1(σ) = 4, c2(σ) = c3(σ) = c5(σ) = 4, c4(σ) = 2 with an associated social cost
cs(σ) = 18: in this case ca = 18 and cd = −18. In order to prove that σ is a

198 J. Gabarro et al.

PNE we need to show that no player in N ∪ {a, d} is interested in changing its
strategy.

– It is easy to see that no job i ∈ N can improve their (private) cost ci by
moving to another server.

– If a changes from {1} to {2}, the new profile is τ = ((3, 2, 2, 4, 2), {2}, {3})
and the new cost is c2(τ) = c3(τ) = c5(τ) =∞. Clearly, the angel a will not
make such a move.

– If d changes from {3} to {4}, the profile is τ ′ = ((3, 2, 2, 4, 2), {1}, {4}) and
the new daemon delay functions are d3[{1}, {4}] = 1/4 and d4[{1}, {4}] =
3/2× 1/8. The costs are c1(τ ′) = 3, c2(τ ′) = c3(τ ′) = c5(τ ′) = 4, c4(τ ′) = 3.
and the social cost cs(τ ′) = 18. As social cost of τ ′ is the same as the social
cost of σ, the agent d does not conduct this move. �	

Example 9. Consider the game Γ (Slow&Stop) (Example 5) again. As before
A = {3, 4}, D = {1, 2} and fA = fD = 1. Γ (Slow&Stop) has no PNE. Proof by
case analysis.

– Consider profile σ = (s, a, {1}) where d1[a, {1}] =∞. Suppose that there is
an i ∈ N such that si = 1 (at least one work is placed on server 1). Profile
σ cannot be a PNE because work i can be placed elsewhere to reduce the
social cost.

– Consider profile σ = (s, a, {1}) where no jobs are allocated to server 1 but
there is at least one job allocated to server 2. The daemon d would select
server {2} (rather than 1) to increase the social cost (to infinity). Thus, we
can assume that in a PNE no jobs are placed on servers 1 or 2.

– Consider a profile σ = (s, a, {1}) with no jobs allocated to servers 1 and 2.
Now server 2 works and is free and so the existing Fortran job prefers to
move to server 2 and so we get a contradiction.

Case (s, a, {2}) is similar. �	

5 Snapshots and Anonymous Pure Nash Equilibria

Now we extend the notion of load of a resource �r(s) to obtain information about
the situation of r in relation to a and d. We also add the delay function being
currently used in this resource to obtain an adequate snapshot of the system oc-
cupancy. When we need to make explicit the Weltanschauung we replace dr[a, d]
with dr[a, d, w].

Definition 4. Let Γ (R) be an angel-daemon resource allocation game, R =
〈C,A,D, fA, fD, w〉, with profile σ = (s, a, d). For a resource r ∈ R define two
properties:

affiliation =

{
a if r ∈ A
d otherwise

selected =

{
y if r ∈ a ∪ d

n otherwise

Stressed Web Environments as Strategic Games 199

Property affiliation indicates whether r is controlled by the angel or the daemon.
Property selected denotes whether r’s behaviour is abnormal or not (i.e. whether
r has been chosen by either angel or daemon). A snapshot is a tuple δ(σ, w) =
(δ1(σ, w) | · · · | δk(σ, w)) which provides information about the current state of
each of the resources where δr(σ, w) = (affiliationselected, �r(s), dr[a, d, w])

Snapshots provide a clear picture of (i) the occupancy of resources, (ii) the
strategies of a and d, and (iii) the delay functions applicable to each resource.
When the context is known we abbreviate the notation of a snapshot to δ(w).

Example 10. Consider Unit2,4,d under a risk profile A = {1, 2}, D = {3, 4} and
fA = fD = 1. Given σ = (s, a, d) = ((2, 4), {1}, {4}) and w = (∞,∞), the
snapshot is δ(σ, (∞,∞)) = (ay, 0,∞ | an, 1, d x | dn, 0, d x | dy, 1,∞) �	

Lemma 2. Let R = 〈Unitn,k,d,A,D, fA, fD, w〉, be a risk profile associated with
a unit resource allocation game and Weltanschauung w and let σ = (s, a, d),
σ′ = (s′, a′, d′) be two strategy profiles of the angel-daemon game Γ (R). Then
δ(σ, w) = δ(σ′, w) iff a = a′ and d = d′ and there is a permutation π of {1, . . . , n}
such that π(Lr(s)) = Lr(s′) for any 1 ≤ r ≤ k.

Proof. Define R = {1, . . . , k} and N = {1, . . . , n}. Observe that δ(σ, w) =
δ(σ′, w) implies that a = a′ and d = d′ and that for any r ∈ R.�r(σ) = �r(σ′).
Therefore, for any r ∈ R the number of players in N that select r is the same
for s and s′. Thus there is a bijection between Lr(s) and Lr(s′). The per-
mutation π is obtained by composing the bijection defined for each resource.
Given R = 〈C,A,D, fA, fD, w〉, and strategies σ = (s, a, d), σ′ = (s′, a′, d′) with
a = a′ and d = d′ such that there exists a permutation π : N → N satisfying
π(Lr(s)) = Lr(s′) for r ∈ R, then δ(σ, w) = δ(σ′, w).

Let π be a permutation fulfilling the conditions given in the lemma. As we
have π(Lr(s)) = {π(i) | si = {r}} = {j | s′j = {r}}, for every i there exists j
such that π(i) = j and si = s′j = {r}. Take i and r such that si = sπ(i) = {r},
then

ci(σ) = dr[a, d, w](�r(s)) = dr[a′, d′, w](�r(s′)) = cπ(i)(σ′)

As π is a permutation ca(σ) =
∑

i∈N ci(σ) =
∑

i∈N cπ(i)(σ′) = ca(σ′) and
similarly for d. The conditions on cost follow. Finally, given R, s and s′ such
that a = a′ and d = d′, for any r the parts affiliationselected and dr[a, d, w] coincide
in δr(σ, w) and in δr(σ′, w). Finally, as π(Lr(s)) = Lr(s′), we have �(s) = �(s′)
and both strategies have the same snapshot. �	

Lemma 3. Given Γ (R) for R = 〈Unitn,k,d,A,D, fA, fD, w〉, and σ = (s, a, d),
σ′ = (s′, a, d) such that δ(σ, w) = δ(σ′, w) then σ is a PNE iff σ′ is a PNE.

Proof. There exists π such that the role of player i in s is mapped into the
role of player π(i) = j in s′. We can imagine j as an alias of i. Imagine that
i is interested in changing from r to r̂, that is change si = {r} into ŝi = {r̂},
because ci(σ−i, ŝi) < ci(σ). Note that �r̂(σ) = �r̂(σ′) and �r̂(σ−i, ŝi) = �r̂(σ)+1.

200 J. Gabarro et al.

As si = s′π(i) = {r}, defining ŝπ(i) = {r̂} we have the loads �r̂(σ′
−π(i), ŝπ(i)) =

�r̂(σ′) + 1 = �r̂(σ−i, ŝi) and

cπ(i)(σ′
−π(i), ŝπ(i)) = dr̂[a, b](�(σ′

−π(i), ŝπ(i))) = ci(σ−i, ŝi)

and player π(i) has an interest in changing the strategy. Suppose that a is inter-
ested in changing in σ = (s, a, d) from a to â because ca(s−a, â) < ca(s). Note
that �r(s) = �r(s−a, â) for any r ∈ R, therefore

ca(s−a, â) =
∑
r∈R

�r(s)dr[â, d](�r(s)) = ca(s′−a, â)

and a has an interest in changing also in s′. The daemon has similar behaviour.
�	

In snapshots resource loads are important but the player of the load is not. Thus,
by lemmas 2 and 3, snapshots describe Nash equilibria in an “anonymous way”.
This idea is at the root of the following definition.

Definition 5. A snapshot δ is called an anonymous Nash equilibrium iff there
exists a PNE σ such that δ(σ) = δ.

The following lemma demonstrates that, even in simple cases, the existence of a
set of resources under the control of a daemon prohibits the existence of a pure
Nash equilibrium.

Lemma 4. For any w ∈W, the game Γ (Rw) corresponding to the profile Rw =
〈Unit1,2,d, ∅, {1, 2}, 0, 1, w〉 has no pure Nash equilibria.

Proof. The game Unit1,2,d without an angel or daemon has two Nash equilib-
ria, namely, s1 = {1} or s1 = {2}. The introduction of a daemon changes the
situation completely. Now there are no anonymous Nash equilibria.

Define R = {1, 2}. As in Rw we have A = ∅, D = R, fA = 0 and fD = 1,
by symmetry we have to consider only the snapshots (dy, 1, dD(x) | dn, 0, d(x)),
(dy, 0, dD(x) | dn, 1, d(x)). As usual d(x) = dx. The possible values for a demonic
delay function are dD(x) = ∞, dD(x) = 0, dD(x) = αdx with 1 < α < ∞ and
dD(x) = αdx with 0 < α < 1. Let us consider each case separately.

(1) When dD(x) = ∞ we have to consider two snapshots, (dy, 1,∞ | dn, 0, dx)
and (dy, 0,∞ | dn, 1, dx)}. The first one is not an anonymous Nash because the
player located at r = 1 has an interest in moving to r = 2 improving the cost
from∞ to 2d. The second one is not an anonymous Nash because d has interest
to abandon r = 1 and select (destroy) r = 2 increasing the delay from d to ∞.
(2) When dD(x) = 0 neither (dy, 1, 0 | dn, 0, dx) nor (dy, 0, 0 | dn, 1, dx) are
anonymous Nash. In the first one d has interest to select the second resource
because nobody is using it. In the second one, the user of the resource 2 has
interest to use resource 1.
(3) When dD(x) = αdx with 1 < α < ∞, the analysis of the snapshots
(dy, 1, αdx | dn, 0, dx) and (dy, 0, αdx | dn, 1, dx) is similar to the case dD(x) =∞.
(4) When dD(x) = αdx with 0 < α < 1 the analysis is similar to dD(x) = 0. �	

Stressed Web Environments as Strategic Games 201

6 On Pure Nash Equilibria

As a consequence of the preceding lemma we have the following theorem

Theorem 1. There are tuples 〈Unitn,k,d,A,D, fA, fD〉 such that for any w ∈
W, the profile Rw = 〈Unitn,k,d,A,D, fA, fD, w〉 describes a game Γ (Rw) with
no pure Nash equilibria.

However, when the game has an angel but no daemon d, there are anonymous
Nash equilibria (see below):

Example 11. Given Rw = 〈Unit1,2,d, {1, 2}, ∅, 1, 0, w〉 for any w ∈W. It is easy
to see that, (ay, 0, dA(x) | an, 1, dx) is an anonymous pure Nash equilibrium
when dA(x) =∞ or dA(x) = αdx when 1 < α <∞ (this corresponds to a crash
moral). The following snapshot (ay, 1, dA(x) | an, 0, dx) is an anonymous Nash
when dA(x) = 0 or dA(x) = αdx when 0 < α < 1 (under a benevolent moral) �
When Unitn,k,d is under control of both a and d a variety of situations can arise
(as in the following example):

Example 12. Consider Rw = 〈Unit2,4,d, {1, 2}, {3, 4}, 1, 1, w〉 for any w having
extreme sensitivity. Under Crash there is no pure Nash. In this moral, no player
wishes to allocate work to resources selected by a or d (infinite delay). The
snapshot (ay, 0,∞ | an, 1, dx | dn, 1, dx | dy, 0,∞) is not an anonymous Nash
because d would select resource 3. Similarly (ay, 0,∞ | an, 0, dx | dn, 0, dx |
dy, 2,∞) is not an anonymous pure Nash. The snapshot (ay, 0,∞ | an, 2, dx |
dn, 0, dx | dy, 0,∞) is not stable because one player has an interest in moving to
resource 3. When the moral is benevolent (ay, 2, 0 | an, 0, dx | dn, 0, dx | dy, 0, 0)
is the only anonymous pure Nash equilibrium. When the moral is polarised the
anonymous Nash is (ay, 2, 0 | an, 0, dx | dn, 0, dx | dy, 0,∞). Finally, when the
moral is schizophrenic there is no Nash. In this case no player chooses a resource
selected by a (infinite delay). As the resource selected by d has delay 0 players
will move to this resource but d will subsequently select the other resource. �
When there are enough resources to locate all the players on the angelic side,
sometimes there are Nash equilibria.

Theorem 2. If Rw = 〈Unitn,k,d,A,D, fA, fD, w〉 such that w has moral Crash
or Polarized, fA + n ≤ #A, then Γ (Rw) has always a pure Nash equilibrium.

Proof. Given N = {1, . . . , n}, When there is enough place on the angelic side
and no player i ∈ N is tempted to use a resource in the demonic side the angel
and the players i ∈ N are in agreement.

We consider separately the morals Crash and Polarized. In the case of a Crash
moral, dAr = αd with 1 < α ≤ ∞ and dDr = βd with 1 < β ≤ ∞. Both, a and
d strictly increases de delay (degradates the performance) of fA and fD servers
respectivelly. Consider the possibilities offered to the broker in such a risk pro-
file. Whenever possible, the broker allocates jobs in undegradated servers. As
n ≤ #A − fA the angel has enough undegrated services to allocate the n jobs.

202 J. Gabarro et al.

The broker spreads the n jobs in different servers and the social cost is dn. Let
us see that such an allocation is a PNE.

– As a job i is located in non-degradeted server, job i is not interested to move
into one of the fA + fD servers because delay increases.

– The angel a having selected fA servers has no interest no change the initial
choice. For instance if it degradates a site containing a job, the social cost
becomes (n− 1)d + αd and therefore it increases in (α− 1)d > 0.

– Any change in d makes no change in the social cost.

Consider the case of a Polarized moral. In this case dAr = αd with 0 ≤ α < 1 and
dDr = βd with 1 < β ≤ ∞. The angel a improves fA servers and d degradates fD
servers. Initially the broker could locate the jobs into the untouched serves from
the angelic side, this give a social cost of dn. This allocation is far from to be
a PNE. For instance, a will select and improve min{n, fA} servers containing a
job and the social cost improves to αd min{n, fA}+(n−min{n, fA})d. In many
cases this situation is not yet a PNE. For instance, in the case of α being “really
small”, the jobs remaining in normal servers have interes to move to a server
improved by the angel. Suppopse that such one server contains x jobs with cost
αdx. A job in an a normal server has cost d. This job has interest to move into
an improved server if αd(x + 1) < d. This process will continue until a PNE is
reached. �	

7 Brokering

The use of risk profiles and Weltanschauungs may be extended from modelling
stressful grid environments to deriving resource allocation strategies for brokers.
Given an resource allocation problem C and an adequate risk profile R of a
web environment it is possible to determine if there is a pure Nash equilibrium
in Γ (R); if so the PNE (s, a, d) with optimal cost can be sent from the broker
to each player. Even in cases where there are no PNE the risk profiles for the
environment still provide an abstract description of web interactions which may
provide insights into which resources the broker should utilise.

Different brokers can have different criteria about the adequacy of risk profiles
and which parameters are critical. Depending on the brokers, different criteria
for optimality can be adopted. The following example illustrates how risk profiles
might be utilised by brokers.

Example 13. Consider the allocation problem given by a Unit3,4,d. With no in-
formation about network stress players should (eventually) choose any Nash
equilibrium. A Nash equilibrium is obtained allocating different players in dif-
ferent resources. For instance s1 = 1, s2 = 2, s3 = 3 is a Nash.

Suppose that the allocation problem for Unit3,4,d is submitted to a broker.
The current stress situation about the resources is known by the broker and
is summarised in the risk profile R = 〈Unit3,4,d, {1, 2}, {3, 4}, 1, 1, w〉 with a
benevolent Weltanschauung w = (1/2, 1/2). In Γ (R) the snapshot

(ay, 1, dx/2 | an, 0, dx | dy, 1, dx/2 | dn, 1, dx)

Stressed Web Environments as Strategic Games 203

is an anonymous Nash. The broker forwards to the four players any allocation
consistent with the anonymous Nash. For instance s1 = 1, s2 = 3 and s3 = 4
is a possible allocation and s1 = 3, s2 = 4, s3 = 1 is other possible suggestion.
Note that:

1. In a given allocation some players will have better outcomes than others; for
example, in the first allocation players 1 and 2 have delay d/2 but player 3
has delay d.

2. In different allocations players can have different delays. For example, player
3 has delays d and d/2 in the first and second allocations, respectively.

In this case the behaviour of the broker is clear: it should never propose the
allocation s1 = 1, s2 = 2, s3 = 3 since here is no snapshot consistent with this
allocation which corresponds to an anonymous Nash. If resources 1 and 2 are
selected, the angel a can improve one of them, say the first, giving the initial
snapshot (ay, 1, dx/2 | an, 1, dx | · · · , 1, · · · | . . . , 0, . . .). d will elect to damage
the allocation by choosing resource 4 giving snapshot (ay, 1, dx/2 | an, 1, dx |
dn, 1, dx | dy, 0, dx/2) which does not correspond to an anonymous Nash (player
3 now has an incentive to allocate into resource 4). �	

8 Discussion

Conventionally the behaviour of a web service is captured by treating the service
in isolation. For example, a service level agreement (SLA) might provide infor-
mation about the expected behaviour of a service. In this paper an alternative
view of web services is presented; here the behaviour of a set of services within
a stressed web environment is modelled by a strategic angel daemon game. Two
different abstractions for modelling stressed web environments are presented,
namely, risk profiles and Weltanschauungs. Risk profiles partition web services
into angel and daemon sets. Weltanschauungs consider the various scenarios that
can arise when angels and daemons have uniform abnormal delay functions at
a number of sensitivities. The use of risk profiles and Weltanschauungs raises a
number of questions about how the model should be interpreted in a concrete
situation:

1. How can a set of services be partitioned into angel and daemon controlled
sets?

2. How can a service’s performance improve under stress?
3. How can abnormal bounds for the angel and the daemon be set?

Perhaps one way to interpret the angel/daemon partition is by means of a cost
model: sets of low cost services are liable to be severely affected by stressed
environments – such sets of services may be considered to be under the control
of a daemon. On the other hand expensive services may be responsive even
when the surrounding environment becomes stressed. Note that some services
may be implemented on elastic clouds – as demand increases a service may
call upon more servers to facilitate ongoing requests. In this way it may be the

204 J. Gabarro et al.

case that behaviour in abnormal stressed conditions may even be better than
under normal conditions. However, it seems likely that the choice of the abnormal
bound parameters would have to be made on the basis of experimental evidence.

The work reported in this paper provides insights into the dynamic behaviour
of sets of services embedded within a (stressed) web environment. Treating net-
work stress as a non-cooperative game clearly reflects the experience of web users
and brokers.

References

1. Babaioff, M., Kleinberg, K., Papadimitriou, C.: Congestion games with malicious

players. In: ACM Conference on Electronic Commerce, pp. 103–112 (2007)

2. Baraglia, R., Laforenza, D., Ferrini, R., Adami, D., Giordano, S., Yahyapour, R.: A

study on network resources management in grids. In: CoreGRID-IW, pp. 213–224

(2006)

3. Gabarro, J., Garćıa, A., Clint, M., Stewart, A., Kilpatrick, P.: Bounded Site

Failures: an Approach to Unreliable Grid Environments. In: Danelutto, M.,

Fragopoulou, P., Getov, V. (eds.) Making Grid Works, pp. 175–187. Springer, Hei-

delberg (2007)

4. Gabarro, J., Garćıa, A., Serna, M.: On the Complexity of Equilibria Problems

in Angel-Daemon Games. In: Hu, X., Wang, J. (eds.) COCOON 2008. LNCS,

vol. 5092, pp. 31–40. Springer, Heidelberg (2008)

5. Gabarro, J., Garćıa Serna, M., Stewart, A., Kilpatrick, P.: Analysing Orchestra-

tions with Risk Profiles and Angel daemon Games. In: Gorlatch, S., Fragopoulou,

P., Priol, T. (eds.) Grid Computing Achievements and Prospects, pp. 121–132.

Springer, Heidelberg (2008)

6. Osborne, M., Rubinstein, A.: A Course on Game Theory. MIT Press, Cambridge

(1994)

7. Oxford Dictionaries, http://www.askoxford.com/?view=uk

8. Nisan, N., Roughgarden, T., Tardos, E., Vazirani, V.: Algorithmic Game Theory,

Cambridge (2007)

9. Penn, M., Maria Polukarov, M., Tennenholtz, M.: Congestion games with failures.

In: ACM Conference on Electronic Commerce, pp. 259–268 (2005)

10. Penn, M., Maria Polukarov, M., Tennenholtz, M.: Congestion games with load-

dependent failures: identical resources. In: ACM Conference on Electronic Com-

merce, pp. 210–217 (2007)

11. Koutsoupias, E., Papadimitriou, C.: Worst-case Equilibria. In: Meinel, C., Tison,

S. (eds.) STACS 1999. LNCS, vol. 1563, pp. 404–413. Springer, Heidelberg (1999)

12. Rosenthal, R.: A class of games possessing pure-strategy Nash equilibria. Int. J.

Game Theory 2, 65–67 (1973)

http://www.askoxford.com/?view=uk

An Algebra of Hierarchical Graphs�

Roberto Bruni1, Fabio Gadducci1, and Alberto Lluch Lafuente2

1 Department of Computer Science, University of Pisa, Italy
2 IMT Institute for Advanced Studies Lucca, Italy

Abstract. We define an algebraic theory of hierarchical graphs, whose

axioms characterise graph isomorphism: two terms are equated exactly

when they represent the same graph. Our algebra can be understood as a

high-level language for describing graphs with a node-sharing, embedding

structure, and it is then well suited for defining graphical representations

of software models where nesting and linking are key aspects.

1 Introduction

As witnessed by a vast literature, graphs offer a convenient ground for the spec-
ification and analysis of software systems. Roughly, graphical models expose the
structure of a system in terms of its computational components, their ports and
their connectivity. Using plain hypergraphs (i.e. graphs where nodes and edges
form just sets, with no additional structure), components and connectors be-
come hyperedges and their ports become nodes. Moreover, nodes, hyperedges
and their tentacles can be typed so to discard erroneously linked systems.

In [1] we argue that structured graphs are most suited for service-oriented sys-
tems, where scalable techniques and open-ended specifications are important is-
sues that are not immediately met by plain hypergraphs alone. Structured graphs
offer better support for “understanding” graphs (like parsing and browsing large
systems), for designing systems (like expressing requirements and specifications,
facilitating abstraction and refinement, allowing modularity and seamless aggre-
gation), supporting automated analysis and verification (like model construc-
tion, model conformance, behavioural analysis, assessing sound reconfiguration
and refactoring transformations) and last but not least, for sound and complete
visual encoding of computational systems.

Different kinds of structures can be super-imposed on graphs. First, a graph
G can be enclosed in some sort of box whose label L implicitly defines some
properties of the enclosed graph, i.e., its style (e.g. see the graph transformation
framework in [2]). Figure 1 (left) shows one example of “topologically” labelled
graph, that can be written, e.g., Seq[G] (for the obvious plain graph G derivable
from the figure) or, equivalently, as a membership annotation G : Seq, where
Seq can be read as the set of all (well-linked) sequential graphs.

The “graphs within boxes” view can be enhanced into a “graphs within edges”
view, where boxes have their own tentacles and boxing can be iterated. For ex-
ample, Fig. 1 (right) shows that the sequential composition of sequential graphs
� Research supported by the EU, FET integrated project IST-2005-016004 Sensoria.

M. Wirsing, M. Hofmann, and A. Rauschmayer (Eds.): TGC 2010, LNCS 6084, pp. 205–221, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

206 R. Bruni, F. Gadducci, and A. Lluch Lafuente

Fig. 1. Graphs within boxes (left) and graphs within edges (right) views

still yields a sequential graph. Note that the boxed interfaces are equipped with
tentacles and dotted lines make explicit the link between inner nodes, exposed
by interfaces, and actual nodes (analogous notation will be used in Fig. 6 (right)
and Fig. 7). This way, boxes can be read as enhanced interfaces allowing for more
sophisticated forms of containment, (well-typed) composition, modular specifi-
cation, logical hierarchies or node sharing.

The encoding of configurations given with an algebraic specification language
(e.g. as in process calculi) is best defined by structural induction. In absence of an
algebraic presentation for the target model, an ad-hoc algebraic syntax must be
developed in order to benefit from structural induction in proofs, transformations
or definitions. An example of this is the algebraic presentation of MOF (Meta
Object Facility) metamodels of [3]. Still, most graph models are not equipped
with an algebraic syntax and those that exist require advanced skills to deal with
sophisticated models involving set-theoretic definitions of graphs with interfaces
(e.g. [4]) or complex type systems (e.g. [5]), hampering definitions and proofs.
Moreover, one encounters a severe drawback: namely, the syntax of a graph
formalism is often very different from the source language and not provided
with suitable primitives to deal with features that commonly arise in algebraic
specifications, like names (e.g. references, channels), name restrictions (e.g. hid-
ing, nonce generation) or hierarchical aspects (e.g. ambients, scopes) in the case
of process calculi. Additionally, any graphical encoding involves the challenge
of preserving structural equivalence of system configurations, i.e. ensuring that
structurally equivalent configurations are mapped to isomorphic graphs. For ex-
ample, in graph transformation approaches [6] the soundness of the encoding is
necessary to model dynamic aspects like operational semantics, reconfigurations,
refactorings or model transformations, because the matching of redexes is based
on (sub)graph isomorphism.

In order to overcome such challenges, we have developed a handy syntax for
representing nested graphs and reducing the representation distance w.r.t. spec-
ification languages. The syntax has been first presented in [7] together with a
methodology to encode process calculi like, among other case studies, a sophis-
ticated calculus for the description of service-oriented applications, CaSPiS [8],
whose features posed further challenges to visualisation, due to the interplay of
name handling, nested sessions and a pipeline operator.

The contribution of this paper is to equip the syntax with a set of axioms
and a suitable domain of interpretation, thus resulting in a novel algebra of hier-
archical graphs. The domain of interpretation is a (sound and complete) initial

An Algebra of Hierarchical Graphs 207

Fig. 2. SPS metamodel for our running scenario

model that serves as an original flavour of (layered) graphs: the axioms allow for
term normalization and the interpretation of terms over set-theoretical models
allow us to use the algebra as some sort of intermediate language, reducing the
representation distance between specification languages and structured graph
models. This paper, hence, is the foundational counterpart of our methodologi-
cal approach to the visual specification of systems initiated in [7].

Synopsis. We take a scenario based on a simple metamodel of service oriented
entities as a running example, introduced in § 2. The algebra of nested graphs is
defined in § 3 and its set-theoretical interpretation is defined in § 4, together with
the main result establishing the soundness and completeness of the interpreta-
tion. Finally, related and future works are discussed in § 5 together with some
concluding remarks. A short appendix addresses a practical issue, raised in [7],
concerning the possibility of flattening certain layers of a hierarchical graph.

2 Sites, Processes and Services

Nesting and linking are two key structural aspects that arise repeatedly in
computer systems: consider e.g. the structure of file systems, composite dia-
grams, networks, membranes, sessions, transactions, locations, structured state
machines or XML files. Identifying the right structure and level of abstraction
is fundamental to enjoy scalability. In particular, nesting (called composition in
MOF) plays a fundamental role for abstracting the complexity of a system by of-
fering different levels of detail. We argue that nesting and linking must be treated
as first-class concepts, conveniently represented with a suitable syntax that al-
lows one to express and exploit them. Various graphical models of nesting and
sharing structures already exist but (as we argue in § 5) it seems to us that none
of them offers a syntax as simple and intuitive as the one proposed in this paper.

As a simple running example, we consider the metamodel SPS (for sites, pro-
cesses and services) shown in Fig 2. It fixes an alphabet of (attributed) entities
(sites, processes, derivative and proprietary services) and their possible relations:
processes and services are associated to sites (containment is given by compo-
sition relations, which are denoted by lines decorated with diamonds on the

208 R. Bruni, F. Gadducci, and A. Lluch Lafuente

Fig. 3. An SPS instance as a flat diagram (left) and as a nested graph (right)

container end), proprietary services may use processes, and derivative services
may also require services (association relations are denoted with ordinary ar-
rows). The algebraic presentation of [3] basically consists of representing models
as multisets of (typed) objects with some attributes used for their interrelations
(i.e. references to object identifiers). Roughly, each configuration (object mul-
tiset) corresponds to a flat graph where nodes and edges are used to represent
objects and their relations as depicted in the example instance of Fig. 3 (left),
where a site provides a client certification service (Know Your Customer) built
out from an internal process. Composition is represented just as any other re-
lation (the has and provides relations) which makes it difficult to exploit the
compositional structure to abstract or manipulate such models. For instance, it
is not easy to write a term site(x) that matches a site with any possible config-
uration x of processes and services because the multiset representation requires
us to see the configuration as site(x), C, where site(x) is a configuration con-
taining the process and all its contents for which we need to check that C (the
rest of the configuration) does not contain any object referring to the site as
its container. Matching a term like site(x) in a graphical representation would
mean to match an entire subgraph which is clearly facilitated when graphs are
structured (e.g. hierarchical). For instance, the graph on Fig. 3 (right) offers an
explicit, visual representation of composition by containment. Now, site(x) can
be used to denote a Site-labelled box embedding x (the content of the site).

3 An Algebra of Hierarchical Graphs

We introduce here our algebra of (typed) hierarchical graphs with edge-like in-
terfaces that we call designs. The algebraic presentation of designs has emerged

An Algebra of Hierarchical Graphs 209

during our studies on Architectural Design Rewriting [9] (hence the name) and
it has been inspired by the graph algebra of [10].

Definition 1 (design). A design is a term of sort D generated by the grammar

D ::= Lx[G] G ::= 0 | x | l〈x〉 | G | G | (νx)G | D〈x〉

where l and L are drawn from alphabet E and D of edge and design labels,
respectively, x is taken from a set N of nodes and x ∈ N ∗ is a list of nodes.

As a matter of notation, we let �x� denote the set of elements of a list x and
overload | · | to denote both the length of a list and the cardinality of a set.

Terms generated by G and D are meant to represent (possibly hierarchical)
graphs and “edge-encapsulated” hierarchical graphs, respectively. The syntax
has the following informal meaning: 0 represents the empty graph, x is a discrete
graph containing node x only, l〈x〉 is a graph formed by an l-labeled (hyper)edge
attached to nodes x (the i-th tentacle to the i-th node in x, sometimes denoted
by x[i]), G | H is the graph resulting from the parallel composition of graphs
G and H (their disjoint union up to shared nodes), (νx)G is the graph G after
making node x not visible from the outside (borrowing nominal calculus jargon
we say that the node x is restricted), and D〈x〉 is a graph formed by attach-
ing design D to nodes x (the i-th node in the interface of D to the i-th node
in x).

A term Lx[G] is a design labeled by L, with body graph G whose nodes x are
exposed in the interface. To clarify the exact role of the interface of a design, we
can use a programming metaphor: a design Lx[G] is like a procedure declaration
where x is the list of formal parameters. Then, term Lx[G]〈y〉 represents the
application of the procedure to the list of actual parameters y; of course, in this
case the length of x and y must be equal (more precisely, the applicability of a
design to a list of nodes must satisfy other requirements to be detailed later in
the definition of well-formedness).

Restriction (νx)G acts as a binder for x in G and similarly Lx[G] binds �x�
in G, leading to the usual (inductively defined) notion of free nodes fn(·)

fn(Lx[G]) = fn(G) \ �x� fn(0) = ∅ fn(x) = {x} fn(l〈x〉) = �x�
fn(G | H) = fn(G) ∪ fn(H) fn((νx)G) = fn(G) \ {x} fn(D〈x〉) = fn(D) ∪ �x�
Example 1. Let a, b ∈ E , A ∈ D, u, v, w, x, y ∈ N . We write and depict in
Fig. 4 some terms of our algebra. Nodes are represented by circles, edges by
small rounded boxes, and designs by large shaded boxes with a top bar. The
first tentacle of an edge is represented by a plain arrow with no head, while the
second one is denoted by a normal arrow. If a node is exposed in the interface
we put it on the outermost layer and overlap the edges of the various layers
denoting this with black squares on design borders. In the particular examples
only free nodes are annotated with their identities. Note that this representation

210 R. Bruni, F. Gadducci, and A. Lluch Lafuente

Fig. 4. Some terms of the graph algebra

is informal (alike Fig. 3 (right) and Fig. 5) to give a first intuition of our model of
hierarchical graphs. Next section offers the formal representation of the rightmost
term.

In practice, it is very frequent that one is interested in disciplining the use of
edge and design labels so to be attached only to a specific number of nodes
(possibly of specific sorts) or to contain graphs of a specific topology. To this
aim it is typically the case that: 1) nodes are sorted, in which case their labels
take the form n : s for n the name and s the sort of the node; 2) each label of
E and D has a fixed arity and for each rank a fixed node sort; 3) designs can
be partitioned according to their top-level labels (i.e. the set of design labels D
can be seen as the set of sorts, with a membership predicate D : L that holds
whenever D = Lx[G] for some x and G). When this is the case, we say that a
design (or a graph) is well-typed if for each sub-term Lx[G] we have that the
(lists of) sorts of x and L coincide, and similarly for sub-terms D〈x〉 and l〈x〉.
From now on, we restrict our attention to well-formed designs.

Definition 2 (well-formedness). A design or graph is well-formed if (1) it is
well-typed; (2) for each occurrence of design Lx[G] we have �x� ⊆ fn(G); and (3)
for each occurrence of graph Lx[G]〈y〉, the substitution y/x induces a bijection.

Intuitively, the restriction on the mapping y/x allows x to account for matching
and mismatching of nodes in the interface: distinct nodes in y must correspond to
distinct nodes in x, and if the list x contain repetitions, then all the occurrences
of the same node x in x must correspond to the same node y in y, and vice versa.

In order to have a notion of syntactically equivalent designs (i.e. to consider
designs up to isomorphism), the algebra includes the structural graph axioms
of [10] such as associativity and commutativity for | (with identity 0) and node re-
striction (respectively, axioms DA1–DA3 and DA4–DA6). In addition, it includes
axioms to α-rename bound nodes (DA7–DA8), an axiom for making immaterial
the addition of a node x to a graph where x is already free (DA9) and another
one that makes sure global names are not local (DA10).

An Algebra of Hierarchical Graphs 211

Definition 3 (design axioms). The structural congruence ≡D over well-
formed designs and graphs is the least congruence satisfying

G | H ≡ H | G (DA1) G | (νx)H ≡ (νx)(G | H) if x �∈ fn(G) (DA6)
G | (H | I) ≡ (G | H) | I (DA2) Lx[G] ≡ Ly [G{y/x}] if
y� ∩ fn(G) = ∅ (DA7)

G | 0 ≡ G (DA3) (νx)G ≡ (νy)G{y/x} if y �∈ fn(G) (DA8)
(νx)(νy)G ≡ (νy)(νx)G (DA4) x | G ≡ G if x ∈ fn(G) (DA9)

(νx)0 ≡ 0 (DA5) Lx[z | G]〈y〉 ≡ z | Lx[G]〈y〉 if z �∈
x� (DA10)

where in axiom (DA7) the substitution is required to be a function (to avoid node
coalescing) and to respect the typing (to preserve well-formedness).

Note that ≡D respects free nodes, i.e. G ≡D H implies fn(G) = fn(H). Being ≡D

a congruence, we remark e.g. that Lx[G] ≡D Lx[H] whenever G ≡D H.
In the following, we shall often write L[G]〈y〉 as a shorthand for Ly[G]〈y〉.

Example 2. Recall the example of Section 2 and consider the graph on the right
of Fig. 3. Its syntactical representation site0 is defined as

Site[(νKYCP)(Process[KYCP | attr(name,KnowYourCustomer)]〈KYCP〉
| Prop ietaryService[KYC | attr(name,KnowYourCustomer) | uses〈KYCP〉]〈KYC〉)]r

where attr(l, y) def= (νy)l〈y〉 is an abbreviation for the representation of an at-
tribute as an edge with the name of the attribute as label attached to a new
node representing the value. Note that other representations can be chosen for
a pure graphical representation of attributes (for instance sharing values).

The syntactical presentation is very compact and clean. Note for instance how
some structural constraints are captured: the impossibility for a service to use
a process of another site (an OCL constraint not shown in Fig 2 for brevity) is
ensured by the restriction of the identity of processes inside sites. Now, recall
the convenience of being able to express a term like site(x). In our syntax we
can define site(x) def= Site[x], i.e., a Site-labelled design with some graph x
in it. Clearly, our site0 matches site(x) with x being the graph representing
processes and services of the site. We can then perform some proof based on
induction on the compositional structure of sites but also define rewrite rules
like site(x) | site(y) → site(x | y) for fusing two sites, which would require a
cumbersome set of rules when working with plain graphs or multisets.

Let us now consider the more complex instance of Fig. 5, with some non-
trivial linking modelling the fact that a derivative service (a certified mini credit
service) is built using an external client certification service (KYC). The term
underlying the graphical representation is site0 | site1 where site1 is defined as

Site[(νMCP)(Process[MCP | attr(name,MiniCredit)]〈MCP〉
| DerivativeService[CMC | attr(name,CertifiedMiniCredit)

| uses〈MCP〉 | requires〈KYC〉]〈CMC〉
| ProprietaryService[MC | attr(name,UncertifiedMiniCredit) | uses〈MCP〉]〈MC〉)]

212 R. Bruni, F. Gadducci, and A. Lluch Lafuente

Fig. 5. An instance of the SPS metamodel as a hierarchical graph

It is worth to observe how the model is structured by the graph, hiding the
processes inside sites and allowing for cross-references to services only, as in the
case of the derivative service CMC of site1 that requires the proprietary service
KYC of site0.

One important aspect of our algebra is allowing the derivation of standard rep-
resentatives for the equivalence classes induced by ≡D.

Definition 4 (Normalized form). A term G is in normalized form if it is 0
or it has the shape (for some n + m + p + q ≥ 1, nodes xj and zk, and edges
lh〈vh〉 and Li

yi
[Gi]〈wi〉)

(νx1) . . . (νxm)(z1 | . . . | zn | l1〈v1〉 | . . . | lp〈vp〉 | L1
y1

[G1]〈w1〉 | . . . | Lq
yq

[Gq]〈wq〉)

where all terms Gi are in normalized form, all nodes xj are pairwise distinct, all
nodes zk are pairwise distinct and letting X = {x1, . . . , xm} and Z = {z1, . . . , zn}
we have X ⊆ Z, fn(G) = Z \X and fn(Li

yi
[Gi]〈wi〉) = Z for all i = 1...q.

Proposition 1. Any term G admits a ≡D-equivalent term norm(G) in normal-
ized form.

Roughly, in norm(G) the top-level restrictions are grouped to the left, and all
the global names zk are made explicit and propagated inside each single compo-
nent Li

yi
[Gi]〈wi〉. Up to α-renaming and to nodes and edges permutation, the

normalized form is actually proved to be unique.

An Algebra of Hierarchical Graphs 213

4 A Model of Hierarchical Graphs

The family of hierarchical graphs. We first present the set of plain graphs and
graph layers, upon which we build our novel notion of hierarchical graphs. In
the following, N and A = AE � AD denote the universe of nodes and edges,
respectively, for A indexed over the alphabets E and D.

Definition 5 (graph layer). The set L of graph layers is the set of tuples G =
〈NG, EG, tG, FG〉 where EG ⊆ A is a (finite) set of edges, NG ⊆ N a (finite) set of
nodes, tG : EG → N∗

G a tentacle function, and FG ⊆ NG a set of free nodes. The
set P of plain graphs contains those graph layers G such that EG ⊆ AE .

Thus, we just equipped the standard notion of hypergraph with a chosen set of
free nodes, intuitively denoting those nodes that are available to the environment,
mimicking free names of our algebra. Next, we build the set of hierarchical graphs.

Definition 6 (hierarchical graph). The set H of hierarchical graphs is the
smallest set1 containing all the tuples G = 〈NG, EG, tG, iG, xG, rG, FG〉 where

1. 〈NG, EG, tG, FG〉 is a graph layer;
2. iG : EG ∩AD → H is an embedding function (we say that iG(e) is the inner

graph of e ∈ EG ∩ AD);
3. xG : EG ∩ AD → N ∗ is an exposure function (xG(e) tells which nodes of

iG(e) are exposed and in which order), such that for all e ∈ EG ∩ AD
(a) �xG(e)� ⊆ NiG(e) \FiG(e), i.e. free nodes of inner graphs are not exposed
(b) |xG(e)| = |tG(e)|, i.e. exposure and tentacle functions have the same

arity2

(c) ∀n, m ∈ N we have that xG(e)[n] = xG(e)[m] iff tG(e)[n] = tG(e)[m], i.e.
it is not possible to expose a node twice without attaching it to the same
external node (and vice versa);

4. rG : EG ∩ AD → (NG ↪→ N) is a renaming function (rG(e) tells how nodes
NG are named in iG(e)), such that for all e ∈ EG ∩AD rG(e)(NG) = FiG(e),
i.e. the nodes of the graph are (after renaming) the free nodes of inner layers.

Thus, a hierarchical graph G is either a plain graph, or it is equipped with
a function associating to each edge in EG ∩ AD another graph. The tuple
〈NG, EG, tG, iG〉 recalls the layered model of hierarchical graphs of [2], with iG
being the function that embeds a graph (of a lower layer) inside an edge. Node
sharing is introduced by the graph component FG and the renaming function rG,
inspired by the graphs with (cospan-based) interfaces of [4]. In practice, we shall
often assume that rG(e) (when defined) is the ordinary inclusion: the general
case is useful to embed and reuse graphs without renaming their nodes.
1 Taking the least set we exclude cyclic dependencies from containment, like a graph

being embedded in one of its edges.
2 We shall not put any emphasis on the typing of the graph, but clearly if the set

of nodes is many-sorted an additional requirement should force the exposure and

tentacle functions to agree on the node types.

214 R. Bruni, F. Gadducci, and A. Lluch Lafuente

Fig. 6. A hierarchical graph (left) and its simplified representation (right)

An intuitive way to understand our model is a programming metaphor where
each hierarchical edge e is seen as a procedure declaration: tG(e) are the actual
arguments, xG(e) the formal parameters, FiG(e) the global variables for which
rG(e) acts as aliasing, and NiG(e) \ (FiG(e) ∪ �xG(e)�) the local variables.

Example 3. Consider the last term of Example 1 and its informal graphical rep-
resentation on Fig. 4 (right). Its actual interpretation as a hierarchical graph
appears in Fig. 6 (left) decorated with the most relevant annotations (the ten-
tacle, exposition and renaming functions for the two hierarchical edges). As
witnessed by Fig. 6 (right), we can introduce convenient shorthands, such as
dotted lines for mapping parameters, node-sharing represented by unique nodes
and tentacles crossing the hierarchy levels, dropping the order of tentacles in
favour of graphical decorations (missing or different heads and tails) to get a
simplified notation (reminiscent of Fig. 1 (right)) that still retains all the rele-
vant information. Note that such a simplified representation is very close to the
informal notation of terms of our graph algebra shown in Fig. 4 and Fig. 5.

Example 4. Recall our example of services and the instance with two sites for
which we gave its syntactical representation as site0 | site1 (see Example 2)
and its informal graphical representation (see Fig. 5). Its actual hierarchical
graph is depicted in Fig. 7 where we do not offer all the annotations as in the
previous example and we hide some useless copies of global nodes (just to allow
the reader to focus on the relevant part of the example). To a certain extent, it
might be argued that our formal model is redundant, in the sense that global
nodes require a copy at each subgraph. As we will see, this is necessary for the
completeness result. In the informal presentation, as well as e.g. in a visualising
tool, all copies are put together at the intuitively “right” level.

These examples should hopefully outline how our model of hierarchical graphs
works and the comparison with the informal representation should suggest how
they could be used to obtain an intuitive, clear visualisation. The examples
should also highlight that the algebra is providing a simple syntax that hides the
complexities of hierarchical models. The syntax can then be used in definitions,

An Algebra of Hierarchical Graphs 215

Fig. 7. An instance of our SPS metamodel as a formal hierarchical graph

proofs and transformations in a much more friendly way than would be the case
when working directly with actual graphs.

In the rest of the section we explain how such graphs are obtained out of
terms, but first we have to fix some notation and concepts. In the following,
we shall just use graph in place of hierarchical graph. Note that the embedding
structure forms a directed acyclic graph, whose unfolding we call embedding tree.
The height (resp. depth or layer) of a graph is the height (resp. depth) of its
embedding tree. The leaves of the embedding tree are actually plain graphs. In
the following, H denotes both the set of all such graphs or the category having
such graphs as objects and the following graph morphisms as arrows.

Definition 7 (graph morphism). Let G, H be graphs such that FG ⊆ FH . A
graph morphism φ : G−→H is a tuple 〈φN , φE , φI〉 where φN : NG → NH is a
node morphism, φE : EG → EH an edge morphism, and φI = {φe | e ∈ EG∩AD}
a family of graph morphisms φe : iG(e)−→iH(φE(e)) such that3

1. ∀e ∈ EG, φN (tG(e)) = tH(φE(e)), i.e. the tentacle function is respected;
2. ∀e ∈ EG ∩ AD, φe

N (xG(e)) = xH(φE(e)), i.e. the exposure function is re-
spected;

3. ∀e ∈ EG ∩ AD, ∀n ∈ NG, φe
N (rG(e)(n)) = rH(φE(e))(φN (n)), i.e. the re-

naming function is respected;
4. ∀n ∈ FG, φN (n) = n, i.e. the free nodes are preserved.

In the above definition we abuse the notation by lifting morphisms to sets and
vectors. It is worth to observe that our morphisms are not the most general form
3 Again, many-sorted alphabets would require the morphisms to be type consistent.

216 R. Bruni, F. Gadducci, and A. Lluch Lafuente

one can define. In particular, using the terminology of [11] they are root-level in
the sense that they represent a layer-by-layer embedding. More general notions
are the deep morphisms of [11] which embed a graph G into some lower graph
of the embedding tree of a graph H . However, for the purpose of this paper
our morphisms are enough: we can easily define isomorphisms and the category
obtained has all pushouts, which we use to define a composition operator and
which prepare the ground for some basic pushout-based graph transformations.

Proposition 2 (pushouts [6]). Let φ : G → H, ψ : G → I be injective graph
morphisms. Then, the pushout of φ and ψ always exists.

Here, injectiveness simply means that the underlying functions on the nodes
and edges of the graph layers are also injective. The proof is then easy, since no
item coalescing is forced by the span of arrows, and all the auxiliary functions
(exposure, etc.) are defined in the expected way.

Encoding terms into graphs. The last step before introducing the algebraic char-
acterisation of graphs is the definition of a composition operator. We need how-
ever a few auxiliary definitions.

Definition 8. Let N ∈ N be a subset of nodes of graph G. Then, N̂ is the
hierachical graph given by the tuple 〈N, ∅,⊥,⊥,⊥,⊥, N〉, and inN : N̂ → G is
the obviously defined, injective graph morphism.

We denote the empty function with ⊥, distinguishing it from the empty set ∅.
Definition 9 (graph composition). Let G, H be graphs. Then, the composi-
tion of G and H, denoted G⊕H, is the (codomain of the) pushout of the span

̂FG ∩ FH → G and ̂FG ∩ FH → H.

Graph composition is always defined, thanks to Proposition 2. We are now
ready to see how terms of our algebra can be interpreted as graphs. We as-
sume that subscripts refer to the corresponding encoded graph. For instance,
�G� = 〈NG, EG, tG, iG, xG, rG, FG〉.
Definition 10 (graph interpretation). The encoding �·�, mapping well-formed
terms into graphs, is the function inductively defined as

�x� = 〈{x}, ∅,⊥,⊥,⊥,⊥, {x}〉 �l〈x〉� = 〈
x�, {e′}, e′
→ x,⊥,⊥,⊥,
x�〉
�G | H� = �G�⊕ �H� �0� = 〈∅, ∅,⊥,⊥,⊥,⊥, ∅〉
�(νx)G� = 〈NG, EG, tG, iG, xG, rG, FG \ x〉

�Lx[G]〈y〉� = 〈NG, {e}, e
→ y, e
→ �G�⊕ �
y��, e
→ x, e
→ idN , (FG \
x�) ∪
y�〉

where e′ ∈ AE and e ∈ AD.

The encoding into (plain) graphs of the empty design, isolated nodes and single
edges is trivial. Node restriction consists of removing the restricted node from
the set of free nodes. The encoding of the parallel composition is as expected: a
disjoint union of the corresponding hierarchical graphs up to common free nodes,

An Algebra of Hierarchical Graphs 217

plus a possible saturation of the sub-graphs with the nodes now appearing in
the top graph layer. A hierarchical edge (last row) is basically a graph with a
single edge (which is mapped to the corresponding body graph) and a copy of
the free nodes of the body graph (properly mapped to the corresponding copies
in the body), while adding the names �y� among the free ones.

It is worth to remark that the encoding is surjective, i.e. every graph can be
denoted by a term of the algebra.

Proposition 3. Let G be a graph. Then, there exists a well-formed term G
generated by the design algebra such that G is isomorphic to �G�.

Moreover, our encoding is sound and complete, meaning that equivalent terms
are mapped to isomorphic graphs and vice versa.

Theorem 1. Let G1, G2 be well-formed terms generated by the design algebra.
Then, G1 ≡d G2 if and only if �G1� is isomorphic to �G2�.

The proof proceeds by exploiting the normalized form of well-formed terms. In
fact, by Prop. 3 each graph has associated a well-formed term in normalized
form, and this can be further exploited to prove the uniqueness of such term.

5 Conclusions and Related and Future Works

We introduced a novel specification formalism based on a convenient algebra
of hierarchical graphs: its features make it well-suited for the specification of
systems with inherently hierarchical aspects ranging from process calculi with
notion of scopes and containments (like ambients, membranes, sessions and
transactions) to metamodels with composition relations. Some advantages of
our approach are due to the graph algebra. Most importantly, its syntax resem-
bles standard algebraic specifications and, in particular, it is close to the syntax
found in nominal calculi. The key point is to exploit the algebraic structure of
both designs and graphs when proving properties of an encoding, i.e. to facili-
tate proofs by structural induction. Indeed, the main result of the paper already
guarantees that equivalent terms correspond to isomorphic graphs.

On the algebra of graphs. Our most direct source of inspiration is an approach for
the reconfiguration of software architectures called Architectural Design Rewrit-
ing (ADR) [9], where architectures are encoded as terms of a particular graph
algebra and reconfigurations are defined using standard term rewriting tech-
niques. Our model of hierarchical graphs extends ADR graphs with node sharing
and our algebra equips ADR with a suitable syntax. In particular, original ADR
specifications can be seen as rewrite theories over a signature formed by derived
operations defined by terms closed with respect to nodes. Our algebra, hence, in-
herits the characteristics of ADR, like the ability to nicely model style-preserving
architectural reconfigurations [9].

Our syntax is inspired by the graph algebra proposed in [10]. The main idea
there was to have constructors such as the empty graph, single edges, and parallel

218 R. Bruni, F. Gadducci, and A. Lluch Lafuente

composition, and axioms like associativity and commutativity of such composi-
tion, in order to consider graphs up to isomorphism. Our richer design algebra
includes hierarchical features and it is intended to enable a more suitable rep-
resentation for nominal calculi and their behaviour. A key difference is that in
our initial model, a node restriction cannot cross the boundaries of hierarchical
edges in which it is contained. Adding the corresponding axiom is feasible, even
if it would result in a quite different set-theoretic notion of hierarchical graph.
A less demanding, yet quite useful alternative is linked with the possibility of
“flattening” some of the designs, in order to consider them just as type anno-
tations. Accomodating for these axioms, fruitfully used in [7], would not change
our class of hierarchical class, as shown in the Appendix of the present paper.

Concerning set-theoretical formalisms, a direct reference is the framework for
hierarchical graph transformation introduced in [2], of which our proposal can
be considered an extension, dealing with free names, along the lines of so-called
graph with interfaces discussed in e.g. [4]. Indeed, as far as the mapping of
processes is concerned, our solution follows closely [4]: the operators verifying
the AC1 axioms basically disappear, while name restriction is dealt with by
handling the interfaces. Other models of hierarchical graphs exist in the line
of [2] (e.g. [12,11]), but most of them lack an algebraic syntax and an associated
set of axioms.

On structured graphical models. Our approach is closely related to other for-
malisms that adopt a graphical representation of concurrent systems. Among
those, we mention Bigraphical Reactive Systems (BRSs) [13] and Synchronized
Hyperedge Replacement (SHR) [14].

The syntax of SHR is basically the one of [10], and it is subsumed by our
algebra. Instead, the SHR approach focuses on the description of the operational
behaviour of a system by a set of suitably labelled inference rules, which may
involve complex synchronisations. We discuss later some of the rewriting features
we intend to add to our approach. However, we can safely say that so far the
concerns of the two proposals have been largely orthogonal.

A bigraph is given by the superposition of two independent graphs, repre-
senting the locality and the connectivity structure of a system, respectively. In
our terms, the first specifies the hierarchical structure of the system, while the
second the naming topology. We believe that the two approaches have the same
expressiveness, but argue for the better usability of our syntax and the small,
intuitive set of axioms. Most importantly, BRSs have been mostly studied in
connection with the relative pushout (RPO) technique [15], in order to distill
a bisimilarity congruence from a set of rewrite rules. Our hierarchical graphs
form a category with pushouts (indeed, possibly an adhesive one), and the DPO
approach could be then lifted, as in [2]. Hence, they should be amenable to the
borrowed context technique for distilling RPOs [16]. Our proposal thus fits in the
standard graph-theoretic mold, while its slender syntax provide a simple inter-
mediate language between process calculi and their graphical models. Obviously,
a possible integration is to use our syntax in order to characterise certain classes
of bigraphs (e.g. pure bigraphs). Such an integration is suggested in [17], where

An Algebra of Hierarchical Graphs 219

the authors propose an algebraic syntax for denoting bigraphs and present type
systems to characterise those terms that correspond to particular sub-classes.

On rewriting mechanisms. Concerning the operational behaviour of our speci-
fications, we would like to find a term rewriting-like technique for the reconfig-
uration of designs, and prove it compatible with a graph theoretical approach
for rewriting hierarchical graphs. In other words, the correspondence holding be-
tween designs and hierarchical graphs should be lifted at the level of rewriting.
The standard notions of term rewriting can be applied to our algebra of designs,
simply considering sets of (name and design) variables. The corresponding tech-
nique for graph rewriting is more complex, since most of these techniques are
eminently local, thus making it difficult to simulate the replication of an unspec-
ified design. Nevertheless, since our category admits pushouts, a clear path is
laid down by the use of rule schemata in the DPO approach, as in [2].

Applications. We are applying our technique to various languages, focusing on
process calculi exhibiting nested features. A preliminary proof of the flexibil-
ity of our approach for this purpose is found in [7], offering an encoding of a
session-centered calculus. Another focus is on metamodels, we plan to develop a
technique to distill algebraic specifications out of MOF metamodels, along the
lines of [3] but capturing composition as nesting.

An implementation of our approach and its integration in our prototypical
implementation of ADR [18] in the rewrite engine Maude is under current
work. A preliminary version is available (at http://www.albertolluch.com/
adr2graphs/) as a visualiser that considers our design algebra and some encod-
ings of process calculi like the π-calculus and CaSPiS.

Acknowledgements. We are grateful to Andrea Corradini for his many sug-
gestions and to Artur Boronat for fruitful discussions.

References

1. Bruni, R., Lluch Lafuente, A.: Ten virtues of structured graphs. In: Boronat, A.,

Heckel, R. (eds.) Proceedings of the 8th International Workhshop on Graph Trans-

formation and Visual Modeling Technique (GT-VMT 2009). Electronic Communi-

cations of the EASST, vol. 18. EASST, Berlin (2009)

2. Drewes, F., Hoffmann, B., Plump, D.: Hierarchical graph transformation. Journal

on Computer and System Sciences 64, 249–283 (2002)

3. Boronat, A., Meseguer, J.: An algebraic semantics for MOF. In: Fiadeiro, J.L.,

Inverardi, P. (eds.) FASE 2008. LNCS, vol. 4961, pp. 377–391. Springer, Heidelberg

(2008)

4. Gadducci, F.: Term graph rewriting for the pi-calculus. In: Ohori, A. (ed.) APLAS

2003. LNCS, vol. 2895, pp. 37–54. Springer, Heidelberg (2003)

5. Bundgaard, M., Sassone, V.: Typed polyadic pi-calculus in bigraphs. In: Bossi, A.,

Maher, M.J. (eds.) Proceedings of the 8th International Symposium on Principles

and Practice of Declarative Programming (PPDP 2006), pp. 1–12. ACM, New York

(2006)

http://www.albertolluch.com/adr2graphs/
http://www.albertolluch.com/adr2graphs/

220 R. Bruni, F. Gadducci, and A. Lluch Lafuente

6. Corradini, A., Montanari, U., Rossi, F., Ehrig, H., Heckel, R., Löwe, M.: Alge-

braic Approaches to Graph Transformation - Part I: Basic Concepts and Double

Pushout Approach. In: Rozenberg, G. (ed.) Handbook of Graph Grammars and

Computing by Graph Transformations. Foundations, vol. 1, pp. 163–246. World

Scientific, Singapore (1997)

7. Bruni, R., Gadducci, F., Lluch Lafuente, A.: A graph syntax for processes and

services. In: Jianwen, S., Laneve, C. (eds.) WS-FM 2009. LNCS, vol. 6194, pp.

46–60. Springer, Heidelberg (2010)

8. Boreale, M., Bruni, R., De Nicola, R., Loreti, M.: Sessions and pipelines for struc-

tured service programming. In: Barthe, G., de Boer, F.S. (eds.) FMOODS 2008.

LNCS, vol. 5051, pp. 19–38. Springer, Heidelberg (2008)

9. Bruni, R., Lluch Lafuente, A., Montanari, U., Tuosto, E.: Style Based Architectural

Reconfigurations. Bulletin of the European Association for Theoretical Computer

Science (EATCS) 94, 161–180 (2008)

10. Corradini, A., Montanari, U., Rossi, F.: An abstract machine for concurrent mod-

ular systems: CHARM. Theoretical Computer Science 122, 165–200 (1994)

11. Palacz, W.: Algebraic hierarchical graph transformation. Journal of Computer and

System Sciences 68, 497–520 (2004)

12. Busatto, G., Kreowski, H.J., Kuske, S.: Abstract hierarchical graph transformation.

Mathematical Structures in Computer Science 15, 773–819 (2005)

13. Milner, R.: Pure bigraphs: Structure and dynamics. Information and Computa-

tion 204, 60–122 (2006)

14. Ferrari, G.L., Hirsch, D., Lanese, I., Montanari, U., Tuosto, E.: Synchronised hy-

peredge replacement as a model for service oriented computing. In: de Boer, F.S.,

Bonsangue, M.M., Graf, S., de Roever, W.-P. (eds.) FMCO 2005. LNCS, vol. 4111,

pp. 22–43. Springer, Heidelberg (2006)

15. Leifer, J.J., Milner, R.: Deriving bisimulation congruences for reactive systems.

In: Palamidessi, C. (ed.) CONCUR 2000. LNCS, vol. 1877, pp. 243–258. Springer,

Heidelberg (2000)

16. Ehrig, H., König, B.: Deriving bisimulation congruences in the DPO approach to

graph rewriting with borrowed contexts. Mathematical Structures in Computer

Science 16, 1133–1163 (2006)

17. Grohmann, D., Miculan, M.: Graph algebras for bigraphs. In: Boronat, A., Heckel,

R. (eds.) Proceedings of the 10th International Workshop on Graph Transformation

and Visual Modeling Techniques (GT-VMT 2010). Electronic Communications of

the EASST. EASST, Berlin (2010) (to appear)

18. Bruni, R., Lluch Lafuente, A., Montanari, U.: Hierarchical design rewriting with

Maude. In: Rosu, G. (ed.) Proceedings of the 7th International Workshop on

Rewriting Logic and its Applications (WRLA 2008). Electronic Notes in Theo-

retical Computer Science, vol. 238(3), pp. 45–62. Elsevier, Amsterdam (2009)

19. Drewes, F., Kreowski, H.J., Habel, A.: Hyperedge replacement graph grammars.

In: Rozenberg, G. (ed.) Handbook of Graph Grammars and Computing by Graph

Transformations. Foundations, vol. 1, pp. 95–162. World Scientific, Singapore

(1997)

An Algebra of Hierarchical Graphs 221

Appendix: Flattening

We call a graph flat whenever there is no design in its body. Flattening a design
is done by a kind of hyper-edge replacement [19] in the form of axioms that are
sometimes useful to be included in the structural congruence.

Example 5. Suppose that we want to characterise the set of a-labelled, acyclic,
and connected sequences (see Example 1). We can define an algebra with an ele-
ment α in the sequence, and a binary sequential composition ; . Both are derived
operators defined by α def= A(u,v)[a(u, v)] and X ; Y def= A(u,v)[(νw)(X〈u, w〉 |
Y 〈w, v〉)], where X and Y have type A. Clearly, the algebra as such constructs
hierarchical sequences, where e.g. (α; (α; α))〈x, y〉 and ((α; α); α)〈x, y〉 are not
equivalent graphs due to different nestings.

Definition 11 (flattening axiom). Given a design label L ∈ D, its flattening
axiom flatL is Lx[G]〈y〉 ≡ G{y/x}.
Example 6. By introducing flatA in the algebra of Example 5, the two former
terms (α; (α; α))〈x, y〉 and ((α; α); α)〈x, y〉 are identified, and correspond to the
plain graph (νw1, w2)(a(x, w1) | a(w1, w2) | a(w2, y)).

The above example illustrates the two roles of the nesting operator: as a means
to enclose a graph and as a sort of typed interface to enable disciplined graph
compositions. The presence of flattening axioms makes the first role implicit. The
example also illustrates how graphical encodings of existing (algebraic) languages
are defined and exploited: the main trick is to see the constructors of the original
language as derived operators of the graph algebra.

In the presence of flattening, our main result can be extended just by a minor
change in the graph interpretation of Definition 10, by letting

�Lx[G]〈y〉� = 〈NG, {e}, e
→ y, e
→ �G�⊕ �
y��, e
→ x, e
→ idN , N ′〉 if flatL �∈≡D

�Lx[G]〈y〉� = 〈NG{y/x}, EG{y/x}, tG{y/x}, iG{y/x}, xG, rG, N ′〉 if flatL ∈≡D

where e ∈ AD and N ′ abbreviates (FG \ �x�) ∪ �y�.

Property-Preserving Refinement of Concurrent Systems

Liliana D’Errico and Michele Loreti

Dipartimento di Sistemi e Informatica
Università di Firenze

Abstract. Verification of concurrent systems within the process algebraic ap-
proach can be performed by checking that processes enjoy properties described
by formulae of a temporal logic. However, to use these approach a complete de-
scription of the considered system has to be provided. In a previous work we
propose a formal framework based on an assumption-guarantee approach where
each system component is not considered in isolation, but in conjunction with
assumptions about the context of the component. In the present paper we propose
a procedure to refine the set of context assumptions. In each of the refinement
steps the environment is partially instantiated with a process algebraic term while
formulae satisfaction is preserved.

1 Introduction

Process algebras [14,15,3,1] are a set of mathematically rigourous languages with well
defined semantics that permit describing and verifying properties of concurrent commu-
nicating systems. They provide a number of constructors for system descriptions and
are equipped with an operational semantics that describes systems evolution.

Process algebras and modal logics have been largely used as tools for specifying
and verifying properties of concurrent systems. This also thanks to model checking
algorithms that permit verifying whether a given specification satisfies the expected
properties.

Verification of concurrent systems within the process algebraic approach can be per-
formed by checking that processes enjoy properties described by some temporal logic’s
formulae [10,4]. In this case, concurrent systems are specified as terms of a process de-
scription language, Labelled Transition Systems are associated with terms via a set of
structural operational semantics rules and model checking is used to determine whether
the transition systems associated with those terms enjoy the property specified by the
given formulae.

However, it is not always possible to specify (or know) all the details of a system.
Typical examples are network and distributed systems. These are composed of hetero-
geneous computational units that interact with each other following a predefined pro-
tocol. Even if the protocol governing the interactions among the system components is
completely specified, the precise implementation of each component is not known.

In a previous work [6] we propose a formal framework based on an assumption-
guarantee approach where the verification of a system (a mixed composition � � P)

M. Wirsing, M. Hofmann, and A. Rauschmayer (Eds.): TGC 2010, LNCS 6084, pp. 222–236, 2010.
c� Springer-Verlag Berlin Heidelberg 2010

Property-Preserving Refinement of Concurrent Systems 223

is decomposed into the verification of a subset of the system components (P). These
components are not considered in isolation, but in conjunction with assumptions (�) on
the behaviour of the context where the components will be executed.

In this paper we introduce a set of reduction rules that can be considered the heart of
a Local Model Checking Algorithm. The rules are sound and complete in the sense that
their application permits verifying whether for each process Q satisfying assumptions
�, the composition of P and Q satisfies a property �.

The proposed framework naturally induces a notion of refinement. We say that �2 �Q
refines assumption �1 if and only �2 �Q satisfies �1. At the same time, if �1 �P satisfies
� the same is for �2 � Q�P. By iterating the proposed approach we obtain a method-
ology that permits obtaining a complete description of a system starting from a high
level logical based specification. Moreover, in each step of the refinement procedure
the satisfaction of the expected properties is preserved.

To enable the refinement procedure we introduce a set of rules to compute the Most
General Assumption �, that is the assumptions we have to impose on the environment
to see a given process satisfying the expected formulae. Function � enables the re-
finement procedure for the definition of a whole system starting from a more general
specification.

Related Works. In [2,5] analysis on automated assume-guarantee reasoning are evalu-
ated. Verification is implemented through LTSA and FLAVERS (both based on finite
state automata) and results are not encouraging. In their analysis, assume-guarantee rea-
soning is advocated as a way to lessen the e�ects of the state-explosion problem. The
decomposition of the system is not driven by the environment, but is just a “divide et
impera”. As a consequence, the verification based on automata does not take advantage
of such decomposition.

In [11,12,13] we found an approach similar to the one we have introduced, addressed
from a di�erent point of view. We imagine a well known process immersed into a con-
text not completely known. They describe a system, whose architecture is well known,
composed by a context (well described) containing holes. They introduce a method
(similar to the ours) to obtain a weakest precondition that is used to check if a composed
system satisfies a property. Their methodology avoids the definition of an operational
semantics of formulae, but forces to be aware of the system architecture.

Structure of the paper. The rest of the paper is organised as follows. In Section 2 we
recall the basics of the Calculus of Communicating Systems and the Hennessy-Milner
logic (HML). In Section 3 we recall the dialect of HML [6] that we use to specify the
properties we assume satisfied by the environment. Section 4 presents the proposed
Reduction Rules for the Local Model Checking. In section 5 we present the refinement
procedure and the Weakest Environment function �. Section 6 gives an example of
what one can describe through the introduced framework. Section 7 concludes the paper
with a few final considerations. In the present paper all the proof are only sketched,
detailed proofs can be found in [7].

224 L. D’Errico and M. Loreti

2 Calculus of Communicating Systems

The Calculus of Communicating Systems (CCS) [14,15], one of the most popular pro-
cess calculi, provides a set of operators that permit describing the behaviour of a sys-
tem starting from the specification of its subcomponents. Components interact with
each other by means of actions, atomic and not interruptible steps, which represent in-
put�output operations on communication ports or internal computations of the system.

Let � be an infinite numerable set of channels or ports, a CCS action � can be: an
input over a � �, denoted by a; an output on a � �, denoted by a; an internal compu-
tational step, denoted by �. We assume ¯̄� � �, where � � � � �� � �ā � a � �� � ����.
Actions �̄ and � are said complementary, they represent input and output actions on the
same channel.

The syntax of CCS processes is defined by the following grammar:

P�Q ::� nil � X � ��P � P � Q � P � Q � P�A � P
�
f
�

� ::� ā � a � �

CCS processes and operators have the following meaning:

– nil is the inactive process.
– X is a constant which is assumed defined by an appropriate equation X � P for

some process term P, where constants occur only guarded in P, i.e. under the scope
of an action prefix.

– ��Q is the action prefixing and describes a process that after the execution of action
� behaves like P.

– P � Q is the choice or sum operator and identifies a process that can behave either
like P or like Q.

– P � Q is the parallel composition operator and represents the concurrent execution
of processes P and Q. A synchronisation, generating a � action, can occur when P
and Q execute complementary actions.

– P�A is the restriction operator and models a process that behaves like P, but for the
impossibility of interacting using actions in A 	 �.

– P
�
f
�

is the relabelling operator where f : �
 � is a function that “renames”
actions performed by P.

The operational semantics of CCS is formally defined in Table 1. In the rest of the

paper we will use P
�
�
 to denote that there exists P� such that P

�
�
 P�. Similarly, P

�
�

if �(P
�
�
). We will also write P �
 P� if there exists � such that P

�
�
 P�; �
� is the

transitive and reflexive closure of �
. Finally, we adopt the following notation:

– Proc is the set of all CCS processes;
– Ch(P) denotes the set of channels occurring in P;
– Act(P) denotes the set of actions that P can perform during a computation;
– Init(P) denotes the set of actions that P can immediately perform;
– Der(P) � �Q�P �
� Q�.

Property-Preserving Refinement of Concurrent Systems 225

Table 1. CCS Operational Semantics

��P
�
�� P

P
�
�� P�

P � Q
�
�� P�

Q
�
�� Q�

P � Q
�
�� Q�

P
�
�� P�

P�Q
�
�� P��Q

Q
�
�� Q�

P�Q
�
�� P�Q�

P
�
�� P� Q

�
�� Q�

P�Q
�
�� P��Q�

P
�
�� P�

P[f]
f̂ (�)
���� P�[f]

P
�
�� P�

X
�
�� P�

(X
�
� P)

P
�
�� P�

P�A
�
�� P��A

(�� � � A)

Example 1. A Jobber [15] can assemble three kinds of objects: easy, normal and hard.
To do his work a Jobber can use a hammer or a mallet. Easy objects are done by hand,
hard objects need a mallet whereas normal jobs are built either with a mallet or with a
hammer. This agent can be modeled as follows:

Jobber
�
� inE�outE�Jobber
�inN�doNormal
�inH�doHard

doNormal
�
� geth�puth�outN�Jobber
�getm�putm�outN�Jobber

doHard
�
� geth�puth�outH�Jobber

A signal is received on channels inE, inN or inH to select the kind of object to assemble.
To get hammer and mallet, actions geth and getm are executed. Tools are released by
sending a signal over channels puth and putm. When the job is completed a signal is
sent on channels outE, outN or outH depending on the kind of requested object.

2.1 Hennessy-Milner Logic

Hennessy-Milner Logic (HML) is a modal logic introduced by Hennessy and Milner to
provide a logical characterisation of bisimulation [9]. The syntax of the HML formulae
is the following:

� ::� tt �
��� � �� � �1 � �2 � X � 	X��

A process satisfies
��� (� � �) if and only if action � can be executed leading to
a process satisfying �. Greatest fix-point (X��) can be used for specifying recursive
properties. Greatest fixed-point operator 	X�� acts as a binder for the recursive variable
occurring in �. We say that X occurs free in � if it does not occur under the scope of
	X��. A formula � is closed if no free variable occurs in �; � is well-formed if it is

226 L. D’Errico and M. Loreti

closed and in each sub-formula of the form 	X��, X is positive, i.e. X appears under an
even number of symbols of negation. From now on we will consider only well-formed
formulae.

Other operators can be defined as macro in the HML. In the sequel we let �1 � �2

be �(��1 � ��2) and [�]� be �
����. The former is the logical conjunction operator
whereas the latter is a modal operator satisfied by all the processes that after �, satisfy
�. Formula f f is defined as �tt and the minimum fixed-point
X�� is derived from
�	X���[�X�X]. Macros ��, �1 �� �2 and �� are introduced to simplify properties
specification:

�1 �� �2
�
�
X��2 � (�1 � [�]X �
��true)

�
��

�
� 	X�� � [�]X �

��
�
� true �� �

Semantics of HML formulae is formally defined through an interpretation function � � �
that takes a formula � and a recursion environment Æ, i.e. a function mapping recursion
variable to set of processes, and yields the set of processes satisfying �. Function � � �
is formally defined as follows:

– � tt �Æ � Proc
– � �� �Æ � Proc � � � �Æ
– � �1 � �2 �Æ � � �1 �Æ � � �2 �Æ

– �
��� �Æ �
�
P
�����P� : P

�
�
 P� & P� � � � �Æ

�

– � X �Æ � Æ(X)

– � 	X�� �Æ �
��

S
����S 	 � � �Æ

�
S �X

� �

where Æ[S�X] denotes the function associating S to X and Æ(Y) to each variable Y � X.
A process P satisfies a formula � (P �� �) if and only if P � � � �(�X��). To properly

handle recursive properties in proof systems, it is convenient to extend the syntax of
HML so to annotate recursive variables with set of processes:

	X�P1� � � � � Pn���

where 	X�� can be viewed as a shorthand for 	X� ���. Interpretation function is then
modified as follows:

� 	X����� �Æ � � �
	�

S
����S 	 � � �Æ

�
S �X

� �

The Lemma below guarantees preservation of formulae semantics.

Lemma 1 (Reduction lemma [16]). For each set of processes �,

P �� 	X��� P �� �[X������X]

Example 2. HML can be used to specify properties of the Jobber of Example 1. If one
considers the complete specification of a jobshop, where di�erent jobbers and tools
act and interact with each other in order to satisfies the incoming requests, it could be

Property-Preserving Refinement of Concurrent Systems 227

interesting to verify that every request is eventually satisfied. This property is formalised
as follows:

	X�[inE]��[outE]X
�

[inN]��[outN]X
�

[inH]��[outH]X

(1)

3 Formalising Assumptions for Process Environments

In this section we recall the dialect of HML introduced in [6], thought to specify the
set of properties we assume satisfied by the environment where a process is executed.
Indeed, we consider system specifications composed of two parts: a CCS process P that
specifies the behaviour of a known component, and a set of formulae � that identifies
the set of properties we assume satisfied by the environment where P is executed.

Assumptions on the environment are formalised through a dialect of HML. For this
dialect of HML we are able to define a precise operational semantics, i.e. a relation

of the form �
�
�
 ��. The proposed semantics guarantees that a � exhibits a given

behaviour if and only it is shared among all the processes satisfying �.
Let �� be the set of formulae
, � , � � � defined by the following syntax:

�� ::� tt � �(�) � � � �
 � �
 �
 � � � X � 	X�

where for each 	X�
 we assume each free occurrence of X in
 always occurring under
the scope of a modal even operator.

In �� modal operators of HML are replaced by �(�) and � � � that have the follow-
ing meaning: �(�) states that action � cannot be performed, while � � �
 guarantees
the execution of action � and ensures that after �,
 is always satisfied. For instance,
� � ��(�) is satisfied by ��nil and it is not satisfied by ����nil���nil.

Interpretation function of HML is then extended in order to consider new modal
operators:

– � �(�) �Æ �
�
P
����P �
�

�

– � � � �
 �Æ �
�
P
����P �
�
 & �P� : P

�
�
 P�� P� � �
 �Æ

�

It is easy to prove that modal operators
�� and [�] can be easily expressed, and then
considered as macros, by using those in ��:

��� � �(� � ��� � �(�)) [�]� � � � �� � �(�)

at the same time, it is easy to prove that modal operators in�� can be expressed through
HML operators:

� � �
 � [�]
 �
��tt �(�) � [�] f f

228 L. D’Errico and M. Loreti

Assumptions on environments are then specified through a set � of sets of formulae
in ��. A process P satisfies an assumption � if and only if for each
 � �, P ��
.
Formally:

� � �Æ �

���

�
 �Æ

Even if HML could be used to specify the properties we assume for an environ-
ment, this approach is not suitable for deriving the possible behaviours of the specified
environment. On the contrary, the proposed dialect permits directly characterising the
behaviour that is shared among all the processes satisfying given assumption �.

We let �
 	 �� �Act��� be the transition relation defined in Table 2. Notice that,
a transition can be derived for a � only when each
 � � has only modal operators at
top level. We will refer to this kind of assumptions as determined.

Definition 1.

– For each
 � ��, Init(
) is inductively defined as follows:

Init(tt) � Init(X) � � Init(�
) � Init(
)

Init(� � �
) � Init(�(�)) � ��� Init(X�
) � Init(
)

Init(
1 �
2) � Init(
1) � Init(
2)

– For each � 	 ��:

Init(�) �
	
���

Init(
)

Definition 2.

– An environment � is determined if and only if � � � and for each
 � �,
 �

� � ��� �(�).
– An environment � is inconsistent if and only if either f f � � or both �(�) and

� � �
 belong to �, for some � and
.

Indeed, we cannot directly derive a transition for every �. For instance, let � be:

�
� � �
1 � �(�)

�
�

�
� � �
1 � �(�)

�

This identifies all the environments where either � or � can be executed. In both the
cases, after � (or �), satisfaction of
1 is guaranteed. The point is that � can com-
bine “behaviours” that do not provide a “coherent” specification. In the example above,
� � �
1 � �(�) states that � can be executed and � can not, while � � �
1 � �(�) does
the contrary.

In the rest of the paper � �
 �� indicates that there exists � such that �
�
�
 �� and

�
� �� is the transitive and reflexive closure of
. The interpretation function of
Section 2.1 can be extended in order to consider the assumptions where a process is
executed. The set of processes satisfying � under the assumptions � (� � ��) can be
defined as:

� � �� �de f

P
����Q� Q �� �� P�Q � � � �

�
(2)

Property-Preserving Refinement of Concurrent Systems 229

Table 2. The operational semantics of ��

�� � ��� �
�� ���

�
�
�� ��

� � �	(�)�
�
�� ��

(� � �)

�
�
�� ��

� �
�� � ��� �

�� �� � ���

�
�
�� ��

� �
�� � ��� �

�� ��

(� � �)

We introduce another interpretation function, less restrictive than the one above. This
function will turn out to be useful for the definition of a model checking algorithm.

� � ��� �de f

P
����Q� Q �� �� P�Q � � � �

�
(3)

Example 3. Process Jobber, defined in Example 1, completely describes the behaviour
of a part of the Jobbershop. To specify the rest of the system, formulae in �� can be
used. We can assume that a hammer and a mallet are always available:

	X�� geth �� puth �X � � getm �� putm �X

4 Assume-Guarantee Based Local Model Checking

We present a Local Model Checking Algorithm that permits verifying whether a process
P satisfies a formula � under the assumption that the environment where P is executed
satisfies a given set of formulae � 	 ��.

In [6] we proposed a tableau based proof system, in this section this proof system
is defined through the satisfaction function (Sat). This is syntax-driven and can be
considered the heart of a model checking algorithm.

The operational semantics of Table 1 is extended in order to consider mixed specifi-
cations � � P, with the following rules:

P
�
�
 P�

� � P
�
�
 � � P�

�
�
�
 ��

� � P
�
�
 �� � P

�
�
�
 �� P

�
�
 P�

� � P
�
�
 �� � P� (4)

Definition 3. Sat : �� � Proc �
HML
 �true, false� is a function that starting
from a set of assumptions �, a process P and a property �, returns true if for each
process Q satisfying �, P�Q satisfies the property �. Otherwise it returns false. Sat is
inductively defined in Table 3.

To prove completeness of Sat it is convenient to introduce Sat� function, we will prove
that Sat�(�� P� �) returns true if there exists a process satisfying � such that � is verified.
Sometimes Sat� and Sat coincide, when this is not the case, we distinguish the two
modalities introducing Sat�, with the obvious meaning.

The inductive definition of Sat in Table 3 shows some progress passing from the
left- to the right-hand-side, in fact either the right-hand-side is a truth value, or con-
cerns the satisfaction of reducible assertions or strictly smaller assertions than that on

230 L. D’Errico and M. Loreti

Table 3. Reduction rules for the Local Model Checking Algorithm

Sat(Γ, P, tt) = true if Γ is consistent

Sat(Γ, P, νX {H}ψ) = true if Γ � P ∈ H and Γ is consistent

Sat∀(Γ, P, ψ) = true if Γ is inconsistent.

Sat∃(Γ, P, ψ) = false if Γ is inconsistent.

Sat∀(Γ, P,¬ψ) = ¬ Sat∃(Γ, P, ψ)

Sat∃(Γ, P,¬ψ) = ¬ Sat∀(Γ, P, ψ)

Sat(Γ, P, 〈α〉ψ) = Sat(S1, ψ) ∨ . . . ∨ Sat(Sn, ψ) if (∗)

where {S1, . . . ,Sn} =
{
S′ | Γ � P

α−→ S′
}

Sat(S, ψ1 ∨ ψ2) = Sat(S, ψ1) ∨ Sat(S, ψ2)

Sat(S, νX{H}.ψ) = Sat(S, ψ[νX{H ,S}.ψ/X]) if S � H

Sat(Γ ∪ {tt}, P, ψ) = Sat(Γ, P, ψ)

Sat(Γ ∪ {¬¬Φ} , P, ψ) = Sat(Γ ∪ {Φ} , P, ψ)

Sat(Γ ∪ {¬†(α)} , P, ψ) = Sat(Γ ∪ {� α �tt
}
, P, ψ)

Sat∀(Γ ∪ {Φ1 ∨Φ2} , P, ψ) = Sat∀(Γ ∪ {Φ1} , P, ψ) ∧ Sat∀(Γ ∪ {Φ2} , P, ψ)

Sat∃(Γ ∪ {Φ1 ∨ Φ2} , P, ψ) = Sat∃(Γ ∪ {Φ1} , P, ψ) ∨ Sat∃(Γ ∪ {Φ2} , P, ψ)

Sat(Γ ∪ {¬(Φ1 ∨Φ2)} , P, ψ) = Sat(Γ ∪ {¬Φ1,¬Φ2} , P, ψ)

Sat∀(Γ ∪ {¬� α �Φ}
, P, ψ) = Sat∀(Γ ∪ {†(α)} , P, ψ) ∧ Sat∀(Γ ∪ {� α �tt

}
, P, ψ)

Sat∃(Γ ∪ {¬� α �Φ}
, P, ψ) = Sat∃(Γ ∪ {†(α)} , P, ψ) ∨ Sat∃(Γ ∪ {� α �tt

}
, P, ψ)

Sat∀(Γ, P, ψ) = Sat∀(Γ ∪ {†(α)} , P, ψ) ∧ Sat∀(Γ ∪ {� α �tt
}
, P, ψ) if (∗∗)

Sat∃(Γ, P, ψ) = Sat∃(Γ ∪ {†(α)} , P, ψ) ∨ Sat∃(Γ ∪ {� α �tt
}
, P, ψ) if (∗∗)

Sat(Γ ∪ {νX.Φ} , P, ψ) = Sat(Γ ∪ {Φ[νX.Φ/X]} , P, ψ)

Sat(Γ ∪ {¬νX.Φ} , P, ψ) = Sat(Γ ∪ {¬Φ[¬νX.Φ/X]} , P, ψ) ∨ Sat(Γ ∪ {¬φ[tt/X]} , P, ψ)

(*) Γ determined, α ∈ Init(Γ) and if (α = τ)∀β ∈ Init(P).β ∈ Init(Γ)
(**) α � Init(Γ) and α ∈ Init(P) ∨ α ∈ Init(ψ).

Property-Preserving Refinement of Concurrent Systems 231

the left. We find an exception in the case of reduction rules concerning recursive formu-
lae (F��, E-F��, E-N��F��). We can say that these reductions terminate, with the correct
answer, because we check the satisfaction of assertions by finite-state processes which
means that we cannot go on extending the sets tagging the recursions forever. The fol-
lowing lemma enables the completeness for the algorithm generated from Sat:

Lemma 2. For any �, if Der(P) is finite then

Sat�(�� P� �) � true or Sat�(�� P���) � true

Proof. First we prove that the computation of Sat terminate. Hence we prove the lemma
by induction on the syntax of � and on the length of the computation of Sat (see [7]).

Sat rules are sound and complete in the sense of the theorem below.

Theorem 1. For each process P, �, �, where Der(P) is finite,

P � � � �� �� Sat(�� P� �) � true

Proof. First, by induction on the length of the computation of Sat(�� P� �), it is proved
that if Sat(�� P� �) � true then P � � � ��. Then, Lemma 2 is used to prove complete-
ness (See [7]).

Example 4. Using the Local Model Checking algorithm with the Sat function in Ta-
ble 3, we are able to verify that the process Jobber under the assumptions of Example 3
satisfies the property in Equation 1.

5 Specification Refinement

The approach defined in the previous section naturally induces a notion of refinement.
We say that �2 � Q refines assumption �1 if and only �2 � Q satisfies �1. At the same
time, if �1 �P satisfies � the same is for �2 �Q�P. By iterating the proposed approach we
obtain a methodology that permits obtaining a complete description of a system starting
from a high level logical based specification. In each step of the refinement procedure,
the satisfaction of the expected properties is preserved.

In a refinement step, part of the environment (described through a set of assumptions)
is replaced with a process algebra term modelling a specific behaviour.

To automate this procedure we need a mechanism that starting from a formula � and a
process P identifies the most general assumption we have to impose on the environment,
to see � be satisfied by P. The idea is reminiscent of the weakest precondition [8]
ensuring the satisfaction of a wished postcondition.

In this section we define the Weakest Environment function � that takes a process
P, a formula � and a set of logical variables � and yields a logical formula �� (P� �)
identifying the assumptions on the environment in order to let P satisfy � that is,
�� (P� �) �P � �. The set of logical variables � is crucial to properly handle recursive
formulae. For each variable X and process P we univocally identify the variable XP, we
let VarProc � �XP�X � Var� P � Proc�. Function � : Proc �
HML � 2VarProc
 �� is
inductively defined in Table 4.

232 L. D’Errico and M. Loreti

Table 4. Weakest Environment Function

� (P� tt) � tt

� (P� f f) � f f

� (P����) �
� (P� �)

� (P� ��
�) � ��

� (P� �) �
��

Q:P
�

��Q

� (Q� �)

�
(� � �)

� (P� [�]�) � [�]
� (P� �) �

��
Q:P

�

��Q

� (Q� �)

�
(� � �)

� (P� ��
�) � ��

� (P� �) �
��

Q:P
�

��Q

� (Q� �)

�
�

��
��A��

�
P� :P

�

��P�

��

� (P�� �)
�

� (P� [�]�) � [�]
� (P� �) �
��

Q:P
�

��Q

� (Q� �)

�
�

��
��A��

�
P� :P

�

��P�

[�]
� (P�� �)
�

� (P� �1 � �2) �
� (P� �1) �
� (P� �2)

� (P����
�) �
� (P� [�]��)

� (P� �1 � �2) �
� (P� �1) �
� (P� �2)

� (P��[�]�) �
� (P� ��
��)

� (P� 	X ��� ��) �

�
XP if XP �

	XP ��� �

���XP � (P� �[X ��� ���X]) otherwise

The derivation of a most general assumption implies that for all processes Q satisfy-
ing the computed assumption, P�Q will satisfy the property represented by �.

To make the most general assumption useful to the refinement purpouse, we need
to show that when �� (P� �) � �, for each Q satisfying �, P�Q satisfies � (i.e.
Sat(�� P� �) � true); and viceversa that for each Q such that P�Q satisfies �, Q
satisfies �� (P� �). This will directly hold for the existential version.

Theorem 2 (Most General Guarantee Environment). Let P � Proc (Der(P) finite),
� �
HML and � � ��.

�� (P� �) � � �� �Q� P�Q � � � Q � �

Proof. We prove, by induction on the syntax of � and on the length of the computation
of �� (P� �), that Sat(�� (P� �) � P� �) � true. Moreover, we also show that a
proof for Q ��� (P� �) can be obtained from a proof for Q�P � �,

Example 5. To obtain a refinement of the Jobbershop we can take out a Hammer from
the environment satisfying the property in example 3. We describe the Hammer through

Property-Preserving Refinement of Concurrent Systems 233

a CCS process and hence we compute the weakest assumption guaranteeing the preser-
vation of property (1) in Example 4:

Hammer
�
� geth�puth�Hammer

�� � Hammer� 	X�� geth �� puth �X � � getm �� putm �X
�

�

���	XH

�

Hammer� � geth �� puth �XH � � getm �� putm �XH
�

�

	XH �� getm �� putm �XH � [geth]� puth �XH � [puth]XH � XH

Through the Sat function introduced in Table 3 we can easily prove that the obtained
formula is an environment where the execution of the process Jobber�Hammer satisfies
property (1).

6 Refinement at Work

In this section we provide an example of application of the refinement framework. The
example chosen for this purpouse is Mutual Exclusion, a well known tecnique to avoid
the simultaneous use of common resources in concurrent programming.

Mutual exclusion algorithms are based on the definition of a critical section (a piece
of code enclosing the common resource) and on the implementation of structures able
to protect from simultaneous accesses that could cause inconsistency errors. Access to
critical sections can be regulated by a binary semaphore: any process that wants enter
the critical section must obtain the semaphore, and releases it when leaving the critical
section.

Implementing mutual exclusion can give rise to side-e�ects, e.g. deadlock or star-
vation, due to the wait for the semaphore. We can describe them and many other in-
teresting properties in HML. In other words, we are able to characterize and verify the
behaviour of a system that implements mutual exclusion. The following are examples
of representable properties:

– A process eventually enters the critical section

�1 � �
�
enter�true

– The critical section is protected until a process releases it

�2 � �
�[enter]([enter]false ��
exit�true)

We can describe a system where processes share a critical section through a Mixed
Specification. The part of the system known in detail is defined through a CCS pro-
cess, whereas the part of the system not completely known is defined through a set of
HML formulae (the assumption). The process that waits for the lock to enter the critical
section can be described by Ag:

Ag
�
� p�enter�exit�v�Ag

234 L. D’Errico and M. Loreti

Assumptions on the environment can be described as the set �ME of properties �1 and
�2:

– A semaphore is available in the environment. No process enters in critical section
until semaphore is released:

�1 � 	X��(v) � � p �
�
�(enter) � �(p) � � v � (X � �2)

�

– Another process should enter the critical section. In that case, the semaphore will
be available only after the exit from critical section:

�2�	Y�[�]�(p)�� enter �
�
�(enter) � �(p) � � exit �� � � (Y � �1)

�

We can verify that Ag satisfies properties �1 and �2, when we assume �ME � ��1� �2�

for the environment, running the following:

Sat (�ME � Ag� �1)

and
Sat (�ME � Ag� �2)

Notice that these proofs can be performed without taking care of the exact number of
processes in the system.

Once we have given a representation of the system implementing mutual exclusion,
we can be interested in refining it, taking out the semaphore from the environment.
The first step of refinement lies in concretely describing the process that represents the
semaphore S:

S
�
� p�v�S

The second step lies in determining new assumptions by function �:

�(S � �1) � ��1 � �(v) � �(p) � �(enter)

�(S � �2) � ��2 � 	YS ��(�) � [p]
�
�(p) � � enter � (�(p) � �3)

�

where:
�3 � � exit ��(�) � � v �

�
YS � ��1

�
By iterating the refinement procedure, we can obtain a complete description of the
system starting from a high level logical based specification. Moreover, in each step
of the refinement procedure, the satisfaction of the expected properties is preserved.
After a refinement step, we obtain:

���1� �
�
2� � Ag�S

while satisfaction of considered formulae (�1 � �2) is preserved.
Since both Ag and nil satisfy ��1 � ��2 we are guaranteed that, for each i � 0:

Agi�S �� �1 � �2

where Agi � Ag� � � � �Ag����������������
i times

Property-Preserving Refinement of Concurrent Systems 235

7 Conclusions and Future Works

In this paper we have presented a formal framework that permits verifying properties of
concurrent and communicating systems by using a refinement procedure based on the
assumption-guarantee approach presented in a previous work [6].

Each system component under the analysis is not considered in isolation, but in con-
junction with assumptions about the context of the component. The iteration of the
refinement procedure gives a methodology that permits obtaining a complete descrip-
tion of a system, starting from a high level logical based specification. The proposed
refinement procedure preserves the satisfaction of the expected properties in each step
of the iteration.

In the paper we have also introduced a sound and complete set of reduction rules
(Sat) for a local model checking algorithm that permits verifying whether a process,
executed in an environment for which we provide some assumptions, satisfies a given
formula. It is also ensured that property satisfaction is preserved whenever the context is
partially instantiated (implemented) as a concrete process that verifies the assumptions
we have for the environment.

To enable the refinement procedure we have introduced the Weakest Environment
function �. Such function, starting from a process and a formula, returns the right as-
sumption for the environment where the starter process satisfies the requested property.
The introduced function � is sound and complete in relation to the Sat function for
the model checking.

In the future we plan of introducing the value-passing modality as well as probabilis-
tic and stocastic additions for the proposed framework.

We will look for ways to exploit the Most General Assumption to simplify the speci-
fication of the environment, after each step of refinement, by eliminating what is redun-
dant thanks to the new process. Moreover we will implement the local model checking
algorithm whose rules have been introduced in this paper.

References

1. Bergstra, J.A., Klop, J.W.: Process algebra for synchronous communication. Information and
Control 60(1-3), 109–137 (1984)

2. Bobaru, M.G., Pasareanu, C., Giannakopoulou, D.: Automated assume-guarantee reasoning
by abstraction refinement. In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp.
135–148. Springer, Heidelberg (2008)

3. Brookes, S.D., Hoare, C.A.R., Roscoe, A.W.: A theory of communicating sequential pro-
cesses. J. ACM 31(3), 560–599 (1984)

4. Clarke, E.M., Emerson, E.A.: Design and synthesis of synchronization skeletons using
branching-time temporal logic. In: Proceedings of Logic of Programs, pp. 52–71. Springer,
Heidelberg (1982)

5. Cobleigh, J.M., Avrunin, G.S., Clarke, L.A.: Breaking up is hard to do: An evaluation of auto-
mated assume-guarantee reasoning. ACM Trans. Softw. Eng. Methodol. 17(2), 1–52 (2008)

6. D’Errico, L., Loreti, M.: Assume-Guarantee Verification of Concurrent Systems. In: Field, J.,
Vasconcelos, V.T. (eds.) COORDINATION 2009. LNCS, vol. 5521, pp. 288–305. Springer,
Heidelberg (2009)

236 L. D’Errico and M. Loreti

7. D’Errico, L., Loreti, M.: Property-preserving refinement of concurrent systems. Technical
report, Università di Firenze (2009), at
������������	
���

�
��������
�

8. Dijkstra, E.W.: A Discipline of Programming. Prentice Hall PTR, Upper Saddle River (1997)
9. Hennessy, M., Milner, R.: Algebraic laws for nondeterminism and concurrency. J.

ACM 32(1), 137–161 (1985)
10. Kozen, D.: Results on the propositional �-calculus. Theor. Comput. Sci. 27, 333–354 (1983)
11. Larsen, K.G.: Compositional Theories Based on an Operational Semantics of Contexts. In:

de Bakker, J.W., de Roever, W.-P., Rozenberg, G. (eds.) REX 1989. LNCS, vol. 430, pp.
487–518. Springer, Heidelberg (1989)

12. Larsen, K.G., Milner, R.: A compositional protocol verification using relativized bisimula-
tion. Information and computation 99(1), 80–108 (1992)

13. Larsen, K.G., Xinxin, L.: Compositionality through an operational semantics of contexts.
Journal of Logic and Computation 1(6), 761–795 (1991)

14. Milner, R.: A Calculus of Communication Systems. LNCS, vol. 92. Springer, Heidelberg
(1980)

15. Milner, R.: Communication and Concurrency. Prentice-Hall, Englewood Cli�s (1989)
16. Winskel, G.: Topics in concurrency. Lecture notes. University of Cambridge, Cambridge

(2008), ��������������������������������������	

http://www.dsi.unifi.it/~loreti/
http://www.cl.cam.ac.uk/~gw104/TIC08.ps

Certificate Translation for the Verification of
Concurrent Programs�

César Kunz

IMDEA Software, Spain

FirstName.LastName@imdea.org

Abstract. The increasing presence of multicore execution environments

is stimulating the development of concurrent software, an inherently

error-prone task that affects the trust on the reliability of third-party

code. There is thus a pressing need of providing verifiable evidence on a

concurrent software correctness. Certificate Translation provides a means

to generate verification certificates for complex functional properties.

This technique, consists on progressively transferring verification results

for source programs along a sequence of compilation steps. In previous

work, we have shown how to transform certificates of a sequential pro-

gram in the presence of compiler optimizations. In this article, we have

shown that it is possible to extend certificate translation to the verifica-

tion of concurrent programs, based on an Owicki/Gries-like proof system

for a shared memory model.

1 Introduction

In the last years, there has been an increasing deployment of computational
environments with several processing units. Following this trend, there has been
a strong motivation to take advantage of the computational facilities offered by
these modern architectures. There is an already widespread awareness of the
risks coupled to concurrent program development: program bugs are more likely
to occur due to the complexity of such systems, and the unpredictability of the
scheduler hinders the reproduction of errors and thus program fixing. There is
thus a pressing need to exploit verification methods during code development in
order to provide trust on the reliability of the executable code.

Program certification provides a means to efficiently guarantee that a piece of
executable code satisfies a required policy. Whereas certificate checking is well
understood, certificate generation remains an open problem. In traditional Proof
Carrying Code [8], certificates are generated during the code generation by a new
module incorporated to the compiler. A negative consequence in this approach is
that enforceable properties must be restricted to basic safety policies. In order to
extend the set of enforceable properties to more complex specifications, we have
proposed to rely on source code verification, with the potential cost of human
� This work is partially funded by the EU projects Mobius and HATS, and by the

Spanish project Desafios 10, and by the Community of Madrid project Prometidos.

M. Wirsing, M. Hofmann, and A. Rauschmayer (Eds.): TGC 2010, LNCS 6084, pp. 237–252, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

238 C. Kunz

interaction, and then transfer these verification results to certify the correctness
of the compiled code.

A program compiler is commonly defined as a chain of independent stages that
transforms a source program into executable code. First, the source program is
transformed into a lower-level representation, preserving its overall structure.
Subsequent compiler steps transform the code, inserting, moving and removing
instructions, and possibly affecting the program structure. Finally, in the last
steps, the executable code is generated from the intermediate representations.

In previous work [2,3,1], we have shown that verification conditions are not
preserved in the presence of compiler optimizations, and that they can even turn
the original program specifications invalid. We have proposed then a technique,
certificate translation, that transforms simultaneously the specification and cer-
tificate, for each optimization step.

This article extends previous results on certificate transformation for sequen-
tial programs to a concurrent setting. In particular, we consider a concurrent
program execution as the interleaved semantics of its sequential components,
in a shared-memory model. We adopt a verification infrastructure similar to an
Owicki-Gries logic [11]: verification is split in two independent tasks: for each
component, one first verifies that it satisfies its specification in isolation and
then one must verify that the other concurrent components do not invalidate
this specification. Since the number of verification conditions is exponential in
the size of parallel components, practical applications of Owicki-Gries logics
aim to reduce the number of verification conditions. This is done in general by
grouping code fragments that are known to be atomically executed or by omit-
ting proof obligations that are trivially provable. However, in this article, we
do not refer to any criteria to reduce the number of proof obligations. Instead,
we deal exclusively with the problem of transferring verification evidence in the
presence of optimizations applied to the parallel program components.

Paper overview. In Section 2, we formalize the program representation and pro-
vide a simplified verification framework for concurrent programs. In Section 3,
we show the existence of certificate translators for the verification framework of
the previous section. In Section 3.1, we extend our results on proof-producing
analyzers, a main component in a certificate translation process, to a concurrent
setting. In Section 3.2, we deal with the transformation of verification results in
the presence of compiler optimizations. We conclude and suggest future work in
Section 5.

2 Preliminaries

In this section, we formalize the representation of sequential programs and the
interleaving semantics of the parallel composition. We define a weakest precondi-
tion based verification framework for sequential components and extend it later
to deal with concurrent programs.

Certificate Translation for the Verification of Concurrent Programs 239

integer expressions e ::= n | x | e + e | e ∗ e | . . . | a[e]
boolean expressions b ::= true | false | e = e | e ≤ e | b ∧ b | . . .

statements c ::= skip | x := e | a[e] := e | return e | b?

Fig. 1. Sequential Program Statements

Definition 1. A sequential program is defined as a directed graph 〈N , E , G〉,
with the set of nodes N representing the program points. The graph edges are
defined by the finitely branching relation E ⊆ N ×N . The function G maps every
edge e in E to a statement from the grammar in Fig. 1.

The set of execution environments Env is defined as mappings from scalar and
array variables to integer and vector values, respectively. The non-deterministic
program semantics is formalized by the relation �⊆ State× State, where State
stands for the set N × Env. Given a program 〈N , E , G〉, we define the relation
〈l, η〉� 〈l′, η′〉 in terms of the statement G[〈l, l′〉]. For the conditional statement
b?, 〈l, η〉 � 〈l′, η′〉 iff η = η′ and b evaluates to true in η. For the assignment
x := e, 〈l, η〉 � 〈l′, η′〉 iff η′ = [η : x �→ n] where n is the result of evaluating
e in η. We assume that there is a distinguished node linit from which execution
starts. Also, for simplicity, we assume there is a single output node lout ∈ N ,
such that for every l ∈ N , 〈lout, l〉 �∈ E . A program reaches a final environment
η′ if 〈linit, η〉�� 〈lout, η

′〉, where �� denotes the reflexive and transitive closure
of the relation �.

Concurrent programs. A concurrent program is defined as the parallel compo-
sition of a set of sequential programs. In the sequel, for readability, we consider
the parallel composition of two sequential programs Pa and Pb. The definitions
and results of this section can be easily generalized to an arbitrary number of
sequential components.

We model the interleaved semantics of sequential programs by a new sequen-
tial program with an equivalent non-deterministic semantics. That is, from the
sequential components Pa and Pb, we define a new sequential program P whose
non-deterministic semantics formalizes the interleaving semantics of Pa ‖ Pb.

Definition 2 (Concurrent Program). Consider the two sequential programs
Pa = 〈Na, Ea, Ga〉 and Pb = 〈Nb, Eb, Gb〉. We define the parallel composition
Pa ‖ Pb as the tuple 〈Na ×Nb, E , G〉, where:

– E = {〈(la, lb), (la, l′b)〉 | (la ∈ Na) ∧ 〈lb, l′b〉 ∈ Eb} ∪
{〈(la, lb), (l′a, lb)〉 | (lb ∈ Nb) ∧ 〈la, l′a〉 ∈ Ea}

– G[〈(la, lb), (l′a, lb)〉] = Ga[〈la, l′a〉]
– G[〈(la, lb), (la, l′b)〉] = Gb[〈lb, l′b〉]

From the definition, an execution point in the concurrent program Pa ‖ Pb

will be determined by the current execution point in each of its components
(i.e., N = Na × Nb). An execution step in any of the program components is
considered an execution step of the whole program. Finally, the entry (output)

240 C. Kunz

G[〈l, l′〉] = skip⇒ wp〈l,l′〉(ϕ) = ϕ

G[〈l, l′〉] = x := e ⇒ wp〈l,l′〉(ϕ) = ϕ[e/x]

G[〈l, l′〉] = a[e] := e′ ⇒ wp〈l,l′〉(ϕ) = ϕ[[a:e�→e′]/a]

G[〈l, l′〉] = return e ⇒ wp〈l,l′〉(ϕ) = ϕ[e/res]

G[〈l, l′〉] = b?⇒ wp〈l,l′〉(ϕ) = b⇒ ϕ

Fig. 2. Definition of function wp

point of the composed program is set as the execution point in which every
component is at its initial (final) node. Here we assume that the semantics of Pa

and Pb are modeled with the finest possible granularity level in order to safely
capture every possible semantics interleaving.

Program verification. Given a program 〈N , E , G〉, we formalize a program
specification as a partial function from the set of program nodes N to first-order
logical formulae. For a program node l ∈ N , the annotation associated to l
characterizes the set of states that can reach the program point l.

Definition 3. We say that a specification annot is a sufficient annotation for
a program 〈N , E , G〉 if the nodes linit and lout are in the domain of annot, and
every cycle in the graph 〈N , E , G〉 contains at least one node in the domain of
annot.

The definition above requires a specification annot to provide not only a pre
and postcondition annot(linit) and annot(lout) but also at least one invariant for
every program loop. A sufficient annotation provides an induction principle (with
dom(annot) the set of base cases) that is useful to prove the results presented in
this article. In the following, we implicitly require specifications to be sufficient
annotations.

From a program 〈N , E , G〉 and a sufficient annotation annot, one can define a
total annotation annot by setting:

– annot(l) = annot(l) if l ∈ dom(annot)
– annot(l) =

∧
〈l,l′〉∈E wp〈l,l′〉(annot(l′))

where the standard function wp〈l,l′〉 is defined in Fig. 2.
In order to provide efficiently verifiable evidence of a program correctness, we

incorporate a notion of certificates to the wp-based verification framework:

Definition 4. A sequential program is certified to satisfy the specification annot,
if for every l ∈ dom(annot) there is a certificate cl of the following proof goal:

annot(l)⇒
∧

〈l,l′〉∈E
wp〈l,l′〉(annot(l′))

The concrete certificate representation may vary. In this article, we do not base
our exposition on a particular implementation of certificates. Instead, we rely on
an abstract domain of certificates, closed under basic operations.

Certificate Translation for the Verification of Concurrent Programs 241

axiom : C(a ⇒ a)

weak∧ : C(a ⇒ b)→ C(a ∧ c ⇒ b)
weak∨ : C(a ⇒ b)→ C(a ⇒ b ∨ c)
elim∧ : C(c ∧ a ⇒ b)→ C(c⇒ a)→ C(c ⇒ b)
intro∨ : C(a ⇒ c) → C(b⇒ c)→ C(a ∨ b⇒ c)
intro∧ : C(a ⇒ b)→ C(a ⇒ c) → C(a⇒ b ∧ c)

Fig. 3. Proof Algebra

Definition 5 (Certificate infrastructure). A certificate infrastructure con-
sists of an algebra C that assigns to all formulae a, a′ a set of certificates C(a⇒
a′) such that:

– C is closed under the operations of Fig. 3, where a, b, c are formulae;
– C is sound, that is, for every a, a′, if a �⇒ a′, then C(a⇒ a′) = ∅.

In the following, we write c : a⇒ a′ to denote c ∈ C(a⇒ a′).
The soundness of the wp-based verification environment requires proving, for

all 〈l, l′〉 ∈ E and assertion φ, that if wp〈l,l′〉(φ) holds in η and 〈l, η〉� 〈l′, η′〉 then
φ holds in η′. Assume that the certificate infrastructure is sound. Then, from
the soundness of the verification framework, if the program 〈N , E , G〉 is certified
to satisfy a specification annot, then every execution 〈linit, η〉�� 〈lout, η

′〉 with η
satisfying annot(linit) is such that η′ satisfies annot(lout).

Example 1. Consider as example the verification of the producer-consumer pro-
gram shown in Fig. 4, represented in a simple imperative language. We assume
the variables in and out are initially equal to 0. A representation of the producer
component as a directed graph is given in Fig. 5.

The specification annot for the program graph of Fig. 5 is defined as:

annot(l1) = Inv ∧ in ≤ M annot(l2) = Inv ∧ in < M
annot(l5) = annot(l4) annot(lf) = Inv ∧ in = M
annot(l3) = Inv ∧ in < M ∧ in− out < N
annot(l4) = Inv ∧ in < M ∧ in− out < N ∧ buffer[in mod N] = a[in]

In order to attest that the producer component satisfies the specification above,
one must provide, among others, a formal certificate for the following proof
obligations:

– annot(l2)⇒ wp〈l2,l3〉(annot(l3)), and
– annot(l5)⇒ wp〈l5,l1〉(annot(l1));

that is,

– Inv ∧ in < M ⇒ in− out < M ⇒ Inv ∧ in < M ∧ in− out < N , and

– Inv ∧ in < M ∧ in− out < N ∧ buffer[in mod N] = a[in]

⇒ ∀k. out ≥ k < in + 1 ⇒ a[k] = buffer[k mod N] ∧ in + 1 = M

242 C. Kunz

Producer :

l1 : while in < M {Inv ∧ in ≤ M} do

l2 : {Inv ∧ in < M}
(in− out < N)?

l3 : {Inv ∧ in < M ∧ in− out < N}
buffer[in mod N] := a[in]

l4 : {Inv ∧ in < M ∧ in− out < N ∧ buffer[in mod N] = a[in]}
in := in + 1

lf : {Inv ∧ in = M}

Consumer :

while out < M {Inv2 ∧ out ≤ M} do

{Inv2 ∧ out < M}
(out < in)?

{Inv2 ∧ out < M ∧ out < in}
b[out] := buffer[out mod N]

{Inv2 ∧ out < M ∧ out < in ∧ b[out] = a[out]}
out := out + 1

{Inv2 ∧ out = M}
where

Inv
def
= ∀k. out ≤ k < in⇒ a[k] = buffer[k mod N]

Inv2
def
= Inv ∧ ∀j. 0 ≤ j < out⇒ a[j] = b[j]

Fig. 4. Producer-Consumer Program

Verification of concurrent programs. We illustrate with a short example the
set of proof obligations required for the verification of a concurrent program.
Consider the short code fragment at the left, containing a statement y := 2 ∗ x
at node l with successor node l′.

l : {x ≥ 0}
y := 2 ∗ x

l′ : {y ≥ 0}

lb : {even(y)}
x := zy

. . .

A specification annota such that annota(l) = x ≥ 0 and annota(l′) = y ≥ 0,
can be certified to hold for the component at the left from the validity of the
verification condition annota(l)⇒ wp〈l,l′〉(annota(l′)), that is x ≥ 0⇒ 2 ∗ x ≥ 0.
In a concurrent environment, however, the execution of the code at the right
may invalidate the local specification annota. In this example, this is the case of
the assertion annota(l) = x ≥ 0 and the execution of the statement x := zy.

In order to verify that the local specification annota is not invalidated by the
code at the right, one must rely on the local specification annotb. In this example,
one can show that x ≥ 0 is preserved by the execution of x = zy, assuming
the precondition annotb(lb) = even(y). Formally, this requires discharging the
verification condition annotb(lb) ∧ annota(l′)⇒ wp〈lb,l′b〉(annota(l′)). Proving the
preservation of y ≥ 0 is straightforward. Reciprocally, annotb(lb) must also be
proved stable with respect to the assignment at the edge 〈l, l′〉 of program Pa.

Certificate Translation for the Verification of Concurrent Programs 243

l1 l2in < M?

l3

in− out < N?

l4

buffer[in mod N] := a[in]

l5

skip

in := in + 1

lf

in ≥ M?

Fig. 5. Graph representing the Producer component

Notice that in contrast to previous definitions we must require the specifications
annota and annotb to be total.

Definition 6. Let P the parallel composition of the sequential components P1,..,
Pk. P is certified to satisfy the specification 〈annot1, . . . , annotk〉 if for all i ∈
[1, . . . , k]:

– there is a certificate ci for program Pi and specification annoti, and
– for all j �= i, annoti is certified to be stable under the execution of Pj modulo

annotj. That is, for every l ∈ Ni and 〈lj , l′j〉 ∈ Ej we have a certificate

c′i(l, lj, l
′
j) : annoti(l) ∧ annotj(lj)⇒ wp〈lj,l′j〉(annoti(l))

Example 2. In this example, we proceed with the verification of the parallel
composition of the sequential components producer and consumer.

Among the verification condition to prove the stability of the annotations for
the consumer with respect to the producer, we have to prove for instance

Inv2 ∧ in− out < N ∧ buffer[in mod N] = a[in] ∧ annot(l1)
⇒ wp(out := out+ 1, annot(l1))

that is, we must provide a certificate for the following goal:

Inv2 ∧ in− out < N ∧ buffer[in mod N] = a[in] ∧ Inv ∧ in ≤M
⇒ ∀k. out+ 1 ≤ k < in⇒ a[k] = buffer[k mod N]

3 Certificate Translation for Compiler Optimizations

A compiler optimization is commonly performed in two phases. First, an analyzer
computes static information from the program representation. Based on this
analysis result, a second phase performs a semantic preserving transformation.

We have shown that verification conditions are not preserved in the presence
of program optimizations [2], and thus the original certificates cannot be reused.

244 C. Kunz

Furthermore, even semantics-preserving optimizations may render the original
specification invalid. Consider the following sequential program transformation:

x = 0;

while (x < N)

x = x + 1;

y := x

−→
x = 0;

while (x < N)

x = x + 1;

y := N

Assuming 0 ≤ N , the transformation is semantics preserving. Suppose that the
program in the left has been verified against a postcondition x = y and loop
invariant true. That involves discharging, among others, the proof obligation
true∧¬(x < N)⇒ x = x. After the program transformation, however, this proof
obligation becomes invalid: true ∧ ¬(x < N)⇒ x = x.

For many program optimizations, certificate translation solves this problem
by strengthening the original specification with the information provided by the
analysis that justifies the optimization. In the example above, this consists of
replacing the original invariant by x ≤ N . However, whereas invariant strength-
ening enables one to preserve verification results in the presence of optimizations,
it requires the automatic generation of certificates for analysis results. First, one
must require the information provided by the analyzer to be representable as a
program specification. Then, an automatic process must be defined in order to
discharge the verification conditions computed from the result of the analysis as
specification.

In the rest of this section, we postulate a set of sufficient conditions for the
existence of certifying analyzers. We then proceed to explain a certificate trans-
formation procedure that merges the original specification with the result of the
analysis justifying the program transformation.

3.1 Certifying Analyzers

In this section, we first provide an abstract formalization of program analyzers
and briefly review previous results on certifying analyzers. We then consider
the existence of certifying analyzers for a concurrent programming setting. The
existence of such analyzers is conditioned by a set of verification conditions
formulated in our abstract setting.

Definition 7. An analysis framework for a program 〈N , E , G〉 is defined as a
tuple I = 〈A, {Te}e∈E , f〉 where:

– A = 〈A,!,�,	,⊥,"〉 is the lattice domain of the analysis. Every element
in A is interpreted as a property on execution states.

– for every e ∈ E, Te : A → A is a transfer function that approximates the
program semantics in the abstract domain A.

– f is the flow of the interpretation, either backwards (f =↑) or forwards
(f =↓).

Although standard, we illustrate this definition with the formalization of a
static analysis that determines whether variables hold even or odd values.

Certificate Translation for the Verification of Concurrent Programs 245

Let Par stand for the set {even, odd,"} with an order relation % defined as
{(odd,"), (even,")} (the " symbol indicates that nothing is known about a
value). We define the abstract analysis domain as A = 〈A,!,	, ..〉, where A is
the set of stores that map variables to elements in Par plus a special symbol ⊥,
and ρ ! ρ′ if and only if ρ = ⊥ or, otherwise, for all variable x we have ρx % ρ′x.
Suppose we have an interpretation function [[.]] that takes an integer expression
and an abstract store and returns an element in Par. For instance, for an ab-
stract store mapping y and z to even and ", respectively, the expressions y + 1
and z + y are interpreted as odd and ", respectively. Then, for an edge holding
an assignment x := e, one can define a corresponding forward transfer function
mapping every abstract store ρ to [ρ | x �→ [[e]]ρ].

For every abstract domain A, we assume a satisfaction relation |=A⊆ Env×A
(we omit the underscore A in the rest of the article), and denote |= η : a when
η ∈ Env “satisfies” the property a ∈ A. In addition, we assume the existence of
a representation function γ, mapping elements in A to its representation as a
logical formula.

Given an analysis with domain A for a program 〈N , E , G〉, an analysis result
is provided by a labeling S : N → A (for simplicity we assume every analysis
result to be a total function on N). Commonly, an analysis result is computed by
iterative approximations until a fixpoint is reached. However, in this article we
do not consider any particular method for the computation of analysis results.
Instead, we characterize valid analysis results as labellings that satisfy a set of
conditions defined in terms of the transfer functions.

Definition 8 (Solution). A labeling S : N → A is a solution of the analysis
framework 〈A, {Te}e∈E , f〉 if for all 〈l, l′〉 in E:
– f =↓ and T〈l,l′〉(S(l)) ! S(l′), or
– f =↑ and S(l) ! T〈l,l′〉(S(l′)).

In order to ensure that a solution of the analysis is valid over-approximation of
the program semantics, one must require a consistency relation between each
abstract transfer function Te and the corresponding semantics relation for the
edge e. Instead of stating the consistency relation with respect to the concrete
semantics, we formalize it in this article in terms of the verification framework.
In the following, we show that one can define a certifying analyzer provided there
is a certificate of the consistency of the analyzer with respect to the verification
framework.

Consider a program analysis 〈A, {Te}e∈E , f〉, and a representation function
γ mapping elements in A to first-order formulae. This consistency property is
formulated as a relation between the wp and the analysis transfer functions.

Definition 9 (Consistency). Let I = 〈A, {Te}e∈E , f〉 be a program analysis
and γ a representation function. The analysis I is consistent with the verification
framework if for all a, a′ ∈ A and 〈l, l′〉 ∈ E, we have a certificate cons s.t.:

– f =↑ and cons : wpe(γ(a))⇒ γ(Te(a)), or
– f =↓ and cons : wpe(γ(Te(a)))⇒ γ(a).

246 C. Kunz

monotγ : C(γ(a1)⇒ γ(a2)) if a1 � a2

monotwp : C(a1 ⇒ a2)→ C(wp(a1)⇒ wp(a2))

distr(γ,
) : γ(a1) ∧ γ(a2) ⇒ γ(a1 � a2)

distr←(wp,∧) : wp(a1) ∧ wp(a2)⇒ wp(a1 ∧ a2)

distr→(wp,∧) : T (a1 ∧ a2)⇒ T (a1) ∧ T (a2)

Fig. 6. Certificates required for certificate translation (excerpt)

Provided there are certificates for the monotonicity of the representation function
γ and for the distributivity of the transfer functions with respect to the operator
�, we know from previous results that a consistent analyzer is certifying:

Lemma 1. Let I = 〈A, {Te}e∈E , f〉 be a program analysis and γ a representation
function, such that I is consistent with the verification framework. Suppose that
there are certificates monotγ(a, a′) (for every a, a′ ∈ A such that a ! a′) and
distr(γ,
), as defined in Fig. 6. If the labeling S : N → A is a solution of I, then
one can generate a certificate for the specification γ ◦ S.

In the rest of this section, we present an extension of the result above to consider
the existence of certifying analyzers for concurrent programs.

Analysis of concurrent programs. As with program verification, one must refine
the definition of analysis result to require not only the validity of a labeling with
respect to a sequential program execution, but also its stability with respect to
the execution of the other components.

Suppose an execution of Pa in a concurrent environment from the initial label
linita to a final label lo ∈ Na, that is, 〈(linita, l), η〉�� 〈(lo, l′), η′〉 for some η, η′ ∈
Env. From the definition of �, the execution may traverse an arbitrary number
of edges in Eb, affecting the execution of Pa. In that situation, we cannot ensure
that |= η : Sa(linita) implies |= η′ : Sa(lo).

We say that a condition a at node l ∈ Na is stable with respect to Pb and
labeling Sb if the concurrent execution of Pb does not invalidate a as long as Pb

satisfies Sb. The following definition formalizes this requirement.

Definition 10 (globally-stable solution). A labeling Sa for program Pa, is
a stable solution of Ia, with respect to program Pb with labeling Sb, if it is a
solution of Ia and for every edge 〈lb, l′b〉 ∈ Eb and node l ∈ Na the following
condition holds:

– f =↑ and Sb(lb) � Sa(l) ! T〈lb,l′b〉(Sa(l)) or,
– f =↓ and T〈l′b,lb〉(Sb(l′b) � Sa(l)) ! Sa(l).

We define a labeling for a concurrent program as a tuple of labellings, one for each
of the parallel components. Consider the sequential programs Pa and Pb and the
corresponding analyzers Ia = 〈A, {T a

e }e∈Ea, f〉 and Ib = 〈A, {T b
e }e∈Eb

, f〉. Let the

Certificate Translation for the Verification of Concurrent Programs 247

labellings Sa and Sb be specifications for the programs Pa and Pb, respectively.
We define then a labeling for the parallel composition.

Definition 11 (Solution for a Concurrent Program). A labeling 〈Sa, Sb〉
is a solution of the analysis (Ia, Ib) for the concurrent program Pa ‖ Pb , if Sa

and Sb are solutions of Ia and Ib, respectively, and Sa is stable w.r.t. Pb and Sb,
and Sb is stable w.r.t. Pa and Sa.

Suppose that Ia and Ib are consistent with the semantics of Pa and Pb respec-
tively. It follows from Definition 11 that, if (Sa, Sb) is a solution for (Ia, Ib), and
that 〈(linita, linitb), η〉�� 〈(loa , lob

), η′〉 and that |= η : Sa(linita) and |= η : Sb(linitb)
then |= η′ : Sa(loa) and |= η′ : Sb(lob

).
The following result states that the abstract conditions required over sequen-

tial program analyzers to be certifying are enough to guarantee certificate gen-
eration for concurrent program analyzers.

Lemma 2 (Certifying Analyzers for Globally-stable Solutions). Con-
sider a solution Sa for the analysis Ia = 〈A, {Te}e∈Ea , f〉. Assume that Ia is con-
sistent with the verification framework. Suppose also that there are certificates
monotγ(a, a′) (for every a, a′ ∈ A such that a ! a′) and distr(γ,
), as defined in
Fig. 6. Then, one can compute a certificate �c′ witnessing the stability of γ ◦ Sa

with respect to program Pb and specification γ ◦ Sb, provided Sa is stable with
respect to Pb and Sb.

Proof. In Fig. 7 we define �c′(l, l′, l1) in terms of monotwp and distr(γ,
).

case f =↑
hyp:=Sb(l) � Sa(l1) � T〈l,l′〉(Sa(l1))
p1:=monotγ : γ(Sb(l) � Sa(l1))⇒ γ(T〈l,l′〉(Sa(l1)))
p2:=distr(γ,
) : γ(Sb(l)) ∧ γ(Sa(l1))⇒ γ(Sb(l) � Sa(l1))
p3:=trans(p2, p1) : γ(Sb(l)) ∧ γ(Sa(l1))⇒ γ(T〈l,l′〉(Sa(l1)))
p4:=cons : γ(T〈l,l′〉(Sa(l1)))⇒ wp〈l,l′〉(γ ◦ Sa(l1))

c′(l, l′, l1):=trans(p3, p4) : γ ◦ Sb(l) ∧ γ ◦ Sa(l1)⇒ wp〈l,l′〉(γ ◦ Sa(l1))

case f =↓

hyp:=T〈l,l′〉(Sb(l) � Sa(l1)) � Sa(l1)
p1:=monotγ : γ(T〈l,l′〉(Sb(l) � Sa(l1)))⇒ γ(Sa(l1))
p2:=monotwp(p1) : wp〈l,l′〉(γ(T〈l,l′〉(Sb(l) � Sa(l1))))⇒ wp〈l,l′〉(γ(Sa(l1)))

p3:=cons : γ(Sb(l) � Sa(l1)) ⇒ wp〈l,l′〉(γ(T〈l,l′〉(Sb(l) � Sa(l1))))

p4:=distr(γ,
) : γ ◦ Sb(l) ∧ γ ◦ Sa(l1)⇒ γ(Sb(l) � Sa(l1))

c′(l, l′, l1):=trans(p4, trans(p3, p2)) : γ ◦ Sb(l) ∧ γ ◦ Sa(l1)⇒ wp〈l,l′〉(γ(Sa(l1)))

Fig. 7. Certifying Analyzers for parallel program composition

The existence of certifying analyzers for concurrent programs follows directly
from Lemma 1 and 2.

248 C. Kunz

3.2 Certificate Translation

In the rest of this section, we consider a fundamental program transformation
from which many compiler optimizations are built: a program P ′

j = 〈N ′
j , E ′j , G′〉

is a transformation of a program Pj = 〈Nj , Ej , G〉 if N ′
j ⊆ Nj and E ′j ⊆ Ej . For

readability, we consider the case in which only one of the parallel components
is transformed, that is, P1 ‖ . . . ‖ Pj ‖ . . . ‖ Pk is transformed into P1 ‖
. . . ‖ P ′

j ‖ . . . ‖ Pk. We let the tuple 〈S,�cS , �c′S〉 represent the analysis result
that motivated the transformation to the component P ′

j . The generalization of
the following results to transformations that operate simultaneously in several
program components is straightforward.

In the rest of this section, we extend the results on certificate transformation
to the concurrent programming setting presented in this paper.

Proposition 1 (Existence of certificate transformers). Let I ′j be the cer-
tificate infrastructure I ′j = 〈A, {T ′

e}e∈Ej , f〉 associated to P ′
j. Assume the exis-

tence of the certificate distr(wp,∧) defined in Fig. 6. Let 〈S,�cS , �c′S〉 be a certified
globally stable specification of Ij such that for every 〈l, l′〉 ∈ Ej and formula φ
we have a certificate

justif(l, l′) : S(l) ∧ wp〈l,l′〉(φ)⇒ wp′〈l,l′〉(φ)

Then one can transform every certified specification (〈annoti, �ci, �c′i〉)1≤i≤k of
the concurrent program P1 ‖ . . . ‖ Pj ‖ . . . ‖ Pk into a certified solution
(〈annot1, �d1, �d′1〉, . . . , 〈annot′j , �dj , �d′j〉, . . . , 〈annotk, �dk, �d′k〉), where for all l ∈ N ′

j,
annot′j(l) is defined as annotj(l) ∧ S(l).

Proof. We show that for any i �= j one can transform every certified globally
stable labellings 〈annoti,�ci, �c′i〉 for Pi and 〈annotj ,�cj , �c′j〉 for Pj into the certified
labellings 〈annoti, �di, �d′i〉 for Pi and 〈annot′j , �dj , �d′j〉 for P ′

j.
First of all, notice that for i �= j we can let �di = �ci and that it is not hard to

define �d′j from �c′j and �c′S, since {wpe}e∈Ei have not changed for i �= j.
Building the certificates �dj that ensures that annot′j is a local solution is exactly

the same procedure as in Section 3.2. The case for the certificates �d′i for i �= j
can be found in Fig. 8 and 9, for the cases f =↑ and f =↓, respectively. Notice
that the certification of the solution 〈S,�cS , �c′S〉 is only required to define the
certificates �dj and �d′j.

Intuitively, for all 〈l, l′〉 ∈ E , the justif(l, l′) certificate states that, assuming the
result of the analysis S(l) valid, the transformation is a semantics refinement,
expressed in terms of the predicate transformer wp. For the particular case of
textbook optimizations one can see that the justif certificate is easily discharged.

The following example shows a particular case of the justif certificate for an
optimization applied to the running example.

Example 3. We illustrate a certificate translation for induction variable strength
reduction. A first simple transformation consists of inserting extra statements

Certificate Translation for the Verification of Concurrent Programs 249

Let wp = wp〈lj ,l′j〉 and wp′ = wp′
〈lj ,l′j〉 in:

p1:=
c′i : annotj(lj) ∧ annoti(l)⇒ wp(annoti(l))
p2:=justif(lj , l

′
j) : S(lj) ∧ wp(annoti(l))⇒ wp′(annoti(l))

p3:=weak∧(p1) : annotj(lj) ∧ annoti(l) ∧ S(lj)⇒ wp(annoti(l))
p4:=weak∧(axiom) : annotj(lj) ∧ annoti(l) ∧ S(lj)⇒ S(lj)
p5:=intro∧(p3, p4) : annotj(lj) ∧ annoti(l) ∧ S(lj)⇒ wp(annoti(l)) ∧ S(lj)

d′
i(lj , l

′
j , l):=trans(p5, p2) : annot′j(lj) ∧ annoti(l)⇒ wp′(annoti(l))

Fig. 8. Definition of
d′
i(l1, l

′
1, l2). Case f =↑

Let wp = wp〈lj ,l′j〉 and wp′ = wp′
〈lj ,l′j〉 in:

p1:=axiom : annotj(lj) ∧ annoti(l)⇒ annotj(lj) ∧ annoti(l)
p2:=weak∧(p1) : annot′j(lj) ∧ annoti(l) ⇒ annotj(lj) ∧ annoti(l)
p3:=monotwp(p2) : wp(annot′j(lj) ∧ annoti(l))⇒ wp(annotj(lj) ∧ annoti(l))

p4:=
c′i : wp(annotj(lj) ∧ annoti(l))⇒ annoti(l)
p5:=trans(p3, p4) : wp(annot′j(lj) ∧ annoti(l))⇒ annoti(l)
p6:=weak∧(p5) : R(l′j) ∧ wp(annot′j(lj) ∧ annoti(l))⇒ annoti(l)
p7:=justif : wp′(annot′j(lj) ∧ annoti(l))⇒ R(l′j) ∧ wp(annot′j(lj) ∧ annoti(l))

d′
i(lj , l

′
jl):=trans(p7, p6) : wp′(annot′j(lj) ∧ annoti(l)) ⇒ annoti(l)

Fig. 9. Definition of
d′
i(lj , l

′
jl). Case f =↓

that affect a fresh variable r. The motivation of this transformation is to ensure
the validity of the condition r = in mod N enabling, thus, a further transfor-
mation. In the graph, the transformation consists in introducing the nodes l, l6
and l7, together with the edges {〈l, l1〉, 〈l5, l6〉, 〈l5, l7〉}. Translating the certifi-
cate in this step is straightforward since r is a fresh variable and hence does not
appear in the program annotations. The freshness of r is formalized by the fact
that transfer functions Te for e ∈ {〈l, l1〉, 〈l4, l5〉, 〈l5, l6〉, 〈l5, l7〉} are defined as
the identity function on the original specification. As a result, the labeling S is
extended to l as S(l) = S(l1) and to l6, l7 as S(l6) = S(l7) = S(l5).

At this point, we assume that an analysis is able to compute a solution S with
S(l) defined as (r = in mod N) for l in {l1, l2, l3, l4}. It is not hard to verify that
this labeling can be certified: γ ◦ S is locally valid for the producer component
and stable with respect to transfer functions on the consumer side (since r is a
fresh variable and in is local to the producer side).

As shown in Fig. 11, the transformation consists in replacing the assignment
buffer[in mod N] := a[in] by buffer[r] := a[in]. By Lemma 1, it is sufficient
to provide for every edge e a certificate justif. In the example, since 〈l3, l4〉 is the
only edge that is modified, it is sufficient to provide a certificate for the goal

γ(R(l3)) ∧ φ[[a|in mod N �→a[in]]/a]⇒ φ[[a|r �→a[in]]/a]

which is valid since γ(R(l3)) is defined as r = in mod N .

250 C. Kunz

l l1r := 0 l2in < M?

l3

in− out < N?

l4

buffer[in mod N] := a[in]

l5

r := r + 1

l6 r ≥ N?

l7

r < N?r := 0

in := in + 1

lf

in ≥ M?

Fig. 10. Producer component after node insertion

l l1r := 0 l2in < M?

l3

in− out < N?

l4

buffer[r] := a[in]

l5

r := r + 1

l6 r ≥ N?

l7

r < N?r := 0

in := in + 1

lf

in ≥ M?

Fig. 11. Producer component after induction variable strength reduction

4 Related Work

Certificate translation. Recently, there has been some progress on transferring
correctness evidence from source programs to compiled code, but none of them
considered the verification of concurrent programs.

In particular, Müller and Nordio [7] describe a proof transforming compiler
from Java to Java Bytecode. In this work, they pay special attention to the occur-
rence of abrupt termination in the presence of try-catch-finally statements,
but they do not consider compiler optimizations. In a more recent work [9], Nor-
dio, Müeller, and Meyer have formalized a proof transforming procedure from a
contract-equipped Eiffel program to the Microsoft CIL language.

In another line of work, Saabas and Uustalu [12] study the existence of proof
transformers in a type-based setting. In particular, they consider optimizations
such as common subexpression elimination, code elimination, and partial redun-
dancy optimization. For each optimization, they show how to derive Hoare proof
of the transformed program from a Hoare derivation tree of the source program.

Certificate Translation for the Verification of Concurrent Programs 251

Certifying analyzers. Seo et al. [13] presented an approach to derive verification
certificates from static analysis results. In this work, analysis results are formal-
ized as abstract interpretations of a simple sequential and structured language.
They propose an algorithm that, from an abstract interpretation result, can au-
tomatically construct a Hoare derivation tree. One noticeable difference is that
no notion of certificate is used to support the validity of a Hoare derivation tree.
In a more recent work [14], Seo et al. propose a mechanism for slicing analysis
results to remove redundant information. Removing irrelevant information from
the analysis result avoids unnecessary growth of the final certificate size.

In a different line of work, Chaieb [4] implemented a proof generating analyzer
in the Isabelle system. The verification framework is based on a weakest precon-
dition calculus and the certificate infrastructure is interpreted as Isabelle/HOL
theorems. Chaieb’s work considers program analyzers as backwards abstract in-
terpretations, enabling automatic proof generation of safety properties.

5 Conclusion

In this article, we presented an extension of previous results on certificate trans-
lation to a concurrent programming setting. Under an abstract formalization of
analysis frameworks and an Owicki-Gries like logic, we have identified a set of
verification conditions that ensure the existence of proof-producing analyzers,
a crucial component for the transformation of certificates. For a class of opti-
mizations that preserve the overall program structure, we have shown that it is
feasible to transfer verification results in the presence of program optimizations.

The number of proof obligations to be discharged when using the Owicki-Gries
technique can be exponential on the number of program components. The appli-
cability of Owicki/Gries like proof systems relies on proposing criteria to overlook
a significant number of trivial proof obligations. For instance, one should only
consider global stability under statements that may modify part of the shared
memory. An issue that must be checked is whether the verification conditions
that originally satisfy these criteria fail to do it after a semantics-preserving
program transformation, affecting the applicability of the framework.

One disadvantage of the Owicki-Gries logic is that it forces the verification
of a concurrent component with respect to the concrete context in which it
will be executed. One alternative approach consists of verifying each concurrent
component relying on a specification of the effect that may have the execution
context on this component. One such proof systems that have been proposed as
a more practical alternative to Owicki-Gries, are rely-guarantee methods [6,5].
A further extension would be restricting interference points with concurrent
separation logics [10], and combining both [15].

References

1. Barthe, G., Grégoire, B., Heraud, S., Kunz, C., Pacalet, A.: Implementing a direct

method for certificate translation. In: Breitman, K., Cavalcanti, A. (eds.) ICFEM

2009. LNCS, vol. 5885, pp. 541–560. Springer, Heidelberg (2009)

252 C. Kunz

2. Barthe, G., Grégoire, B., Kunz, C., Rezk, T.: Certificate translation for optimizing

compilers. ACM Transactions on :Programming Languages and Systems 31(5),

18:1–18:45 (2009)

3. Barthe, G., Kunz, C.: Certificate translation in abstract interpretation. In:

Drossopoulou, S. (ed.) ESOP 2008. LNCS, vol. 4960, pp. 368–382. Springer, Hei-

delberg (2008)

4. Chaieb, A.: Proof-producing program analysis. In: Barkaoui, K., Cavalcanti, A.,

Cerone, A. (eds.) ICTAC 2006. LNCS, vol. 4281, pp. 287–301. Springer, Heidelberg

(2006)

5. Flanagan, C., Freund, S.N., Qadeer, S.: Thread-modular verification for shared-

memory programs. In: Le Métayer, D. (ed.) ESOP 2002. LNCS, vol. 2305, pp.

262–277. Springer, Heidelberg (2002)

6. Jones, C.B.: Tentative steps toward a development method for interfering pro-

grams. ACM Transactions on Programming Languages and Systems 5(4), 596–619

(1983)

7. Müller, P., Nordio, M.: Proof-transforming compilation of programs with abrupt

termination. Technical Report 565, ETH Zurich (2007)

8. Necula, G.C.: Proof-carrying code. In: Principles of Programming Languages, pp.

106–119. ACM Press, New York (1997)

9. Nordio, M., Müller, P., Meyer, B.: Proof-transforming compilation of eiffel pro-

grams. In: Paige, R. (ed.) TOOLS-EUROPE. LNBIP. Springer, Heidelberg (2008)

10. O’Hearn, P.W.: Resources, concurrency and local reasoning. Theoretical Computer

Science 375(1-3), 271–307 (2007)

11. Owicki, S., Gries, D.: An axiomatic proof technique for parallel programs. Acta

Informatica Journal 6, 319–340 (1975)

12. Saabas, A., Uustalu, T.: Type systems for optimizing stack-based code. In: Huis-

man, M., Spoto, F. (eds.) Bytecode Semantics, Verification, Analysis and Trans-

formation. Electronic Notes in Theoretical Computer Science, vol. 190(1), pp. 103–

119. Elsevier, Amsterdam (2007)

13. Seo, S., Yang, H., Yi, K.: Automatic Construction of Hoare Proofs from Abstract

Interpretation Results. In: Ohori, A. (ed.) APLAS 2003. LNCS, vol. 2895, pp.

230–245. Springer, Heidelberg (2003)

14. Seo, S., Yang, H., Yi, K., Han, T.: Goal-directed weakening of abstract interpre-

tation results. ACM Transactions on Programming Languages and Systems 29(6),

39:1–39:39 (2007)

15. Vafeiadis, V., Parkinson, M.J.: A marriage of rely/guarantee and separation logic.

In: Caires, L., Vasconcelos, V.T. (eds.) CONCUR 2007. LNCS, vol. 4703, pp. 256–

271. Springer, Heidelberg (2007)

Certified Result Checking for Polyhedral
Analysis of Bytecode Programs�

Frédéric Besson, Thomas Jensen, David Pichardie, and Tiphaine Turpin

INRIA Rennes - Bretagne Atlantique

Campus de Beaulieu, F-35042 Rennes, France

Abstract. Static analysers are becoming so complex that it is crucial to

ascertain the soundness of their results in a provable way. In this paper

we develop a certified checker in Coq that is able to certify the results of

a polyhedral array-bound analysis for an imperative, stack-oriented byte-

code language with procedures, arrays and global variables. The checker

uses, in addition to the analysis result, certificates which at the same

time improve efficiency and make correctness proofs much easier. In par-

ticular, our result certifier avoids complex polyhedral computations such

as convex hulls and is using easily checkable inclusion certificates based

on Farkas lemma. Benchmarks demonstrate that our approach is effec-

tive and produces certificates that can be efficiently checked not only by

an extracted Caml checker but also directly in Coq.

1 Introduction

Bytecode verification is an important component for making Java a trustworthy
platform for mobile computing. Several researchers have investigated how to de-
velop machine-checked bytecode verifiers in order to increase the confidence in
this component itself [13,2]. The standard bytecode verifier ensures one kind of
security policy that is proved by a simple data flow analysis. The static verifi-
cation of other security and safety policies (e.g., to check that all array accesses
are within bounds) requires more sophisticated static program analysers, which
themselves are sophisticated pieces of software. A significant example of this is
the state-of-the-art Astrée static analyser for C [9] which proves the absence
of run-time errors for the primary flight control software of the Airbus A340
fly-by-wire system.

In this paper we show that it is possible to use advanced analysers to enhance
the security of a mobile code platform by developing a machine-verified extended
bytecode verifier that can check the result of such analysers. One approach would
be to certify the analyser entirely within a proof checker, as done for the key
components of the Java bytecode verifier [13,2]. In previous work, Pichardie
et. al [18,6] formalised the theory of abstract interpretation inside the Coq proof
assistant and proved the correctness of a variety of program analysers. This
� This work was partially funded by the FET Global Computing project Mobius, by

the Brittany region project CertLogS and the FRAE project Ascert.

M. Wirsing, M. Hofmann, and A. Rauschmayer (Eds.): TGC 2010, LNCS 6084, pp. 253–267, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

254 F. Besson et al.

approach is ambitious since it would require to program and certify in Coq
the whole analyser with all its abstract operators (least upper bound, closure,
widening...) and to prove termination of the fixpoint iteration process. Formally
certifying a polyhedral analyser with this technique would require a tremendous
certification effort. Moreover, efficiency is a major concern when considering the
expensive symbolic manipulations of a polyhedral library [12] and the problem
becomes even more perceptible in a pure lambda-calculus language such as Coq.

As noticed by Leroy in the context of certified compilation [15], static analyses
and optimisation heuristics are algorithms for which it is generally easier to
prove the correctness of a result verifier than the algorithm itself. In this paper
we apply this result certification methodology [20] to a polyhedral analysis [10]
for an imperative, stack-oriented bytecode language with procedures, arrays and
global variables. We design in parallel a polyhedral analyser and a certified result
checker using the abstract interpretation theory. The analyser and the checker
share the same constraint-based specification whose soundness is formally proved
in Coq. The analyser uses an optimised polyhedral C library [12] to compute
a post-fixpoint solution while the checker uses a certified simplified abstract
domain to check the post-fixpoint. One particularity of our approach is that, in
addition to the program and the post-fixpoint, the checker receives hints that
enable it to use a simplified abstract domain when verifying the fixpoint. In
particular, the expensive operations of computing the convex hull of polyhedra
is replaced by polyhedral inclusion checks which can be performed efficiently by
an application of Farkas’s lemma. More precisely, we propose the following three
contributions:

– A certified constraint based specification of a polyhedral analysis for byte-
code programs.

– A notion of certificate for result checking of polyhedral analysers.
– A certificate result checker, obtained by Coq extraction, able to perform

static array bound checking on resource constrained devices.

2 Polyhedral Analysis of Bytecode

We consider a cut-down language of Java bytecode which includes integers, dy-
namically created (unidimensional) arrays of integers, static methods (proce-
dures) and static fields (global variables). The formal syntax and small-step
operational semantics are rather straightforward and can be found in the com-
panion report [4].

The analysis is inter-procedural, relational and parametrised with respect to
a numeric abstract domain used to abstract the values of the local and global
variables of the program. The analyser automatically infers an invariant for each
control point in the program, a pre-condition that must hold at the point of
calling a procedure and a post-condition that is guaranteed to hold when the
procedure returns.

Certified Result Checking for Polyhedral Analysis of Bytecode Programs 255

2.1 Motivating Example

The Binary Search example (in source format here for readability considera-
tions) given in Fig. 1 shows how our analysis will prove that the instruction
that accesses the array vec with index mid will not index out of bounds. We
have annotated the code of Binary Search with the invariants that have been
inferred automatically. Invariants refer to values of local and global variables
and can also refer to the length of an array. For example, the invariant (I3)
asserts among other properties that when entering the while loop, the relation
0 ≤ low < high < |vec| is satisfied. Similarly, the post-condition ensures that
the result is a valid index into the array being searched, or −1, indicating that
the element was not found. In addition, the analysis introduces a 0-indexed vari-
able (such as e.g. key0 in the example) for each parameter in order to refer to
its value when entering the procedure. As a result, the invariant on exit of the
method defines a summary relation between its input and its output.

// PRE: 0 ≤ |vec0|
static int bsearch(int key, int[] vec) {

// (I1) key0 = key ∧ |vec0| = |vec| ∧ 0 ≤ |vec0|
int low = 0, high = vec.length - 1;

// (I2) key0 = key ∧ |vec0| = |vec| ∧ 0 ≤ low ≤ high + 1 ≤ |vec0|
while (0 < high-low) {

// (I3) key0 = key ∧ |vec0| = |vec| ∧ 0 ≤ low < high < |vec0|
int mid = low + (high - low) / 2;

// (I4) key0 = key ∧ |vec0| = |vec|∧
// 0 ≤ low < high < |vec0| ∧ low + high− 1 ≤ 2 · mid ≤ low + high

if (key == vec[mid]) return mid;
else if (key < vec[mid]) high = mid - 1;
else low = mid + 1;

// (I5) key0 = key ∧ |vec0| = |vec| ∧ −2 + 3 · low ≤ 2 · high + mid∧
// − 1 + 2 · low ≤ high + 2 · mid ∧ −1 + low ≤ mid ≤ 1 + high∧
// high ≤ low+mid∧1+high ≤ 2 ·low+mid∧1+low+mid ≤ |vec0|+high∧
// 2 ≤ |vec0| ∧ 2 + high + mid ≤ |vec0|+ low

}
// (I6) key0 = key∧|vec0| = |vec|∧low−1 ≤ high ≤ low∧0 ≤ low∧high < |vec0|
return -1;

} // POST: −1 ≤ res < |vec0|

Fig. 1. Binary search

2.2 Numeric Relational Domain Specification

The bytecode analysis is specified with respect to an abstract numeric relational
interface (defined below) that can be instantiated with standard relational ab-
stract domains [10,16,17]. The numeric abstract domain D is a family of sets DV

indexed with a finite set V of variables. The abstract operators and associated
properties listed below furnish the interface needed to specify and prove correct
our generic numeric relational bytecode analysis.

256 F. Besson et al.

To establish the connection between abstract elements and sets of numeric
environments P(V → Z), D is equipped with a concretisation function γ : DV →
P(V → Z) compatible with a decidable partial order relation ! i.e., d ! d′ ⇒
γ(d) ⊆ γ(d′). The domain D provides an upper-bound () and a lower bound
(�) operators. To handle variable scopes, the domain is also equipped with a
renaming and a projection operator. The renaming operator [·]W→W ′ : DV +W →
DV +W ′ is purely syntactic and maps a variable wi in the ordered set W to the
corresponding variable w′

i in W ′ (+ denotes disjoint union here). The projection
operator ∃V ′ : DV +V ′ → DV allows to project an abstract element onto a subset
of the variables. For instance, ∃{y}.x ≤ y ≤ z would (by transitivity) compute
x ≤ z.

All the previous operators are language independent. The interface of the
numeric domain with the programming language is made through expressions
(Expr) and guards (Guard).

ExprV (e ::= n | x |? | e) e x ∈ V,) ∈ {+,−,×, /}
GuardV (t ::= e �� e ��∈ {=, �=, <,≤, >,≥}

In the rest of the paper �� will denotes the negation of a binary test ��. Expres-
sions denote sets of numerical values (due to the question mark symbol ? that
is used to model an arbitrary value) while guards denote predicates on environ-
ments. The meaning �·�ρ of such expressions is defined relative to an environment
ρ ∈ V → Z.

�n�ρ = {n} �x�ρ = {ρ(x)} �?�ρ = Z
�e1) e2�ρ = {n1) n2 | n1 ∈ �e1�, n2 ∈ �e2�}
�e1 �� e2�ρ ⇐⇒ ∃ n1 ∈ �e1�ρ, n2 ∈ �e2�ρ. n1 �� n2

The abstract assignment of an expression e ∈ ExprV to a variable x ∈ V is
modelled by the operator �x := e�� : DV → DV .

{ρ[x �→ v] | ρ ∈ γ(d) ∧ v ∈ �e�ρ} ⊆ γ(�x := e��(d))

The set of environments for which a guard t ∈ GuardV is true may be over-
approximated by assume�(t). Formally, the following holds:

{ρ | �t�ρ} ⊆ γ(assume�(t)).

The analyser used in the benchmarks is obtained by instantiating the opera-
tors described above with the domain of convex polyhedra [10]. In addition, the
analyser uses a widening operator whose purpose is to ensure the termination of
fixpoint iterations—this operator is therefore not needed at checking time.

2.3 Constraint-Based Specification

The bytecode analysis is defined by specifying for each bytecode an abstract
transfer function which maps abstract states to abstract states (for non-jumping

Certified Result Checking for Polyhedral Analysis of Bytecode Programs 257

intraprocedural instructions at least). The abstract states are pairs of the form
(s�, l�) where l� is a relation between local, global and auxiliary variables and
s� is an abstract stack whose elements are symbolic expressions built from these
variables. More precisely, the analysis manipulates the following sets of variables:

R: set of local variables r0, . . . , r|R|−1 of methods,
R0: set of old local variables rold

0 , . . . , rold
|R|−1 of methods, representing their initial

values at the beginning of method execution,
S: set of static fields f0, . . . , f|S|−1 of the program,
S0: set of old static fields fold

0 , . . . , fold
|S|−1 of the program used to model values

of static fields at the beginning of method execution,
A: set of auxiliary variable aux 0, . . . , aux |A|−1 used to keep track of results of

methods in the symbolic operand stack.

Moreover, we use a “primed” version X ′ of the variable set X for renaming
purposes. For each method the analysis computes a signature Pre → Post whose
informal meaning is

if the method is called with in a context where its arguments and the
static fields satisfy the property Pre then if the method returns, then
its result, its arguments, and the initial and final values of static fields
satisfy the property Post .

Preconditions are chosen by over-approximating the context in which each
method may actually be invoked. Additionally the analysis computes at each
control point of each method a local invariant between the current (R) and ini-
tial (R0) values of local variables, the current (S) and initial (S0) values of static
fields, and some auxiliary variables (A) which are used temporarily to remember
results of method calls which are still on the stack.

The stack of symbolic expressions is used to “decompile” the operations on the
operand stack. For example, for the instruction Load r that fetches the value of
local variable r , the analysis just pushes the symbolic expression r onto the ab-
stract stack s�. More generally, the effect of most instructions can be represented
symbolically and only the comparisons and assignment to variables require up-
dating the relation l� between variables. In a polyhedron-based analysis this kind
of symbolic manipulation [24,21] is a substantial saving.

Definition 1 (Abstract domain). The abstract value for a program P is de-
scribed by an element (Pre,Post ,Loc) of the lattice

State� = (Meth → DR0+S0)×
(
Meth → DR0+S0+S+{res}

)
× (

Meth × N→ (
Expr�

R+S+A × DR0+S0+R+S+A

)
+ {⊥})

The analysis result is specified as a solution of a constraint (inequation) sys-
tem associated to each program. The constraint system is given in Fig. 2. Array
references are abstracted by the length of the array they point to. As a conse-
quence, the instruction Newarray which takes an integer n on top of the stack
and replaces it with a reference to a newly allocated array of length n, is simply

258 F. Besson et al.

instr Finstr

Nop (s�, l�)→ (s�, l�)
Ipush n (s�, l�)→ (

n :: s�, l�
)

Pop (e :: s�, l�)→ (
s�, l�

)
Dup (e :: s�, l�)→ (

e :: e :: s�, l�
)

Iadd (e2 :: e1 :: s�, l�)→ (
e2 + e1 :: s�, l�

)
Isub (e2 :: e1 :: s�, l�)→ (

e2 − e1 :: s�, l�
)

Imult (e2 :: e1 :: s�, l�)→ (
e2 × e1 :: s�, l�

)
Idiv (e2 :: e1 :: s�, l�)→ (

e2/e1 :: s�, l�
)

Ineg (e :: s�, l�)→ (
0− e :: s�, l�

)
Iinput (s�, l�)→ (? :: s�, l�)

Load r (s�, l�)→ (
r :: s�, l�

)
Store r (e :: s�, l�)→ (

s�[?/r], �r := e��(l�)
)

Getstatic f (s�, l�)→ (
f :: s�, l�

)
Putstatic f (e :: s�, l�)→ (

s�[?/f], �f := e��(l�)
)

Iinc r n (s�, l�)→ (
s�[r − n/r], �r := r + n��(l�)

)
Newarray (e :: s�, l�)→ (

e :: s�, l�
)

Arraylength (e :: s�, l�)→ (
e :: s�, l�

)
Iaload (e2 :: e1 :: s�, l�)→ (

? :: s�, l�
)

Iastore (e3 :: e2 :: e1 :: s�, l�)→ (
s�, l�

)
m[p] = instr �∈ {Goto p′, If icmp cond p′, Invoke m′,Return}

Finstr(Loc(m,p)) � Loc(m,p + 1)
[Intra]

m[p] = Goto p′

Loc(m, p) � Loc(m,p′)
[Goto]

m[p] = If icmp �� p′ Loc(m, p) = (e2 :: e1 :: s�, l�)

(s�, assume�(e1 �� e2) �� l�) � Loc(m, p′)
[If1]

m[p] = If icmp �� p′ Loc(m, p) = (e2 :: e1 :: s�, l�)

(s�, assume�(e1 �� e2) �� l�)) � Loc(m, p + 1)
[If2]

m[p] = Invoke m′ n = nbArgs(m’) Loc(m,p) = (en−1 :: · · · :: e0 :: s�, l�)(∃R+S0+A

(�n−1
i=0 assume�(ei = rold

i) � ∃R0(l
�)
))

S→S0
� Pre(m′)

[Call1]

m[p] = Invoke m′ Loc(m, p) = (en−1 :: · · · :: e0 :: s�, l�)

l�m′ = ∃R0

(�n−1
i=0 assume�(ei = rold

i)S→S′ � Post(m′)S0→S′
)(

aux j :: s�[?/aux j], ∃S′+{res}�aux j := res�
(
l�
S→S′ � l�

m′

))
� Loc(m, p + 1)

[Call2]

where p is the index of the j−th Invoke in m

m[p] = Return Loc(m, p) = (e :: s�, l�)

∃R+A(�res := e��
(l�)) � Post(m)

[Return]

m ∈ P n = nbArgs(m)�|S|−1
i=0 assume�(fi = fold

i)
�n−1

i=0 assume�(rold
i = ri) � Pre(m) � Loc(m, 0)

[Init]

� � Pre(main)
[PreMain]

Fig. 2. Analysis specification

Certified Result Checking for Polyhedral Analysis of Bytecode Programs 259

abstracted by the identity function. The constraints [Call1] and [Call2] associated
with a method call are the most complicated parts of the analysis. The compli-
cations partly arise because we have several kinds of variables (static fields, local
and auxiliary variables) whose different scopes must be catered for. The analysis
gives rise to two constraints: one that relates the state before the call to the
pre-condition of the method ([Call1]) and one that registers the impact of the
call on the state immediately following the call site ([Call2]).

When invoking a method m′ from method m, we compute an abstract state
that holds before starting executing m′ and which constrains the Pre(m′) com-
ponent of the abstract element describing P . This state registers that the n
topmost expressions e1, . . . , en on the abstract stack corresponds to the actual
arguments that will be bound to the local variables of the callee m′, by injecting
the constraints ei = rold

i into the relational domain and adding them to the cur-
rent state as given by l�. Care must be exercised not to confound the parameters
R0 of the caller with the parameters of the callee, hence the projecting out of
R0 before joining the constraints. Furthermore, the local variables R, the initial
values of static fields S0 and the auxiliary variables A of method m have a dif-
ferent meaning in the context of method m′ and are removed from the abstract
state at the start of m′ too. Finally, the current value of static fields S in m at
the point of the method call becomes the initial value of the static fields when
analysing m′, hence the renaming of S into S0.

The second rule [Call2] for Invoke describes the impact of the method call on
its successor state. We use an auxiliary variable aux j (chosen to be free in s�) to
name the result of the method call which is pushed onto the stack. This variable
is constrained to be equal to the variable res which receives the value returned by
m′. The rest of the left-hand side expression of the constraint l�S→S′ � ∃R0 (. . .)
serves to link the post-condition Post(m′) of the method with the state l� of
the call site. These are linked via the local variables ri constrained to be equal
to the argument expressions ei and via the global static fields S. Again, some
renaming and hiding of variables is required: e.g., the initial values of the static
fields in m′, referred to by S0, correspond to the values of the static fields before
the call in the state l� and in the expressions ei, referred to by S. The renamings
S0 → S′ and S → S′, respectively, ensure that these values are identified.

The purpose of the invariants specified by the analysis is to enforce a suitable
safety policy. In a context of array bound checking we must check that each array
access is within the bounds of the array. As a consequence, for each occurence
of an instruction Iaload or Iastore at a program point (m, pc), we test if the
local invariant Loc(m, pc) computed by the analysis ensures a safe array access.
If these tests succeed we say that Loc satisfies all safety checks.

2.4 Inference

The constraint system presented in the previous section can be turned into a
post-fixpoint problem by standard techniques. Consequently, the solutions of
the system can be characterised as the set of post-fixpoints {x | F �(x) ! x}
of a suitable monotone function F � operating on the global abstract domain

260 F. Besson et al.

State� of the analysis. Computing such a post-fixpoint is then the role of chaotic
iterations [8]. Iteration is sped up by using widening on well-chosen control
points. Neither the iteration strategy nor the widening operators belong to the
Trusted Computing Base (TCB) since the validity of the result can be checked
with a post-fixpoint test.

2.5 Soundness of the Analysis

To prove the soundness of the analysis we prove that for each method of the
program, the signature Pre → Post and the local invariants in Loc that are
specified by the constraint system, are correct with respect to the semantics of
the execution of the method. The full proof has been machine checked in Coq
(see [23]) in order to prove the soundness of the result checker. Details (see [4])
are omitted here for lack of space but we comment the main theorems now.

First we define the safety policy using semantic ingredients. A program is safe
if all reachable states w.r.t. to the small-step semantics are distinct from the
error state. The semantics enters the error state when an array is accessed via
the instructions Iaload and Iastore with a value outside the array bounds.

Definition safe (p:program) : Prop :=
∀ st, reachable p st → st <> error.

The constraint based specification of Fig. 2 is turned into a suitable Coq pred-
icate AnalysisSolution (including safety checks) and we prove that the exis-
tence of a suitable (Pre,Post ,Loc) solution implies the safety of the program.

Theorem sound_analysis : ∀ p loc pre post,
AnalysisSolution p loc pre post → safe p.

The purpose of Section 3 is to define an executable checker able to check if
a candidate (Pre,Post ,Loc) is a solution to the constraint based specification.
The candidate is included in a certificate cert with extra information that we
will describe in the next section.

Theorem bin_checker_correct_wrt_analysis_spec : ∀ p cert,
checker p cert = true →
∃ loc, ∃ pre, ∃ post, AnalysisSolution p loc pre post.

Combined together these two theorems prove the semantic soundness of the
executable checker that can be run in Coq or extracted into a Caml version.

Theorem bin_checker_correct_wrt_semantic :
∀ p cert, checker p cert = true → safe p.

3 Result Checking of Polyhedral Operations

In this section, we show how to efficiently implement convex polyhedra operators
using a result checking approach.

Certified Result Checking for Polyhedral Analysis of Bytecode Programs 261

3.1 The Polyhedral Domain Revisited

Polyhedra can be represented as sets of linear constraints. For efficiency, it is
desirable to keep these sets in normal form i.e., without redundant constraints.
For this purpose, polyhedra libraries maintain a dual description of polyhedra
based on generators in which a convex polyhedron is the convex hull of a (finite)
set of vertices, rays and lines. Vertices, rays and lines are respectively extremal
points, infinite directions and bi-directional infinite directions of the polyhedron.

At the origin of the efficiency (and complexity) of convex polyhedra algo-
rithms is Chernikova’s algorithm which is used to maintain the coherence of the
double description of polyhedra [7]. The main insight of our approach is that
we develop a checker which only uses the constraint description of polyhedra
and which never needs to detect redundant constraints. Moreover, projections
are not computed but delayed using a set of extra existential variables. More
precisely, our polyhedra are represented by a list of linear expression over two
disjoint sets of variables V and E. Variables in v ∈ V are genuine variables.
The set E is fixed. Variables e ∈ E are (existential) variables that represent
dimensions which have been projected out.

Definition 2. Let V and E be disjoint sets of variables.

PV = Lin�
V +E

where LinX = {c0 + c1 × x1 + · · ·+ cn × xn | ci ∈ Z, xi ∈ X}.
Given es ∈ PV , the concretisation function is defined by

γ(es) = {ρ|V | ρ ∈ (V + E)→ Z ∧ ∀lc ∈ es, �lc ≥ 0�ρ}

Efficient Coq implementation of PV . We have implemented (and proved
correct) a result checker for convex polyhedra based on an efficient implementa-
tion of PV . To ensure the efficiency of the checker, we have carefully fine-tuned
algorithms and data-structures. Variables are coded by binary integers i.e., the
Coq positive type.

Inductive positive : Set
:= xH | x0 (p:positive) | xI (p:positive).

Variables in v ∈ V start with a x0 constructor while existential variables v ∈ E
start with a xI constructor. A linear expression e ∈ Lin is coded by a radix tree
whose node labels record integer coefficients of the linear expression.

Inductive tree : Set :=
| Leaf
| Node (left:tree) (label:Z) (right:tree).

Therefore, looking-up a variable coefficient can be done by following a path in
the tree. This operation executes in time linear in the length of the variable
i.e., logarithmic in the number of variables. For efficiency again, Coq polyhedra
p ∈ PV are not simply lists of linear expressions but are dependent records

262 F. Besson et al.

which store: i) a list lin_cstr of linear constraints coded as trees, ii) a variable
fresh_v ∈ V for which all successors are fresh, iii) a variable fresh_e ∈ E
for which all successors are fresh, iv) a set used_v that stores the variables
v ∈ V that are used in lin_cstr, v) and all the proofs i.e., the data-structure
invariants, that ensure that fresh_v and fresh_e are really fresh and that the
set used_v indeed over-approximates the variables used in lin_cstr.

Checking convex polyhedra operations. In the following, we show how to
implement the polyhedral operations using (only) polyhedra in constraint form.

Renaming simply consists in applying the renaming to the expressions within
the polyhedron. Because the existential variables belong to a disjoint set, no
capture can occur.

Using Fourier-Motzkin elimination (see e.g., [19]), projections can be com-
puted directly over the constraint representation of polyhedra. However, in the
worst case, the number of constraints grows exponentially in the number of
variables to project. To solve this problem, we delay the projection and simply
register them as existentially quantified. This is done by renaming these variables
to fresh existential variables.

To compute intersections, care must be taken not to mix up the existential
variables. To avoid captures, existentially variables are renamed to variables that
are fresh for both polyhedra. Interestingly, with our tree encoding, renaming all
the existential variables is a constant time operation. Thereafter, the intersection
is obtained by concatenating the lists of linear expressions.

To implement the assume operator, the involved expressions are first lin-
earised and the obtained linear inequalities are put into the form e ≥ 0 where
e now belongs to the set Lin defined above. A special care is taken to precisely
handle euclidean division (which is the semantics we give to the division operator
in this work). For instance, the expression x = y/c where c is a strictly positive
constant, gives rise to a polyhedron made of the linear constraints c · x ≤ y and
y ≤ c ·x+ c− 1. Dealing with the round-to-zero integer division can be done via
a program transformation that does case analysis on the signs of the arguments.
We do not detail this here.

Assignment can be expressed in terms of the previous operators. Given x′ a
fresh existential variable, we have:

�x := e��(P) =
(∃{x}

(
P � assume�(x′ = e)

))
{x′}→{x}

The least upper bound operator i.e., convex hull is the typical operation that
is straightforward to implement using the generator representation of polyhedra.
Instead of computing a convex hull, we follow the result certification method-
ology and provide a certificate polyhedron that is the result of the convex hull
computation. Furthermore, our result checker need not check that the result
is exactly the convex hull but only that it is an upper bound by doing a two
inclusion tests.

To implement inclusion tests, we push the methodology further and use
inclusion certificates. The form of certificates and their generation are described
below.

Certified Result Checking for Polyhedral Analysis of Bytecode Programs 263

3.2 Result Certification for Polyhedral Inclusion

Our inclusion checker !check takes as input a pair of polyhedra (P, Q) and an
inclusion certificate. It will only return true if the certificate contains enough
information to conclude that P is indeed included in Q (P ! Q).

In practice, we only use our checker where Q does not contain existential
variables (because Q is computed by the untrusted analyser). This allows us
to reduce the problem of inclusion into n problems of polyhedron emptiness
where n is the number of constraints in Q. Such a problem admits a nice result
certification technique thanks to Farkas’s lemma (see for instance [19]) that gives
a notion of emptiness certificate for polyhedra.

Lemma 1 (Farkas Lemma). Let A ∈ Qm×n and b ∈ Qm. The following
statements are equivalent:

– For all x ∈ Qn, ¬(A · x ≥ b)
– There exists ic ∈ Q+m satisfying At · ic = 0̄ and bt · ic > 0.

The soundness (⇐) proof is the easy part and is all that is needed in the machine-
checked proof. The existence of a certificate ensures the infeasibility of the linear
constraints and therefore that the corresponding polyhedron is empty.

Thus, an inclusion certificate ic1 :: · · · :: icn for an entry (P, Q) is a collection
of n vectors of Qm (with n = |Q|) and checking each emptiness certificate ick

consists of 1) computing a matrix-vector product (At · ic); 2) verifying that the
result is a null vector; 3) computing a scalar product (bt · ick); and 4) verify-
ing that the result is strictly positive. All in all, the certificate checker runs in
quadratic-time in terms of arithmetic operations for each emptiness certificate.

Moreover, certificate generation can be recast as a linear programming prob-
lem that can be efficiently solved by either the Simplex or interior point methods.

4 Implementation and Experiments

The relational bytecode analysis has been implemented in Caml and instanti-
ated with the efficient NewPolka polyhedral library [12] as its relational abstract
domain. The programs we analyse are genuine Java programs where unsup-
ported instructions have been automatically replaced by conservative numerical
instructions (e.g., a Getfield is replaced by a sequence Pop; Iinput). Iinput is a
dummy instruction placing an arbitrary value on top of the operand stack. The
analyser then computes a solution to the constraint system generated from a
program. From these invariants, loop headers and join points are extracted and
the inclusion certificates required by the checker are produced using the Sim-
plex algorithm. A binary form of loop headers, join point invariants and their
inclusion certificates constitute the final program certificate.

As invariants computed by static analysers often contain more information
than necessary for proving a particular safety policy i.e., the absence of array
out-of-bounds accesses, it is interesting to prune the analysis result and eliminate
invariants that are useless for proving a given safety property. The advantages are

264 F. Besson et al.

twofold: invariants to check are smaller and their verification cheaper. We have
applied the technique described in [5] for pruning constraint-based invariants,
with some adaptations to deal with the interprocedural aspects of our polyhedral
analysis. The algorithm is not described here for space reasons but can be found
in the companion report [4].

The result checker for polyhedral analysis described in Section 2 and Section 3
has been implemented in Coq. For our benchmarks we consider a refined version
of the safety property where all but a designated subset of array accesses are
required to be correct.

For each program we compare the checking time with (before) and without
(after) fixpoint pruning, using either an extracted checker (Caml) or the checker
running in Coq. In the first approach the Coq result checker is automatically
transformed into a Caml program by the Coq extraction mechanism. In the
second approach, the result checker is directly run inside the reduction engine
of Coq to compute a foundational proof of safety of the program (using the
technique of proof by reflection [1]). Fig. 3 presents our experimental results.
The benchmarks are relatively modest in size and it is well known that full-blown
polyhedral analyses have scalability problems. Our analyser will not avoid this
but can be instantiated with simpler relational domains such as e.g., octagons,
without having to change the checker. The programs and the analysis results can
be found online [23] and replayed in Coq or with an extracted Caml checker. We
consider two families of programs. The first one consists of benchmarks used by
Xi to demonstrate the dependent type system for Xanadu [24]. For this family we
automatically prove the absence of out-of-bound accesses. The second is taken
from the Java benchmark suite SciMark for scientific and numerical computing
where our polyhedral analysis prove safety for array accesses except for the more
intricate multi-dimensional arrays representing matrices.

Two things are worth noticing. First, the checking time is very small (less
than one second), which is especially noteworthy given that the checker is run in
Coq. We clearly benefit here from our efficient implementation and the optimised
reduction engine of Coq [11]. Compared to the extracted version, the Coq verifier
has at most a factor 10 of efficiency penalty. Second, pruning can halve the

size score certificate size checking time (Caml) checking time (Coq)

Program before after before after before after

BSearch 80 100% 20 11 2.0 1.4 14.1 11.6

HeapSort 143 100% 65 25 6.1 3.7 45.0 35.5

QuickSort 276 100% 90 42 144.5 128.7 1036.7 974.0

Random 883 83% 50 31 7.3 8.0 46.9 44.3

Jacobi 135 50% 31 10 1.6 1.7 12.8 9.2

LU 559 45% 206 96 20.1 17.4 100.5 91.5

SparseCompRow 90 33% 34 6 1.5 1.1 10.3 6.1

FFT 591 78% 194 50 38.8 22.7 263.2 193.8

Fig. 3. Size in number of instructions, score in ratio succeeded checks / total checks,

certificates in number of constraints, time in milliseconds

Certified Result Checking for Polyhedral Analysis of Bytecode Programs 265

number of constraints to verify. This reduction can sometimes but not always
produce a similar reduction in checking time. The reduction is especially visible
when the analyser tends to generate huge invariants which cannot be exploited.
This is e.g., the case for FFT where the analyser approximates an exponential
with a complex polyhedron.

As part of the Mobius project and collaboration with Pierre Crégut from
France Télécom, we have experimented with using the polyhedral result checker
to check array bounds on a mobile phone. This is part of the Mobius demo that
is available online1. The experiment shows that it is feasible to perform extended
bytecode verification with the polyhedral certificates that we have developed.

5 Related Work

A number of relational abstract domains (octagons [16], convex polyhedra [10],
polynomial equalities [17]) have been proposed with various trade-offs between
precision and efficiency, and intra-procedural relational abstract interpretation
for high-level imperative languages is by now a mature analysis technique. How-
ever, to the best of our knowledge the present work is the first extension of this
to an inter-procedural analysis for bytecode. Dependent type systems for Java-
style bytecode for removing array bounds checks have been proposed by Xi and
Xia [25]. The analysis of the stack uses singleton types to track the values of
stack elements, in the same spirit as our symbolic stack expressions. The analy-
sis is intra-procedural and does not consider methods (they are added in a later
work [24] which also adds a richer set of types). The type checking relies on loop
invariants. We have run our analysis on the example Xanadu programs given by
Xi and have been able to infer the invariants necessary for verifying safe array
access automatically.

The area of certified program verifiers is an active field. Wildmoser, Nipkow
et al. [22] were the first to develop a fully certified VCGen within Isabelle/HOL
for verifying arithmetic overflow in Java bytecode. The certification of abstract
interpreters has been developed by Pichardie et al. [18,6]. Lee et al. [14] have cer-
tified the type analysis of a language close to Standard ML in LF and Leroy [15]
has certified some of the data flow analyses of a compiler back-end. Wildmoser
et al. [21] certify a VCGen that uses untrusted interval analysis for producing
invariants and that relies on Isabelle/HOL decision procedures to check the ver-
ification conditions generated with the help of these invariants. Their technique
for analysing bytecode is close to ours in that they also use symbolic expressions
to analyse the operand stack and the main contribution of the work reported
here with respect to theirs is to develop this result checking approach for a fully
relational analysis.

6 Conclusions and Future Work

This paper demonstrates the feasibility of an interprocedural relational analysis
which automatically infers polyhedral loop invariants and pre-/post-condition for
1 http://mobius.inria.fr/

http://mobius.inria.fr/

266 F. Besson et al.

programs in an imperative bytecode language. To simplify the checking of these
invariants, we have devised a result checker for polyhedra which uses inclusion
certificates (issued from a result due to Farkas) instead of computing convex
hulls of polyhedra at join points. This checker is much simpler to prove correct
mechanically than the polyhedral analyser and provides a means of building
a foundational proof carrying code that can make use of industrial strength
relational program analysis.

Future work concerns extensions to incorporate richer domains of properties
such as disjunctive completions of linear domains or non-linear (polynomial)
invariants. Using propositional reasoning, checking disjunctive invariants can be
reduced to emptiness tests. As a result, parts of the polyhedral checker could be
reused. Emptiness certificates from Section 3.2 can be generalised to deal with
non-linear inequalities [3]. However, the analyses for inferring such properties
are in their infancy. On a language level, the challenge is to extend the analysis
to cover the object oriented aspects of Java bytecode. The inclusion of static
fields and arrays in our framework provides a first step in that direction but a
full extension would notably require an additional alias analysis.

References

1. Allen, S.F., Constable, R.L., Howe, D.J., Aitken, W.E.: The semantics of reflected

proof. In: Proceedings of the Fifth Annual IEEE Symposium on Logic in Computer

Science, pp. 95–105. IEEE Computer Society, Los Alamitos (1990)

2. Barthe, G., Dufay, G.: A tool-assisted framework for certified bytecode verification.

In: Wermelinger, M., Margaria-Steffen, T. (eds.) FASE 2004. LNCS, vol. 2984, pp.

99–113. Springer, Heidelberg (2004)

3. Besson, F.: Fast reflexive arithmetic tactics: the linear case and beyond. In:

Altenkirch, T., McBride, C. (eds.) TYPES 2006. LNCS, vol. 4502, pp. 48–62.

Springer, Heidelberg (2006)

4. Besson, F., Jensen, T., Pichardie, D., Turpin, T.: Result certification for relational

program analysis. Research Report 6333, Inria (2007),

http://hal.inria.fr/inria-00166930/
5. Besson, F., Jensen, T., Turpin, T.: Small witnesses for abstract interpretation based

proofs. In: De Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp. 268–283. Springer,

Heidelberg (2007)

6. Cachera, D., Jensen, T., Pichardie, D., Rusu, V.: Extracting a Data Flow Analyser

in Constructive Logic. Theoretical Computer Science 342(1), 56–78 (2005)

7. Chernikova, N.V.: Algorithm for finding a general formula for the non-negative so-

lutions of a system of linear inequalities. U.S.S.R Comp. Mathematics and Math-

ematical Physics 5(2), 228–233 (1965)

8. Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice model for static

analysis of programs by construction of approximations of fixpoints. In: Proc. of

4th ACM Symp. on Principles of Programming Languages, pp. 238–252. ACM

Press, New York (1977)

9. Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Monniaux, D., Rival,

X.: The Astrée analyser. In: Sagiv, M. (ed.) ESOP 2005. LNCS, vol. 3444, pp.

21–30. Springer, Heidelberg (2005)

http://hal.inria.fr/inria-00166930/

Certified Result Checking for Polyhedral Analysis of Bytecode Programs 267

10. Cousot, P., Halbwachs, N.: Automatic discovery of linear restraints among variables

of a program. In: Proc. of 5th ACM Symp. on Principles of Programming Languages

(POPL 1978), pp. 84–97. ACM Press, New York (1978)

11. Grégoire, B., Leroy, X.: A compiled implementation of strong reduction. In: Proc.

of the 7th ACM international conference on Functional programming (ICFP 2002),

pp. 235–246. ACM Press, New York (2002)

12. Jeannet, B., the Apron team: The Apron library (2007)

13. Klein, G., Nipkow, T.: Verified Bytecode Verifiers. Theoretical Computer Sci-

ence 298(3), 583–626 (2002)

14. Lee, D.K., Crary, K., Harper, R.: Towards a mechanized metatheory of Standard

ML. In: Proc. of 34th ACM Symp. on Principles of Programming Languages (POPL

2007), pp. 173–184. ACM Press, New York (2007)

15. Leroy, X.: Formal certification of a compiler back-end or: programming a com-

piler with a proof assistant. In: Proc. of the 33rd ACM Symp. on Principles of

Programming Languages, pp. 42–54. ACM Press, New York (2006)

16. Miné, A.: The octagon abstract domain. Higher-Order and Symbolic Computa-

tion 19, 31–100 (2006)

17. Müller-Olm, M., Seidl, H.: Precise interprocedural analysis through linear algebra.

In: Proc. of 31st ACM Symp. on Principles of Programming Languages (POPL

2004), pp. 330–341. ACM Press, New York (2004)

18. Pichardie, D.: Interprétation abstraite en logique intuitioniste: extraction

d’analyseurs Java certifiés. PhD thesis, Université de Rennes 1 (2005)

19. Schrijver, A.: Theory of Linear and Integer Programming. Wiley, Chichester (1998)

20. Wasserman, H., Blum, M.: Software reliability via run-time result-checking. Journal

of the ACM 44(6), 826–849 (1997)

21. Wildmoser, M., Chaieb, A., Nipkow, T.: Bytecode analysis for proof carrying code.

In: Proc. of 1st Workshop on Bytecode Semantics, Verification and Transformation,

ENTCS (2005)

22. Wildmoser, M., Nipkow, T.: Asserting bytecode safety. In: Sagiv, M. (ed.) ESOP

2005. LNCS, vol. 3444, pp. 326–341. Springer, Heidelberg (2005)

23. The Coq development of the work,

http://www.irisa.fr/celtique/ext/polycert/
24. Xi, H.: Imperative Programming with Dependent Types. In: Proc. of 15th IEEE

Symposium on Logic in Computer Science (LICS 2000), pp. 375–387. IEEE, Los

Alamitos (2000)

25. Xi, H., Xia, S.: Towards Array Bound Check Elimination in Java Virtual Machine

Language. In: Proc. of CASCOON 1999, pp. 110–125 (1999)

http://www.irisa.fr/celtique/ext/polycert/

A Novel Resource-Driven Job Allocation Scheme
for Desktop Grid Environments�

Paolo Bertasi, Alberto Pettarin, Michele Scquizzato, and Francesco Silvestri

Department of Information Engineering,

University of Padova, Padova, Italy

{bertasi,pettarin,scquizza,silvest1}@dei.unipd.it

Abstract. In this paper we propose a novel framework for the dynamic

allocation of jobs in grid-like environments, in which such jobs are dis-

patched to the machines of the grid by a centralized scheduler. We apply

a new, full resource-driven approach to the scheduling task: jobs are allo-

cated and (possibly) relocated on the basis of the matching between their

resource requirements and the characteristics of the machines in the grid.

We provide experimental evidence that our approach effectively exploits

the computational resources at hand, successfully keeping the comple-

tion time of the jobs low, even without having knowledge of the actual

running times of the jobs.

1 Introduction

Groups of distributed, heterogeneous computational resources, called Grids [9],
have recently emerged as popular platforms to tackle large-scale computationally-
intensive problems in science, engineering, and commerce. The desktop grid com-
puting technology permits to exploit the idle computational resources of a large
amount of non-dedicated heterogeneous machines within a single organization or
scattered across several administrative domains.

In order to properly exploit the potential of these grid systems, key services
such as resource management and scheduling are needed. Indeed, effectively
matching tasks with the available resources is a major challenge for a grid com-
puting system because of the heterogeneous, dynamic and autonomous nature
of the grid, and a great deal of research concerning scheduling strategies capable
of fully exploiting computational grids has been conducted.

In this paper, we propose a novel allocation scheme in which job and resource
characteristics are captured together in the scheduling strategy, without resort-
ing to the knowledge of the running times of the jobs, which usually are not
known in advance. To this end, each machine that joins the grid is represented

� This work was supported, in part, by the European Union under the FP6-IST/IP

Project AEOLUS, by MIUR of Italy under project AlgoDEEP, and by University of

Padova under Projects CPDA099949 and STPD08JA32. Part of this work was done

while the second author was visiting the Department of Computer Science of Brown

University, USA, supported by “Fondazione Ing. Aldo Gini”, Padova, Italy.

M. Wirsing, M. Hofmann, and A. Rauschmayer (Eds.): TGC 2010, LNCS 6084, pp. 268–283, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

A Novel Resource-Driven Job Allocation Scheme 269

by a d-dimensional speed vector, whose components are numerical values which
quantify features of the system such as CPU clock, and disk/network bandwidth.
Similarly, each user submitting a job characterizes the computational properties
of his task by giving the estimated percentages of how the operations of the job
will “distribute” among the features of the machines. For example, and with
respect to the three aforementioned features, a pure CPU intensive task might
be described with a triplet similar to 〈1, 0, 0〉, while a job dealing with a local
large data set might be represented by 〈0.4, 0.6, 0〉. Then, a quantity similar, in
spirit, to the inner product between the vector of the job and the speed vector of
a machine m provides a quantitative measure of the suitability of the machine
for the job, with the job being dispatched to the machine which guarantees the
highest score. Allocation is centralized, that is, one node in the system acts as a
scheduler and makes all the load balancing decisions, and on-line, as jobs must
be assigned upon their arrival. Moreover, scheduling is dynamic, since we allow
the grid scheduler to migrate a job (we assume we are dealing with preemptable
jobs) as soon as the completion of a job in a host or a variation of the load due
to the machine owner might make some re-assignments fruitful. (Hence, load re-
balancing is event-driven, while in most systems it is simply performed through
periodic rescheduling.) We consider a finite-size temporal window of job arrivals
with the implicit goal of keeping as low as possible the makespan of the schedule,
that is, the completion time of the job that finishes last.

Previous work already showed how taking into account all features of the jobs
in the scheduling activity leads to good performances. However, we argue that no
one of the existing resource-aware allocators relies upon a score mechanism for
machine-job pairs which is effective (in that it fully leverages knowledge about
job and machine characteristics to assign the former to the host that best meets
the user requirements), fair, dynamic, and easy to use at the same time.

Related work. Since most variants of the task scheduling problem are NP-
complete [10], a great deal of effort has been devoted to the development of ap-
proximation and heuristic algorithms (see, e.g., [12,17,20,5,15]). However, these
works make the strong assumption that perfect knowledge of how long each
job will run is known at the time of scheduling, while our strategy does not
require this knowledge; indeed users’ runtime estimates are notoriously inac-
curate [7], and it seems that users are generally incapable of providing more
accurate estimates [14], with the problem being worsened by the heterogeneity
of the machines of a grid. Moreover, the estimates required by our allocator to
the user are completely machine-independent.

For these reasons, most real grid brokering strategies rely on a suitable map-
ping of user jobs to hosts according to the requirements of the former and to the
properties of the latter. A number of grid middleware and management mech-
anisms have been designed to this end. Condor [18] provides a general resource
selection mechanism based on the ClassAd [21], a language that allows resource
owners to describe their resource and users to describe resource requests for
their jobs. Specifically, all machines in the Condor pool use a resource offer ad
to advertise their resource properties, both static and dynamic, such as CPU

270 P. Bertasi et al.

type, CPU speed, available RAM memory, physical location, and current aver-
age load, and users specify a resource request ad when submitting a job. The
request consists of the set of minimal resources needed to run the job, along with
a field in which the user specifies the function to be maximized by the broker.
(ClassAd has also been extended to allow users to specify aggregate resource
properties, e.g., in [19].) Condor acts as a broker by matching user requests with
appropriate resources. However, we notice that our approach is simpler to use
for the user, as the information required for the matching is simply an estimated
repartition of the machine capabilities to be exploited. In Globus [8], users de-
scribe required resources through a resource specification language (RSL) that
is based on a predefined schema of the resources database. The task of mapping
specifications to actual resources is performed by a resource allocator, which is
responsible for coordinating the allocation and management of resources at mul-
tiple sites. The RSL allows users to provide very sophisticated resource require-
ments (while no analogous mechanism for resources exists), but this comes at
the price of ease-of-use. The Application Level Scheduling project (AppLeS [3])
uses the performance model provided by users to schedule applications. Key to
the AppLeS approach is that resources in the system are evaluated in terms of
predicted capacities at execution time, as well as their potential for satisfying
application resource requirements. In the Nimrod/G system [1] the scheduling
policy is driven by an economic model which supports user-defined deadline and
“budget” constraints for schedule optimizations, and maps a job to the lowest-
cost resource able to meet its deadline. Again, an effective utilization by the user
is not immediate. In the work of Khoo et al. [13], jobs and resources are mapped
in a multi-dimensional space, and nearest neighbor searches are conducted by
the scheduling algorithm, with a job being dispatched to its nearest machine in
such a space. While being quite similar to ours, their strategy does not consider
job relocation.

Our contribution. In this paper we introduce a new resource-driven allocation
scheme for grid environments, in which the scheduling mechanism assigns jobs to
machines that are best suited for their resource requirements without knowing
their actual running times. We describe two different schemes: the first, called
Greedy allocation scheme, greedily maps and relocates job to the machine
which represents the best match, while the second, termed Social allocation
scheme, performs the choice that best affect the “social welfare”. We set up a grid
simulation environment to demonstrate the efficacy of the proposed scheduling
solution. Indeed, experimental results give evidence that our algorithms perform
effectively the allocation task, that is, the allocation is fair, balanced, and the
resulting makespan is kept low. Moreover, we show that the second outperforms
the first in many cases of interest for real-life scenarios.

Paper organization. The rest of the paper is organized as follows. Section 2 de-
scribes the model and our algorithms for allocation and relocation. In Section 3,
experimental results are presented which provide evidence of the effectiveness
of our approach. Finally, in Section 4 we draw some conclusions and discuss
directions for future work.

A Novel Resource-Driven Job Allocation Scheme 271

2 The Framework

In this section we first provide a simple but effective model of a desktop grid
environment, and then describe two procedures for job allocation and relocation
which assign a job to the machine that best suits the job requirements according
to two different criteria: a selfish one (from the point of view of the job), which we
simply call Greedy allocator, and a “more altruistic” one, the Social allocator.

2.1 The Model

We represent a computational grid as a collection of heterogeneous machines:
each machine m ∈ M can perform d > 0 types of “real-world” operations
(e.g., CPU instructions, read/write data from/to disk, receive/send data through
the network) at rates defined by its speed vector Sm. Specifically, Sm is a d-
dimensional vector where component Sm[i], for 0 ≤ i < d, represents the num-
ber of type-i operations that can be performed by m in a time unit (e.g., CPU
frequency, disk, network bandwidth). Each machine performs at most one oper-
ation at a given time instant, that is, we ignore any form of concurrency among
operations: this is a worst-case scenario since in general some operation types
can be (partially) performed in parallel on modern machines. To model the fact
that some of the computational power of machine m is used by its owner, we
introduce the owner load λm, with 0 ≤ λm ≤ 1, which represents the fraction
of resources of m devoted to the owner’s needs: in other words, we suppose that
all the rates in Sm are multiplied by a factor (1−λm). We allow the owner load
to change dynamically over time. Note that we are implicitly assuming that the
owner load impacts on each component of the machine. Of course, this might
not be true in specific scenarios, for example when the machine owner always
requires only a given type of resources (e.g. she just needs the CPU but not the
disk resources). However, since the grid does not know the owner’s computa-
tional requests, we choose to simply scale down all the components of a machine
by the same factor. It deserves to be remarked that in most of previous work, a
machine is either completely available (i.e., λm = 0) or completely not available
(i.e., λm = 1), and any intermediate status is not taken into account.

A job j, which consists of �j ≥ 1 operations of the various types, is described
by its composition vector, a d-dimensional unit vector whose component Cj [i],
for 0 ≤ i < d, represents the percentage of type-j operations, measured as mul-
tiples of W [i], where W is the d-dimensional weight vector. The weight vector,
which we assume to fix a priori, can be seen as a sort of “operation-exchange”
unit system between the various components. Indeed, it implicitly defines a com-
mon “logical concurrency” between the various components, where one “logical
operation” corresponds to W [i] “real-world” operations of the i-th component.
Then, job j contains at most �j ·W [i] ·Cj [i] type-i operations. We observe that
the model can be defined without the vector W , however weights are needed for
tuning the composition vector to reflect the actual effect on performance of each
component. For example, suppose type-0 operations are numerous but fast and
type-1 operations are few but slow: if W is not used (i.e., W [i] = 1 for each i),

272 P. Bertasi et al.

we have Cj [0] >> Cj [1] even if their influences on performance are comparable.
Intuitively, Cj characterizes the computational properties of job j by giving the
estimated percentages of utilization of each machine subsystem.

A machine can execute an arbitrary number of jobs1, which are performed
according to a round robin scheduler which assigns fixed-size time slices to each
job, handling all processes without priority. For simplicity, we assume the time
slice to be small in comparison to the overall task length. Under these assump-
tions, the execution time t(j, m) of a new job j which starts on machine m can
be reasonably estimated by

t(j, m) =
�j(nm + 1)

1− λm

d−1∑
i=0

W [i]Cj [i]
Sm[i]

, (1)

where nm is the number of jobs other than j running on m. (Note that both
nm and λm change dynamically, but we omit their dependence on time for ease
of notation.) Clearly, the execution time of a job j has to be proportional to its
length �j and it has to grow at the same rate of (nm +1), due to the fair resource
sharing mechanism. Conversely, it must be inversely proportional to the fraction
(1 − λm) of the machine power not utilized by the owner and thus at the grid
user’s disposal. Finally, the summation is justified by the assumption that the
execution time is split among the various components without overlapping.

Whenever nm or λm change during the execution of j, we first calculate the
number of remaining operations �′j, and then update the estimated execution
time by replacing �j with �′j in Equation (1). (We assume that the composition
of the non-executed operations reflects the composition vector Cj .) Throughout
the paper we denote by Jm the set of jobs running on machine m at the time
instant under consideration.

When a new job is submitted to the grid, it is handled by the allocator,
which reads its composition vector and assigns the job to a suitable machine
according to the allocation scheme of choice2. The allocation is dynamic because
we allow relocation of jobs upon the occurrence of events that modify the load
of a machine, in particular when a machine completes the execution of a job, or
when a owner load varies. In both cases, we suppose that the involved machine
notifies the allocator of the change taking place.

It is important to recall that the parameters that characterize machines and
jobs can be quickly estimated in a real scenario. The speed vector Sm of a new
machine m can be determined automatically, reducing the burden of its owner
willing to share the machine, through a microbenchmarking suite such as that
of [4]: specifically, once a machine m joins the grid, the system performs a round
1 Clearly, a job j cannot be executed on a machine m whose owner load λm is 1 (i.e.,

the machine is not available). Furthermore, if Sm[i] = 0 for some 0 ≤ i < d, then

machine m cannot execute a job j with C [i] �= 0; for this reason, we suppose that

0/0 = 0 (e.g., in the subsequent equation).
2 For simplicity, in our model the allocation task is performed in a centralized fashion,

however nothing impedes to implement it in a distributed way, for example, to

improve the robustness of the whole system.

A Novel Resource-Driven Job Allocation Scheme 273

of microbenchmarking to derive the peak performance of m, which will be used
to derive its Sm. The same microbenchmarking suite, or faster heuristics on the
CPU usage, can be used periodically for computing the owner load λm of the
machine. To further reduce the specification burden to the user, the composition
vector Cj of a new job j may be chosen by the user submitting the job by
associating it to a label, corresponding to a certain composition vector. The label
might be selected from a small, predefined set of labels, each related to the most
common job types (e.g., CPU intensive jobs, jobs dealing with local large data
sets, etc.), thus relieving the user of explicitly specifying the composition vector
for his job (which additionally requires the knowledge of the weight vector). The
aforementioned set of labels and the weight vector W can be determined in the
initial set-up of the grid environment. We argue that we do not require the user
submitting a job j to provide an estimation of �j , as the allocators we are going
to describe do not rely upon its knowledge.

2.2 Allocation Procedures

In this section we describe two allocation procedures for our model which differ
on the score function used to assign jobs to machines. When a new job j arrives,
both allocators assign j to the machine m maximizing a given score function
f(j, m), which is differently defined in the two procedures. A key element in
our allocators is the notion of affinity which is a measure of the suitability of a
machine to execute a certain job. The affinity τ(j, m) of job j on machine m is
defined as

τ(j, m) =
1− λm

(nm + 1)
∑d−1

i=0 W [i]Cj [i]/Sm[i]
,

where nm is the number of other jobs that are executing on m. The affinity
depends on the time instant in which it is computed, since nm and λm change
dynamically; however, for notational simplicity, we omit the dependence on time
from τ(j, m). As one can easily recognize, the affinity and the estimated com-
pletion time are related by the following formula:

t(j, m) =
�j

τ(j, m)
. (2)

The Greedy allocator relies on Equation (2), and simply sets its score func-
tion to f(j, m) = τ(j, m). Therefore, job j is assigned to the machine maximizing
its affinity, and thus minimizing its execution time (despite of the allocator be-
ing unaware of the actual job length �j). However, this selfish approach ignores
the fact that the execution times of the jobs running on m grow (or, by our
definition, their affinities decrease).

In order to reduce the latter negative effect, we can correct the score function
as follows, obtaining what we dubbed Social allocator:

f(j, m) = τ(j, m) −
∑

k∈Jm

τ(k, m)
nm + 1

.

274 P. Bertasi et al.

The term τ(k, m)/(nm + 1) denotes the decrease in affinity of job k ∈ Jm (i.e.,
already executing on m) if the new job j is assigned to m. The above equation
provides a trade-off between the selfish approach where the job minimizes its
execution time, and a social approach where the job is assigned to the machine
where the execution times of preexisting jobs do not increase excessively.

In Section 3 we analyze experimentally the two approaches without relocation,
and provide evidence that the makespan obtained with the Social allocator is
in general better than the one with the Greedy one.

2.3 Relocation Procedures

In this section we describe two relocator procedures, namely the Greedy and
Social relocators, which are similar to their allocation counterparts. They act
similarly when a machine status changes, but differ on the implementation of
function f(j, m, m′), which is used as a score for evaluating the migration of job
j from machine m to machine m′. We describe how f(j, m, m′) is implemented
by the two procedures after explaining the relocation mechanism.

The events that cause the invocation of the relocator are the following:

– The owner load of machine m increases. In this case, the relocator migrates
a job in Jm into another machine m′ in order to reduce the effect of the
variation; job j ∈ Jm and machine m′ are chosen so that f(j, m, m′) is
maximized.

– The owner load of machine m decreases or a job in m terminates its execu-
tion. In this case, the relocator moves a job j from machine m′ into m in
order to use the available computational resources of machine m and at the
same time to reduce the load of machine m′. Machine m′ and job j ∈ Jm′

are chosen so that function f(j, m′, m) is maximized.

To ensure that a prospective action leads to an actual improvement of the sys-
tem state, function f(j, m, m′) is expressed as a relative gain with respect to
the previous system state. This gain has to be greater than a given constant
threshold θ > 0. The meaning of θ is easy to understand: the lower θ, the more
likely relocations occur, and vice versa. This stipulated relative threshold aims at
modeling the cost of job migration, which also includes the intrinsic overhead of
each preemption-and-resume step. Moreover, after a single event, the above pro-
cedure can be iterated until no improvement can be obtained or the maximum
number of iterations N is reached (being N an a priori fixed constant).

In the Greedy relocator, f(j, m, m′) is given by

f(j, m, m′) =
τ(j, m′)− τ(j, m)

τ(j, m)
,

where the affinities are computed at the instant where the load of m changes.
In other words, the Greedy relocator moves the job j which maximizes its
relative affinity increment, that is, the job reaches the biggest relative decrease
in execution time. As for the Greedy allocator, this procedure does not take

A Novel Resource-Driven Job Allocation Scheme 275

into account jobs already present on the machine where the job is migrated,
whose execution times increase (and affinities decrease).

On the contrary, the Social relocator takes into account also the difference
between the increase in affinity of jobs on m (since the number of jobs decreases)
and the decrease in affinity of jobs on m′ (since the number of jobs increases).
The proposed score function takes the form

f(j, m, m′) =
α0(Σm −Σ′

m) + α1(Σm′ −Σ′
m′)

Σm + Σ′
m

,

where Σ′
m (respectively, Σ′

m′) and Σm (respectively, Σm′) denote the sum of
affinities of jobs in m (respectively, m′) before and after the migration of job j
from m to m′. The coefficients

α0 =
|Jm|

|Jm|+ |Jm′ | and α1 =
|Jm′ |

|Jm|+ |Jm′ |
are used for balancing the number of jobs among machines when m and m′

contain similar workloads.
In the next section we show that the Greedy and the Social relocators attain

the same performances, independently of the adopted allocation procedure.

3 Experimental Results

In this section we experimentally compare the allocators and relocators described
in previous section with a simple allocation scheme, referred to as Min-Num.
The Min-Num allocator assigns a new job to the machine with the minimum
number of running jobs at the arrival time, independently of job and machine
characteristics. Similarly, the Min-Num relocator invoked on machine m moves a
job from the machine m′ with maximum Jm′ to m if the load on m decreases (i.e.,
a job terminates its execution, or the owner load decreases), or moves a job from
machine m into the machine m′ with minimum Jm′ if the load on m increases
(i.e., the owner load increases); this invocation is executed at most N times for
each invocation, where N is a suitable constant. This allocator scheme can be
efficiently implemented, however it performs poorly as shown in the following
examples. All the experiments are carried out through a Java simulator, whose
source code might be obtained upon request to the authors.

We consider three types of operations: the components of a speed vector
represent, in order, CPU frequency (in GHz), disk bandwidth (in MB/s), and
network bandwidth (in KB/s). We consider two machine sets. The first one,
named synthetic grid, consists of four machines characterized by the speed vec-
tors S0 = 〈4, 100, 250〉, S1 = S2 = 〈2, 100, 250〉, and S3 = 〈1, 800, 250〉. The
second one, named AEOLUS grid, models the AEOLUS testbed [2] and consists
of 70 machines, whose speed vectors are given in Table 3 in the Appendix. The
synthetic grid is used to enlighten some properties of allocators and relocators,
while the simulations of the AEOLUS grid provide evidence of their performance
in a real-world scenario.

276 P. Bertasi et al.

To the best of our knowledge, publicly available workloads like those in Feit-
elson’s Parallel Workloads Archive [6] do not consider job features such as those
required by our framework, and hence the composition vectors used in our ex-
periments are artificial, and described in Table 1. We note that C0 denotes a
CPU intensive job, C1 a generic job which uses all operations, C2 a network
intensive job, C3 and C4 disk intensive jobs. For simplicity, we say that a job
is of type i, for 0 ≤ i ≤ 4, if its composition vector is Ci. The weight vector
used in the experiments is W = 〈2 · 10−5, 10−1, 10−1〉. Since some studies (e.g.,
[16,11]) show that durations of real jobs are distributed according to a power
law, we generate job lengths using a discrete representation of a power law.

Table 1. Job composition vectors adopted in this section.

Type CPU Disk Network Description

C0 1.0 0.0 0.0 CPU intensive

C1 0.7 0.1 0.2 Generic (all operations)

C2 0.6 0.0 0.4 Network intensive

C3 0.5 0.5 0.0 Disk intensive I

C4 0.2 0.8 0.0 Disk intensive II

We remind that, when the load of a machine changes, the Greedy and Social

relocators perform job migration until the relative gain of the score function
f(j, m, m′) is bigger than θ (e.g., 5%), and no more than N job relocations
might occur. In Figure 1, we analyze the behavior of Greedy and Social

relocators for different values of N and θ, and of Min-Num for different N ’s. Each
relocator is associated with its respective allocator. We use the synthetic grid
described above, with the owner loads set to 0, and jobs described by composition
vectors C0 and C1, which arrive uniformly in the time interval [0, 100] s and
whose lengths are generated according to a three-step discretization of a power
law distribution (the exact description3 is available in section “Job set 0” of
Table 2). We notice that all the relocators exhibit small fluctuations (about
1%) when N or θ changes, and the Greedy and Social relocators are almost
equivalent. For these reasons in the following experiments we set N = 3 for
decreasing the computational cost of relocation, and θ = 10% for justifying
the migration cost (moving jobs with small score increments is not convenient
since the migration costs may be bigger than the execution time saved after
relocation). The difference between our relocators and the Min-Num one is small
in the analyzed data set, however we later show that in a more general scenario
the gap considerably increases. We performed other experiments, which are not
reported for lack of space, where we analyze any allocator/relocator combination:
in all cases the makespan remains almost constant changing N and θ and the
Greedy and Social relocators provide the best makespans independently of
the used allocator.
3 In the paper we denote by N (μ, σ) a Gaussian random variable with mean μ and

standard deviation σ, and by U(i, j) an uniform random variable in the interval [i, j].

A Novel Resource-Driven Job Allocation Scheme 277

Table 2. Lengths and arrival times of the job sets used in the three experiments.

Job
type

Number
of jobs

Length
Arrival

time (in s)

Job set 0 (Figure 1)

C0 200
24% with length N (400k, 8k), 38% with length

N (200k, 4k), 38% with length N (100k, 2k)
U(0, 100)

C1 800
24% with length N (100k, 4k), 38% with length

N (50k, 2k), 38% with length N (25k, 1k)
U(0, 100)

Job set 1 (Figure 2)

C0, C4
500 per

type

24% with length N (500k, 40k), 38% with

length N (250k, 20k), 38% with length

N (125k, 10k)

U(0, 1000)

Job set 2 (Figures 3 and 4)

C0, C1

C2, C3

500 per

type

20% with length N (250k, 75k), 30% with

length N (100k, 30k), 30% with length

N (40k, 12k), 20% with length N (10k, 3k)

0, 25, 50, 75

2 4 6 8 10 12
1780

1790

1800

1810

1820

1830

1840

Maximum number of iterations

M
ak

es
pa

n
(s

)

Greedy
Social
Min−Num

Fig. 1. Behavior of the Greedy, Social and Min-Num with varying N (on x-axis)

and θ (cyan solid curves θ = 10%, magenta dashed curves θ = 5%, black dotted curves

θ = 1%). θ is not defined for Min-Num.

In Figure 2 we compare how the Social and Min-Num relocators respond to
a variation of the owner load of a machine. We use the synthetic grid, and the job
set composed of two job types, namely C0 and C4: jobs arrive uniformly in the
interval [0, 1000] s and their lengths are represented by a three-step discretization
of a power law (more details described in section “Job set 1” of Table 2). The

278 P. Bertasi et al.

0 1000 2000 3000 4000 5000 6000
0

50

100

150

200

250

300

(a) The machine with S0.

0 1000 2000 3000 4000 5000 6000
0

50

100

150

200

250

300

(b) The machine with S1.

0 1000 2000 3000 4000 5000 6000
0

50

100

150

200

250

300

(c) The machine with S3.

0 1000 2000 3000 4000 5000 6000
0

50

100

150

200

250

300

(d) The machine with S0.

0 1000 2000 3000 4000 5000 6000
0

50

100

150

200

250

300

(e) The machine with S1.

0 1000 2000 3000 4000 5000 6000
0

50

100

150

200

250

300

(f) The machine with S3.

Fig. 2. Job distribution on the synthetic grid on machines described by speed vectors

S0, S1, and S3 (we remind that S1 = S2): in (a), (b), and (c) under the Social relo-

cator; in (d), (e), and (f) under the Min-Num relocator. In cyan jobs with composition

vector C4; in black jobs with composition vector C0. The x-axis reports the elapsed

time (range [0, 6500] s), the y-axis the number of jobs on the machine (range [0, 310]).

owner load of all the four machines is initially set to 0, but the owner load of
machine m with speed vector S3 increases to 0.95 at the time instant 1500 s,
that is, it becomes essentially unavailable to the grid users. Plots in Figures 2(a),
2(b), and 2(c) show how jobs are distributed among machines with speed vectors
S0, S1, and S3, respectively, under the Social relocator (the plot for machine
S2 is omitted because it is identical to that of S1). A similar job distribution
holds for the Greedy relocator as well. Figures 2(d), 2(e), and 2(f) show job
distribution under the Min-Num relocators in machines with speed vectors S0,
S1, and S3, respectively. We notice that after the time instant 1500 s, the Social

relocator begins to migrate jobs from m to other machines (with the Greedy

relocator exhibiting a similar behavior): indeed, the increasing number of jobs
on the other machines is not due to new jobs, since no new job arrives after
the time instant 1000 s. It is also interesting to note that jobs are distributed
on machines according to their compositions: in particular, we observe that jobs
of type C4 (in cyan), dealing with large local data sets (i.e., C4[1] = 0.8), are
assigned by the allocator/relocator to m (i.e., S3), which has the fastest disk,
until the change in its owner load makes it essentially unavailable.

We now analyze a more general scenario using the AEOLUS grid. Jobs are
described by composition vectors C0, C1, C2, and C3; job lengths follow a
four-step discrete discretization of a power law distribution, equal for all job

A Novel Resource-Driven Job Allocation Scheme 279

types (see section “Job set 2” of Table 2). Since similar jobs in this environment
are typically submitted in bursts, we consider four arrival times (0 s, 25 s, 50 s,
and 75 s), and in each one only jobs described by the same composition vector
arrive. Figure 3 provides the makespan (averaged on 5 simulation runs) of six
allocation schemes (Greedy, Social, Min-Num, each with and without the
respective relocator), for any of the 4! orderings of job arrival times by job
type. The mapping between permutation ID and the actual order of job types
is provided in the Appendix (Table 4).

200

250

300

350

400

0 5 10 15 20 25

M
ak

es
pa

n
(s

)

Permutation ID

Greedy with relocation
Social with relocation

Min-num with relocation
Social w/o relocation

Greedy w/o relocation
Min-num w/o relocation

Fig. 3. Makespan on the AEOLUS grid of six allocation schemes (Greedy, Social,

Min-Num, each with and without the respective rebalancing), for each of the 4! per-

mutations of job arrival times by job type (permutation IDs are listed in Table 4).

In the analyzed scenario, the Greedy and Social relocators exhibit similar
performances as noted before; in contrast, the Min-Num relocator experiences
an average 10% performance loss. The experiment also provides evidence that,
when relocation is not used for its high computational cost, the Min-Num should
be avoided and the Social allocator is preferable to the Greedy one: indeed,
Greedy wins over Social in 21% of the permutations with at most a 11% gap,
while Social outperforms Greedy on 79% of these instances, and the gap is
more than 11% in 37% of the instances. It deserves to be noticed that Social

beats Greedy in particular in the first permutations, that is, when jobs with
composition vector C3 are the last jobs submitted into the grid. The new jobs
are allocated by the Greedy allocator to machines with speed vector S0, since
these machines have a smaller number of assigned jobs. However, the affinities
of these jobs decrease considerably (then, their execution times increase) and
they cannot be migrated to other machines since the relocator is disabled. This

280 P. Bertasi et al.

problem is minimized in the Social allocator since the decrease in affinity of
other jobs is taken into account in the score function.

We conclude this section with Figure 4, where we added to the previous sce-
nario some owner load variations. Specifically, the owner load of the four ma-
chines characterized by speed vectors S0, S6, S26, S19 increases to 0.95 at time
instants 0 s, 60 s, 100 s, 125 s, respectively. With relocation, performances are sim-
ilar to those described above regarding Figure 3 since the relocations spread jobs
from the four “nearly unavailable” machines to the remaining 66 machines. In
contrast, disabling relocations yields huge makespans, in particular under the
Min-Num allocator since it does not take into account the owner load of a
machine.

0

1000

2000

3000

4000

5000

6000

0 5 10 15 20 25

M
ak

es
pa

n
(s

)

Permutation ID

Greedy with relocation
Social with relocation

Min-num with relocation
Social w/o relocation

Greedy w/o relocation
Min-num w/o relocation

Fig. 4. Makespan on the AEOLUS grid of six allocation schemes (Greedy, Social,

Min-Num, each with and without the respective rebalancing), for each of the 4! per-

mutations of job arrival times by job type. The owner load of the four machines

characterized by speed vectors S0, S6, S26, S19 increases to 0.95 at time instants

0 s, 60 s, 100 s, 125 s, respectively (permutation IDs are listed in Table 4).

4 Conclusions and Future Work

In this paper, we have proposed a new framework for resource allocation in
desktop grid environments based on the idea of performing job assignments
to the machines which best meet the computational requirements of the jobs.
Within this framework, we have developed and compared two different alloca-
tion schemes, which attempt to minimize the overall system makespan, even
without knowing the actual durations of the jobs submitted to the system. We
have argued that our strategy results in a proper, fair, and balanced allocation

A Novel Resource-Driven Job Allocation Scheme 281

of the jobs processed by the grid, and this translates into good results in terms
of completion time of the jobs. The proposed framework can be extended in sev-
eral ways: first, by introducing the concept of domain of a job, that is, allowing
a job to choose, on the basis of their hardware or software capabilities (e.g.,
CPU architecture, amount of RAM and disk space, operating system installed,
available software libraries), the subset of machines on which its computation
can be carried out (notice that this simple extension would add a new combi-
natorial dimension to the problem, since both the allocation and the relocation
choices would have to deal with intersecting domains); then, it would be useful,
for robustness and scalability purposes, to implement our scheduler in a dis-
tributed fashion; finally, this approach deserves to be implemented in a real grid
environment (such as the AEOLUS testbed), and possibly to compare its perfor-
mances with other state-of-the-art resource brokering systems and time-driven
scheduling strategies.

Acknowledgments. The authors would like to thank Andrea Pietracaprina and
Geppino Pucci for helpful discussions and comments, and Joachim Gehweiler for
his help on the AEOLUS testbed.

References

1. Abramson, D., Giddy, J., Kotler, L.: High performance parametric modeling with

Nimrod/G: Killer application for the global grid? In: Proceedings of the 14th Inter-

national Parallel & Distributed Processing Symposium, pp. 520–528. IEEE Com-

puter Society, Los Alamitos (2000)

2. AEOLUS testbed website, http://aeolus.cs.upb.de

3. Berman, F., Wolski, R., Casanova, H., Cirne, W., Dail, H., Faerman, M., Figueira,

S.M., Hayes, J., Obertelli, G., Schopf, J.M., Shao, G., Smallen, S., Spring, N.T.,

Su, A., Zagorodnov, D.: Adaptive computing on the grid using AppLeS. IEEE

Transactions on Parallel & Distributed Systems 14(4), 369–382 (2003)

4. Bertasi, P., Bianco, M., Pietracaprina, A., Pucci, G.: Obtaining performance mea-

sures through microbenchmarking in a peer-to-peer overlay computer. Interna-

tional Journal of Computational Intelligence Research 4(1), 1–8 (2008)

5. Casanova, H., Legrand, A., Zagorodnov, D., Berman, F.: Heuristics for scheduling

parameter sweep applications in grid environments. In: Proceedings of the 9th

Heterogeneous Computing Workshop, pp. 349–363. IEEE Computer Society, Los

Alamitos (2000)

6. Parallel Workloads Archive,

http://www.cs.huji.ac.il/labs/parallel/workload
7. Feitelson, D.G., Weil, A.M.: Utilization and predictability in scheduling the IBM

SP2 with backfilling. In: Proceedings of the 12th International Parallel Processing

Symposium / 9th Symposium on Parallel and Distributed Processing, pp. 542–546.

IEEE Computer Society, Los Alamitos (1998)

8. Foster, I., Kesselman, C.: Globus: A meta-computing infrastructure toolkit. Inter-

national Journal of Supercomputer Applications 11(2), 115–128 (1997)

9. Foster, I., Kesselman, C. (eds.): The Grid 2: Blueprint for a New Computing In-

frastructure, 2nd edn. Morgan Kaufmann, San Francisco (2003)

10. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory

of NP-Completeness. W. H. Freeman, New York (1979)

http://aeolus.cs.upb.de
http://www.cs.huji.ac.il/labs/parallel/workload

282 P. Bertasi et al.

11. Harchol-Balter, M., Downey, A.B.: Exploiting process lifetime distributions for

dynamic load balancing. ACM Transactions on Computer Systems 15(3), 253–285

(1997)

12. Ibarra, O.H., Kim, C.E.: Heuristic algorithms for scheduling independent tasks on

nonidentical processors. Journal of the ACM 24(2), 280–289 (1977)

13. Khoo, B.B., Veeravalli, B., Hung, T., Simon See, C.W.: A multi-dimensional

scheduling scheme in a grid computing environment. Journal of Parallel and Dis-

tributed Computing 67(6), 659–673 (2007)

14. Lee, C.B., Schwartzman, Y., Hardy, J., Snavely, A.: Are user runtime estimates

inherently inaccurate? In: Feitelson, D.G., Rudolph, L., Schwiegelshohn, U. (eds.)

JSSPP 2004. LNCS, vol. 3277, pp. 253–263. Springer, Heidelberg (2005)

15. Lee, Y.C., Zomaya, A.Y.: Practical scheduling of bag-of-tasks applications on grids

with dynamic resilience. IEEE Transactions on Computers 56(6), 815–825 (2007)

16. Leland, W., Ott, T.J.: Load-balancing heuristics and process behavior. ACM SIG-

METRICS Performance Evaluation Review 14(1), 54–69 (1986)

17. Lenstra, J.K., Shmoys, D.B., Tardos, É.: Approximation algorithms for scheduling

unrelated parallel machines. Mathematical Programming 46, 259–271 (1990)

18. Litzkow, M.J., Livny, M., Mutka, M.W.: Condor – a hunter of idle workstations.

In: Proceedings of the 8th International Conference on Distributed Computing

Systems, pp. 104–111. IEEE Computer Society, Los Alamitos (1988)

19. Liu, C., Yang, L., Foster, I., Angulo, D.: Design and evaluation of a resource se-

lection framework for grid applications. In: Proceedings of the 11th IEEE Interna-

tional Symposium on High Performance Distributed Computing, pp. 63–72. IEEE

Computer Society, Los Alamitos (2002)

20. Maheswaran, M., Ali, S., Siegel, H.J., Hensgen, D., Freund, R.F.: Dynamic mapping

of a class of independent tasks onto heterogeneous computing systems. Journal

Parallel and Distributed Computing 59(2), 107–131 (1999)

21. Raman, R., Livny, M., Solomon, M.: Matchmaking: Distributed resource man-

agement for high throughput computing. In: Proceedings of the 7th IEEE Inter-

national Symposium on High Performance Distributed Computing, pp. 140–146.

IEEE Computer Society, Los Alamitos (1998)

A Novel Resource-Driven Job Allocation Scheme 283

Appendix

In this appendix we provide the speed vectors of the machines in the AEOLUS
grid, listed in Table 3, while Table 4 shows the mapping between permutation
IDs and arrival times, used in Figures 3 and 4.

Table 3. Speed vectors of the 70 machines in the AEOLUS grid.

Speed
vector

CPU
(GHz)

Disk
(MB/s)

Network
(KB/s)

S0 0.70 50 500

S1 0.80 50 500

S2 0.87 50 500

S3 0.90 50 500

S4 − S5 0.93 50 500

S6 1.00 60 500

S7 1.30 60 500

S8 1.40 60 500

S9 1.67 75 500

S10 − S15 1.70 70 500

S16 1.80 70 500

S17 − S19 2.00 100 500

Speed
vector

CPU
(GHz)

Disk
(MB/s)

Network
(KB/s)

S20 2.20 100 500

S21 2.40 100 500

S22 2.40 100 1000

S23 − S24 2.53 90 1000

S25 2.60 90 1000

S26 − S55 2.66 105 1000

S56 − S61 2.80 85 500

S62 − S63 2.83 100 500

S64 − S65 3.00 80 500

S66 − S67 3.10 80 500

S68 − S69 3.20 80 500

Table 4. Arrival time of each job type for each permutation ID (see Figures 3 and 4).

ID 0 s 25 s 50 s 75 s

1 C0 C1 C2 C3

2 C1 C0 C2 C3

3 C0 C2 C1 C3

4 C2 C0 C1 C3

5 C2 C1 C0 C3

6 C1 C2 C0 C3

7 C0 C1 C3 C2

8 C1 C0 C3 C2

ID 0 s 25 s 50 s 75 s

9 C0 C3 C1 C2

10 C3 C0 C1 C2

11 C3 C1 C0 C2

12 C1 C3 C0 C2

13 C0 C3 C2 C1

14 C3 C0 C2 C1

15 C0 C2 C3 C1

16 C2 C0 C3 C1

ID 0 s 25 s 50 s 75 s

17 C2 C3 C0 C1

18 C3 C2 C0 C1

19 C3 C1 C2 C0

20 C1 C3 C2 C0

21 C3 C2 C1 C0

22 C2 C3 C1 C0

23 C2 C1 C3 C0

24 C1 C2 C3 C0

A Framework for Rule-Based
Dynamic Adaptation�

Ivan Lanese1, Antonio Bucchiarone2, and Fabrizio Montesi1

1 Lab. Focus, Università di Bologna/INRIA, Bologna, Italy

{lanese,fmontesi}@cs.unibo.it
2 Fondazione Bruno Kessler - IRST, Trento, Italy

bucchiarone@fbk.eu

Abstract. We propose a new approach to dynamic adaptation, based

on the combination of adaptation hooks provided by the adaptable ap-

plication specifying where adaptation can happen, and adaptation rules
external to the application, specifying when and how adaptation can be

performed. We discuss different design choices that have to be considered

when using such an approach, and then we propose a possible solution.

We describe the solution in details, we apply it to a sample scenario and

we implement it on top of the language Jolie.

1 Introduction

Adaptation, evolvability and reconfiguration are hot topics today. Adaptable
systems change their behavior, reconfigure their structure and evolve over time
reacting to changes in the operating conditions, so to always meet users’ ex-
pectations [3]. This is fundamental since those systems live in distributed and
mobile devices, such as mobile phones, PDAs, laptops, etc., thus their environ-
ment may change frequently. Also, user goals and needs may change dynamically,
and systems should adapt accordingly, without intervention from technicians.

To achieve the required degree of flexibility, different research groups have pro-
posed frameworks for programming more adaptable applications [1,13,20,17,23].
For instance, the application code may include constraints on the environment
conditions or on the user behavior, and may specify how to change the appli-
cation logic if those constraints are violated [5]. This approach is called built-in
adaptation, and allows to adapt the application if the conditions change in some
expected way. However, since the adaptation logic is hard-wired into the ap-
plication, it is not possible to adapt to unforeseen changes in the operating
conditions. Dynamic adaptation instead aims at adapting the system to unex-
pected changes [4]. Dynamic adaptation is challenging since information on the
update to be performed is not known at application development time.

We propose a new approach to dynamic adaptation, based on the separa-
tion between the application and the adaptation specification. An adaptable
� Research supported by Projects FP7 EU FET ALLOW IST-324449, FET-GC II

IST-2005-16004 Sensoria and FP7-231620 HATS.

M. Wirsing, M. Hofmann, and A. Rauschmayer (Eds.): TGC 2010, LNCS 6084, pp. 284–300, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

A Framework for Rule-Based Dynamic Adaptation 285

Table 1. List of possible (Travelling) domain activities

Activity Functional Parameters Non-functional
Parameters

Activity Name Number Source Destination Time Cost

Take Train IC2356 Bologna Train Station Trento Train Station 2 h 41 m 20 euros

Take Bus 13 Trento Train Station Univ. of Trento 30 m 1 euro

Take Taxi 25 Trento Train Station Univ. of Trento 10 m 15 euros

Go To Meeting - Bob’s House Univ. of Trento 4 h 50 euros

application should provide some adaptation hooks, i.e. information on part of its
structure and its behavior. The adaptation logic should be developed separately,
for instance as a set of adaptation rules, by some adaptation engineer, and can be
created/changed after the application has been deployed without affecting the
running application. Adaptation should be enacted by an adaptation manager,
possibly composed by different adaptation servers. At runtime, the adaptation
manager should check the environment conditions and the user needs, control
whether some adaptation rule has to be applied to the application, and exploit
the adaptation hooks provided by the application to reconfigure it.

We describe now a scenario that will be used to validate our proposal.

1.1 Travelling Scenario

Consider Bob travelling from Bologna to University of Trento for a meeting. He
may have on his mobile phone an application instructing him about what to
do, taking care of the related tasks. A set of possible tasks are in Table 1. For
instance, the activity Take Train connects to the information system of Bologna
train station to buy the train ticket. It also instructs Bob to take the train.

Assume that such an application has been developed for adaptation. This
means that its adaptation interface specifies that some of the activities are adapt-
able. Each adaptable activity has a few parameters, e.g. Number specifying the
code of the train, bus or taxi to be taken, Source specifying the desired leaving
place and Destination specifying the desired arrival place, all visible from the
adaptation interface. Also, a few non-functional parameters for the activities
may be specified as Time and Cost. We show now a few examples of adaptation.

Example 1. When Bob arrives to Bologna train station, its Travelling applica-
tion connects to the adaptation server of the train station. Assume that a new
“FrecciaRossa”(Italian high speed train) connection has been activated from
Bologna to Trento providing a connection with Time=1 h 23 m and Cost=32
euros. This is reflected by the existence of an adaptation rule specifying that
all the applications providing an activity Take Train for a train for which the
new connection is possible may be adapted. Adaptation may depend on Bob’s
preferences for comparing the old implementation and the new one, or may be
forced if, for instance, the old connection is no more available. In case adapta-
tion has to be performed, the new code for the activity is sent by the adaptation

286 I. Lanese, A. Bucchiarone, and F. Montesi

server to the application, and replaced as new definition of activity Take Train.
Thus Bob can immediately exploit the new high speed connection, which was
not expected when the application has been created.

Example 2. Suppose that the train from Bologna to Trento is one hour late.
Bob mobile phone may have an adaptation server taking care of adapting all
Bob’s applications to changing environment conditions. The adaptation server
will be notified about the train being late, and it may include an adaptation rule
specifying that if Bob is late on his travel, he can take a taxi instead of arriving
to the University by bus. The adaptation rule thus replaces the activity Take
Bus of the travelling application with a new activity Take Taxi.

Example 3. Suppose that the train from Bologna to Trento is cancelled and
there is no other train to reach Trento. Bob receives this event from the train
station information system. The unique way to reach Trento is thus to rent a car
(i.e., a Rent a Car activity) from his house. Bob’s adaptation server provides
adaptation rules specifying that if a resource needed by the activity Go To
Meeting is not available, the whole activity has to be replaced by a different one.
Again, adaptation depends on Bob’s preferences for choosing the best offer from
various car rental proposals. The code of the chosen one is sent by the adaptation
manager to the application, and replaced for the Go To Meeting activity.

1.2 Overview

Both the described Travelling scenario and the technical solution that we pro-
pose can be applied to applications written in any language, e.g. Java, C++ or
even BPEL. Thus we will discuss the general aspects in a language-independent
setting, then move to more and more concrete settings to deal with aspects
more related to the implementation. We will validate our approach using the
Travelling scenario in Section 1.1 and the Jolie [16] language.

The main contributions of this paper are:

– the description of an approach able to realize the scenario;
– a discussion of different design choices for the realization of the approach;
– JoRBA (Jolie Rule-Based Adaptation framework), a proof-of-concept imple-

mentation based on the language Jolie.

The rest of the paper is structured as follows: Section 2 presents the rule-
based approach that we propose to realize dynamic adaptation. In Section 3
we introduce the algorithm for enacting dynamic adaptations and we put it at
work on the Travelling scenario. Section 4 describes JoRBA, a proof-of-concept
implementation of our adaptation mechanisms based upon the Jolie language.
The paper concludes with related works and conclusions.

2 A Rule-Based Approach to Dynamic Adaptation

In this section we discuss a possible solution for implementing the scenario de-
scribed in Section 1.1. Our approach can be applied to applications developed

A Framework for Rule-Based Dynamic Adaptation 287

using any language, provided that (i) the application exposes the desired adap-
tation interface and (ii) the application is able to support the code mobility
mechanism necessary for performing adaptation. In Section 4 we will show how
this can be done for instance in the case of Jolie, a language for programming
service-oriented applications.

Thus we want to build an adaptable application using some language L and
following our approach to dynamic adaptation. The application must expose a
set of adaptable domain activities (or, simply, activities) {Ai}i∈I , together with
some additional information. Activities Ai are the ones that may require to be
updated to adapt the application to changes in the operating conditions. While
it is necessary to guess where adaptation may be possible, it is not necessary to
know at the application development time which actual conditions will trigger
the adaptation, and which kind of adaptation should be performed.

The adaptable application will interact with an adaptation manager, possibly
implemented as a set of adaptation servers, providing the adaptation rules. More
precisely, it provides a set of rules {Rj}j∈J , each of them specifying a possible
adaptation. The environment has full control over the set of rules {Rj}j∈J , and
may change them at any time, regardless of the state of the running applications.
Each such rule R includes a description DR of the activity to be adapted, an
applicability condition cR specifying when the rule is applicable, the new code
PR of the activity, the set VR of variables required by the activity, and some
information NFR on the non-functional properties of the activity.

At runtime, rule R is matched against application activity A to find out
whether adaptation is possible/required. In particular:

– the description of the activity to be adapted in the rule (i.e., DR) should be
compatible with the description of the activity DA in the application;

– the applicability condition cR should evaluate to true; the applicability con-
dition may refer to both variables of the adaptation manager and variables
published by the adaptation interface of the application;

– the non-functional properties NFR guaranteed by the new code provided by
the adaptation rule should be better than the ones guaranteed by the old
implementation, according to some user specified policy;

– the variables VR required by the new code PR should be a subset of the
variables provided by the application for the activity.

If all these conditions are satisfied then adaptation can be performed, i.e.
the new code of the activity should be sent by the adaptation manager to the
application, and installed by the application replacing the old one. Since the
update may also influence the state, we also allow the adaptation rule to specify
a state update for the adaptable application.

Even if the approach presented so far is quite simple, a few technical decisions
have to be taken to implement it in practice. We consider them below.

When is the applicability of rules checked?

We have two kinds of approaches to this problem: either adaptation is applica-
tion-triggered, or it is manager-triggered.

288 I. Lanese, A. Bucchiarone, and F. Montesi

If the adaptation is application-triggered then the application asks the adap-
tation manager to check whether activities have to be adapted. Application-
triggered approaches ensure that updates are performed when they are more
needed, and are best suited when the required updates strongly depend on the
application state. There are three main possibilities:

On Initialization: when the application starts, it checks its environment for
updates. This approach allows to build configurable applications, which
adapt themselves to the environment where they are deployed. However,
they do not react to changes in the environment occurring after start-up.

On Wait: when the application is idle, it checks for possible adaptations. This
can be useful if the updates are particularly time-consuming.

On Activity Enter: when the application is about to enter a new activity, it
checks whether some update for the activity to be executed is available. This
is the most useful pattern, since activity enter is the last point in time when
adaptation is possible. In this way one is guaranteed that the most updated
implementation of the activity is executed. We do not deal with adaptation
of ongoing activities, since this will require to consider how to adapt the state
and the point of execution according to the current state of the activity. We
leave the issue for future work.

Dually, adaptation can also be manager-triggered, i.e. the adaptation man-
ager decides when to check whether applications need to be adapted. Manager-
triggered approaches are best suited for adaptations that do not depend on the
state of the application. Three approaches dual to the ones above are possible:

On Registration: when an application enters the range of an adaptation ser-
ver, it registers onto the adaptation server itself, and rules are checked for
applicability. This allows location adaptation, i.e. it allows to adapt mobile
applications to the different environments they move in.

At Time Intervals: at fixed points in time, applicability of rules is checked for
all the applications in the range. This allows to ensure that applications are
updated within a predefined time bound.

On Rule Update: each time a new rule is added to the adaptation server, it
is checked for applicability. This ensures that new rules are applied as soon
as possible. This is useful for instance to update mobile applications before
they leave the range of an adaptation server. The On Registration and On
Rule Update approaches combined allow one to perform all the adaptations
that are state-independent with the smallest possible number of checks.

The two kinds of approaches can be combined for maximal flexibility.

How to choose the order of application of rules?

Different rules may be applicable to the same activity at the same time. In
this case the choice of which rule to apply first may change the time required
for performing adaptation, or even the final result. For instance, if two updates
enhance the same non-functional property, the best one will make the other

A Framework for Rule-Based Dynamic Adaptation 289

superfluous. In case of updates that do not influence the applicability of each
other, only the last one will affect the final behavior.

Non-deterministic Update: updates are applied in non-deterministic order.
This is the simplest possibility, in particular for distributed implementations.
In fact, an application can be in the range of different adaptation servers, and
this policy does not require them to synchronize (but for mutual exclusion
during the updates). However this policy is applicable only in some cases,
and may lead to troubles in others. Essentially, this approach is applicable
when the order of application of the rules does not change the final result. A
general analysis of when this approach is applicable is left for future work.

Priority Update: adaptation rules can be given a priority (static or dynamic):
if many rules apply, the one with highest priority is applied first, and this
forbids later applications of rules with lower priority. This approach guar-
antees that the smallest number of updates is performed, but it requires to
check all the rules for applicability, and its distributed implementation is
quite difficult. Some simplifications of the priority mechanism may be im-
plemented in a more easy way. For instance, if one allows to apply rules in
a random order, but does not want the effect of high priority rules to be
reverted by low priority rules, it is enough to include priority of the adap-
tation rule as most significant factor in the non-functional properties, and
to use the non-deterministic approach. Priority can also be applied only for
rules managed by the same adaptation server, using the non-deterministic
approach for rules of different servers. Sequential Update, where rules are
ordered, is a particular case of priority update, where priority coincides with
the position of the rule in the order.

Why is the application of an adaptation rule needed?

There are two classes of rules, and they have to be treated in different ways:

Corrective Rules: these rules take care of adapting the application when the
current implementation is not viable in the current conditions; this is, e.g.,
the case of Example 3 in the Introduction, where the train has been cancelled.
These rules will be identified thanks to a compulsory flag set to true, and they
will be applied regardless of the non-functional properties of the previous
available implementation.

Enhancing Rules: these rules enhance an existing activity which may how-
ever work; this may for instance change the non-functional properties of the
activity, or provide new functionalities. These rules are identified since their
compulsory flag is set to false, and they are applied only if the non-functional
properties of the activity described by the rule are better than the ones of the
previous activity according to the user-specified preferences. Even if the up-
date does not involve (only) the non-functional behavior, the same approach
can be used, since a version number can be added to the non-functional
properties and used to distinguish the different levels of functionalities.

290 I. Lanese, A. Bucchiarone, and F. Montesi

3 Algorithm and Example

In this section we formalize the algorithm for applying the adaptation rules, and
discuss the example in more detail.

As we have seen, our adaptation framework is composed by two main inter-
acting parts: a set of adaptable applications, each one exposing an adaptation
interface, and an adaptation manager providing a set of adaptation rules.

Definition 1 (Adaptable application). An adaptable application is an ap-
plication exposing an adaptation interface (defined in more detail below) defining
its set of domain activities and the public part of its state, and providing func-
tionalities for accessing the public part of its state and for replacing its domain
activities with external activities.

Thus, the main feature of an adaptable application is its adaptation interface.

Definition 2 (Adaptation interface). The adaptation interface of an appli-
cation A is a set of quadruples 〈DA, VA, NFA, COMPA〉, one for each domain
activity A, where DA is a description of the activity, VA its set of public variables,
NFA the values of non-functional properties provided by the current implemen-
tation, and COMPA a boolean function that given two sets of non-functional
values decides which one is more desirable.

The description DA of the activity may have different forms. The only require-
ment is that it must be possible to check two descriptions for compatibility. We
assume to this end a function MATCH , returning true if the two descriptions
match, false otherwise. For instance, one can consider as part of the description
of each activity its goal in the sense of [22], and assume that two descriptions
are compatible if the goal is the same. We will consider more complex definitions
of activity compatibility in future work.

The set VA in the adaptation interface contains the names of the public vari-
ables of the activity. They are used both to evaluate the applicability condition
of the adaptation, which may depend on the current state of the application,
and for the activity code to access the state of the whole application.

The set NFA describes the non-functional properties of the activity A. It
is a set of labelled values, one for each non-functional dimension. Examples of
these dimensions can be ExecutionTime, Cost, SecurityLevel, and others. The
set NFA can be used also for more general purposes, including dimensions such
as Priority and CodeVersion.

Function COMPA describes the user preferences concerning the non-functio-
nal properties of the activity. In particular, given two sets of non-functional
properties, it checks which is the most desirable one. This function depends on
the user preferences, thus it must be part of the starting application.

In the following we show examples of the adaptation interfaces of some activ-
ities introduced in Table 1.

A Framework for Rule-Based Dynamic Adaptation 291

Example 4 (Take Train Activity). The adaptation interface of the activity Take
Train is a quadruple, defined as:

〈DTakeTrain, {Number, Source, Destination},
{T ime = 161m, Cost = 20euros}, COMPTakeTrain〉

Here DTakeTrain is a description of an activity for going from Source to Desti-
nation using train number Number. These last are also the variables in the public
interface of the activity. The actual values of those variables, which in this case
are Source=Bologna, Destination=Trento and Number=IC2356, are retrieved at
runtime from the state of the application. The third component describes the
non-functional properties. In this case we have two dimensions, Time, describ-
ing the time required for the travel (in minutes) and Cost, describing the cost of
the ticket (in euros). Finally, COMPTakeTrain is a function expressing the user
preferences. For instance, given two pairs 〈T ime1, Cost1〉 and 〈T ime2, Cost2〉 it
may return true (i.e., adaptation will improve) if T ime2 < Time1 (i.e., the new
solution is faster) and (Cost2 −Cost1)/(T ime1− T ime2) < 0, 3, i.e. each saved
minute costs less than 30 cents.

Example 5 (Go To Meeting Activity). The adaptation interface of the activity
Go To Meeting is a quadruple, defined as:

〈DGoToMeeting , {Resources, Source, Destination},
{T ime = 240m, Cost = 50euros}, COMPGoToMeeting〉

Here DGoToMeeting is a description of an activity for going from Source (Bob’s
House) to Destination (University of Trento) using resources described by vari-
able Resources (train IC2356, bus 13). These last are also the variables in the
public interface of the activity. The time required is 4 hours while the cost is 50
euros. Finally, COMPGoToMeeting is a function expressing the user preferences.

The other component of our framework is the adaptation manager. It includes a
state, which may be used to check the environment conditions (e.g., time, tem-
perature, etc.), and the set of adaptation rules, one for each possible adaptation.
It may be implemented in a distributed way as a set of adaptation servers.

Definition 3 (Adaptation Manager). An adaptation manager ρ is a pair
〈Vρ,Rρ〉 where Vρ is a set of variables and Rρ a set of rules.

Each rule R in Rρ has the form DR, cR + PR(SR, VR, NFR, CFR) where:

– DR is a description of an activity,
– cR is a boolean expression,
– PR is a program,
– SR is a state update,
– VR is the set of variables required by PR to work,
– NFR is the set of non-functional properties guaranteed by PR, and
– CFR is the compulsory flag specifying whether the adaptation is compulsory.

292 I. Lanese, A. Bucchiarone, and F. Montesi

DR describes the set of activities the rule can be applied to. This will be com-
pared to the description DA of the activity to be adapted. Condition cR is the
applicability condition for the rule: a boolean condition evaluated over the set
of variables of the adaptation manager and the set of public variables of the
activity. If this evaluates to true then the rule can be applied. PR is the new
code for the activity. PR may use the public variables of the activity. SR is a
state update. Upon adaptation some values in the application state may require
to be updated to reflect the change (see Example 6). VR is the set of public vari-
ables expected by the new activity PR. Finally, NFR is the set of non-functional
properties that will be provided by the new implementation PR and CFR the
compulsory flag, specifying whether the update is compulsory or not.

Example 6. The Example 1 in the Introduction can be implemented by:

DR, Number = IC2356 + PR({Number = FR82},
{Number, Source, Destination}, {T ime = 83m, Cost = 32euros}, false)

where the description DR matches with DA. Here the applicability condition
cR is just Number = IC2356, i.e. we assume to have such a rule for each
train that could be replaced by a different connection, and that the train num-
ber is enough to identify it. If adaptation has to be performed, then the new
code PR will be installed, for booking and taking the FrecciaRossa train. In
this case, the state will be updated by setting Number to FR82, the number
of the FrecciaRossa train (it is not enough to add an assignment to PR, since
in this last case the state update will be executed only when the new activity
will be scheduled). The new activity will require to exploit the public variables
{Number, Source, Destination} and will guarantee as new non-functional prop-
erties {T ime = 83m, Cost = 32euros}. Since the old train connection is still
available, this update is not compulsory (i.e., the compulsory flag is set to false).

When Bob enters the train station and its Travelling application registers to the
adaptation server of the train station (if the On Registration approach is used),
or before the activity Take Train is started (if the On Activity Enter approach
is used), or at some other point in time (depending on the used approach), the
check for adaptation is performed according to the algorithm in Table 1. We
show now how Algorithm 1 is applied to Example 1.

1. the description DR in the rule is matched with the description DTakeTrain

of the activity using function MATCH ; the two description matches;
2. it is checked whether the public variables of the application are enough for

running the new code, i.e. whether VR ⊆ VA;
3. the applicability condition Number = IC2356 is evaluated; this holds;
4. the compulsory flag CFR is checked; we assume here that it is false, i.e. the

old train connection is still available;
6. the non-functional properties of the new implementation are compared with

the old ones, i.e. COMPTakeTrain(〈161, 11〉, 〈83, 32〉) is computed; this eval-
uates to true.

A Framework for Rule-Based Dynamic Adaptation 293

Algorithm 1. Rule matching algorithm
Require: Activity definition 〈DA, VA, NFA, COMPA〉, rule definition DR, cR �

(SR, VR, NFR, CFR), adaptation manager state Vρ

1: if MATCH(DR, DA) == true then
2: if VR ⊆ VA then
3: if cR(VA, Vρ) then
4: if CFR == true then
5: return true
6: else if COMPA(NFA, NFR) == true then
7: return true
8: else
9: return false

10: end if
11: end if
12: end if
13: end if

After these checks have been performed and succeeded, adaptation has to be
performed. This requires the following steps:

1. the adaptation server sends the new code PR to the application, which re-
places the old code of the activity PA;

2. the adaptation interface of the application is updated, with the new non-
functional properties NFR replacing the old non-functional properties NFA;

3. the state of the application is updated by setting variable Number to FR82,
the number of the FrecciaRossa train.

The first step is the more tricky, since the new code PR needs to be sent
from the adaptation server to the application and integrated with the rest of
the application. For instance, it should be able to exploit the public variables
of the application. To show how this issue can be solved, and how the whole
approach can be applied in practice in a service-oriented setting we move in the
next section to a practical example.

4 Dynamic Adaptation in Service-Oriented Applications

In this section we describe JoRBA (Jolie Rule-Based Adaptation framework), a
proof-of-concept implementation of our adaptation mechanisms based upon the
Jolie (Java Orchestration Language Interpreter Engine) language. Jolie [16,11] is
a full-fledged programming language based upon the service-oriented program-
ming paradigm, suited for rapid prototyping of service-oriented applications.

The service-oriented paradigm offers an easy way to model loosely coupled
interactions such as the ones between our adaptation manager and the adapt-
able applications interacting with it. As such, each adaptation server offers a
set of public interfaces that the adaptable applications can exploit in order to
check when and whether adaptation is needed and to apply it. We have chosen

294 I. Lanese, A. Bucchiarone, and F. Montesi

Jolie since it offers native primitives that are based upon the service-oriented
paradigm, which simplify the implementation of the complex interactions re-
quired by our approach. For instance, the use of dynamic embedding has been
fundamental to perform the replacement of activities during adaptation. Em-
bedding is a Jolie mechanism that allows for the creation of private instances of
services. Jolie allows to embed new services at runtime.

Jolie is an open source project released under the LGPL license, whose refer-
ence implementation is an interpreter written in the Java language.

The Jolie language takes inspiration from both sequential languages and con-
current calculi. It includes in fact assignments, if-then-else, while and other state-
ments with a syntax similar to those, e.g., of C and Java, but it also provides
parallel composition as a native operator and allows message passing communica-
tions by means of its One-Way and Request-Response communication patterns,
inspired by WSDL [24] and WS-BPEL [18]. Jolie allows to easily manipulate
structured data such as trees and XML-like structures. In fact, Jolie variables
are labelled trees, where nodes can be added and removed dynamically.

4.1 JoRBA Architecture

We describe now the overall architecture of JoRBA, the Jolie prototype im-
plementing the approach for dynamic adaptation described in the paper. For
simplicity, JoRBA is based on the On Activity Enter approach for triggering
adaptations, and on the Sequential approach for rule order. JoRBA includes
both an adaptation manager composed by different distributed adaptation
servers and a general skeleton for adaptable applications (together with a sample
instance). JoRBA and the implementation of the Travelling scenario are avail-
able at [12]. The overall architecture of JoRBA is represented in Fig. 1 using a
Collaboration Diagram (see [6]) and described below.

The adaptation server is composed by two roles: AdaptationManager and
AdaptationServer. An AdaptationServer handles a set of adaptation rules and
their related functionalities. We allow for many AdaptationServer instances to
run simultaneously coordinated by the AdaptationManager service. The Adap-
tationManager service is also responsible for managing a global state, including
information on the environment conditions, and handling requests coming from
the adaptable applications.

The adaptable applications are implemented as Client services, which imple-
ment the behavior of the application relying on two other services for managing
the adaptation mechanisms:

– ActivityManager: handles the execution of adaptable activities; in particular
it provides an operation run to execute an adaptable activity when requested
by Client; since JoRBA is based on the On Activity Enter approach,
before starting the execution of the activity the ActivityManager invokes
the AdaptationManager service to look for updates;

– State: manages the state of the application and allows the adaptation man-
ager (as well as the application code itself) for accessing it when needed.

A Framework for Rule-Based Dynamic Adaptation 295

Fig. 1. Collaboration Diagram of JoRBA

Client services can easily be implemented by extending the AbstractClient defi-
nition, and complementing it with the user-defined behavior of the application.
More specifically, the client application must include the AbstractClient.iol
file, which in turn embeds the ActivityManager and State services. The code
of the application should initialize the public variables by interacting with the
private State service. Also, activities should be defined in separate files and ex-
ecuted by calling the run operation of the private ActivityManager service.

Whenever a Client service invokes the AdaptationManager service via the
ActivityManager, the AdaptationManager queries all the registered Adaptation-
Server services in sequential order. When an AdaptationServer starts, it regis-
ters itself to the AdaptationManager service, and initialize itself. In particular, it
scans its rules subdirectory for rule definitions. Each rule is defined as a service
extending the AbstractRule.iol file. Each rule should define three procedures:

– dataInit: initializes the data structure with the information concerning the
rule, including a reference to the new code for the activity;

– onEvaluateConstraint: implements the applicability condition c;
– onGetStateUpdate: specifies the state update for the client.

Upon invocation, each AdaptationServer service scans its rules in sequential
order, checking if each of them is applicable using Algorithm 1. The implemen-
tation of this algorithm relies on Matcher, an internal auxiliary service that
implements the MATCH function for comparing the activity description with

296 I. Lanese, A. Bucchiarone, and F. Montesi

the corresponding description in the rule. In the current implementation the
Matcher service just performs an equality check between the two descriptions,
however one can easily refine it by implementing his preferred matching policy.
The AdaptationServer interacts with the states of the AdaptationManager and
of the Client to get the values necessary for checking the applicability condi-
tions. It also interacts with the ActivityManager of the Client for checking if the
non-functional properties provided by the new activity are better than the ones
provided by the current activity, according to the user-specified policies (which
are encoded in the Comparator service embedded by the ActivityManager). If
all the checks succeed then the AdaptationServer updates the State of the Client
with the new values specified by the adapted activity and, finally, sends back to
the invoking ActivityManager the updated code for the activity. The latter is
dynamically embedded by the ActivityManager, replacing thus the old code. A
sample execution of the Travelling scenario implemented using JoRBA can be
found in Appendix A.

5 Related Works and Conclusions

Most of the approaches to adaptation found in the literature concern built-
in adaptation, i.e. the adaptation logic is completely specified at design time.
They concentrate on how to specify adaptation mechanisms and adaptable ap-
plications, exploiting different tools. For instance, the specification may be per-
formed by extending standard notations (such as BPEL [18]) with adaptation-
specific tools [13], using event-condition-action like rules [2,7], variability mod-
eling [10] or aspect-oriented approaches [14]. Other works extend Software Ar-
chitectures [19] to deal with adaptation, giving rise to Dynamic Software Archi-
tectures (DSAs) [15,8]. Other approaches to built-in adaptation instead define
novel languages to specify structural reconfiguration aspects [9,15,21], that have
been proposed with the objective of architecture-based dynamic adaptations.

There is a main difference between the proposals listed above and ours, since
their adaptation logics are hard-wired into the application and defined at design-
time, while we separate the running application from the adaptation logic, al-
lowing to create and update the latter after application deployment (i.e., at
runtime).

In the literature there are however proposals of frameworks for dynamic adap-
tation, all featuring an adaptation manager separated from the application. We
will compare with them below, considering the following aspects: (i) whether
the set of adaptation rules can be created and modified during the execution of
the application; (ii) whether the choice of which rule to apply is static or dy-
namic; (iii) whether adaptation is aimed at changing the functionalities of the
application or (iv) optimizing the non-functional properties. The results of the
comparison are depicted in Table 2. Notably, all the listed approaches are in the
service-oriented field.

In [20] the authors consider the problem of adapting the application by re-
placing malfunctioning services at runtime. The adaptation rule is fixed at de-
sign time, but it is dynamically applied by a manager component that monitors

A Framework for Rule-Based Dynamic Adaptation 297

Table 2. Features of frameworks for dynamic adaptation

Framework Dynamic adaptation Dynamic rule Functional Non-functional
rules selection improvement optimization

Spanoudakis et al.[20] – + + +

Narendra et al.[17] – + – +

METEOR-S[23] – – – +

PAWS[1] – + + +

Our framework + + + +

functional and non-functional properties, creates queries for discovering malfunc-
tioning services and replaces them with dynamically discovered replacements.

[17] proposes an aspect-oriented approach for runtime optimization of non-
functional QoS measures. Here aspects replace our adaptation rules. They are
statically defined, but dynamically selected.

The METEOR-S framework [23] supports dynamic reconfiguration of pro-
cesses, based on constraints referring to several QoS dimensions. Reconfiguration
is performed essentially at deployment-time.

PAWS [1] is a framework for flexible and adaptive execution of web service-
based applications. At design-time, flexibility is achieved through a number of
mechanisms, i.e., identifying a set of candidate services for each process task,
negotiating QoS, specifying quality constraints, and identifying mapping rules
for invoking services with different interfaces. The runtime engine exploits the
design-time mechanisms to support adaptation during process execution, in
terms of selecting the best set of services to execute the process, reacting to
a service failure, or preserving the execution when a context change occurs.

As can be seen, there is a lot of work on dynamic adaptation, but still lot
of space for improvements. Some of our directions for future work have been
already cited throughout the paper. For instance, we want to update running
activities, preserving their state. This requires to put more information in the
adaptation interface of applications. We also want to apply our approach out-
side the service-oriented area, where most of the approaches are, moving to the
object-oriented paradigm. Finally, we want to define type systems on rules and
on adaptable activities to guarantee that during all the evolution some basic
properties (e.g., security, deadlock freeness,. . .) are preserved.

Acknowledgments. Authors thank the anonymous reviewers for valuable com-
ments and suggestions.

References

1. Ardagna, D., Comuzzi, M., Mussi, E., Pernici, B., Plebani, P.: PAWS: A framework

for executing adaptive web-service processes. IEEE Software 24(6), 39–46 (2007)

2. Baresi, L., Guinea, S., Pasquale, L.: Self-healing BPEL processes with Dynamo

and the JBoss rule engine. In: Proc. of ESSPE 2007, pp. 11–20. ACM Press, New

York (2007)

298 I. Lanese, A. Bucchiarone, and F. Montesi

3. Brun, Y., et al.: Engineering self-adaptive systems through feedback loops. In:

Cheng, B.H.C., de Lemos, R., Giese, H., Inverardi, P., Magee, J. (eds.) SESAS

2009. LNCS, vol. 5525, pp. 48–70. Springer, Heidelberg (2009)

4. Bucchiarone, A., et al.: Design for adaptation of service-based applications: Main

issues and requirements. In: Proc. of WESOA 2009 (2009) (to appear)

5. Bucchiarone, A., Lluch Lafuente, A., Marconi, A., Pistore, M.: A formalisation of

Adaptable Pervasive Flows. In: Proc. of WS-FM 2009 (2009) (to appear)

6. Bultan, T., Fu, X.: Specification of realizable service conversations using collabo-

ration diagrams. Service Oriented Computing and Applications 2(1), 27–39 (2008)

7. Colombo, M., Di Nitto, E., Mauri, M.: SCENE: A service composition execution

environment supporting dynamic changes disciplined through rules. In: Dan, A.,

Lamersdorf, W. (eds.) ICSOC 2006. LNCS, vol. 4294, pp. 191–202. Springer, Hei-

delberg (2006)

8. Floch, J., Hallsteinsen, S., Stav, E., Eliassen, F., Lund, K., Gjorven, E.: Using

architecture models for runtime adaptability. IEEE Software 23(2), 62–70 (2006)

9. Garlan, D., Schmerl, B.: Model-based adaptation for self-healing systems. In: Proc.

of WOSS 2002, pp. 27–32. ACM Press, New York (2002)

10. Hallerbach, A., Bauer, T., Reichert, M.: Managing process variants in the process

life cycle. In: Proc. of ICEIS, vol. (3-2), pp. 154–161 (2008)

11. Jolie team. Jolie website, http://www.jolie-lang.org/
12. Jorba v0.1., http://www.jolie-lang.org/examples/tgc10/JoRBAv0.1.zip
13. Karastoyanova, D., Houspanossian, A., Cilia, M., Leymann, F., Buchmann, A.P.:

Extending BPEL for run time adaptability. In: Proc. of EDOC 2005, pp. 15–26.

IEEE Press, Los Alamitos (2005)

14. Kongdenfha, W., Saint-Paul, R., Benatallah, B., Casati, F.: An aspect-oriented

framework for service adaptation. In: Dan, A., Lamersdorf, W. (eds.) ICSOC 2006.

LNCS, vol. 4294, pp. 15–26. Springer, Heidelberg (2006)

15. Kramer, J., Magee, J.: Self-managed systems: an architectural challenge. In: Proc.

of FOSE 2007, pp. 259–268 (2007)

16. Montesi, F., Guidi, C., Zavattaro, G.: Composing services with JOLIE. In: Proc.

of ECOWS 2007, pp. 13–22. IEEE Press, Los Alamitos (2007)

17. Narendra, N.C., Ponnalagu, K., Krishnamurthy, J., Ramkumar, R.: Run-time

adaptation of non-functional properties of composite web services using aspect-

oriented programming. In: Krämer, B.J., Lin, K.-J., Narasimhan, P. (eds.) ICSOC

2007. LNCS, vol. 4749, pp. 546–557. Springer, Heidelberg (2007)

18. OASIS. Web Services Business Process Execution Language Version 2.0.,

http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html
19. Perry, D.E., Wolf, A.L.: Foundations for the study of software architecture. SIG-

SOFT Softw. Eng. Notes 17(4), 40–52 (1992)

20. Spanoudakis, G., Zisman, A., Kozlenkov, A.: A service discovery framework for

service centric systems. In: Proc. of SCC 2005, pp. 251–259. IEEE Press, Los

Alamitos (2005)

21. Taylor, R.N., van der Hoek, A.: Software design and architecture: The once and

future focus of software engineering. In: Proc. of FOSE 2007, pp. 226–243 (2007)

22. van Lamsweerde, A.: Requirements Engineering: From System Goals to UML Mod-

els to Software Specifications. Wiley, Chichester (2009)

23. Verma, K., Gomadam, K., Sheth, A.P., Miller, J.A., Wu, Z.: The meteor-s approach

for configuring and executing dynamic web processes. Technical report, University

of Georgia, Athens (2005)

24. World Wide Web Consortium. Web Services Description Language (WSDL) 1.1.,

http://www.w3.org/TR/wsdl

http://www.jolie-lang.org/
http://www.jolie-lang.org/examples/tgc10/JoRBAv0.1.zip
http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html
http://www.w3.org/TR/wsdl

A Framework for Rule-Based Dynamic Adaptation 299

A The Travelling Scenario in Jolie

The JoRBA prototype [12] includes not only the basic services implementing
the adaptation manager and the skeleton for adaptable applications described

Fig. 2. Screenshot of prototype execution

300 I. Lanese, A. Bucchiarone, and F. Montesi

in Section 4, but it also contains the sample Travelling application described in
the examples presented throughout the paper and a few adaptation servers.

The main application has an adaptation interface including three different
activities: the main activity Go To Meeting and the two subactivities Take Train
and Take Bus. A sample execution is in Figure 2.

The client is executing in the bottom console. First the activity Go To Meeting
is entered. The adaptation manager looks for updates, but there is no update
matching this activity (as can be seen from the adaptation server console, in
the top part of the figure). When the activity Take Train is started instead, two
matching rules are found. All the checks are performed. The first one is discarded
because of non-functional properties that do not satisfy user preferences. The
second one instead is applied. Later on updates are checked also for activity
TakeBus. The only update available is not applied because of the non-functional
properties.

CarPal: Interconnecting Overlay Networks for a
Community-Driven Shared Mobility�

Vincenzo Ciancaglini, Luigi Liquori, and Laurent Vanni

INRIA Sophia Antipolis Méditerranée, France
firstName.lastName@sophia.inria.fr

Abstract. Car sharing and car pooling have proven to be an effective solution to
reduce the amount of running vehicles by increasing the number of passengers
per car amongst medium/big communities, like schools or enterprises. However,
the success of such practice relies on the ability of the community to effectively
share and retrieve information about travelers and itineraries. Structured overlay
networks, such as Chord, have emerged recently as a flexible solution to han-
dle large amounts of data without the use of high-end servers, in a decentralized
manner. In this paper we present CarPal, a proof-of-concept for a mobility shar-
ing application that leverages a Distributed Hash Table to allow a community of
people to spontaneously share trip information, without the costs of a central-
ized structure. Moreover the peer-to-peer architecture allows for deployment on
portable devices, and opens new scenarios in which trips and sharing requests can
be updated in real time. By using an already developed original protocol that al-
lows to interconnect different overlays/communities, the success rate (number of
shared rides) can be boosted up, thus increasing the effectiveness of our solution.
Simulations results are shown to give a possible estimate of this effectiveness.

Keywords: Peer to peer, overlay networks, case study, information retrieval, car
sharing.

1 Introduction

1.1 Context

Car pooling is the shared use of a driver’s personal car with one or more passengers,
usually, but not exclusively, colleagues or friends, for commuting (usually small-
medium recurring trips, e.g. home-to-work or home-to-school). Amongst its many
advantages, it decreases traffic congestion and pollution, reduces trip expenses by
alternating the use of the personal vehicle amongst different drivers, and enables the
use of dedicated lanes or reserved parking places where made available by countries
aiming to reduce global dependency on petrol.

Car sharing is a model of car rental for short periods of time (rather than the classical
car rental companies), where a number of cars, often small and energy-efficient, are
spread across a small territory, for instance a city. Customers subscribe with a company
which exploits and maintains the car park, and use those cars for their personal

� Supported by AEOLUS FP6-IST-15964-FET Proactive.

M. Wirsing, M. Hofmann, and A. Rauschmayer (Eds.): TGC 2010, LNCS 6084, pp. 301–317, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

302 V. Ciancaglini, L. Liquori, and L. Vanni

purposes. Service fees are normally per kilometer, and insurance and fuel costs are
included in the rates. Car sharing is an interesting option for families in need of a second
car who do not wish to buy one. Modern geolocation technologies, using GPS and
mobile phones, assist locating the closest car to pick. The same economic/ecological
advantages of car pooling apply here as well, and, mathematically speaking, they are
parameters of the same function we would like to minimize.

1.2 Problem Overview

In Car sharing/pooling services, an Information System (IS) has been shown to be
essential to match the offers, the requests, and the resources. The Information System
is, in most cases, a front-end web site connected to a back-end database. A classical
client-server architecture is usually sufficient to manage those services. Users register
their profile to one Information System, and then post their offers/requests. In presence
of multiple services, for technical and/or commercial reasons, it is not possible to
share content across different providers, despite the evident advantage. As a simple
example, the reader can have a quick look on Equipage06 [Éq] and OttoEtCo [Ott],
two websites concerning car pooling in the French Riviera. At the moment the two do
not communicate, share any user profile nor requests, even if they operate on the same
territory and with the same objectives. Since both services are non-profit, the reason
for this lack of cooperation would probably be found in the client-server nature of
both Information Systems that, by definition, are not designed to collaborate with each
other. Although, in principle this does not affect the correct behavior of both services,
it is clear that interoperability between the two would increase the overall quality of the
service. Moreover, the classical shortcomings of client-server architectures would make
both services unavailable if both servers were to be down.

1.3 Contributions

As main contributions of this paper:

– we design and implement a peer-to-peer based Carpool information system, which
we call CarPal: this service is suitable for deployment in a very low infrastructure
and can run on various devices, spanning from PCs to small intelligent devices, like
smartphones;

– we customize the Arigatoni protocol [CCL08] and its evolution, the Synapse
protocol [LTV+10], both specialized for resource discovery in overlay networks
in order to allow two completely independent CarPal-based Information Systems
to communicate without the need of merging one CarPal system into the other or,
even worse, build a third CarPal system including both.

1.4 Outline

The rest of the paper is organized as follows: in Section 2, we introduce our CarPal
service and we show how it is mapped onto a Distributed Hash Table. In Section 3
we describe the interconnection of different CarPal systems by means of the Synapse
protocol developed in our team and tested over the Grid’5000 platform1 In Section 4

1 See http://www-sop.inria.fr/teams/lognet/synapse

http://www-sop.inria.fr/teams/lognet/synapse

CarPal: Interconnecting Overlay Networks for a Community-Driven Shared Mobility 303

we show, as proof-of-concept, a running example, that we have implemented in our
team on the basis of a real case study in our French Riviera area of Sophia Antipolis,
a technological pole of companies and research centers. A GUI is also available2. In
Section 5 we present our conclusions and ides for further work.

2 Application Architecture

2.1 Application Principles

One of the most important features for a car share application is to be able to maximize
the chances of finding a match between one driver and one or more travelers. From this
comes the choice of arranging the database by communities, in order to put in touch
people who most likely share the same traveling patterns in space and time (e.g. work
for the same company, attend the same university and so on). Another important aspect
is to be able to update the planned itinerary information as quickly as possible, so that
a last minute change in plans can be easily managed and updated, and may eventually
lead in finding a new match.

For the above reasons, CarPal has been intended as a desktop and mobile application
running on a peer-to-peer overlay network. This allows a community of people to
spontaneously create their own travel DB (which, as it will be shown later, can
be interconnected with sibling communities) and manage it in a distributed manner.
Furthermore, it constitutes a flexible infrastructure within which, by deployment
on connected mobile devices, it will be possible to develop more advanced info-
mobility solutions which might take into account the position of the user/vehicle (via
an internal GPS), geographically-aware network discovery or easy network join, or
vehicle tracking through checkpoints with the use of Near Field Communications
technologies [NFC].

2.2 CarPal in a Nutshell

A user running CarPal on his mobile device or desktop computer can connect to one or
more communities of which he is member (i.e. he has been invited or a request of his
has been accepted). Two operations would then be available, namely (i) publishing a
new itinerary and (ii) finding a matching itinerary.

Publishing a new itinerary. When a CarPal user has a one-time or recurring trip that
he wants to optimize cost-wise, he can publish his route in the community in hope of
finding someone looking for a place in the same route and time-window, to share the
ride with. A planned itinerary is usually composed by the following data:

– Trip date and number of repetitions, in case of a recurring trip;
– Place of departure and place of arrival, whose representation is critical, since high

granularity might lead to the omission of similar results;
– Time of departure;
– Time of arrival or, at least, an estimate given by the user;

2 See http://www-sop.inria.fr/teams/lognet/carpal

http://www-sop.inria.fr/teams/lognet/carpal

304 V. Ciancaglini, L. Liquori, and L. Vanni

– Number of available seats to be updated when another passenger asks for a place;
– Contact, usually an e-mail or a telephone number;
– Further useful information, i.e. pet allergies, other specific needs etc.;

Moreover, from a functional point of view, a trip, e.g. from place A to place D may in-
clude several checkpoints, meaning that the user offering a ride can specify one or more
intermediate stops in the itinerary where he is willing to pick up or leave passengers.

Once the user has inserted all the required data (date, place and time of departure
and arrival, number of seats and optional checkpoints), the trip is decomposed to all
possible combinations: for example, a trip containing the stops A-B-C-D (where B and
C are checkpoints specified by the user) will generate the combinations A-B, A-C, A-
D, B-C, B-D and C-D. This operation is commonly known as Slice and Dice. Since
the number of possible combinations can increase exponentially with the number of
checkpoints, there is a software limitation to 3 maximum stops in the trip.

Each combination is then stored in the DHT as an individual segment; furthermore
all of the segments which do not start from A are marked as estimated in departure
time since, given a trip made of different checkpoints, only the effective departure
time can be considered reliable, while the others are subject to traffic conditions and
contingencies. Geographic and time information must be encoded in such a way that it
is precise enough to still be relevant for our purposes (someone leaving from the same
city but 10 km far is not a useful match) yet broad in the sense that a precise query will
not omit any relevant results.

Every checkpoint (including departure and arrival point) could either be inserted
directly through geographical coordinates (using the GPS capabilities of modern mobile
devices) or as an address that would then be converted in geographical coordinates using
Reverse Geolocation APIs made available by services such as Google Maps [Goo].
Such coordinates would then be rounded before the hash key encoding in order to
group together locations within a given radius (around 5 kilometers). Concerning time
approximation, a 20-minute-window is used to approximate departure times. Both
during an insertion or a query, anything within the 0-19 minute interval would be
automatically set at 10 minutes, 20-39 will be set at 30 minutes and 40-59 at 50.

Finding a matching itinerary and one seat. A user wishing to find a ride can perform
a search by inserting the following information:

– Date of the trip;
– Departure place and time (picked on a map between the proposed points;
– Arrival place and wished time, picked in the same manner as the departure.

To increase the chances of finding a match, only part of the search criteria can be
specified, allowing e.g. to browse for all the trips leading to the airport in a certain day
disregarding the departure time (giving the user the chance of finding someone leaving
the hour before) or the departure point (giving the user, in case of nobody leaving from
the same place as him, to find someone leaving nearby to join with other means of
transportation). Furthermore, it is possible to specify checkpoints in the search criteria
too, in order to have the system look for multiple segments and create aggregated
responses out of publications from multiple users.

CarPal: Interconnecting Overlay Networks for a Community-Driven Shared Mobility 305

Table 1. Different data structures stored in the DHT for each entry

Criteria Key Value Grouping criteria
1 “I” �TRIP_ID ♣ Individual trip
2 “T” �DATE �DEP �TOD �ARR �TOA list[TRIP_ID] Departure, Arrival & Time
3 “B” �DATE �DEP �ARR list[TRIP_ID] Departure & Arrival
4 “D” �DATE �DEP list[TRIP_ID] Departure
5 “A” �DATE �ARR list[TRIP_ID] Arrival
6 “U” �USER_ID list[TRIP_ID] User

where ♣ = [DATE,DEPARTURE,TOD,ARRIVAL,TOA,SEATS,CONTACT,PUBLIC]

Negotiation. Once the itinerary has been found, it would be possible to contact the
driver in order to negotiate and reserve a seat. If the trip is an aggregation of different
drivers’ segments, all of them would be notified through the application. The individual
trip records will then be updated by decreasing the number of available seats.

2.3 Encoding CarPal in a DHT

The segments are stored in the DHT according to Table 1. The “	” symbol represents,
with a little abuse of notation, the concatenation of multiple values for one key.

Multiple keys, representing different sets of trips grouped according to different
criteria, are updated for each entry (or created if they do no already exist):

1. Is the actual trip record, associated to a unique TRIP_ID, that will be updated, e.g.,
when someone books a seat. The information stored concerns trip date - DATE,
place and time of departure - DEPARTURE and TOD, place and time of arrival -
ARRIVAL and TOA, number of available seats (or cargo space, in case of shared
goods transportation) - SEATS, a reference to contact the driver - CONTACT, and if
the trip has to be public or not - PUBLIC. Depending on the needs more information
can be appended to this record; the key is created by appending the token “I” to the
TRIP_ID.

2. Represents a set of trips having the same date, place and time of departure and
arrival. The key is created by concatenating the token “T”, trip date - DATE, place
and time of departure - DEPARTURE and TOD, place and time of arrival - ARRIVAL
and TOA. Its value is a list of TRIP_ID pointing to the corresponding trip records.

3. Is a set of trips grouped by date and place of departure and arrival. It will be used
to query in one request all the trips of the day on a certain itinerary. The key to
store them in the DHT is consequently made by appending to the token “B” the trip
date, place of departure and place of arrival;

4-5. Are two sets of trips arranged by day and by point of departure or arrival. The key
is therefore made by concatenating either the token “D” (for departure) or “A” (for
arrival) to the date - DATE and point of departure or arrival - DEP or ARR. This
set can be used, e.g., to query in one request all the trips of the day leaving from a
company or all the trips of the day heading to the airport;

6. Is a set of trips for a given user. The key is the token “U” prepending the USER_ID
itself.

306 V. Ciancaglini, L. Liquori, and L. Vanni

2.4 Network Architecture

The overlay chosen for the proof of concept is Chord [SMK+01] although other
protocols could be used to exploit the locality of the application or a more direct
geographical mapping (see Section 5.2). Even on a simple Chord, several mechanisms
to ensure fault tolerance can be put in place, like data replication using multiple hash
keys or request caching. To allow a new community to be start up, a public tracker has
been put in place on the Internet. The public tracker is a server whose tasks can be
summed up as follow:

– It allows for the setup of a new community, by registering the IP of certain reliable
peers, in a YOID-like fashion [Fra00];

– It acts as a central database of all the communities, keeping track of them and their
geographical position;

– consequently, it can propose nearby overlays to improve the matches by placing
co-located peers;

– It acts as a third party for the invitation of new peers into an overlay;
– It can provide statistical data about the activity of an overlay, letting a user know if

a certain community has been active lately (and thus if it is worth joining);
– It acts as an entry point for downloading the application and getting updates.

3 Interconnecting Different Communities

3.1 Context and Motivations

As previously stated, CarPal has been conceived as a service where new communities
of Car poolers can be put in place without the need for an existing IT infrastructure (e.g.
a dedicated online service to join like [Éq] and [Ott]).

– As a first effect, we would expect to see is the birth and growing of different
overlays around communities sharing the same interests, activities, jobs and, in
general, anything which could lead to a common travel pattern (e.g. company
employees, universities personnel, sports club members).

– Another expected consequence however will be to have multiple CarPal communi-
ties geographically overlapping i.e. residing in the same area and not being aware
of each other, and thus, not taking advantage of each other’s offerings. Often, com-
panies are very close geographically and they have the same working timetable. If
nearby communities put in place different CarPal overlays, those possible matches
will not be taken into account.

Under certain conditions, in order to overcome such a limitation, a search operation
for a given itinerary within a community can be extended to other overlays being
geographically close.

3.2 Query Extension to Nearby Communities

A request for an itinerary can be routed through co-located nodes that are members
of different CarPal overlays. The interconnection of a node to overlays other than his

CarPal: Interconnecting Overlay Networks for a Community-Driven Shared Mobility 307

original is established via a social mechanism, where a user can ask for or receive an
invitation to join other communities. Since every community shares the same structure
for the hash key, the node will then be able to query all of his communities and act as a
proxy as well for any requests going through it. Furthermore, as mentioned in Section 5,
it will be possible to have a node interacting even with existing online services such as
Equipage06 [Éq] and OttoEtCo [Ott]. The query extension mechanism is implemented
using the Synapse protocol developed in our team and described in details in [LTV+10].
We hereby present a summary of its capabilities.

3.3 Synapse in a Nutshell

The protocol is based on co-located nodes, also called Synapses, serving as low-
cost natural candidates for inter-overlay bridges. In the simplest case (where overlays
to be interconnected are ready to adapt their protocols to the requirements of
interconnection), every message received by a co-located node can be forwarded to
other overlays the node belongs to. In other words, upon receipt of a search query, in
addition to its forwarding to the next hop in the current overlay (according to their
routing policy), the node can possibly start a new search, according to some given
strategy, in some or all of the other overlay networks it belongs to. This obviously
implies the presence of a Time-To-Live value and the detection of already processed
queries, to avoid infinite looping within the networks, as in unstructured peer-to-peer
systems. Applications of top of Synapse can see those inter-overlay as a unique overlay.

In case of concurrent overlay networks, inter-overlay routing becomes harder, as
intra-overlays are provided as black boxes: a control overlay-network made of co-
located nodes maps one hashed key from one overlay into the original key that, in
turn, will be hashed and routed in other overlays to which the co-located node belongs
to. This extra structure is unavoidable for routing queries along closed overlays and for
preventing routing loops.

3.4 Synapse Performance and Exhaustiveness

Our experiments and simulations show that a small number of well-connected synapses
is sufficient in order to achieve almost exhaustive searches in a set of structured overlay
networks interconnected together.

In order to test our inter-overlay protocol on real platforms, we have initially
developed JSynapse, a Java prototype which fully implements a Chord-based inter-
overlay network. We have experimented with JSynapse on the Grid’5000 platform
connecting more than 20 clusters on 9 different sites. Again, Chord was used as
the intra-overlay protocol. The created Synapse network was first made of up to 50
processors uniformly distributed among 3 Chord intra-overlays. Then, still on the same
cluster, as nodes are quad-core, we deployed up to 3 logical nodes by processor, thus
creating a 150 nodes overlay network, with nodes dispatched uniformly over 6 overlays.
During the deployment, overlays were progressively bridged by synapses (the degree
of which was always 2).

Figure 1 (left) shows the satisfaction ratio when increasing the number of synapses
(for both white and black box versions). A quasi-exhaustiveness is achieved, with only

308 V. Ciancaglini, L. Liquori, and L. Vanni

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

S
at

is
fa

ct
io

n
ra

tio

Number of synapses (%)

Deployment: satisfaction ratio

3 overlays, 10 nodes
3 overlays, 30 nodes
3 overlays, 50 nodes

6 overlays, 100 nodes
6 overlays, 150 nodes

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

T
im

e
(m

s)

Number of synapses (%)

Deployment: Time to get a response

3 overlays, 10 nodes
3 overlays, 30 nodes
3 overlays, 50 nodes

6 overlays, 100 nodes
6 overlays, 150 nodes

Fig. 1. Deploying Synapse : Exhaustiveness (left) and Latency (right)

a connectivity of 2 overlays per synapse. Figure 1 (right) illustrates the very low latency
(a few milliseconds) experienced by the user when launching a request, even when a lot
of synapses may generate a lot of messages. Obviously, this result has to be considered
while keeping the performances of the underlying hardware and network used in mind.
However, this suggests the viability of our protocols, the confirmation of simulation
results, and the efficiency of the software developed.

3.5 Implementation in CarPal

For our scope, we decided to adopt the so called black box version of the Synapse
protocol. The difference with the original Synapse approach is that, being aimed at
routing through non collaborative networks, instead of embedding the additional data
needed for the inter-overlay routing in the request packets themselves, it actually uses
a parallel Control Network. The reasons for this design choice, disregarding the fact
that every CarPal overlay would be collaborative by definition, with only CarPal peers
within it, are the follwing:

– it offers the possibility to query an existing online service as if it were a non-
collaborative network, by having one or more synapses acting as clients

– it allows for more control over the inter-overlay routing, by offering the possibility
to perform selective flooding of specific networks only.

To achieve this the Control Network handles two different data structures: a Key
Table and a Cache Table. Both are implemented as Distributed Hash Tables on a global
overlay to which every CarPal node is connected.

– The Key Table is responsible for storing the unhashed keys circulating in the
underlying overlays. When a synapse-enabled peer performs a GET which has to
be replicated in other networks, it makes the unhashed key available to the other
synapses through the Key Table. The key K is stored using an index formed by a
networks identifier as a prefix, and the hashed key itself as a suffix. In this way,
when a synapse on the overlay with e.g. ID = A will have to replicate e.g. H(K) =
123, it will be able to retrieve, if available, the unhashed key K from the Key Table
by performing a get of the key A�123.

CarPal: Interconnecting Overlay Networks for a Community-Driven Shared Mobility 309

– The Cache Table is used to implement the replication of get requests, cache
multiple responses and control the flooding of foreign networks. It stores entries
in the form of [H(KEY),TTL,[NETID],[CACHE]]. In a nutshell: NETID are optional
and used to perform selective flooding on specific networks. When another synapse
receives a GET requests, it checks if there is an entry in the Key Table (to retrieve
the unencrypted key), and an entry in the Cache Table; if so, it replicates the GET
in the [NETID] networks it is connected to, or in all its networks if no [NETID] are
specified. All of the responses are stored in the [CACHE], and only one is forwarded
back, in order not to flood the other nodes having performed the same request. A
TTL is specified to manage cache expiration and block the flooding of networks.
When the synapse originating the request receives the first response, it can retrieve
the rest of the results from the Cache Table. The cached responses should be sent
back with the associated NETID. This might allow for a node to define a strategy of
selective flooding to the networks which are better responding to a synapse request.

The inter-overlay routing takes place when a synapse peer wish to perform an
extended query: before routing the request in its own community it adds an entry in the
Key Table, containing the unhashed key to be searched, and an empty entry in the Cache
Table. When another synapse in the first overlay receives the request, it looks for the
unhashed key in the Key Table and the corresponding entry in the Cache Table. If those
are found, the co-located synapse will query for the same key in all its communities and
store the results in the Cache Table, in order not to pollute the originating network with
too many results. The requesting peer in the first network will then collect the results
from the Cache Table, upon receipt of the first response.

Controlling the data. Since different CarPal overlays use different hash functions to
map their keys a first level of privacy and control is guaranteed in case a community
wish to have some control over the visibility of their information. At present, there are
two possible scenarios for accessing the data:

– A user can search for trips marked as both public and private in every overlay he is
directly connected to. As previously stated, the connection to an overlay happens
via invitation through a mechanism similar to certain social networks;

– If certain nodes of his own networks are members of other overlays, they can act
as synapses and route queries from one network to another. However, only the trips
marked as “public” will be made available to a foreign request.

4 A Running Example

We hereby present a first proof-of-concept for a CarPal application implementing the
concepts discussed above. The software is still at an initial development stage but
it has already been proven to be working in posting new routes and querying them
across multiple networks. A basic user interface is proposed, showing a first attempt to
integrate a mapping service (namely, Google Maps [Goo]) in the application to render
the user experience more pleasant and efficient, although no GPS capabilities and no
reverse geolocation are in place yet.

310 V. Ciancaglini, L. Liquori, and L. Vanni

4.1 Building the Scenario

Let us turn to a practical example in order to better explain the logic behind the
application. As a real world scenario for our proof-of-concept we chose the area of
Sophia Antipolis in the department of Provence-Alpes-Cote d’Azur, France. The area
(Figure 2 left) constitutes an ideal study case, being a technological pole with a high
concentration of IT industries and research centers, thus providing several potential
communities of people working in the same area and living in nearby towns (such as
Antibes, Nice and Cagnes sur Mer).

Trip date 15/01/2010
Departure Nice
Departure Time 8.00
Checkpoint Cagnes sur Mer
Checkpoint Time 8.30
Arrival Sophia Antipolis
Arrival Time 9.00
Seats available 4
Contact jsmith@email.com

Nice-Sophia 8.00-9.00
Nice-Cagnes sur Mer 8.00-8.30
Cagnes sur Mer-Sophia 8.30-9.00

Fig. 2. The geographical set-up (left), journey data (right) and sliced & diced segments (bottom
right)

An engineer working in the area and willing to do some car pooling in order to reduce
his daily transfer costs can publish his usual route to the CarPal overlay specific to his
company. We assume the network has been already put in place spontaneously by him
or some colleague of his. He can then use the CarPal application to publish his route
with an intermediate checkpoint (as shown in Figure 3). As previously described, there
is a checkpoint where our user is willing to stop and pick up some passengers.

4.2 Slice and Dice and Encoding in the DHT

Starting from the above data all of the possible combinations are generated leading
to the segments shown in Figure 2 (right). Only the differences are reported, with
each of those segments sharing the same date, number of available seats and contact
information. The 3 segments are then stored in the DHT by updating (or adding) the
appropriate keys as shown in Table 2. For clarity purposes, in Table 2, date and time
values are represented as strings and instead of the actual geographic coordinates a
placeholder is shown (i.e. NICE, SOPH...).

A PUT operation represents the insertion of a not yet existing key whereas the
APPEND operation assumes that the key might already be in the DHT, in which case
the value is simply updated by adding the new entry to the list. After the insertion, the

CarPal: Interconnecting Overlay Networks for a Community-Driven Shared Mobility 311

Fig. 3. CarPal application publishing a new trip

Table 2. DHT operations

Criteria
Operation Key Value

(see Table 1)
1 PUT “I”�123 ♣
1 PUT “I”�124 ♠
1 PUT “I”�125 �
2 APPEND “T”�20100115�NICE�0800�SOPH�0900 123
2 APPEND “T”�20100115�NICE�0800�CAGN�0830 124
2 APPEND “T”�20100115�CAGN�0830�SOPH�0900 125
3 APPEND “B”�20100115�NICE�SOPH 123
3 APPEND “B”�20100115�NICE�CAGN 124
3 APPEND “B”�20100115�CAGN�SOPH 125
4 APPEND “D”�20100115�NICE 123
4 APPEND “D”�20100115�NICE 124
4 APPEND “D”�20100115�CAGN 125
5 APPEND “A”�20100115�SOPH 123
5 APPEND “A”�20100115�CAGN 124
5 APPEND “A”�20100115�SOPH 125
6 APPEND “U”�“jsmith@email.com” [123,124,125]

where ♣ = [20100115, NICE, 0800, SOPH,0900, 3, jsmith@email.com, public=true]
where ♠ = [20100115, NICE, 0800, CAGN,0830,3, jsmith@email.com, public=true]
where � = [20100115, CAGN, 0830, SOPH, 0900, 3, jsmith@email.com, public=true]

trip is published and stands available to be searched. From Figure 3 we can see that it is
possible to set the option of the the trip staying private. In that case, the segments will
be discoverable only by members of the same network.

312 V. Ciancaglini, L. Liquori, and L. Vanni

Fig. 4. Simple search

4.3 Searching for a Trip

A search for a trip follows a similar path as the trip submission. As we can see in
Figure 4 the user can specify an itinerary, a specific time and even some intermediate
segments, in order to find all the possible combinations. Depending on the search
criteria specified, the application will perform a query for either a key made of Time
of Departure and Time of Arrival, for a more exact match, a key with only Point of
Departure and Arrival to browse through the day’s trips or a key with only Departure

Fig. 5. Aggregate results

CarPal: Interconnecting Overlay Networks for a Community-Driven Shared Mobility 313

Fig. 6. Synapse creation

Fig. 7. CarPal Students accessing result from Enterprise Network

or Arrival for a broader search. Thanks to the Slice and Dice operation, it is possible to
aggregate segments coming from different users as Figure 5 shows.

In this way the driver has more possibilities to find guests in his car. Despite that,
there can still be some places available for his daily route. To optimize even further,
he might share his information with, for example, students of nearby universities with
their own carpool network (which has the same functions and technology).

By marking his published itinerary as public, a member of the Enterprise Network
allows the students to get matching results via a synapse (Figure 8), i.e. somebody

314 V. Ciancaglini, L. Liquori, and L. Vanni

Fig. 8. Students, Enterprise and Synapsed Overlay Networks

registered to both networks (Figure 6). This allows the system to increase the chances
of finding an appropriate match while maintaining good locality properties (Figure 7).

5 Conclusion and Further Work

There are several potential improvements, amongst which are the following:

5.1 Improved Network Bootstrap and Community Discovery

At the present state, a new community can be setup or joint by passing through
the tracker. This keeps track of community activities, their location, handles the join
negotiation and restrictions, and can suggest nearby communities that could be joined;
however, it also constitutes a centralized point of failure for all of the communities. To
further improve the mechanism, the following solutions can be put in place:

– Assuming that a community/overlay could very likely reside on the same network
infrastructure (i.e. the enterprise intranet) a discovery protocol can be put in place
leveraging existing technologies like Avahi [Ava] to discover new peers or new
networks to join;

– Peer caching could be used to reconnect to previously connected peers whose
activity is known to be reliable;

– An invitation to a new community could be handled physically via an Near Field
Communications transaction [NFC]. A user with an NFC enabled phone could be
invited by another user by simply swiping the phones together or touching a radio
tag. Furthermore this could be an additional guarantee of user “reliability”, as the a
participant would need to be known and met by an existing member;

– The community database could as well be stored in the DHT itself, meaning that
the new communities could simply be discovered through specific requests routed
through existing synapses to other networks in a ping-like way.

CarPal: Interconnecting Overlay Networks for a Community-Driven Shared Mobility 315

5.2 Semantic Queries and Specialized Protocols

It appears clear that the current approach suffers from the limitation of a simple key-
value approach. Such an approach does not fit well into an application that finds
its strength in the possibility of performing searches according to many different
criteria. The adoption of a semantic hash function (such as [SH09]) would allow for
clustering of semantically close information (i.e. trips heading to sibling destinations or
taking place in the same time window) in nearby peers. Needless to say, with such
hashing in place the adoption of an overlay protocol more suited to range queries
(like P-Ring [CLM+07], P-Grid [ACMD+03] or Skipnet [HJS+03]) might lead to
semantically significant range queries, where, for example, departure and arrivals can
be geographically mapped and queried with a certain range in Km.

Another possible improvement (currently under study) would be to use a DHT pro-
tocol more suited for geo-located information. CAN [RFH+01]) in a 2D configuration
is a first example of how this could be achieved. Mapping CAN’s Cartesian space over
a limited geographic area (like in Placelab [CRR+05]) could ease the query routing and
eventually provide some strategic points to place synapsing nodes.

5.3 Overlay-Underlay Mapping Optimizations

The overlay-underlay network mapping to avoid critical latency issues due to the
fact that one logical hop can correspond to many physical hops. This issue is under
investigation and could involve e.g. the use of several always-on peers to triangulate
the “position” of a peer over the Internet (according to latency metrics) and cluster
together nearby peers (where by “nearby” we mean sharing similar latencies to the
same given references). Another issue would be to make the service firewall-resilient,
by implementing TCP Punch-hole techniques in the peer engine and in the tracker.

5.4 Backward Compatibility with Other Carpool Services

To take into account issues like access to non collaborative networks or backward
compatibility the Synapse protocol also allows for a so called black box variant, whose
first implementation is described in 3.5, that is suitable to interconnect overlays that,
for different reasons, are not collaborative at all. This means that they only route
packets according to their proprietary and immutable protocol. With the black box
being more of a meta-protocol running on top of existing, and not necessarily peer-to-
peer, structures, we can imagine strategically placed Synapse nodes being responsible
of querying existing web services and returning the corresponding information as if
they were coming from a foreign network. This would open new scenarios, where
multimodality is easily integrated and made available to nearby communities. The
system needs to be correctly designed, in order to avoid a situation in which too many
peers act as a Distributed Denial Of Service, but the current infrastructure makes it
rather feasible.

5.5 User Rating, Social Feedback

With CarPal being an application based on user-generated content and designed to put
in touch people not necessarily acquainted to each other, it is important to implement

316 V. Ciancaglini, L. Liquori, and L. Vanni

some social feedback and security mechanism to promote proactive and good behavior
by the users. Inspired by the most successful web applications of today, two solutions
can be imagined:

– A user rating chould be put in place in order, for example, to allow passengers
to evaluate a driver’s punctuality, behavior and driving skills, and vice-versa. This
feedback, similar to what systems like Ebay [Eba] have already from several years,
can help maintaining a high level of quality of the service by giving an immediate
picture of a driver’s or passenger’s reliability;

– Some points can be assigned to users based on their activity in the community.
The more a user will be proactive by publishing or subscribing to new trips in
an overlay, the more “karma points” he will receive. A similar approach can be
verified in Social News website like Digg [Dig] or Reddit [Red] and has become
pretty common in today’s social media. With the deployment and integration of
new distributed services, these points could act as a “virtual cash” and grant access
to features normally reserved to paying customers, thus motivating drivers and
passengers to keep a community alive.

5.6 Other Potential Applications

The Car sharing/pooling is not the exclusive applicative field for the overlay network
technology we have designed; with the same final objective of minimizing traffic,
pollution and energy a service interconnecting transportation companies Information
Systems could be envisaged. A “BoxPal” system could be easily build using the
same overlay network technology: the only difference being the (more difficult)
3D bin-packing combinatorial algorithms employed instead of a simple matching of
drivers/cars/itinerary/car places.

References

[ACMD+03] Aberer, K., Cudré-Mauroux, P., Datta, A., Despotovic, Z., Hauswirth, M.,
Punceva, M., Schmidt, R.: P-grid: a self-organizing structured p2p system.
SIGMOD Rec. 32(3), 29–33 (2003)

[Ava] Avahi project website, http://avahi.org/
[CCL08] Chand, R., Cosnard, M., Liquori, L.: Powerful resource discovery for Arigatoni

overlay network. Future Generation Computer Systems 1(21), 31–38 (2008)
[CLM+07] Crainiceanu, A., Linga, P., Machanavajjhala, A., Gehrke, J., Shanmugasun-

daram, J.: P-ring: an efficient and robust p2p range index structure. In: SIG-
MOD 2007: Proceedings of the 2007 ACM SIGMOD international conference
on Management of data, pp. 223–234. ACM, New York (2007)

[CRR+05] Chawathe, Y., Ramabhadran, S., Ratnasamy, S., LaMarca, A., Shenker,
S., Hellerstein, J.: A case study in building layered dht applications. In:
SIGCOMM 2005: Proceedings of the 2005 conference on Applications,
technologies, architectures, and protocols for computer communications, pp.
97–108. ACM, New York (2005)

[Dig] Digg website, http://www.digg.com/
[Eba] Ebay website, http://www.ebay.com/

http://avahi.org/
http://www.digg.com/
http://www.ebay.com/

CarPal: Interconnecting Overlay Networks for a Community-Driven Shared Mobility 317

[Fra00] Francis, P.: Yoid: Extending the internet multicast architecture. Technical
report, AT&T Center for Internet Research at ICSI, ACIRI (2000)

[Goo] Google maps website, http://maps.google.com
[HJS+03] Harvey, N.J.A., Jones, M.B., Saroiu, S., Theimer, M., Wolman, A.: Skipnet:

a scalable overlay network with practical locality properties. In: USITS
2003: Proceedings of the 4th conference on USENIX Symposium on Internet
Technologies and Systems, p. 9. USENIX Association (2003)

[LTV+10] Liquori, L., Tedeschi, C., Vanni, L., Bongiovanni, F., Ciancaglini, V.,
Marinković, B.: Synapse: A Scalable Protocol for Interconnecting Hetero-
geneous Overlay Networks. In: Crovella, M., Feeney, L.M., Rubenstein, D.,
Raghavan, S.V. (eds.) NETWORKING 2010. LNCS, vol. 6091, pp. 67–82.
Springer, Heidelberg (2010)

[NFC] NFC forum website,http://www.nfc-forum.org/
[Ott] Otto et co. website, http://www.ottoetco.org/
[Red] Reddit website, http://www.reddit.com/
[RFH+01] Ratnasamy, S., Francis, P., Handley, M., Karp, R., Schenker, S.: A scalable

content-addressable network. In: SIGCOMM 2001: Proceedings of the 2001
conference on Applications, technologies, architectures, and protocols for
computer communications, pp. 161–172. ACM, New York (2001)

[SH09] Salakhutdinov, R., Hinton, G.: Semantic hashing. International Journal of
Approximate Reasoning 50(7), 969–978 (2009)

[SMK+01] Stoica, I., Morris, R., Karger, D., Kaashoek, M.F., Balakrishnan, H.: Chord: A
scalable peer-to-peer lookup service for internet applications. In: SIGCOMM
2001: Proceedings of the 2001 conference on Applications, technologies,
architectures, and protocols for computer communications, pp. 149–160. ACM,
New York (2001)

[Éq] Équipage 06 website, http://www.equipage06.fr/

http://maps.google.com
http://www.nfc-forum.org/
http://www.ottoetco.org/
http://www.reddit.com/
http://www.equipage06.fr/

Refactoring Long Running Transactions: A Case Study

Gianluigi Ferrari1, Roberto Guanciale1, Daniele Strollo1, and Emilio Tuosto2

1 Dipartimento di Informatica,
Università degli Studi di Pisa, Italy

{giangi,guancio,strollo}@di.unipi.it
2 University of Leicester, Computer Science Department

University Road, LE17RH, Leicester, UK
et52@mcs.le.ac.uk

Abstract. Managing transactions is a key issue in Service Oriented Computing
where particular relevance is given to the so called Long Running Transactions
(LRT). Here, we show how to apply a formal approach to the specification and
refactoring of LRT. Specifically, we consider a methodology arising on process
calculi and show how it can be applied to a case study.

1 Introduction

Service Oriented Computing (SOC) envisages systems as combination of basic com-
putational entities, called services, whose interfaces can be dynamically published and
bound. Abstract composition/coordination mechanisms are necessary as SOC systems
are typically executed on overlay networks, namely inter-networked communication in-
frastructures (e.g., wired and wireless networks, telecommunication networks or their
combination). Such abstract mechanisms are divided in to orchestration and choreogra-
phy. Services are orchestrated when their execution work-flow is described through an
“external” process, called orchestrator. A choreography specifies how services should
be connected and interact so to accomplish the overall choreography goals. Roughly,
choreographies yield an abstract global view of SOC systems that must eventually be
“projected” on the distributed components.

In this paper, we apply the theory defined in [4] to a case study taken from the SEN-
SORIA project [9]. More precisely, in [4] it is shown how Long Running Transactions
(LRT) can be refactored in a semantially sound way, namely a few refactoring rules
for LRT are given and proved to preserve (weak) bisimilarity. An original contribution
of this paper is the description of our methodology via an implemented programming
framework, called ESC, based on the process calculi used in [4]. Our methodology con-
sists of the following steps:

1. the software architect designs the LRT model in a semiformal notation (in this paper
we adopt BPMN [8,10]);

2. programmers produce an initial implementation of the model in SCL, the program-
ming language featured by ESC;

3. the initial implementation is refactored by repeatedly applying refactoring rules that
automatically transform the implementation in an equivalent one.

M. Wirsing, M. Hofmann, and A. Rauschmayer (Eds.): TGC 2010, LNCS 6084, pp. 318–334, 2010.
© Springer-Verlag Berlin Heidelberg 2010

Refactoring Long Running Transactions: A Case Study 319

The refactoring in the last step is applied according to the model-driven approach and
allows the initial implementation to be adapted to choices/changes that may arise in a
later stage of the development. For instance, the initial implementation can be given
ignoring the execution platform; refactoring rules will then be applied to adapt the code
to the underlying platform. Notice that this allows changes to the code to be done auto-
matically for instance when the execution platform is decided or when it changes after
the deployment.

Remarkably, the adoption of the ESC framework relieves software architects and
programmers from the intricacies of the theoretical background. The ESC framework
and its theoretical foundation guarantee the correctness, namely that refactored SCL

code is equivalent to the initial implementation.

Synopsis. The ESC development framework on its underlying model are described in
§ 2; the SCL language is introduced in § 3; the SENSORIA case study and the LRT
refactoring rules are discussed in § 4; the action of the refactoring rules on SCL code is
given in § 5; final remarks are in § 6.

2 Background

We summarise the main ingredients of our framework illustrated in Figure 1 where ESC

(left block), SC (middle block), and NCP (right block) are respectively a programming
platform, its underlying formal model, and the choreography model all relying on event
notification as the basic coordination paradigm.

The Event-based Service Coordination (ESC) platform provides a set of Eclipse plug-
ins that offer a graphical and a textual representation of networks and is detailed below.

SCL / SCDesigner

SCL / SCDesigner

SCL / SCDesigner

Transactions

Java Code
Deployment

E
S

C
 P

la
tfo

rm

Java Signal Core Layer

Saga

NCP

Signal Calculus (SC)

Signal Calculus (SC)

Signal Calculus (SC)

Formal Model

- Conformance
- Bisimulation
- Choreography model

Refinement

Implementation

Model
Transformation

Fig. 1. ESC architecture

320 G. Ferrari et al.

The Signal Calculus [5,3] (SC) yields a set of core primitives suitable and plays the
key role of intermediate meta-model with respect to the other two layers. The calculus
of Network Coordination Policies [1] (NCP) extends and equips our framework with a
choreography model. In Figure 1, the arcs from SC to NCP represent the possibility to
map SC models on NCP so that the conformance to SC designs can be verified.

The ESC framework relies on JSCL (a set of Java API realising SC) and offers two dif-
ferent perspectives of the network. The graphical representation presents a global view
of the choreography by considering the components and their interconnections, without
detailing their internal logics. The textual notation offers a closer view of components
allowing designers to focus on the behavioral aspects. In a model driven metaphor,
the aspects treated at these different levels of abstraction share a common meta-model.
In this way a level can be easily transformed into another so that the resulting target
model can be used for automatically generating (executable) JSCL code. In fact, the
ESC platform supplies a set of model transformation tools that, starting from the high
level specifications (cf. blocks BPMN transactions and UML4SOA [11] in Figure 1),
automatically build their corresponding representation in the SCL model.

The event-notification model featured by SCL is based on components that asyn-
chronously emit typed events; events are called signals and their types are called topics.
A component may react to signals through reactions installed in their interface; each
reaction has an associated behaviour executed when a signal triggering the reaction is
received. Additionally, events are associated with sessions allowing to distinguish the
different workflows. Intuitively, a session yields a “virtual communication link” among
distributed components. Sessions are transparent to programmers and have a scope (i.e.,
the components participating in some interactions) that are dealt with by the SCL se-
mantics. In other words, the semantics of SCL guarantees that components outside the
scope of a session do not react to the events related to such session.

3 Signal Core Language

The textual representation supported by ESC is the Signal Core Language (SCL) imple-
mented as a textual plug-in for Eclipse1.

An SCL model defines a network by aggregation of components, described in terms
of “reactive” software modules declaring the class of events they are interested to and
the way they react at the occurrence of events. An example of SCL network is in
Code 1.1 (where ellipses stand for immaterial code); the network consists of com-
ponents a (LINES 3-20) and b (LINES 21-26). Topic names can be declared either
restricted or (LINE 1 and LINE 2). A component has to declare its intention to re-
fer a restricted name using the declaration knows (e.g., a on LINE 6). Instead, global
names can be referred by all components in the network. Moreover, topic names can
be declared local (LINE 4) or during in the body of a component through the primi-
tive with (LINE 17). Similarly, component names can be declared restricted by tagging
components with the protected clause (LINE 21).

1 The textual editor has been implemented by using OpenArchitectureWare (oAW) [7], a modu-
lar MDA/MDD generator framework and supports code completion, error checking and code
generation.

Refactoring Long Running Transactions: A Case Study 321

1 restricted: s1,s2;
2 global: t1, t2, t3;
3 component a {
4 local: lt1 , lt2;
5 flows: [t1->a], [lt1 ->b];
6 knows: s1,b;
7 reaction lambda (t1@ws){
8 addFlow ([ws->b]);
9 addReaction (

10 reaction check (lt1@lt2){
11 emit (t1@lt1);
12 }
13);
14 nop;
15 do ... or ...
16 split ... || ...
17 with (nlt1) ...
18 skip;
19 }
20 }
21 protected component b {
22 knows: s1;
23 main {
24 ...
25 }
26 }

Code 1.1: An SCL network of two components

Besides local names, components declare topics of their flows (LINE 5) and reactions.
The flows of a component specify where the signals have to be routed (e.g., signals of
topic lt1 emitted by a are rooted towards b). Reactions specify what signals a compo-
nent can react to and the corresponding code to be executed upon reaction. There are
two kind of reaction; a reaction lambda, activated for a topic regardless its related
session, and reaction check, triggered only within a specific session. For instance,
a reacts to any signal on topic t1 (LINE 7) while can react to signals on topic lt1 only
if they are related to session lt2 (see LINE 10).

The computational steps described inside reactions, declare their behaviors. The ba-
sic primitives are

– emit (LINE 11), used to send out notification for an occurred event,
– addFlow (LINE 8) and addReaction (LINE 9) that allow flows and reactions of a

component to be dynamically updated,
– nop (LINE 14) to indicate a block of code externally defined through host language

instructions that do not interfere the coordination patterns (e.g. the access to the
database),

– skip (LINE 18) represents the empty action (the SC silent action).

322 G. Ferrari et al.

Furthermore, behaviors can be composed in sequence (using, as usual the semicolon)
or with do-or (LINE 15) and split (LINE 16) constructs. The former constructs is
used to implement the non deterministic execution of two branches, the latter allows
the parallel composition of two behavioral activities.

Notice that component b declares a main block (LINES 23-25) that specifies its initial
behavior.

4 A Case Study: The Car Repair Scenario

We apply our methodology to the SENSORIA automotive case study [11] and show how
it can be developed in the ESC framework. We briefly describe the case study.

A car manufacturer offers a service that, once a user’s car breaks down, the system
attempts to locate a garage, a tow truck and a rental car service so that the car is towed to
the garage and repaired meanwhile the car owner may continue his travel. The following
requirements are specified:

– before any service lookup is made, an amount of money is reserved on the user’s
credit card;

– before looking for a tow truck, a garage must be found as it poses additional con-
straints to the candidate tow trucks;

– if no tow truck is found, the garage booking must be revoked;
– if a car rental (with an available car) is found succeeds while the search of either

a tow truck or a garage fails, the car rental must be redirected to the broken down
car’s actual location;

– the failure of the search for a car rental should not affect the tow truck and garage
booking.

Such requirements impose the adoption of LRT as coordination with compensations is
needed; also it is worth pointing out some peculiarities of the scenario. The application
consists of different services that dynamically federate in order to provide new function-
alities. Specifically, services (e.g., financial institutions, garages and car rental or taxi
companies) team up to help the customer. This service composition is dynamic and can-
not be anticipated in the code. Moreover, the scenario requires distributed transactional
behavior to be dealt with. In fact, interactions among services can fail for many reasons
and, of course, the customer should not be charged when the service cannot be provided.
Finally, SOC systems usually have to be deployed on heterogeneous platforms and have
to be executed on overlay computers, namely networks of many different kinds (e.g.,
wired networks, wireless ones or, telecommunication networks). For instance, the car-
repair scenario requires software interfacing GPRS system, mobile phone, the Internet,
and dedicated networks for financial transactions. The complexity of such applications
requires in fact a rather sophisticated development methodology that can help program-
mers in facing the complexity of underlying and platform specific aspects.

The LRT graphical model of this scenario is presented in Figure 2 (see Appendix A
for an overview of LRT). The model exploits the transactional and compensation facil-
ities of LRT; for instance, the car rental service is a sub-transaction, since (as required)
it does not affect other activities.

Refactoring Long Running Transactions: A Case Study 323

Charge
CreditCard

Revoke
Charge

Order Garage
Appointment

Cancel Garage
Appointment

Order
Tow Truck

Cancel
Tow Truck

Order
Rental Car

Redirect
Rental Car

+

Fig. 2. Car repair scenario: the LRT model

Notice that initial design in Figure 2 simply describes the transactional aspects of
the main activities. In this phase, it is not relevant to describe service distribution or
(refined decomposition of the main activities).

4.1 LRT to SCL Model Transformation

The ESC platform comes up with a set of tools that permit to transform the platform
independent LRT models to the platform specific SCL models.

The SCL implementation of transactional behaviors exploits two public names, f
and r, respectively for forward and rollback events. Forward events propagate the suc-
cessful completion from an activity to the next ones in the work-flow. Backward events
are emitted on failures to trigger compensations. In the first step the model transfor-
mation generates an SCL component for every atomic process (aka an activity and the
corresponding compensation).

Subsequently, the model transformation can generate glue components and update
the existing flows, however the behavior of components generated in the previous steps
cannot be altered. This permits to transform a transactional process to an SCL network
independently by the context, and reuse it as building block just changing its connec-
tions (SCL flows).

The SCL snippets presented in the following contain unspecified behavior which is
specific to the application (represented with comments in the code); this missing be-
haviours are supposed to be added by the programmers once the SCL code is compiled
into JSCL API (e.g. Java).

Atomic process. Figure 3(a) gives a pictorial intuition of the internal structure of
atomic processes; Figure 3(b) illustrates a black-box view of atomic processes where
solid (resp. dashed) arrows represent the forward (resp. backward) flow of LRT; fi-
nally, the sequential composition of a and b their forward and backward flows as in
Figure 3(c).

324 G. Ferrari et al.

Main
Activity

emit r
install

compensation &
emit f

ex

ok

f f

rr

(a) Internal view of atomic process

(b)

(c)

Fig. 3. Atomic and sequential compensatable processes

In Code 1.2 we report the SCL coding of transactional activity GARAGE where (ac-
cording to Figure 3(a)) two private topics, ok and ex, (LINE 2) are declared so to be
able to determine the termination of the main activity of the component. Notice that
all events on topics ok and ex are delivered to GARAGE itself (LINE 3). Initially the
component can react only to f events (BLOCK 5-24). When reacting to forward events
(signals on topic f), GARAGE receives the session identifier s and execute the behav-
ior corresponding to the LRT main activity (LINE 7). Such behavior is not explicitly

1 component garage {
2 local: ok, ex;
3 flows: [(ok->garage), (ex->garage),
4 (r->creditCard), (f->dispatcherPar)];
5 reaction lambda (f@s) {
6 split {
7 /* coding of the main activity */
8 do {emit <ok@s >;} or {emit <ex@s >;}
9 } || {

10 addReaction (reaction check (ok@s) {
11 split {
12 emit <f@s >;
13 }||{
14 addReaction (reaction check (r@s) {
15 /* Compensation */
16 emit <r@s >;
17 });
18 }
19 });
20 } || {
21 addReaction (reaction check (ex@s) {
22 emit <r@s >;
23 });
24 }
25 }

Code 1.2: SCL compensatable activity

Refactoring Long Running Transactions: A Case Study 325

given, it is just assumed to issue an ok event on successful termination and send an ex
event otherwise. Concurrently with the main activity GARAGE installs a reactions to
check when the main activity terminates (BLOCKS 10- 19 and 21-23). On successful
termination (LINE 10), a signal on topic f is propagated (LINE 12) and a check reaction
waiting for a possible rollback is installed (LINE 14-17); when a r event for the session
s arrives, the activity is compensated (abstracted by nop on LINE 15) and the rollback
signal propagated to previous stages (LINE 16).

If the execution of the activity fails (LINE 21), the handler simply starts the backward
flow, raising a rollback event (LINE 22). Since the transformation of an atomic task
generates only one SCL component, this component is both the entry point and the exit
point of the generated network. Notice that the generated component has only flow to
itself, since it is generated independently by the context.

Parallel composition. The parallel composition of two LRT processes a and b is repre-
sented in Figure 4(a) where two additional components d and c represent the dispatcher
and collector.

A dispatcher propagates the forward flows to all the components executed in parallel
and propagates the backward flows to the previous stage of the workflow. Similarly, the
collector waits for the outcome of each parallel component before propating the forward
flow and send rollback signals when subsequent stages of the workflow fail.

The SCL code for dispatcher is Code 1.3 and 1.4, respectively. Such code is generated
for the parallel composition of the TOWTRUCK and RENTALCAR services.

The dispatcher (c.f. Code 1.3) represents the entry point of the parallel branch. Basi-
cally, it activates the forward flow of next components, and synchronizes their backward
flows. Upon reactions to forward events (LINE 4), the collector emits two events: one
having topic f (LINE 6) and the other one having topic n (LINE 8). The former event
is delivered to the components representing the parallel activities. The latter event is
delivered to the collector, informing it of the received session that will be later used
by it to implement its synchronization. Concurrently, the collector activates its the
synchronization mechanism by installing two nested reactions for the topic r in the
work-flow session s (LINES 10 and 11). When the synchronization of the backward
flow takes place, the emitter backwardly forwards the rollback event (LINE 12).

(a) (b)

Fig. 4. Parallel composition and transactional enclosure

326 G. Ferrari et al.

1 component dispatcherPar {
2 flows: [f->towTruck],[f->dispatcherTrans],
3 [r->garage],[n->collectorPar];
4 reaction lambda (f@s) {
5 split {
6 emit (f@s);
7 } || {
8 emit (n@s);
9 } || {

10 addReaction (reaction check (r@s) {
11 addReaction (reaction check (r@s) {
12 emit (r@s);
13 });
14 });
15 }
16 }
17 }

Code 1.3: SCL parallel dispatcher

1 component collectorPar {
2 flows: [r->towTruck],[r->collectorTrans],[f->...];
3 reaction lambda (n@s) {
4 addReaction check (f@s) {
5 addReaction check (f@s) {
6 split {
7 emit <f@s >;
8 } || {
9 addReaction check (r@s) {

10 emit <r@s >;
11 }
12 }
13 }
14 }
15 }
16 }

Code 1.4: SCL parallel collector

Similarly, the collector component (in Code 1.4) is responsible to implement the
synchronization mechanism for the forward flows (LINES 4 and 5) and to activate the
backward flows of the parallel components when a r event is received (BLOCK 9-11).
Once both the internal components have sent their forward messages, the collector sends
out a f event (LINE 7). Notice that the collector exploits a n event to get information
about the session s of the work-flow (LINE 3). After the generation of the new compo-
nents, the flows of the two networks are updated (the flow for f in LINE 2). Moreover

Refactoring Long Running Transactions: A Case Study 327

the backward flow is suitable connected to the internal parallel components as given in
LINE 2). The dispatcher and the collector components represent the entry and exit point
of the parallel component, respectively.

Isolated transaction. The intended meaning of transactional enclosure construct is
that its internal failure does not affect other activities. For this reason, regardless the
outgoings of a transactional activity a (see Figure 4(b)) the collector will receive a
notification of forward event (f). The Not agent ensures that rollback requests from a
are converted into forward requests so that the flow is passed to the next stages of the
transaction. Conversely, if from the outside c receives a rollback, the component a must
be informed and activate its compensation. Two cases are possible: i) a has previously
successful terminated, so it has a compensation installed ii) a internally failed and no
compensations are needed.

On its turn, d has to consume two instances of r events before activating the backward
flow while c, for the same session, consumes only a f event and ignores the further
instances of f .

Similarly to the parallel encoding previously exposed, the topic n is used from d to
inform c that a new work-flow instance has been initiated so that the latter component
can install the proper check reactions to consume two distinct instances of f events
coming from a.

The generated SCL code for the sub-transaction containing the RENTALCAR com-
ponent is provided by three internal components according to the schema given in
Figure 4(b).

The DISPATCHERTRANS (c.f. Code 1.5) receives from the external activities the for-
ward events (LINE 3), informs the COLLECTORTRANS that a new transactional session
has been initiated (LINE 4), redirects the forward event to the RENTALCAR (LINE 5)
and installs the rollback handler for the current session (BLOCK 6-10). Notice that, the
rollback will be sent out (LINE 8) after the reception of two r notifications.

1 component dispatcherTrans {
2 flows [n->collectorTrans],[f->RentalCar];
3 reaction lambda (f@s) {
4 emit (n@s);
5 emit (f@s);
6 addReaction (reaction check (r@s){
7 addReaction (reaction check (r@s){
8 emit (r@s);
9 });

10 });
11 }
12 }

Code 1.5: SCL transactional enclosure dispatcher

328 G. Ferrari et al.

1 component Not {
2 flows [f->collectorTrans];
3 reaction lambda (r@s) {
4 emit <f@s >;
5 }
6 }

Code 1.6: SCL transactional enclosure not

The NOT port has the obvious meaning, it inverts the topic from r to f, without
altering the session, as given in Code 1.6.

1 component collectorTrans {
2 flows: [f->collectorPar],[r->RentalCar],
3 [r->dispatcherTrans];
4 reaction lambda (n@s) {
5 addReaction(reaction check (f@s) {
6 emit(f@s);
7 addReaction (reaction check (r@s) {
8 emit (r@s);
9 });

10 });
11 }
12 }

Code 1.7: SCL transactional enclosure collector

The COLLECTORTRANS (c.f. Code 1.7) waits until the dispatcher communicates the
new working session (LINE 4). Consequently, it installs the handler for the f notifi-
cations coming from the RENTALCAR (BLOCK 5-10). Once received the f event it is
delivered outside (LINE 6) and an handler for the rollback coming from the outside is
installed (BLOCK 7-9).

5 Scl Model Refactoring

In § 4.1 we have shown how to “compile” BPMN diagrams into SCL networks. Arguably,
a similar mapping can be given also for other formalisms for LRT as [11]. Nevertheless,
the automatically generated models may require some modifications either (i) to refine
the code to consider those aspects not addressable in LRT (e.g., platform dependent
issues) or (ii) to optimise the generated code.

Figure 5 pictorially represents the structure of the coding automatically generated
by SCL to be subsequently refined to better adhere to additional requirements that are

Refactoring Long Running Transactions: A Case Study 329

Fig. 5. A representation of the network generated in SCL

not taken into account at abstract level. For instance, the component distribution on
the network, are not explicitly modeled at higher levels of abstraction, both at formal
and specification levels. In fact, either LRT meta-models are not concerned with such
aspects or, more pragmatically, they can more suitably considered at later stages of the
development. For example, BPMN designs sketches how the overall transaction among
transactional components should proceed without making any further assumption on
which services implement such components (or where they are located).

A possible solution to the problem described abovev is to refineme the code. The
refinement process has to provide sound refactoring rules as those introduces in [4] and
adopted here. Our translation of LRT into SCL models provides the suitable level of
abstraction to which these refactoring steps can be applied. For example, deployment
of distributed components or rearrangement of points of control can be automatically
transformed at the SCL level respecting the original semantics of automatically trans-
lated designs.

5.1 Refactoring Transactional Components

The first refactoring rule consists in delegating the compensation of SCL transactional
components; the rule is applied to the GARAGE (cf. Code 1.2, § 4.1).

As already pointed out, both the main activity and the compensation of a transac-
tional component are embedded into a single SCL component that manages ok and ex
events in order to propagate forward or backward flows. However, it might be useful to
delegate the compensation task to a different component. For example, the compensa-
tion should run on a different host than the main activity, because it involves a remote
service. Usually, this aspect is not specified in the model of the business process. In the
ESC framework, this issue can be tackled at deployment time, indeed implementation
of JSCL [5] permits to orthogonally distribute components on the network topology.

The refactoring rule generates a component, called CMP (Code 1.8, lines 20-29),
that handles the compensation managing the backward flow and is reachable only by
GARAGE (line 5). For this reason, GARAGE directs r and ex events as specified in the
refactored set of flows (line 4). The refactored GARAGE component needs only to check
the termination of its main activity. In fact, its check reaction (line 9) propagates the

330 G. Ferrari et al.

1 restricted ex;
2 component garage {
3 local: ok;
4 flows: [(ok->garage),(ex->cmp),(r->cmp),(f->dispatcherPar)];
5 knows: cmp;
6 reaction lambda (f@s) {
7 split { do {emit <ok@s >;} or {emit <ex@s >;} }
8 || {
9 addReaction (reaction check (ok@s) {

10 split {
11 emit <f@s >;
12 }||{
13 addReaction (reaction check (r@s) {
14 emit <r@s >;
15 });
16 }
17 });
18 }
19 }
20 protected component cmp {
21 flows: [(r->creditCard)];
22 reaction lambda (ex@s) {
23 emit <r@s >;
24 }
25 reaction check (r@s) {
26 /* Coding of Compensation.
27 Defined by host language API. */
28 nop;
29 emit <r@s >;
30 }
31 }

Code 1.8: Delegating compensation in SCL

forward flow and activates a listener for the rollback notifications possibly sent by
subsequent transactional components. Notice that the reaction implicitly delegates the
execution of the compensation to CMP. Once a rollback is captured by GARAGE it is
automatically forwarded to CMP according to the flows defined in line 4. Hence, CMP

is informed if something goes wrong either during the execution of the main activity
(ex events) or, after its successful execution, when r events is be delivered by other
components.

The component CMP waits the notification of an exception (line 7) or a rollback
request coming from subsequent components. In the former case, CMP simply activates
the backward flow while, in the latter case, CMP executes the compensation that, upon
termination, starts the backward flow (lines 26-29).

Refactoring Long Running Transactions: A Case Study 331

n

f

f
f

f f

f

f

f

r

r

r

r r

r
r

r

r

r

(a)

n

r

r
r

r

r r

r

r

r

r

rr

r

n

f

f

f

f

f

f f

(b)

Fig. 6. Parallel composition and its refactoring

5.2 Refactoring Parallel Composition

The mapping of the parallel composition of transactions introduces two additional com-
ponents, a dispatcher and a collector, respectively acting as the entry and exit point of
the parallel composition.

To illustrate the refactoring of parallel SCL transactions the scenario of § 4 is ex-
tended by adding a new activity (DELAY) that informs the Information System of the
driver company about a possible delay. This activity can be performed after GARAGE

has been contacted. Namely, the resulting business process contains three concurrent
activities: the DELAY, the TRACK and the sub-transaction that encloses RENTALCAR.
Figure 6(a) depicts the flows and components required to implement this parallel com-
position. Two distinct dispatchers (D1 and D2) are involved in the coordination. Dis-
patcher D2 is responsible to forward the received requests to components DELAY and
TRACK and results externally the entry point of their parallel composition. As result,
the dispatcher D1 is connected to the entry point of the sub-transaction RENTALCAR

and to D2, acting as entry point for the whole parallel block. Similar considerations can
be made for the exit points C1 and C2.

The notification of events to dispatchers D1 and D2 are not relevant to the semantic of
the implementing network (more precisely these are hidden notification, since the dis-
patchers are not visible outside the network). The generation of two different dispatch-
ers can provide a mechanism to optimize the communications among components. For
example, if D2, DELAY, and TOWTRACK reside on the same host, the generated dis-
patcher permits to reduce the inter-host communications for the forward and backward
flow, since it receives only one inter-host signal and generates two intra-host signals for
DELAY and TOWTRACK.

If DELAY, TOWTRACK, and RENTALCAR are remotely executed, the two dispatch-
ers can be fused applying our next refactoring rule. Such rule can be applied in two
directions, namely (i) it can merge two parallel dispatchers into one (simplifying the
SCL code) or (ii) it can split a dispatcher into two parallel ones (refining inter-hosts
communication). In the following we summarize the refactoring of parallel dispatchers.

332 G. Ferrari et al.

Noteworthy, the same strategy can provide a similar refactoring mechanism for the col-
lectors. The refactoring merges the dispatcher D2 with D1 as follows:

– Migrates any flow targeted to the dispatcher D2 to the dispatcher D1. For example,
the flows of TOWTRACK becomes

flows: [(ok->TowTrack), (ex->TowTrack),
(r->RentalCar,Delay ,d1), (f->c2)]

– Add all flows of the dispatcher D2 to the dispatcher D1 (Code 1.9, line 2)
– Removes the component D2
– Extends the synchronization of D1 in order to wait the reception of three rollback

events (Code 1.9, line 10).

1 component D1 {
2 flows: [f->Delay ,TowTruck ,dispatcherTrans],
3 [r->garage],[n->C1,C2];
4 reaction lambda (f@s) {
5 split {
6 emit (f@s);
7 } || {
8 emit (n@s);
9 } || {

10 addReaction (reaction check (r@s) {
11 addReaction (reaction check (r@s) {
12 addReaction (reaction check (r@s) {
13 emit (r@s);
14 });
15 });
16 });
17 }
18 }
19 }

Code 1.9: Resulting dispatcher of the refactoring

6 Concluding Remarks

Service manageability is a key issue that must be solved to widely adopt SOC. This
paradigm can simplify software adaptation when changes in the business relations oc-
cur. However, the size of systems obtained by aggregating services can impose high
costs possibly not affordable by small-medium enterprises. Of course, this may prevent
SOA (service oriented architecture) to be largely adopted and limit its success.

To reduce costs and the efforts of adopting SOA solutions, developers and designers
should separately manage different aspects a system. This goal can be achieved by
the adoption of the Model Driven Development. Framework and tools should provide

Refactoring Long Running Transactions: A Case Study 333

specific formalisms and languages suitable to manage a subset of the whole aspects of
an application.

We focused on the issues related to the management of transactional aspects of SOA
systems. In the last years several toolkits have been developed to handle these specific
issues (e.g. Eclipse/BPEL [2,12]). However, these proposals lack solid foundational
grounds, making it difficult to provide reasoning techniques and to prove correctness of
applications.

In this paper we presented some of the main benefits provided by the strict interplay
between theoretical results and programming practice. A key feature of our proposal
is that any language involved by the development process has a formal description,
allowing us to clearly define the semantics of systems and to provide sound tools. For
example, our tool is equipped with refactoring rules that (i) support the designer in the
refinement process (ii) do not affect the semantics of the system.

We plan to adopt the same methodology to provide further extension to our frame-
work. We want to investigate formal methods to manage different aspects of the system
(e.g. quality of service). These models can drive the definition of domain specific lan-
guages that allow the developer to separately manage the corresponding domains.

References

1. Ciancia, V., Ferrari, G., Guanciale, R., Strollo, D.: Global coordination policies for services.
ENTCS 260, 73–89 (2010)

2. Eclipse Modeling Framework, http://www.eclipse.org/modeling/emf/
3. Ferrari, G.L., Guanciale, R., Strollo, D., Tuosto, E.: Coordination via types in an event-

based framework. In: Derrick, J., Vain, J. (eds.) FORTE 2007. LNCS, vol. 4574, pp. 66–80.
Springer, Heidelberg (2007)

4. Ferrari, G.L., Guanciale, R., Strollo, D., Tuosto, E.: Refactoring long runing transactions. In:
WSFM (2008)

5. Ferrari, G.L., Guanciale, R., Strollo, D.: Jscl: A middleware for service coordination. In:
Najm, et al. [6], pp. 46–60

6. Najm, E., Pradat-Peyre, J.-F., Donzeau-Gouge, V. (eds.): FORTE 2006. LNCS, vol. 4229.
Springer, Heidelberg (2006)

7. OpenArchitectureWare MDA/MDD generator framework,
http://www.openarchitectureware.org/

8. Business Process Modeling Notation (2002), http://www.bpmn.org
9. SENSORIA project, http://sensoria.fast.de/

10. White, S.: Introduction to BPMN (May 2004),
http://www.bpmn.org/Documents/Introduction%20to%20BPMN.pdf

11. Wirsing, M., Clark, A., Gilmore, S., Hölzl, M.M., Knapp, A., Koch, N., Schroeder, A.:
Semantic-based development of service-oriented systems. In: Najm, et al. [6], pp. 24–45

12. Wohed, P., van der Aalst, W.M., Dumas, M., ter Hofstede, A.H.: Pattern Based Analysis
of BPEL4WS. Technical report, Department of Computer and Systems Sciences Stockholm
University/The Royal Institute of Technology, Sweden (November 2003)

http://www.eclipse.org/modeling/emf/
http://www.openarchitectureware.org/
http://www.bpmn.org
http://sensoria.fast.de/
http://www.bpmn.org/Documents/Introduction%20to%20BPMN.pdf

334 G. Ferrari et al.

A Overview of BPMN

The graphical notation of BPMN permits to describe the work-flow of a distributed sys-
tem by a global point of view. The software architect can abstract from the distribution
of the processes, the communication mechanisms and the technologies that will imple-
ment each process. We focus on the transactional part of BPMN that in the following
we indicate as LRT. Specifically, LRT encloses only the subset of BPMN necessary to
model LRT.

The basic elements of LRT are compensable activities, namely pairs of activities and
compensations that can be composed sequentially or in parallel.

(a) Sequence (b) Parallel (c) Transactional
scope

Fig. 7. Composition of compensable activities

Figure 7 depicts the designs respectively for sequential (a) and parallel (b) composi-
tion of compensable activities.Main activities and their compensations are represented
as boxes linked by dashed arrows (for instance, Task1 has a ”compensation” entry point
to which its compensation Comp1 is attached). The sequential composition is performed
by linking together the main activities (cf. Figure 7(a)), while the parallel composition
makes use of “fork” and “join” operators.

In Figure 7(b) it is reported a parallel composition of two transactional activities. The
two circles represent the start event and the end event of the whole process, while the
diamond with the plus operation represents the join of the two parallel activities. The
fork operation is implicit in the multiple connections on the start event.

Finally, compensable activities, and their compositions, can be enclosed inside trans-
actional boundaries as shown in Figure 7(c).

All the elements presented at this layer are inherited from the core meta-models of
BPMN and UML4SOA [11] and have the usual meaning of flowchart designs. Processes
are built by composing activities as in Figure 7. BPMN does not specify the internal
behaviour of activities and the interactions among components.

Approximate Model Checking of Stochastic COWS

Paola Quaglia and Stefano Schivo

Dipartimento di Ingegneria e Scienza dell’Informazione, Università di Trento

Abstract. Given the description of a model and a probabilistic formula, approxi-
mate model checking is a verification technique based on statistical reasoning that
allows answering whether or not the model satisfies the formula. Only a subset of
the properties that can be analyzed by exact model checking can be attacked by
approximate methods. These latest methods, though, being based on simulation
and sampling have the advantage of not requiring the generation of the complete
state-space of the model.

Here we describe an efficient tool for the approximate model checking of ser-
vices written in a stochastic variant of COWS, a process calculus for the orches-
tration of services.

1 Introduction

Stochastic process calculi have been mainly defined to ground the formal quantitative
analysis of both performance and reliability aspects of concurrent distributed systems.
When specializing the distributed paradigm to the case of service-oriented computa-
tion, performance issues suddenly become even more demanding by clearly expressing
features like, e.g., quality of service, resource usage, and dependability. That is why
recent research work in the concurrency community focussed on the definition of prob-
abilistic/stochastic extensions of calculi explicitly meant to specify services and hence
natively equipped with primitives for rendering basic service operations as sessioning
or protection [3,15].

On the quantitative analysis side, the primary techniques to be applied are Monte
Carlo simulation and probabilistic model checking. The first one, which is mostly used
to reason about really huge systems (e.g., biological ones), consists in running a number
of execution traces of the system, and then inferring the relevant information by apply-
ing statistical methods. Model checking, which can be either exact or approximate,
grounds on a quite distinctive point of view. Both in the exact and in the approximate
case, indeed, model checking consists in contrasting the behaviour of the system against
a specific property expressed as a formula of a given probabilistic or stochastic logic
(e.g., CSL [1]).

In more detail, exact model checking numerically checks the complete state-space of
the system against a formula and returns a totally accurate result. Approximate model
checking, instead, is based on simulation and sampling. The estimation if the given
property holds is rather based on statistical reasoning on the generated samples. Dif-
ferent approaches offer a choice between a priori setting a fixed number of samples or
not. In the first case, the generation of samples is stopped when the predetermined max-
imum is reached and an answer is given based on the available data. When the number

M. Wirsing, M. Hofmann, and A. Rauschmayer (Eds.): TGC 2010, LNCS 6084, pp. 335–347, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

336 P. Quaglia and S. Schivo

of samples is not fixed, the user can set a desired error probability (confidence level).
The lower the confidence level, the bigger the number of samples to be generated.

Approximate model checking cannot have the same high level of accuracy as the
result of the numerical methods of exact model checking. Also, given that samples are
deemed to have finite length, approximate model checking cannot be used to check
as many kinds of formulae as those checked by exact techniques. Building the com-
plete state-space of the system, though, is not necessary. This is the good point of ap-
proximate model checking: memory requirements are negligible if compared to those
imposed by numerical methods. Indeed, especially for loosely coupled interacting sys-
tems as those used for representing service computations, the size of the corresponding
model typically suffers an exponential blow-up leading to state-space explosion.

This paper describes a tool for the approximate model checking of services de-
scribed in Scows [17], the stochastic extension of COWS [14] (Calculus for Orches-
tration of Web Services), a calculus for service-oriented computation strongly inspired
by WS-BPEL. We first overview the source language (Section 2) which extends the
work presented in [15] to polyadic communication. Then we describe the tool, called
Scows amc, together with the foundational theory it is based upon (Section 3). Fur-
ther, in Section 4, based on a simple service describing the classical scenario of the
dining philosophers, the efficiency of Scows amc is compared to the results obtained
by applying Scows lts [2], a tool that builds the complete Continuos Time Markov
Chain (CTMC) corresponding to Scows services and allows their exact model checking
through PRISM [13].

2 Scows Overview

Scows is a stochastic extension of COWS, to which the capability to represent quantita-
tive aspects of services (in particular, execution time) has been added. The semantics of
Scows reflects the one of the basic calculus, where an original communication paradigm
is used. This paradigm is based on a mechanism of best-matching of the parameters of
complementary invoke (send) and request (receive) activities.

The COWS communication paradigm is best illustrated by a simple example. To this
purpose, let us consider the following term composed of three parallel services:

[n1, n2, y1, y2] (p.o ! 〈n1, n2〉 | p.o ? 〈n1, y2〉. s1 | p.o ? 〈y1, y2〉. s2) (1)

where [n1, n2, y1, y2] is a scope delimiter for n1, n2, y1, and y2. The leftmost subcom-
ponent p.o ! 〈n1, n2〉 can send the tuple of names 〈n1, n2〉 over the endpoint p.o (an end-
point is given by a partner name and an operation name, respectively p and o in this
case). In (1) the middle service p.o ? 〈n1, y2〉. s1 is a request-guarded term. It is waiting
to receive over the endpoint p.o a pair of actual parameters matching the formal tuple
〈n1, y2〉, where y2 is a variable. Names and variables play quite distinctive roles in the
matching policy. Names can be thought of as constants or ground objects: each name
can only match itself. Variables instead can match any name. Briefly put, matching two
tuples means finding a substitution of names for variables that, applied to the tuple of
the receiving service, makes it equal to the tuple of actual parameters offered by the

Approximate Model Checking of Stochastic COWS 337

sending service. So, for instance, the tuples 〈n1, n2〉 and 〈n1, y2〉 match because the sub-
stitution of n2 for y2, written {n2/y2}, when applied to 〈n1, y2〉 results in 〈n1, n2〉. Going
back to the behaviour of the service p.o ? 〈n1, y2〉. s1, the execution of the request activ-
ity would unblock the continuation service s1 and would make it dependent on the sub-
stitution induced by the matching. For instance, a communication between the leftmost
parallel services in (1) would result in running s1{n2/y2}. The rightmost parallel compo-
nent p.o ? 〈y1, y2〉. s2 is much similar in its structure to the middle one. It is a request-
guarded term with potentials for interaction with whichever service can offer over p.o
a tuple matching 〈y1, y2〉, where y1 is yet another variable. The tuple 〈n1, n2〉 offered
by the leftmost service matches 〈y1, y2〉 by inducing the substitution {n1/y1, n2/y2}. Out
of a set of potential communications, the best-matching mechanism adopted by COWS
amounts to allow only those communications that induce substitutions as small as pos-
sible. So in our example p.o ! 〈n1, n2〉 can only communicate with p.o ? 〈n1, y2〉. s1. Here
notice that if the global service were augmented by adding a fourth parallel component
p.o ? 〈y1, n2〉. s3, then p.o ! 〈n1, n2〉 could communicate with either p.o ? 〈n1, y2〉. s1 or
p.o ? 〈y1, n2〉. s3. So the best-matching policy is not a cure against non-determinism. It
rather serves the purpose of implementing sessioning: opening a session is rendered
by passing a unique name as session identifier, and all the communications relative to
that session will carry on that identifier as parameter. Moreover, in the same way as the
interaction of p.o ! 〈n1, n2〉 with p.o ? 〈n1, y2〉. s1 pre-empties the communication with
p.o ? 〈y1, y2〉. s2, concluding the operations relative to an open session will have priority
over opening a new session (just think of n1 as of a session identifier).

In the stochastic extension of COWS, each basic action (the two communicating
primitives request and invoke, plus a special killing activity used for process termina-
tion) is enriched by a real number representing the rate of an exponential distribution,
which models the time taken by the service to execute the corresponding action. For
example, letting δ1, δ2, δ3 to stay for rates, the term in (1) would be written as follows
in Scows:

[n1, n2, y1, y2] ((p.o!〈n1, n2〉, δ1) | (p.o?〈n1, y2〉, δ2). s1 | (p.o?〈y1, y2〉, δ3). s2).

The interaction paradigm adopted in the basic calculus, and retained in Scows, is re-
sponsible of a rather complex rate computation method for communications. Indeed,
the competition induced by the best-matching policy for pairing invoke and request
activities has to be correctly reflected in the rate of the resulting action. In particular,
polyadicity makes rate computation quite more intricate in Scows than what can be seen
in [15] where a monadic version of the basic calculus was considered. On the other
hand, polyadic communication allows the user to explicitly render the use of session
identifiers.

We will briefly illustrate the main issues about rate computation by means of a simple
example. Consider the following service definition:

S = [m, n, n′, x, y] ((p.o!〈m, n〉, δ1)︸������������︷︷������������︸
S 1

| (p.o!〈m, n′〉, δ2)︸�������������︷︷�������������︸
S 2

| (p.o!〈n, n′〉, δ3)︸������������︷︷������������︸
S 3

| (p.o!〈n, n〉, δ4)︸�����������︷︷�����������︸
S 4

| (p.o?〈m, x〉, γ1). 0︸����������������︷︷����������������︸
S 5

| (p.o?〈y, n′〉, γ2). 0︸����������������︷︷����������������︸
S 6

)

338 P. Quaglia and S. Schivo

Using the notation S j � S k to mean that services S j and S k communicate (with S j

sending and S k receiving), we list below all the communications allowed in S by the
matching paradigm:

– S 1 � S 5, matching m with m and substituting x by n;
– S 2 � S 5, matching m with m and substituting x by n′;
– S 2 � S 6, substituting y by m and matching n′ with n′;
– S 3 � S 6, substituting y by n and matching n′ with n′;
– no service can successfully match S 4’s tuple, so S 4 does not communicate.

Observing the interaction capabilities of the processes in the example, we suggest an
asymmetric way to intend the communication paradigm in Scows in the sense that the
choice of an invoke action also determines the set of possible communications. For
instance, one single communication is possible when choosing the invoking service S 1,
and the same holds when selecting S 3. On the other hand, if the sending service S 2 is
chosen, then there are two possible communications: S 2 �S 5 and S 2 �S 6. Note that, as
both S 2 �S 5 and S 2 �S 6 induce one substitution, they are equally viable from the non-
stochastic point of view, while the stochastic rates of the two transitions can determine
different probabilities for the execution of the two distinct actions.

In case of communications, the rate computation also depends on the so-called ap-
parent rate of the participants. The apparent rate represents the rate at which actions of
the same type are perceived by an observer located outside the service. We consider two
actions to be indistinguishable from the point of view of an external observer if these
actions are competing to participate with the same role in the same communication.
In the case of an invoke action the actions competing with it are all the send-actions
available on the same endpoint. The case of a request action is more complicated, as it
requires to take into account also all the actions which would have been in competition
with the chosen one if another invoke action would have been selected. The formal def-
inition of the Scows operational semantics is outside the scope of the present paper. For
more details on the actual computation of apparent rates the interested reader is referred
to [17].

The rate of a communication event is obtained by multiplying the apparent rate of
the communication by the probability to choose exactly the two participants involved in
that communication. Adopting a classical way of approximating exponential rates [9],
we take the apparent rate of a communication to be the minimum between the apparent
rates of the participating services (i.e., the communication proceeds at the speed of the
“slowest” of the participants). So, the formula for the rate of a communication between
the invoking service S j and the requesting service S k has the following form:

P(S j � S k) · min
(
appRate(S j), appRate(S k)

)
,

where P(S j � S k) is the probability that services S j and S k are involved in the com-
munication, and appRate(S j) (resp. appRate(S k)) represents the apparent rate of the
invoke (request) action computed considering the whole service containing S j and S k.
As we consider request actions to be dependent on invoke actions, the probability to
choose a particular invoke-request pair is computed as a conditional probability:

P(S j � S k) = P(S j) · P(S k | S j).

Approximate Model Checking of Stochastic COWS 339

This means that the probability of a communication between the invoke S j and the
request S k is given by the product of the probability to have chosen S j among all possi-
ble invoke actions on endpoint p.o and the probability to choose S k among the request
actions made available by the choice of S j (i.e., the request actions best-matching S j).

In the above example, the probability that a communication occurs between S 2 and
S 5 is calculated as follows:

P(S 2 � S 5) = P(S 2) · P(S 5 | S 2)

=
δ2

δ1 + δ2 + δ3
· γ1

γ1 + γ2
.

Given that S 4 cannot take part into any communication, the rate δ4 of service S 4 is not
taken into account. On the other hand, as S 5 is the single request action matching with
S 1, the probability of a communication between S 1 and S 5 is basically the probability
of choosing S 1:

P(S 1 � S 5) = P(S 1) · P(S 5 | S 1)

=
δ1

δ1 + δ2
· 1 .

Here notice that we do not take into account the rate δ3 of service S 3, as S 3 cannot
communicate with S 5 (n � m) and thus cannot influence the above communication.

3 Scows amc

Generating a CTMC from a Scows term, as required by exact model checking, can be
a computationally costly task, and could even lead to state-explosion when building the
underlying transition system. This issue is most evident when a model comprises a num-
ber of loosely coupled components, as it is often the case when dealing with distributed
systems. A compositional generation of the transition system might help minimizing the
state space, thanks to the fact that parallel components could be considered in isolation
and then merged with less-than-exponential execution time. Unfortunately, this type of
approach cannot be applied in the case of Scows. This is due to the adopted commu-
nication paradigm which requires the complete knowledge of the model to calculate
each single communication action, de facto preventing a compositional generation of
the transition system. In languages with multi-way synchronization and not featuring
name-passing, like e.g. in PEPA [9], the compositional approach can be applied and is
in fact feasible: for instance, such an approach is used for the generation of CTMCs
from PEPA models in PRISM, which is based on MTBDD (Multi-Terminal Binary
Decision Diagrams [4,8]) representations. Another example of application of the same
principle can be seen in CASPA [12], a tool which generates a MTBDD representation
from YAMPA, a stochastic process algebra based on TIPP [7].

Below we present a tool, called Scows amc, that allows statistical model checking
of Scows terms while maintaining acceptable computation time and approximation val-
ues. In order not to generate complete transition systems, we base our approach on
direct simulations of Scows models. In particular, we generate a number of simulation

340 P. Quaglia and S. Schivo

traces by applying the operational semantics rules directly to Scows services, and then
perform the computations necessary to check the desired formula against these traces.
As a single execution trace of a stochastic model is by definition a random walk on the
transition system of the model, we resort to statistical reasoning in order to estimate the
size of the error we make in evaluating the requested property through a finite number
of random walks. The theories behind the reasoning on which the approach used by
Scows amc is based are the one adopted in Ymer [11], and the one adopted in APMC
[5,6]. In particular, letting �� ∈ {<,�, >,�}, t0, t1 ∈ R+, and θ ∈ [0, 1], Scows amc can
model check Scows terms against the usual CSL time-bounded until properties of the
form:

P�� θ [Ψ1 U[t0 ,t1] Ψ2] (2)

and their numerical corresponding in the following shape:

P=? [Ψ1 U[t0 ,t1] Ψ2] (3)

which can be read as:

“Is there a probability p �� θ that state formula Ψ1 will hold until, inside the
time interval [t0, t1], state formula Ψ2 holds?”

and, respectively,

“What is the probability that state formula Ψ1 will hold until, inside the time
interval [t0, t1], state formula Ψ2 holds?”

where the state formulae Ψ1 and Ψ2 are to be intended as state labels.
The truth value of CSL probabilistic formulae of the type (2) is calculated through

the sequential probability ratio test [18]. This method requires to perform a sequence of
observations of the hypothesis to be tested. After each observation an error estimation
is made, taking into account the results of all the previous observations. When a given
error threshold is crossed, the hypothesis is either accepted or rejected. In our case,
performing an observation corresponds to testing the formula over an execution trace,
which is generated on demand. This kind of approach does not require to have an exact
estimation of the real probability to have the property verified: it only checks whether
the probability lies below or beyond the specified threshold. The algorithm implemented
to apply the sequential probability ratio test and to evaluate formulae of type (2) is re-
ported as pseudocode in Algorithm 1. The applied method computes estimations based
on three approximation parameters: α (the probability to get a false negative), β (the
probability to get a false positive), and δ (the semi-distance from θ used to define the
indifference region). These parameters must be chosen making a trade-off between the
execution time and the answer confidence.

In order to obtain the approximate model checking of formulae of type (3), we rely
on a method presented in [5] and based on [10]. As in the case of formulae of type (2),
the value of properties is estimated by means of a series of observations on random
walks over the transition system. This time, however, the number of observations nec-
essary to obtain the desired approximation level is determined before observations are
made. This allows the user to make trade-offs between speed and approximation with

Approximate Model Checking of Stochastic COWS 341

Algorithm 1. The algorithm used to perform the sequential probability ratio test
input α, β, δ, Φ = P�� θ [ϕ]
p0 ← θ + δ
p1 ← θ − δ
logA← ln 1−β

α

logB← ln β

1−α
nSamples ← 0
d ← 0
while logB < d ∧ d < logA do

generate a random walk σ
if σ |= ϕ then

d ← d + ln p1
p0

else
d ← d + ln 1−p1

1−p0
end if
nSamples ← nSamples + 1

end while
if �� ∈ {>,�} then

return d � logB
else

return d > logB
end if

a deeper insight on the effects of his choices. Two main parameters are used for error
estimation: the approximation parameter ε, and the confidence parameter δ. It can be
shown that the evaluation of the given formula on O

(
1
ε2 · log 1

δ

)
random walks brings

to a probability estimation differing from the real value by less than ε with probability
1 − δ. The number of random walks necessary to obtain the desired result is given by
the following formula:

nObservations = 4 · log 2
δ

ε2
. (4)

Algorithm 2 is used in Scows amc for the estimation of type (3) formulae and it is in fact
the one presented in [5]. The idea on which the algorithm is based in order to compute
the probability estimation forP=? [ϕ] is to execute a fixed number of observations of the
truth value of the formula ϕ, and then count the number of positive results. The prob-
ability that ϕ is true is given by the ratio between the number of positive observations
and the total number of observations.

A final observation is about what is involved in checking until path formulae. Algo-
rithm 3 is used to obtain the truth value for one of such formulae on a single simulation
trace of the model. Notice that the algorithm performs the checking of the formula as
the generation of the trace goes along. This is a solution which has a better average
execution time w.r.t. an approach in which a complete simulation trace is generated and
then checked against the path formula. This is possible thanks to the fact that the until
formula has time bounds, which allows us to stop the generation of a trace when “time
is up” or when a truth value for the formula has been found, even if the simulation could
proceed further.

342 P. Quaglia and S. Schivo

Algorithm 2. The algorithm used in Scows amc for the estimation of a CSL formula in
the form P=? [ϕ].

input δ, ε
nObservations ← 4 log

(
2
δ

)
/ε2

count ← 0
for i = 1 to nObservations do

generate a random walk σ
if σ |= ϕ then

count ← count + 1
end if

end for
return count/nObservations

Algorithm 3. Verification of a bounded until formula
1: input α, β, δ, Scowsmodel, ϕ = Φ1 U[tmin,tmax] Φ2

2: totalTime← 0
3: nextTime← 0
4: currState← initialState(Scowsmodel)
5: transitions← computeTransitions(currState)
6: while ¬isEmpty(transitions) do
7: (nextState, τ)← computeNextState(transitions)
8: nextTime← totalTime + τ
9: if tmin � totalTime then

10: if verify(Φ2, currState, α, β, δ) then
11: return true
12: else if ¬verify(Φ1, currState, α, β, δ) then
13: return false
14: end if
15: else
16: if ¬verify(Φ1, currState, α, β, δ) then
17: return false
18: else if tmin < nextTime ∧ verify(Φ2, currState, α, β, δ) then
19: return true
20: end if
21: end if
22: currState← nextState
23: totalTime← nextTime
24: if tmax < totalTime then
25: return false
26: end if
27: transitions← computeTransitions(currState)
28: if isEmpty(transitions) then
29: return verify(Φ2, currState, α, β, δ)
30: end if
31: end while
32: return false

Approximate Model Checking of Stochastic COWS 343

4 Comparison with CTMC Generation

To the best of our knowledge, the single other tool available for the quantitative model
checking of Scows is Scows lts [2], which takes an approach orthogonal to that of
Scows amc. Indeed Scows lts performs probabilistic model checking by generating a
CTMC from a Scows model and then by using PRISM to obtain an assessment of the
model.

In what follows, we show a test for the performance of Scows amc by comparing
it against Scows lts. As a test-bed for the comparison we use a simple model of the
system of the dining philosophers, an instance of which is presented in Table 1 using the
Scows syntax accepted by Scows amc. We model the problem using knives and forks
as cutlery, and coupling right-handed philosophers with left-handed ones, in order to
have an alternating pattern allowing each philosopher to eat with the preferred hand.
The rates r1, r2, r3, . . . are defined as parameters of the model. This feature is meant
to foster sensitivity analysisis, and indeed Scows lts can itself handle parametric rates.

The model in Table 1 is used in the experiment varying the number of dining philoso-
phers between 2 and 12, properly adapting the available cutlery. As we differentiate
between right-handed and left-handed philosophers, the resulting models will include
an even number of philosophers. The CSL formula against which all the models are
checked is the following one:

P=? [trueU[0,T] fed = N]

meaning

“What is the probability that N philosophers are fed at time T?”.

The formula has been checked with parameters N and T varying between 0 and the
number of philosophers in the model, and, respectively, between 0 and 40 time units.
The settings for Scows amc have been chosen so to obtain results with approximation
of 10−2 with confidence of 0.9, and hence are ε = 0.01 and δ = 0.1. This implies
that 52042 simulation traces need to be computed for each configuration of the CSL
formula. Actually, the number of computed traces is 52042 in total, as our tool uses an
optimization which allows us to reduce the number of simulation traces needed to obtain
the requested evaluations. Basically, we reuse the same trace for testing all the formulae
which we need to test before proceeding with the computation of a new simulation trace.

As said, Scows amc is compared against Scows lts, which actually exploits PRISM
for the analysis of CTMCs. The version of PRISM employed in our tests is the 3.3.1,
available for download from the PRISM web site [16]. The CSL property has been
checked against the relevant CTMCs by means of both the numerical (exact) and the
simulation-based (approximate) approaches available in PRISM. As the approximate
model checking used in PRISM is the same as the one used in Scows amc, we have used
the same parameters also for PRISM. All the tests have been executed on a workstation
equipped with an Intel (R) Pentium (R) D 3.40 GHz CPU and 2 Gigabyte of RAM,
running Ubuntu Linux 9.10.

The results of the comparison are shown in Table 2, where we report the execution
time of Scows amc against that of Scows lts together with PRISM, when checking

344 P. Quaglia and S. Schivo

Table 1. An instance of the dining philosophers system modelled in Scows

//Agents

//RHphil: right-handed philosopher

RHphil(right#, left#) =

[fork][knife]((right#.take#?<fork>,r1) . (left#.take#?<knife>,r2) .

[eat#][food#]((eat#.eat#!<food#>,r3) | (eat#.eat#?<food#>,r4) .

((left#.release#!<knife>,r5) | (right#.release#!<fork>,r6))

)

);

//LHphil: left-handed philosopher

LHphil(right#, left#) =

[knife][fork]((right#.take#?<knife>,r7) . (left#.take#?<fork>,r8) .

[eat#][food#]((eat#.eat#!<food#>,r9) | (eat#.eat#?<food#>,r10) .

((left#.release#!<fork>,r11) | (right#.release#!<knife>,r12))

)

);

Cutlery(f#) = [p#] ((f#.take#!<p#>,r13)

| (f#.release#?<p#>,r14).Cutlery(f#));

$

//initial process

[fork1#][knife1#][fork2#][knife2#][take#][release#] (

RHphil(fork1#, knife1#) | LHphil(knife1#, fork2#)

| RHphil(fork2#, knife2#) | LHphil(knife2#, fork1#)

| Cutlery(fork1#) | Cutlery(knife1#)

| Cutlery(fork2#) | Cutlery(knife2#)

)

$

//counter definitions

fed : [0 .. 4];

$

//cows actions <-> counter modifications

eat#.eat#<*>: fed < 4 : (fed’ = fed + 1);

Approximate Model Checking of Stochastic COWS 345

Table 2. Computational time results for the example model checking (time is expressed in sec-
onds). The two columns for PRISM correspond to the numerical (exact) and simulation-based
(approximate) model checking approaches.

Philosophers State space size Scows lts PRISM Scows amc
Exact Approx.

2 20 0.9 1.9 95.5 395.6
4 249 345.4 153.5 1871.2 5537.8
6 3247 523173.0 138749.0 73729.4 31109.4
8 - - - - 113603.0

10 - - - - 309769.1
12 - - - - 719487.9

the models against the CSL formula. The time taken to model check the CTMC with
PRISM is shown separately in order to highlight the actual time taken to produce the
relevant CTMC. The execution time results are plotted in Figure 1. Data for 8, 10, and
12 philosophers are not available for the case of CTMC-based model checking, as the
estimated computational times for the generation of the CTMCs was too high. Relative
to this issue, we notice here that Scows lts undergoes a number of computationally
heavy optimizations mainly related to congruence checking of the states of the labelled
transition system the CTMC is based upon. These optimizations, which involve, e.g.,
verifying α-equivalence of Scows terms, are fundamental to keep the state-space as
small as possible and hence to limit the effects of memory usage.

100

101

102

103

104

105

106

107

108

2 4 6 8 10 12

C
om

pu
ta

tio
n

tim
e

(s
ec

on
ds

,l
og

ar
ith

m
ic

sc
al

e)

Number of philosophers

Scows amc

◦

◦
◦

◦
◦ ◦

◦
Scows lts

�

�

�

�

Fig. 1. Graph plotting execution time performances of the two approaches for model checking
Scows models

346 P. Quaglia and S. Schivo

Our comparison in Table 2 shows that when the number of states in the model is an-
ticipated to be at most in the order of hundreds, the most convenient approach to model
checking is to build a CTMC from the Scows model and use CTMC-based tools to
perform the desired performance measures (either exact or approximate). Conversely,
when the size of the state-space is estimated to be larger than few hundreds, the exe-
cution time of Scows amc is expected to be lower. This execution speed comes at the
price of precision, which however can be adjusted as necessity dictates.

5 Concluding Remarks

A tool for the approximate model checking of Scows was described. An application
of the tool was also presented, measuring its performances in terms of execution time.
The example clearly shows, whenever applicable, the advantage of approximated model
checking over its exact counter-part which involves the generation of the full state-space
of the term.

Acknowledgements. This work has been partially sponsored by the project Sensoria,
IST-2005-016004.

References

1. Aziz, A., Sanwal, K., Singhal, V., Brayton, R.: Model-checking continous-time Markov
chains. ACM Trans. on Computational Logic 1(1), 162–170 (2000)

2. Cappello, I., Quaglia, P.: A Tool for Checking Probabilistic Properties of COWS Services.
In: Proceedings of TGC 2010 (2010), http://disi.unitn.it/˜cappello/

3. De Nicola, R., Latella, D., Loreti, M., Massink, M.: MarCaSPiS: a Markovian Extension of
a Calculus for Services. Electronic Notes in Theoretical Computer Science 229(4), 11–26
(2009)

4. Fujita, M., McGeer, P.C., Yang, J.C.-Y.: Multi-Terminal Binary Decision Diagrams: An effi-
cient data structure for matrix representation. Formal Methods in System Design 10, 149–169
(1997)

5. Hérault, T., Lassaigne, R., Magniette, F., Peyronnet, S.: Approximate probabilistic model
checking. In: Steffen, B., Levi, G. (eds.) VMCAI 2004. LNCS, vol. 2937, pp. 307–329.
Springer, Heidelberg (2004)

6. Hérault, T., Lassaigne, R., Peyronnet, S.: APMC 3.0: Approximate Verification of Discrete
and Continuous Time Markov Chains. In: Proc. 3rd Int. Conf. on Quantitative Evaluation of
Systems, QEST 2006, pp. 129–130. IEEE, Los Alamitos (2006)

7. Hermanns, H., Herzog, U., Katoen, J.-P.: Process algebra for performance evaluation. Theo-
retical Computer Science 274(1-2), 43–87 (2002)

8. Hermanns, H., Meyer-Kayser, J., Siegle, M.: Multi terminal binary decision diagrams to
represent and analyse continuous time Markov chains. In: Plateau, B., Stewart, W., Silva, M.
(eds.) Proc. 3rd International Workshop on Numerical Solution of Markov Chains (NSMC
1999), pp. 188–207. Prensas Universitarias de Zaragoza (1999)

9. Hillston, J.: A compositional approach to performance modelling. Cambridge University
Press, New York, NY, USA (1996)

10. Hoeffding, W.: Probability inequalities for sums of bounded random variables. Journal of the
American Statistical Association 58(301), 13–30 (1963)

http://disi.unitn.it/~cappello/

Approximate Model Checking of Stochastic COWS 347

11. Younes, H.L.: Verification and Planning for Stochastic Processes with Asynchronous Events.
PhD thesis, Computer Science Department, Carnegie Mellon University, Pittsburgh, Penn-
sylvania (2005)

12. Kuntz, G.W.M.: Symbolic Semantics and Verification of Stochastic Process Algebras. PhD
thesis, Friedrich-Alexander-Universitaet Erlangen-Nuernberg, Erlangen (March 2006)

13. Kwiatkowska, M., Norman, G., Parker, D.: PRISM: Probabilistic Model Checking for Perfor-
mance and Reliability Analysis. ACM SIGMETRICS Performance Evaluation Review 36(4),
40–45 (2009)

14. Lapadula, A., Pugliese, R., Tiezzi, F.: Calculus for Orchestration of Web Services. In: De
Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp. 33–47. Springer, Heidelberg (2007),
http://rap.dsi.unifi.it/cows/

15. Prandi, D., Quaglia, P.: Stochastic COWS. In: Krämer, B.J., Lin, K.-J., Narasimhan, P. (eds.)
ICSOC 2007. LNCS, vol. 4749, pp. 245–256. Springer, Heidelberg (2007)

16. PRISM homepage, http://www.prismmodelchecker.org/
17. Schivo, S.: Statistical model checking of Web Services. PhD thesis, Int. Doctorate School in

Information and Communication Technologies, University of Trento (2010)
18. Wald, A.: Sequential tests of statistical hypotheses. The Annals of Mathematical Statis-

tics 16(2), 117–186 (1945)

http://rap.dsi.unifi.it/cows/
http://www.prismmodelchecker.org/

Probabilistic Aspects: Checking Security in an
Imperfect World

Chris Hankin1, Flemming Nielson2, and Hanne Riis Nielson2

1 Department of Computing, Imperial College London

clh@imperial.ac.uk
2 DTU Informatics, Technical University of Denmark

{nielson,riis}@imm.dtu.dk

Abstract. We address the challenges arising from enforcing security

policies in an imperfect world – in a system involving humans, a deter-

mined attacker always has a chance of circumventing any security. We

motivate our approach by two examples: an on-line auction house; and a

airport security system. In our work, security policies are enforced using

a probabilistic aspect-oriented approach; policies are combined using a

rich set of policy composition operators. We present the examples using a

process-based language in which processes and local data are distributed

across a number of locations (network addresses). The formal definition

of the language gives rise to Markov Decision Processes.

1 Introduction

The usual view on security in IT systems is that the security policies should
be enforced at all times. This presents a mostly static and deterministic view
of security policies, except that it is widely recognised that at certain times the
security policies need to be modified, which may present security problems of its
own. It is less common to consider the possibility that the enforcement of security
policies may depend on factors outside of our control and hence be imperfect.
This may be due to human involvement, e.g. in providing basic input to the
system based on an interview with an applicant, or may be due to distributed
databases not yet fully synchronised, e.g. in propagating the revocation of a
credit card throughout the banking sector.

In this paper we address the challenges arising from enforcing security policies
in an imperfect world. For example, airport security is not perfect and, even at
heightened security levels, there is a probability that terrorists will evade the
checks. We perform our development in a distributed setting where processes
and local data are distributed on a number of locations (e.g. network addresses)
and where the security policies govern whether or not to allow certain actions
to proceed. Our proposal makes use of probabilities to describe the potential
imperfections in enforcing the security policy of interest. To obtain a flexible
specification of security policies, that can be changed as the need arises, we follow
the aspect oriented approach of specifying the security policies using aspects that
can then be “woven into” the program [11,7]. In contrast to conventional aspects,

M. Wirsing, M. Hofmann, and A. Rauschmayer (Eds.): TGC 2010, LNCS 6084, pp. 348–363, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Probabilistic Aspects: Checking Security in an Imperfect World 349

our aspects do not perform any actions but act as predicates which either allow
or disallow the interrupted action. Whilst a policy decision is boolean, policy
composition is often better expressed using a four-valued logic (allowing under-
specification and inconsistency as additional outcomes) [4].

Our proposal therefore is to develop a notion of aspects that can express secu-
rity policies using a four-valued probabilistic logic. We perform this development
in a setting inspired by the primitives found in the distributed coordination lan-
guage Klaim [2]. This should be contrasted to the approaches of StoKlaim [5],
where the actions have rates, and pKlaim [10], where operators in the process
language have probabilities associated with them. Our intention is to stimulate
and contribute to a study of how to model security policies in a distributed,
imperfect world.

Overview. Our presentation is primarily based on two examples: a simple on-line
auction house, and a model of airport security; these are presented in Section
2. Our technical development is based on our previous work where a distributed
coordination language with features from Klaim is extended with aspects using a
four-valued logic for security policies [8]. It is extended with a probabilistic four-
valued logic (developed in Section 3) to express probabilistic policies and their
composition in a distributed manner. The syntax and semantics of the language
is overviewed in Section 4 while the formal details are left for Appendix A; as
we shall see, the probabilistic four-valued logic gives rise to Markov Decision
Processes. Section 5 presents our conclusions and pointers to future work.

2 Examples

The language that we use to model our examples is a distributed process calculus.
Processes are located (i.e. have an address), and each location also has a local
memory. The simplest form of process is a sequence of actions but we also use
the standard process algebra operations to combine processes. Communication
between processes is achieved by the source process placing a tuple in the target
process’ local memory.

In addition to basic process calculus features, every address has a “policy”
associated with it. This policy is a combination of primitive aspects and each
aspect is of the form [rec if cut : cond]. Here cut is the action to be trapped by
the aspect: the location of the subject and the action (including the operation
and the location of the target). Actions can output tuples to an address (out)
and read tuples from an address, either destructively (in), or not (read). The
rec component is a probabilistic four-valued policy recommendation and cond
is a boolean applicability condition. When a process attempts to perform an
action at an address, the policies for the process and for the address are both
checked. If an aspect applies to the action (i.e. the action matches and cond
is true), the recommendation is evaluated to give the probability with which
the action is allowed to proceed. This may be viewed as a way of recording the
effectiveness of enforcing the intended security policies. We dispense with a more
formal account of the syntax until presenting Tables 1 and 2 in Section 4.

350 C. Hankin, F. Nielson, and H.R. Nielson

2.1 The On-Line Auction

We shall be modelling a small electronic auction system pBuy; the system consists
of a single location for pBuy and a location for each buyer and seller registered
with the auction house. The local memory of pBuy contains six kinds of data:

– 〈buyer,name, profile〉 records that name is a registered buyer and has feed-
back profile profile ∈ {good, moderate, new};

– 〈seller,name〉 records that name is a registered seller;
– 〈safepay, seller 〉 records that seller is registered to receive secure payments;
– 〈monthly, seller 〉 records that seller is registered to receive payments by

monthly installments;
– 〈object,number , seller , range〉 indicates that seller is offering an object with

identification number for sale in the price range range ∈ {cheap, affordable,
expensive}; and

– 〈bid,number , buyer , value〉 indicates a bid from buyer for object number at
value value.

We concentrate on the policies to be associated with the different kinds of loca-
tions in the system while paying less attention to the processes for the locations;
for example a simple, but rather compulsive, process for a buyer, b, might be:

∗(read(object, n, s, r)@pBuy.out(bid, n, b, 100)@pBuy)

which repeatedly selects some item from the auction and bids 100 currency units
for the item.

We proceed by defining policies for the auction house, potential buyers and
potential sellers.

The auction house. The following policy, which is actually deterministic, ex-
presses that only registered buyers may place bids for objects that are up for
auction and that they can only place bids on behalf of themselves. The rule
applies to any matching output action (indicated by the use of true in the appli-
cability condition). The predicate test()@ tests whether there is a tuple at the
location (second argument) which matches the tuple pattern (first argument) –

is used to represent a don’t care pattern:

Polbuy �

⎡⎢⎢⎣
test(object, n, ,)@pBuy ∧

test(buyer, u,)@pBuy ∧u = b
if u :: out(bid, n, b,)@pBuy :

true

⎤⎥⎥⎦
This policy deals with all attempts to place bids in the data base of pBuy and
imposes the conditions mentioned; in all other cases no conditions are imposed.
The policy recommendation actually evaluates to (the probabilistic four-valued
representation of) true or false depending on whether the conditions are met or
not. The idea is that the action is only allowed to proceed if the recommendation
cannot give false (except perhaps with low probability).

Probabilistic Aspects: Checking Security in an Imperfect World 351

Similarly, only registered sellers can put objects up for auction:

Polsell �

⎡⎣ test(seller, l)@pBuy ∧ u = l
if u :: out(object, , l,)@pBuy :

true

⎤⎦
On top of this the auction house will want to impose a number of policies that
express that buyers and sellers are in general “well behaved” in not attempting
to place entries in the data base that conflict with the prescribed form above;
while it is straightforward to model this using aspects this is not central to our
concerns in this paper.

The overall policy for the auction house, that is, the location pBuy, therefore is:

Polhouse � Polbuy ⊕ Polsell

We will give a precise definition of ⊕ in Section 3.

Buyers. The overall policy for the buyers is composed from two components.
There may be some circumstances when the buyer is concerned that the seller

has a mechanism for secure payment – this might be relevant when the object is
not cheap. In order to model this, we need a new unary operator on four-valued
values, ?s, that with probability s returns its argument and with probability
1− s gives true. The policy can then be modelled as follows:

Polsp
secure �

⎡⎢⎢⎣
?sp false
if u :: out(bid, n, b,)@pBuy :

u = b ∧ ∃r, s : (test(object, n, s, r)@pBuy ∧
¬(r = cheap) ∧ ¬(test(safepay, s)@pBuy))

⎤⎥⎥⎦
The applicability condition identifies the situation where a bid refers to a non-
cheap object and the seller is not registered for secure payments. Whenever this
condition fails, the action is allowed to proceed (the policy does not apply).
Otherwise, in a certain proportion, sp, of the cases the policy will prevent the
buyer from making the bid; in the remaining proportion, 1 − sp, of cases the
buyer takes his chances and makes the bid while disregarding the policy.

Furthermore, for expensive items, some buyers may not consider bidding un-
less the seller is able to take payment by installments:

Polpi
monthly �

⎡⎢⎢⎣
?pi false
if u :: out(bid, n, b,)@pBuy :

u = b ∧ ∃r, s : (test(object, n, s, r)@pBuy ∧
(r = expensive) ∧ ¬(test(monthly, s)@pBuy))

⎤⎥⎥⎦
Here the buyer is insistent on the ability to perform monthly installments in a
certain proportion, pi, of cases but is willing to make use of whatever payment
scheme is offered in the remaining proportion, 1− pi, of cases.

We combine these policies to capture the extent to which the buyer is willing
to disregard a policy when making a bid:

Polsp,pi
buyer � Polsp

secure ⊕ Polpi
monthly

352 C. Hankin, F. Nielson, and H.R. Nielson

Sellers. Sellers may want to do spot checks in a certain proportion, sc, of the
cases to ensure that new buyers do not bid for expensive items:

Polsc
seller �

⎡⎢⎢⎣
?sc false
if u :: in(bid, n, b,)@pBuy :

test(buyer, b, new)@pBuy ∧
test(object, n, u, expensive)@pBuy

⎤⎥⎥⎦
Here the seller is insistent on the ability to perform spot checks in a certain
proportion, sc, of cases but is willing to waive this check in the remaining pro-
portion, 1− sc, of cases.

2.2 Airport Security

As a second example, we consider a very simplified model of an airport, Port
containing six kinds of data:

– 〈traveller,name, profile〉 records that name is a potential traveller and profile
∈ {unchecked, low, high} where:
• unchecked indicates that the traveller’s documents have not been in-

spected
• low indicates that the documents are in order and the traveller is from

a low risk group
• high indicates that the documents are in order and the traveller is from

a high risk group;
– 〈passenger,name〉 records that name is a traveller who has been allowed to

proceed to the departure lounge;
– 〈scan,name, gate〉 records that name has passed through a walkthrough

scanner at gate gate;
– 〈fullscan,name, gate〉 records that name has been subjected to a full body

scan at gate gate;
– 〈frisk,name, gate〉 records that name has been manually frisked at gate gate;

and
– 〈threat, level 〉 with level ∈ {normal, severe} records the current security threat

level; we assume that only one such tuple is present.

We now proceed to define a policy for the security gates. In general, one is only
permitted to pass through to the Departures lounge if the travelling documents
have been checked and one passes through a standard scanner. This policy is
expressed in the following way:

Poldefault �

⎡⎢⎢⎣
(test(traveller, t, low)@Port ∨ test(traveller, t, high)@Port) ∧

test(scan, t, g)@Port
if g :: out(passenger, t)@Port :

true

⎤⎥⎥⎦
In times of heightened security, the airport might want to subject certain high
risk travellers to full body scans before allowing them into the Departures lounge.

Probabilistic Aspects: Checking Security in an Imperfect World 353

Since this delays the flow of passengers, the airport only subjects a certain pro-
portion, fs , of this category of travellers to the full check:

Polfssecurity �

⎡⎢⎢⎣
?fs false
if g :: out(passenger, t)@Port :
∃p : (test(traveller, t, p)@Port ∧ p = high ∧

test(threat, severe)@Port ∧ ¬(test(fullscan, t, g)@Port))

⎤⎥⎥⎦
It might also be the case that, in such circumstances, some proportion (say fr)
of passengers might be subjected to a manual frisking, regardless of their profile:

Polfrmanual �

⎡⎢⎢⎣
?fr false
if g :: out(passenger, t)@Port :
∃p : (test(traveller, t, p)@Port ∧

test(threat, severe)@Port ∧ ¬(test(frisk, t, g)@Port))

⎤⎥⎥⎦
We combine these policies to give an overall policy for the Port:

Polfs,fr
airport � Poldefault ⊕ Polfssecurity ⊕ Polfrmanual

3 Probabilistic Belnap Logic

3.1 Two-valued Logic and Probabilistic Two-valued Logic

In a deterministic system, policy decisions eventually result in either granting
an action or denying it. Two-valued logic, be it propositional logic or some
fragment of predicate logic, is suitable for expressing the result of the policy. We
write Bool for the set {t, f} of two-valued truth values.

As we have seen, in a probabilistic system, policy decisions result in a certain
probability for granting the action. One approach is to use a simple probability p
and interpret it to mean that the action is granted with probability p whereas the
action is denied with probability (1−p). In this approach t corresponds to 1 and
f corresponds to 0. We shall prefer to write (p, q) where p gives the probability
for granting the action and q gives the probability for denying the action; in this
approach t corresponds to (1, 0) and f corresponds to (0, 1). Clearly we impose
the condition on the probabilistic two-valued boolean (p, q) that p + q = 1 (as
well as p and q being real numbers in the interval [0, 1]) in which case it becomes
a discrete probability distribution over the outcomes (t, f).

The standard logical operators can be reinterpreted over probabilistic two-
valued booleans. For this we shall write v1 for t and v2 for f; for each operator
φ its extension, also denoted φ, to probabilistic truth values is given by:

(p1, p2)φ(q1, q2) = (r1, r2) where rk = Σ(i,j)|vk=viφvj
piqj

This expresses that rk is the sum of those products of probabilities piqj for which
the corresponding value viφvj gives vk (where both i and j range over {1, 2}).
So, for example, the conjunction of (p, 1−p) and (q, 1−q) is (pq, 1−pq), whereas
the disjunction of (p, 1− p) and (q, 1− q) is (p + q− pq, 1− p− q + pq), and the
negation of (p, 1− p) is (1 − p, p).

354 C. Hankin, F. Nielson, and H.R. Nielson

3.2 Four-Valued Logic

As has been discussed in many places (e.g. [4,8]), two-valued logic is not equally
satisfactory for expressing the policies according to which the granting of an ac-
tion should be made. The reason is that in general policies may be both incom-
plete, in providing no answer for a given request, as well as being contradictory,
in providing conflicting answers for a given request. In this paper we follow the
approach of a number of papers [3,4,8] of using a four-valued logic over which to
express policies. In addition to the truth values t and f from Bool we also have
the value ⊥ for indicating absence of information and the value " for indicat-
ing conflicting information. It is useful to write Four for the set {⊥, t, f ,"} of
four-valued truth values.

The four-valued truth values can be turned into a so-called bilattice – first
suggested by Belnap. In this approach we equip Four with two partial orders:
≤k and ≤t as illustrated in Figure 1 and explained below.

The partial order ≤k denotes the knowledge ordering that has ⊥ as the least
element, " as the greatest element, and t and f as two incomparable elements.
This turns Four into a lattice as displayed in the left hand Hasse diagram in
Figure 1. We shall write⊕ for the least upper bound with respect to ≤k and ⊗ for
the greatest lower bound with respect to ≤k. Clearly ⊕ and ⊗ are commutative
and associative.

The partial order≤t denotes the truth ordering that has f as the least element,
t as the greatest element, and ⊥ and " as two incomparable elements. This also
turns Four into a lattice as displayed in the right hand Hasse diagram in Figure
1. We shall write ∨ for the least upper bound with respect to ≤t and ∧ for the
greatest lower bound with respect to ≤t. Clearly ∨ and ∧ are commutative and
associative. There is no risk of confusion from this notation as ∨ coincides with
disjunction when interpreted over Bool and ∧ coincides with conjunction when
interpreted over Bool.

Negation ¬ is familiar from two-valued logic and is extended to four-valued
logic by leaving the elements⊥ and" unchanged. This turns Four into a bilattice
[1]: it is a lattice with respect to each of the two partial orderings and negation
preserves the knowledge ordering (i.e. if f1 ≤k f2 then ¬f1 ≤k ¬f2) while it
dualises the truth ordering (i.e. if f1 ≤t f2 then ¬f1 ≥t ¬f2).

�

t f

⊥

≤k

�
�

��

�
�

��

�
�

��

�
�

��

t

⊥ �

f

≤t

�
�

��

�
�

��

�
�

��

�
�

��

Fig. 1. The Belnap bilattice Four: ≤k and ≤t.

Probabilistic Aspects: Checking Security in an Imperfect World 355

We also need the following notion of implication denoted ⇒:

(f1 ⇒ f2) =
{

f2 if f1 ≤k t
t otherwise

It coincides with ordinary implication when interpreted over Bool.

Example 1. Returning to the On-line Auction example, consider the policy:

Polhouse � Polbuy ⊕ Polsell

Both Polbuy and Polsell will evaluate to four-valued truth values: if the action of
the policy matches and the recommendation evaluates to true then the result
is t, if the action matches but the recommendation evaluates to false then the
result is f and if the action does not match then the result is ⊥ since the policy
does not apply.

The use of ⊕ takes care of the correct combination of the four-valued truth
values. For actions that matches neither u :: out(bid, n, b,)@pBuy nor u ::
out(object, n, l,)@pBuy the overall policy will give the four-valued truth value ⊥
indicating inapplicability as far as the action is concerned. For actions matching
u :: out(bid, n, b,)@pBuy it will give one of the four-valued truth values t or f
indicating acceptance or rejection of the action. Finally, for actions matching
u :: out(object, n, l,)@pBuy it will give one of the four-valued truth values t or
f indicating acceptance or rejection of the action.

Indeed, had we used ∧ in place of ⊕ in the definition of Polhouse we could never
get the value t since an action cannot match both u :: out(bid, n, b,)@pBuy and
u :: out(object, n, l,)@pBuy at the same time. �	
As discussed in [8] there are many ways in which to map four-valued truth values
into two-valued booleans. The choice used in [8] has grant(f) = ¬(f ⇒ f) and
maps ⊥ and t to t whereas f and " are mapped to f; this can also be written
grant(f) = (f ≤k t). This is based on the idea that an operation should be
denied only if there is some evidence to suggest so.

3.3 Probabilistic Four-Valued Logic

By analogy with our consideration of probabilistic two-valued logic we shall now
introduce probabilistic four-valued truth values as probability distributions over
the outcomes (⊥, t, f ,"). These will be quadruples (p1, p2, p3, p4) of real numbers
in the interval [0, 1] subject to the condition that p1 + p2 + p3 + p4 = 1. In this
setting ⊥ corresponds to (1, 0, 0, 0), t corresponds to (0, 1, 0, 0), f corresponds to
(0, 0, 1, 0), and " corresponds to (0, 0, 0, 1).

The four-valued operators can be reinterpreted over probabilistic four-valued
truth values. For example, the negation of (p1, p2, p3, p4) is (p1, p3, p2, p4).

Before giving further examples of operators we shall describe the methodology
used for reinterpreting the operators. For this it is helpful to write v1 = ⊥,
v2 = t, v3 = f , and v4 = ". For a binary four-valued operator φ its extension,
also denoted φ, to probabilistic four-valued truth values is given by:

356 C. Hankin, F. Nielson, and H.R. Nielson

(p1, p2, p3, p4)φ(q1, q2, q3, q4) = (r1, r2, r3, r4) where rk = Σ(i,j)|vk=viφvj
piqj

Much as before this expresses that rk is the sum of all those products of proba-
bilities piqj for which the corresponding value viφvj gives vk (where both i and j
range over {1, 2, 3, 4}). It is straightforward to check that (r1, r2, r3, r4) is indeed
a probabilistic four-valued truth value (as each (i, j) is used for exactly one k).

We need one more operator in order to actually introduce probabilistic four-
valued truth values. This is the operator ?s, which we saw in Section 2, that
with probability s returns its argument and with probability 1− s gives t; it is
defined as follows:

?s(q1, q2, q3, q4) = (sq1, (1 − s) + sq2, sq3, sq4)

Example 2. Let us return to the On-line Auction example of Section 2 and con-
sider the policy

Pol0.9,0.2
buyer � Pol0.9

secure ⊕ Pol0.2
monthly

where the buyer, in the case of non-cheap objects, in 90% of the cases will check
that the seller offers secure payment and, in the case of expensive objects, in
20% of the cases will check that the seller accepts monthly payments.

In the case of an action that does not match it will give the probabilistic
four-valued truth value (1, 0, 0, 0) indicating inapplicability as far as the action is
concerned. For actions that do match and where the conditions of the two actions
are satisfied, the Pol0.9

secure policy will give the value (0, 0.1, 0.9, 0) whereas the
Pol0.2

monthly policy will give (0, 0.8, 0.2, 0). The combined policy therefore gives the
value (0, 0.08, 0.18, 0.74) meaning that in 8% of the cases the action is granted,
in 18% of the cases it will be denied and in 74% of the cases the two policies
give conflicting information. �	
There are many ways in which to map probabilistic four-valued truth values into
probabilistic two-valued booleans. The choice corresponding to that used in [8]
is given by

grant(p1, p2, p3, p4) = (p1 + p2, p3 + p4)

and adds the probabilties on ⊥ and t to give the one on t, and similarly adds
the probabilities on f and " to give the one on f.

Example 3. Continuing the above example we see that with this definition of
grant the combined policy will allow the buyer to proceed with the bidding
action in 8% of the cases (assuming that the relevant conditions are fulfilled)
and deny it in 92% of the cases. �	
Example 4. Consider now the policy of the Airport example of Section 2:

Polfs,fr
airport � Poldefault ⊕ Polfssecurity ⊕ Polfrmanual

In the case of severe security threat and a passenger with high security profile the
three policies will evaluate to the probabilistic four-valued truth values (0, 1, 0, 0).

Probabilistic Aspects: Checking Security in an Imperfect World 357

(0, 1 − fs , fs , 0) and (0, 1 − fr , fr , 0) respectively. The combined policy therefore
evaluates to the value (0, 1 − fs − fr + fs · fr , 0, fs + fr − fs · fr) meaning that
the action will be granted in 100(1− fs − fr + fs · fr)% of the cases and denied
in the remaining 100(fs + fr − fs · fr)% of the cases. We may note that if, for
example, fs = 1 (so a full body scan is always performed) then there is no need
to combine it with frisk (so fr can be taken to 0). �	

4 Design of The Language

Table 1 displays the computational part of the workflow language AspectKP . A
net is a parallel composition of located processes and/or located tuples. Locations
are annotated with a policy, the form of which is described below. We impose
a well-formedness condition on nets: each location is assigned a unique policy,
i.e. if a location has multiple occurrences in a net expression, each occurrence
must be annotated with the same policy – this property is preserved by the
semantics. A process can be a parallel composition of processes, a guarded sum
of action prefixed processes, or a replicated process (indicated by the * operator);
we shall write 0 for the empty sum. An action operates on tuples: a tuple can be
output to, input from (read and delete the source) and read from (read and keep
the source) a location. The actual operation performed by an action is called
a capability. We do not distinguish real locations and data, and all of them
are called locations in our setting, which can be location constants l, defining
occurrences of location variable !u (where the scope is the entire process to the
right of the occurrence), and applied occurrences of a location variable u. The �
operator adds elements to the tuple space at a location, whilst keeping track of
the number of occurrences; in other words, a tuple space is a multi-set of tuples.

Table 2 extends the syntax of Table 1. It introduces the syntax for policies
which are constructed from aspects, corresponding to the basic policies of [3,4],
using the Belnap operators. An aspect declaration takes the form [rec if cut :
cond]. Here cut is the action to be trapped by the aspect: the location of the
subject and the action (including the operation and the location of the tar-
get). Furthermore rec is a probabilistic four-valued policy recommendation and
cond is a boolean applicability condition. We allow a don’t care pattern in the
parameters to the cut and the test operation.

Table 1. AspectKP Syntax – Nets, Processes and Actions.

N ∈ Net N ::= N1 || N2 | l ::pol P | l ::pol T

P ∈ Proc P ::= P1 | P2 | ∑
i ai.Pi | ∗P

a ∈ Act a ::= out(
−→

)@
 | in(

−→

λ

) @
 | read(
−→

λ

) @

T ∈ Tuplespace T ::= ε | T " 〈−→l 〉

,
λ ∈ Loc
 ::= u | l
λ ::=
 | !u

358 C. Hankin, F. Nielson, and H.R. Nielson

Table 2. AspectKP Syntax - Aspects and Policies (where φ ∈ {⊕,⊗,⇒,∧,∨})

pol ∈ Pol pol ::= asp | ¬pol | pol φ pol | true | false
asp ∈ Asp asp ::= [rec if cut : cond]

cut ∈ Cut cut ::=
 :: at

at ∈ Actt at ::= out(
−→

t

) @
 | in(
−→

tλ

) @
 | read(
−→

tλ

) @

rec ∈ Rec rec ::=
1 =
2 | test(
−→

t

)@
 | ¬rec | recφ rec | ?x rec | true | false
cond ∈ Cond cond ::=
1 =
2 | test(

−→

t

)@
 | ¬cond | cond1 ∧ cond2 | cond1 ∨ cond2 |
∃x : cond | true | false

t,
tλ ∈ Loct
t ::=
 |
tλ ::=
λ |

The semantics is given by a Markov Decision Process (MDP) on nets. Non-
determinism arises because of the non-deterministic selection of tuples, the choice
operator (Σ) and parallelism; probabilities arise from the probabilistic aspects.
The detailed semantics is defined in Appendix A.

5 Conclusion

We have built on our previous work in [8] to show how probabilistic aspects can
be used to model the enforcement of security policies in an imperfect world.

– Probabilities are introduced in the sub-language for policy recommendations
rather than in the actual primitives of the programming language.

– Four-valued logic has been used for obtaining a compositional specification
of the policies.

– Policy recommendations are expressed using aspects in order to obtain a
flexible specification that can be changed as the need arises to revise the
security policy.

Our objective in this paper has been to demonstrate the feasibility of such an
approach. Hence we have focussed on examples although the appendix does give
the details of the language design, including a formal semantics in the form of a
Markov Decision Process.

In subsequent work we would like to develop a logic for reasoning about global
behaviour of the system; one approach, which extends our work in [8], would be
to develop a probabilistic variant of ACTL [6] to be interpreted over Markov
Decision Processes.

In the case of the On-line Auction this would allow us to check properties like

∀b, n, v. P≤0.1(true CU{b::out(bid,n,b,v)@pBuy}∃r, s.
(test(object, n, s, r)@pBuy∧
¬(r �= cheap⇒ test(safepay, s)@pBuy)∧
¬(r = expensive⇒ test(monthly, s)@pBuy)))

Probabilistic Aspects: Checking Security in an Imperfect World 359

which says that there is at most 10% chance that a buyer actually places a bid
without checking that the seller supports safe payment for non-cheap objects,
and without checking that the seller offers monthly installments for expensive
objects. It follows from the calculations in Example 3 that this is indeed the case
(as 0.08 ≤ 0.10).

In the case of the Airport Security a suitable property might be:

∀g, t. P≤tr(true CU{g::out(passenger,t)@Port}∃p.
(test(traveller, t, p)@Port ∧ test(threat, severe)@Port∧
¬(p = high⇒ test(fullscan, t, g)@Port)∧
¬(test(frisk, t, g)@Port)))

which says that there is some threshold probability (tr) above which, at times of
heightened security, it is not possible for a passenger to get into the Departures
lounge without having been through a full body scanner (if a high risk traveller)
or being manually frisked. Then, based on the calculation in Example 4, we
might aim to minimise fs and fr such that 1− fs − fr + fs · fr ≤ tr .

To carry out this development we would need to extend the formal semantics
of our programming notation (given in the Appendix) with a formal syntax and
interpretation of a probabilistic variant of ACTL. This is mostly standard and
requires clarifying the role of schedulers in order to turn “scheduled Markov
Decision Processes” into Markov Chains; the schedulers are intended to resolve
the non-determinism in the nets and processes of AspectKP and has no bearing
on the semantics of aspects and policies. This would allow to automate the model
checking of formula illustrated above.

Another line of development would be to include before and after actions
into aspects in order that security policies can express remedial actions for an
intended action to succeed (e.g. [9]). This would allow an even more pertinent
treatment of enforcing security in an imperfect world than our current proposal.

Acknowledgment. This work was supported in part by the Danish Strategic
Research Council (project 2106-06-0028) “Aspects of Security for Citizens”. We
should like to thank Alejandro Hernandez for useful comments.

References

1. Arieli, O., Avron, A.: The value of the four values. Artif. Intell. 102(1), 97–141

(1998)

2. Bettini, L., Bono, V., De Nicola, R., Ferrari, G., Gorla, D., Loreti, M., Moggi, E.,

Pugliese, R., Tuosto, E., Venneri, B.: The Klaim Project: Theory and Practice.

In: Priami, C. (ed.) GC 2003. LNCS, vol. 2874, pp. 88–150. Springer, Heidelberg

(2003)

3. Bruns, G., Dantas, D.S., Huth, M.: A simple and expressive semantic framework

for policy composition in access control. In: Proceedings of the ACM workshop on

Formal methods in security engineering, pp. 12–21. ACM Press, New York (2007)

4. Bruns, G., Huth, M.: Access-control policies via Belnap logic: Effective and efficient

composition and analysis. In: Proceedings of the 21st IEEE Computer Security

Foundations Symposium, pp. 163–176. IEEE, Los Alamitos (2008)

360 C. Hankin, F. Nielson, and H.R. Nielson

5. De Nicola, R., Katoen, J.-P., Latella, D., Massink, M.: StoKlaim: A Stochastic Ex-

tension of Klaim. Technical Report 2006-TR-01, Università degli Studi di Firenze

(2006)

6. De Nicola, R., Vaandrager, F.W.: Action versus state based logics for transition

systems. In: Guessarian, I. (ed.) LITP 1990. LNCS, vol. 469, pp. 407–419. Springer,

Heidelberg (1990)

7. Georg, G., Ray, I., France, R.: Using aspects to design a secure system. In: 8th

International Conference on Engineering of Complex Computer Systems, pp. 117–

126. IEEE Computer Society, Los Alamitos (2002)

8. Hankin, C., Nielson, F., Riis Nielson, H.: Advice from Belnap policies. In: Proceed-

ings of the 22nd IEEE Computer Security Foundations Symposium, pp. 234–247.

IEEE, Los Alamitos (2009)

9. Hankin, C., Nielson, F., Riis Nielson, H., Yang, F.: Advice for coordination. In: Lea,

D., Zavattaro, G. (eds.) COORDINATION 2008. LNCS, vol. 5052, pp. 153–168.

Springer, Heidelberg (2008)

10. Di Pierro, A., Hankin, C., Wiklicky, H.: Probabilistic Klaim. In: De Nicola, R.,

Ferrari, G.-L., Meredith, G. (eds.) COORDINATION 2004. LNCS, vol. 2949, pp.

119–134. Springer, Heidelberg (2004)

11. De Win, B., Joosen, W., Piessens, F.: Developing secure applications through

aspect-oriented programming. In: Aspect-Oriented Software Development, pp. 633–

650. Addison-Wesley, Reading (2005)

A Appendix

The semantics is given by a Markov Decision Process (MDP) on nets. We for-
mulate the semantics as a one-step reduction function ⇒: Net→ P �=∅(D(Net))
where D(Net) denotes the set of probability distributions on nets that satisfy
the well-formedness condition detailed below. The ⇒ function is derived from
→ (Table 7) with cycling on the stuck state which results from all locations
containing the 0 process; alternatively, this state could be declared as being
absorbing.

A probability distribution on nets is a function μ : Net → [0, 1] such that
ΣN∈Netμ(N) = 1. To take proper account of the congruence we shall say that
a probability distribution μ is well-formed whenever it satisfies the property

μ(N) > 0 ∧ μ(N ′) > 0 ∧N ≡ N ′ ⇒ N = N ′

which means that all probability belonging to one equivalence class of the struc-
tural congruence is assigned to just one representative. Since Net is countable
we can write probability distributions in the form

⊙pi

i Ni, subject to Σi pi = 1
and Ni ≡ Nj ⇒ i = j. This denotes the probability distribution μ given by
μ(N) = Σi|Ni=N pi. When the index set for i is finite we write .p1N1 · · ·.pn Nn;
we can safely dispense with entries having pi = 0, as in .1N .0 M = .1N .

We shall write N →⊙i
pi

Ni whenever one non-deterministic step in the evalu-
ation of N might produce the probability distribution

⊙i
pi

Ni where Ni is chosen
with probability pi.

The semantics uses a structural congruence on nets, which is an associative
and commutative (with respect to ||) equivalence relation that is a congruence

Probabilistic Aspects: Checking Security in an Imperfect World 361

Table 3. Structural Congruence

l ::pol P1 | P2 ≡ l ::pol P1 || l ::pol P2

l ::pol ∗P ≡ l ::pol P | ∗P
l ::pol P ≡ l ::pol P || l ::pol 0

N1 ≡ N2

N || N1 ≡ N || N2

Table 4. Matching Input Patterns to Data

match(!u,
−→

λ

; l,
−→
l) = match(

−→

λ

;
−→
l) ◦ [l/u]

match(l,
−→

λ

; l,
−→
l) = match(

−→

λ

;
−→
l)

match(ε ; ε) = id
match(· ; ·) = fail otherwise

(with respect to ||) and with some additional rules defined in Table 3. It also
makes use of an operation match, for matching input patterns to actual data,
defined in Table 4.

The reaction rules are defined in Table 7 and are straightforward for nets. We
shall discuss the rules for actions. When executed, out puts the tuple −→l into
location l0 and continues with the following process P if the action is granted;
otherwise, it enters a busy waiting state (taking the view that since aspects
are probabilistic the action might get granted at a later point in time). For the
actions in and read there are two possibilities. One is that the formal parameters−→
�λ match some tuple −→l that is currently present – here we use the operation
match defined in Table 4. In this case the action inputs the tuple if the action is
granted; otherwise, it enters a busy waiting state. The other possibility is that
no matching tuple is present, in which case a busy waiting state is entered.

The probabilistic four-valued meaning [[pol]] of a policy pol is defined in Table
6 relative to the action l :: a being performed and the local environment. The
function check, defined in Table 5, checks the applicability of a basic policy,
and produces the corresponding bindings of actual parameters of actions to the
formal parameters of the policy. The function extract facilitates this checking by
producing a list of names: the location where the trapped action is; the capability
(out, in or read); the parameters of the action; and the target location of the
action. As an example,

extract(� :: out(�t
1, · · · , �t

n)@�′) = (�,out, �t
1, · · · , �t

n, �′)

Table 5. Checking Formals to Actuals

check(α,−→α ; α′,
−→
α′

) = check(−→α ;
−→
α′

) ◦ do(α; α′)
check(ε ; ε) = id
check(· ; ·) = fail otherwise

do(u ; l) = [l/u] do(!u ; !u′) = [u′/u]

do(; l) = id do(; !u) = id
do(X ; P) = [P/X] do(l ; l) = id

do(c ; c) = id do(· ; ·) = fail otherwise

362 C. Hankin, F. Nielson, and H.R. Nielson

Table 6. Meaning of Policies in Pol (where φ ∈ {⊕,⊗,⇒,∧,∨})

[[[rec if cut : cond]]](l :: a) =

⎛⎜⎜⎝
case check(extract(cut) ; extract(l :: a)) of⎛⎝ fail : ⊥

θ :

{
[(rec θ)] if [(cond θ)]
⊥ if ¬[(cond θ)]

⎞⎠
⎞⎟⎟⎠

[[pol1 φ pol2]](l :: a) = ([[pol1]](l :: a)) φ ([[pol2]](l :: a))

[[¬pol]](l :: a) = ¬([[pol]](l :: a))

[[true]](l :: a) = t [[false]](l :: a) = f

Table 7. Markov Decision Processes from AspectKP

N →⊙pi
i Ni

N || M →⊙pi
i Ni || M

N ≡ M M →⊙pi
i Mi

∧
i Mi ≡ Ni

N →⊙pi
i Ni

ls ::pols (out(
−→
l)@lt.P + Q) || lt ::polt T

→ $p ls ::pols P || lt ::polt T " 〈−→l 〉
$q ls ::pols (out(

−→
l)@lt.P + Q) || lt ::polt T

if (p, q) = grant([[pols]](ls :: out(
−→
l)@lt)⊕ [[polt]](ls :: out(

−→
l)@lt))

ls ::pols (in(
−→

λ

)@lt.P + Q) || lt ::polt T " 〈−→l 〉
→ $p ls ::pols Pθ || lt ::polt T

$q ls ::pols (in(
−→

λ

)@lt.P + Q) || lt ::polt T " 〈−→l 〉
if (p, q) = grant([[pols]](ls :: in(

−→

λ

)@lt)⊕ [[polt]](ls :: in(
−→

λ

)@lt))

and match(
−→

λ

;
−→
l) = θ

ls ::pols (in(
−→

λ

)@lt.P + Q) || lt ::polt T

→ $1 ls ::pols (in(
−→

λ

)@lt.P + Q) || lt ::polt T

if ∀〈−→l 〉 ∈ T : match(
−→

λ

;
−→
l) = fail

ls ::pols (read(
−→

λ

)@lt.P + Q) || lt ::polt T " 〈−→l 〉
→ $p ls ::pols Pθ || lt ::polt T " 〈−→l 〉
$q ls ::pols (read(

−→

λ

)@lt.P + Q) || lt ::polt T " 〈−→l 〉
if (p, q) = grant([[pols]](ls :: in(

−→

λ

)@lt)⊕ [[polt]](ls :: in(
−→

λ

)@lt))

and match(
−→

λ

;
−→
l) = θ

ls ::pols (read(
−→

λ

)@lt.P + Q) || lt ::polt T

→ $1 ls ::pols (read(
−→

λ

)@lt.P + Q) || lt ::polt T

if ∀〈−→l 〉 ∈ T : match(
−→

λ

;
−→
l) = fail

Probabilistic Aspects: Checking Security in an Imperfect World 363

If check returns fail, it means that this policy does not apply to the action; other-
wise, it returns a substitution, θ, which is applied to the policy recommendation
(rec in Table 6) if the applicability condition (cond in Table 6) holds, otherwise
the policy does not apply.

The two-valued meaning [(cond)] for an applicability condition cond is defined
in the usual way; it is straightforward to adapt it to define the four-valued
meaning [(rec)] of a policy recommendation rec.

A Tool for Checking Probabilistic Properties of
COWS Services

Igor Cappello and Paola Quaglia

Dipartimento di Ingegneria e Scienza dell’Informazione, Università di Trento

Abstract. We present a tool developed for fostering probabilistic model check-
ing of services formally specified in Scows, a stochastic enrichment of the Cal-
culus for Orchestration of Web Services. The tool, called Scows lts, derives the
Labelled Transition System associated to the term, and further generates the cor-
responding Continuous Time Markov Chain in the same notation adopted by the
PRISM model checker. Scows lts is first described and then seen at work against
a small, yet representative, application scenario.

1 Introduction

Recently defined process calculi for the specification of service behaviours (see, e.g.,
[7,10,2]), provide a solid formal underpinning to the service oriented computing
paradigm. Although the adopted languages are a bit far from those of the most well-
known WS-BPEL, WSFL, WSCI, or WSDL, these calculi bring in the advantage of
introducing clear mathematical structures for reasoning about service coordination and
orchestration. For instance, given that processes are associated with a structural opera-
tional semantics, the dynamic behaviour of a term of the language can be represented
by a connected oriented graph whose nodes are the reachable states of the system,
and whose paths stay for its possible runs. Also, the generation of such graphs can be
automatized, and this fosters the verification of qualitative properties of the specified
services: Enquiries about the behaviour of any given service (e.g. “Can a given state
ever be reached?”) can be solved by running algorithms over the corresponding graph.

Quantitative analysis of services (like, e.g., quality of service, resource usage, service
level agreement, dependability, quantification of trust, or more generally uncertainty
and performance) can be as interesting as its qualitative counterpart. To ease this sort
of analysis, some of the above mentioned calculi have been extended to accommodate
quantitative measures and probabilistic/stochastic semantics so to also allow modelling
and verification of non-functional aspects of computation [4,12]. In particular, in the
case of stochastic service calculi, each basic action is often enriched by the rate of an
exponential distribution which models the time taken to complete its execution. The
directed graph representing the semantics of the given service can then be converted
into a Continuous-Time Markov Chain (CTMC), and probabilistic reasoning about the
service behaviour can be carried on by applying standard numerical techniques to this
mathematical structure.

In this paper we present a Java tool developed for fostering the quantitative anal-
ysis of COWS [10] (Calculus for Orchestration of Web Services), a calculus strongly

M. Wirsing, M. Hofmann, and A. Rauschmayer (Eds.): TGC 2010, LNCS 6084, pp. 364–378, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

A Tool for Checking Probabilistic Properties of COWS Services 365

inspired by WS-BPEL which combines primitives of well-known process calculi (like,
e.g., the π-calculus [11,15]) with constructs meant to model web services orchestra-
tion. More specifically, the described software takes as input terms of Scows [16], a
stochastic version of COWS which extends the work presented in [12] to the case of
polyadic communication. The tool, called Scows lts, derives the Labelled Transition
System (LTS) associated to the term, and further generates the corresponding CTMC
which is provided in the same notation adopted by the PRISM probabilistic model
checker [9,13]. Also, when building the CTMC, the user can specify which transitions
of the LTS affect the state variables of the model checker.

By providing a suitable interface to PRISM, Scows lts allows the verification of
the behaviour of Scows terms against properties expressed in Continuous Stochastic
Logic (CSL) [1], a temporal logic based on CTL [3]. In particular, those properties
refer to both the transient and the steady-state behaviour of the given chain, i.e., they
relate to the probability of being in a certain state either at a given time instant or in
the long-run. In fact, besides formulas built from atomic propositions and the obvious
boolean operators, letting ∼ ∈ {<,�,�, >} and p ∈ [0, 1], CSL can express the following
properties:

– P∼ p
[
φ
]

which asserts that the probability of the path formula φ being satisfied from
a given state meets the bound ∼ p. Here notice that time is naturally embedded in
until path formulae which take shape Φ UI Ψ , where I is an interval of R+, so that
Φ UI Ψ holds if Ψ is satisfied at some time instant in I andΦ holds at all preceding
time instants. Precisely, these path formulae are referred to as time-bounded until
formulae when I is bounded, and unbounded until when I = [t,∞) for some t � 0.

– S∼ p [Φ] which indicates that the steady-state probability of being in a state satisfy-
ing the CSL formula Φ meets the bound ∼ p.

Besides CSL properties and those written using derived operators (like, e.g., implica-
tion and timed temporal operators), PRISM can also check properties evaluating to a
numerical value and written P=?

[
φ
]

and S=? [Φ], respectively.
A small sample of properties that can be checked by PRISM and their corresponding

intuitive meaning is listed below.

– P> 0.8
[
true U[0,5.7] a1

]
: the probability that a1 holds within the first 5.7 time units is

greater than 0.8.
– P=?

[
true U[0,5.7] a1

]
: which is the probability that a1 holds within the first 5.7 time

units.
– a2 −→ P> 0.6

[
a3 U[1,7] a4

]
: when a2 becomes true, the probability that a4 holds in

the time interval [1, 7], with a3 holding at all the preceding time instants is greater
than 0.6.

– S� 0.1 [a5]: in the long-run, the probability that a5 holds is less than 0.1.

By producing input to PRISM, Scows lts allows interesting probabilistic properties of
closed Scows services to be analyzed, and, to the best of our knowledge, Scows lts is at
the moment the single tool offering the ability to carry over exact probabilistic checking
for such language. Although the reader might object that what the tool produces is just
the interface to an existing model checker, it should be noticed that developing an effi-
cient implementation for such interface is far from trivial. First, w.r.t. naming, COWS

366 I. Cappello and P. Quaglia

is a calculus in the π-calculus style, and this immediately brings in all the operative is-
sues related to either α-conversion or generation of new names. Second, given that the
actual communication paradigm adopted by Scows is based on a best-matching policy,
finding the communicating pairs imposes a quite time-consuming processing when the
moment of understanding whether the matching of the involved input/output actions is
really among the “best” ones comes. Third, to overcome the state explosion problem
which could be raised even by systems not particularly big, a number of optimization
techniques have to be implemented to keep the LTS size as small as possible. Conclud-
ing, the approach taken by Scows lts is intrinsically less efficient than, e.g., carrying
over approximate statistical model checking of Scows [14]. It must be observed, how-
ever, that approximate checking is based on hypothesis testing performed over simula-
tion runs obviously of finite length. Then, by its own nature, statistical model checking
cannot be used to verify either unbounded until formulae or steady-state properties.

Another tool that can be partially compared to Scows lts is CMC [6], an on-the-
fly model checker supporting the verification of qualitative (vs. quantitative) properties
of COWS services. CMC generates only those fragments of the state space which are
relevant to the verification of the considered property. Hence the approach adopted in
CMC is quite different from the one taken in Scows lts, where the whole state space
is generated. Here we observe that this feature of Scows lts, although computation-
ally demanding, is crucial, e.g., to reuse the resulting structures for the verification of
properties with different instantiations of the involved quantitative parameters.

Outline of the paper. The source language of the Scows lts is briefly presented in
Section 2. The description of Scows focuses on the main semantic points impacting
on the complexity of the LTS generation. Section 3 provides a description of the tool,
and contains details about the implementation of structural congruence checking, one
of the main optimization techniques applied to keep the number of states as small as
possible. In Section 4, we present an application scenario and a few examples of the
results obtained by model checking its probabilistic properties in PRISM. Conclusions
and plans for future work are reported in Section 5.

2 Scows

Below we provide a short presentation of Scows, the source language of the tool whose
description is the main subject of the paper.

Scows services (ranged over by S , S ′, . . . , S 1, S 2, . . .) are based on two countable and
disjoint sets of entities: the set of names N (ranged over by m, n, o, p,m′, . . .) and the
set of variablesV (ranged over by x, y, z, x′, . . .). We will indicate elements of N ∪V
by the metavariables u, v,w, u′, . . ., which will be collectively called identifiers. The set
of identifiers occurring in service S will be denoted by ids(S). Also, tuples of the shape
〈u1, . . . , un〉 will be denoted by ũ.

The terms of the Scows language are generated by the grammar in Table 1. For sim-
plicity, we do not present here the support for service termination through the killing
and protection primitives as presented in [12,16]. Following a common approach in
stochastic extensions of process calculi, we associate a stochastic delay to each ba-
sic action of the language. These delays are determined via exponentially distributed

A Tool for Checking Probabilistic Properties of COWS Services 367

Table 1. Grammar of Scows

s ::= (u.u!ũ, δ) | g | s | s | [u] s | S(m1, . . . ,m j)
g ::= 0 | (p.o?ũ, γ). s | g + g

random variables, the rates of which are included in the syntax of basic actions. The
two basic actions are invoke (u.u′!ũ, δ) and request (p.o?ũ, γ), and represent respec-
tively the capacity to send an output tuple ũ through the endpoint u.u′ with rate δ, and
to receive an input on the tuple ũ through the endpoint p.o with rate γ. The basic ac-
tivities are assembled through the classical combinators of parallel composition s | s,
guarded choice g + g (the classical nondeterministic choice, in which each service has
to start with a request action) and service identifier S(m1, . . . ,m j). The last constructor
allows the representation of recursive behaviour and is associated with a service defini-
tion of the form S(n1, . . . , n j) = s. The delimiter of u, written [u] s, defines the scope
of u to be s. An identifier under the scope of a delimiter is said to be bound by that
delimiter. For example, in the service S = [x] ((p.o?x, γ). (p.o!x, δ)) the variable x is
bound by the delimiter [x] , while names p and o are free. A Scows service S is termed
closed if every entity appearing in S is bound by a delimiter.

The main goal of the operational semantics of Scows terms is the generation of
Continuous Time Markov Chains (CTMCs) grounding the analysis of the behaviour
of the specified systems. Although the detailed presentation of the Scows semantics
lies outside the scope of this paper, we briefly recall here the main assumptions that
have been taken in order to both allow the definition of finitely branching transition
systems and ease the computation of transition rates. First, it is assumed that service
identifiers do not occur unguarded. Second, we assume that there is no homonymy both
among bound identifiers and among free and bound identifiers of the service under
consideration. This condition can be initially met by appropriately refreshing the term,
and is dynamically kept true by a suitable management of the unfolding of recursion
(new versions of bound identifiers are generated and used when a recursively defined
service is instantiated). Third, as for the stochastic extension of monadic COWS [12],
and differently from the original work on COWS [10], the semantics of Scows [16] is
not given in reduction style, but rather as a labelled transition system making use of
rules for opening and closing the scope of delimiters.

In order to give an intuitive flavour of the Scows semantics, we comment on a simple
service specified in Table 2 which is a fragment of the application scenario analyzed
later on in Section 4. In the example reported in Table 2, like in other examples below,
we use intuitive identifiers instead of metavariables and metanames. Variables can still
be distinguished from names for the fact that identifiers for variables have a leading v.
The service in Table 2 models the behaviour of a customer performing a login attempt
on a loan granting service, and then waiting for the outcome of the operation. The de-
limiters [id] , [name] , and [pwd] define the scope where the identifiers are defined
and valid. An invoke action on channel creditReq.initialize allows the service to
communicate with other services able to perform a request action on the same endpoint.

368 I. Cappello and P. Quaglia

Table 2. Example of a Scows service

[id][name][pwd]

(creditReq.initialize!<id,name,pwd>,1)

| [vuserOK]

(portal.initialize?<id,vuserOK>,1).

[if][then](

(if.then!<vuserOK>,1)

| (if.then?<false>,1).

...

+ (if.then?<true>,1).

...)

In case of communication, the names are exchanged, extending the scope of the private
names if needed. The invoke activity is in parallel with a second subservice. The sec-
ond subservice is composed of a request activity, which receives the result of the login
attempt and stores it in the variable vuserOk. After this information is received, the ser-
vice can perform one of the two internal synchronizations over the endpoint if.then.
This behaviour is obtained by using the nondeterministic choice operator, and by ex-
ploiting the communication paradigm, which is based on correlation sets and adopts a
best-matching policy. The basic ingredient of best-matching is that each name matches
both with itself and with any variable. That said, a communication between an invoke
and a request can take place only if all of the following conditions hold:

1. the invoke and the request activities occur at the same endpoint;
2. the parameters of the invoke (actual parameters) can really match with the parame-

ters of the request (formal parameters);
3. among all the requests occurring at the same endpoint as the invoke, the chosen

request is one of those that induce the least number of substitutions of actual pa-
rameters for formal parameters.

Going back to the example in Table 2, the nondeterministic choice

(if.then?<false>,1).... + (if.then?<true>,1)....

defines a mutually exclusive choice between two possible prosecutions. The two branches
of the choice model different behaviours of the customer, based on the result of the login
procedure. The two possible outcomes are handled by defining two request actions on
the same channel but with different parameters. If vuserOk gets substituted by false,
the service continues with the actions needed to manage a failed login. Conversely, if
vuserOk is set to true, the logged customer and the loan granting service continue with
the protocol defined to initialize, assess and then define the loan request.

The Scows operational semantics [16] defines the possible transitions of closed ser-

vices. Transitions take the form S
α−−→
ρ

S ′ where α is the action label, and ρ is the rate

associated to the action. Accounting for the best-matching communication paradigm in
a polyadic setting makes rate computation quite a heavy task, and this has an obvious
impact over Scows lts. To highlight this point, we informally illustrate the foundational

A Tool for Checking Probabilistic Properties of COWS Services 369

ideas and main issues related to rate computation. As in [12], invoke and request activi-
ties are dealt with in an asymmetric way. In fact, differently from what happens in CCS
or in π-calculus, the actual pairing of two sending and receiving actions depends not
only on the equality of their endpoints (item 1 above), but also on two further condi-
tions relative to parameters: a local one (item 2 above) and a global one (item 3 above).
Then, fixed an endpoint, the selection of a specific invoke activity, and hence a particular
tuple of actual parameters, filters the request activities which are eligible for commu-
nication with the chosen invoke. This policy is reflected in the quantitative semantics.
From the probabilistic point of view, the act of sending is considered an independent
event, while receiving depends on the chosen invoke activity. Consider for instance the
service below.

S = [m, n, x, y] ((p.o!〈m, n〉, 1)︸�����������︷︷�����������︸
S 1

| (p.o?〈x, y〉, 2). 0︸�������������︷︷�������������︸
S 2

| (p.o!〈n, n〉, 3)︸����������︷︷����������︸
S 3

| (p.o?〈m, y〉, 4). 0︸��������������︷︷��������������︸
S 4

| (p.o?〈x, y〉, 5).0︸�������������︷︷�������������︸
S 5

)

Matching the invoke action labelled S 1 with the request guarding S 2 involves the two
substitutions {m / x} and {n / y}, and the same happens for matching S 1 with the request
guarding S 5. The single substitution {n / y} instead is induced by pairing S 1 with the
request (p.o?〈m, y〉, 4) in S 4. Using conditional probabilities, the rate of the communi-
cation between S 1 and S 4, named ρ1,4, is computed as follows:

ρ1,4 = P(S 1) P(S 4 | S 1) min (app(S 1), app(S 4)) =
1

1 + 3
4
4

min (1 + 3, 4)

where app(S i) stays for the apparent rate of S i and is computed taking into account the
rates of those actions in S which might compete to communicate over the same end-
point. As usual, we take the minimum of the apparent rates of the involved invoke and
request actions. This amounts to assuming that synchronization occurs at the (apparent)
pace of the slowest participant.

We observe here that the computation of apparent rates faithfully reflects the best-
matching communication paradigm of Scows. In the above example for instance, the
apparent rate of S 1 is given by the sum of the rates of both S 1 and S 3, while the compu-
tation of the apparent rate of S 4 takes into account the fact that (p.o?〈m, y〉, 4) is indeed
the single best-matching request for the invoke (p.o!〈m, n〉, 1).

3 Overview of Scows lts

Scows lts is a Java tool freely available at [17] for the derivation of CTMCs from Scows
services. Given the input service, its Labelled Transition System is first derived. The
LTS is then used to build a CTMC expressed in the syntax accepted by the PRISM
model checker [9]. As detailed below, when building the CTMC, a manual input can
specify which transitions of the LTS affect the variables defining the state of the system
in the model checker tool.

370 I. Cappello and P. Quaglia

Table 3. Structural congruence rules for Scows lts

s1 ≡ s2 if s1 is an α-converse of s2

s1 | [u] s2 ≡ [u] (s1 | s2) if u � ids(s1), [u1] [u2] s ≡ [u2] [u1] s, [u] 0 ≡ 0

s1 | (s2 | s3) ≡ (s1 | s2) | s3, s1 | s2 ≡ s2 | s1, s | 0 ≡ s

(g1 + g2) + g3 ≡ g1 + (g2 + g3), g1 + g2 ≡ g2 + g1, (p?ũ, γ). s + 0 ≡ (p?ũ, γ). s

The automatic derivation of the LTS builds the graph structure in breadth-first or-
der. A challenging and stimulating issue related to this process is the well-known state
space explosion problem. In order to reduce its effects in terms of memory usage and
execution time, we have chosen to implement a notion of structural congruence be-
tween Scows services, defined as the minimal relation following the laws presented in
Table 3. These laws state the equality of terms that are α-converse of each other, i.e.
that could be made syntactically identical by appropriately refreshing bound identifiers,
and comprise the usual axioms for scope delimitation together with the monoidal laws
for parallel composition and nondeterministic choice. A congruence check is performed
when inserting the residual S ′ of service S in the transition system, so that this check is

carried on after the transition S
β−−→
ρ

S ′ has been computed. At the time this transition is

considered, S is already represented by a node in the LTS; a node S 1 such that S 1 ≡ S ′
is searched for in the whole LTS. If the search is successful, the computed transition
links S to S 1. A new node is created otherwise.

Consider the service S defined as in Table 4. This service can perform two distinct
communications over the endpoint s.o, and evolve, respectively, to either S1 or S2 as
defined below:

S1 = [id][b] (s.b ! <id>, 1) | [vid2] [vch2] (...)

S2 = [id][b] ([vid1] [vch1] (...) | (s.b ! <id>, 1))

Table 4. A service S that can perform two distinct communications with congruent residuals

S = [id][b] (s.o ! <id, b>, 1)

| [vid1] [vch1] (

(s.o ? <vid1, vch1>, 1)

.(s.vch1 ! <vid1>, 1))

| [vid2] [vch2] (

(s.o ? <vid2, vch2>, 1)

.(s.vch2 ! <vid2>, 1))

A Tool for Checking Probabilistic Properties of COWS Services 371

Fig. 1. Transition graph for service S: congruent residuals

Although the obtained residuals S1 and S2 are not syntactically identical, the tool
recognizes that they can be equated by using two substitutions on bound entities and a
rearrangement of the parallel components.

A graphical representation of the transition graph is obtained using the dot tool [5].
In this representation, the labels associated with states are integer numbers, defined at
runtime, that uniquely identify services in the transition graph. The LTS obtained for
service S in Table 4 is drawn in Figure 1. The labels associated with the two tran-
sitions leading to the same node show information about the endpoint over which the
communication takes place, along with the substitutions induced by the communication
mechanism and the rate associated with the transition.

Checking for structural congruence of services requires special care. In order to
achieve the desired goal, it is necessary to abstract from the concrete representations
(syntax trees) used in the operational semantics. The abstraction phase, called flatten-
ing, consists in the definition of a hashmap, relating each subservice to the list of bound
identifiers used in that subprocess. A definition, given as pseudocode, of the f latten
function is presented in Table 5. Function f latten is defined recursively on the struc-
ture of services: it considers the parallel composition and the name/variable binding as
inductive cases, while all other constructs are treated as atomically resolved services.
In the case of a parallel composition S 1 | S 2, the map obtained flattening S 1 is used
as intermediate result when flattening S 2. In the case of a name/variable binding [u]S ′,
the bound identifier u is added to the list l of the encountered bound identifiers. In
the general case of the definition of function f latten, a list fid(S) ∩ l is built. This list
contains the bound identifiers used in the considered service S . Function flatten takes
into account the case in which copies of the same service are composed in parallel: the
flattening procedure adds a list of bound entities for each copy, so the mapped entities
L,L′ are lists of lists of bound identifiers. The list L′, which will be the object mapped
by S , is composed taking into consideration if S was previously mapped to a list L.
When building and using the resulting hashmap, we are again assuming that bound and
free names are all distinct.

Once both maps mS and mS ′ , for services S and S ′ respectively, are built, the ac-
tual congruence checking takes place. The idea underlying this procedure is that, if S
and S ′ are congruent, then the subservices of S ′, that we will identify with keys(mS ′),
can be arranged in an ordering

[
S ′1, . . . , S

′
n

]
that matches the ordering [S 1, . . . , S n] of

keys(mS). This match, built considering the structure of subservices, takes into account
the possibility of renaming of bound names: this is achieved by building a bijection,
named sub, between the bound identifiers used in S and those used in S ′.

372 I. Cappello and P. Quaglia

Table 5. Pseudocode for the flattening function

f l a t t e n (S , l,m) =
i f S = S 1 | S 2

intermediate map = f l a t t e n (S 1, l,m)
r e t u r n f l a t t e n (S 2, l, intermediate map)

e l s e i f S = [u]S ′

l new = l ∪ u
r e t u r n f l a t t e n (S ′, l new,m)

e l s e
L = m.get(S)
mapped = f id(S) ∩ l
i f L == null

L = [mapped]
m.put(S ,L)

e l s e
L′ = L :: mapped
m.put(S ,L′)

r e t u r n m

For example, consider S1 and S2, the two possible residuals of the service in Table 4.
The flattening procedure, applied to the two services, creates two maps mA and mB such
that the mappings of the invoke and residuals actions are as follows (where double-list
notation has been omitted for clarity).

1. mA([id][b](s.b!<id>,1)) = mB([id][b](s.b!<id>,1)) = [id,b]
2. mA([vid2][vch2] ((s.o?<vid2,vch2>,1). ...)) = [vid2,vch2]
3. mB([vid1][vch1] ((s.o?<vid1,vch1>,1). ...)) = [vid1,vch1]

The congruence checking procedure builds a bijection sub between the bound iden-
tifiers mapped in mA and those mapped in mB, taking into account the use of these
identifiers in the atomic services. For instance, mA maps an invoke service into a list of
two names, as does mB. Since the types of the services are compatible, the bijection is
initialized as sub = { b → b , id→ id }. Again, mA maps a request service into a list
of two variables, as does mB. Also in this case the types of the services are compatible,
so the procedure updates sub accordingly: sub = { b→ b , id→ id , vid2→ vid1 ,
vch2→ vch1 }. The mapping given by sub is still valid (i.e. it is still a bijection) when
considering the residuals of the two request services. Since there are no more mapped
services to consider, S1 and S2 are recognized as congruent. If, for instance, the residual
of S were S2’ = (s.o?<vid1,vch1>,1).(s.vid1!<vch1>,1) instead of S2, then
the construction of the bijection sub would fail. In fact, when considering the residuals
of the request operations, sub would already contain { vid1 → vid2 } and { vid1 →
vch2 } should be inserted for matching the trailing invoke directives. This mismatch is
a sign that the ordering of mapped services cannot be used to conclude that S1 and S2’
are congruent. Since this is the case for each permutation of mapped services for S1 and
S2’, we conclude that S1 and S2’ are not congruent.

A Tool for Checking Probabilistic Properties of COWS Services 373

When the automatic procedure to build the transition system for a service S has
considered all possible residuals, the obtained LTS is used to define a CTMC expressed
in PRISM notation. The states in the chain, at this point, are represented only by the
values of an integer variable. Different values of this variable uniquely identify each
service. In order to express and check even simple quantitative properties, one would
have to know the correspondence between the values of this variable and the residuals
in the LTS. Even for small systems, this is too demanding. In order to easily express
and check interesting and elaborated quantitative properties, the state description has
to be enriched. The additional information, in terms of CTMC variable updates, can be
obtained by user-provided descriptions (annotations) of Scows transitions.

4 Applying Scows lts

We complete the presentation of Scows lts by a detailed description of its application
to an example derived from a Case-Study of the Sensoria European Project. The set-
ting for the scenario consists in a Bank Credit Request service, which can be invoked
by customers to obtain a loan. Once the customer provides the information needed to
compute the security assessment on the loan request, the bank service can either auto-
matically grant the loan (e.g., if the required sum is below a threshold or if the security
assessment is very favorable) or forward the request to a clerk for a manual review. If
the security assessment is very unfavorable the manual review must be performed by a
supervisor. A favorable response of this review process triggers the generation of a loan
proposal, which is then sent to the customer, who can accept or decline the offer. In
particular, the scenario is composed of the following phases: login, collection of infor-
mation, rating computation, generation of the loan proposal/decline, customer decision,
session closure.

The model, whose complete definition is reported in the full version of this paper,
available at [17], is composed of various persistent services modeled as agents, and
by a non-persistent service, named Portal, which mimics the behaviour of the cus-
tomer: the adopted point of view is the one of the bank internal services, which receive
requests and give response to the Portal service. The fact that the model has to con-
tain persistent services dealing with sensitive information rises two issues that must be
taken into account. First, at any time each persistent service has to be able to interact
with whichever service is requiring its functionalities. Second, different instances of the
same service have to execute transparently with respect to each other. The first aspect is
addressed using guarded recursion, while the second is easily solved with private names
modelling session identifiers used as communication parameters. Since the Scows com-
munication paradigm is based on correlation sets, this choice ensures that sensitive data
is not disclosed to unauthorized services.

Table 6 presents the service CustomerManagement, defined taking into account the
two aspects above. The first request activity of the service guards a parallel composition
of processes which comprises the recursive call needed to obtain service persistence.
The first request activity is involved also in the second aspect underlined before: one
of its parameters is vid, which will contain the value representing the session id that
will be used in the following requests and invocations, whenever sensitive data have to

374 I. Cappello and P. Quaglia

Table 6. Definition of the CustomerManagement service

CustomerManagement(vcustMgt) =

[vid][vname][vpassword]

(vcustMgt.checkUser?<vid,vname,vpassword>,1).

[nonDet][choice]

((nonDet.choice!<dummy>,1)

| (nonDet.choice?<dummy>,loginFailRate).

(creditReq.checkUser!<vid,false>,1)

+ (nonDet.choice?<dummy>,loginOkRate).

((creditReq.checkUser!<vid,true>,1)

| (vcustMgt.getCustData?<vid,vname,vpassword>,1).

[login][first][last]

(creditReq.getCustData!<vid,login,first,last>,1))

| CustomerManagement(vcustMgt))

be transmitted. The role of the presented service is involved in the first and partly in
the second phase of the scenario (login and data collection); in particular, this service
is responsible for the decision on the outcome of the login phase: a choice between two
possible communications over the private channel nonDet.choicedetermines whether
the login attempt is successful or not.

Scows lts allows the use of parameters to denote action rates. In Table 6 this is
the case for both loginOkRate and loginFailRate. Using parametric values, the actual
computation of action rates is not performed when deriving the CTMC (as it happens
when actual values are used), but rather an arithmetic expression is derived. The actual
instantiation of parametric rates can be specified when using the model checking soft-
ware; in this way the CTMC derivation phase can be performed once, and the result
can be used to check for properties using different sets of rate values. In the applica-
tion scenario at hand, we used this feature for both the login phase (loginOkRate and
loginFailRate), and the manual review performed by clerks (clerkDecisionRate) and
supervisors (supDecisionRate). All the other rates in the system are set equal to 1.

Another useful feature of Scows lts is the possibility of specifying annotations of
Scows transitions. These annotations can be used to enrich the state space description
of the CTMC in the model checking software. For instance a communication on a par-
ticular endpoint can trigger the increment of a variable in the description of the PRISM
CTMC.

Another possibility, shown in Table 7, is referring also to the parameters involved
in the communication operation. In this example, a communication over the endpoint
portal.goodbye with the placeholder parameter @1, triggers the assignment of a
PRISM variable with the value 1. The actual name of the variable involved in this

Table 7. Definition of parametric annotations for Scows communications

portal.goodbye <@1> :: @1_finished’ = 1 ;

creditReq.createNewCreditRequest <@1,*> :: @1_started’ = 1;

A Tool for Checking Probabilistic Properties of COWS Services 375

Fig. 2. Transition System for the Bank Credit Request scenario

assignment depends on the parameter of the communication @1, so that, e.g., if @1
= id0 then the PRISM variable that will be assigned the value 1 is the one named
id0 f inished. Similarly, the second annotation reported in Table 7 refers to commu-
nications over creditReq.createNewCreditRequest, which trigger the assignment
@1 started = 1. Note that in this second case the list of parameters for the communica-
tion contains the wildcard *, which basically means that the possibly remaining param-
eters and their values are all irrelevant. The joint use of these two annotations allows
the model checker to track the execution of one particular loan request from the mo-
ment it is initialized by communicating over creditReq.createNewCreditRequest,
to the latest step involving an interaction over portal.goodbye. In both cases the first
parameter of the communication (@1) is the session identifier of the logged in customer.

The complete LTS automatically generated by Scows lts for the model of the Bank
Credit Request scenario is reported in Figure 2, where state and transition labels have
been omitted for readability. The LTS is used to build a model which is expressed
in a format compatible with PRISM. The CTMC corresponding to the graph in Fig-
ure 2 is composed of 139 states and 195 transitions. Also, it has the four parameters
used in the definition of the model: loginFailRate, loginOkRate, supDecisionRate, and
clerkDecisionRate. The adoption of annotated transitions is responsible for the creation
of two PRISM variables: id0 started and id0 f inished which can both assume values
in {0, 1}. These latest variables can be used when expressing probabilistic properties to
be checked against the model. This happens, for instance, for property P1 below which
tracks the probability that the loan request procedure is completed either with an accepted
or with a refused loan request (i.e., either by the customer or by the bank) within time T .

P=?
[
(true) U[0,T] (id0 f inished = 1)

]
(P1)

Note that the probability of eventually reaching a state in which id0 f inished = 1
depends only on the ratio between loginFailRate and loginOkRate. Indeed, in the con-
sidered model, a successful login eventually leads to the generation of a message by
the bank services, either containing a loan proposal or a decline. On the other hand, the
transient behaviour of the system depends on all the four parametric rates. Property P1
was checked with the following settings: loginFailRate = 0.5, loginOkRate = 1.5,
and supDecisionRate, clerkDecisionRate ∈ {0.05, 0.30, 0.55}. With these values, the
probability of Property P1 being eventually true is

loginOkRate
loginOkRate + loginFailRate

× 100 = 75%.

376 I. Cappello and P. Quaglia

Fig. 3. Results of model checking for Property P1 using different values for the parametric rates
clerkDecisionRate and supDecisionRate

Figure 3 presents the results of the model checking procedure for Property P1 for the
time scale T ∈ [1, 130], while Figure 4 shows a close-up on the time frame T ∈ [44, 50],
where the different probability outcomes in the transient part of the model are easier to
see. For clarity, not all the generated series are reported in Figures 3 and 4. Indeed, the
results given by series where the parameters supDecisionRate and clerkDecisionRate
have interchanged values are equal. This is due to the fact that clerks and supervisors
are modelled by identical terms, and the probabilities of requiring the service of either
of them are exactly the same. For this same reason, in the legends of both Figures 3
and 4 we do not specify which element of the pairs refers to supDecisionRate and
which refers to clerkDecisionRate. The interpretation of the obtained results allows the
identification of potential performance issues. For instance, we notice that on average
the system evolves faster (i.e. the customer gets a faster response) when both the clerk
and the supervisor have a medium review rate (0.3) rather than when one of the two has
a low review rate (0.05), whichever the review rate of the other bank employee.

If we wish to verify whether a customer receives a response (either a loan proposal or
a decline message) within a time boundary with a certain probability, we can formulate
a property such as Property P2:

init −→ P>0.6
[
true U[0,T] id0 f inished = 1

]
(P2)

which allows checking whether a logged customer will receive a response within time
T with a probability greater than 60%.

We checked Property P2 with these settings: loginFailRate = 0.5; loginOkRate =
1.5; supDecisionRate = clerkDecisionRate = 0.30 and T = 50. With these settings, the
model checking procedure verifies that the property holds, giving as result true. This
can be visually verified looking at Figure 4 considering the series labelled [0.3; 0.3]

A Tool for Checking Probabilistic Properties of COWS Services 377

Fig. 4. Results of model checking for Property P1: close-up on the time frame T ∈ [44, 50]

at time T = 50. The actual probability value for which Property P2 holds, obtained
performing model checking on Property P3 below, is approximately 0.69.

P=?
[
true U[0,T] id0 f inished = 1

]
(P3)

5 Concluding Remarks

We presented Scows lts, a software written in Java for the automatic derivation of LTSs
for closed Scows terms. We outlined the main features of the software, such as the im-
plementation of the congruence check for Scows services, the annotation of transitions
and the possibility to use parametric rates. A loan-request application scenario was then
used to show how to take advantage of the features of Scows lts, and analyze proba-
bilistic properties of the global model by using PRISM.

One aspect that will be taken into account in future work is the performance of the au-
tomatic LTS derivation process, in particular regarding the complexity of the structural
congruence checking phase. Also, it should be observed that Scows lts is engineered
in a stratified way, so that the heaviest computational phase, i.e, the generation of the
LTS, is separated from the module for the generation of the input to PRISM. We aim
at extending the software by implementing different back-ends to plug to the LTS gen-
eration module to allow users to analyze Scows specification by means of other model
checkers (e.g., MRMC [8]) and against other logics.

Acknowledgements. This work has been partially sponsored by the project Sensoria,
IST-2005-016004.

378 I. Cappello and P. Quaglia

References

1. Aziz, A., Sanwal, K., Singhal, V., Brayton, R.: Model-checking continous-time Markov
chains. ACM Trans. on Computational Logic 1(1), 162–170 (2000)

2. Boreale, M., Bruni, R., Caires, L., De Nicola, R., Lanese, I., Loreti, M., Martins, F., Mon-
tanari, U., Ravara, A., Sangiorgi, D., Vasconcelos, V.T., Zavattaro, G.: SCC: A Service
Centered Calculus. In: Bravetti, M., Núñez, M., Zavattaro, G. (eds.) WS-FM 2006. LNCS,
vol. 4184, pp. 38–57. Springer, Heidelberg (2006)

3. Clarke, E.M., Allen Emerson, E., Prasad Sistla, A.: Automatic verification of finite-state
concurrent systems using temporal logics. ACM Trans. on Programming Languages and Sys-
tems 8(2), 244–263 (1986)

4. De Nicola, R., Latella, D., Loreti, M., Massink, M.: MarCaSPiS: a Markovian Extension of
a Calculus for Services. Electronic Notes in Theoretical Computer Science 229(4), 11–26
(2009)

5. http://www.graphviz.com
6. Fantechi, A., Gnesi, S., Lapadula, A., Mazzanti, F., Pugliese, R., Tiezzi, F.: A model checking

approach for verifying COWS specifications. In: Fiadeiro, J.L., Inverardi, P. (eds.) FASE
2008. LNCS, vol. 4961, pp. 230–245. Springer, Heidelberg (2008)

7. Guidi, C., Lucchi, R., Gorrieri, R., Busi, N., Zavattaro, G.: A Calculus for Service Oriented
Computing. In: Dan, A., Lamersdorf, W. (eds.) ICSOC 2006. LNCS, vol. 4294, pp. 327–338.
Springer, Heidelberg (2006)

8. Katoen, J.-P., Zapreev, I.S., Hahn, E.M., Hermanns, H., Jansen, D.N.: The Ins and Outs of
The Probabilistic Model Checker MRMC. In: Quantitative Evaluation of Systems (QEST),
pp. 167–176. IEEE Computer Society, Los Alamitos (2009), www.mrmc-tool.org

9. Kwiatkowska, M., Norman, G., Parker, D.: PRISM: Probabilistic Model Checking for Perfor-
mance and Reliability Analysis. ACM SIGMETRICS Performance Evaluation Review 36(4),
40–45 (2009)

10. Lapadula, A., Pugliese, R., Tiezzi, F.: Calculus for Orchestration of Web Services. In: De
Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp. 33–47. Springer, Heidelberg (2007),
http://rap.dsi.unifi.it/cows/

11. Milner, R.: Communicating and mobile systems: the π-calculus. Cambridge Universtity
Press, Cambridge (1999)

12. Prandi, D., Quaglia, P.: Stochastic COWS. In: Krämer, B.J., Lin, K.-J., Narasimhan, P. (eds.)
ICSOC 2007. LNCS, vol. 4749, pp. 245–256. Springer, Heidelberg (2007)

13. PRISM homepage, http://www.prismmodelchecker.org/
14. Quaglia, P., Schivo, S.: Approximate Model Checking of Stochastic COWS. In: Proceedings

of TGC 2010 (2010)
15. Sangiorgi, D., Walker, D.: The π-calculus: a Theory of Mobile Processes. Cambridge Uni-

verstity Press, Cambridge (2001)
16. Schivo, S.: Statistical model checking of Web Services. PhD thesis, Int. Doctorate School in

Information and Communication Technologies, University of Trento (2010)
17. http://disi.unitn.it/˜cappello/

http://www.graphviz.com
www.mrmc-tool.org
http://rap.dsi.unifi.it/cows/
http://www.prismmodelchecker.org/
http://disi.unitn.it/~cappello/

Author Index

Aspinall, David 1

Atkey, Robert 1

Barthe, Gilles 23

Bernardo, Marco 35

Bertasi, Paolo 268

Besson, Frédéric 253

Bocchi, Laura 120

Bruni, Roberto 205

Bucchiarone, Antonio 284

Buscemi, Maria Grazia 57

Cappello, Igor 364

Caragiannis, Ioannis 172

Ciancaglini, Vincenzo 301

Cimini, Matteo 73

Coen, Claudio Sacerdoti 73

D’Errico, Liliana 222

De Nicola, Rocco 35

ElSalamouny, Ehab 88

Ferrari, Gianluigi 318

Gabarro, Joaquim 189

Gadducci, Fabio 205

Gamboni, Maxime 135

Guanciale, Roberto 318

Hamadou, Sardaouna 88

Hankin, Chris 348

Jakub̊uv, Jan 103

Jensen, Thomas 253

Kaklamanis, Christos 172

Kanellopoulos, Panagiotis 172

Kilpatrick, Peter 189

Kunz, César 23, 237

Kyropoulou, Maria 172

Lanese, Ivan 284

Liquori, Luigi 301

Lluch Lafuente, Alberto 205

Loreti, Michele 35, 222

MacKenzie, Kenneth 1

Montanari, Ugo 57

Montesi, Fabrizio 153, 284

Nielson, Flemming 348

Nielson, Hanne Riis 348

Papaioannou, Evi 172

Persiano, Giuseppe 87

Pettarin, Alberto 268

Pichardie, David 253

Quaglia, Paola 335, 364

Ravara, António 135

Sangiorgi, Davide 73, 153

Sannella, Donald 1

Sassone, Vladimiro 88

Schivo, Stefano 335

Scquizzato, Michele 268

Serna, Maria 189

Silvestri, Francesco 268

Stewart, Alan 189

Strollo, Daniele 318

Taneja, Sonia 57

Tuosto, Emilio 120, 318

Turpin, Tiphaine 253

Vanni, Laurent 301

Wells, J.B. 103

	Title Page
	Preface
	Organization
	Table of Contents
	I Invited Talks
	Symbolic and Analytic Techniques for Resource Analysis of Java Bytecode
	Introduction
	Amortised Resource Analysis
	Integrating the Banker's Method and Separation Logic
	Implementation
	A More Complex Example

	Iteration and Geometry
	Halfspaces, Polyhedra, and Polytopes
	Ehrhart Polynomials
	Drawbacks of Ehrhart Polynomials
	Generating Functions
	Implementation
	Analysing Compiled Bytecode

	Further Work
	References

	Perspectives in Certificate Translation
	Introduction
	Main Results
	Issues
	Related Work
	Application Scenario
	Related Work from an Application Scenario Perspective

	References

	Uniform Labeled Transition Systems for Nondeterministic, Probabilistic, and Stochastic Processes
	Introduction
	Uniform Labeled Transition Systems
	Definition of the Uniform Model
	Behavioral Equivalences on the Uniform Model

	Mapping Classical Models into the Uniform Model
	A Fully Nondeterministic Specialization: LTS
	A Fully Probabilistic Specialization: ADTMC
	A Fully Stochastic Specialization: ACTMC

	Equivalences for Fully Nondeterministic Processes
	Equivalences for Fully Probabilistic Processes
	Equivalences for Fully Stochastic Processes
	The End-To-End Case
	The Step-By-Step Case

	Conclusions and Future Work
	References

	Toward a Game-Theoretic Model of Grid Systems
	Introduction
	The Grid System
	System Model
	Labeled Transition Games
	A Game-Theoretic Model for Grid
	A Special Case

	Conclusions
	References

	Functions as Processes: Termination and the ¯λμ˜μ-Calculus
	Introduction
	Preliminaries
	The ¯λμ˜μ-Calculus
	The Reduction Machine $M2$

	From¯λμ˜μ to π
	The Reduction Machine Induced from [[.]]
	The Relationship between Encoded Terms and $M1$
	The Relationship between $M1$ and $M2$
	An Asynchronous Encoding
	Conclusions and Future Works
	References

	Predicate Encryption for Secure Remote Storage
	Trust in Crowds: Probabilistic Behaviour in Anonymity Protocols
	Introduction
	Background
	The Crowds protocol
	Probable Innocence

	Using Trust Information
	Crowds Protocol Extended
	Probable Innocence Revisited
	Provably Exposed Principals

	Achieving Probable Innocence
	Probability of Forwarding
	Trust Values
	Forwarding Policy

	Conclusion
	References

	II Types and Processes
	Expressiveness of Generic Process Shape Types
	Introduction
	Contributions
	Notations and Preliminaries

	Metacalculus Meta✶ and Generic Type System Poly✶
	General Syntax of Processes
	Instantiations of Meta✶
	Poly✶ Shape Predicates and Types for Meta✶
	Proving Greater Expressiveness of Poly✶
	Discussion

	Shape Types for the π-Calculus
	A Polyadic π-Calculus
	Types for the Polyadic π-Calculus (Tpi)
	Instantiation of Meta✶ to the π-Calculus
	Embedding of Tpi in Poly✶
	Conclusions

	Shape Types for Mobile Ambients
	Mobile Ambients (Ma)
	Types for Mobile Ambients (Tma)
	Instantiation of Meta✶ to Ma
	Embedding of Tma in Poly✶

	Conclusions
	Conclusions and Future Work
	References

	A Java Inspired Semantics for Transactions in SOC
	Introduction
	EJB Transactional Attributes
	Attribute-Based Transaction Calculus (ATc)
	ATc Processes
	ATc Systems
	Some Examples of Failing Invocations

	A Type System for Transactional Services
	Types for ATc
	Typing ATc
	Well-Typedness in ATc

	ATc Type System at Work
	Concluding Remarks and Related Work
	References

	Responsive Choice in Mobile Processes
	Introduction
	Processes, Types and Dependencies
	Processes
	Syntax of Types
	Logical Aspects
	Spatial Aspects
	Dynamical Aspects

	Activeness and Responsiveness
	Type System
	Related Works
	Conclusion
	References

	A Model of Evolvable Components
	Introduction
	Syntax
	Operational Semantics
	Component Activity
	Channel Interaction

	Types
	Typing
	Soundness

	Examples
	Store
	Rebinding
	Interceptors and Wrappers

	Conclusions and Extensions
	References

	III Games and Concurrent Systems
	The Impact of Altruism on the Efficiency of Atomic Congestion Games
	Introduction
	Preliminaries
	Upper Bounds for Atomic Congestion Games
	Lower Bounds for Atomic Congestion Games
	Symmetric Load Balancing Games
	Extensions and Open Problems
	References

	Stressed Web Environments as Strategic Games: Risk Profiles and Weltanschauung
	Introduction
	Resource Allocation Games
	Risk Profiles and Weltanschauung
	Angel-Daemon Games
	Snapshots and Anonymous Pure Nash Equilibria
	On Pure Nash Equilibria
	Brokering
	Discussion
	References

	An Algebra of Hierarchical Graphs
	Introduction
	Sites, Processes and Services
	An Algebra of Hierarchical Graphs
	A Model of Hierarchical Graphs
	Conclusions and Related and Future Works
	References

	Property-Preserving Refinement of Concurrent Systems
	Introduction
	Calculus of Communicating Systems
	Hennessy-Milner Logic

	Formalising Assumptions for Process Environments
	Assume-Guarantee Based Local Model Checking
	Specification Refinement
	Refinement at Work
	Conclusions and Future Works
	References

	IV Certification of Correctness
	Certificate Translation for the Verification of Concurrent Programs
	Introduction
	Preliminaries
	Certificate Translation for Compiler Optimizations
	Certifying Analyzers
	Certificate Translation

	Related Work
	Conclusion
	References

	Certified Result Checking for Polyhedral Analysis of Bytecode Programs
	Introduction
	Polyhedral Analysis of Bytecode
	Motivating Example
	Numeric Relational Domain Specification
	Constraint-Based Specification
	Inference
	Soundness of the Analysis

	Result Checking of Polyhedral Operations
	The Polyhedral Domain Revisited
	Result Certification for Polyhedral Inclusion

	Implementation and Experiments
	Related Work
	Conclusions and Future Work
	References

	V Tools and Languages
	A Novel Resource-Driven Job Allocation Scheme for Desktop Grid Environments
	Introduction
	The Framework
	The Model
	Allocation Procedures
	Relocation Procedures

	Experimental Results
	Conclusions and Future Work
	References

	A Framework for Rule-Based Dynamic Adaptation
	Introduction
	Travelling Scenario
	Overview

	A Rule-Based Approach to Dynamic Adaptation
	Algorithm and Example
	Dynamic Adaptation in Service-Oriented Applications
	JoRBA Architecture

	Related Works and Conclusions
	References

	CarPal: Interconnecting Overlay Networks for a Community-Driven Shared Mobility
	Introduction
	Context
	Problem Overview
	Contributions
	Outline

	Application Architecture
	Application Principles
	CarPal in a Nutshell
	Encoding CarPal in a DHT
	Network Architecture

	Interconnecting Different Communities
	Context and Motivations
	Query Extension to Nearby Communities
	Synapse in a Nutshell
	Synapse Performance and Exhaustiveness
	Implementation in CarPal

	A Running Example
	Building the Scenario
	Slice and Dice and Encoding in the DHT
	Searching for a Trip

	Conclusion and Further Work
	Improved Network Bootstrap and Community Discovery
	Semantic Queries and Specialized Protocols
	Overlay-Underlay Mapping Optimizations
	Backward Compatibility with Other Carpool Services
	User Rating, Social Feedback
	Other Potential Applications

	References

	Refactoring Long Running Transactions: A Case Study
	Introduction
	Background
	Signal Core Language
	A Case Study: The Car Repair Scenario
	LRT to Scl Model Transformation

	Scl Model Refactoring
	Refactoring Transactional Components
	Refactoring Parallel Composition

	Concluding Remarks
	References

	VI Probabilistic Aspects
	Approximate Model Checking of Stochastic COWS
	Introduction
	Scows Overview
	Scows amc
	Comparison with CTMC Generation
	Concluding Remarks
	References

	Probabilistic Aspects: Checking Security in an Imperfect World
	Introduction
	Examples
	The On-Line Auction
	Airport Security

	Probabilistic Belnap Logic
	Two-valued Logic and Probabilistic Two-valued Logic
	Four-Valued Logic
	Probabilistic Four-Valued Logic

	Design of The Language
	Conclusion
	References

	A Tool for Checking Probabilistic Properties of COWS Services
	Introduction
	Scows
	Overview of Scows_lts
	Applying Scows_lts
	Concluding Remarks
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

