

J. Bosch and J. Lee (Eds.): SPLC 2010, LNCS 6287, pp. 151–165, 2010.
© Springer-Verlag Berlin Heidelberg 2010

Variability Modeling for Distributed Development –
A Comparison with Established Practice

Klaus Schmid

Institut für Informatik, Universität Hildesheim
Marienburger Platz 22, D-31141 Hildesheim
schmid@sse.uni-hildesheim.de

Abstract. The variability model is a central artifact in product line engineering.
Existing approaches typically treat this as a single centralized artifact which de-
scribes the configuration of other artifacts. This approach is very problematic in
distributed development as a monolithic variability model requires significant
coordination among the involved development teams. This holds in particular if
multiple independent organizations are involved.

At this point very little work exists that explicitly supports variability model-
ing in a distributed setting. In this paper we address the question how existing,
real-world, large-scale projects deal with this problem as a source of inspiration
on how to deal with this in variability management.

Keywords: Software product lines, variability modeling, eclipse, debian linux,
distributed modeling, software ecosystems, global development.

1 Introduction

An increasing amount of software engineering is done in a (globally) distributed way.
This has multiple reasons and takes multiple forms. In particular, we see three major
forms of distributed development:

1. Distributed by discipline: different parts of a development are done by different
(sub-)organizations. These organizational units may be distributed on a world-wide
scale.

2. Distributed along a software supply chain: some components are developed by one
organization and other components are developed on top of this by a different or-
ganization. Such a supply chain may exist either within a single company or across
companies. This can in particular be a software ecosystem, i.e., the companies in-
volved are independent on an organizational level and only coupled through the
software product (line) [3].

3. Unstructured distributed development: the development distribution structure is not
matched to the software structure, i.e., people at different locations work on the
same parts of the software.

These forms of software development can be well combined with software product
line engineering [14, 5, 12], leading to development organizations of high complexity

152 K. Schmid

and the need to synchronize variability across the involved organizations. Distribution
type 1 is a rather common organization scheme for large scale development – and
thus also for large scale product line development. For example, Nokia develops cer-
tain parts of its phone software in labs around the world. Distribution type 2 is actu-
ally well known under the name of product populations [22]. Distribution type 3 has
also been applied in combination with software product line engineering. It should be
noted that while many case studies of product line engineering exist [12, 4] and a
significant number of them even deals with a distributed stetting, very little work
explicitly addresses the issue of distributed variability modeling.

In this paper, we focus on the question how distributed development impacts vari-
ability management, respectively what characteristics make a variability management
approach particularly suited for distributed development. As only distribution types 1
and 2 relate development structure and distribution, we will focus on those ap-
proaches to distributed development. We will also address in particular the situation
of software ecosystems, i.e., development is distributed across multiple organizations
which are only loosely coupled [3].

The remainder of this paper is structured as follows: in Section 1.1 we will intro-
duce the key research questions of this paper and in Section 1.2 we will discuss re-
lated work. Section 2 will then introduce the case studies that we chose to analyze,
Debian Linux and Eclipse. In Section 3 we will discuss to what extent our case stud-
ies are reasonable cases of variability management. On this basis we will discuss in
Section 4 the main concepts that can be taken from these case studies to support dis-
tribution and in particular distributed variability management. Finally, in Section 5 we
will summarize and conclude.

1.1 Research Questions

The main goal of this paper is to improve the understanding of how variability man-
agement can be effectively supported in the context of distributed development. As a
basis for answering this question, we decided to analyze some existing highly config-
urable infrastructures in order to identify what works in practice. The examples we
draw upon are Debian Linux [1] and Eclipse [9], respectively their package manage-
ment. Both are large-scale, well-known projects, which do heavily rely on highly
distributed development. Moreover, many independent organizations can contribute
packages, realizing a rather low level of interdependence among the organizations.
Thus, they show that these approaches can in particular be applied in the context of a
software supply chain (respectively a software ecosystem).

Of course, it is non-trivial that the configuration approach which is used in the
package management systems of Eclipse and Debian Linux can be compared to vari-
ability management approaches at all. In order to address this concern we will make
an explicit comparison of these approaches with variability management techniques
like feature modeling [11].

In summary, we will address the following research questions in this paper:

(RQ1) Can existing package management approaches like those of Debian Linux
and Eclipse be regarded as a form of variability management?

(RQ2) Which concepts in these package management approaches can prove useful
to handle distributed development, if any?

 Variability Modeling for Distributed Development – A Comparison 153

The main focus of our work will be on the aspect of distribution. Thus, while we will
address the aspect of expressiveness, it is our main goal to identify concepts that
might help variability management approaches to better cope with distribution.

1.2 Related Work

In this paper we analyze two existing software configuration systems and compare
them with variability management approaches. So far such analysis of existing
software configuration systems have been performed surprisingly few. A notable
exception is the analysis of the Kconfig system used in Linux kernel development by
She et al. [20].

A difference between the case studies we use here and case studies like [20] is that
here configuration is performed rather late, i.e., at installation time. However, this is in
accordance with recent developments in the product line community where later binding
of variability is increasingly common (e.g., [23]). This is sometimes termed dynamic
software product lines [10] and seems to be very relevant to software ecosystems [3].

A major aspect of distributed development is that the variability management
needs to be decomposed as well. This has so far received very little attention. A nota-
ble exception is the work by Dhungana et al. [8]. They introduce the notion of deci-
sion model fragments which can be manipulated independently and integrated at a
later point. They explicitly mention distributed development (type 1) as a motivation
for their work. The feature diagram references mentioned by Czarnecki et al. [6] are
also related as it seems their approach can also be used to support distributed devel-
opment, though this is not made explicit.

Recently, Rosenmüller et al. also addressed the issue of integrating multiple prod-
uct lines into a single, virtual variability model under the name of multiple product
lines [16, 15]. A major disadvantage of their approach from the perspective of our
discussion here is that it requires a single central point of control (the integration
model). We expect this to problematic, in particular in the context of open variability,
e.g., in software ecosystems [3].

In this paper, we do not aim at introducing a new approach. Rather we focus on how
existing approaches from industrial practice deal with the problem of distributed de-
velopment of a software product line, respectively a software ecosystem [3]. We will
analyze these approaches, show that they are comparable to existing variability man-
agement approaches, while offering at the same time new insights that should be taken
into account for designing future distributed variability management approaches.

2 Analysis of Case Studies

In this section, we provide an overview of the two case studies we will use as a basis
for our analysis: the Debian Package Manager [1] and the Eclipse Package Manager
[9]. While these are certainly not the only relevant, distributed software configuration
systems, we restricted our analysis to these two as they are well-known, widely used
and documentation of them is easily available. Also they are clearly examples of the
problem of distributed and rather independent development. In particular they are
used as a means to realize a software ecosystem [3]. We also considered to include
Kconfig in our analysis, but decided against this for multiple reasons: first of all a

154 K. Schmid

good analysis like [20] already exists, although the focus was in this analysis not on
distribution aspects. Second Kconfig supports the configuration of the Linux Kernel,
which is released in a centralized way. Thus, we expected to learn less from this ap-
proach compared to the ones we selected for more general distribution models like
software supply chains (cf. distribution 2) or software ecosystems.

Both the set of all Linux installations, as well as the set of possible Eclipse
configurations can be regarded as a rather open form of product line respectively a
software ecosystem. It is a product line, as the customer has even with a standard
distribution of Linux such a large range of possible configurations, that actually each
installed system can have a unique configuration. Further, it can be regarded as an
open product line, as additional systems can refer to and extend the existing base
distribution enlarging the overall capabilities and configuration space. It is this form
of openness of the variability model which is particularly interesting to us from the
perspective of distributed development.

It is important to note – and we will see this in more detail below – that the ap-
proach used by these management systems is completely declarative. This makes
them rather easy to compare to variability management and is different from ap-
proaches like makefiles, which contain procedural elements and can thus not be di-
rectly compared to declarative variability management approaches.

Some concepts are common to both the Eclipse and the Debian Linux package
management approach, thus, we will first discuss their commonalities, before we
discuss the specifics of both systems in individual subsections.

Both Linux and Eclipse are actually aggregates that consist of a number of pack-
ages. So-called distributions are formed, which are collections of packages which are
guaranteed to work well together. In the case of Linux the user can select a subset of
these packages for installation, while in the case of Eclipse a specific distribution
forms a set which is installed as is. The packages in a distribution are selected (and if
necessary adapted) to work well together. This is the main task of the organization
that maintains a distribution. It should be noted, however, that this organization is not
necessarily responsible for the actual development. It is thus more appropriate to
compare it to an integration department in traditional software development. There
exists a configuration model as a basis for defining a specific installation. This is
included in a distribution and is stored in a distributed (per-package) fashion, as we
will discuss later.

As the various packages that belong to a distribution can be developed by a large
number of different development organizations, we have already here the situation of
distributed development, although there is an explicit harmonization step in the form
of the maintenance of the distribution. It should be noted, however, that this is har-
monization is not needed per se, as both approaches are open to the inclusion of arbi-
trary third party packages. The step of distribution formation mainly plays the role of
quality assurance.

In both cases a package manager exists, which uses the descriptive information
from the packages to provide the user1 with configuration capabilities. Users can also
install additional packages (e.g., from the internet) which are not part of the initial

1 We will use the term user to denote any individual who performs a configuration process. In

practice the user will typically fill the role of an administrator.

 Variability Modeling for Distributed Development – A Comparison 155

distribution. As these packages can be developed completely independently, this fur-
ther enforces the notion of distributed development.

The user can use the package manager to create the final configuration. This step
results in a specialized installation. It is peculiar of this approach that the binding time
is rather late (i.e., the individual packages already contain compiled code), however,
this is not a must, as even source code can be part of packages. This is in particular
the case in the Linux environment. This difference in binding time may seem unusual,
as typically product line engineering is equated with development time binding. How-
ever, already in the past different approaches have been described that go beyond this
restriction (e.g., [23, 21, 17]). This is actually most pronounced in the context of dy-
namic software product lines (DSPL) [10].

2.1 Debian Linux Package Management

The installation packages for the Debian package manager consist of the following
parts [1]:

• Control-File: the control file contains the necessary dependency information as
we will discuss below.

• Data File: the data file contains the actual data to be installed. This can be source
code, binary files, etc.

• Maintenance scripts: these are used to perform maintenance actions before and
after the reconfiguration takes place.

The key information we are interested in here is contained in the control file as this
contains all relevant dependency and configuration information. The control file pro-
vides administrative information like the name and the version of the package, but
also dependency information. It also defines the required disk space and the supported
hardware architecture. This constrains the situations when it can be installed.

For the dependency information in a package seven different keywords are de-
fined: depends, recommends, suggests, enhances, pre-depends, conflicts, and re-
places. The semantics of these keywords overlaps as discussed below:

• Depends: this keyword expresses that the following text provides information on
other packages that are required for the proper use of this package. This can be
combined with a version qualifier with the implication that the package requires
this version (or a later one) of the package.

• Pre-Depends: similar to depends it defines that another package is needed and
must be fully installed prior to installation of the current one. Thus in addition to
the dependency information it provides execution information for the package
manager.

• Recommends: this expresses that the package is typically installed together with
the recommended packages. However, this is not a strict dependency, but rather a
hint for the configuration, that the recommended packages should as well be in-
stalled (but a configuration will also be successful without them).

• Suggests: this expresses that the suggested packages could be installed together
with the current one. This should be interpreted as a hint, it is similar to recom-
mends, but should be interpreted in a much weaker form.

156 K. Schmid

• Enhances: this defines that the package can be used together with the enhanced
packages. This should be interpreted as the inverse relationship to suggests.

• Conflicts: this expresses that the current package cannot be used in combination
with the mentioned packages.

• Replaces: this expresses that installation of files in the package will actually
replace or overwrite information from the referenced packages.

As we can see the different keywords actually combine different aspects in a non-
systematic may. These aspects are:

• Dependency and conflict information: this can be compared to the information
typically contained in a variability model.

• User guidance: some information is only meant as a hint to the user of the con-
figuration system (e.g., suggests, enhances). This is actually ignored by some
package management tools [1].

• Execution information: information like pre-depends actually influences how the
package manager performs the actual installation process.

Our main interest is of course on the dependency and conflict information. All of the
relationships (except for replaces) that are introduced by the control files have some
aspect of dependency and conflict information, although in some cases (e.g., suggests)
this is not strict in the sense that the given guidance can be ignored by the user, re-
spectively the installation system.

The remaining two parts of a package are the data file and the maintenance scripts.
The data file is basically a packed archive. There are actually two slightly different
formats, depending on whether the package contains source code or binaries (e.g.,
executables). Unpacking the archive generates all the necessary files, including direc-
tories, etc. This implies an all or nothing semantics, i.e., either the whole data con-
tained is added to the installation or the package is not installed.

Finally, there are maintenance scripts. These are mainly important as the package
manager may run while the system is actually running. The scripts are then used to
start and stop services to allow their (re-)installation. Another application of these
scripts is to customize the configuration process. For our analysis these scripts are not
of further interest.

2.2 Eclipse Package Management

The Eclipse package management provides two concepts that are relevant to our
analysis here: feature and plug-in [9]. The feature in the Eclipse terminology is a
coarse-grained capability. Actually the typical user installation consists of only three
major features [9]: platform, java development tooling, plug-in development tooling.

A feature by itself does not contain any functionality, rather it describes a set of
plug-ins that provide the functionality. In addition to acting as a sort of container for
the actual plug-ins it provides management information like where to get updates for
the feature.

A plug-in consists of a so-called manifest which provides a declarative description
of the plug-in and the relevant resources. The resources contain a set of java classes,
which implement the functionality, but may contain also other resources like scripts,
templates, or documentation.

 Variability Modeling for Distributed Development – A Comparison 157

The main part, we are interested in here, is the manifest. It declares plugin name,
id, version, provider, etc. It also defines the dependency information for the plug-in.
Dependencies are defined in the requires-section of the plug-in manifest [9]. This
section declares other plug-ins that are needed for successful usage of the current one.
The plug-ins can be further annotated with version information.2 In addition the re-
quires-information can be further refined as optional. The semantics of an optional
requires is that the referenced plug-in should be integrated into the platform if it is
found, but if it is not found the installation of the current plug-in is still possible (as
opposed to a pure requires). On the other hand, Eclipse does not provide any way to
express that a plug-in is mutually exclusive (conflicts) with another plug-in. The re-
quires-information can be further refined by making restrictions with respect to the
versioning information. This is supported by a proposal for the semantics of the ver-
sion numbering by Eclipse. Specific relations on the versions include: perfect match,
equivalent, compatible, greaterOrEqual.

The Eclipse feature and plug-in mechanisms also support some sort of modulariza-
tion. This is expressed by exports and extension points.

The classes that make up the plug-in can also be exported, enabling other plug-ins
to explicitly refer to them.

In addition the manifest may declare extension points and extensions. The extension
point architecture of Eclipse is a core part of its extensibility. Any plug-in may define
extension-points. This means it will allow explicit, external customization of its func-
tionality. A plug-in may also refer to an extension point and extend it. Typical examples
for extension points within the Eclipse-IDE are menu entries or additional views.

3 Package Managers as a Form of Variability Management

In this section, we will focus on the question of whether the package managers, de-
scribed above can be seen as a form of variability management (RQ1). In order to
characterize variability management several formalizations of variability modeling,
like [19, 7, 2] have been developed. As we will see, the package managers only sup-
port rather simple concepts of variability management, thus a simplified treatment of
variability management is sufficient in this context.

3.1 Variability Management Concepts

As a first step, we need to establish a mapping between the typical concepts used in
package managers and in variability management.

If we take as a basis for variability management the concepts from feature model-
ing, as they are described in a formal definition like [19], we find that a feature model
(represented by a feature diagram) can be characterized in the following way (we use
here the terminology introduced in [19]):

• Graph Type: this can either be a graph or a tree.
• Node Type: possible node types; these are Boolean functions like and, or, xor. This

describes how nodes can be decomposed. Also cardinalities (card) are classified as
node types.

2 For identifying required versions it is possible to define constraints as exact matches, com-

patible, etc. This is implemented using a specific version naming scheme.

158 K. Schmid

• Graphical Constraint Type: is a binary Boolean operator, e.g., requires (⇒) or
mutex (|).

• Textual Constraint Language: is a subset of the language of Boolean formula and
is used to describe the allowed compositions.

In addition, it should be noted that edges within a feature diagram denote a decompo-
sition. The allowed forms of decomposition are expressed by the node type.

The mapping of the main concepts in package managers to such a variability mod-
eling language are not straight-forward as the relationships are somewhat different
and the package managers do not support a diagram notation. Thus, we will discuss
this mapping here explicitly. In support of the discussion Figure 1 illustrates the main
concepts we will deal with.

The first major difference between the package management approaches and fea-
ture diagrams is that the approaches are textual not graphical. We can thus ignore the
difference between the graphical constraint type and the textual constraint language.
The nodes in the package management approaches correspond to packages (in Debian
Linux), respectively plug-ins in Eclipse. It should be noted that the concept of features
as it is introduced in Eclipse is rather coarse-grained and describes actually a con-
glomerate of plug-ins while the basic level on which dependencies are expressed are
on the level of individual plug-ins. This is shown in Figure 1 by illustrating packages,
but having the relations on the level of the individual contained units.3

C.1 C.2

A.1 A.2 A.3

A.4.1 A.4.2

C
conflicts

ha
s_
su
b

is
_s
ub

A.4

A

B.1 B.2

B

ha
s_
su
b

is
_s
ub

B Package

A Package

C Package

Fig. 1. Main concepts of variability in package managers

A major concept in most feature modeling approaches is that the features are decom-
posed in the form of a graph or tree. This is shown in Figure 1 as has_sub and is de-
scribed by the node-type as defined above. It should be noted, however, that such a
decomposition approach is not part of all forms of variability management approaches.

3 This corresponds closely to the situation in Eclipse, in the Debian Linux situation the pack-

ages shown in Figure 1 have no correspondence.

 Variability Modeling for Distributed Development – A Comparison 159

For example, some forms of decision modeling [18] or the approach described in [14]
do not rely on decomposition. Both package managers do also not have the concept of
decomposition. However, still often a tree-like or graph-like dependency structure is
introduced. This can be done using the requires-links. This can be seen as has_sub-
relation shown in Figure 1. On the other hand, as the various packages can be selected
individually and are interrelated mainly by requires-relations, this relation can also be
regarded as the inversion of the has_sub-relation, i.e., the is_sub-relation. Thus, in both
approaches, both relations has_sub and is_sub are replaced by requires, if they are rep-
resented at all.

3.2 Analyzing Package Management as Variability Management

We will summarize the expressiveness of the two package management approaches
and will use this as a basis to compare them with variability management as described
by the characterization from [19].

As discussed in Section 2.1 the Debian Linux package management has as main
concept the package. We can equate this with a node. As a basis for dependency man-
agement the relations depends and conflicts can be regarded. The depends-relation
can be equated with requires. The conflicts-relation is not exactly the same as the
mutex-relation, defined in [19], as it is not symmetrical, thus we keep the name con-
flicts in Figure 1. However, conflicts effectively emulates the mutex-relation as it does
not allow a configuration in which both packages participate. Noteworthy is also the
recommends-relation as it has the same direction as the has_sub-relation. However, it
is weak in the sense that it does not require the installation. The other relations de-
fined by the Debian Linux package management approach (pre-depends, suggests,
enhances, replaces) are variations of the mentioned relations, but augment it with
additional user advice or execution information. They do not provide any new infor-
mation from a logical point of view.

Below, we discuss the comparison in more detail:

• The most striking difference is probably that the decomposition hierarchy which is
typical for feature diagrams is not directly a part of the dependency management
defined by the package management approaches. As a consequence the resulting
structure is not one continuous graph, but is rather a set of graphs. Further, the hi-
erarchy in the sense of decomposition cannot be directly expressed, but can only be
simulated using a requires-relationship. While both aspects seem unusual for fea-
ture-based variability management, they exist in other variability management ap-
proaches like [18, 14, 7] as well.

• The and-, or-node types can be expressed as described in Table 1. The xor-node
type can only be represented for the Debian Linux package manager by means of
the conflict relationship. This is not available for Eclipse and can thus not be
simulated there. More advanced concepts like cardinality do not exist in either
approach.

• Constraints are always textual constraints, as there is no graphical notation for both
approaches, thus we discuss Graphic Constraint Type and Textual Constraint Type

160 K. Schmid

together.4 Again the Debian Linux approach allows the representation of mutex-
and requires-constraints (using conflicts and depends relations, respectively). The
Eclipse package manager falls short as it can represent the requires-relation,
but not the mutex-relation. More complex combinations (in the sense of complex
formula) are not available in either approach.

Table 1. Comparison of package management and a characterization of feature models ([19])

Concept
[19]

Debian Linux Package
Manager

Eclipse Package Manager

Graph Type Graph* Graph*

Node Type and, or – all elements that are
required must be installed, but
weaker versions like suggests
actually provide optionality

xor – can be simulated by using
the conflicts relation

and, or – the requires
relationship can be augmented
with an optional modifier

Graphical
Constraint
Type (GCT)

requires – is supported using
depends

mutex – the conflicts
relationship is a directed variant
of mutex

requires – exists as a relation

mutex – does not exist nor can
be simulated

Textual
Constraint
Language

From a logical point of view only the concepts mentioned under
GCT are supported, although the language is completely textual.
There exist extensions like references to specific version, which do
not exist in variability modeling techniques for product lines.

*
: As there need not be connections between nodes that are installed, either induced by requires
or any other relations, it might actually be more appropriately regarded as a set of graphs.

If we accept the use of the requires-relation to describe the decomposition, we can
deduce from [19] that the expressiveness of the Debian Linux approach is at least
similar to FODA [11].5 More problematic is the Eclipse package manager, which does
not support a form of exclusion (similar to alternatives, mutex-relations, conflicts-
relation, etc.). As a consequence, we need to accept that this approach is truly weaker
than other variability management approaches.

According to the above comparison we can deduce several findings. The first and
most important is that we can answer (RQ1) with yes for the Debian Linux approach,

4 Again, it should be noted that this also exists in other variability modeling approaches. For

example the approach described in [18] only provides a semantic approach without prescrib-
ing a specific representation (graphical or otherwise).

5 This is not fully correct, as FODA allows parameterization, which is not present in the De-
bian Linux model. However, this is also not part of the analysis given in [19].

 Variability Modeling for Distributed Development – A Comparison 161

albeit it truly provides only minimal expressiveness (comparable to FODA). For
Eclipse, answering (RQ1) is not easy, as the expressiveness is less powerful than any
of the variability management approaches given in the literature, due to the lack of the
mutex-relation. We will thus answer (RQ1) for Eclipse only as partially, however,
many elements of a variability management approach exist. Thus, it forms a valid
basis for our comparison in this paper.

In summary, we can say that both approaches lack in comparison with modern
variability management approaches significant expressiveness. Examples for this are
cardinalities, complex constraint conditions, etc. From this perspective it is surprising
that both approaches work very successful in practice. One reason for this is certainly
their limited application domain.

4 Concepts in Package Management That Support Distribution

After discussing whether the two package managers can actually be regarded as a
form of variability management, we will now turn to the question what concepts exist
in the two package managers which may prove useful for variability management, in
particular in a distributed setting (RQ2).

We will structure our discussion along the following topics:

• Decomposition
• Version-based dependency
• Information Hiding
• Variability Interfaces

Decomposition: Probably the most immediate observation one can make when ana-
lyzing the package managers is that they take a decomposition of what shall be man-
aged for granted. Of course this flows well with distribution. In Debian Linux the
basic concept is a package, but it should be noted that the contribution of a distributed
part of the development is often contained in several packages that are related with
each other (e.g., an implementation and a source package). In Eclipse the feature
concepts defines such a unit of distribution and may contain several plug-ins. How-
ever, also in the Eclipse case sometimes several features are developed and distributed
together, as the feature is also a configuration unit.

From the perspective of distributed variability management this decomposition
also leads to a decomposition of the variability model as this enables to assign respon-
sibility for different of the variability model to different teams. We believe this is one
major characteristic to support distributed variability management. Further, if we look
at the way the relations are typically used within the package management ap-
proaches, we see that the has_sub-relation is typically not used across packages that
build on each other, but rather requires is used in the form of the is_sub-relation in
Figure 1 (or across the hierarchy as also shown in Figure 1). This leads to the package
that builds on top of another one to know the package on which it is building, but not
vice versa. Thus a platform can be built without the need to know everything which
will build on top of it at a later time. We regard this as an important difference to the
decomposition hierarchy in feature models and term it inversion of dependency. It
should be noted, however, that for other variability management approaches that do

162 K. Schmid

not have a decomposition hierarchy this is straightforward. We regard this inversion
of dependency as very important for developing future software ecosystems, using
product line technologies [3].

Version-based dependency: the capability that all packages may have versions and
that the dependency management may use the version information to define what
combinations are acceptable is very useful to reduce the coupling between packages.
Thus, packages may still work together, even if their content changes and this may be
explicitly expressed in the relations. This is particularly prominent with the Eclipse
package manager, which even defines different forms of changes (and can put con-
straints on the acceptance of the different compatibility levels). This enables the
specification of the degree of decoupling of the development of the different packages
that is possible.

Information Hiding: Of course explicit variability management always leads to some
form of information hiding as the potential configurations only depend on the features
defined in the variability model, not on the base artifacts. However, Eclipse goes one
step further by explicitly defining what parts of the packages will be visible to other
packages. This concept does not exist in classical variability modeling, as there no
information hiding is induced on the basic artifacts. It is interesting to note that this is
similar to packages in the UML which also allow to restrict the visibility of their
content. Also information hiding in Eclipse goes hand in hand with explicit variability
interfaces.

Variability Interfaces: A very interesting mechanism within the Eclipse package
management approach is the extension point approach. Plug-ins can announce spe-
cific extension points where further variability is possible and can be resolved by
other packages. Typical examples of this are menus, views, etc. that can be aug-
mented by further plug-ins. Eclipse even introduces a schema definition for extension
points. While this would allow the definition and verification of the parameterization
of the extension point, this schema is currently not yet used in the Eclipse implemen-
tation according to the latest description [9].

The concepts of decomposition, information hiding and interfaces are all well-
known. They are typical of what we call today modularization [13]. However, if we
compare this with almost all existing variability modeling approaches, we have to
recognize that they are monolithic in nature (for a discussion of the exceptions see
Section 1.2). It seems reasonable to assume that the modularization concepts that are
useful in the construction of every software systems, in particular in a distributed
manner are as well useful in distributed variability modeling. This is emphasized by
the success that the discussed package management systems already have in industrial
practice today were they provide a foundation for respective software ecosystems.

The concept of version-based dependency further supports the decoupling of the
variability packages. Both discussed approaches posses this capability in some form.
Finally, the inversion of dependency, i.e., that only the refining variability package
needs to know the refined package, but not vice versa seems rather useful, as it further
decouples distributed development.

Thus, we can answer (RQ2) positively: there are certain concepts that have been
introduced in package management approaches that are helpful for distributed vari-

 Variability Modeling for Distributed Development – A Comparison 163

ability management in software product line engineering. The key concepts we could
identify are: decomposition, version-based dependency, information hiding, variabil-
ity interfaces, and inversion of dependency. Out of these only decomposition has to
our knowledge been applied so far [15, 8, 6]. The other concepts introduce some form
of modularization to provide a better basis for decoupling in distributed product line
development.

5 Conclusions

In this paper, we analyzed existing, large-scale, real-world package management
approaches to identify concepts they can offer for distributed variability management.
We established (RQ1) that these approaches can indeed be interpreted as a form of
variability management as they support the declarative definition of variation con-
straints. The concepts they support for dependency management can be mapped onto
existing variability management approaches. However, we had to recognize that only
very fundamental concepts are realized. Thus, these tools may significantly profit by
integrating more advanced capabilities from modern variability management ap-
proaches.

On the other hand these package management approaches have been developed
from the beginning to support distributed development and integration. Both provide
today the basis of a software ecosystem of their own. As a result they offer a slightly
different approach and concepts that can be well integrated into product line engineer-
ing to support improved modularity of variability management. We can thus answer
our second research question (RQ2) positively. The concepts we identified are:

• Decomposition
• Version-based dependency
• Information hiding
• Variability interfaces
• Inversion of dependency

However, it should be recognized that these concepts, while certainly useful for aug-
menting existing variability management techniques, they can still be further im-
proved. For example, it would be useful to provide a formal definition of variability
interfaces. As a result of the introduction of the above concepts together with further
work, we expect that in the future we will arrive at a meaningful theory on the modu-
larization of variability models [13]. We expect that such a theory will be particularly
relevant in the context of open and distributed variability as is required for software
ecosystems [3].

As a next step we plan to extend our work and will address in particular software
ecosystems more in depth. We will also extend our basis of analysis further to cover a
larger range of existing approaches. The results of this analysis will then drive the
development of an integrated approach for dependency management that combines
the strengths of established practical approaches with the best of existing, sophisti-
cated variability management techniques.

164 K. Schmid

References

[1] Aoki, O.: Debian Reference, (2007),
http://qref.sourceforge.net/Debian/reference/
reference.en.pdf (last verified: 13.3.2009)

[2] Benavides, D.: On the automated analysis of software product lines using feature models.
A framework for developing automated tool support. PhD thesis, University of Seville,
Spain (2007)

[3] Bosch, J.: From software product lines to software ecosystems. In: Proceedings of the
13th Software Product Line Conference, pp. 111–119 (2009)

[4] Catalog of software product lines,
http://www.sei.cmu.edu/productlines/casestudies/catalog
(last verified: 13.03.2010)

[5] Clements, P., Northrop, L.: Software Product Lines: Practices and Patterns. Addison-
Wesley, Boston (2002)

[6] Czarnecki, K., Helsen, S., Eisenecker, U.: Staged configuration through specialization
and multi-level configuration of feature models. Software Process Improvement and Prac-
tice 10(2), 143–169 (2005); Special Issue on Software Product Lines

[7] Dhungana, D., Heymans, P., Rabiser, R.: A formal semantics for decision-oriented vari-
ability modeling with dopler. In: Proceedings of the Fourth International Workshop on
Variability Modelling of Software-intensive Systems (VAMOS 2010), pp. 29–35 (2010)

[8] Dhungana, D., Neumayer, T., Grünbacher, P., Rabiser, R.: Supporting the evolution of
product line architectures with variability model fragments. In: Proceedings of the Sev-
enth Working IEEE/IFIP Conference on Software Architecture, pp. 327–330 (2008)

[9] The Eclipse Foundation. Eclipse 3.1 Documentation: Platform Plug-in Developer Guide
(2005), http://www.eclipse.org/documentation (checked: 13.3.2009)

[10] Hallsteinsen, S., Hinchey, M., Park, S., Schmid, K.: Dynamic software product lines.
Computer 41(4), 93–95 (2008)

[11] Kang, K.C., Cohen, S.G., Hess, J.A., Novak, W.E., Peterson, A.S.: Feature-Oriented Do-
main Analysis (FODA) Feasibility Study. Technical Report CMU/SEI-90-TR-21 ESD-
90-TR-222, Software Engineering Institute Carnegie Mellon University (1990)

[12] van der Linden, F., Schmid, K., Rommes, E.: Software Product Lines in Action - The
Best Industrial Practice in Product Line Engineering. Springer, Heidelberg (2007)

[13] Parnas, D.: On the criteria to be used in decomposing systems into modules. Communica-
tions of the ACM 15(12), 1053–1058 (1972)

[14] Pohl, K., Böckle, G., van der Linden, F.: Software Product Line Engineering: Founda-
tions, Principles, and Techniques. Springer, Heidelberg (2005)

[15] Rosenmüller, M., Siegmund, N.: Automating the configuration of multi software product
lines. In: Proceedings of the Fourth International Workshop on Variability Modelling of
Software-intensive Systems (VAMOS 2010), pp. 123–130 (2010)

[16] Rosenmüller, M., Siegmund, N., Kästner, C., ur Rahman, S.S.: Modeling dependent
software product lines. In: GPCE Workshop on Modularization, Composition and Gen-
erative Techniques for Product Line Engineering (McGPLE), number MIP-0802, pp. 13–
18. University of Passau (2008)

[17] Schmid, K., Eichelberger, H.: Model-based implementation of meta-variability con-
structs: A case study using aspects. In: Proceedings of VAMOS 2008, pp. 63–71 (2008)

[18] Schmid, K., John, I.: A customizable approach to full-life cycle variability management.
Science of Computer Programming 53(3), 259–284 (2004)

 Variability Modeling for Distributed Development – A Comparison 165

[19] Schobbens, P.-Y., Heymans, P., Trigaux, J.-C.: Feature diagrams: A survey and a formal
semantics. In: Proceedings of the 14th IEEE Requirements Engineering Conference (RE
2006), pp. 139–148 (2006)

[20] She, S., Lotufo, R., Berger, T., Wasowski, A., Czarnecki, K.: The variability model of the
linux kernel. In: Proceedings of the Fourth International Workshop on Variability Model-
ling of Software-intensive Systems (VAMOS 2010), pp. 45–51 (2010)

[21] van der Hoek, A.: Design-time product line architectures for any-time variability. Science
of Computer Programming 53(30), 285–304 (2004); Special issue on Software Variabil-
ity Management

[22] van Ommering, R.: Software reuse in product populations. IEEE Transactions on Soft-
ware Engineering 31(7), 537–550 (2005)

[23] White, J., Schmidt, D., Wuchner, E., Nechypurenko, A.: Optimizing and automating
product-line variant selection for mobile devices. In: Proceedings of the 11th Annual
Software Product Line Conference (SPLC), pp. 129–140 (2007)

	Variability Modeling for Distributed Development – A Comparison with Established Practice
	Introduction
	Research Questions
	Related Work

	Analysis of Case Studies
	Debian Linux Package Management
	Eclipse Package Management

	Package Managers as a Form of Variability Management
	Variability Management Concepts
	Analyzing Package Management as Variability Management

	Concepts in Package Management That Support Distribution
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

