
 

R. Hull, J. Mendling, and S. Tai (Eds.): BPM 2010, LNCS 6336, pp. 310–326, 2010. 
© Springer-Verlag Berlin Heidelberg 2010 

From People to Services to UI:  
Distributed Orchestration of User Interfaces  

Florian Daniel1, Stefano Soi1, Stefano Tranquillini1, Fabio Casati1,  
Chang Heng2, and Li Yan2 

1 University of Trento, Povo (TN), Italy 
{daniel,soi,tranquillini,casati}@disi.unitn.it 

2 Huawei Technologies, Shenzhen, P.R. China 
{changheng,liyanmr}@huawei.com 

Abstract. Traditionally, workflow management systems aim at alleviating peo-
ple’s burden of coordinating repetitive business procedures, i.e., they coordinate 
people. Web service orchestration approaches, instead, coordinate pieces of 
software (the web services), hiding the human aspects that are intrinsically pre-
sent in any business process behind the services. The recent emergence of tech-
nologies like BPEL4People and WS-HumanTask, which introduce human  
actors into service compositions, manifest that taking into account the people 
involved in business processes is however important. Yet, none of these ap-
proaches allow one to also develop the user interfaces (UIs) the users need to 
concretely participate in a business process. 

With this paper, we want to go one step beyond state-of-the-art workflow 
management and service composition and propose an original model, language 
and running system for the composition of distributed UIs, an approach that al-
lows us to bring together UIs, web services and people in a single orchestration 
logic and tool. To demonstrate the effectiveness of the idea, we apply the ap-
proach to a real-world home assistance scenario. 

1   Introduction 

Workflow management systems support office automation processes, including the 
automatic generation of form-based user interfaces (UIs) for executing the human 
tasks in a process. Service orchestrations and related languages focus instead on  
integration at the application level. As such, this technology excels in the reuse of 
components and services but does not facilitate the development of UI front-ends for 
supporting human tasks and complex user interaction needs, which is one of the most 
time consuming tasks in software development [1]. 

Only recently, web mashups [2] have turned lessons learned from data and applica-
tion integration into lightweight, simple composition approaches featuring a significant 
innovation: integration at the UI level. Besides web services or data feeds, mashups 
reuse pieces of UI (e.g., content extracted from web pages or JavaScript UI widgets) and 
integrate them into a new web page. Mashups, therefore, manifest the need for reuse in 
UI development and suitable UI component technologies. Interestingly, however, unlike 



 From People to Services to UI: Distributed Orchestration of User Interfaces 311 

 

what happened for services, this need has not yet resulted in accepted component-based 
development models and practices. 

This paper tackles the development of applications that require service composi-
tion/process automation logic but that also include human tasks, where humans inter-
act with the system via a possibly complex and sophisticated UI that is tailored to help 
them in performing the specific job they need to carry out. In other words, this work 
targets the development of mashup-like applications that require process support, 
including applications that require distributed mashups coordinated in real time, and 
provides design and tool support for professional developers, yielding an original 
composition paradigm based on web-based UI components and web services.  

This is a common need that today is typically fulfilled by developing UIs in ad hoc 
ways and using a process engine in the back-end for process automation. As an exam-
ple, consider the following scenario. 

O
p

er
at

o
r

A
ss

is
ta

n
t

S
ys

te
m

Request a visit

P
at

ie
n

t

View 
instructions

Visit 
patient

Write 
report

yes

no

Archive 
booking

Archive 
report

Further exams 
needed?

Book exam

Archive report

Exams UI component; 
confirmation via regular 
phone

Visit and Map UI 
components Physical visit, not 

assisted by IT

Patient and Visit 
UI components

System activities 
implemented by means of 
one or more web services

Report UI component

Visit and Map UI components

Regular phone

Enter request 
and check 

patient data

Send 
instructions

Excerpt of the operator’s web application (for 
presentation purpose, we omit the discussion of 

the Exams UI component): the interface is 
composed of a Patient UI component plus UI 

components that are reused in the assistant’s 
web application, i.e., the Visits UI component 

and the Maps UI component. Upon selection or 
creation of a visit request in the Visits 

component, the Patient and Map component 
are synchronized in order to show related 

information. The assistant (A) and the selected 
patient (B) are positioned on the map. The 

dynamic behavior of the application is achived 
via JavaScript.

BPMN-like 
model of the 
applications’ 
underlying 
process logic

 

Fig. 1. Simplified home assistance process: gray shaded swim lanes are instantiated only once 
(in form of suitable UIs) and handle multiple instances of white shaded swim lanes 

Scenario. Figure 1 shows the high-level model of a home assistance process in the 
Province of Trento we want to aid in one of our projects. A patient can ask for  
the visit of a home assistant (e.g., a paramedic) by calling (via phone) an operator of 
the assistance service. Upon request, the operator inputs the respective details and 



312 F. Daniel et al. 

 

inspects the patient’s data and personal health history in order to provide the assistant 
with the necessary instructions. There is always one assistant on duty. The home as-
sistant views the description, visits the patient, and files a report about the provided 
service. The report is processed by the back-end system and archived if no further 
exams are needed. If exams are instead needed, the operator books the exam in the 
local hospital asking confirmation to the patient (again via phone); in parallel, the 
system archives the report. Upon confirmation of the exam booking, the system also 
archives the booking, which terminates the responsibility of the home assistance  
service. 

Our goal is to develop an application that supports this process. This application 
includes, besides the process logic, two mashup-like, web-based control consoles for 
the operator and the assistant that are themselves part of the orchestration and need to 
interact with (and are affected by) the evolution of the process. Furthermore, the UI 
can be itself component-based and created by reusing and combining existing  
UI components. The two applications, once instantiated, should be able to manage 
multiple requests for assistance, while the system activities will be instantiated inde-
pendently for each report to be processed. 

Challenges and contributions. The scenario requires the coordination of the individ-
ual actors in the process and the development of the necessary distributed user inter-
face and service orchestration logic. Doing so requires (i) understanding how to  
componentize UIs and compose them into web applications, (ii) defining a logic that 
is able to orchestrate both UIs and web services, (iii) providing a language and tool 
for specifying distributed UI compositions, and (iv) developing a runtime environment 
that is able to execute distributed UI and service compositions. 

Structure of the paper. Implementing the process of the scenario is a non-trivial 
composition problem. After describing the UI orchestration approach (Section 3), in 
this paper we show how defining a new type of binding allows us to leverage the 
standard WSDL [4] language to describe HTML/JavaScript UI components (Section 
4). We then build on existing composition languages (in particular WS-BPEL [5]) to 
introduce the notions of UI components, pages, and actors to support the specification 
of distributed UI compositions (Section 5). The extended BPEL is compiled to gener-
ate the UI composition logic (that runs entirely on the browser, for performance rea-
sons) and the server-side logic that performs service orchestration and distributed UI 
synchronization. Finally, we extend the Eclipse BPEL editor to support this extension, 
and we describe a system that is able to execute distributed UI compositions, starting 
from the extended BPEL specification. These models and tools are integrated in a 
hosted development and execution platform, called MarcoFlow (Section 6), jointly 
developed by Huawei Technologies and the University of Trento. 

2   State of the Art in Orchestrating Services, People and UIs 

In most service orchestration approaches, such as BPEL [5], there is no support for UI 
design. Many variations of BPEL have been developed, e.g., aiming at the invocation of 
REST services [6] or at exposing BPEL processes as REST services [7]. IBM’s Shar-
able Code platform [8] follows a slightly different strategy in the composition of REST 



 From People to Services to UI: Distributed Orchestration of User Interfaces 313 

 

and SOAP services and also allows the integration of user interfaces for the Web; UIs 
are however not provided as components but as ad-hoc Ruby on Rails HTML templates. 

BPEL4People [9] is an extension of BPEL that introduces the concept of people 
task as first-class citizen into the orchestration of web services. The extension is 
tightly coupled with the WS-HumanTask [10] specification, which focuses on the 
definition of human tasks, including their properties, behavior and operations used to 
manipulate them. BPEL4People supports people activities in form of inline tasks 
(defined in BPEL4People) or standalone human tasks accessible as web services. In 
order to control the life cycle of service-enabled human tasks in an interoperable 
manner, WS-HumanTask also comes with a suitable coordination protocol for human 
tasks, which is supported by BPEL4People. The two specifications focus on the coor-
dination logic only and do not support the design of the UIs for task execution. 

The systematic development of web interfaces and applications has typically been 
addressed by the web engineering community by means of model-driven web design 
approaches. Among the most notable and advanced model-driven web engineering 
tools we find, for instance, WebRatio [11] and VisualWade [12]. The former is based 
on a web-specific visual modeling language (WebML), the latter on an object-
oriented modeling notation (OO-H). Similar, but less advanced, modeling tools are 
also available for web modeling languages/methods like Hera, OOHDM, and UWE. 
These tools provide expert web programmers with modeling abstractions and auto-
mated code generation capabilities for complex web applications based on a hyper-
link-based navigation paradigm. WebML has also been extended toward web services 
[13] and process-based web applications [14]; reuse is however limited to web ser-
vices and UIs are generated out of HTML templates for individual components. 

A first approach to component-based UI development is represented by portals 
and portlets [15], which explicitly distinguish between UI components (the portlets) 
and composite applications (the portals). Portlets are full-fledged, pluggable Web 
application components that generate document markup fragments (e.g., (X)HTML) 
that can however only be reached through the URL of the portal page. A portal server 
typically allows users to customize composite pages (e.g., to rearrange or show/hide 
portlets) and provides single sign-on and role-based personalization, but there is no 
possibility to specify process flows or web service interactions (the new WSRP [16] 
specification only provides support for accessing remote portlets as web services). 
Also JavaServer Faces [17] feature a component model for reusable UI components 
and support the definition of navigation flows; the technology is however hardly reus-
able in non-Java based web applications, navigation flows do not support flow con-
trols, and there is no support for service orchestration and UI distribution. 

Finally, the web mashup [2] phenomenon produced a set of so-called mashup 
tools, which aim at assisting mashup development by means of easy-to-use graphical 
user interfaces targeted also at non-professional programmers. For instance, Yahoo! 
Pipes (http://pipes.yahoo.com) focuses on data integration via RSS or Atom feeds via 
a data-flow composition language; UI integration is not supported. Microsoft Popfly 
(http://www.popfly.ms; discontinued since August 2009) provided a graphical user 
interface for the composition of both data access applications and UI components; 
service orchestration was not supported. JackBe Presto (http://www.jackbe.com) 
adopts a Pipes-like approach for data mashups and allows a portal-like aggregation of 
UI widgets (so-called mashlets) visualizing the output of such mashups; there is no 



314 F. Daniel et al. 

 

synchronization of UI widgets or process logic. IBM QEDWiki (http://services.alpha-
works.ibm.com/qedwiki) provides a wiki-based (collaborative) mechanism to glue 
together JavaScript or PHP-based widgets; service composition is not supported. Intel 
Mash Maker (http://mashmaker.intel.com) features a browser plug-in which interprets 
annotations inside web pages allowing the personalization of web pages with UI wid-
gets; service composition is outside the scope of Mash Maker.  

In the mashArt [3] project, we worked on a so-called universal integration ap-
proach for UI components and data and application logic services. MashArt comes 
with a simple editor and a lightweight runtime environment running in the client 
browser and targets skilled web users. MashArt aims at simplicity: orchestration of 
distributed (i.e., multi-browser) applications, multiple actors, and complex features 
like transactions or exception handling are outside its scope. The CRUISe project [17] 
has similarities with mashArt, especially regarding the componentization of UIs. Yet, 
is does not support the seamless integration of UI components with service orchestra-
tion, i.e., there is no support for complex process logic. CRUISe rather focuses on 
adaptivity and context-awareness. Finally, the ServFace project [19] aims at support-
ing even unskilled web users in composing web services that come with an annotated 
WSDL description. Annotations are used to automatically generate form-like inter-
faces for the services, which can be placed onto one or more web pages and used to 
graphically specify data flows among the form fields. The result is a simple, user-
driven web service orchestration. None of these projects, however, supports the coor-
dination of multiple different actors inside a same process, and none of the  
approaches discussed in this section supports the distribution of UIs over multiple 
browsers. 

3   Distributed User Interface Orchestration: Approach 

If we analyze the home assistance scenario, we see that the envisioned application (as a 
whole) is highly distributed over the Web: The UIs for the actors participating in the 
application are composed of UI components, which can be components developed in-
house (like the Visit component) or sourced from the Web (like the Map component); 
service orchestrations are based on web services. The UI exposes the state of the applica-
tion and allows users to interact with it and to enact service calls. The two applications 
for the operator and the assistant are instantiated in different web browsers, contributing 
to the distribution of the overall UI and raising the need for synchronization.  

The key idea to approach the coordination of (i) UI components inside web pages, 
(ii) web services providing data or application logic, and (iii) individual pages (as 
well as the people interacting with them) is to split the coordination problem into two 
layers: intra-page UI synchronization and distributed UI synchronization and web 
service orchestration.  

We have seen that many of the research challenges raised by the home assistance 
application are not yet covered adequately by existing works. Especially the aim of 
providing a single development approach that is able to cover all development aspects 
in an integrated fashion poses requirements to the whole life cycle of UI orchestra-
tions, especially in terms of design, deployment and execution support. 



 From People to Services to UI: Distributed Orchestration of User Interfaces 315 

 

Indeed, supporting the design of distributed UI orchestrations such as the ones needed 
in the example scenario requires: 

− Defining a new type of component, the UI component, which is able to modu-
larize pieces of UI and to abstract their external interfaces in a way that  
conforms to the standard WSDL [4] format for service descriptions (to keep 
compatibility with the BPEL editors and language). We deal with the novel 
technological aspects introduced by UI components by defining a new type of 
WSDL binding, which allows us to specify how to translate the abstract WSDL 
operation descriptions into JavaScript function calls. 

− Bringing together the needs of UI synchronization and service orchestration 
in one single language. UIs are typically event-based (e.g., user clicks or key 
strokes), while service invocations are coordinated via control flows. In this pa-
per, we show how to extend the standard BPEL language in order to support UIs 
(BPEL comes with graphical editors and ready, off-the-shelf runtime engines 
that we want to reuse, not re-implement). We call this extended language 
BPEL4UI. 

− Implementing a suitable, graphical design environment that allows developers 
to visually compose services and UI components and to define the grouping of 
UI components into pages. We achieve this by extending the Eclipse BPEL edi-
tor with UI-specific modeling constructs that are able to generate BPEL4UI in 
output. 

Supporting the deployment of UI orchestrations requires: 

− Splitting the BPEL4UI specification into the two orchestration layers for intra-
page UI synchronization and distributed UI synchronization and web service or-
chestration. For the former we use a lightweight UI composition language 
(UICL), which allows specifying how UI components are coordinated in the cli-
ent browser. For the latter we rely on standard BPEL. 

− Providing a set of auxiliary web services that are able to mediate communica-
tions between the client-side UI composition logic and the BPEL logic. We 
achieve this layer by automatically generating and deploying a set of web ser-
vices that manage the UI-to-BPEL and BPEL-to-UI interactions. 

Supporting the execution of UI orchestrations requires: 

− Providing a client-side runtime framework for UI synchronization that is able 
to instantiate UI components inside web pages and to propagate events from one 
component to other components, starting from a UICL specification. Events of a 
UI component may be propagated to components running in the same web page 
or in other pages of the application and to web services. 

− Providing a communication middleware layer that is able to run the generated 
auxiliary web services for UI-to-BPEL and BPEL-to-UI communications. We 
implement this layer by reusing standard web server technology able to instanti-
ate SOAP and RESTful web services. 

− Setting up a BPEL engine that is able to run standard BPEL process specifica-
tions. The engine is in charge of orchestrating web services and distributed UI-
UI communications. We rely on standard technology and reuse an existing 
BPEL engine. 



316 F. Daniel et al. 

 

These requirements and the respective hints to our solution show that the main 
methodological goals in achieving our UI orchestration approach are (i) relying as 
much as possible on existing standards, (ii) providing the developer with only few 
and simple new concepts, and (iii) implementing a runtime architecture that associates 
each concern to the right level of abstraction and software tool (e.g., UI synchroniza-
tion is handled in the browser, while service orchestration is delegated to the BPEL 
engine).  

4   The Building Blocks: Web Services and UI Components 

Orchestrating remote application logic and pieces of UI requires, first of all, under-
standing the exact nature of the components to be integrated. For the integration of 
application logic, we rely on standard web service technologies, such as WSDL-
SOAP services, i.e., remote web services whose external interface is described in 
WSDL, which supports interoperability via four message-based types of operations: 
request-response, notification, one-way, and solicit-response. Most of today’s web 
services of this kind are stateless, meaning that the order of invocation of their opera-
tions does not influence the success of the interaction, while there are also stateful 
services whose interaction requires following a so-called business protocol that de-
scribes the interaction patterns supported by the service.  

Graphical rendering of the Visit UI 
component

The component’s 
JavaScript code

function VisitUIComponent(id,divId,constrParams){
...
this.load = function() { //constructor: renders first page

this.myDiv= document.getElementById(this.divId);
this.myDiv.innerHTML='<a href="overview.php">Overview</a> | ...';

}

this.visitSelected = function(inputArray){ //visitSelected event
var detailsDiv= this.myDiv.getElementsByTagName('div')[1];
detailsDiv.innerHTML= '<h2>Short description ' + inputArray['name'] + '</h2>'+

inputArray['desc'] + ' <a href="details.php?id=' + inputArray['id'] + 
'>More details</a>'; //renders short description

MarcoFlow.FW.raiseEvent(id,"visitSelected",inputArray); //raises event
}

this.detailsRequested= function(inputArray){ //detailsRequested event
MarcoFlow.FW.raiseEvent(id,"detailsRequested",inputArray);

}

this.addRequest= function(inputArray){ // addRequest operations
...

}
}

Event

 

Fig. 2. Graphical rendering and internal logic of a JavaScript/HTML UI component 

For the integration of UI, we rely instead on JavaScript/HTML UI components, 
which are simple, stand-alone web applications that can be instantiated and run inside 
any common web browser. Figure 2 shows an example of UI component (the Visit UI 
component of our reference scenario), along with an excerpt of its JavaScript code. 
Unlike web services, UI components are characterized by: 

− A user interface. UI components can be instantiated inside a web browser and 
can be accessed and navigated by a user via standard HTML. The UI allows the 
user to interactively inspect and alter the content of the component, e.g., the 



 From People to Services to UI: Distributed Orchestration of User Interfaces 317 

 

short description in Figure 2. UI components are therefore stateful, and the com-
ponent’s navigation features replace the business protocol needed for services. 

− Events. Interacting with the UI generates system events (e.g., mouse clicks) in 
the browser used to manage the update of contents. Some events may be ex-
posed as component events in order to communicate state changes. For instance, 
a click on the Details link in Figure 2 launches a visitSelected event. 

− Operations. Operations enact state changes from the outside. Typically, we can 
map the event of one component to the operation of another component in order 
to synchronize the components’ state (so that they show related information). 

− Properties. The graphical setup of a component may require the setting of con-
structor parameters, e.g., to align background colors or to specify the start page 
of a component. 

In order to make UI components available in BPEL, each component is equipped with 
a standard WSDL descriptor that describes the events and operations (the constructor 
is expressed as operation) in terms of one-way and notification WSDL operations, 
respectively. To support the instantiation and execution of components, we have de-
fined a new JavaScript binding for WSDL, which binds the abstract operations to the 
JavaScript functions of the component. The WSDL-UI descriptor can be used as is by 
the client-side runtime framework and adapted for its use by the BPEL engine. 

5   Modeling UI Orchestrations 

Specifying a UI orchestration requires modeling two fundamental aspects: (i) the 
interaction logic that rules the passing of data among UI components and web ser-
vices and (ii) the graphical layout of the final application. Supporting these tasks in 
BPEL requires extending the expressive power of the language with UI-specific  
constructs. 

5.1   BPEL4UI: Concepts and Syntax 

Figure 3 shows the simplified meta-model of BPEL4UI. Specifically, the figure de-
tails all the new modeling constructs necessary to specify UI orchestrations (gray-
shaded) and omits details of the standard BPEL language, which are reused as is by 
BPEL4UI (a detailed meta-model for BPEL can be found in [20]). 

In terms of standard BPEL [5], a UI orchestration is a process that is composed of 
a set of associated activities (e.g., sequence, flow, if, assign, validate, or similar), 
variables (to store intermediate processing results), message exchanges, correlation 
sets (to correlate messages in conversations), and fault handlers. The services or UI 
components integrated by a process are declared by means of so-called partner links, 
while partner link types define the roles played by each of the services or UI compo-
nents in the conversation and the port types specifying the operations and messages 
supported by each service or component. There can be multiple partner links for each 
partner link type. 

Modeling UI-specific aspects requires instead introducing a set of new constructs 
that are not yet supported by BPEL. The constructs, illustrated in Figure 3, are: 

 



318 F. Daniel et al. 

 

Activity

Process

ActivityContainer

MessageExchange

Variable

PartnerLink

CorrelationSet

Catch
faultHandlers

Page

Actor

UIComponent

PlaceHolderName
Description
TemplateURL
UIEngineName
isStartPage

Name

Name

Name

accessibleTo

renderedIn

Property
Name
Value
Type

1..*

1..1

0..*

1..1
1..1

1..1

0..*1..1

0..*

PartnerLinkType
UIType

describedBy
1..1

0..1

WSDL-UI

has

contains

 

Fig. 3. Simplified BPEL4UI meta-model in UML. White classes correspond to standard BPEL 
constructs [20]; gray classes correspond to constructs for UI and user management. 

− UI type: The use of UI components in service compositions asks for a new kind 
of partner link type. Although syntactically there is no difference between web 
services and UI components (the JavaScript binding introduced into WSDL-UI 
comes into play only at runtime), it is important to distinguish between services 
and UI components as their semantics and, hence, their usage in the model will 
be different. Also, it is necessary to mark UI component types as such, in order 
to support the generation of standard BPEL, as described in Section 6. 

As exemplified in Figure 4, we specify the new partner link type like a stan-
dard web service type (lines 10-13). In order to reflect the events and operations 
of the UI component, we distinguish the two roles. Lines 1-8 define the neces-
sary name spaces and import the WSDL-UI descriptor of the UI component. 

− Page: The distributed UI of the overall application consists of one or more web 
pages, which can host instances of UI components. Pages have a name, a de-
scription, a reference to the pages’ layout template, the name of the UI engine 
(see Section 6) they will run on, and an indication of whether they are a start 
page of the application or not (similar to the start activity in process models). 

The code lines 16-21 in Figure 4 show the definition of a page called “Opera-
tor”, along with its layout template and the name of the UI engine on which the 
page will be deployed; the page is a start page for the process. 

− Place holder: Each page comes with a set of place holders, which are empty 
areas inside the layout template that can be used for the graphical rendering of 
UI components. Place holders are identified by a unique name, which can be 
used to associate UI components. 

Place holders are associated with page definitions and specified as sub-
elements, as shown in lines 19-20 in Figure 4. 

− UI component: UI types can be instantiated as UI components. For instance, there 
might be one UI type but two different instances of the type running in two different 
web pages. Declaring a UI component in a BPEL4UI model leads to the creation of 
an instance of the UI component in one of the pages of the application. Each  
component is part of one process and has a unique name. 



 From People to Services to UI: Distributed Orchestration of User Interfaces 319 

 

We specify UI component partner links by extending the standard partner link 
definition of BPEL with three new attributes, i.e., isUiComponent, pageName 
and placeHolderName. Lines 25-31 in Figure 4 show how to declare the Visit UI 
component of our example scenario. 

− Property: As we have seen in the previous section, UI components may have a 
constructor that allows one to set configuration properties. Therefore, each UI 
component may have a set of associated properties than can be parsed at instan-
tiation time of the component. We use simple name-value pairs to store con-
structor parameters. 

Properties extend the definition of UI component link types by adding prop-
erty sub-elements to the partner link definition, one for each constructor parame-
ter, as shown in lines 29-30 in Figure 4. 

− Actor: In order to coordinate the people in a process, pages of the application 
can be associated with individual actors, i.e., humans, which are then allowed to 
access the page and to interact with the UI orchestration via the UI components 
rendered in the page. As for now, we simply associate static actors to pages (us-
ing their names); yet, actors can easily be assigned also dynamically at deploy-
ment time or runtime by associating roles instead of actors and using a suitable 
user management system. 

Actors are added to page definitions by means of the actorName attribute, as high-
lighted in line 18 in Figure 4. 

 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 

<bpel:process name="HomeAssistance" 
  targetNamespace=www.unitn.it/bpel4ui/HomeAssistance 
  xmlns:bpel="http://docs.oasis-open.org/wsbpel/2.0/process/ 
  executable" xmlns:visit="http://www.unitnt.it/UI/VisitUIComponent" ...> 
   
<bpel:import namespace="http://www.unitn.it/UI/VisitUIComponent"  
  location="VisitUI.wsdl" importType="http://schemas.xmlsoap.org/wsdl/"> 
</bpel:import> 
... 
<bpel:partnerLinkType name="VisitUIComponent"> 
  <bpel:role name="Receive" portType="visit:VisitUI_RECEIVE"/> 
  <bpel:role name="Invoke" portType="visit:VisitUI_INVOKE"/> 
</bpel:partnerLinkType> 
... 
<pages> 
  <page name="Operator" description="Operator’s home page"  
    templateURL="http://www.unitn.it/BPEL4UI/operatorLayout.html" 
    uiEngineName="UNITN" isStartPage="yes" actorName="Paul"> 
      <placeholder name="marcoflow-left"/> 
      <placeholder name="marcoflow-right"/> 
  </page> 
  ... 
</pages> 
<bpel:partnerLinks> 
  <bpel:partnerLink name="VisitUI_Operator"  
    partnerLinkType="VisitUIComponent" myRole="Receive"  
    partnerRole="Invoke" isUiComponent="yes" pageName="Patient"  
    placeHolderName="marcoflow-left"> 
      <property name="StartPage" type="xsd:string">New Visit</property> 
      <property name="BackgroundColor" type="xsd:string">white</property> 
  </bpel:partnerLink> 
</bpel:partnerLinks> 
... 
</bpel:process> 

Fig. 4. Excerpt of the BPEL4UI home assistance process (new constructs in bold) 



320 F. Daniel et al. 

 

UI operations of the 
Exams and Map UI 
components

Intra-page UI 
synchronization 

that can be 
executed entirely 
on the client side

Distributed UI 
synchronization and 

service orchestra-
tion that requires 
mediation by the 

BPEL engine. The 
two events (Receive 

activities) are 
correlated by means 
of a BPEL correlation 
set composed of the 

paramter tuple 
<UIOrchestrationID, 

VisitID>, i.e., an 
identified assigend by 
the UI engine and the 

identifier of the re-
quested visit (carried 

in the report). 

UI events 
coming from 
the client side

 

Fig. 5. Part of the BPEL4UI model of the home assistance process modeled in the extended 
Eclipse BPEL editor (these and other Sequence constructs run inside a Flow) 

5.2   Modeling the Orchestration Logic 

The code example in Figure 4 shows that the UI-specific modeling constructs have a 
very limited impact on the syntax of BPEL and are concerned with the abstract speci-
fication of the layout and the declaration of UI partner links. The actual composition 
logic relies exclusively on standard BPEL constructs, yet – since UI components are 
different from web services (e.g., it is important to know in which page they are run-
ning) – it is important to understand the effect individual modeling patterns have on 
the execution of the final application, i.e., the semantics of the patterns. As hinted at 
in Section 2 and illustrated in Figure 5, we distinguish three main design patterns:  

− Intra-page UI synchronization: The sequence construct in the right part of 
Figure 5 shows the internals of the View instructions task in Figure 1. When the 
assistant clicks on a visit request, the patient’s address is shown on the Google 
map. In BPEL terms, we receive a message from the Visit UI component (the 
event) and forward it to the operation of the Map component, implementing an 
intra-page UI synchronization. Both UI components involved in the sequence are 
associated with the page of the assistant. Hence, this kind of UI synchronization 
can be performed on the client side without involving the BPEL engine. 

− Distributed UI synchronization: The sequence construct in the left part of the 
figure, instead, contains a distributed synchronization that cannot be executed on 
the client only, as the two UI components involved in the communication (Re-
port and Exam) run in different web pages. The event generated upon submis-
sion of a new report is processed by the BPEL engine, which then decides 
whether an additional exam needs to be booked by the operator or not. 

− Service orchestration: The distributed UI synchronization also involves the 
orchestration of the Report archiving and Booking archiving web services, as 
well as some BPEL flow control constructs. For instance, the modeled logic 



 From People to Services to UI: Distributed Orchestration of User Interfaces 321 

 

checks whether the report expresses the need for further exams or not. In either 
case, the further processing of the report involves the invocation of either one or 
both the web services, in order to correctly terminate the handling of a visit  
request. 

The BPEL4UI excerpt in Figure 5 shows that, when modeling a UI orchestration, it is 
important to keep in mind who communicates with whom and where UI components 
will be rendered. Depending on these two considerations, the modeled composition 
logic will either be executed on the client side, in the BPEL engine, or in both layers. 
For instance, it suffices to associate the Map component with a different page so as to 
turn the intra-page UI synchronization in the right hand side of Figure 5 into a distrib-
uted communication and, hence, to require support from the BPEL engine. 

Data transformations. When composing services or UI components, it is not enough 
to model the communication flow only. An important and time-consuming aspect is 
that of transforming the data passed from one component to another. With BPEL4UI 
we support all data transformation features provided by BPEL by means of its Assign 
activity. This allows us to leverage on technologies, such as XPath, XQuery, XSLT or 
Java, for the implementation of also very complex data transformations. Yet, the type 
of data transformation may affect the logic of the UI orchestration. For instance, if the 
SetPosition activity in Figure 5 does not transform data at all or only performs simple 
parameter mappings (with the BPEL Copy construct) the intra-page UI synchroniza-
tion can be executed in the client browser. If instead a more complex transformation 
is needed, we rely on the BPEL engine to perform it.  

The reason for this choice is that UI synchronization typically involves exchanging 
only simple data (e.g., parameter-value pairs) and does not require complex transfor-
mations like when interacting with web services. This choice allows us to keep the 
client-side framework as lightweight as possible, while not giving up any data trans-
formation capabilities. The decision of where to transform data is taken based on the 
nature of the involved partner links and the type of transformation. 

Correlation. The intra-page UI synchronization in Figure 5 does not involve any 
asynchronous communication pattern or multiple entry points into the process logic. 
It is therefore not necessary to implement any correlation logic in BPEL4UI in order 
to propagate the VisitSelected event to the ShowPoint operation. The correlation of the 
event and the operation in the two web pages is achieved outside the BPEL engine (in 
the UI engine server in Figure 6) by sharing a common key (the UIOrchestrationID) 
that is carried by each event and used to dispatch events. This kind of correlation is 
automated in our runtime environment and does not require specific modeling. 

The distributed UI synchronization, instead, involves two UI events from two dif-
ferent actors: ReportCompleted and BookingConfirmed. In this case, it is necessary to 
configure a so-called correlation set (in BPEL terminology) that allows the BPEL 
engine to understand whether they belong to the same process instance or not. In 
Figure 5, we use UIOrchestrationID and VisitID (part of the report) as correlation set. 

Graphical layout. Defining web pages and associating UI partner links with place 
holders therein requires implementing suitable HTML templates that are able to host 
UI components. As we focus on the middleware layer for UI orchestrations, for the 
layout templates we rely on standard web design instruments and technologies. The 



322 F. Daniel et al. 

 

 

UI engine client (web browser)UI engine client (web browser)

BPEL4UI editor

Service 
WSDLs

UI component 
WSDLs

BPEL4UI Compiler

BPEL engine

UI engine server (web server)

UI engine client (web browser)

UI event bus

BPEL4UI

BPEL

UI2BPEL 
communication

BPEL2UI 
communication

JSON via 
HTTP

XML via 
SOAP

SOAP web 
services

Application 
developer

System 
configuration

Design time
Deployment time

Runtime

JS via HTTP

Layout and UI 
logic generator

BPEL generator

Comm. services 
generator

AB
C

UI components

A B
C

UI component container

JSON via 
HTTP

XML via 
SOAP

XML via SOAP

Layout 
configurator

UI partner link 
configurator

HTML 
templates

UI 
composition

Layout and 
UI logic

System components

Document flows

System/human communications

Automatically generated elements

Event 
forwarder
Event 

forwarder
Event 

forwarders

Notification 
handler

Notification 
handler

Notification 
handlers

Event 
proxy

Event 
proxy

Event 
buffer

Event 
proxy

Event 
proxy

Event 
proxy

Users

 

Fig. 6. From design time to runtime: overall system architecture of MarcoFlow 

only requirement the templates must satisfy is that they provide place holders in form 
of HTML DIV elements that can be indexed via standard HTML identifiers following 
a predefined naming convention: <div id=“marcoflow-left”>… </div>. 

6   Deploying and Running UI Orchestrations 

The BPEL4UI language is only a piece of the integrated system for UI orchestration, 
called MarcoFlow. The overall architecture of the system is shown in Figure 6 (for 
presentation purposes, we discuss a slightly simplified version), which partitions its 
software components into design time, deployment time, and runtime components.  

The design part comprises the BPEL4UI editor with its UI partner link configura-
tor and layout configurator. Starting from a set of web service WSDLs, UI component 
WSDLs, and HTML templates the application developer graphically models the UI 



 From People to Services to UI: Distributed Orchestration of User Interfaces 323 

 

orchestration, and the editor generates a corresponding BPEL4UI specification in 
output. The composition logic in Figure 5 has been modeled in our BPEL4UI editor, 
an extended Eclipse BPEL editor with (i) a panel for the specification of the pages in 
which UI components can be rendered and (ii) a property panel that allows the devel-
oper to configure the web pages, to set the properties of UI partner links, and to asso-
ciate them to place holders in the layout. 

The deployment of a UI orchestration requires translating the BPEL4UI specifica-
tion, which is not immediately executable neither by a standard BPEL engine nor by 
the UI rendering engine (the so-called UI engine, which we discuss in the following), 
into executable formats. This task is achieved by the BPEL4UI compiler, which, start-
ing from the BPEL4UI specification, the set of used HTML templates and UI compo-
nent WSDLs, and the system configuration of the runtime part of the architecture, 
generates three kinds of outputs: 

1. A set of communication channels (to be deployed in the so-called UI engine 
server), which mediate between the UI engine client (the client browser) and 
the BPEL engine. These channels are crucial in that they resolve the technol-
ogy conflict inherently present in BPEL4UI specifications: a BPEL engine is 
not able to talk to JavaScript UI components running inside a client browser, 
and UI components are not able to interact with the SOAP interface of a BPEL 
engine. For each UI component in a page, the compiler therefore generates (i) 
an event proxy that is able to forward events from the client browser to the 
BPEL engine and (ii) an event buffer that is able to accept events from the 
BPEL engine and stores them on behalf of the UI engine client. 

2. A standard BPEL specification containing the distributed UI synchronization 
and web service orchestration logic. Unlike the BPEL4UI specification, the 
generated BPEL specification does no longer contain any of the UI-specific 
constructs introduced in Section 4.1 and can therefore be executed by any 
standards-compliant BPEL engine. This means that all references to UI com-
ponent partner links in input to the compilation are rewritten into references to 
the respective communication channels of the UI components in the UI engine 
server, also setting the correct, new SOAP endpoints. 

3. A set of UI compositions (one for each page of the application) consisting of 
the layout of the page, the list of UI components of the page, the assignment of 
UI components to place holders, the specification of the intra-page UI  
synchronization logic, and a reference to the client-side runtime framework. 
Interactions with web services or UI components running in other pages are 
translated into interactions with local system components (the notification 
handlers and event forwarders), which manage the necessary interaction with 
the communication channels via suitable RESTful web service calls. 

 
Finally, the BPEL4UI compiler also manages the deployment of the generated arti-
facts in the respective runtime environments. Specifically, the generated communica-
tion channels and the UI compositions are deployed in the UI engine server and the 
standard BPEL specification is deployed in the BPEL engine.  
 



324 F. Daniel et al. 

 

The execution of a UI orchestration requires the setting up and coordination of 
three independent runtime environments: First, the interaction with the users is man-
aged in the client browser by an event-based JavaScript runtime framework that is 
able to parse the UI composition stored in the UI engine server, to instantiate UI com-
ponents in their respective place holders, to configure the notification handlers and 
event forwarders, and to set up the necessary publish-subscribe logic ruling the event-
to-operation mapping of the components running inside the client browser. While 
event forwarders are called each time an event is to be sent from the client to the 
BPEL engine, the notification handlers are active components that periodically poll 
the event buffers of their UI components on the UI engine server in order to fetch 
possible events coming from the BPEL engine (we are currently studying suitable 
push mechanisms for events). 

Second, the UI engine server must run the web services implementing the commu-
nication channels. In practice we generate standard Java servlets and SOAP web ser-
vices, which can easily be deployed in a common web server, such as Apache  
Tomcat. The use of a web server is mandatory in that we need to be able to accept 
notifications from the BPEL engine and the UI engine client, which requires the abil-
ity of constant listening. The event buffer is implemented via a simple relational data-
base (in PostgreSQL) that manages multiple UI components and distinguishes  
between instances of UI orchestrations by means of a session key that is shared 
among all UI components participating in a same UI orchestration instance. 

Third, running the BPEL process requires a BPEL engine. Our choice to rely on 
standard BPEL allows us to reuse a common engine without the need for any UI-
specific extensions. In our case, we use Apache ODE, which is characterized by a 
simple deployment procedure for BPEL processes. 

The MarcoFlow system shown in Figure 6 is fully implemented and running. A 
demo of the tool is available at http://mashart.org/marcoflow/demo.htm.  

7   Conclusion 

The spectrum of applications whose design intrinsically depends on a structured flow 
of activities, tasks or capabilities is large, but current workflow or business process 
management software is not able to cater for all of them. Especially lightweight, com-
ponent-based applications or Web 2.0 based, mashup-like applications typically do 
not justify the investment in complex process support systems, either because their 
user basis is too small or because there is need only for few, simple applications. Yet, 
these applications too demand for abstractions and tools that are able to speed up their 
development, especially in the context of the Web with its fast development cycles. 

We introduced the idea of distributed UI orchestration, a component-based devel-
opment technique that introduces a new first-class concept into the workflow man-
agement and service composition world, i.e., UIs, and that fits the needs of many of 
today’s web applications. We proposed a model for UI components and showed how 
their use requires extending the expressive power of standard service composition 
languages. The language comes with a suitable modeling environment and a code 
generator able to produce code and instructions that can be executed straightaway by 
 



 From People to Services to UI: Distributed Orchestration of User Interfaces 325 

 

our runtime environment, which separates the problem of intra-page UI synchroniza-
tion from that of distributed UI synchronization and service orchestration. The result 
is an approach to distributed UI orchestration that is comprehensive and free. 

Unlike in our research on universal composition [3] and unlike mashup tools, in 
this paper we do not aim at enabling less skilled web users to develop simple applica-
tions. MarcoFlow targets skilled web developers that are familiar with BPEL and 
applications that are complex and possibly involve multiple actors that are distributed 
over the Web, but that need orchestration. While the idea of event-based UI compo-
nents has been around for some time now, distributed UI orchestration and multi-
browser/multi-actor applications as proposed in this paper are new. 

Next, we plan to support the dynamic selection of actors (during deployment or at 
runtime), advanced access policies, and data flow mechanisms that go beyond the 
current event-based communication (e.g., through a suitable persistence layer).  

References 

1. Myers, B.A., Rosson, M.B.: Survey on user interface programming. In: SIGCHI 1992, pp. 
195–202 (1992) 

2. Yu, J., Benatallah, B., Casati, F., Daniel, F.: Understanding Mashup Development and its 
Differences with Traditional Integration. IEEE Internet Computing 12(5), 44–52 (2008) 

3. Daniel, F., Casati, F., Benatallah, B., Shan, M.-C.: Hosted Universal Composition: Mod-
els, Languages and Infrastructure in mashArt. In: ER 2009, pp. 428–443 (2009) 

4. Christensen, E., Curbera, F., Meredith, G., Weerawarana, S.: Web Services Description 
Language (WSDL) 1.1. W3C Note (March 2001), http://www.w3.org/TR/wsdl 

5. OASIS. Web Services Business Process Execution Language Version 2.0 (April 2007), 
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html 

6. Pautasso, C.: BPEL for REST. In: Dumas, M., Reichert, M., Shan, M.-C. (eds.) BPM 
2008. LNCS, vol. 5240, pp. 278–293. Springer, Heidelberg (2008) 

7. van Lessen, T., Leymann, F., Mietzner, R., Nitzsche, J., Schleicher, D.: A Management 
Framework for WS-BPEL. In: ECoWS 2008, Dublin, pp. 187–196 (2008) 

8. Maximilien, E.M., Ranabahu, A., Gomadam, K.: An Online Platform for Web APIs and 
Service Mashups. Internet Computing 12(5), 32–43 (2008) 

9. Active Endpoints, Adobe, BEA, IBM, Oracle, SAP. WS-BPEL Extension for People 
(BPEL4People), Version 1.0 (June 2007) 

10. Active Endpoints, Adobe, BEA, IBM, Oracle, SAP. Web Services Human Task (WS-
HumanTask), Version 1.0 (June 2007) 

11. Acerbis, R., Bongio, A., Brambilla, M., Butti, S., Ceri, S., Fraternali, P.: Web Applications 
Design and Development with WebML and WebRatio 5.0. In: TOOLS 2008, pp. 392–411 
(2008) 

12. Gómez, J., Bia, A., Parraga, A.: Tool Support for Model-Driven Development of Web Ap-
plications. In: Ngu, A.H.H., Kitsuregawa, M., Neuhold, E.J., Chung, J.-Y., Sheng, Q.Z. 
(eds.) WISE 2005. LNCS, vol. 3806, pp. 721–730. Springer, Heidelberg (2005) 

13. Manolescu, I., Brambilla, M., Ceri, S., Comai, S., Fraternali, P.: Model-Driven Design and 
Deployment of Service-Enabled Web Applications. ACM Trans. Internet Technol. 5(3), 
439–479 (2005) 

14. Brambilla, M., Ceri, S., Fraternali, P., Manolescu, I.: Process Modeling in Web Applica-
tions. ACM Trans. Softw. Eng. Methodol. 15(4), 360–409 (2006) 



326 F. Daniel et al. 

 

15. Sun Microsystems. JSR-000168 Portlet Specification (October 2003), 
http://jcp.org/aboutJava/communityprocess/final/jsr168/ 

16. OASIS. Web Services for Remote Portlets, (August 2003)  
  http://www.oasis-open.org/committees/wsrp  

17. Oracle. JavaServer Faces Technology, 
http://java.sun.com/javaee/javaserverfaces/ 

18. Pietschmann, S., Voigt, M., Rümpel, A., Meissner, K.: CRUISe: Composition of Rich 
User Interface Services. In: ICWE 2009, pp. 473–476 (2009) 

19. Feldmann, M., Nestler, T., Jugel, U., Muthmann, K., Hübsch, G., Schill, A.: Overview of 
an end user enabled model-driven development approach for interactive applications based 
on annotated services. In: WEWST 2009, pp. 19–28 (2009) 

20. WSPER.org. WS-BPEL 2.0 Metamodel, 
http://www.ebpml.org/wsper/wsper/ws-bpel20.html 


	From People to Services to UI: Distributed Orchestration of User Interfaces
	Introduction
	State of the Art in Orchestrating Services, People and UIs
	Distributed User Interface Orchestration: Approach
	The Building Blocks: Web Services and UI Components
	Modeling UI Orchestrations
	BPEL4UI: Concepts and Syntax
	Modeling the Orchestration Logic

	Deploying and Running UI Orchestrations
	Conclusion
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 149
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 149
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 599
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
    /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
    /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
    /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
    /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
    /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
    /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
    /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice




