

Lecture Notes in Computer Science 6287
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Jan Bosch Jaejoon Lee (Eds.)

Software Product Lines:
Going Beyond

14th International Conference, SPLC 2010
Jeju Island, South Korea, September 13-17, 2010
Proceedings

13

Volume Editors

Jan Bosch
Intuit
Mountain View, CA, USA
E-mail: jan@janbosch.com

Jaejoon Lee
School of Computing and Communications
Lancaster University
Lancaster, UK
E-mail: j.lee@comp.lancs.ac.uk

Library of Congress Control Number: 2010933526

CR Subject Classification (1998): H.4, C.2, H.3, D.2, H.5, J.1

LNCS Sublibrary: SL 2 – Programming and Software Engineering

ISSN 0302-9743
ISBN-10 3-642-15578-2 Springer Berlin Heidelberg New York
ISBN-13 978-3-642-15578-9 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

springer.com

© Springer-Verlag Berlin Heidelberg 2010
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper 06/3180

Welcome from the General Chair

Welcome to the proceedings of SPLC 2010 which was held on the beautiful island of
Jeju. It was the second time the International Software Product Line Conference
(SPLC) came to Asia, where the IT-related industry is a key motive power for eco-
nomic development and prosperity.

The current trend of globalization and rapid movement toward an IT-embedded so-
ciety is pressuring industries to explore ways to meet the diverse needs of the global
market most effectively and efficiently. Over the last decade or so, the field of soft-
ware product lines has emerged as one of the most promising software development
paradigms in drastically increasing the productivity of IT-related industries, and the
product line community has grown and is still growing rapidly. The engineering disci-
pline of software product lines has emerged as the “power for competitive advantage.”

SPLC is the most prestigious and leading forum for researchers, practitioners, and
educators in the field. SPLC 2010 provided a venue to the community for exchanging,
sharing, and learning technologies and industrial experiences. The conference featured
research and experience papers, tutorials, workshops, panels, a doctoral symposium,
and demonstrations.

Creation of this outstanding technical program was not possible without the contri-
bution of many people. I sincerely thank the authors, poster presenters, doctoral stu-
dent session participants, workshop organizers and participants, tutorial presenters,
keynote speakers, and panel participants who came from all over the world to share
their research work, practical experiences, and valuable insights and knowledge with
others.

In preparation for this conference, many people contributed their time and efforts
and worked diligently over a year. To all members of the SPLC 2010 team, “thank
you very much!” My special thanks go to the Software Engineering Society under the
Korean Institute of Information Scientists and Engineers, and the industrial sponsors
for their generous financial support and donations. Without this support, holding this
conference may not have been possible.

Finally, I thank the conference attendees for their attendance and participation.

Kyo-chul Kang

Welcome from the Program Chairs

Since its rise to general awareness and popularity starting close to two decades ago,
the concept of software product lines has take the center stage in the software reuse
community. After more than four decades of research into effective and efficient reuse
of software inside the four walls of the organization, and countless initiatives, software
product lines presented an approach that has proven to provide real productivity im-
provements in the development cost of software-intensive products. This has allowed
companies to increase their product portfolio with an order of magnitude, to allow for
much higher degrees of configurability by customers, facilitated common look-and-
feel across a wide product population and enabled companies to be more innovative
by decreasing the cost of new product experiments. It achieved this by broadening the
scope of study from technology to include process, business strategy and organiza-
tional aspects. Successful product lines address all aspects relevant to the organization
and then adopt and institutionalize the approach in the company.

The software product line community is one where the collaboration between re-
search and industry has been particularly strong and this has been one of its key suc-
cess factors. The 14th Software Product Line Conference (SPLC 2010) represented the
latest instance of a conference series that has developed into an institution and the
premier meeting place for the community. This year’s conference was based in Asia,
the second time in the history of the conference series. Earlier instances took place in
Europe and the USA. As the conference participation originates from all regions of the
world, we are proud to be a truly global conference.

This year’s conference received a high number of submissions, especially consider-
ing the economic realities that individuals, organizations and countries have been
faced with. We received 90 full paper submissions and accepted 28 top-quality papers,
giving an acceptance rate of 31%. The accepted papers cover various areas of soft-
ware product line engineering including product line contexts, variability management,
formal approaches, product validation, and feature modeling.

As we received many papers that we were unable to accept as full papers, but that
we felt contained very valuable novel ideas, we introduced the notion of short papers.
We invited 10 full papers as short ones and the authors had opportunities to present
their ideas at the conference. In addition, we had 24 short paper submissions and ac-
cepted 4 short papers. Finally, we invited six posters from the short paper submissions.

Not surprising for a maturing discipline, the focus of the research papers is shifting
from initial adoption of a software product line to the optimal use and evolution of an
established product line. Consequently, research around features, including the evolu-
tion of feature models and the linking of feature models to code artifacts, is well rep-
resented. Software variability management is a second topic that is studied by several
authors. However, in addition to the research on established topics, authors also reach
beyond and into the future, including the application of the technology in new do-
mains, such as the safety-critical, mobile and enterprise domains.

VIII Welcome from the Program Chairs

Continuously reinventing and reimagining the topic of software product lines is ex-
tremely important to ensure the continued viability and relevance of the research and
practice communities and hence we would like to encourage the community to steer
their curiosity, experiences and energy to this.

Concluding, as Program Chairs, we were honored to stand on the shoulders of those
that held this position in the past and hope our efforts to serve the community in this
capacity were appreciated by the participants in the SPLC 2010 conference.

 Jan Bosch
Jaejoon Lee

Organization

General Chair Kyo-chul Kang,
(POSTECH, South Korea)

Program Co-chairs Jan Bosch
(Intuit, Inc., USA)
Jaejoon Lee
(Lancaster University, UK)

Industry Track Chair Steve Livengood
(Samsung Information Systems America, USA)

Panel Chair Klaus Schmid
(University of Hildesheim, Germany)

Workshop Chair Goetz Botterweck
(Lero, University of Limerick, Ireland)

Tutorial Chair Liam O'Brien
(NICTA, Australia)

Doctoral Symposium Chair Tomoji Kishi
(Waseda University, Japan)

Demonstration and Tools Chair Stan Jarzabek
(National University of Singapore, Singapore)

Hall of Fame Chair David Weiss
(Iowa State University, USA)

Publicity Chairs Patrick Donohue
(SEI, Carnegie Mellon University, USA)
Hyesun Lee
(POSTECH, South Korea)

Local Chair Kwanwoo Lee
(Hansung University, South Korea)

OrganizationX

Program Committee

Full Papers

Eduardo Santana de Almeida Federal University of Bahia and RiSE, Brazil
M. Ali Babar IT University of Copenhagen, Denmark
Don Batory University of Texas at Austin, USA
David Benavides University of Seville, Spain
Goetz Botterweck Lero, Ireland
Anders Caspár Ericsson Software Research, Sweden
Paul Clements Software Engineering Institute, USA
Sholom Cohen Software Engineering Institute, USA
Davide Falessi University of Rome Tor Vergata, Italy
Stuart Faulk University of Oregon, USA
John Favaro INTECS, Italy
Bill Frakes Virginia Tech, USA
Alessandro Garcia PUC-Rio, Brazil
Svein Hallsteinsen SINTEF, Norway
Øystein Haugen SINTEF, Norway
Patrick Heymans University of Namur, PReCISE, Belgium
Stan Jarzabek National University of Singapore, Singapore
Isabel John Fraunhofer IESE, Germany
Tomoji Kishi Waseda University, Japan
Kwanwoo Lee Hansung University, South Korea
Frank van der Linden Philips Healthcare, The Netherlands
Mikael Lindvall Fraunhofer Center for Experimental Software

Engineering, USA
Robyn Lutz Iowa State University and Jet Propulsion Lab, USA
Tomi Männistö Aalto University, Finland
John D. McGregor Clemson University, USA
Hong MEI Peking University, China
Maurizio Morisio Politecnico di Torino, Italy
Dirk Muthig Lufthansa Systems, Germany
Liam O'Brien NICTA, Australia
Rob van Ommering Philips Research, The Netherlands
Eila Ovaska VTT Technical Research Centre of Finland, Finland
Klaus Pohl University of Duisburg-Essen, Germany
Jeffrey Poulin Lockheed Martin Systems Integration- Owego, USA
Juha Savolainen Nokia, Finland
Klaus Schmid University of Hildesheim, Germany
Steffen Thiel Furtwangen University of Applied Sciences,

Germany
Tim Trew NXP Semiconductors, The Netherlands
David M. Weiss Iowa State University, USA
Claudia Maria Lima Werner Federal University of Rio de Janeiro, Brazil
Jon Whittle Lancaster University, UK

 Organization XI

Short Papers and Posters

Davide Falessi University of Rome Tor Vergata, Italy
Dharmalingam Ganesan Fraunhofer Center for Experimental Software

Engineering, USA
Alessandro Garcia PUC-Rio, Brazil
Patrick Heymans University of Namur, PReCISE, Belgium
Isabel John Fraunhofer IESE, Germany
Lawrence Jones Software Engineering Institute, USA
Tomoji Kishi Waseda University, Japan
Kwanwoo Lee Hansung University, South Korea
John D. McGregor Clemson University, USA
Dirk Muthig Lufthansa Systems, Germany
Natsuko Noda NEC Servie Platforms Research Laboratories, Japan
Pete Sawyer Lancaster University, UK

Additional Reviewers

Vander Alves
Hamid Abdul Basit
Nelly Bencomo
Marco Eugênio Madeira Di Beneditto
Quentin Boucher
Rafael Capilla
Elder Cirilo
Andreas Classen
Chessman Correa
Deepak Dhungana
Jose Angel Galindo Duarte
Holger Eichelberger
Thomas Forster
Dharmalingam Ganesan
Nicolas Genon
Roy Grønmo
Zhang Hongyu
Arnaud Hubaux
Martin Fagereng Johansen
Heng Boon Kui
Uirá Kulesza
Kim Lauenroth
Fabiana Marinho
Octavio Martin-Diaz

Raphael Michel
Varvana Myllärniemi
Natsuko Noda
Camila Nunes
Gøran K. Olsen
Hannu Peltonen
Xin Peng
Gilles Perrouin
Andreas Pleuss
Mikko Raatikainen
Fabricia Roos
Rodrigo Santos
Germain Saval
Vanessa Stricker
Andreas Svendsen
Eldanae Teixeira
Juha Tiihonen
Federico Tomassetti
Marco Torchiano
Rayner Vintervoll
Andrzej Wasowski
Xue Yinxing
Xiaorui Zhang
Wei Zhang

OrganizationXII

Organization and Sponsors

Organization

Sponsors

Platinum Level Sponsors

Gold Level Sponsors

Silver Level Sponsors

Table of Contents

Product Line Context

Context-Dependent Product Line Practice for Constructing Reliable
Embedded Systems . 1

Naoyasu Ubayashi, Shin Nakajima, and Masayuki Hirayama

Configuring Software Product Line Feature Models Based on
Stakeholders’ Soft and Hard Requirements . 16

Ebrahim Bagheri, Tommaso Di Noia, Azzurra Ragone, and
Dragan Gasevic

Usage Context as Key Driver for Feature Selection 32
Kwanwoo Lee and Kyo C. Kang

Formal Approaches

A Flexible Approach for Generating Product-Specific Documents in
Product Lines . 47

Rick Rabiser, Wolfgang Heider, Christoph Elsner, Martin Lehofer,
Paul Grünbacher, and Christa Schwanninger

Formal Definition of Syntax and Semantics for Documenting Variability
in Activity Diagrams . 62

André Heuer, Christof J. Budnik, Sascha Konrad,
Kim Lauenroth, and Klaus Pohl

Delta-Oriented Programming of Software Product Lines 77
Ina Schaefer, Lorenzo Bettini, Viviana Bono,
Ferruccio Damiani, and Nico Tanzarella

Experience Papers

Architecting Automotive Product Lines: Industrial Practice 92
H̊akan Gustavsson and Ulrik Eklund

Developing a Software Product Line for Train Control: A Case Study
of CVL . 106

Andreas Svendsen, Xiaorui Zhang, Roy Lind-Tviberg,
Franck Fleurey, Øystein Haugen, Birger Møller-Pedersen, and
Gøran K. Olsen

XIV Table of Contents

Dealing with Cost Estimation in Software Product Lines: Experiences
and Future Directions . 121

Andy J. Nolan and Silvia Abrahão

Variability Management

Evolution of the Linux Kernel Variability Model . 136
Rafael Lotufo, Steven She, Thorsten Berger,
Krzysztof Czarnecki, and Andrzej W ↪asowski

Variability Modeling for Distributed Development – A Comparison
with Established Practice . 151

Klaus Schmid

Variability Management in Software Product Lines: An Investigation of
Contemporary Industrial Challenges . 166

Lianping Chen and Muhammad Ali Babar

Product Validation 1

Consistent Product Line Configuration across File Type and Product
Line Boundaries . 181

Christoph Elsner, Peter Ulbrich, Daniel Lohmann, and
Wolfgang Schröder-Preikschat

Automated Incremental Pairwise Testing of Software Product Lines 196
Sebastian Oster, Florian Markert, and Philipp Ritter

Linking Feature Models to Code Artifacts Using Executable Acceptance
Tests . 211

Yaser Ghanam and Frank Maurer

Product Validation 2

Avoiding Redundant Testing in Application Engineering 226
Vanessa Stricker, Andreas Metzger, and Klaus Pohl

Improving the Testing and Testability of Software Product Lines 241
Isis Cabral, Myra B. Cohen, and Gregg Rothermel

Architecture-Based Unit Testing of the Flight Software Product Line . . . 256
Dharmalingam Ganesan, Mikael Lindvall, David McComas,
Maureen Bartholomew, Steve Slegel, and Barbara Medina

Table of Contents XV

Feature Modeling

Sans Constraints? Feature Diagrams vs. Feature Models 271
Yossi Gil, Shiri Kremer-Davidson, and Itay Maman

Mapping Extended Feature Models to Constraint Logic Programming
over Finite Domains . 286

Ahmet Serkan Karataş, Halit Oğuztüzün, and Ali Doğru

Stratified Analytic Hierarchy Process: Prioritization and Selection of
Software Features . 300

Ebrahim Bagheri, Mohsen Asadi, Dragan Gasevic, and
Samaneh Soltani

Examples of Product Lines

Streamlining Domain Analysis for Digital Games Product Lines 316
Andre W.B. Furtado, Andre L.M. Santos, and Geber L. Ramalho

Designing and Prototyping Dynamic Software Product Lines:
Techniques and Guidelines . 331

Carlos Cetina, Pau Giner, Joan Fons, and Vicente Pelechano

A Software Product Line for the Mobile and Context-Aware
Applications Domain . 346

Fabiana G. Marinho, Fabŕıcio Lima, João B. Ferreira Filho,
Lincoln Rocha, Marcio E.F. Maia, Saulo B. de Aguiar,
Valéria L.L. Dantas, Windson Viana, Rossana M.C. Andrade,
Eldânae Teixeira, and Cláudia Werner

MDA and Business Context

Using MDA for Integration of Heterogeneous Components in Software
Supply Chains . 361

Herman Hartmann, Mila Keren, Aart Matsinger, Julia Rubin,
Tim Trew, and Tali Yatzkar-Haham

Mapping Features to Reusable Components: A Problem Frames-Based
Approach . 377

Tung M. Dao and Kyo C. Kang

Eliciting and Capturing Business Goals to Inform a Product Line’s
Business Case and Architecture . 393

Paul Clements, John D. McGregor, and Len Bass

Aligning Business and Technical Strategies for Software Product
Lines . 406

Mike Mannion and Juha Savolainen

XVI Table of Contents

Short Papers

Non-clausal Encoding of Feature Diagram for Automated Diagnosis 420
Shin Nakajima

A Method to Identify Feature Constraints Based on Feature Selections
Mining . 425

Kentaro Yoshimura, Yoshitaka Atarashi, and Takeshi Fukuda

Software Product Line Engineering for Long-Lived, Sustainable
Systems . 430

Robyn Lutz, David Weiss, Sandeep Krishnan, and Jingwei Yang

An Approach to Efficient Product Configuration in Software Product
Lines . 435

Yuqing Lin, Huilin Ye, and Jianmin Tang

A Hybrid Approach to Feature-Oriented Programming in XVCL 440
Hongyu Zhang and Stan Jarzabek

An Approach for Developing Component-Based Groupware Product
Lines Using the Groupware Workbench . 446

Bruno Gadelha, Elder Cirilo, Marco Aurélio Gerosa,
Alberto Castro Jr., Hugo Fuks, and Carlos J.P. Lucena

Towards Consistent Evolution of Feature Models . 451
Jianmei Guo and Yinglin Wang

SOPLE-DE: An Approach to Design Service-Oriented Product Line
Architectures . 456

Flávio M. Medeiros, Eduardo S. de Almeida, and Silvio R.L. Meira

Multidimensional Classification Approach for Defining Product Line
Engineering Transition Strategies . 461

Bedir Tekinerdogan, Eray Tüzün, and Ediz Şaykol

MARTE Mechanisms to Model Variability When Analyzing Embedded
Software Product Lines . 466

Lorea Belategi, Goiuria Sagardui, and Leire Etxeberria

The UML �extend� Relationship as Support for Software
Variability . 471

Sofia Azevedo, Ricardo J. Machado, Alexandre Bragança, and
Hugo Ribeiro

Feature Diagrams as Package Dependencies . 476
Roberto Di Cosmo and Stefano Zacchiroli

Visualizing and Analyzing Software Variability with Bar Diagrams and
Occurrence Matrices . 481

Slawomir Duszynski

Table of Contents XVII

Recent Experiences with Software Product Lines in the US Department
of Defense . 486

Lawrence G. Jones and Linda Northrop

Posters

Leviathan: SPL Support on Filesystem Level . 491
Wanja Hofer, Christoph Elsner, Frank Blendinger,
Wolfgang Schröder-Preikschat, and Daniel Lohmann

Introducing a Conceptual Model of Software Production 492
Ralf Carbon and Dirk Muthig

Product Line Engineering in Enterprise Applications 494
Jingang Zhou, Yong Ji, Dazhe Zhao, and Xia Zhang

Case Study of Software Product Line Engineering in Insurance
Product . 495

Jeong Ah Kim

Using Composition Connectors to Support Software Asset
Development . 496

Perla Velasco Elizondo

Feature-to-Code Mapping in Two Large Product Lines 498
Thorsten Berger, Steven She, Rafael Lotufo,
Krzysztof Czarnecki, and Andrzej W ↪asowski

Panel Overviews

The Rise and Fall of Product Line Architectures . 500
Isabel John, Christa Schwanninger, and Eduardo Almeida

The Many Paths to Quality Core Assets . 502
John D. McGregor

Tutorial Overviews

Pragmatic Strategies for Variability Management in Product Lines in
Small- to Medium-Size Companies . 503

Stan Jarzabek

Building Reusable Testing Assets for a Software Product Line 505
John D. McGregor

Production Planning in a Software Product Line Organization 507
John D. McGregor

XVIII Table of Contents

Transforming Legacy Systems into Software Product Lines 509
Danilo Beuche

Systems and Software Product Line Engineering with the SPL Lifecycle
Framework . 511

Charles W. Krueger

Managing Requirements in Product Lines . 513
Danilo Beuche and Isabel John

Evolutionary Product Line Scoping . 515
Isabel John and Karina Villela

Leveraging Model Driven Engineering in Software Product Line
Architectures . 517

Bruce Trask and Angel Roman

Introduction to Software Product Lines Adoption . 519
Linda M. Northrop and Lawrence G. Jones

Introduction to Software Product Lines . 521
Linda M. Northrop

Workshop Overviews

4th International Workshop on Dynamic Software Product Lines
(DSPL 2010) . 523

Svein Hallsteinsen, Mike Hinchey, Sooyong Park, and Klaus Schmid

1st International Workshop on Product-Line Engineering for Enterprise
Resource Planning (ERP) Systems (PLEERPS 2010) 524

Haitham S. Hamza and Jabier Martinez

2nd International Workshop on Model-Driven Approaches in Software
Product Line Engineering (MAPLE 2010) . 525

Deepak Dhungana, Iris Groher, Rick Rabiser, and Steffen Thiel

1st International Workshop on Formal Methods in Software Product
Line Engineering (FMSPLE 2010) . 526

Ina Schaefer, Martin Becker, Ralf Carbon, and Sven Apel

3rd International Workshop on Visualisation in Software Product Line
Engineering (VISPLE 2010) . 527

Steffen Thiel, Rick Rabiser, Deepak Dhungana, and Ciaran Cawley

Table of Contents XIX

4th Workshop on Assessment of Contemporary Modularization
Techniques (ACOM 2010) . 528

Alessandro Garcia, Phil Greenwood, Yuanfang Cai, Jeff Gray, and
Francisco Dantas

2nd Workshop on Scalable Modeling Techniques for Software Product
Lines (SCALE 2010) . 529

M. Ali Baba, Sholom Cohen, Kyo C. Kang, Tomoji Kishi,
Frank van der Linden, Natsuko Noda, and Klaus Pohl

Author Index . 531

Context-Dependent Product Line Practice
for Constructing Reliable Embedded Systems

Naoyasu Ubayashi1, Shin Nakajima2, and Masayuki Hirayama3

1 Kyushu University, Japan
2 National Institute of Informatics, Japan

3 Software Engineering Center, Japan

ubayashi@acm.org, nkjm@nii.ac.jp, m-hiraya@ipa.go.jp

Abstract. This paper proposes a new style of product line engineering

methods. It focuses on constructing embedded systems that take into

account the contexts such as the external physical environments. In the

current product line engineering, the feature analysis is mainly conducted

from the viewpoint of system configurations: how hardware and software

components are configured to constitute a system. In most cases, contexts

are not considered explicitly. As a result, unexpected and unfavorable

behavior might emerge in a system if a developer does not recognize

any possible conflicting combinations between the system and contexts.

To deal with this problem, this paper provides the notion of a context-

dependent product line, which is composed of the system and context

lines. The former is obtained by analyzing a family of systems. The latter

is obtained by analyzing features of contexts associated to the systems.

In the proposed method, each feature is described using VDM++. The

configuration of selected system components and contexts can readily be

checked with VDM++ Toolset.

1 Introduction

This paper proposes a new style of product line engineering (PLE) [2] method
for constructing reliable embedded systems that take into account the contexts
such as the external physical environments. Many of the embedded systems not
only affect their environments through actuators but also are affected by their
environments through sensors. In this paper, the term context refers to the real
world such as the usage environments that affect the system behavior. It is
important to provide a context-dependent development method for construct-
ing safe and reliable systems. Although all of the embedded systems are not
necessarily context-dependent, many of the consumer appliances such as mobile
phone, air conditioner, and car electronics are context-dependent. If fatal defects
are included in these products, the large-scale recall is not avoidable. The goal
of this paper is to improve the reliability of such kinds of embedded systems.

PLE is a promising approach to developing embedded systems. In PLE, a
product is constructed by assembling core assets, components reused in a family
of products. These core assets are identified by analyzing characteristics needed
in a family of products. This activity is called the feature analysis [14].

J. Bosch and J. Lee (Eds.): SPLC 2010, LNCS 6287, pp. 1–15, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

2 N. Ubayashi, S. Nakajima, and M. Hirayama

In the current PLE, the feature analysis is mainly conducted from the view-
point of system configurations: how hardware and software components are con-
figured to construct a system—the contexts are not considered explicitly in most
cases. As a result, unexpected and unfavorable behavior might emerge in a sys-
tem if a developer does not recognize any possible conflicting combinations be-
tween the system and contexts. This behavior might cause a crucial accident.
It, however, is not easy to detect this behavior only by reviewing each of system
and context requirements because this unfavorable behavior emerges through
incidental combinations of a system and contexts. It is important to detect the
unfavorable behavior systematically at the early stage of the development.

To deal with the above problem, this paper proposes the notion of a context-
dependent PLE in which a product line is divided into two kinds of lines: the
system line and the context line. The former is a line obtained by analyzing
the features of hardware and software components that consist of a family of
systems. The latter is obtained by analyzing the features of contexts.

In the proposed method, each feature description is specified using VDM++
[4], a language for lightweight formal approaches in which formal methods are
used as a tool for describing the essential aspects of systems rigorously. VDM++
is an object-oriented extension of VDM-SL (The Vienna Development Method
– Specification Language) [5], a formal specification language for the rigorous
software modeling. VDM++ is one of the most popular formal methods in Japan.
The Mobile Felica Chip project in Japan developed a very large embedded system
using VDM++. In this project [18], the specification included over 100,000 lines
of VDM++. For such a reason, we adopted VDM++ for feature descriptions.
The correctness of the configuration of selected hardware components, software
components, and contexts can be formally validated at the specification level by
using VDMTools [21], a tool for supporting VDM++.

The remainder of this paper is structured as follows. In Section 2, problems in
the current PLE is pointed out. In Section 3, the context-dependent PLE method
is introduced to deal with the problems. In Section 4, a method for describing the
core asset specifications and validating them is provided. In Section 5, related
work is introduced. Concluding remarks are provided in Section 6.

2 Motivation

In this section, typical disadvantages in the current PLE are pointed out. The
necessity of introducing the notion of contexts is claimed by describing the spec-
ification of an electric pot as an example—its context is the water.

2.1 Example — An Electric Pot

An electric pot is an embedded system for boiling the water. Here, for simplicity,
only the following is considered: 1) the pot has three hardware components
including a heater, a thermistor, and a water level sensor; 2) the pot controls
the water temperature by turning on or off the heater; 3) the pot changes its

Context-Dependent Product Line Practice 3

Fig. 1. Feature analysis for an electric pot

mode to the heat-retaining mode when the temperature becomes 100 Celsius;
and 4) the pot observes the volume from the water level sensor that detects
whether the water is below or above a certain base level.

2.2 Requirement Specification Process in PLE

In order to make the early stage of the software development systematically, the
feature-oriented modeling (FOM) [14] has been proposed especially for embed-
ded systems, which is aimed to support PLE. Since, for example, a consumer
appliance has a wide variety of similar but different products, its development
requires to identify a set of commonalities and variabilities. Ideally, a product is
developed by assembling all the commonalities and some subset of variabilities
for fulfilling the requirements of the very product. FOM is one of the modeling
method used in PLE.

FOM provides a tree notation to explicitly represent the relationships among
the identified features; some are commonalities and the others variabilities. The
features are arranged in a tree where a lower node becomes a constituent of
the upper one. Figure 1 is a portion of the feature tree for the example electric
pot. The top node, Electric pot is decomposed into SW and HW. HW is, in turn,
expanded into three mandatory system assets (Heater, Thermistor, and Water
level sensor) and an optional asset (Water level meter).

The features that can be commonly reused in multiple products are accumu-
lated as core assets. Reusing core assets of high quality can not only improve
the quality of each product but also shorten the development time. However, if
a core asset includes a fatal defect, it spreads to all of the products constructed
from the same product line. Quality is a key factor of PLE practices.

The following is a typical process for constructing the requirement specifica-
tions based on the traditional PLE. This process consists of three steps.

1) Analyze features: First, a feature tree is created by analyzing the features
of a product family, and requirement of each feature is specified. A specification
can be reused if it is accumulated as a core asset. Here, as an example, let us
consider the specification of the Controller feature. In most cases, this speci-
fication is described by implicitly taking into account the specific contexts—for
example, such a context that the water is boiled under the normal air pressure. A
developer describes the software logic corresponding to the specific contexts—in

4 N. Ubayashi, S. Nakajima, and M. Hirayama

this case, the pot continues to turn on a heater switch until the water tempera-
ture becomes 100 Celsius. Below is the specification described in VDM++. The
first line is the signature of the Boil function that has no arguments and no
returned value. This function describes that Controller continues to turn on
Heater while the value of the temperature obtained from Thermistor is below
100 Celsius.

Boil: () ==> ()
Boil() ==
while thermistor.GetTemperature() < 100.0

do heater.On();

2) Select a set of features: Next, a set of features are selected from the
feature tree. For example, one software feature Controller and three hardware
features including Heater, Thermistor, and Water level sensor are selected
for an electric pot with the minimal functions—all features are mandatory.

3) Validate a composed system specification: Lastly, the system require-
ment is validated by reviewing a set of feature specifications. The pot with the
above Boil function behaves correctly under the normal circumstances.

2.3 Problems in Traditional Approach

Although this traditional PLE process is effective, there is a room for improve-
ments in it because it does not explicitly consider the variability of contexts such
as the water and air pressure. The above Boil specification seems to be correct.
However, faults may occur if the expected contexts are changed—for example,
the circumstance of the low air pressure. While this specification satisfies the
requirements as an electric pot shown in 2.1, the conflict emerges between this
specification and the changed context. Because the boiling point of the water
is below 100 Celsius under the circumstance of the low air pressure, the soft-
ware controller continues to heat the water even if its temperature becomes the
boiling point. As a result, the water evaporates and finally its volume will be
empty. The water level sensor observes the volume, and the pot stops heating.
Although this behavior satisfies the above system specification, the pot might
be useless for those who climb high mountains where the air pressure is low and
use the pot there. If a developer considers those people as customers of the pot,
the above behavior is regarded as a system failure. It is difficult to detect this
kind of defects because the specifications concerning contexts tend to be tangled
and crosscutting over multiple feature specifications.

It is not easy to deal with this kind of problem using a feature analysis tree
composed of only hardware and software features. Most of developers would
face the following problems: it is not easy to reuse the specifications because the
system logic tends to be specified without clarifying the existence of contexts;
many features might be modified whenever expected contexts are changed; it is
not easy to keep the consistency among the features because they are modified
frequently; and it is not easy to validate a product specification as a whole

Context-Dependent Product Line Practice 5

because certain unexpected system behavior might emerge due to the conflict
between the system and the changed contexts.

2.4 Our Approach

To deal with these problems, this paper proposes the context-dependent PLE
method with lightweight formal approaches. This method has the following char-
acteristics: 1) A product line is explicitly separated into two kinds of lines –the
system line and the context line. The former is represented by a system feature
tree, and the latter is represented by a context feature tree; 2) The specification
of each feature is accumulated as a core asset if the feature is appeared in multiple
products. Not only system but also context feature specifications can be reused
as core assets; and 3) These specifications are described in a lightweight formal
language. A product specification composed of the selected feature specifications
is validated using tools that support the language.

Formal methods are mathematically rigorous techniques for the specification,
design, and verification. Traditional formal methods such as VDM and Z have
been used in the development of dependable systems such as railway systems
and nuclear power plants that require high reliability, safety, and security. It is
meaningful to apply formal methods to PLE that requires high dependability.
Although formal methods are effective, the adoption of full formalization that
needs mathematical proof is difficult and expensive. As an alternative approach,
the notion of lightweight formal approaches has been proposed.

Lightweight formal approaches are categorized into formal methods lite [12]
and lightweight formal methods [9]. The former encourages a developer to use
formal methods as a tool for describing the essential aspects of a system rigor-
ously, and the latter aims to the automated verification. VDMTools, a formal
method lite supporting tool, provides facilities including syntax checking, type
checking, proof obligation generation, and interpretive test execution.

3 Context-Dependent PLE

3.1 System Line and Context Line

Figure 2 illustrates a system line and a context line for an electric pot product
family. The context feature tree represents the expected contexts that should be
taken into account when each pot is used. For example, this feature tree consists
of two kinds of contexts including Air pressure and Liquid. The Air pressure
feature is expanded into three exclusive features including High, Normal, and
Low. Similarly, the Liquid feature is expanded into Water, Milk, and so on.

Requirement specifications for each electric pot product can be constructed by
selecting and combing features from system and context lines. When a developer
specifies the requirements of a typical electric pot used in normal circumstances,
the following features are selected: four system assets including SW-Controller,
HW-Heater, HW-Thermistor, and HW-Water level sensor; and two context fea-
tures including Air pressure-Normal and Liquid-Water.

6 N. Ubayashi, S. Nakajima, and M. Hirayama

Fig. 2. System line and context line

3.2 Activities in Context-Dependent PLE

Our PLE framework consisting of core asset development and product devel-
opment is called context-dependent product line practice with lightweight formal
approaches (CD-PLP). The activities are as follows.

Core asset development: 1) System asset development: analyze the system
(hardware and software) features and develop the system assets used in a series
of products. Each system asset is described formally using a lightweight formal
language such as VDM++ and validated using lightweight formal tools such
as VDMTools. 2) Context asset development: analyze the context features and
develop the context assets commonly used in a series of products. Each asset is
described and validated using the same lightweight formal techniques.

Product development: 1) Definition of product configuration: select system
features required in a product from a set of system assets. 2) Definition of ex-
pected contexts: select context features expected in a product from a set of con-
text assets. 3) Validation of overall specifications: validate whether unexpected
behavior emerges due to the unexpected combination of contexts and product
configurations. For this purpose, lightweight formal tools are used. If unfavorable
behavior is detected, confirm the followings: whether selected asset specifications
are really correct; and whether existing asset specifications need to be changed
for adapting changed contexts.

3.3 Context Analysis Method

We provide a context analysis method for dividing a product line into system
lines and context lines. The method is a key factor for practicing our approach.

Figure 3 illustrates the result of the context analysis. The upper and lower
sides show a system and contexts, respectively. Hardware for observing and con-
trolling contexts is located as a boundary that separates contexts from a system.

A UML profile shown in Table 1 is provided for context analysis. This profile
can describe system elements, context elements, and association between them:
three kinds of stereotypes including � Context �, � Hardware �, and �
Software � are defined as an extension of the UML class; and four kinds

Context-Dependent Product Line Practice 7

Fig. 3. Context analysis for an electric pot

Table 1. A UML profile for context analysis

Name Category Definition

� Context � Class Context element
� Hardware � Class Hardware element
� Software � Class Software element
� Observe � Association Hardware observes a context
� Control � Association Hardware controls a context
� Transfer � Association Data is transformed into different form because hardware cannot

observe the original data directly
� Affect � Association Data from the target context is affected by other context

of stereotypes including � Observe �, � Control �, � Transfer �, and
� Affect � are defined as an extension of the UML association. The arrow
of � Observe � and � Control � indicates the target of observation and
control. The arrow of � Affect � indicates the source of affect. The arrow of
� Transfer � indicates the source of transformation.

Steps for context analysis: A UML diagram shown in Figure 3 is created by
the following procedure. First, the context elements (� Context �), which are
observed (� Observe �) or controlled (� Control �) directly by hardware
(� Hardware �), are extracted. In case of an electric pot, water level and
water temperature are extracted since water level is observed by the water level
sensor and water temperature is controlled by the heater. Next, impact factors
that affect the states of these contexts elements are extracted using the following
guide words [15], hints for deriving related elements: 1) factor that determines
the upper limit; 2) factor that determines the lower limit; 3) factor related to
a specific value; 4) factor that interferes the observation; and 5) factor that
interferes the control. � Affect � is used for this analysis. The boiling point
can be extracted as an impact factor for the water temperature by applying the
guide word “factor that determines the upper limit” since the temperature does

8 N. Ubayashi, S. Nakajima, and M. Hirayama

not become higher than the boiling point. Furthermore, the air pressure can
be extracted as an impact factor for the boiling point by applying the guide
word “factor related to a specific value” since the boiling point of the water is
100 Celsius under the circumstance of 1.0 atm. An element directly observed
by hardware might be an alternative context in such a case that the hardware
cannot observe the original value of the target context. For example, the pot
wants to observe not the water level but the water volume. The � Transfer �
association is used in this situation.

Extraction of system assets: In Figure 3, there are system elements includ-
ing controller (software), heater (hardware), thermistor (hardware), water level
sensor (hardware), and water level meter. All of the elements are extracted as
system assets consisting of a system line feature tree shown in Figure 2.

Extraction of context assets: To constitute a context line, context as-
sets need to be extracted from Figure 3. In this case, however, all of the con-
text elements are not necessarily considered as assets. The context assets can
be extracted by the following procedure: 1) start from the context elements
(� Context �) that are directly observed (� Observe �) or controlled (�
Control �) by the hardware (� Hardware �); 2) trace the � Transfer �
associations; and 3) final context elements and their impact factors that are
traced by � Affect � associations. In case of an electric pot, water volume,
water temperature, and air pressure are extracted as context elements to be con-
sidered. In Figure 3, valued elements are extracted as contexts. Although water
volume and water temperature are extracted separately, they are properties of
the water. In the context line, the liquid, generalization of the water, and air
pressure are extracted as final context assets. High, Normal, and Low can be
derived by analyzing the variation of air pressure.

4 Modeling and Validation Using VDM++

Based on CD-PLP, a method for describing asset specifications using VDM++
and validating them using VDMTools is demonstrated in this section.

4.1 Core Asset Development Using VDM++

Table 2 shows the VDM++ asset specifications for an electric pot product
line.They are categorized into testing (User-Test and RealWorld), software (the
naming convention is SYSTEM-SW-asset name), hardware (SYSTEM-HW-asset
name), and contexts (CONTEXT-asset name). The appendix includes the full
asset descriptions. The UserTest is a specification for validating composed prod-
uct specifications under the circumstances specified by RealWorld. These test
specifications are also regarded as the core assets because they can be reused at
the validation phase. In our approach, not only system assets but also context
assets are described based on functionality. For example, we think that the water
has a function for adding the temperature when the water is heated.

Context-Dependent Product Line Practice 9

Table 2. Category of asset specifications

Category Name Asset

Testing UserTest Test specification
RealWorld Context setting

System line SYSTEM-SW-controller Controller
(SW)

System line SYSTEM-HW-heater Heater
(HW) SYSTEM-HW-thermistor Thermistor

SYSTEM-HW-liquid-level-sensor Level sensor

Context line CONTEXT-atmospheric-air-pressureplace Air pressure
CONTEXT-atmospheric-air-pressureplace-high High air pressure (> 1.0atm)
CONTEXT-atmospheric-air-pressureplace-normal Normal air pressure (1.0 atm)
CONTEXT-atmospheric-air-pressureplace-low Low air pressure (< 1.0atm)
CONTEXT-liquid-water Water

Figure 4 illustrates the relation among testing, software, hardware, and con-
text specifications for an electric pot. For simplicity, only main specifications are
shown in Figure 4. The UserTest invokes the software controller SYSTEM-SW-co-
ntroller, setups the context RealWorld of the electric pot, and sends the com-
mand Boil to the controller. Below is the VDM++ code that specifies the logic
for continuing to turn on the heater SYSTEM-HW-heater until the water temper-
ature becomes 100 Celsius. The condition “the volume of the pot must not be
empty” is also specified in the precondition and postcondition.

// Controller (software)
public
Boil: () ==> ()
Boil() ==
while thermistor.GetTemperature() < 100.0 and

liquid_level_sensor.IsOn() = true
do heater.On()

pre liquid_level_sensor.IsOn() = true
post liquid_level_sensor.IsOn() = true;

The heater heats the water Context-liquid-water.

// Heater (hardware)
public On: () ==> ()
On() ==
(sw := <On>; realworld_liquid.AddTemperature());

In the water specification, only the physical phenomena—the water evaporates
after its temperature becomes the boiling point—is described.

// Water (context) --phisical phenomena is described simply
public
AddTemperature: () ==> ()
AddTemperature() ==
if temperature < boiling_point(aap.GetAtm())

then temperature := temperature + 1.0
else (temperature := boiling_point(aap.GetAtm());

amount := amount - 1.0 --- evaporation)
pre temperature <= boiling_point(aap.GetAtm())
post temperature <= boiling_point(aap.GetAtm());

10 N. Ubayashi, S. Nakajima, and M. Hirayama

Fig. 4. Asset specifications described in VDM++

As illustrated in Figure 4, each VDM++ specification is described based on
the principle of separation of concerns: the context specifications do not include
the descriptions related to hardware but describe features only related to con-
texts themselves; the hardware specifications do not include the descriptions
related to the software; and the software specifications do not include the de-
scriptions related to testing. On the other hand, the hardware for observing
and controlling the contexts can access the contexts through only the context
interfaces. The test specifications and the software specifications access the soft-
ware and the hardware through only software interfaces and hardware interfaces
respectively in the same way.

4.2 Product Development Using VDMTools

Using core assets specified in 4.1, a developer can configure an actual electric
pot used in the expected contexts. We call this pot PotX.

[Step1] Define product configuration: The specification of PotX that pro-
vides only the minimum functionality is configured by four core system assets in-
cluding SYSTEM-SW-controller, SYSTEM-HW-heater, SYSTEM-HW-thermistor,
and SYSTEM-HW-liquid-level-sensor.

[Step2] Define expected contexts: As the examples of expected contexts for
PotX, we consider two kinds of contexts: A) the water is boiled under the circum-
stance of the normal air pressure; and B) the water is boiled under a certain of the
air pressure lower than the normal. We call the former ContextA and the latter

Context-Dependent Product Line Practice 11

ContextB, respectively. The specification of ContextA is configured by two core
context assets including CONTEXT-atmospheric-air-pressureplace-normal
and CONTEXT-liquid-water. On the other hand, the specifi-
cation of ContextB is configured by two core context assets
including CONTEXT-atmospheric-air-pre-ssureplace-low and
CONTEXT-liquid-water.

[Step3] Validate overall specifications: Using VDMTools, a de-
veloper can validate overall specifications of two cases: PotX + Con-
textA and PotX + ContextB. The difference of these cases is which
one is selected for CONTEXT-atmo-spheric-air-pressureplace-normal or
CONTEXT-atmospheric-air-pressur-eplace-low. The validation of these two
cases can be checked using the test execution facility provided by VDMTools.

Although the test execution in case of PotX + ContextA terminates normally—
the pot stops boiling when the temperature of the water becomes 100 Celsius,
the test execution in case of PotX + ContextB raises an error as shown in Figure
5—the precondition of the Boil operation is violated as follows.

post liquid_level_sensor.IsOn() = true;
[Message from VDM++ ToolBox]
Run-Time Error 59:
The post-condition evaluated to false

The pre-/post-conditions of the Boil function means “the switch of the water
level sensor should be on—the volume of the water must not be empty”. This
condition represents a favorable property needed for every electric pot. In case
of PotX + ContextB, the pot continues to heat the water, and eventually all of
the water evaporates—the precondition is violated. This test execution facility
is effective for detecting unexpected behavior.

Fig. 5. Result of test execution (context B) [Japanese version]

12 N. Ubayashi, S. Nakajima, and M. Hirayama

When a testing finds defects emerged from the incidental combinations of
a system and contexts, a developer should consider the following: how should
system functions be configured ?—should new hardware components be added ?
or should software specifications be modified ? The testing provides a developer
an opportunity for reconsidering the roles of the hardware and software. In order
to deal with the defects emerged in the PotX + ContextB case, an air pressure
sensor should be added because the pot needs the boiling operation coping with
changes in the air pressure.

The validation method shown here deals with only a brief example, and a
developer might be aware of the possibility of defects when he or she takes into
account the air pressure as an expected context. Someone might claim that this
testing is not needed for validating specifications. However, in general, there
are many contexts that should be taken into account. Moreover, the relations
among these contexts are complicated. It is not easy for a developer to find
defects emerged by the combinations of contexts.

The validation method proposed here does not make sense if a developer
cannot understand that the air pressure is one of the expected contexts. To deal
with this problem, we provided a method for extracting context assets as shown
in 3.3. In the traditional PLE approaches, there was no way except accumulating
domain knowledge.

5 Related Work

There are some studies that take into account the real world as a modeling
target. For example, S.Greenspan et al. claim the necessity of introducing real
world knowledge into requirement specifications [6]. M.Jackson proposes a prob-
lem frame [11] in which relations between machine (system) and the real world.
The notion of contexts in this paper corresponds to the real world in the problem
frame. This paper claimed the necessity of introducing the notion of contexts not
only in the individual product development but also in the product line develop-
ment. The adaptation of problem frames to product lines has been introduced
in [22]. Examples of formalising requirements with problem frames can be found
in [7].

C.Atkinson et al. propose a PLE method called KobrA [1] in which the con-
text realization models are described by analyzing contexts of target systems.
However, the systems and contexts are simultaneously described in KobrA. On
the other hand, the system lines are completely separated from the context lines
in our approach. We believe that our approach is effective comparing to the way
in which contexts are taken into account as one of the system concerns. There are
contexts features that can be shared among multiple system lines. If a context
belongs to a specific system line, the context cannot be reused in other system
lines.

K.C.Kang et al. propose a method for categorizing features into four layer
including capability, operating environment, domain technology, and implemen-
tation technique [13]. Recently, they point out the importance of introducing the

Context-Dependent Product Line Practice 13

viewpoint of usage context. The notion of context becomes a hot topic in the
PLE research community. The method in this paper would be one of the first
proposals for the systematic approach to the context-dependent PLE.

It is important to construct product lines from the viewpoint of system safety
[15]. J.Dehlinger et al. propose a method for applying SFTA (Software Fault
Tree Analysis) to product lines[3]. They also propose a method that integrates
SFTA and SFMECA (Software Failure Modes, Effects, and Criticality Analysis).
J.Liu et al. propose a method that applies SFTA and state based modeling to
product line safety analysis [16]. However, contexts are not considered explicitly
in these methods.

Although there are many case studies that apply formal methods to system
descriptions, descriptions of contexts are not rarely formalized. It is also impor-
tant to formalize the feature trees for contexts. P.Höfner et al. propose feature
algebra [8] for formalizing features. J.Sun et al. propose a formal semantics and
verification method for feature modeling [19]. A formal semantics is defined us-
ing the first-order logic, and it is validated using the Z/EVES theorem prover
[17]. The consistency of a feature model and its configurations are verified by
encoding the semantics into the Alloy Analyzer [10], a tool for Alloy—a simple
structural modeling language based on the first-order logic.

The notion of contexts is similar to aspect orientation because a context tends
to crosscut over system elements. To improve the expressiveness of contexts, we
previously proposed AspectVDM[20], a VDM-based AOP language for describ-
ing crosscutting features as aspects.

6 Conclusions

This paper proposed a new PLE method that takes into account the contexts. We
also provided a method for describing core asset specifications using VDM++
and validating them using VDMTools. However, only the functionality can be
checked using the current our approach. To deal with this problem, we plan
to apply other lightweight formal tools such as the Alloy analyzer to verifying
the correctness of composing system and context features. We believe that our
approach is the first step towards the context-dependent PLE.

References

1. Atkinson, C., et al.: Component-Based Product Line Engineering with the UML.

Addison-Wesley, Reading (2001)

2. Clements, P., Northrop, L.: Software Product Lines. Addison-Wesley, Reading

(2001)

3. Dehlinger, J., Lutz, R.: Software Fault Tree Analysis for Product Lines. In: Pro-

ceedings of the Eighth IEEE International Symposium on High Assurance Systems

Engineering (HASE 2004), pp. 12–21 (2004)

4. CSK: VDMTools –The CSK VDM++ Language,

http://www.vdmtools.jp/files/langmanpp_a4E.pdf

http://www.vdmtools.jp/files/langmanpp_a4E.pdf

14 N. Ubayashi, S. Nakajima, and M. Hirayama

5. Fitzgerald, J., Larsen, G.P.: Modeling Systems, Practical Tools and Techniques in

Software Development. Cambridge University Press, Cambridge (1998)

6. Greenspan, S., Mylopoulos, J., Borgida, A.: Capturing More World Knowledge

in the Requirements Specification. In: Proceedings of International Conference on

Software Engineering (ICSE 1982), pp. 225–234 (1982)

7. Hayes, I., Jackson, M., Jones, C.: Determining the specification of a control sys-

tem from that of its environment. In: Araki, K., Gnesi, S., Mandrioli, D. (eds.)

FME 2003. LNCS, vol. 2805, pp. 154–169. Springer, Heidelberg (2003)

8. Höfner, P., Khedri, R., Möller, B.: Feature Algebra. In: Misra, J., Nipkow, T.,

Sekerinski, E. (eds.) FM 2006. LNCS, vol. 4085, pp. 300–315. Springer, Heidelberg

(2006)

9. Jackson, D., Wing, J.: Lightweight Formal Methods. IEEE Computer 29(4), 21–22

(1996)

10. Jackson, D.: Software Abstractions. The MIT Press, Cambridge (2006)

11. Jackson, M.: Problem Frame: Analyzing and Structuring Software Development

Problems. Addison-Wesley, Reading (2001)

12. Jones, C.B.: A Rigorous Approach To Formal Methods. IEEE Computer 29(4),

20–21 (1996)

13. Kang, K.C., Kim, S., Lee, J., Shin, E., Huh, M.: FORM: A Feature-oriented Reuse

Method with Domain-specific Reference Architecture. Annals of Software Engi-

neering 5, 143–168 (1998)

14. Kang, K.C., Lee, J., Donohoe, P.: Feature-Oriented Product Line Engineering.

IEEE Software 9(4), 58–65 (2002)

15. Leveson, N.G.: Safeware: System Safety and Computers. Addison-Wesley, Reading

(1995)

16. Liu, J., Dehlinger, J., Lutz, R.: Safety Analysis of Software Product Lines Using

State-Based Modeling. In: Proceedings of the 16th IEEE International Symposium

on Software Reliability Engineering (ISSRE 2005), pp. 21–30 (2005)

17. Saaltink, M.: The Z/EVES system. In: Bowen, J.P., Hinchey, M.G., Till, D. (eds.)

ZUM 1997. LNCS, vol. 1212, pp. 72–85. Springer, Heidelberg (1997)

18. Sahara, S.: Current status of VDMTools. Talk at the 2nd Overture Workshop, FM

2006, Hamilton (August 2006),

http://www.overturetool.org/downloads/ows2/slides6.pdf

19. Sun, J., Zhang, H., Fang, Y., Wang, L.H.: Formal Semantics and Verification for

Feature Modeling. In: Proceedings of the 10th IEEE International Conference on

Engineering of Complex Computer Systems (ICECCS 2005), pp. 303–312 (2005)

20. Ubayashi, N., Nakajima, S.: Context-aware Feature-Oriented Modeling with an

Aspect Extension of VDM. In: Proceedings of the 22nd Annual ACM Symposium

on Applied Computing (SAC 2007), pp. 1269–1274 (2007)

21. VDMTools, http://www.vdmtools.jp/

22. Zuo, H., Mannion, M., Sellier, D., Foley, R.: An Extension of Problem Frame Nota-

tion for Software Product Lines. In: Proceedings of the 12th Asia-Pacific Software

Engineering Conference (APSEC 2005), pp. 499–505 (2005)

http://www.overturetool.org/downloads/ows2/slides6.pdf
http://www.vdmtools.jp/

Context-Dependent Product Line Practice 15

Appendix

Test specification
class UserTest
instance variables
realworld : RealWorld;
sw : Software;

operations
public test: () ==> bool
test() ==
(realworld := new RealWorld();
realworld.Setup();
sw := new Software(); sw.Setup(realworld); sw.Boil();
return true);

end UserTest

RealWorld
-- Context A: normal air pressure

class RealWorld
instance variables
public aap: NormalAtmosphericAirPressure;
public liquid : Water;

operations
public Setup: () ==> ()
Setup() ==
(aap := new NormalAtmosphericAirPressure();
aap.SetAtm(1.0);
liquid := new Water();
liquid.SetAap(aap);
liquid.SetBoilingPoint();
liquid.SetTemperature(35.0); liquid.SetAmount(1000.0));

end RealWorld

-- Context B: air pressure lower than the normal

class RealWorld
instance variables
public aap: LowAtmosphericAirPressure;
public liquid : Water;

operations
public Setup: () ==> ()
Setup() ==
(aap := new LowAtmosphericAirPressure();
aap.SetAtm(0.53);
liquid := new Water();
liquid.SetAap(aap);
liquid.SetBoilingPoint();
liquid.SetTemperature(35.0); liquid.SetAmount(1000.0));

end RealWorld

System Assets
-- SYSTEM-SW-controller
class Software
instance variables
heater : Heater;
thermistor : Thermistor;
liquid_level_sensor : LiquidLevelSensor;

operations
public Setup: RealWorld ==> ()
Setup(realworld) ==
(heater := new Heater();
heater.Setup(realworld);
thermistor := new Thermistor();
thermistor.Setup(realworld);
liquid_level_sensor := new LiquidLevelSensor();
liquid_level_sensor.Setup(realworld));

public Boil: () ==> ()
Boil() ==
while thermistor.GetTemperature() < 100.0 and

liquid_level_sensor.IsOn() = true
do heater.On()

pre liquid_level_sensor.IsOn() = true
post liquid_level_sensor.IsOn() = true;

end Software

-- SYSTEM-HW-heater
class Heater
types
Switch = <On> | <Off>;

instance variables
sw : Switch;
realworld_liquid : Liquid;

operations
public Setup: RealWorld ==> ()
Setup(realworld) ==
realworld_liquid := realworld.liquid;

public On: () ==> ()
On() ==
(sw := <On>;
realworld_liquid.AddTemperature());

public Off: () ==> ()
Off() ==
sw := <Off>;

end Heater

-- SYSTEM-HW-thermistor
class Thermistor
instance variables
realworld_liquid : Liquid;

operations
public Setup: RealWorld ==> ()
Setup(realworld) ==

realworld_liquid := realworld.liquid;

public GetTemperature: () ==> real
GetTemperature() ==

return realworld_liquid.GetTemperature();
end Thermistor

-- SYSTEM-HW-liquid-level-sensor

class LiquidLevelSensor
instance variables
realworld_liquid : Liquid;

operations
public Setup: RealWorld ==> ()
Setup(realworld) ==

realworld_liquid := realworld.liquid;

public IsOn: () ==> bool
IsOn() ==

return realworld_liquid.GetAmount() > 0;
end LiquidLevelSensor

Context assets
-- CONTEXT-atmospheric-air-pressureplace

class AtmosphericAirPressure

instance variables
protected atm : real;

operations
public GetAtm: () ==> real
GetAtm() == return atm;
public SetAtm: real ==> ()
SetAtm(a) == atm := a;

end AtmosphericAirPressure

-- CONTEXT-atmospheric-air-pressureplace-normal

class NormalAtmosphericAirPressure
is subclass of AtmosphericAirPressure

instance variables inv atm = 1
end NormalAtmosphericAirPressure

-- CONTEXT-atmospheric-air-pressureplace-high

class HighAtmosphericAirPressure
is subclass of AtmosphericAirPressure

instance variables inv atm > 1
end HighAtmosphericAirPressure

-- CONTEXT-atmospheric-air-pressureplace-low

class LowAtmosphericAirPressure
is subclass of AtmosphericAirPressure

instance variables inv atm < 1
end LowAtmosphericAirPressure

-- CONTEXT-liquid

class Liquid
instance variables
protected aap : AtmosphericAirPressure;
protected boiling_point : map real to real;
protected temperature : real;
protected amount : real;

operations
public GetAap: () ==> AtmosphericAirPressure
GetAap() == return aap;

public SetAap: AtmosphericAirPressure ==> ()
SetAap(a) == aap := a;

public GetBoilingPoint: real ==> real
GetBoilingPoint(atm) == return boiling_point(atm);

public GetTemperature: () ==> real
GetTemperature() == return temperature;

public SetTemperature: real ==> ()
SetTemperature(t) == temperature := t;

public AddTemperature: () ==> ()
AddTemperature() ==

if temperature < boiling_point(aap.GetAtm())
then temperature := temperature + 1.0
else (temperature := boiling_point(aap.GetAtm());

amount := amount - 1.0 --- evaporation
)

pre temperature <= boiling_point(aap.GetAtm())
post temperature <= boiling_point(aap.GetAtm());

public GetAmount: () ==> real
GetAmount() == return amount;
public SetAmount: real ==> ()
SetAmount(a) == amount := a;

end Liquid

-- CONTEXT-liquid-water

class Water is subclass of Liquid
operations
public SetBoilingPoint: () ==> ()
SetBoilingPoint() ==

boiling_point := {1.0 |-> 100.0, 0.53 |-> 85.0};
end Water

Configuring Software Product Line Feature Models
Based on Stakeholders’ Soft and Hard Requirements

Ebrahim Bagheri, Tommaso Di Noia, Azzurra Ragone, and Dragan Gasevic

NRC-IIT, Politecnico di Bari, University of Trento, Athabasca University

Abstract. Feature modeling is a technique for capturing commonality and vari-
ability. Feature models symbolize a representation of the possible application
configuration space, and can be customized based on specific domain require-
ments and stakeholder goals. Most feature model configuration processes neglect
the need to have a holistic approach towards the integration and satisfaction of
the stakeholder’s soft and hard constraints, and the application-domain integrity
constraints. In this paper, we will show how the structure and constraints of a fea-
ture model can be modeled uniformly through Propositional Logic extended with
concrete domains, called P(N). Furthermore, we formalize the representation of
soft constraints in fuzzy P(N) and explain how semi-automated feature model
configuration is performed. The model configuration derivation process that we
propose respects the soundness and completeness properties.

1 Introduction

Software product line engineering (SPLE) is concerned with capturing the commonal-
ities, universal and shared attributes of a set of applications for a specific domain [1].
It allows for the rapid development of variants of a domain specific application through
various configurations of a common set of reusable assets often known as core assets.
In SPLE, feature modeling is an important technique for modeling the attributes of a
family of systems [2]. It provides for addressing commonality and variability both for-
mally and graphically, allows for the description of interdependencies of the product
family attributes (features) and the expression of the permissible variants and configu-
rations of the product family. By reusing domain assets as a part of the feature model
configuration process, a new product can be developed in a shorter time at a lower cost.
Large-scale industrial applications of software product families entail the development
of very large feature models that need to be customized before they can be used for a
specific application. In order to develop an instance of a product family from the rel-
evant feature model, its most desirable features need to be selected from the feasible
configuration space of the product family. The selection of the best set of features for
a product would be based on the strategic goals, requirements and limitations of the
stakeholders, as well as the integrity constraints of the feature model. Once the de-
sired features are specified, the feature model can be customized such that it includes
the wanted features and excludes the non-relevant ones. A final fully-specific feature
model with no points for further customization is called a configuration. In many cases,
a configuration is gradually developed in several stages. In each stage, a subset of the
preferred features are selected and finalized and the unnecessary features are discarded.

J. Bosch and J. Lee (Eds.): SPLC 2010, LNCS 6287, pp. 16–31, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Configuring Software Product Families Based on Stakeholders’ Constraints 17

This feature model is referred to as a specialization of the former feature model and
the staged refinement process constitutes staged configuration [2]. Despite the effec-
tiveness of staged configuration, it is still hard to manually create configurations for
industrial-scale feature models. The reason is multifold:

1. In a large feature model, it is infeasible for a group of experts to keep track of all the
mutual interdependencies of the features; therefore, understanding the implications
of a feature selection decision becomes very difficult. In other words, selecting the
feature that would maximize the satisfaction of the stakeholders and at the same
time minimize the unintended consequences is both important and complicated;

2. Understanding the requirements and needs of the stakeholders and attempting to
satisfy them simultaneously can be viewed as a complex constraint satisfaction
problem. In cases where the stakeholders have multiple requests, ensuring that all
of the requests have been satisfied is a complex task;

3. Consistency checking and verification of a given configuration for a feature model
is very time consuming (with high computational complexity) and error prone on
large-scale feature models. This is due to the need for performing many cross-
reference integrity and stakeholder constraint checks on the developed configura-
tion. The configuration needs to be checked against the feature model constraints to
see whether it respects their enforcement in terms of the inclusion of all mandatory
features and the exclusion of undesired features, and should also be verified with
regards to the stakeholders stated requirements and restrictions.

Here, we attempt to show how a semi-automated approach to feature model configura-
tion (interactive configuration), based on a fuzzy propositional language P(N) is able
to address the aforementioned concerns. This paper attempts to create an interactive
feature model configuration process. Most of the interactive configuration procedures
in the literature mainly focus on satisfying and analyzing the stakeholders hard con-
straints and also validating the consistency of a developed feature model configuration.
Therefore, decision making in tradeoff situations where the choice between competing
features needs to be made cannot be formally supported by these approaches. As we will
discuss, in cases where a choice needs to be made between several competing features,
stakeholders’ soft constraints can help in making the right decision. This is the fact that
has been neglected in almost all other available approaches in the literature. It is im-
portant to take a holistic approach towards the satisfaction of the stakeholder’s soft and
hard constraints, and the application-domain integrity constraints, which would assist
the modelers in making the best feature selection decisions. As the main contributions
we show how:

1. P(N) is a suitable language to express the structure and the integrity constraints of
a feature model, as well as the hard constraints of the stakeholders;

2. The soft constraints (preferences) of the stakeholders are represented using a fuzzy
extension of P(N), which would allow for a more relaxed reasoning procedure;

3. Formal and fuzzy reasoning techniques are employed to develop a sound and com-
plete interactive feature model configuration process.

The spotlight of this paper is that it is a novel work which considers the stakeholders’
soft constraints, i.e. desired quality attributes, while configuring a feature model. It uses

18 E. Bagheri et al.

a variant of propositional logics along with fuzzy logics to represent feature models and
their quality attributes and to be able to bring the stakeholders’ soft and hard constraints
under one umbrella. Capturing both soft and hard constraints allows our proposed ap-
proach to be the first of its kind to simultaneously consider integrity constraints, stake-
holder requests and quality attributes during the feature model configuration process, a
process which has been formally shown to be sound and complete.

2 Feature Modeling

Features are important distinguishing aspects, qualities, or characteristics of a family of
systems [3]. To form a product family, all the various features of a set of similar/related
systems are composed into a feature model. A feature model is a means for representing
the possible configuration space of all the products of a system product family in terms
of its features. Graphical feature models are in the form of a tree whose root node
represents a domain concept, and the other nodes and leafs illustrate the features. In a
feature model, features are hierarchically organized and can be typically classified as:
Mandatory; Optional; Alternative feature group; Or feature group. This tree structure
falls short at fully representing the complete set of mutual interdependencies of features;
therefore, additional constraints are often added to feature models and are referred to as
Integrity Constraints (IC). The two most widely used integrity constraints are: Includes:
the presence of a given feature requires the existence of another feature; Excludes: the
presence of a given feature requires the elimination of another feature. Lopez-Herrejon

Fig. 1. The graph product line feature model

and Batory have proposed the Graph Product Line (GPL) as a standard problem for
evaluating product line methodologies [4]. The intention is to develop configurations of
GPL for different problem domains. For instance, GPL can be configured to perform
several search algorithms over a directed or undirected graph structure. The graphical
representation of GPL is shown in Figure 1. Clearly, not all possible configurations of
GPL produce valid graph programs. For instance, a configuration of GPL that checks if
a graph is strongly connected cannot be implemented on an undirected graph structure.
Such restrictions are expressed in the form of integrity constraints. Some examples of
these constraints are: Cycle Detection EXCLUDES BFS; Cycle Detection INCLUDES

DFS; Strongly Connected INCLUDES DFS; Strongly Connected INCLUDES Directed;
Strongly Connected EXCLUDES Undirected.

Configuring Software Product Families Based on Stakeholders’ Constraints 19

3 Formalism for Feature Modeling

There have been different approaches towards the formalization of feature models among
which the use of pure propositional logic [5], description logic [6], and iterative tree
grammars [7] are the most important ones.

Here we use Propositional Logic enriched with concrete domains as originally pro-
posed in [8]. Interested readers can refer to [8] for more details.

Definition 1 (The language P(N)). Let A be a set of propositional atoms, and F a
set of pairs 〈f, Df 〉 each made of a feature name and an associated concrete domain
Df , and let k be a value in Df . Then the following formulas are in P(N):

1. every atom A ∈ A is a formula in P(N)
2. if 〈f, Df 〉 ∈ F , k ∈ Df , and c ∈ {≥, ≤, >, <, =, �=} then (fck) is a formula in

P(N)
3. if ψ and ϕ are formulas in P(N) then ¬ψ, ψ ∧ ϕ are formulas in P(N). We also

use ψ ∨ ϕ as an abbreviation for ¬(¬ψ ∧ ¬ϕ), ψ → ϕ as an abbreviation for
¬ψ ∨ ϕ, and ψ ↔ ϕ as an abbreviation for (ψ → ϕ) ∧ (ϕ → ψ).

We call LA,F the set of formulas in P(N) built using A and F . Moreover we call facts,
all those singleton formulas containing only a single atom A ∈ A or a restriction over
a concrete feature (fck).

In order to define a formal semantics of P(N) formulas, we consider interpretation
functions I that map propositional atoms into {true, false}, feature names into values
in their domain, and assign propositional values to numerical constraints and composite
formulas according to the intended semantics.

Using P(N) we can easily represent IS-A and equivalence relations using pure
Propositional Logic or involving concrete features. For example,

GraphType ∧ Algorithms ↔ GPL

is a P(N) formula that states that a graph product line configuration is equivalent to
the configuration of both a graph type and an algorithm feature.

As it can be seen in P(N), rules are either satisfied and are true or are false otherwise.
In order to be able to represent varying degrees of truthfulness over concrete features, a
fuzzy extension of P(N) can be formulated.

Definition 2 (Fuzzy P(N)). The alphabet of Fuzzy P(N) is a tuple 〈A, F , C, μ〉 where:

– A = {Ai} and F = {fj} are defined as for P(N);
– C = {cnh} is a set of attributes such that F ∩ C = ∅;
– μ = {μAi

cnh
} is a set of fuzzy membership functions.

The following formulas are in fuzzy P(N):

1. cnh = μAi
cnh

;
2. F →

∧
h cnh = μF

cnh
∧ ψ, with ψ ∈ P(N) and F ∈ A;

20 E. Bagheri et al.

Fig. 2. The Semantic annotation of a) brute force and b) approximation graph coloring features

If a fuzzy P(N) formula is in the form 1 we call it fuzzy fact, if it is in the form 2 we
call it fuzzy clause.

Some of the more widely used examples of fuzzy membership functions are the trian-
gular, trapezoidal, and Gaussian functions. For each fuzzy predicate μ ∈ μ the only
restriction is μ ∈ [0, 1]. For the sake of illustration and due to the simplicity of its rep-
resentation, we use the triangular function tri(d1, d2, a, b, c), where d1 and d2 are the
domains of the function, a, b, c are the parameters throughout this paper.

In order to clarify the syntax of fuzzy P(N) formulas we represent the following
two fuzzy clauses related to features of the graph product line:

Brute Force → performance = μbf
p ∧ speed = μbf

s ∧ Coloring (1)

Approximation → performance = μapx
p ∧ speed = μapx

s ∧ Coloring (2)

These two clauses show that brute force and approximation are two methods for graph
coloring. Each of them has been annotated with information about its performance and
speed. As mentioned earlier, the information regarding the annotation of the abstract
concepts need to be provided by outside sources of information. Figure 2 depicts the
fuzzy values of these two features. The membership functions on the left side of the
figure basically show that the brute force technique for graph coloring is rather slow
but has high performance in terms of accuracy. On the other side, the approximate tech-
nique for graph coloring has been described in terms of its higher speed and weaker
performance. The ability to annotate abstract models is very important in feature mod-
eling, due to the fact that feature models are abstract representations of a family of
products where domain-specific information that would be possible unification options
for the open variables of clauses in a first-order format have been removed from the
models; therefore, reasoning is only feasible at the abstractions level represented in
propositional form and their fuzzy annotations.

4 Conceptual Modeling

The formalization of feature modeling information in our proposed language entails the
development of multiple separate knowledge bases. Besides the structural information
of the feature model (i.e., feature hierarchies represented as SKB) and integrity con-
straints between the features (IC), the rest of the knowledge bases are as follows: The

Configuring Software Product Families Based on Stakeholders’ Constraints 21

selection of the correct features of a feature model in the configuration process is based
on the efficiency of the features to perform the required functional tasks as well as fulfill
some of the non-functional requirements which are aligned with the strategic objectives
of the stakeholders. In order to be able to understand how each feature relates with the
functional and non-functional requirements, we propose to annotate the features. For
this reason, we adopt the concept of concerns from the Preview framework [9]. Con-
cerns relate with the high-level strategic objectives of the specific application domain
and the target product audience; therefore, they can be used to ensure consistency and
alignment between the vital goals pursued by the design of a product and the product
family features. Simply put, concerns are the desired business quality attributes, which
need to be considered through the staged configuration process. Examples of concerns
can include to cost, time, risk, volatility, customer importance, etc. For instance, speed
and performance are the two concerns that have been used to annotate the features of
GPL in Figure 2. This is because speed and performance are important decision mak-
ing criteria in the GPL configuration process. Now, since concerns are abstract concepts,
the degree of ability of a feature to satisfy a given concern can be expressed in a fuzzy
form; therefore, the annotation of features with concerns and their corresponding de-
grees of satisfaction are shown through fuzzy P(N) clauses, and the collection of these
information is referred to as the utility knowledge base (UKB). Utility knowledge de-
picts how various features of a given feature model relate with and to what extent they
are able to satisfy the objectives of the configuration. In our framework, we represent
UKB as a set of fuzzy clauses. Referring back to the GPL example and assuming that
the important concerns for product configuration are speed and performance, the fuzzy
propositional clauses shown in Equations (1) and (2) are the utility knowledge related to
the Brute Force and Approximation graph coloring features. The information regarding
the utility annotation of the feature model should be provided at design time by the do-
main and/or product family experts by providing statements such as I believe the brute
force graph coloring feature is rather slow (speed = μbf

s) but has an acceptable perfor-
mance (performance = μbf

p) or I think that although the approximate graph coloring
feature has a high execution speed (speed = μapx

s), it has less accuracy in terms of
performance (performance = μapx

p). Such statements can be easily represented in
fuzzy P(N), shown in (1) and (2).

Stakeholders and product developers often specify a set of basic features that they
want to see in the final product. For instance, in the GPL configuration process, they
may require the inclusion of the graph coloring feature. Such requirements are referred
to as hard constraints. The satisfaction of hard constraints is either feasible or not, which
makes the configuration process based on hard constraints a crisp one. However, besides
the hard constraints, the stakeholders may also specify their preferences over the defined
concerns such as high speed is very important, or lower performance is tolerable. These
kinds of requests are called the soft constraints or preferences. In this paper, Stakehold-
ers’ hard and soft constraints are represented by SRh, and SRs, respectively. Similar
to utility knowledge, soft constraints can be represented using fuzzy P(N) facts, e.g.,
high speed is very important can be stated as SRs(speed) = tri(LOW, HI, MED,
MED+ HI

2 , HI), which is a triangular fuzzy membership function whose maximum is
located at the MED+ HI

2 point; therefore depicting the importance of speed in this case

22 E. Bagheri et al.

Fig. 3. The overview of the interactive feature model configuration process

(See Figure 2). Summing up w.r.t. to the feature modeling knowledge, we have the fol-
lowing formalization: SKB: the feature model structural knowledge represented using
P(N) axioms; IC: integrity constraints defind through P(N) formulas; UKB: features
utility knowledge as a set of fuzzy P(N) clauses involving concerns; SRh: stakehold-
ers’ hard constraints as P(N) facts; SRs: stakeholders’ soft constraints (preferences)
as fuzzy P(N) facts involving concerns.

5 Interactive Feature Model Configuration

The overview of our proposed interactive feature model configuration process is shown
in Figure 3. As it can be seen, the feature model designers need to take three steps:

D1. Perform domain analysis to understand the set of all possible features and their inter-
dependencies in the product family members. Available domain analysis method-
ologies exist that can be used for this purpose;

D2. Design a comprehensive feature model based on the result of the domain analysis
that properly supports variability. This would include both the feature model and
its accompanying integrity constraints;

D3. Annotate the features with appropriate utility knowledge. Such information would
show how each feature can contribute to the satisfaction of the high-level abstract
objectives of the problem domain. For instance in GPL and with the speed and
performance concerns, the designers would need to show how each feature behaves
with respect to these two concerns, e.g., Finding MST is both fast and accurate.

Once an annotated feature model is developed, the annotation information can be used
to reason about the suitability of a feature for a given purpose. For example, the features
that have slow execution speed are not very suitable to be selected for an application
that requires realtime performance. The annotation information can go hand in hand
with the stakeholders hard and soft constraints to provide the means for an interactive

Configuring Software Product Families Based on Stakeholders’ Constraints 23

configuration process. In the context of the interactive configuration process, the stake-
holders need to perform the following:

S1. Understand their expectations from the final product within the context of the fea-
ture model and clearly specify their requirements, most likely with the help of the
model designers or requirement engineers;

S2. Differentiate between their hard constraints, which are vital for the target product,
and their soft constraints that can be tolerated if not satisfied;

S3. Develop and analyze the maximal covering specialization based on the stakeholders
hard constraints and requests. In view of this specialization, the stakeholders might
consider revising their requests to reach a more desirable specialization;

S4. Employ the feature recommendations based on the soft constraints to decide on
the set of most appropriate remaining open features to fully configure the feature
model. The feature recommendation process guides the stakeholders towards the
configuration of the feature model.

In S1 to S4, the interactive configuration procedure benefits from two important steps.
In the first important step (S3), the feature model is specialized based on the hard con-
straints of the stakeholders and a specialization is provided to the stakeholders, which
can be useful for them to decide whether they want to change their selected set of
hard constraints or not. If the hard constraints are changed, a new specialization is then
developed. In the next step (S4), the remaining open features of the specialization (de-
veloped in S3) are rank-ordered based on their degree of contribution to the satisfaction
of the stakeholders’ soft constraints. The features are recommended to the stakeholders
according to the rank-order. The stakeholders can interactively select the features they
desire until the feature model is fully configured.

Hard Constraints Satisfaction: It is important to satisfy the stakeholders’ hard con-
straints before their soft constraints, since they represent the required features of the
product. Let us provide ground definitions for the hard constraint satisfaction process.

Definition 3. Let c ∈ SRh be a hard constraint of the stakeholders, IC, and SKB be
the integrity constraints and structural knowledge of the feature model. The enforcement
of c onto SKB ∪ IC, will entail a set of facts called consequential facts of c, denoted
Cons(c). We define

Cons(c) = {c′ | SKB ∪ IC ∪ {c} |= c′}

For example, suppose that the Cycle Detection feature is a hard constraint of the stake-
holders, which means that the stakeholders want to have this feature in their final
product. Based on the structural knowledge of GPL and the integrity constraints we
have Cons(CycleDetection) = {¬BFS, DFS, CycleDetection}. A crucial impli-
cation of the entailed facts of the hard constraints is that the entailed facts of one
hard constraint may be inconsistent with the other hard constraints. In other words,
given two constraints c1, c2 ∈ SRh there is a fact c such that both c ∈ Cons(c1)
and ¬c ∈ Cons(c2). For instance, assume SRh = {CycleDetection, BFS}, then
SRh ∪ SKB ∪ IC |= false, which means that the consequential facts of this set of
hard constraints are inconsistent. As a result, some of the hard constraints expressed by

24 E. Bagheri et al.

the stakeholders might be mutually exclusive making the simultaneous satisfaction of
all such requests infeasible; therefore, the aim should be to maximize the number of
satisfied hard constraints. Formally, given a set of hard constraints SRh, the idea is to
compute a partition of SRh such that: 1) SRh = MCS ∪ UT ; 2) MCS ∩ UT = ∅;
3) MCS ∪ SKB ∪ IC �|= false; 4) There is no partition SRh = MCS′ ∪ UT ′

such that MCS ⊂ MCS′. In order to solve the above problem we should com-
pute all possible assignments Ik to variables in A and F such that Ik |= SKB ∪
IC and find the assignment such that the number of variables in SRh assigned to
true is maximal. Algorithm 1 shows the computational procedure. The algorithm calls
two functions: COMPUTENEWASSIGNMENT: This function returns a pair 〈more, I〉
where more is a Boolean variable which is true if there are still assignments to be
computed and false otherwise and I is a new assignment for variables in A and F .
SATISFIEDHARDPREFERNCES: Given SRh and an assignment I, the function returns
the number of variables in SRh assigned to true with respect to the assignment I.

Algorithm 1. MAXIMALCOVERINGSPECIALIZATION(SRh, IC,SKB)

more = true
max = 0

MCS = ∅
while more = true

do

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

〈more, I〉 = COMPUTENEWASSIGNMENT(SRh, IC,SKB)
if I |= SKB ∪ IC

then if SATISFIEDHARDPREFERNCES(SRh, I) > max

then
{
Imax = I
max = SATISFIEDHARDPREFERNCES(SRh, I)

for each Ai ∈ A

do

⎧
⎪⎪⎨

⎪⎪⎩

if Imax |= Ai

thenMCS =MCS ∪ {Ai}

else UT = UT ∪ {Ai}
return (Imax,MCS,UT)

Algorithm 1 computes all possible feature assignments based on the given feature model
structural knowledge, integrity constraints and stakeholders hard constraints, and se-
lects the one that satisfies the most number of stakeholder constraints. The algorithm
returns this assignment as the maximal covering specialization (MCS) and the set of
unsatisfied hard constraints (UT). Ultimately, MCS contains the maximal covering
specialization of the feature model based on the stakeholders’ hard constraints (SRh),
and UT will contain the set of unsatisfiable hard constraints. Based on (MCS) and
(UT), the stakeholders will be able to interact with the process by analyzing the result-
ing specialization of the feature model and deciding whether they would like to change
some of their selections. If hard constraints are changed at this stage, the maximal cov-
ering specialization will be recalculated accordingly to reflect the new selections. It
is possible to see from Algorithm 1 that the process of finding the maximal cover-
ing specialization for a given feature model is sound and complete. A specialization
process is sound iff the selected features in the final specialization are consistent with
the integrity constraints and the structural knowledge of the feature model. It is also

Configuring Software Product Families Based on Stakeholders’ Constraints 25

complete iff it will find a specialization that satisfies all of the stakeholders’ hard con-
straints whenever one exists.

Theorem 1 (SOUNDNESS). The maximum covering specialization MCS computed by
Algorithm 1 is the largest subset of SRh such that the set of axioms MCS ∪SKB ∪IC
is consistent.

Proof. The algorithm selects an assignment iff the condition I |= SKB ∪ IC is
satisfied. Among all these assignments it selects the one maximizing the number of
hard constraints, i.e., the propositional variables in SRh, such that their value for the
assignment Imax is true.

Theorem 2 (COMPLETENESS). If MCS is the maximum number of hard constraints
that can be true at the same time, given SKB and IC then it is computed by Algorithm
1.Proof. In fact, Algorithm 1 evaluates all of the possible specializations of the feature
model given SBK, IC and SRh, eliminating the chance for missing a more optimal
solution that has not been evaluated by the algorithm.

Although Algorithm 1 computes the assignment we are looking for, it has a serious
computational drawback. We have to always compute all possible interpretations (pos-
sible feature assignments). This leads to an exponential blow up. Indeed, given A and
F all possible interpretations are equal to 2|A| ·

∏
〈f,Df 〉∈F |Δc(D)| where the first term

represents all possible true/false assignments to propositional variables in A while the
second term takes into account all possible values to be assigned to concrete features in
F . We could be more efficient in the computation of MCS and UT if we consider our
problem as an instance of MAX-WEIGHTED-SAT [10].

Definition 4 (MAX-WEIGHTED-SAT). Given a set of atoms A, a propositional formula
φ ∈ LA and a weight function ω : A −→ N, find a truth assignment satisfying φ such
that the sum of the weights of true variables is maximum.

We call MAXIMALCOVERINGSPECIALIZATION the instance of MAX-WEIGHTED-SAT:

Definition 5 (MAXIMALCOVERINGSPECIALIZATION). Given a set of hard
constraints SRh, a structural knowledge base SKB and a set of integrity constraints
IC find a truth assignment I |= SKB∪IC such that the number of variables A ∈ SRh

with AI = true is maximum.

In order to find the maximum number of satisfiable hard constraints in SRh we
transform our MAX-WEIGHTED-SAT problem into a corresponding Integer Linear Pro-
gramming (ILP) problem, using the standard transformation of clauses into linear in-
equalities [11]. For the sake of clarity, here we present the procedure for propositional
clauses, as introduced in [11]. In our ILP problem the function to maximize is the one
referring to Stakeholder Requests SRh, as we want to maximize such preferences as
much as possible. Hence, the function to be maximized is srh =

∑
i xi where xi is

the corresponding binary variable for each Ai ∈ SRh. Therefore, given a solution of
the optimization problem, if xi = 1 this means that Ai = true, while if xi = 0 then
Ai = false.

26 E. Bagheri et al.

The constraints of the optimization problems are the ones coming both from the
structural knowledge base (SKB) and the integrity constraints base (IC). In order to
have a set of constraints for our ILP problem we have to encode clauses into linear
inequalities, mapping each ci occurring in a clause φ with a binary variable xi. If ci

occurs negated in φ then ¬ci is substituted with (1 − xi), otherwise we will need to
substitute ci with xi. After this rewriting it is easy to see that, considering ∨—logical
or—as classical addition (and ∧ as multiplication), in order to have a clause true the
evaluation of the corresponding expression must be a value grater or equal to 1.

With this formalization, it is now easy to create a feature model specialization pro-
cess based on a given set of stakeholder hard constraints, feature model structural
knowledge and integrity constraints by solving this straightforward Integer Linear Prob-
lem. As outlined earlier, the stakeholders can go through a repetitive process of chang-
ing their expressed constraints and re-generating the feature model specialization until
they are satisfied with the outcome. The ILP-based specialization algorithm is now
computationally efficient as well as sound and complete [11, p.314].

Soft Constraints Satisfaction: In most cases, the maximal covering specialization of
a feature model is not a complete model configuration, i.e., many unbound features
remain in the specialization that need to be considered. The suitability of such fea-
tures needs to be evaluated within the context of the stakeholders’ soft constraints. For
instance, if the stakeholders are looking for a fast algorithm, and two features are avail-
able with similar corresponding functionality, but one is fast and inaccurate and the
other is slow but accurate, the former is selected. For this purpose, we have two pieces
of valuable information at our disposal, namely utility knowledge of the feature model
(UKB), and stakeholders’ soft constraints (SRs). A feature would be more relevant to
the stakeholders’ objectives if its utility knowledge closely matches those requested in
the stakeholders’ soft constraints. For instance, assuming that the soft constraint of the
stakeholders is to create a cheap software tool, and if we have two functionally-similar
features that can be selected, the feature whose utility knowledge shows that its im-
plementation is not costly will be the preferred feature. Also note that, by definition,
UBK ∪ IC ∪ {mcs} is never inconsistent. There always exists an interpretation I such
that both I |= mcs and I |= UBK ∪ IC.

Definition 6. Let f ∈ SKB, f �∈ MCS be a feature of the feature model not selected in
the maximal covering specialization of the model and UKBf : f →

∧
h cnh = μf

cnh
∧ψ

the related fuzzy clause in UKB such that UBK ∪ IC ∪ MCS |= ψ. We denote with
UKBcn

f the utility annotation of feature f with respect to concern cn, and SRcn
s the

soft constraint of the stakeholders with regards to concern cn. The degree of fitness of f
in the context of concern cn, denoted FIT(f, cn), where ⊗ is a fuzzy T-norm operator
defined as follows:

FIT(f, cn) = SRcn
s ⊗ UKBcn

f .

In other words, given the interpretations of Imcs |= UBK ∪ IC ∪ MCS, we consider
all those fuzzy clauses such that for their deterministic part ψ the relation Imcs |= ψ
holds too. Since each feature is annotated with multiple concerns, we can interpret the
information through Mamdani-type fuzzy inference [12] to calculate the fitness of a
feature over all concerns (cni), denoted as FIT(f):

Configuring Software Product Families Based on Stakeholders’ Constraints 27

Fig. 4. Computing the fitness of a feature f in context of two concerns: speed and performance

FIT(f) =
⊕

cni

SRs
cni ⊗ UKBf

cni .

where ⊕ is a t-conorm operator. The reason for choosing Mamdani-type fuzzy inference
can be explained by its fuzzy representation of both the antecedent and consequence of
the rules in contrast with other fuzzy inference methods such as the TSK method [13].
The developed fuzzy fitness measure for each feature can serve as an ordering mecha-
nism for feature prioritization. Priorities can be established by defuzzifying the fuzzy
fitness measures through some defuzzifier such as the centroid or maximum defuzzifiers
[13]. The corresponding priority value for a feature would be represented by FIT(f)∗.
The process of calculating FIT(f)∗ for the approximate feature is depicted in Figure 4
(feature utility knowledge on the left, stakeholder soft constraints in middle, and rea-
soning results on right). As it can be seen in this figure, the utility knowledge of this
feature and the soft constraints of the stakeholders over the two concerns are used for
performing the inference. After the Mamdani-type fuzzy inference process, the fitness
of the approximate feature for that specific stakeholder is shown to be Medium.

Definition 7. Let f1, f2 be two features such that f1, f2 ∈ SKB, f1, f2 �∈ MCS. We
define f1 <FIT f2 as FIT(f1)∗ < FIT(f2)∗.

With the above ordering, it is now possible to extend the maximal covering specializa-
tion algorithm to support soft constraints. Algorithm 2 shows the structure of this pro-
cess called the MAXIMALCOVERINGCONFIGURATION. Algorithm 2 builds on MAXI-
MALCOVERINGSPECIALIZATION by supporting the satisfaction of soft constraints and
providing means for interactive configuration. The features that are not present in the
maximal covering specialization are rank-ordered based on their fitness with respect to

28 E. Bagheri et al.

the soft constraints of the stakeholders and are recommended to the stakeholders in that
order. They can be added to the feature model specialization if and only if they are not
conflicting with the features in MCS computed via MAXIMALCOVERINGSPECIAL-
IZATION.

Algorithm 2. MAXIMALCOVERINGCONFIGURATION(SRs,SRh, IC,SKB,UKB)

MCS ← MAXIMALCOVERINGSPECIALIZATION(SRh, IC,SKB)

Temp← ∅
for each (Ai →

∧
h cnh = μAi

cnh
∧ ψ ∈ UKB such that both IC ∪ SKB ∪MCS |= ψ

and IC ∪ SKB ∪MCS ∪ {A1}
|= ⊥)

do
{
Feat← 〈A1,COMPUTEFITNESS(A1,SRs,UKB)〉
Temp← Temp ∪ Feat

Feat← ORDERDESC(Feat,<FIT)

MCC ←MCS
for i← 0 to SIZE(Feat)

do

⎧
⎪⎪⎨

⎪⎪⎩

〈A, fit〉 ← Feat[i]
if (IC ∪ SKB ∪ {A} ∪MCC
|=⊥)&(Stakeholders Approval)

then
MCC ← A ∪MCC

return (MCC)

The stakeholders are able to interact with this algorithm by accepting/rejecting the rec-
ommended features. This process is repeated until all features are processed. The algo-
rithm will end by providing a complete feature model configuration (MCC).

In summary, the interactive configuration process consists of the following steps:
1) Hard and soft constraints of the stakeholders are defined; 2) A maximal covering
specialization based on the structural knowledge, integrity constraints and hard con-
straints of the stakeholders is developed (by MAXIMALCOVERINGSPECIALIZATION);
3) Stakeholders analyze the suitability of the provided specialization. In light of the pro-
vided specialization, they can change some of their initial hard constraints in order to
gain a more suitable specialization in case of which a new specialization is developed
based on the new hard constraints; 4) The remaining unbound features of the feature
model are ranked based on the stakeholders’ soft constraints and are recommended to
the stakeholders (using MAXIMALCOVERINGCONFIGURATION).

5.1 An Illustrative Example

Lets suppose that a group of stakeholders are interested in creating a software graph
manipulation package, which is able perform graph coloring, and breadth-first search and
also checking the strongly-connectedness property of a weighted graph. Further, suppose
that they are able to compromise speed for performance. We would need to elicit the hard
and soft constraints of the stakeholders along with the utility knowledge of the features
of GPL. As will be seen, we only need the utility knowledge of the two child features
of the graph coloring feature in this example, namely ColoringApproximation and
BruteForceColoring; therefore, the information given in Figure 2 will be used. The
stakeholder hard constraints can be represented as:

SRh = {GraphColoring, StronglyConnected, Weighted, BFS},

Configuring Software Product Families Based on Stakeholders’ Constraints 29

which means that these four mentioned features are strictly required by the stakeholders
to be included in the final product configuration. Since it has been expressed that the
stakeholders prefer performance to speed, it can be inferred that performance has a
higher priority compared to speed. This soft constraints can be shown as

SRs = {peformance = μp
SRs

, speed = μs
SRs

},

where

μp
SRs

= tri(LOW, HI, MED,
MED + HI

2
, HI),

μs
SRs

= tri(LOW, HI, LOW, LOW, MED).

Given these information, we are now able to compute the maximal covering configura-
tion of GPL: In the first step, the stakeholders’ hard constraints, the integrity constraints
and the structural knowledge of the feature model are automatically converted into an
integer linear program, and the problem of finding the maximal covering specialization
is turned into finding a variable assignment that finds an assignment that satisfies the
maximum number of stakeholders requests. Such an assignment is added to MCS, and
the unsatisfiable facts are added to UT . The result is:

MCS = {Weighted, GraphColoring, DFS, ¬BFS, StronglyConnected,
Directed, ¬Undirected}

UT = {BFS}
which shows that all hard constraints other than BFS have been satisfied in the de-
veloped specialization of GPL. The stakeholders are now able to view and analyze the
developed specialization and decide whether they want to continue with it or desire to
change the hard constraints to gain BFS in trade for some other features.

In the second step, assuming that the specialization is accepted, the remaining fea-
tures are ranked based on <FIT and recommended to the stakeholders. The open features
that need to be considered are ColoringApproximation and BruteForceColoring.
In light of the utility knowledge (UKB) provided by the stakeholders, we can infer that
BruteForceColoring<FIT ColoringApproximation; therefore, with priority given
to BruteForceColoring, it will be recommended to the stakeholders first, and if not
selected, ColoringApproximation is then suggested. The selection of any of these
features will complete the configuration of the GPL feature model based on the hard
and soft constraints of the stakeholders. The right-side of Figure 1 depicts the final
configuration of GPL after the selection of the BruteForceColoring feature.

6 Related Work

Feature model configurations can be verified using Logic Truth Maintenance Systems
(LTMS) in their representation in the form of propositional formula [14,15,16]. Three
of the most widely used methods in this area are Constraint Satisfaction Problem (CSP)
solvers [17], propositional SATisfiability problem (SAT) solvers [18], and the Binary
Decision Diagrams (BDD) [5]. The basic idea in CSP solvers is to find states (value
assignments for variables) where all constraints are satisfied. Although being the most

30 E. Bagheri et al.

flexible proposal for verifying feature model configurations, they fall short in terms of
performance time on medium and large size feature models [19]. Somewhat similar to
CSP solvers, SAT solvers attempt to decide whether a given propositional formula is
satisfiable or not, that is, a set of logical values can be assigned to its variables in such a
way that makes the formula true. SAT solvers are a good option for manipulating feature
models since they are becoming more and more efficient despite the NP-completeness
of the problem itself [16]. Closely related is the employment of Alloy [20] for analyzing
the properties of feature models that is based on satisfiability of first-order logic spec-
ifications converted into boolean expressions [21]. Also, BDD is a data structure for
representing the possible configuration space of a boolean function, which can be use-
ful for mapping a feature model configuration space. The weakness of BDD is that the
data structure size can even grow exponentially in certain cases; however, the low time
performance results of BDD solvers usually compensates for their space complexity.

More closely related to the theme of this paper, Czarnecki et al. have developed prob-
abilistic feature models where a set of joint probability distributions over the features
provide the possibility for defining hard and soft constraints [22]. The joint probabil-
ity distributions are mined from existing software products in the form of Conditional
Probability Tables (CPT); therefore, such tables reveal the tendency of the features to
be seen together in a software product rather than desirability, i.e., two features may
have been seen together in many configurations of a feature model in the past, but they
are not desirable for the given product description on hand. Hence, probabilistic feature
models are ideal for representing configuration likelihood but not desirability, which is
the core concept of the proposal of our paper. Our paper focuses on the strategic objec-
tives of the stakeholders denoted as concerns and tries to align the best possible feature
matches to those concerns; therefore, it addresses desirability rather than likelihood.
The concepts of the current paper is more closely related to weighted feature models
introduced in [23].

7 Concluding Remarks

The research community has put much emphasis on developing methods for the syntac-
tical validity checking of model configurations. These methods mainly focus on form-
ing grammatical correspondences for the graphical representation of feature models and
perform automated syntactical analysis based on the model integrity constraints. How-
ever, considering the strategic objectives and goals of the stakeholders and the specific
domain requirements in the feature model configuration process can ensure that the
preferences of the target audience of the product are met as well. In this paper, we have
introduced and proposed the use of the fuzzy extension of P(N) in order to capture
both hard and soft constraints of the stakeholders. On this basis, we have developed
a maximal covering specialization algorithm that creates a specialization of a feature
model based on stakeholders hard constraints, which is complemented by the maximal
covering configuration algorithm that orders and creates a sound and complete configu-
ration given the constraints of the stakeholders. The focus of the developed techniques is
to achieve maximum desirability for the developed feature model configuration for the
stakeholders. Hence, stakeholders’ objectives take center place in the proposed methods
where they are matched against the utility knowledge of the features.

Configuring Software Product Families Based on Stakeholders’ Constraints 31

References

1. Pohl, K., Böckle, G., Van Der Linden, F.: Software Product Line Engineering: Foundations,
Principles, and Techniques. Springer, Heidelberg (2005)

2. Czarnecki, K., Helsen, S., Eisenecker, U.: Staged configuration using feature models. In:
Nord, R.L. (ed.) SPLC 2004. LNCS, vol. 3154, pp. 266–283. Springer, Heidelberg (2004)

3. Kang, K., Lee, J., Donohoe, P.: Feature-oriented product line engineering. IEEE Software 19,
58–65 (2002)

4. Lopez-Herrejon, R., Batory, D.: A standard problem for evaluating product-line method-
ologies. In: Bosch, J. (ed.) GCSE 2001. LNCS, vol. 2186, pp. 10–24. Springer, Heidelberg
(2001)

5. Mendonca, M., Wasowski, A., Czarnecki, K., Cowan, D.: Efficient compilation techniques
for large scale feature models. In: International Conference on GPCE, pp. 13–22 (2008)

6. Wang, H., Li, Y., Sun, J., Zhang, H., Pan, J.: Verifying feature models using OWL. Web
Semantics: Science, Services and Agents on the World Wide Web 5, 117–129 (2007)

7. Batory, D.: Feature models, grammars, and propositional formulas. In: Obbink, H., Pohl, K.
(eds.) SPLC 2005. LNCS, vol. 3714, pp. 7–20. Springer, Heidelberg (2005)

8. Ragone, A., Noia, T.D., Sciascio, E.D., Donini, F.M.: Logic-based automated multi-issue
bilateral negotiation in peer-to-peer e-marketplaces. JAAMAS 16, 249–270 (2008)

9. Sommerville, I., Sawyer, P.: Viewpoints: principles, problems and a practical approach to
requirements engineering. Annals of Software Engineering 3, 101–130 (1997)

10. Ausiello, G., Crescenzi, P., Kann, V., Marchetti-Sp, Gambosi, G., Spaccamela, A.M.: Com-
plexity and Approximation: Combinatorial Optimization Problems and Their Approximabil-
ity Properties (2003)

11. Papadimitriou, C., Steiglitz, K.: Combinatorial Optimization: algorithms and Complexity.
Prentice-Hall, Inc., Englewood Cliffs (1982)

12. Mamdani, E.: Application of fuzzy logic to approximate reasoning using linguistic synthesis.
In: Sixth International Symposium on Multiple-Valued Logic, pp. 196–202 (1976)

13. Yager, R., Filev, D.: Essentials of fuzzy modeling and control. John Wiley, Chichester (1994)
14. Schobbens, P., Heymans, P., Trigaux, J.: Feature diagrams: A survey and a formal semantics.

In: 14th IEEE International Conference Requirements Engineering, pp. 139–148 (2006)
15. Janota, M., Kiniry, J.: Reasoning about feature models in higher-order logic. In: Software

Product Line Conference 2007, pp. 13–22 (2007)
16. Benavides, D., Segura, S., Trinidad, P., Ruiz-Cortes, A.: FAMA: Tooling a framework for the

automated analysis of feature models. In: VAMOS Workshop, pp. 129–134 (2007)
17. Benavides, D., Trinidad, P., Ruiz-Cortes, A.: Automated reasoning on feature models. In:

Pastor, Ó., Falcão e Cunha, J. (eds.) CAiSE 2005. LNCS, vol. 3520, pp. 491–503. Springer,
Heidelberg (2005)

18. Batory, D.: Feature models, grammars, and propositional formulas. In: Obbink, H., Pohl, K.
(eds.) SPLC 2005. LNCS, vol. 3714, pp. 7–20. Springer, Heidelberg (2005)

19. Benavides, D., Segura, S., Trinidad, P., Ruiz-Cortés, A.: A first step towards a framework for
the automated analysis of feature models. Technical Report (2006)

20. Jackson, D.: Alloy: a lightweight object modelling notation. ACM Trans. Softw. Eng.
Methodol. 11, 256–290 (2002)

21. Gheyi, R., Massoni, T., Borba, P.: A theory for feature models in alloy. In: First Alloy Work-
shop, pp. 71–80 (2006)

22. Czarnecki, K., She, S., Wasowski, A.: Sample spaces and feature models: There and back
again. In: SPLC 2008, pp. 22–31. IEEE Computer Society, Washington (2008)

23. Robak, S., Pieczynski, A.: Employing fuzzy logic in feature diagrams to model variability in
software product-lines. In: ECBS 2003, pp. 305–311 (2003)

J. Bosch and J. Lee (Eds.): SPLC 2010, LNCS 6287, pp. 32–46, 2010.
© Springer-Verlag Berlin Heidelberg 2010

Usage Context as Key Driver for Feature Selection

Kwanwoo Lee1 and Kyo C. Kang2

1 Department of Information Systems Engineering, Hansung University,
389 Samsun-dong 3ga, Sungbuk-gu, Seoul, 136-792, Korea

kwlee@hansung.ac.kr
2 Department of Computer Science and Engineering, POSTECH

San 31 Pohang, Kyoungbuk, 790-784, Korea
kck@postech.ac.kr

Abstract. Product derivation in software product line engineering starts with
selection of variable features manifested in a feature model. Selection of vari-
able features for a particular product, however, is not made arbitrarily. There
are various factors affecting feature selection. We experienced that the usage
context of a product is often the primary driver for feature selection. In this pa-
per, we propose a model showing how product usage contexts are related to
product features, and present a method for developing such a model during the
domain engineering process and utilizing it to derive an optimal product con-
figuration during the application engineering process. An elevator control soft-
ware example is used to illustrate and validate the concept and the method.

Keywords: feature modeling, product derivation, product usage contexts,
commonality and variability.

1 Introduction

The primary goal of feature modeling is to analyze commonalities and variabilities of
a software product line in terms of features. Variants (e.g., optional or alternative
features) manifested in a feature model (FM) are selected to derive products during
application engineering.

Selection of variable features for a particular product is not made arbitrarily. From
our experiences of working on several industrial projects, we have observed that
product usage contexts often dictate feature selection. For example, flash memory,
which is a non-volatile data storage, is primarily used in memory cards and USB
drivers. Although storing data in a flash memory is the main functionality, its imple-
mentation techniques (e.g., algorithms and data structures) are quite different depend-
ing on the usage context of it. In the USB driver’s case, fast storage cycle and small
block size give it a significant advantage in supporting data integrity, as it can be
pulled out any time. In that domain, we experienced that, although the functionality is
same, its implementation features depend heavily on the usage context. As another
example, elevator products can largely be classified into passenger elevator or freight
elevator depending on their main purpose of use. Since passenger elevators have a
goal of carrying passengers comfortably, services or devices for comfortable ride are

 Usage Context as Key Driver for Feature Selection 33

required. On the other hand, freight elevators do not necessarily require comfortable
ride. They instead focus on carrying heavy loads safely, which requires special opera-
tional functions and devices for handling heavy loads. These examples show that,
although the functionality is same, its implementation features are often dictated by
the product’s usage context, and we need to provide a systematic approach to analyz-
ing usage contexts of a product line and using this information to support product
configuration.

There have been several attempts to relating features and contextual factors affect-
ing feature selection. Hartmann, et al. [7] proposed a context variability model which
constrains a feature model by describing how contextual variations (e.g., different
geographic regions) affect selection of feature variations. Tun et al. [14] used contex-
tual variations as links between requirement variations and feature variations. In
summary, both approaches model contextual variations that affect feature selection as
a separate contextual FM and relate the contextual FM to the application FM through
feature dependencies (e.g., requires and excludes). Although feature dependencies
between the contextual FM and the application FM affect selection of features in the
application FM, they are not the only one that affects feature selection. Rather than
one contextual feature affecting selection of application features, a group of contex-
tual features determines product goals and attributes, which in turn affects selection of
application features.

A number of concerns/goals that stakeholders (e.g., customers) have also affect fea-
ture selection. Suppose, for example, that diesel and gasoline engines are alternative
features of an automobile product line. If fuel efficiency is the only concern a car buyer
has, a diesel engine will be selected. However, if the buyer’s concern is price, s/he
might take a gasoline engine instead. What if the buyer’s concern is both fuel efficiency
and price? The choice depends on which concern is more important to the buyer.

Originally the FODA method [8] records issues (e.g., concerns or objectives) re-
lated to each decision point of a feature model to help users make selections of both
optional and alternative features. Similarly, Thurimella, et al. [13] extended the fea-
ture model by augmenting selection criteria (e.g., product specific quality concerns),
and assessing each variable feature based on its related criteria. Although both ap-
proaches used selection criteria to support feature selection decisions, they do not
provide a model showing how selection criteria are derived and how they are related
to user goals and product features.

This paper starts with the premise that the usage contexts of a product provide use-
ful information to application engineers helping them making decisions during the
feature selection process. This information might be manifested as contextual con-
straints imposed on selectable features or identified as selection criteria (quality at-
tributes). By analyzing various usage contexts of a product, we can systematically
extract the information.

This paper is organized as follows. Section 2 defines a model describing how usage
contexts are related to product features. Section 3 presents how this model can be
constructed during the domain engineering process and utilized to derive an optimal
product configuration during the application engineering process. An elevator control
software example is used as a running example in section 4. Our approach is com-
pared with other related work in section 5. Finally we conclude this paper with dis-
cussion on the presented approach.

34 K. Lee and K.C. Kang

2 Usage Context Driven Domain Knowledge Modeling

Usage contexts are treated in this paper as key drivers in selecting variable features
for a particular product. In this section, we first explore factors affecting feature selec-
tion, and then describe how those factors are related to usage contexts. Based on this
understanding, we present a meta-model describing how usage contexts affect feature
selection.

2.1 Factors Affecting Feature Selection

A feature model provides configurable options that can be selected for derivation of
products in a software product line. Feature selection is the process of determining
optimal choices that satisfy product goals and quality requirements. Typically, there
are two types of factors that have significant impacts on feature selection: They are
quality attributes/customer goals and technical constraints.

Quality attributes may affect selection or rejection of a feature. For example, when
an elevator product has quality concerns such as high level of safety and comfort for
passengers, various safety devices and speed control algorithms for smooth riding can
be selected as product features. On the other hand, if low development cost is the
primary concern of the customer, low-cost devices are configured for the product or
optional features with high development cost will be excluded.

In addition to quality attributes, technical constraints also affect feature selection
by excluding or restricting some variable features. Some of these constraints come
from technical capabilities of software and/or hardware features within a product: For
example, selection of a certain functional feature requires selection of a certain hard-
ware device feature as the functional feature uses the capabilities provided by the
hardware device. Some constraints may come from the outside of a product, i.e., us-
age contexts, which will be discussed in the following section.

2.2 Usage Context

Informally, usage contexts are any contextual settings in which a product is deployed
or used, which can be detailed in terms of user, physical, social, business, operating
environments, etc. In this section, we describe how usage contexts are related to qual-
ity attributes or constraints that have significant impacts on feature selection.

User contexts may include the target user groups, their profile (e.g., cultural and
technical backgrounds), usage patterns, etc. The user context provides important in-
formation for determining product quality attributes. For example, if the target users
of an elevator are office workers who typically use it when arriving at the building in
the morning and leaving the building after work, the elevator may have a set of qual-
ity concerns (e.g., minimum waiting time) to address that particular usage pattern
(e.g., peak requests for service at rush hour) of the users.

Physical contexts indicate physical environments or locations where a product is
deployed and used. For instance, the number of floors is a physical context of an ele-
vator. The capacity and speed of a passenger elevator are related to the floor space
and the number of floors of a building. Some constraints on the capacity and speed
can be specified considering these physical conditions.

 Usage Context as Key Driver for Feature Selection 35

Social contexts include cultural traits and legal constraints. Analyzing various so-
cial contexts in which a product is operated helps deciding constraints that affect
feature selection. For example, Sabbath prohibition prevents Jews from operating
electrical devices when Sabbath is in effect. Thus an elevator used in a Jewish society
may have a constraint for providing the feature stopping an elevator automatically at
every floor.

Business contexts influence factors, such as price ranges, that affect product de-
sign. For example, the elevator market for small apartments may require low-end
elevators that use inexpensive devices or do not provide extra features with high im-
plementation costs.

A product may interface with external systems or devices and run on a specific
hardware or software platform. A specific operating environment may restrict or re-
quire selection of particular functional features.

In summary, by analyzing usage contexts, we can derive not only product quality
attributes that should be satisfied by product features but also technical constraints
that exclude or restrict selection of product features in a feature model. These product
quality attributes and constraints play important roles in selecting a right set of fea-
tures for a product. The next section discusses how this information can be captured
in a domain knowledge model.

2.3 Domain Knowledge Model

As discussed above, the usage context of a product implies required quality attributes
or constraints, which, in turn, affect feature selection. Often, this domain knowledge
has not been captured during domain engineering. In this section, we describe how
this knowledge can be captured as a domain knowledge model.

Fig.1 shows the domain knowledge model describing domain variability in terms
of usage contexts, quality attributes, and product features. Usage contexts are related
to product features directly through UC-PF Mapping or indirectly through a series of
mapping relations with Quality Attribute Feature.

Product
Feature

Product Feature
Variability

Model

Usage Context
Variability

Model

Quality Attribute
Variability
Model

UC-QA
Mapping QA-PF

Mapping

UC-PF
Mapping

*

*

*

Quality
Attribute
Feature

*

** *

Usage
Context
Feature

* *

**

*

Fig. 1. Domain knowledge model

36 K. Lee and K.C. Kang

Before we discuss the modeling elements shown in Fig. 1, we first introduce the
feature diagram (FD) used in this paper.

Feature Diagram (FD). This diagram captures commonalities and variabilities of a
product line in terms of features, which describe product characteristics from various
stakeholder views: end-user, customer, analyst, architect, developer, etc. A feature
can have a set of attributes, each of which is defined in terms of a variable name,
value range of the variable (the range of possible values that the variable takes), and,
optionally, a default value.

Features are organized into a FD using several relationships (i.e., Aggregation,
Generalization, and Implemented-by) [9]. In addition, FD specifies allowed feature
varibilities through various feature dependencies (Mandatory, Alternative, OR, Re-
quires, Excludes, etc.). Feature selection is the process of determining a valid feature
set that satisfies all the feature dependencies specified in a FD. Note that assigning
attribute values of a selected feature is also a part of the feature selection process. FD
has typically been used to model the problem space or the solution space of a product
line. In this paper, we extend the usage of FD to model the usage contexts of the
products of a product line.

Usage Context Variability Model (UCVM). This model describes the variability of
the contexts in which products of a product line are deployed or used. The usage con-
text variability can be classified into user, physical, social, business, operating con-
texts, which are described in section 2.2. FD is used to represent a UCVM, in which
each type of usage contexts is modeled as a usage context (UC) feature. A detailed
example will be provided in section 4.

Quality Attribute Variability Model (QAVM). This model describes the variability
of the quality attributes that products of a software product line must satisfy. Each
quality attribute is also modeled as a quality attribute (QA) feature with an attribute
weight that indicates how important the quality attribute is for a specific product. A
QA feature can be refined into a set of quality concerns or scenarios, i.e., as sub-QA
features. In case all sub-QA features are required to satisfy their parent QA feature,
we can model this as “mandatory dependency” between them. Also in case a QA
feature can be achieved by only one of its sub-QA features, “alternative dependency”
can be specified between the QA feature and its sub-QA features. In this way, the
variability of quality attributes is modeled using FD.

Product Feature Model (PFM). This model describes the variability of a product
line in terms of product features, which can be classified into capabilities, operating
environments, domain technologies, and implementation techniques as suggested in
FORM [9]. The most common usage of FD is to represent a PFM.

UC-QA Mapping. The links between UCVM and QAVM are defined in UC-QA
Mapping which describes how usage contexts are related to quality attributes. At first
glance, it seems to be sufficient to have a mapping from each UC feature in a UCVM
to a QA feature in a QAVM. However, we need to deal with more complex cases. For
example, a usage context may drive multiple quality attributes, or a combination of
different usage contexts might imply particular quality attributes. In general we can
describe n-to-m mapping. Therefore, a mapping between UC features and QA fea-
tures is defined as follows.

 Usage Context as Key Driver for Feature Selection 37

Definition 1. Let FUCVM and FQAVM be the sets of features in UCVM and QAVM re-
spectively. Further, let CUCVM and CQAVM be the power sets of FUCVM and FQAVM. UC-
QA Mapping, MUC-QA is defined as a binary relation on CUCVM × CQAVM. For any UC in
CUCVM and QA in CQAVM, then (UC, QA) ∈ MUC-QA indicates that the set of usage con-
texts UC drives the set of quality attributes QA.

For example, let uc1, uc2, and uc3 be UC features in a UCVM, and q1 and q2 be QA
features in a QAVM. ({uc1}, {q1, q2})∈ MUC-QA represents that uc1 requires q1 and
q2. ({uc2, uc3}, {q2}) ∈ MUC-QA indicates that both uc2 and uc3 require q2.

QA-PF Mapping. The links between QAVM and PFVM are defined in QA-PF Map-
ping which describes how quality attributes are related to product features. Some product
features may work for or against each QA feature. This leads to the following definition.

Definition 2. QA-PF Mapping, MQA-PF is defined as a ternary relation on FQAVM ×
FPFVM×R. FQAVM and FPFVM are the set of QA features in QAVM and the set of product
features in PFVM, respectively, and R is a set of impact weight values, i.e., make
(++), help (+), hurt(-), and break(--) [4].

For example, let q1 be a QA feature in a QAVM and f1 be a product feature in a
PFVM. Then (q1, f1, help) ∈ MPG-PF indicates that the product feature f1 has a posi-
tive impact for the achievement of the quality attribute q1. However, this does not
imply that f1 has to be selected, because it may have negative impacts on achievement
of other product quality attributes.

UC-PF Mapping. A usage context directly requires or excludes selection of a product
feature or a set of product features. These constraints are mostly n-to-m mappings.

Definition 3. Let CUCVM and CPFVM be the power sets of FUCVM and FPFVM. UC-PF
Mapping, MUC-PF is defined as a ternary relation on CUCVM × CPFVM × CPFVM. Let UC ∈
CUCVM, RF∈ CPFVM, EF ∈ CPFVM, and RF∩EF=∅, then (UC, RF, EF) ∈ MUC-PF indi-
cates that the set of usage contexts UC requires selection of all features in RF and
exclude all features in EF.

For example, let uc1 and uc2 be optional usage context features in a UCVM and f1
and f2 be optional product features in a PFVM. Then ({uc1, uc2},{f1}, {f2})∈ MUC-PF

means that if the usage context features uc1 and uc2 are selected, the product feature
f1 needs to be selected while the product feature f2 must not be selected.

In the next section, we discuss how these models are constructed.

3 Method Activities

In this section, we provide an overview of the proposed approach in terms of method
activities and their related artifacts. Software product line engineering (SPLE) con-
sists of two processes: domain engineering and application engineering. Domain en-
gineering consists of domain analysis, domain design, and domain implementation,
while application engineering consists of product analysis (feature configuration),
product design, and product implementation. In this paper, we focus on domain and
product analysis.

38 K. Lee and K.C. Kang

Usage
Context
Analysis

Quality
Attribute
Analysis

Product
Feature
Analysis

Usage
Context

FD

Quality
Attribute

FD

UC-QA
Mapping

QA-PF
Mapping

Product FD

QA
Configuration

Derivation

PF
Configuration

Derivation

QA
Configuration

PF
Configuration

UC-PF
Mapping

UC
Configuration

Derivation

UC
Configuration

D
o
m

ain A
nalysis

Feature C
o
nfig

uratio
n

Fig. 2. Method activities and related artifacts

Domain analysis is the process of analyzing software products in a domain to find
their common and variable parts. In this paper, commonality and variability of soft-
ware products are identified and analyzed in terms of usage contexts, quality attrib-
utes, and product features.

Domain analysis starts with Product Feature Analysis. During Product Feature
Analysis, a Product FD is created, which describes commonalities and variabilities of
products in a product line in terms of product features. For each selectable feature of
the Product FD, key driving factors for feature selection are analyzed during Usage
Context Analysis and Quality Attribute Analysis.

During Usage Context Analysis, a Usage Context FD is created, which describes
contextual variabilities of products of a product line in terms of user, physical, social,
business, and operating contexts. In addition, as some usage contexts may constrain
selection of product features, these constraints are specified in UC-PF Mapping. Note
that a UC Configuration (a valid set of usage context features) derived from the Us-
age Context FD indicates the usage context of a particular product.

During Quality Attribute Analysis, each UC Configuration is further analyzed to
identify related quality attributes. The output of this activity is a Quality Attribute FD,
which describes the variability of quality attributes of products in a product line, and
UC-QA Mapping, which describes mappings between UC Configurations and QA
Configurations. In addition, as a feature may have positive or negative impacts on the
achievement of one or more quality attributes, relationships between product features
and quality attributes are specified in QA-PF Mapping (with impact weights).

With created domain artifacts as input, we can start the feature selection process to
derive a PF Configuration. The first step (UC Configuration Derivation) is to decide

 Usage Context as Key Driver for Feature Selection 39

a UC Configuration from the Usage Context FD by selecting usage context features
that are required for a particular product to be derived. After the usage context of the
product is configured, QA Configuration Derivation can be automatically performed
using UC-QA Mapping. The final step (PF Configuration Derivation) is to include or
exclude features specified in UC-PF Mapping. This reduces the number of choices
that have to be made. In addition, product features are configured by evaluating fea-
tures in the Product FD with consideration of the identified quality features.

Note that during QA Configuration Derivation and PF Configuration Derivation,
conflicting configuration decisions need to be resolved and resolution must be re-
flected in the domain knowledge model.

The method discussed in this section is illustrated in the next section.

4 Running Example

The example selected in this paper is an elevator control software (ECS) product line.
In this section, we present the three variability models and three mappings which we
use to describe the domain knowledge of a software product line. Also we discuss
how these models are used to derive a product feature configuration.

Driving Services

Auto

Maintenance

VIP

Call
Handling

Door
Control

Running
profile

Leveling
profile

Exponential
profile

Uniform
profile

Rope
compensation

Regular form
profile

Sine form
profile

Hydraulic Electric

RelativeAbsolute Load
Cell

Limit
switch

Run
Control

Speed Profile

ECS FD

Motor

Position
Sensor Weight

sensor

Legend

Optional feature

Alternative (XOR)
features

Composed-of

Requires

Capability

Operating
Environment

Domain
Technology

Implementation
Technique

Geared Gearless

Position Control

Next Position Current Position

Calculation Compensation

Absolute
Position

Relative
Position

Next-Next
Position

Implemented-by

Call
Cancellation

Reopen
By Sensor

Scheduling

Preemption

Door
Time Ext

Operations

Weight Balancing
Control

Speed (m/min)

60 150 600300

450 2700680 2300 4500

Weight

OR features

Fig. 3. The product feature diagram of the ECS product line

40 K. Lee and K.C. Kang

4.1 Product Feature Analysis

Commonalities and variabilities of a software product line are mainly organized into a
Product FD. The ECS product line consists of functional features (i.e., Driving Ser-
vices and Operations) and non-functional features (i.e., Weight and Speed), as shown
in Fig. 3. A functional feature can be implemented with different sets of operating
environment and/or technical features. For example, Run Control can be implemented
with several operating environment features (e.g., Position Sensor) and technical
features (e.g., Position Control).

4.2 Usage Context Analysis

As described earlier, the contextual variability of a product line can be analyzed in
terms of user, physical, social, business, and operating contexts. Fig. 4 shows the
Usage Context FD that describes the contextual variability of the ECS product line
used to illustrate the method. In the example, Carrying Objects and # of Floors are
physical context features. On the other hand, Market represents a business context
feature. Carrying Objects can be Passenger, Freight, or both. Passenger can be fur-
ther refined into Office Worker, APT Resident, or Handicapped, of which at least one
must be selected for a particular product. # of Floors can be either <=10 or >10, and
Market can also be either Asia or Europe.

Usage Context

Carrying Objects

Passenger Freight

of Floors Market

Office
Worker

APT
Resident

Handicapped

<=10 >10 Asia Europe

Fig. 4. The usage context feature diagram of an elevator product line

Since usage context features may have influences on selection of product features,
we need to analyze what usage context features constrain selection of product fea-
tures. For example, the last row of Table 1 describes that a set of usage context fea-
tures (Asia, >10, Passenger, Office Worker) requires selection of the feature set (Elec-
tric and Gearless) and excludes selection of the feature set (60, 450, and 4500), as
passenger elevators of office buildings with more than ten floors in the Asian market
requires gearless motors, a speed faster than 60, and a weight heavier than 450 but
lighter than 4500. (Note here that the features Speed and Weight may well be modeled
as attributes, and 60, 450, and 4500 as attribute values. For the purpose of visibility
and illustration, we modeled them as features.)

 Usage Context as Key Driver for Feature Selection 41

Table 1. The UC-PF Mapping of the ECS product line

Usage Contexts Required Features Excluded Features

{Asia, Passenger} {60(Speed)}

{<=10, Passenger}
{300(Speed), 600(Speed), 2300(Weight),

2700(Weight), 4500(Weight)}

{>10, Passenger} {60(Speed), 450(Weight), 4500(Weight)}

{Freight} {450(Weight), 680(Weight)}

{Asia, >10,
Passenger, Office Worker}

{Electric, Gearless} {60(Speed), 450(Weight), 4500(Weight)}

4.3 Quality Attribute Analysis

The next step is to identify quality attributes implied by the usage contexts. Table 2
shows a small set of mappings between usage contexts and quality attributes. For
example, the usage context Handicapped requires quality attributes Position Accuracy
and Usability for Handicapped, as a handicapped person on a wheelchair may want to
get in or out of an elevator safely and easily. These mappings must be specified con-
sistently. Consistency of the mappings can be analyzed by translating them into logi-
cal expressions [2], which is out of the scope of this paper.

Table 2. The UC-QA Mapping of the ECS product line

Usage Contexts drive Quality Attributes

{Passenger} {Door Safety, Usability}

{Handicapped} {Position Accuracy, Usability For Handicapped}

{Office Worker} {Minimum Waiting Time, Usability for VIPs}

{APT Resident} {Usability for APT Resident}

{Asia, Passenger,>10} {Comfort, Position Accuracy}

{Europe} {Energy Efficiency, Low Cost}

{Freight} {Position Accuracy}

After identifying quality attributes, their variability needs to be modeled with FD.
Fig. 5 shows variabilities of the quality attributes of the ECS product line. In this
example, sub-features of Usability are modeled as OR features (at least one of them
must be selected), while others are modeled as optional features.

Some features in the Product FD can have positive or negative impacts on some
quality attributes specified in the Quality Attribute FD. Table 3 shows mappings be-
tween some features in the Product FD (Fig. 3) and their related quality attribute
features in the Quality Attribute FD (Fig. 5). For example, Position Sensor has two
alternative sub-features Absolute and Relative. Absolute position sensors are better
than relative position sensors in terms of accuracy but are more expensive. The deci-
sion on which one of them will be selected may vary depending on which quality
attribute is more important for a product.

42 K. Lee and K.C. Kang

Quality Attribute

Door
Safety

Position
Accuracy

Comfort Energy
Efficiency

Low CostUsability Minimum
Waiting
Time

Usability
For Handicapped

Usability
For VIPs

Usability
For APT
Resident

Fig. 5. The quality attribute feature diagram of the ECS product line

Table 3. The QA-PF Mapping of the ECS product line

Quality
Attributes

Product
Features

P
o
si

ti
o
n
 A

cc
u
ra

cy

D
o
o
r
Sa

fe
ty

U
sa

b
il
it
y

Fo
r
H

an
d
ic

ap
p
ed

U
sa

b
il
it
y

Fo
r
A
P
T

R
es

id
en

t

U
sa

b
il
it
y

Fo
r
V
IP

s

C
o
m

fo
rt

M
in

im
u
m

W
ai

ti
n
g

Ti
m

e

Lo
w

 C
o
st

En
er

g
y

Ef
fi
ci

en
cy

VIP +

Call Cancellation + -

Door Time Ext +

Reopen by Sensor +

Position
Sensor

Absolute(XOR) ++ -

Relative (XOR) + +

Motor

Hydraulic(XOR) - -

Electric(XOR) + +

Geared(XOR) - - + -

Gearless(XOR) + + - +

Weight
Sensor

Load Cell(XOR) + -

Limit Switch(XOR) +

Preemption +

Calculation
AbsolutePoistion (OR) ++ -

RelativePoistion (OR) + +

Compensation + -

Leveling Profile +

Exponential Profile(XOR) ++

Uniform Profile(XOR) +

Rope Compensation +

In this way, domain knowledge influencing feature selection can be modeled into
the three FDs and three mappings between them. The next section describes how the
domain knowledge models are used to derive a product feature configuration.

 Usage Context as Key Driver for Feature Selection 43

4.4 Derivation of Product Feature Configuration

Feature Configuration starts by selecting usage context features for a particular prod-
uct. Suppose for example that we select a set of usage context features (Passenger,
Office Worker, >10, Asia) as a UC Configuration. With the UC Configuration and the
UC-QA Mapping in Table 2, we can derive a QA Configuration that consists of Door
Safety, Usability, Minimum Waiting Time, Usability for VIPs, Comfort, and Position
Accuracy.

The final step is to derive a PF Configuration from the UC Configuration and the
QA Configuration, using QA-PF and UC-PF Mappings. At first, we can eliminate
some configuration choices of the Product FD by applying the constraints derived
from the UC Configuration and the UC-PF Mapping. In the example, given the UC
Configuration and the UC-PF Mapping in Table 1, we can derive constraints requir-
ing Electric and Gearless but excluding 60, 450, 4500.

In addition to the constraints, feature selection can be performed based on the as-
sessment results derived from a QA Configuration and QA-PF Mapping. In this ex-
ample, given the QA Configuration and the QA-PF Mapping in Table 3, we can select
features (VIP, Reopen by Sensor, Absolute, Electric, Gearless, Load Cell, Preemption,
AbsolutePosition, Compensation, Exponential Profile, and Rope Compensation)
whose assessment values are either positive or higher than the other alternatives.

Finally, remaining features, if exist, have to be configured. In case rationales on se-
lecting features have not been captured in the domain knowledge model, we can aug-
ment the model with such information.

5 Related Work

This paper is related to researches on modeling the knowledge of an application do-
main or a product line, and use of the model(s) for product derivation. In software
product line engineering, the feature diagram [8] and its extensions [3, 5, 9] have
played an important role in documenting not only commonalities and variabilities of a
product line but also configuration dependencies as domain knowledge.

In FODA [8] and FORM [9], it is stated that the feature diagram should be aug-
mented with issues and decisions to provide rationales for choosing options and se-
lecting among alternatives. Those issues (e.g., quality attributes) serve as criteria for
deciding which features are selected for a product. However, they do not discuss how
those issues and rationales are modeled, and how they are related to product features
and used in product configuration.

There have been several approaches to modeling quality issues and relating them to
features. Yu et al. [16] use a goal model to capture stakeholder goals (e.g., quality
attributes) and relate them to features. Thurimella et al. [13] proposed an issue-based
variability model that combines the orthogonal variability model (OVM) [11] with a
specific rationale-based unified software engineering model (RUSE) [15]. In the
model, quality attributes can be modeled as criteria for selecting variant features.
Bartholdt et al. [1] and Etxeberria et al. [6] also identified the relevance of quality
attributes to the choice of specific features and integrated quality modeling with fea-
ture modeling. In contrast to the work by Yu et al. and Thurimella et al., they use a
FD to model quality attributes, which is similar to the approach in this paper.

44 K. Lee and K.C. Kang

We also model quality attributes with a separate FD (a Quality Attribute FD). Cor-
relations between quality attributes and product features are described as the mapping
QA-PF Mapping. The proposed approach in this paper is mainly different from the
work mentioned above in that we made explicit connections to product usage con-
texts, which, in our experience, mainly decide required quality attributes and drive
feature selection.

Recently, several approaches have been proposed to relate product contexts to fea-
ture selection. Some of these include the work by Reiser et al. [12], Hartmann et al.
[7], and Tun et al. [14].

Reiser et al. use the concept of a product set to describe contextual constraints for
feature selection. For example, “a certain feature F will be included in all cars for the
entire North American market for some reason”. This approach is similar to ours in
that a group of contextual features (implying multiple products) constrain selection of
product features.

Hartmann et al. introduced a context variability model, which is equivalent to the
UCVM of this paper, to describe primary drivers for feature selection. A separate FD
is used to model contextual variability and linked to a product line FD, which de-
scribes the commonality and variability of a product line, through dependency rela-
tions such as requires, excludes, or restricting cardinality.

Similarly, Tun et al. describe contextual variability as a separate FD. However,
they further separate feature description into three FDs relating to requirements, prob-
lem world contexts, and specifications. Two sets of links (between requirement FD
and problem world context FD, and between problem world context FD and specifica-
tion FD) and quantitative constraints are used to describe constraints that affect fea-
ture selection. This work is very similar to the proposed approach in this paper, as we
also describe domain variability in terms of usage contexts, quality attribute, and
product features, which corresponds to problem world contexts, requirements, and
specifications, respectively. However, they do not take into account correlations be-
tween quality attributes and product features. Moreover, the proposed approach in this
paper is mainly different in that we treat product usage contexts as key drivers for
deciding product feature configurations.

6 Conclusion

This work was motivated from the observation that products with similar functional-
ities were often implemented differently. This was mainly because selection of oper-
ating environment, domain technology, and implementation features and architectural
design decisions (i.e., integration of the selected features) were largely driven by the
quality attributes required for a product. In turn, the quality attributes were decided by
the context of the product use. This is an important finding in product line engineer-
ing. Researches on product configuration has typically focused on functionalities and
operating environments, and has not addressed usage context analysis rigorously or as
a major analysis subject. However, usage context is the critical driver for product
configuration. Understanding their implications on feature selection is considered an
essential activity for deriving an optimal feature configuration.

 Usage Context as Key Driver for Feature Selection 45

In this paper, we presented a domain knowledge model, which describes not only
product line variabilities in terms of product features but also domain knowledge that
affects selection of variable product features. The proposed approach separates do-
main knowledge into three variability models related to usage contexts, quality attrib-
utes and product features, and defines mappings between each pair of them.

The domain knowledge model plays a central role in deriving an optimal feature
configuration. As described in sections 3 and 4, selection of usage context features in
the Usage Context FD drives contextual constraints as well as quality attributes. Con-
textual constraints reduce the configuration space of product features, while quality
attributes serve as evaluation criteria for feature selection. If we specify objective
functions (e.g., maximize or minimize) over the quality attributes, we can obtain fea-
ture configurations that are optimal with respect to given objective functions. In this
paper, correlations between quality attributes and product features are defined as
qualitative values, and the work by Bartholdt et al. [1] can complement our work.

The main advantage of our approach is that we can systematically record and relate
rationales for feature selection as a coherent model. In case where there are a small
number of products with a few contextual variations, constructing this model may not
be critical. However, as the scope of a product line is expanded and contextual varia-
tions increase, documenting and managing this model become indispensable for de-
riving valid and optimal feature configurations.

The process of constructing these models is iterative and incremental. For a prod-
uct feature, we can think about its usage contexts, which may trigger refinement of
required quality attributes, which again trigger refinement of the product feature into
operating environment and/or implementation features.

As future work we are planning to provide a tool support for constructing the do-
main knowledge model, deriving feature configurations automatically, or reasoning
on model validation. We validated the concept of our approach on a small industrial
project in the flash memory domain. To validate scalability, we plan to apply the
approach to a larger application domain.

Acknowledgments. This research was supported by the National IT Industry Promo-
tion Agency (NIPA) under the program of Software Engineering Technologies
Development.

References

1. Bartholdt, J., Meda, M., Oberhauser, R.: Integrating Quality Modeling with Feature Mod-
eling in Software Product Lines. In: 4th International Conference on Software Engineering
Advances, pp. 365–370. IEEE CS, Los Alamitos (2009)

2. Batory, D.: Feature Models, Grammars, and Propositional Formulas. In: Obbink, H., Pohl,
K. (eds.) SPLC 2005. LNCS, vol. 3714, pp. 7–20. Springer, Heidelberg (2005)

3. Benavides, D., Trinidad, P., Ruiz-Cortés, A.: Automated Reasoning on Feature Models. In:
Pastor, Ó., Falcão e Cunha, J. (eds.) CAiSE 2005. LNCS, vol. 3520, pp. 491–503.
Springer, Heidelberg (2005)

4. Chung, L., Nixon, B.A., Yu, E., Mylopoulos, J.: Non-Functional Requirements in Software
Engineering. Kluwer Academic Publishers, Boston (1999)

46 K. Lee and K.C. Kang

5. Czarnecki, K., Helsen, S., Eisenecker, U.: Staged Configuration Using Feature Models. In:
Nord, R.L. (ed.) SPLC 2004. LNCS, vol. 3154, pp. 266–283. Springer, Heidelberg (2004)

6. Etxeberria, L., Sagardui, G.: Variability Driven Quality Evaluation in Software Product
Lines. In: 12th International Software Product Line Conference, pp. 243–252. IEEE CS,
Washington (2008)

7. Hartmann, H., Trew, T.: Using Feature Diagrams with Context Variability to Model Mul-
tiple Product Lines for Software Supply Chains. In: 12th International Software Product
Line Conference, pp. 12–21. IEEE CS, Washington (2008)

8. Kang, K.C., Cohen, S.G., Hess, J.A., Novak, W.E., Peterson, A.S.: Feature-Oriented Do-
main Analysis (FODA) Feasibility Study. Technical report, SEI. Carnegie Mellon Univer-
sity, Pittsburgh, PA (1990)

9. Kang, K.C., Kim, S., Lee, J., Kim, K., Shin, E., Huh, M.: FORM: A Feature-Oriented Re-
use Method with Domain Specific Reference Architectures. Ann. Soft. Eng. 5, 143–168
(1998)

10. Mannion, M., Savolainen, J., Asikainen, T.: Viewpoint Oriented Variability Modeling. In:
33rd Annual IEEE International Computer Software and Application Conference, pp. 67–
72. IEEE CS, Washington (2009)

11. Pohl, K., Böckle, G., van der Linder, F.: Software Product Line Engineering Foundations,
Principles, and Techniques. Springer, Berlin (2005)

12. Reiser, M.O., Weber, M.: Using Product Sets to Define Complex Product Decisions. In:
Obbink, H., Pohl, K. (eds.) SPLC 2005. LNCS, vol. 3714, pp. 21–22. Springer, Heidelberg
(2005)

13. Thurimella, A.K., Bruegge, B., Creighton, O.: Identifying and Exploiting the Similarities
between Rationale Management and Variability Management. In: 12th International Soft-
ware Product Line Conference, pp. 99–108. IEEE CS, Washington (2008)

14. Tun, T.T., Boucher, Q., Classen, A., Hubaux, A., Heymans, P.: Relating Requirements and
Features Configurations: A Systematic Approach. In: 13th International Software Product
Line Conference, pp. 201–210. Carnegie Mellon University, Pittsburgh (2009)

15. Wolf, T.: Rationale-Based Unified Software Engineering Model. Dissertation Technische
Universität München (2007)

16. Yu, Y., Lapouchnian, A.: Configuring Features with Stakeholder Goals. In: The 2008
ACM Symposium on Applied Computing, pp. 645–649. ACM, New York (2008)

J. Bosch and J. Lee (Eds.): SPLC 2010, LNCS 6287, pp. 47–61, 2010.
© Springer-Verlag Berlin Heidelberg 2010

A Flexible Approach for Generating
Product-Specific Documents in Product Lines

Rick Rabiser1, Wolfgang Heider1, Christoph Elsner2, Martin Lehofer3,
Paul Grünbacher1, and Christa Schwanninger2

1 Christian Doppler Laboratory for Automated Software Engineering,
Johannes Kepler University, Linz, Austria

rabiser@ase.jku.at
2 Siemens Corporate Research & Technologies, Erlangen, Germany

christa.schwanninger@siemens.com
3 Siemens VAI Metals Technologies, Linz, Austria

martin.lehofer@siemens.com

Abstract. In software product line engineering various stakeholders like sales
and marketing people, product managers, and technical writers are involved in
creating and adapting documents such as offers, contracts, commercial condi-
tions, technical documents, or user manuals. In practice stakeholders often need
to adapt these documents manually during product derivation. This adaptation
is, however, tedious and error-prone and can easily lead to inconsistencies. De-
spite some automation there is usually a lack of general concepts and there are
"islands of automation" that are hardly integrated. Also, research on product
lines has so far often neglected the handling of documents. To address these is-
sues, we developed a flexible approach for automatically generating product-
specific documents based on variability models. We applied the approach to
two industrial product lines of different maturity using the decision-oriented
product line engineering tool suite DOPLER.

Keywords: document generation, model-based approach, product lines.

1 Introduction and Motivation

Software product line engineering (SPLE) [1, 2] traditionally has a strong focus on
technical software assets such as architecture or code. Researchers and practitioners
are typically adopting feature models [3], decision models [4], UML-based tech-
niques [5], or orthogonal approaches [1] to define the reusable assets’ variability.
Often these approaches are used to expedite and automate product derivation, e.g., by
generating configurations. However, in practice documents play an equally crucial
role. Customers, sales people, marketing staff, or product managers frequently work
with documents such as offers, user manuals, commercial conditions, or contracts.
Also, developers or testers need to provide documents as part of their daily work, for
example technical documentation or test plans.

In our collaboration with industry partners in different domains, we have learned that
while the derivation and configuration of products is often at least partly automated,

48 R. Rabiser et al.

documents are typically still adapted manually. For example, sales people customize
offers and user manuals to be delivered to customers. Engineers adapt technical docu-
mentation for customer-specific development and maintenance. This manual adaptation
is often tedious and error-prone and the created documents can easily become inconsis-
tent with the derived software system.

Researchers have presented approaches for extracting reusable assets and variabil-
ity information from legacy documentation to support defining a product line [2, 6].
There also exists work on developing documentation for software product lines and
more generally on reusing such documentation [7, 8]. However, regarding variability
modeling and product derivation most research in SPLE focuses on technical software
assets and treats documents rather as a side issue. Basic support for modeling docu-
ment variability and adapting documents is for instance available as part of a
commercial SPLE tool [9]. Technically, adapting documents seems straightforward.
Concepts from model-driven SPLE [10, 11] can for example be applied to structured
documents. However, a generic and flexible approach is still missing that provides
concepts for automating document generation independently of the concrete type of
documents and regardless of the maturity of the product line, i.e., the degree to which
variability modeling and generative techniques are already applied.

Based on an existing model-driven SPLE approach [12, 13] we developed an ap-
proach that supports the generation of both deliverable documents and software sys-
tems from the same variability model. The approach is based on the observation that
many decisions made during product derivation are relevant to both types of assets.
For example, the decision to include a certain feature will also require the inclusion of
the user documentation of this feature. Decisions made in product derivation typically
also have an effect on sales documents such as offers or contracts. For example, de-
scriptions of selected features must also be part of such documents.

Using the tool suite DOPLER [12, 13] we successfully applied our approach in the
domain of industrial automation to two product lines of different maturity:

The first application example is a mature software product line for process automa-
tion of continuous casting machines in steel plants from Siemens VAI. The architecture
of this software is modularized and built as Java Beans using the Spring component
framework [14]. In this case the variability has already been modeled for the technical
software assets [12, 15] and configuration files for concrete solutions can be generated
using DOPLER. Examples for variability in a continuous caster delivered by Siemens
VAI are the number of strands, the choice of whether to include a cooling system, and
the type of cooling. Such variability not only affects technical software assets but also
directly shapes the user documentation of the software. Interviews with domain experts
revealed that the manual adaptation of documentation for each customer (300+ pages)
can be tedious and automation would be highly beneficial.

The second industrial application example deals with automating the generation of
sales documents like customer-specific offers, product descriptions, and commercial
condition documents at Siemens AG for a family of electrode control systems for
electric arc furnaces (EAF) in steel production. The corresponding sales department
has to provide many specific documents to prospective customers. Creating these
documents requires the sales people to “parse” and “process” the documents manually
each time a quote has to be submitted. Erroneous offers may result in actual losses or
legal issues; therefore the manually created documents are thoroughly reviewed and

 A Flexible Approach for Generating Product-Specific Documents in Product Lines 49

checked for quality. This altogether can extend the duration for creating offers to
several weeks. Currently the offer process takes two weeks in average and 120 offers
are written a year. The time between the initial customer contact and the delivery of
the offer matters a lot to customers. The goal is thus to reduce the time needed for an
offer to at most one week to improve customer satisfaction. Fortunately, in this indus-
trial case the variability in the documents has already been known to a large extent.
Many of the documents already contained explicit variability information about prod-
uct features, target environment, and commercial and legal conditions.

Our experience shows that in the first case of a mature software product line it is
possible to largely reuse the existing variability models for generating documents. In
our second application example automated product derivation techniques have not yet
been applied. In this case, however, document generation provides a convincing
showcase for the benefits of variability analysis, modeling, and automation. In both
projects decision models were considered very helpful for describing variability, es-
pecially by non-technical stakeholders.

The remainder of this paper is structured as follows: We first give an overview of
our flexible document generation approach. We then present the concrete technical
realization based on DOPLER. We illustrate the feasibility of the approach by provid-
ing details of applying it in the two industrial application examples. We discuss re-
lated work and conclude the paper with an outlook on future work.

2 Approach

Our approach for document generation in product derivation is independent of the
maturity of the product line, the concrete variability modeling technique, and the type
of documents to be generated. Existing model-driven SPLE techniques [10, 11, 13]
can for example be used for implementation if they support working with documents.
The approach comprises four steps which are usually conducted iteratively:

(1) Elicit and analyze variability in documents. An industrial product line rarely
starts from scratch, in particular when considering automation. Examining existing
documents such as user manuals or contracts helps to reveal variability. Therefore a
product line expert familiar with variability modeling needs to analyze such existing
assets. Additionally, it is advisable to conduct workshops with domain experts from
product management, sales, and development. Such experts have frequently been
dealing with variability in documents in the past and they know which manual adapta-
tions have been most relevant [6]. The document analysis shows what can vary (varia-
tion points) and how it can vary (variants). The key challenge is to find the right level
of detail and granularity. It does not make sense to elicit and analyze all possible
variability. Instead, domain experts should focus on the most relevant variability that
can potentially attain the highest cost savings.

(2) Create or adapt variability models. The product line expert uses the collected in-
formation to either adapt existing models or to create new ones. If existing models al-
ready guide and automate product derivation, a considerable part of the models might
also be used for automating document generation. For instance, the selection of a particu-
lar feature in product derivation might not only require the inclusion of a software com-
ponent, but also of related documents. There are no restrictions regarding the technique

50 R. Rabiser et al.

used to model document variability. It should however be flexible and should allow
advanced automation during product derivation.

(3) Choose or develop a variability mechanism and a corresponding generator for
domain-specific document formats. A generator is required that automates the creation
of product-specific documents according to variant selections. Such a generator typi-
cally relies on explicitly defined variation points in the documents. The mechanisms
used to define variation points depend on the documents’ formats. Some unstructured
formats (e.g., txt, rtf) are not well suited for that purpose. Documents thus need to be
converted to formats for which document processors either exist [16] or can be devel-
oped with reasonable effort. For example, document formats of popular office suites
like Microsoft Word can be extended using markups [9]. Beyond a variability markup
mechanism it is useful to partition large documents and to add meta-information for
coping with coarse-grained variability. Many existing document assembly tools use
XML-based formats for that purpose.

(4) Augment the documents with variability information. Product line experts for-
mally specify the variation points and variants from step (1) in the documents and
relate them to the variability models from step (2) using the mechanism chosen in
step (3). During product derivation the generator then resolves variation points ac-
cording to a particular input configuration and produces product-specific documents.

3 Tool Architecture and Realization

We implemented the described approach using existing technologies and tool suites.
For variability modeling we use the decision-oriented DOPLER approach [12, 15].
For defining variability in documents we adopted and extended the DocBook sys-
tem [16] and developed a generator extension for DOPLER [13].

3.1 The DOPLER Approach and Tooling

DOPLER is a decision-oriented SPLE approach [12, 15] comprising a variability
modeling tool and a configuration wizard to present variability to users in product
derivation. DOPLER variability models contain Assets and Decisions (cf. upper part
of Fig. 1). Assets represent the core product line artifacts (e.g., technical components
or documents). Assets can depend on each other functionally (e.g., one component
requires another component) or structurally (e.g., a paragraph is part of a chapter).
DOPLER allows modeling assets at arbitrary granularity and with domain-specific
attributes and dependencies, based on a given set of basic types. Users can create
domain-specific meta-models to define their asset types, attributes, and dependencies.

In DOPLER variation points are defined and presented as decisions. Important at-
tributes of decisions are a unique id, a question that is asked to a user during product
derivation, and a decision type (Boolean, enumeration, string, or number). A deci-
sions can depend on other decisions hierarchically (if it needs to be made before other
decisions) or logically (if making the decision changes the answers of other deci-
sions). The decision type describes the range of possible answers and can be further
constrained with validity conditions. Decision models have proven useful in applica-
tion engineering as they allow describing variability at a higher level of abstraction

 A Flexible Approach for Generating Product-Specific Documents in Product Lines 51

matching the problem space terminology of domain experts [17]. Decision models in
conjunction with asset models also increase flexibility, as a single decision model can
be used with several asset models defining different types of assets such as compo-
nents or documents. In DOPLER, assets are linked to decisions via inclusion condi-
tions defining when a particular asset is included in a derived product. Asset attributes
can also depend on answers to decisions to enable the customization of assets.

3.2 Modeling Documents and Their Variability with DOPLER

DOPLER allows defining domain-specific asset types by creating a meta-model for a
particular organization or context. We can thus include documents or parts of docu-
ments as dedicated assets in our models. We have defined the generic asset type
document fragment representing arbitrary parts of documents, such as chapters or
sections. Each document fragment has an attribute location (of type URL) in
addition to the default model attributes id and description. We also defined that
document fragments can be part of other fragments, e.g., a section might be part
of a chapter, and that they can contribute to other assets, e.g., if a fragment describes a
particular component. The generic asset type document fragment can be further
refined with additional attributes and relations for domain-specific purposes. Fig. 1
shows the DOPLER meta-model extended with document fragments.

Fig. 1. Extended DOPLER meta-model with documents

Decisions represent document variability as questions that a user is expected to an-
swer during product derivation. Document fragment assets represent arbitrary parts
of documents and are used to model coarse-grained variability. Explicitly representing
parts of documents as assets in a model provides an additional level of abstraction for
defining document variability and for selecting a particular chapter or section for
inclusion in derived documents. It would also be possible to describe document vari-
ability only at the level of decisions (and use the answers to decisions to customize
documents and select parts of documents). However, we have learned that the addi-
tional level of abstraction helps domain experts in understanding coarse-grained doc-
ument variability. For example, the document fragment asset coolingchapter
represents the documentation of the cooling system and depends on the answer to
decision "Shall the cooling system be delivered?". As soon as a user answers the ques-
tion with yes, the asset coolingchapter is marked to be included in the derived product
to resolve this coarse-grained variability. The same decision often can be used for

52 R. Rabiser et al.

several document fragments or for including both documents and components
thus making the approach more flexible. To support fine-grained customizations, we
developed a variability mechanism based on DocBook.

3.3 A Variability Extension for DocBook

DocBook [16] is a collection of standards and tools for technical publishing proposed
by a consortium of software companies as a computer documentation standard. The
core of DocBook is a Document Type Definition (DTD) defining content elements
and their possible relations that authors can use for creating documents. For example,
the book element can contain a title element which can contain para and chap-
ter elements. Using the DTD and XML syntax, authors can write text content with
markup using arbitrary XML tools. Components for editing, typesetting, and version
control can be combined as needed and a set of XSL style sheets is available for con-
verting content to arbitrary target formats such as HTML or PDF. DocBook is well-
suited for automatically processing documents (see e.g., [16, 18]). It can be compared
with LaTeX but uses XML markup.

DocBook provides a profiling mechanism for extending the DTD by defining new
elements and attributes. We use this mechanism to define elements and attributes for
implementing variation points in documents. For instance, we defined an attribute
doplerdoc that can be used with all elements in DocBook files. The value of the
doplerdoc attribute can refer to the unique id of a decision or an asset (i.e., docu-
ment fragment asset). Adding the doplerdoc attribute, e.g., to a chapter or
para element, allows tagging it as optional/alternative depending on whether a par-
ticular asset is included in a derived product. The element doplerdocplaceholder
can be used in combination with the doplerdoc attribute to define a placeholder in
the text that will be filled with the answer to a particular decision (cf. Listing 1).

Listing 1. An example showing how DocBook files can be parameterized to make them vari-
able and relate them to a DOPLER variability model

<!--chapter "cooling" is included in the documentation of the product if document fragment
asset "coolingchapter" is included due to some decision made in product derivation.-->
<chapter id="cooling" doplerdoc="coolingchapter">
 <!-- paragraph "cooling_mechanism" includes text with a placeholder. This placeholder

 is replaced with the answer set to decision "cooling_mech" in product derivation. -->
 <para id="cooling_mechanism">
 For secondary cooling, the caster supports the
 <doplerdocplaceholder doplerdoc="cooling_mech"/> mechanism. ...
 </para>
 <para id="...">...</para>
</chapter>

We analyzed the technical user documentation as well as sales documents (i.e., of-

fers and commercial conditions) in the domain of industrial automation systems (cf.
Section 4) to identify common patterns of variability in documents. Table 1 presents
the most common and relevant types we found, provides examples, and demonstrates
how the different types of variability can be implemented.

 A Flexible Approach for Generating Product-Specific Documents in Product Lines 53

Table 1. Implementing document variability using DocBook and DOPLER

Document
Variability

Description and Example Implementation in DocBook

Placeholders Items that are replaced with text
or values that are entered and
calculated during product
derivation, e.g.,
- customer details (name,
company, address, etc.),
- total price,
- return on investment values.

Use designated doplerdocplaceholder
element and use a doplerdoc attribute to
relate the placeholder with a decision, e.g.,
<section id="caster">
 The caster has
 <doplerdocplaceholder
 doplerdoc="numStrands"/>
 strands. </section>

Optional
text

Chapters or sections,
paragraphs, sentences, or even
words or letters are added or
removed depending on the
features to be delivered, e.g.,
chapters in a user manual or in
a bidding document.

Mark DocBook element as optional using
the doplerdoc attribute to relate it with a
document fragment asset, e.g.,
<chapter id="hmi"
doplerdoc="hmichapt">
 ... </chapter>

Alternative
text

Chapters or sections,
paragraphs, sentences, or even
words or letters that alternate
depending on the target market,
customers and system
environment, e.g.,
- country-specific commercial
conditions and policies,
- different operating systems,
- units (e.g., metric vs. imperial
system).

Enclose alternative parts with DocBook
elements and add doplerdoc attributes
related with document fragments, e.g.,
<section id="dex"
 doplerdoc="dexchapter">
 Data Exchange is supported via
 <phrase doplerdoc="asciiphrase">
 ASCII</phrase>
 <phrase doplerdoc="dbphrase">
 DataBase</phrase>
 <phrase doplerdoc="tcpipphrase">
 TCP/IP</phrase>
 in your system. ...</section>

Cross
references

References to document
internals and links to external
documents not included in the
generated document must be
found and replaced to avoid
tangling references, e.g.,
- the main index,
- figure and table indices,
- references to docs like coun-
try-specific legal documents.

References and links in DocBook must be
related to the same document fragment
assets as the parts they reference, e.g.,
<xref linkend="hmi"

 doplerdoc="hmichapt"/>.

If additional text describes the link (e.g.,
"...refer to chapter..."), this text must also be
enclosed with an XML element dependent
on the document fragment asset.

Simple
grammatical
variability

Mainly regards singular vs.
plural but also gender, e.g.,
- 1 strand vs. 2 or more strands,
- multiple drives vs. the drive.

Respective text has to be enclosed with
elements and marked with the doplerdoc
attribute. An additional dependency to a
numerical decision allows defining whether
to use singular or plural, e.g.,
The caster has
 <doplerdocplaceholder
 doplerdoc="numStrands"/>
 strand<phrase
 doplerdoc="numStrands#2+">
 s</phrase>.

54 R. Rabiser et al.

Table 1. (Continued)

Media
objects

Media objects (e.g., images)
might have to be replaced
depending on sales aspects and
the delivered system, e.g.,
- customer’s logo,
- user interface.

Mark DocBook element as optional using
designated doplerdoc attribute, e.g.,
<mediaobject
doplerdoc="hmichapt">
 ...
</mediaobject>

Formatting/
Layout

Different styles might be re-
quired/desired for different
users, e.g.,
- A4 vs. letter size,
- different color schema.

Formatting/Layout is achieved using XSL
transformation and CSS style sheets. The
selection which XSL file and/or CSS style
sheet is used can be related to a property file
which can be generated based on decisions.

3.4 Generating Documents Using DocBook

Fig. 2 depicts an overview of our tool architecture. The DOPLER tool suite supports
defining document variability in models, augmenting documents with variability
information, as well as communicating document variability to end-users using the
configuration wizard (cf. Fig. 3 in Section 4.2). Traceability from the model’s assets
and decisions to DocBook is achieved via the dedicated XML attribute doplerdoc
and XML element doplerdocplaceholder.

Fig. 2. Architecture for managing and customizing documents in a product line

The configuration wizard can be extended with domain-specific generators. We
developed a generator that uses the answers to decisions and the selected document
fragment assets to compose documents. The generator customizes the documents
using answers to decisions and post-processes the documents using DocBook's XSLT

 A Flexible Approach for Generating Product-Specific Documents in Product Lines 55

engine and style sheets (which themselves can depend on decisions). Different output
formats can be generated (e.g., PDF or HTML).

4 Industrial Application Examples

We applied the described approach in two industrial product lines with different ma-
turity. In a project with Siemens VAI variability models describing a continuous cast-
ing automation software product line were already available and generating product
configurations was already supported. The goal in this project was to also support
generating technical user documentation. In a second project with Siemens AG, we
applied the document generation approach to the EAF product line where no variabil-
ity modeling has been used before. The goal of this second project was to support the
automated generation of customer-specific offers, product descriptions, and commer-
cial condition documents.

4.1 Industrial Application Example I: Generating Technical User
Documentation for a Continuous Casting Automation Software Product
Line

In the project with Siemens VAI we applied our approach with the goal of automating
the generation of customer-specific technical user documentation by reusing the deci-
sions modeled for software configuration. Parts of the technical user documentation
were already available as DocBook sources which made adding variability meta-
information pretty straightforward.

(1) Elicit and analyze variability in documents. Based on interviews with domain
experts, we identified relevant variability in the documentation (cf. Table 1). Accord-
ing to the domain experts, the following variation points occur frequently when adapt-
ing the documentation for a particular customer: (i) parts of the documentation are
optional depending on the parts of the system to be delivered, (ii) cross references
have to be adapted to avoid tangling references when particular sections are not
shipped (the same applies to indices), (iii) numerous placeholders in the text need to
be replaced (e.g., customer name), (iv) grammatical changes have to be performed
(e.g., strand vs. strands), and (v) specific documents need to be deployed if customers
intend to develop extensions to the system instead of using it "out of the box".

(2) Create or adapt variability models. We extended the generic DOPLER meta-
model for modeling document fragment assets as discussed in Section 3.2. We
captured the diverse parts of the documentation as document fragment assets and
related these assets to the decisions. In about 70% of the cases we just used software
configuration decisions already defined in the existing variability models. In the re-
maining cases we added new decisions specifically for document generation.

(3) Choose or develop a variability mechanism and a corresponding generator for
the domain-specific document format. We developed a generator extension for the
DOPLER configuration wizard that reassembles the technical user documentation
according to the decisions for the derived product (cf. Section 3.4). This generator
resolves the variability and uses libraries for performing the proper transformations
from the DocBook sources into the selected target format (e.g., HTML or PDF).

56 R. Rabiser et al.

(4) Augment the documents with variability information. We augmented the exist-
ing DocBook sources with the elicited variability, i.e., for every kind of variability
mentioned by the domain experts, we implemented at least one example to demon-
strate the feasibility of our approach (cf. Table 1). These examples were sufficient to
enable the domain experts to annotate the rest of the documents themselves.

The resulting tool chain supports modeling the variability of the software and the
documents in an integrated manner and automates the generation of both product
configurations and technical user documentation using a single decision model.

4.2 Industrial Application Example II: Generating Sales Documents for an
Electrode Control System for Electric Arc Furnaces (EAF)

In the EAF project we applied our approach to support the automated generation of
customer-specific sales documents. When using the DOPLER configuration wizard
variability can be resolved in interactive interviews. Prospective customers and sales
people jointly answer the questions defined in the decision model (cf. Fig. 3). In case
the customer can provide all the data required, several documents can be generated
immediately, e.g., offers, product descriptions, return-on-invest (ROI) estimations,
and commercial conditions. Special customer requests need to be treated manually but
can be captured using the configuration wizard tool [15].

(1) Elicit and analyze variability in documents. Together with domain experts, we
analyzed existing Microsoft Word documents for offers, price lists, product descrip-
tions, and commercial conditions to identify commonalities and variability. According
to the domain experts, the following variability occurs frequently when adapting the
documents for a particular customer: (i) in offers the customer details, price lists, total
prices, and ROI values differ depending on the customer and selected features (i.e.,
"sellable units"); (ii) in product descriptions the component description chapters differ
depending on the selected features of the product; (iii) in commercial conditions the
values and text with regard to the payment method, paying installments, delivery
details, warranty conditions, currency, and validity of the offer can differ. Many
variation points were obvious (e.g., price list items) and some variability was already
tagged with comments within the Word documents. Some variation points span more
than just one document. For example, at customization time, the offer is extended
with the offered items of the price list and values for the total price as well as the ROI
are calculated. The product description document is extended with additional chapters
for every additional system component.

(2) Create or adapt variability models. We slightly adapted the DOPLER meta-
model (cf. Fig. 1 in Section 3.2) for dealing with sales documents. The parts of docu-
ments defined in the model represent sellable units. Thus, we called the asset type
representing document fragments feature in this case (not to be confused with the
notion of a feature in feature modeling!). Feature assets have the attribute price.
This is required for the generator which in this case calculates values like the total
price and the ROI besides generating documents. We modeled decisions for capturing
customer details (e.g., name and address), the system environment (e.g., voltage of
available power supply), and values needed for ROI calculations (e.g., price for elec-
tricity). In total we extracted 101 decisions for deriving the complete set of documents

 A Flexible Approach for Generating Product-Specific Documents in Product Lines 57

with all variants for prospective customers. These decisions are hierarchically organ-
ized and numerous interdependencies are defined.

(3) Choose or develop a variability mechanism and a corresponding generator for
the domain-specific document format. We reused the generator extension developed
for Siemens VAI and extended it for generating offers. For business values like the
total price and ROI the generator performs the necessary calculations and saves the
results to text files. The content of these files is referenced in the DocBook sources to
include these values in the generated documents.

(4) Augment the documents with variability information. Like for Siemens VAI we
implemented the variation points in DocBook sources we created manually from the
existing Word documents. While we could also have augmented the Word documents
directly (e.g., using markups [9]), our industry partner decided to use DocBook. With-
in the DocBook source files we applied the described document variability concepts
(cf. Table 1), such as placeholders, optional parts, alternatives, and cross references to
enable the automated generation of sales documents.

Fig. 3 shows the configuration wizard generating offers for EAF.

Fig. 3. Making decisions in the DOPLER derivation tool configuration wizard and generating
sales documents in the EAF example (partly blurred due to non-disclosure agreements)

The user can make customization decisions by answering questions. The document
generator can be started at any time. Based on the user's answers to questions the tool
computes the required list of document assets. The generator then creates customized
documents in PDF format based on this list.

58 R. Rabiser et al.

5 Related Work

We present related work grouped in two areas of research, i.e., research on model-
driven product derivation and research on modeling and generating documents in a
product line context.

Model-driven product derivation. Several approaches to model-driven product deriva-
tion in SPLE have been proposed using a variety of concepts and technologies to
support model transformations and product generation. For example, Groher and
Völter [10] integrate concepts from model-driven and aspect-oriented software devel-
opment to support model composition and transformation in an SPLE context. An-
other example is the work by Ziadi and Jézéquel [11], who present an approach using
UML model-transformation to support product derivation in the context of SPLE with
UML. Sánchez et al. [19] propose VML4*, a tool-supported process for specifying
product derivation processes in SPLE that automates product derivation with model
transformations. Similar tools have been proposed, e.g., FeatureMapper [20] or
CVL [21]. These and other existing model-driven product derivation approaches and
tools however have so far focused on technical software assets (mainly software ar-
chitecture) and treat documents as a side issue or not at all. We believe that many of
the existing model-driven approaches and tools could also be extended to support
modeling document variability and document generation, similar to what we did in
this paper with DOPLER. However, the approaches are not well suited for sales ex-
perts and other non-technical stakeholders.

Modeling and generating documents in a product line context. Nicolás and Toval [22]
present a systematic literature review on the generation of textual requirements speci-
fications from models in software engineering. The review shows that a lot of work
exists on generating requirements specifications from models of different kinds.
However, there is a lack of support for modeling and generating documents of differ-
ent types in SPLE. Dordowsky and Hipp [8] report on the introduction of SPLE for an
avionics system where they also had to consider documents (i.e., software design and
interface design descriptions) and their generation. Their domain-specific solution
however does not seem to be generally applicable for modeling and generating docu-
ments in SPLE. Koznov and Romanovsky [7] propose DocLine, a method for devel-
oping documentation for software product lines that allows reusing document
fragments. They also propose a "documentation reuse language" for defining docu-
mentation. They focus on documentation for the product line and derived products but
do not specifically address generating arbitrary other kinds of documents like offers.
Gears [23] includes document adaptation in an approach manipulating all kinds of
product line artifacts. The company pure-systems describes how to use its commercial
variability management tool pure::variants to customize Microsoft Word documents
depending on features selected in a feature model [9]. With our approach, we do not
focus on one specific format of documents (DocBook could be replaced quite easily
by developing a new generator) and suggest to explicitly define coarse-grained docu-
ment variability in models (document fragment assets). Most importantly, we use end-
user customization tools based on decision models to resolve variability.

 A Flexible Approach for Generating Product-Specific Documents in Product Lines 59

6 Conclusions and Future Work

The main contributions of this paper are: (1) a flexible, tool-supported approach to
model the variability of documents in SPLE and end-user support for generating
product-specific documents in product derivation and (2) an initial evaluation based
on two industrial examples where both technical as well as business documents are
important. We implemented the approach using the DOPLER and DocBook tool
suites. However, a different variability modeling approach and document format
might be used for the same purpose. Especially if converting the source documents to
DocBook is infeasible in an organization – due to internal regulations – other formats
have to be extended to express variability like in [9]. The focus of our approach is on
flexibility with regard to possible document types and different types of variability in
documents. Our extensible tool support allows development and integration of arbi-
trary generators for generating documents based on a variability model. Moreover, the
questionnaire-like structure of DOPLER decision models supports stakeholders with-
out technical background knowledge.

Both industrial partners plan to integrate our approach in their process and tool
landscape. We will support pilot projects to further improve our approach and tools.
The extensibility of our tools will enable developing extensions for the integration of
our tools in the organizations’ tool environment. For instance, one of our partners uses
a proprietary tool for generating technical specifications that could substitute Doc-
Book. Furthermore existing document management systems and collaboration infra-
structure will be used for managing standard text that is subject to changes regularly,
such as text for legal conditions. This will prevent errors in the offer process and
helps keeping review cycles short. In the EAF example the results will be used as a
first step to further automate product derivation. For example, the layout of the Elec-
trode Control System and the software configuration might also be generated from the
same decision model.

We plan to perform further case studies in other domains to validate our approach
and identify useful process automations, e.g., the automatic conversion of Microsoft
Word documents to DocBook. We refer to unique id's of model elements in docu-
ments which can complicate evolution of models and documents. We have been de-
veloping incremental consistency checking support for code assets [24] and plan to
adapt it for documents in our future work. Furthermore, we want to study more com-
plex settings like multi-stage configuration. Sales people, technicians, and lawyers
have to work together to get all the decisions right [25]. Similarly, the collaboration of
a headquarter with regional organizations complicates matters. Some decisions might
depend on the region, while others are to be decided by the headquarter.

Acknowledgments. This work has been supported by the Christian Doppler
Forschungsgesellschaft, Austria and Siemens VAI Metals Technologies as well as
Siemens Corporate Research & Technologies. We thank Manuel Wallnöfer who con-
tributed to the development of a document generator for one industrial application.

60 R. Rabiser et al.

References

1. Pohl, K., Böckle, G., van der Linden, F.: Software Product Line Engineering: Foundations,
Principles, and Techniques. Springer, Heidelberg (2005)

2. van der Linden, F., Schmid, K., Rommes, E.: Software Product Lines in Action -The Best
Industrial Practice in Product Line Engineering. Springer, Heidelberg (2007)

3. Kang, K.C., Lee, J., Donohoe, P.: Feature-Oriented Product Line Engineering. IEEE Soft-
ware 19(4), 58–65 (2002)

4. Schmid, K., John, I.: A Customizable Approach to Full-Life Cycle Variability Manage-
ment. Journal of the Science of Computer Programming, Special Issue on Variability Man-
agement 53(3), 259–284 (2004)

5. Gomaa, H.: Designing Software Product Lines with UML. Addison-Wesley, Reading
(2005)

6. Rabiser, R., Dhungana, D., Grünbacher, P., Burgstaller, B.: Value-Based Elicitation of
Product Line Variability: An Experience Report. In: Heymans, P., Kang, K.C., Metzger,
A., Pohl, K. (eds.) Proceedings of the Second International Workshop on Variability Mod-
elling of Software-Intensive Systems (VaMoS 2008), Essen, Germany, pp. 73–79. Univer-
sity of Duisburg Essen (2008)

7. Koznov, D.V., Romanovsky, K.Y.: DocLine: A method for software product lines docu-
mentation development. Programming and Computer Software 34(4), 216–224 (2008)

8. Dordowsky, F., Hipp, W.: Adopting Software Product Line Principles to Manage Software
Variants in a Complex Avionics System. In: McGregor, J.D. (ed.) Proceedings of the 13th
International Software Product Line Conference (SPLC 2009), San Francisco, CA, USA.
ACM International Conference Proceeding Series, vol. 446, pp. 265–274. Carnegie Mellon
University, Pittsburgh (2009)

9. Pure:systems GmbH: Automatic Generation of Word Document Variants (2010),
http://www.pure-systems.com/flash/pv-word-
integration/flash.html

10. Voelter, M., Groher, I.: Product Line Implementation using Aspect-Oriented and Model-
Driven Software Development. In: Proceedings of the 11th International Software Product
Line Conference (SPLC 2007), Kyoto, Japan, pp. 233–242. IEEE Computer Society, Los
Alamitos (2007)

11. Ziadi, T., Jézéquel, J.M.: Software Product Line Engineering with the UML: Deriving
Products. In: Käkölä, T., Duenas, J. (eds.) Software Product Lines, pp. 557–588. Springer,
Heidelberg (2006)

12. Dhungana, D., Grünbacher, P., Rabiser, R., Neumayer, T.: Structuring the Modeling Space
and Supporting Evolution in Software Product Line Engineering. Journal of Systems and
Software 83(7), 1108–1122 (2010)

13. Dhungana, D., Rabiser, R., Grünbacher, P., Lehner, K., Federspiel, C.: DOPLER: An
Adaptable Tool Suite for Product Line Engineering. In: Proceedings of the 11th Interna-
tional Software Product Line Conference (SPLC 2007), Kyoto, Japan, vol. 2, pp. 151–152.
Kindai Kagaku Sha Co. Ltd. (2007)

14. Johnson, R., Höller, J., Arendsen, A.: Professional Java Development with the Spring
Framework. Wiley Publishing, Chichester (2005)

15. Rabiser, R., Grünbacher, P., Dhungana, D.: Supporting Product Derivation by Adapting
and Augmenting Variability Models. In: Proceedings of the 11th International Software
Product Line Conference (SPLC 2007), Kyoto, Japan, pp. 141–150. IEEE Computer Soci-
ety, Los Alamitos (2007)

16. Stayton, B.: DocBook XSL. Sagehill Enterprises (2005)

 A Flexible Approach for Generating Product-Specific Documents in Product Lines 61

17. Grünbacher, P., Rabiser, R., Dhungana, D., Lehofer, M.: Model-based Customization and
Deployment of Eclipse-Based Tools: Industrial Experiences. In: Proceedings of the 24th
IEEE/ACM International Conference on Automated Software Engineering (ASE 2009),
Auckland, New Zealand, pp. 247–256. IEEE/ACM (2009)

18. Walsh, N., Muellner, L.: DocBook: The Definitive Guide. O’Reilly, Sebastopol (1999)
19. Sánchez, P., Loughran, N., Fuentes, L., Garcia, A.: Engineering Languages for Specifying

Product-Derivation Processes in Software Product Lines. In: Gašević, D., Lämmel, R., Van
Wyk, E. (eds.) SLE 2008. LNCS, vol. 5452, pp. 188–207. Springer, Heidelberg (2009)

20. Heidenreich, F., Kopcsek, J., Wende, C.: FeatureMapper: mapping features to models. In:
Proceedings of the 30th International Conference on Software Engineering, Leipzig, Ger-
many, pp. 943–944. ACM, New York (2008)

21. Haugen, Ø., Møller-Pedersen, B., Oldevik, J., Olsen, G., Svendsen, A.: Adding Standard-
ized Variability to Domain Specific Languages. In: Geppert, B., Pohl, K. (eds.) Proceed-
ings of the 12th International Software Product Line Conference (SPLC 2008), Limerick,
Ireland, pp. 139–148. IEEE Computer Society, Los Alamitos (2008)

22. Nicolás, J., Toval, A.: On the generation of requirements specifications from software en-
gineering models: A systematic literature review. Information and Software Technol-
ogy 51(9), 1291–1307 (2009)

23. Krueger, C.: The BigLever Software Gears Unified Software Product Line Engineering
Framework. In: Geppert, B., Pohl, K. (eds.) Proceedings of the 12th International Software
Product Line Conference (SPLC 2008), Limerick, Ireland, Lero, vol. 2, p. 353 (2008)

24. Vierhauser, M., Dhungana, D., Heider, W., Rabiser, R., Egyed, A.: Tool Support for In-
cremental Consistency Checking on Variability Models. In: Benavides, D., Batory, D.,
Grünbacher, P. (eds.) Proceedings of the 4th International Workshop on Variability Model-
ling of Software-intensive Systems (VaMoS 2010), Linz, Austria, ICB-Research Report
No. 37, pp. 171–174. University of Duisburg Essen (2010)

25. O’Leary, P., Rabiser, R., Richardson, I., Thiel, S.: Important Issues and Key Activities in
Product Derivation: Experiences from Two Independent Research Projects. In: McGregor,
J.D. (ed.) Proceedings of the 13th International Software Product Line Conference (SPLC
2009), San Francisco, CA, USA. ACM International Conference Proceeding Series,
vol. 446, pp. 121–130. Carnegie Mellon University (2009)

Abstract. Quality assurance is an important issue in product line engineering. It
is commonly agreed that quality assurance in domain engineering requires
special attention, since a defect in a domain artifact can affect several products
of a product line and can lead to high costs for defect correction. However, the
variability in domain artifacts is a special challenge for quality assurance, since
quality assurance approaches from single system engineering cannot handle the
variability in domain artifacts. Therefore, the adaptation of existing approaches
or the development of new approaches is necessary to support quality assurance
in domain engineering.

Activity diagrams are a widely accepted modeling language used to support
quality assurance activities in single system engineering. However, current
quality assurance approaches adapted for product line engineering using activity
diagrams are not based on a formal syntax and semantics and therefore
techniques based on these approaches are only automatable to a limited extent.
In this paper, we propose a formal syntax and semantics for documenting
variability in activity diagrams based on Petri-nets which provide the
foundation for an automated support of quality assurance in domain
engineering.

Keywords: Variability, variability in activity diagrams, documenting
variability, quality assurance for product line engineering .

1 Introduction

Early quality assurance is an important issue in every development project [2] and
especially in product line engineering [17]. The development process for product lines
is separated into domain engineering and application engineering [22]. Therefore,
quality assurance is conducted twice. In domain engineering, the quality of domain
(or reusable) artifacts (e.g., requirements, design, or implementation artifacts) has to

 This paper was partially funded by the DFG, grant PO 607/2-1 IST-SPL. *

Formal Definition of Syntax and Semantics for
Documenting Variability in Activity Diagrams*

André Heuer1, Christof J. Budnik2, Sascha Konrad , Kim Lauenroth1, and Klaus Pohl1

1 Paluno – The Ruhr Institute for Software Technology, University of Duisburg-Essen,
Gerlingstraße 16, 45127 Essen, Germany

{andre.heuer,kim.lauenroth,klaus.pohl}@paluno.uni-due.de
2 Siemens Corporate Research

755 College Road East, Princeton, NJ 08540, USA
christof.budnik@siemens.com

konradsa@gmail.com

J. Bosch and J. Lee (Eds.): SPLC 2010, LNCS 6287, pp. 62–76, 2010.
© Springer-Verlag Berlin Heidelberg 2010

be ensured. In application engineering, the quality of each derived product of the
product line has to be assured. It is commonly agreed that quality assurance in domain
engineering requires special attention, since a defect in a domain artifact can affect
several products of a product line and can lead to high costs for defect correction [17,
22].

During domain engineering, the domain artifacts of the product line are developed.
These domain artifacts contain variability, i.e., they contain modification possibilities
to address different customer needs [22]. Variability in domain artifacts increases
complexity, since a variable domain artifact represents not only a single artifact, but a
set of artifacts (e.g., a variable requirement represents a set of requirements) [12]. Due
to this complexity, quality assurance for product line engineering is a challenging
task, since approaches for quality assurance from single system engineering cannot
simply be applied to domain artifacts without adaptation [14].

In this paper, we focus on UML activity diagrams [19], a modeling language that is
used in several control flow-based quality assurance approaches for single system
engineering (cf. e.g., [3]) and for product line engineering (cf. e.g., [24, 25]). For
quality assurance approaches, it is important to represent the control flow of the
system under test in a model, since test strategies and the derivation of test cases in
single system engineering are based on control flow models [2].

In the following, we illustrate why test approaches from single system engineering
cannot be applied to activity diagrams that include variability with a simplified
example. Fig. 1 shows an activity diagram that contains variability and a variability
model based on Boolean expressions2. The edges of the activity diagram are related to
variants of the variability model to document that an edge (and related activities) is
variable and thus selectable for a derived product. For example, if variant v1 is
selected, only the related edges become part of an application activity diagram and the
edges related to variant v2 would be deleted. Assume, for example, an automated
approach for deriving test cases based on a statement coverage criterion [3]. This
criterion is based on the coverage of all statements, i.e. every statement has to be
processed at least once. If such an algorithm is executed on the domain model shown
in Fig. 1, a resulting test case scenario would be the flow ‘A2 A1 A3’. Taking
only the activity diagram into account, this test case scenario is acceptable, since the
activity diagram allows this scenario. However, if the variability model is taken into
account, the proposed path is not possible, since the selection of edges contradicts the
variability model. It requires selecting the variants v1 and v2 at the same time, which is
not allowed due to the variability model (v1 XOR v2).

The only valid approach for applying quality assurance techniques from single
system engineering is the derivation of sample products [17]. A derived sample
product no longer contains variability and can be checked with single system
techniques. However, such an approach creates a high effort if the quality of the entire
product line has to be ensured, since all possible products of the product line would
have to be derived as sample product. To avoid such a high effort, the adaptation of

2 For modeling variability in domain artifacts, different models can be used such as feature

models [11] or the orthogonal variability model [22]. These and other documentation forms
for variability can be transformed into a Boolean expression [1, 14]. In order to keep our
approach independent from a particular variability modeling approach, we use a variability
model which consists of Boolean variables and Boolean expressions.

 Formal Definition of Syntax and Semantics for Documenting Variability 63

A1 A2 A3

V1 v2

v2V1

Domain Model

A1 A2 A2 A3

v1 bound v2 bound

Variability Model: v1 XOR v2

Application Model Application Model

Fig. 1 Examples of domain and var iability models .

single system techniques or the development of new techniques is a necessary step to
support comprehensive quality assurance in domain engineering [13].

A prerequisite for the adaption of techniques or development of new techniques
based on activity diagrams is a precise understanding of the syntax and semantics of
modeling variability in activity diagrams. The contribution of this paper is twofold.
– We discuss the related work regarding the formal definition of variability in

activity diagrams in Section 2 and introduce a formal syntax and semantics for
documenting variability in activity diagrams in Sections 3 and 4.

– We illustrate the applicability of our formalization approach by two use cases in
Section 5 and show that our definition of variability in activity diagrams is
suitable for developing quality assurance techniques that are applicable to activity
diagrams containing variability.

We close our paper with a summary and outlook in Section 6.

2 Related Work

In this section, we discuss the work related to the formal definition of variability in
activity diagrams. The first part of this section reflects work on the definition of a
formal syntax and semantics for activity diagrams, since the understanding of the
syntax and semantics of activity diagrams is a prerequisite for defining variability in
activity diagrams. In the second part, we review current work on formal definition of
variability in activity diagrams.

2.1 Formal Syntax and Semantics of Activity Diagrams

Formal syntax and semantics for activity diagrams (including tool support) was
already discussed in several papers [6, 7, 8, 16, 31]. However, the work of Eshuis

64 A. Heuer et al.

al. [6, 7, 8] is based on the outdated UML 1 that defined the semantics of activity
diagrams based on state machines. UML 2 defines the semantics of activity diagrams
as a token-based control flow structure that allows concurrent executions [19].

Linzhang et al. [16] propose an approach for the automatic derivation of test cases
based on a grey-box method. The test cases are derived from UML 2 activity
diagrams with a reduced set of model elements. To enable the automatic derivation of
test cases, the authors formalize the syntax and semantics of the activity diagram
based on Petri-nets (cf. [21]), but do not map the model elements to Petri-net
elements. Störrle [28, 29, 30] as well as Störrle and Hausmann [31] focus on the
formalization of UML 2 activity diagrams based on Petri-nets. They aim at
formalizing all elements that were defined in the UML specification [19], in contrast
to Linzhang et al. who formalized only a subset. Finally, they show that the
formalization of the basic modeling elements of activity diagrams (e.g., activities and
decisions) based on a Petri-net semantics is straight-forward, but modeling constructs
like exceptions, streaming, etc. requires further work towards formalization.

2.2 Syntax and Semantics for Modeling Variability in Activity Diagrams

Variability in activity diagrams was discussed in recent work (e.g., [4, 10, 20, 25,
26]). The definition of variability in activity diagrams can be split into two groups.
The first group of approaches uses UML stereotypes to extend the expressiveness of
current modeling elements. Secondly, variability can be added to the model (i.e.,
activity diagrams) by modifying the UML metamodel and adding new elements, or by
utilizing informal UML annotations.

Defining Variability using Stereotypes
Kamsties et al. [10] and Reuys et al. [25, 26] added a variability node to the syntax of
activity diagrams using stereotypes. This node represents a variation point from the
variability model. The following control flow represents the different variants that can
be chosen at the specific variation point.

Robak et al. [27] also use the built-in mechanism of stereotypes in UML to model
variability of activities in the UML activity diagram. The authors use decisions at
decision nodes to elaborate the existence of specific variants. They do not define a
formal semantics and binding rules, i.e., the approach is not automatable with tools,
since product derivations based on the stereotyped activities might lead to invalid
models with dangling edges.

The approaches presented in this subsection use predefined methods (stereotypes)
in UML and do not extend the syntax of the language. However, they do not define
the semantics of their stereotypes formally and thus an automated approach is not
possible, which would include, for example, binding rules for deriving application
activity diagrams, i.e. activity diagrams for specific applications of the product line
without variability.

et

 Formal Definition of Syntax and Semantics for Documenting Variability 65

Defining Variability based on Annotations and Extensions
The goal of Braganca and Machaod [4, 20] is to support model-driven approaches for
product lines. Therefore, they use activity diagrams as part of use case specifications
and extend them to cover variability in use case models. They modify the current
UML 2.0 use case model by adding extensions to describe different ways of
branching in activity diagrams caused by variability. The semantics of their
extensions is defined in natural language, but not formally. Another drawback of this
approach is the extension of activity diagrams with new elements, for example, so
called ExtensionFragments that are used to model variability in use case diagrams and
are shown as extend relationships with an annotation. However, this implies the need
for training the developers to be able to use this approach.

Hartmann et al. [9] use activity diagrams for modeling the domain test model. In
their approach, they use UML annotations to model the variability in activity
diagrams. The content of annotations is not defined in UML and it might include any
natural language. Hence, their proposed extension has neither a formal syntax nor a
formal semantics.

2.3 Conclusion of Related Work

The OMG (Object Management Group) defines the semantics of UML activity
diagrams based on a token-based control flow and recent publications show that this
control flow can be successfully formalized on the basis of Petri-nets [28, 29, 30, 31].

The analysis of the related work on formalizing variability in activity diagrams has
shown that current approaches use semi-formal techniques like UML stereotypes or
UML extensions based on natural language, which hinders a fully automated support
in domain engineering. None of the existing approaches takes advantage of
formalizing the variability in activity diagrams based on Petri-nets as suggested in
approaches from single system engineering.

3 Foundation: Formal Definition of Activity Diagrams ased on
Petri-nets

B

According to the definition of activity diagrams by the Object Management Group
(OMG) in [19], the semantics of activity diagrams is defined as a set of all valid token
flows of a system. Token flow means that the execution of one node affects and is
affected by the execution of other nodes. These execution dependencies are modeled
as edges in the activity diagram. A node can carry tokens that contain an object, a
datum, or a focus of control [19]. If the input tokens of a node fulfill a specific
condition, the node may execute. At the beginning of a certain execution, at least one
token from the input edges is accepted and a token is placed on the current node.
After the execution, the token is removed from the current node and passed to some
or all of its output edges [19].

66 A. Heuer et al.

ExecutableNodes UML AD Petri-nets

Activity Activity

ControlNodes
fork/join

ActivityEdges UML AD Petri-nets

except:

unless:

auxiliary

Fig. 2. Mapping activity diagram elements to Petr i-net elements [31]

In [31], Störrle uses Petri-nets to formalize the OMG’s semantics definition of
UML activity diagrams. This provides the possibility to apply recent techniques for
Petri-net analysis to activity diagrams (cf. e.g., [18]). He defines activity diagrams as
a named graph structure based on a 3-tuple Name, Nodes, Edges , where Name is the
name of the activity diagram, Nodes represents the ActivityNodes, and Edges
represents the ActivityEdges in the activity diagram [29]. According to [29], Nodes is
defined as the 5-tuple EN, iN, fN, BN, CN with:

EN the set of ExecutableNodes (i.e., elementary actions)
iN the InitialNodes (of which there may be only one)
fN the FinalNodes (of which there may be only one)
BN the set of branch nodes, including MergeNodes and DecisionNodes
CN the set of concurrency nodes, including ForkNodes, JoinNodes, and

ForkJoinNodes
The set of Edges comprises all ActivityEdges between these nodes, except those
dealing with data flow. The target Petri-net is defined as the tuple P, T, A, m, m ,
where the set P represents the places, the set T represents the transitions, the set A the
arcs between the places and transitions, m P* the initial, and m P* the final
marking of the Petri-net, where P* is a multiset over P. The translation between
activity diagrams and Petri-nets is defined in [29] as follows:

Nodes, Edges P, T, A, m, m , where

P {iN, fN} BN { Edges, { 1, 2} (EN CN)

T EN CN { Edges, { 1, 2} BN {iN, fN}}

A { from, to , to , from, from, to from, to Edges}

m iN

m fN

 Formal Definition of Syntax and Semantics for Documenting Variability 67

(a) UML 2.0 Activity diagram (b) Petri-net

Start subscription

Show form Show secure form

Fill form

Save data in DB Send data to bank

Show finish message

Start subscription

Show form Show secure form

Fill form

fork/join

Save data in DB Send data to bank

fork/join

Show finish message

Fig. 3. Exemplary mapping of an activity diagram to a Petr i-net

The variable x covers all elements in X P T, i.e., any Petri-net node. The variables
1 and 2 are shorthand for the first and the second element of a pair. ActivityEdges

are used as indexes for names of places that represent the former ActivityEdge and
are simplifying the definition.

In the Petri-net, places represent the former initial and final nodes and all branch
nodes of the activity diagram. Additionally, every ActivityEdge is represented by a
place, except for the ActivityEdges that connect any ExecutableNode or concurrency
node. Every ExecutableNode and concurrency node is mapped to a transition in the
Petri-net. Additionally, auxiliary transitions are added for edges connecting the initial
or final node and branch nodes (see Fig. 2). The set of arcs in the Petri-net is defined
as all arcs that connect the source of the ActivityEdge with the corresponding node in
the Petri-net.

The described mapping is summarized in Fig. 2. A complete description of this
mapping can be found in [29]. We illustrate the mapping between activity diagrams
and Petri-nets with an example in Fig. 3. Fig. 3 (a) shows an activity diagram with
decisions and concurrency and Fig. 3 (b) shows the corresponding Petri-net.

68 A. Heuer et al.

4 Formal Definition of Variability in Activity Diagrams

For the formal definition of variability in activity diagrams, we follow the approach of
Lauenroth and Pohl [13] for the formal definition of variability in a development
artifact, which consists of the following steps:
1) A formal definition of the relationship between the variability model and elements

of the development artifacts.
2) A formal definition of the semantics of variability in the development artifact.
3) A formal definition of the derivation or binding process of the variability in the

development artifact.

4.1 Relationship between Variability Model and Activity Diagram

The discussion of the related work on variability in activity diagrams in Section 2.2
showed that variability in an activity diagram aims at changing the flow of control in
the activity diagram by defining edges as variable (see Fig. 1).

For a formal definition of this relationship, Lauenroth and Pohl [13] use the
variability relationship VRel V (D), where V represents the set of variants (or
features) of the variability model, (D) denotes the powerset of D, and D represents
the set of elements of the related development artifact. Since a variant can be related
to more than one development artifact, the relationship is defined for the powerset of
development artifacts. For the definition of variability in activity diagrams, the
variability relationship has to be defined between the set of variants and the set of
edges (see Section 3) of the activity diagram:

VRelAD V (Edges)

Each edge in the activity diagram that is related to a variant is considered as variable
edge, i.e., such an edge is selectable for a derived product of the product line. Each
edge that is not related to a variant is considered as a common edge for now, i.e., such
an edge is part of every derived product.

4.2 Semantics of Variability in Activity Diagrams

Based on the Petri-net semantics of activity diagrams presented in Section 3, we will
provide a formal definition of the semantics for modeling variability in activity
diagrams by defining variability in Petri-nets and by extending the mapping between
activity diagrams and Petri-nets.

In order to achieve variability in the token flow of a Petri-net, the variability
relationship for Petri-nets has to be defined between the set V of variants and the set A
of arcs as follows:

VRelPN V (A)

 Formal Definition of Syntax and Semantics for Documenting Variability 69

The mapping from variability in activity diagrams defined in Section 4.1 to variability
in Petri-nets is defined as follows based on the definition of arcs in [28]:

VRelPN { , from, to , to from, to Edges , from, to VRelAD}
 { , from, from, to from, to Edges , from, to VRelAD}

This definition maps all relations between edges and variants in the variability
relation of the activity diagram to the corresponding pairs of arcs and variants in the
Petri-net variability relation. The mapping from edges in the activity diagram to Petri-
nets can result in adding new transitions or places in the Petri-net (see Fig. 2).
However, these new nodes can be neglected, because the incoming and the outgoing
arcs are defined as variable by the upper mapping and thus the new nodes (e.g., the
transitions) are variable.

4.3 Binding Variability in Activity Diagrams

The definition of the binding process for the variability is the third and last step for
the formal definition of variability in development artifacts. The binding of variants is
based on a valid selection of variants. Valid in this case means that the selection of
variants (or features) obeys the constraints defined in the variability model. A valid
selection of variants is denoted as follows:

S (1, , | V |) (true, false)| V |

We define the binding approach for variability in activity diagrams based on the Petri-
net semantics defined in Section 4.2. The binding approach consists of two steps:
1) All variable arcs that are not related to a selected variant are removed from the

Petri-net. Assuming a valid variant selection S, the set of arcs is defined as follows:

A { 1, 2 1, 2 A
(, 1, 2 VRelPN , 1, 2 VRelPN: true)}

2) Isolated transitions and places are removed from the Petri-net. This step can, for
example, be realized by a depth-first-search or breadth-first-search traversal of the
Petri-net.

Now, the resulting Petri-net does not include any variability. This Petri-net can now
be mapped back to a valid activity diagram based on the mapping rules presented in
Section 3. We illustrate the derivation process with an example in Fig. 4. In Fig. 4 (a)
the domain activity diagram is shown. It has two variable edges from the activity A1.
The mapping to the corresponding Petri-net is shown in Fig. 4 (b). Now, the
variability is bound and V1 is not part of the product. The resulting Petri-net after
binding the variability is shown in Fig. 4 (c). This Petri-net can now be mapped back
to an activity diagram that does not include any variability (see Fig. 4 (d)). Based on
the mapping semantics, the whole control flow following after the variable edge to the
branch node is removed.

70 A. Heuer et al.

A2 A3

A1

v1

A2 A3

A1

v1

v2 bound

A1

A4 A4

A1

A4

v2

A4

v2

Variability Model: v1 XOR v2

Domain Model Application Model

(a) (b) (c) (d)

Fig. 4. Example of binding var iability

5 Preliminary Evaluation

In this section, we present a preliminary evaluation of our formal definition of
variability in activity diagrams. The goal of our preliminary evaluation is to show that
our formal definition supports the development of useful automated quality
assurances techniques for activity diagrams in domain engineering. We have selected
the following use cases for the evaluation:
1) Automated validation of variability: This scenario deals with the validation of the

defined variability in activity diagrams. A wrong definition of variability in
activity diagrams may allow the derivation of invalid activity diagrams in which
the final node of the activity diagram is not reachable. Based on this scenario, we
present a validation algorithm that supports the product line engineers in the
identification of such defects during the specification of variability in activity
diagrams.

2) Support for the sample quality assurance strategy: The sample strategy supports
quality assurance in domain engineering based on derived sample applications
[17]. For this u, we present an automated approach for the selection of
representative sample applications of the product line.

5.1 Validation of Variability in Activity Diagrams

Variability in activity diagrams can cause syntactic and semantic problems like
isolated sub-graphs or unreachable states. Fig. 5 (a) illustrates this problem with a
simplified activity diagram. If the variability in the activity diagram shown in Fig. 5
(a) is neglected, the activity diagram is valid. However, the variability model states
that v1 and v2 cannot be selected at the same time in the same product, i.e., the edges
labeled a and b will never become part of the same product and therefore it is

 Formal Definition of Syntax and Semantics for Documenting Variability 71

impossible to reach the final state in the activity diagram in any product of this
product line.

Algorithm 1 Detecting invalid activity diagrams

(1) foreach P TC do
(1.1) VSel
(1.2) foreach x P do
(1.2.1) If x , VRelAD: V then
(1.2.1.1) VSel VSel { }
(1.3) If SAT-VM(VSel) = false then
(1.3.1) TC = TC \ P

This problem can be detected using the detection algorithm in Algorithm 1, which
works as follows. The algorithm derives all paths through the domain activity diagram
by using the node reduction algorithm proposed by Beizer [2]. The result of the node
reduction algorithm is a formula representing all paths through the activity diagram.
In Fig. 5 (a) for example, the path expression is abcdg+abefg. This can be represented
by the set TC = {(a, b, c, d, g); (a, b, e, f, g)}, since now variable edges are ignored.
In the first step, the derived paths are checked by iterating over the set TC. The
current path is iterated and checked against the variability model. If the current edge x
of the path has a variant relation (step 1.2.1), i.e., , VRelAD, the variant has to
be added to the set VSel (step 1.2.1.1). In the example above, the first sequence is
abcdg. The edges a and b are related to v1 and v2, i.e., after iteration over the first path
expression, the set VSel consists of the elements VSel = {v1,v2}. In step 1.3, the variant
selection v1 and v2 is checked using the variability model whether it is a valid variant
selection, e.g., by using a SAT solver (function SAT-VM). The SAT solver function
returns false, i.e., the variant selection is invalid. Because it is invalid, the path abcdg
is removed from TC and TC now consists of {(a, b, e, f, g)} (step 1.3.1). The next
element of TC is validated in the same way. Since it is also not a valid expression, it is
removed and the set TC is empty, i.e., TC .

The empty set means that it is not possible to make a valid variant selection that
leads to a valid path in the variable activity diagram. Thus, the specified activity
diagram is not valid.

5.2 Identification of Sample Products for Product Line Quality Assurance

The sample strategy is a popular approach for quality assurance in domain
engineering and works as follows: based on the domain artifacts of the product line,
one or more sample products are derived and tested [17]. The main advantage of this
strategy is that quality assurance techniques from single system engineering can be
applied to the derived sample products. However, the quality of the results of the
sample strategy mainly depends on the selected sample products. A set of sample
products that is not representative for the product line only allows a limited
conclusion related to the quality of the entire product line. Therefore, the main
challenge of the sample strategy is the identification of representative products.

72 A. Heuer et al.

A1 a

b

A2

e

c

d

f

A3 A4 A5

g i

m

kh n

o

v1

v2

v3v4

v2 XOR v3v1 v4 IMPLIES v2

A1

a

b

A2 A3

c e

d f

g

v1 XOR v2

v1

v2

Variability Model:

Domain Model:

(a) (b)

Fig. 5. Sample test models

In the following, we present an automated selection algorithm for the identification
of sample products that takes advantage of our formal definition of variability in
activity diagrams. The algorithm consists of two steps. First, a formula for the number
of test cases based on the domain activity diagram is derived. This formula includes
variables representing the variants. In the second step, this formula has to be
optimized to return the highest number of test cases regarding a valid variant
selection.

The calculation of the number of paths through the domain test model is again based
on the node reduction algorithm proposed by Beizer [2]. This algorithm implicates the
use of the path coverage criterion. However, the path coverage criterion can uncover
most of the errors in software (cf. [15]). Loops in test models have to be handled
separately, because the number of test case scenarios depends on the strategy for loop
handling. To illustrate the approach, we use the example provided in Fig. 5 (b).

In the first step, we have to derive the formula for the number of paths using the
domain test model. Therefore, the node reduction algorithm proposed by Beizer [2] is
utilized. Based on an adjacency matrix, all common edges are replaced by 1, whereas
all variable edges are replaced by the related variant (e.g., c is replaced by v1). Then,
the node reduction algorithm is executed. The result of the algorithm is a formula. For
the example in Fig. 5 (b), the formula is:

v1+v1v3+v1v4+v1v3v4+v2+v2v4 = v1(1+v3+v4+v3v4)+v2(1+v4)

Applying a valid variant selection, the variables can be replaced by 0 (if the variant
is not part of a product) or 1 (if the variant is part of a product) and the number of test
cases can be calculated. For example, if the variants v1 and v3 are chosen, this
product can be tested with two test cases (abemno and abcdmno). In the second step,

 Formal Definition of Syntax and Semantics for Documenting Variability 73

the maximum of this formula has to be calculated regarding the variability model.
Obviously, the highest number of test cases results from the selection of each variant.
However, the variability model has to be regarded by the variant selection. This
optimization can be solved, for example, by a greedy algorithm (cf. [5]) to find the
optimal combination of variants.

6 Summary and Outlook

In this paper, we presented a formal definition of the syntax and semantics of
variability in activity diagrams based on Petri-net semantics. The use of Petri-nets
lends itself to the formal definition of the syntax and semantics of variability in
activity diagrams, since the OMG defines the semantics of activity diagrams on the
basis of token-flows [19] and the state-of-the-art already provides a profound
definition of the syntax and semantics of activity diagrams based on Petri-nets [29].

The formal definition of the syntax and semantics of a modeling language is a
prerequisite for an automated analysis approach. Therefore, our definition provides
the theoretical foundation for a comprehensive support of quality assurance in domain
engineering.

We showed the applicability of our definition in two different use cases. The first
use case presented an automated validation algorithm for variability in activity
diagrams. The second use case presented an automated approach for the selection of
representative sample products in domain engineering that can be used in the sample
quality assurance strategy.

In our future research, we will follow two directions. First, we plan to implement
our definitions in a tool prototype that can be used in case studies with our industrial
partners. Second, we plan to investigate on further possibilities for the automated
support of quality assurance in domain engineering based on activity diagrams.

References

74 A. Heuer et al.

1. Batory, D.S.: Feature Models, Grammars, and Propositional Formulas. In: Obbink, H.,
Pohl, K. (eds.) SPLC 2005. LNCS, vol. 3714, pp. 7–20. Springer, Heidelberg (2005)

2. Beizer, B.: Software Testing Techniques, 2nd edn. Van Nostrand Reinhold, New York
(1990)

3. Binder, R.: Testing Object-Oriented Systems – Models, Patterns, and Tools. Addison-
Wesley, Reading (1999)

4. Braganca, A., Machado, R.J.: Extending UML 2.0 Metamodel for Complementary Usages
of the �extend� Relationship within Use Case Variability Specification. In: Proceedings
of the 10th International Conference on Software Product Lines, SPLC 2006, pp. 123–130.
IEEE Computer Society, Los Alamitos (2006)

5. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 3rd
edn. MIT Press, Cambridge (2009) ISBN 978-0262533058

 Formal Definition of Syntax and Semantics for Documenting Variability 75

6. Eshuis, H.: Semantics and Verification of UML Activity Diagrams for Workflow Model-
ling. PhD thesis. Univ. of Twente. CTIT Ph.D. thesis series No. 02-44 (2002) ISBN
9036518202

7. Eshuis, R.: Symbolic model checking of UML activity diagrams. ACM Trans. Softw. Eng.
Methodol. 15(1), 1–38 (2006)

8. Eshuis, R., Wieringa, R.: Tool Support for Verifying UML Activity Diagrams. IEEE
Transactions on Software Engineering 30(7), 437–447 (2004)

9. Hartmann, J., Vieira, M., Ruder, A.: A UML-based Approach for Validating Product
Lines. In: Geppert, B., Krueger, C., Jenny Li, J. (eds.) Proceedings of the International
Workshop on Software Product Line Testing (SPLiT) 2004. Boston, USA. Avaya labs
ALR-2004-031 (2004)

10. Kamsties, E., Pohl, K., Reis, S., Reuys, A.: Testing Variabilities in Use Case Models. In:
Proceedings of the 5th International Workshop on Software Product-Family Engineering
(2003)

11. Kang, K.C., Cohen, S.G., Hess, J.A., Novak, W.E., Peterson, A.S.: Feature-Oriented Do-
main Analysis (FODA) Feasibility Study Software Engineering Institute. Carnegie Mellon
University, Pittsburgh (1990)

12. Larsen, K., Nyman, U., W sowski, A.: Modal I/O Automata for Interface and Product Line
Theories. In: De Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp. 64–79. Springer, Hei-
delberg (2007)

13. Lauenroth, K., Pohl, K.: Towards Automated Consistency Checks of Product Line Re-
quirements Specifications. In: Stirewalt, K., Egyed, A., Fischer, B. (eds.) Proceedings of
the 27th International Conference on Automated Software Engineering (ASE 2007), At-
lanta, USA, November 5-9 (2007)

14. Lauenroth, K., Töhning, S., Pohl, K.: Model Checking of Domain Artifacts in Product
Line Engineering. In: Proceedings of the 24th International Conference on Automated
Software Engineering (ASE), New Zealand, pp. 373–376 (2009)

15. Liggesmeyer, P.: Software Qualität: Testen, Analysieren und Verifizieren von Software (in
german), 2nd edn. Spektrum Akademischer Verlag (2009)

16. Linzhang, W., Jiesong, Y., Xiaofeng, Y., Jun, H., Xuandong, L., Guoliang, Z.: Generating
Test Cases from UML Activity Diagram based on Gray-Box Method. In: Proceedings of
the 11th Asia-Pacific Software Engineering Conference, pp. 284–291. IEEE Computer So-
ciety, Washington (2004)

17. Metzger, A.: Quality Issues in Software Product Lines: Feature Interactions and Beyond.
In: du Bousquet, L., Richier, J.-L. (eds.) Feature Interactions in Software and Communica-
tion Systems IX, International Conference on Feature Interactions in Software and Com-
munication Systems, ICFI 2007, Grenoble, France. IOS Press, Amsterdam (2007)

18. Murata, T.: Petri-nets: Properties, analysis and applications. Proceedings of the
IEEE 77(4), 541–580 (1989)

19. Object Management Group: UML 2.2 Superstructure and Infrastructure,
http://www.omg.org/technology/documents/modeling_spec_
catalog.htm#UML

20. Olimpiew, E.M., Gomaa, H.: Model-based Test Design for Software Product Lines. In:
Thiel, S., Pohl, K. (eds.) Software Product Lines, Proceedings of 12th International Con-
ference, SPLC 2008, Limerick, Ireland, September 8-12, Second Volume (Workshops),
Lero Int. Science Centre, University of Limerick, Ireland (2008)

21. Petri, C.A.: Kommunikation mit Automaten. In: Schriften des Rheinisch-Westfälischen In-
stitutes für instrumentelle Mathematik an der Universität Bonn, Bonn (1962)

22. Pohl, K., Böckle, G., van der Linden, F.: Software Product Line Engineering – Founda-
tions, Principles, Techniques. Springer, Heidelberg (2005)

76 A. Heuer et al.

23. Pohl, K., Metzger, A.: Software Product Line Testing – Exploring Principles and Potential
Solutions. Communications of the ACM 49(12), 78–81 (2009)

24. Reis, S., Metzger, A., Pohl, K.: Integration Testing in Software Product Line Engineering:
A Model-Based Technique. In: Dwyer, M.B., Lopes, A. (eds.) FASE 2007. LNCS,
vol. 4422, pp. 321–335. Springer, Heidelberg (2007)

25. Reuys, A., Kamsties, E., Pohl, K., Reis, S.: Model-Based System Testing of Software
Product Families. In: Pastor, Ó., Falcão e Cunha, J. (eds.) CAiSE 2005. LNCS, vol. 3520,
pp. 519–534. Springer, Heidelberg (2005)

26. Reuys, A., Reis, S., Kamsties, E., Pohl, K.: The ScenTED Method for Testing Software
Product Lines. In: Käkölä, T., Duenas, J.C. (eds.) Software Product Lines – Research Is-
sues in Engineering and Management, pp. 479–520. Springer, Heidelberg (2006)

27. Robak, D., Franczyk, B., Politowicz, K.: Extending the UML for Modeling Variability for
System Families. International Journal of Applied Mathematics and Computer Sci-
ence 12(2), 285–298 (2002)

28. Störrle, H.: Semantics and Verification of Data Flow in UML 2.0 Activities. In: Minas, M.
(ed.) Proceedings of the Workshop on Visual Languages and Formal Methods (VLFM
2004). Electronic Notes in Theoretical Computer Science, vol. 127(4), pp. 35–52. Elsevier,
Amsterdam (2004)

29. Störrle, H.: Semantics of Control-Flow in UML 2.0 Activities. In: Bottoni, P., Hund-
hausen, C., Levialdi, S., Tortora, G. (eds.) Proceedings of the IEEE Symposium on Visual
Languages and Human-Centric Computing (VL/HCC), pp. 235–242. Springer, Heidelberg
(2004)

30. Störrle, H.: Structured Nodes in UML 2.0 Activities. Nordic Journal of Computing 11(3),
279–302 (2004)

31. Störrle, H., Hausmann, J.H.: Towards a formal semantics of UML 2.0 activities. In: Lig-
gesmeyer, P., Pohl, K., Goedicke, M. (eds.) Software Engineering 2005, Fachtagung des
GI-Fachbereichs Softwaretechnik. Lecture Notes in Informatics, pp. 117–128. Gesellschaft
für Informatik (2005) ISBN 3-88579-393-8

Delta-Oriented Programming of Software Product Lines

Ina Schaefer1, Lorenzo Bettini2, Viviana Bono2,
Ferruccio Damiani2, and Nico Tanzarella2

1 Chalmers University of Technology, 421 96 Gothenburg, Sweden
schaefer@chalmers.se

2 Dipartimento di Informatica, Università di Torino, C.so Svizzera, 185 - 10149 Torino, Italy
{bettini,bono,damiani}@di.unito.it, nicotanz@libero.it

Abstract. Feature-oriented programming (FOP) implements software product
lines by composition of feature modules. It relies on the principles of stepwise
development. Feature modules are intended to refer to exactly one product fea-
ture and can only extend existing implementations. To provide more flexibility
for implementing software product lines, we propose delta-oriented programming
(DOP) as a novel programming language approach. A product line is represented
by a core module and a set of delta modules. The core module provides an imple-
mentation of a valid product that can be developed with well-established single
application engineering techniques. Delta modules specify changes to be applied
to the core module to implement further products by adding, modifying and re-
moving code. Application conditions attached to delta modules allow handling
combinations of features explicitly. A product implementation for a particular
feature configuration is generated by applying incrementally all delta modules
with valid application condition to the core module. In order to evaluate the po-
tential of DOP, we compare it to FOP, both conceptually and empirically.

1 Introduction

A software product line (SPL) is a set of software systems with well-defined common-
alities and variabilities [13,29]. The variabilities of the products can be defined in terms
of product features [16], which can be seen as increments of product functionality [6].
Feature-oriented programming (FOP) [10] is a software engineering approach relying
on the principles of stepwise development [9]. It has been used to implement SPLs by
composition of feature modules. In order to obtain a product for a feature configuration,
feature modules are composed incrementally. In the context of object-oriented program-
ming, feature modules can introduce new classes or refine existing ones by adding fields
and methods or by overriding existing methods. Feature modules cannot remove code
from an implementation. Thus, the design of a SPL always starts from a base feature
module which contains common parts of all products. Furthermore, a feature module
is intended to represent exactly one product feature. If the selection of two optional
features requires additional code for their interaction, this cannot be directly handled
leading to the optional feature problem for SPLs [20].

In this paper, we propose delta-oriented programming (DOP) as a novel program-
ming language approach particularly designed for implementing SPLs, based on the
concept of program deltas [32,31]. The goal of DOP is to relax the restrictions of FOP

J. Bosch and J. Lee (Eds.): SPLC 2010, LNCS 6287, pp. 77–91, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

78 I. Schaefer et al.

and to provide an expressive and flexible programming language for SPL. In DOP, the
implementation of a SPL is divided into a core module and a set of delta modules. The
core module comprises a set of classes that implement a complete product for a valid
feature configuration. This allows developing the core module with well-established
single application engineering techniques to ensure its quality. Delta modules specify
changes to be applied to the core module in order to implement other products. A delta
module can add classes to a product implementation or remove classes from a product
implementation. Furthermore, existing classes can be modified by changing the super
class, the constructor, and by additions, removals and renamings of fields and methods.
A delta module contains an application condition determining for which feature con-
figuration the specified modifications are to be carried out. In order to generate a prod-
uct implementation for a particular feature configuration, the modifications of all delta
modules with valid application condition are incrementally applied to the core module.
The general idea of DOP is not restricted to a particular programming language. In or-
der to show the feasibility of the approach, we instantiate it for JAVA, introducing the
programming language DELTAJAVA.

DOP is a programming language approach especially targeted at implementing SPLs.
The delta module language includes modification operations capable to remove code
such that a flexible product line design and modular product line evolution is supported.
The application conditions attached to delta modules can be complex constraints over
the product features such that combinations of features can be handled explicitly avoid-
ing code duplication and countering the optional feature problem [20]. The ordering of
delta module application can be explicitly defined in order to avoid conflicting modifica-
tions and ambiguities during product generation. Using a constraint-based type system,
it can be ensured that the SPL implementation is well formed. This yields that product
generation is safe, which means that all resulting products are type correct. In order to
evaluate the potential of DOP, we compare it with FOP, both on a conceptual and on an
empirical level using case examples studied for FOP.

2 Delta-Oriented Programming

In order to illustrate delta-oriented programming in DELTAJAVA, we use the expression
product line (EPL) as described in [25] as running example. We consider the following
grammar for expressions:

Exp ::= Lit | Add | Neg Lit ::= <non−negative integers> Add ::= Exp ”+” Exp Neg ::= ”−” Exp

Two different operations can be performed on the expressions described by this gram-
mar: first, printing, which returns the expression as a string, and second, evaluation,
which computes the value of the expression. The set of products in the EPL can be
described with a feature model [16], see Figure 1. It has two feature sets, the ones con-
cerned with data Lit, Add, Neg and the ones concerned with operations Print and Eval.
Lit and Print are mandatory features. The features Add, Neg and Eval are optional.

Core Module. In DELTAJAVA, a software product line is implemented by a core module
and a set of delta modules. A core module corresponds to the implementation of a
product for a valid feature configuration. It defines the starting point for generating all

Delta-Oriented Programming of Software Product Lines 79

Lit Eval

Data

Add Neg Print

Expression Product Line

Operations

Fig. 1. Feature Model for Expression Problem Product Line

core Print, Lit {
interface Exp { void print(); }
class Lit implements Exp {

int value;
Lit(int n) { value=n; }
void print() { System.out.print(value); }

}
}

Listing 1. Core module implementing Lit and Print features

other products by delta module application. The core module depends on the underlying
programming language used to implement the products. In the context of this work, the
core module contains a set of JAVA classes and interfaces. These are enclosed in a core
block additionally specifying the implemented features by listing their names:
core <Feature names> { <Java classes and interfaces> }

The product represented by the core module can be any valid product. Thus, it has to
implement at least the mandatory features and a minimal set of required alternative fea-
tures, if applicable. Note that the core module is not uniquely determined, as illustrated
in Section 3. Choosing the core module to be a valid product allows to develop it with
standard single application engineering techniques to ensure its quality and to validate
and verify it thoroughly with existing techniques. Listing 1 contains a core module for
the EPL. It implements the features Lit and Print.

Delta Modules. Delta modules specify changes to the core module in order to imple-
ment other products. The alterations inside a delta module act on the class level (by
adding, removing and modifying classes) and on the class structure level (by modifying
the internal structure of a class by changing the super class or the constructor, or by
adding, removing and renaming fields and methods).1 Furthermore, a delta module can
add, remove or modify interfaces by adding, removing or renaming method signatures.
An application condition is attached to every delta module in its when clause deter-
mining for which feature configurations the specified alterations are to be carried out.
Application conditions are propositional constraints over features. This allows specify-
ing delta modules for combinations of features or to explicitly handle the absence of

1 Renaming a method does not change calls to this method. The same holds for field renaming.

80 I. Schaefer et al.

delta DEval when Eval {
modifies interface Exp { adds int eval(); }
modifies class Lit {

adds int eval() { return value; }
}

}

delta DAdd when Add {
adds class Add implements Exp {

Exp expr1; Exp expr2;
Add(Exp a, Exp b) { expr1=a; expr2=b; }

}
}

Listing 2. Delta modules for Eval and Add features

features. The number of delta modules required to implement all products of a product
line depends on the granularity of the application conditions. In general, a delta module
has the following shape:
delta <name> [after <delta names>] when <application condition> {

removes <class or interface name>
adds class <name> <standard Java class>
adds interface <name> <standard Java interface>
modifies interface <name> { <remove, add, rename method header clauses> }
modifies class <name> { <remove, add, rename field clauses> <remove, add, rename method clauses> }

}

The left of Listing 2 shows the delta module corresponding to the Eval feature of the
EPL. It modifies the interface Exp by adding the method signature for the eval method.
Furthermore, it modifies the class Lit by adding the method eval. The when clause
denotes that this delta module is applied for every feature configuration in which the
Eval feature is present. The right of Listing 2 shows the delta module required for the
Add feature adding the class Add. The when clause specifies that the delta module is
applied if the features Add is present.

Product Generation. In order to obtain a product for a particular feature configuration,
the alterations specified by delta modules with valid application conditions are applied
incrementally to the core module. The changes specified in the same delta module are
applied simultaneously. In order to ensure, for instance, that a class to be modified exists
or that a modification of the same method by different delta modules does not cause a
conflict, an ordering on the application of delta modules can be defined by means of
the after clause. This ordering implies that a delta module is only applied to the core
module after all delta modules with a valid application condition mentioned in the after
clause have been applied. The partial ordering on the set of delta modules defined by
the after clauses captures the necessary dependencies between the delta modules, which
are usually semantic requires relations. As an example, consider the left of Listing 3
which depicts the delta module introducing the evaluation functionality for the addition
expression. Its when clause specifies that it is applied, if both the Add and the Eval
features are present. In the after clause, it is specified that this delta module has to be
applied after the delta module DAdd because the existence of the class Add is assumed.
The implementation of the delta module DAddPrint is similar. Note that specifying that
a delta module A has to be applied after the delta module B does not mean that A
requires B: it only denotes that if a feature configuration satisfies the when clause of
both A and B, then B must be applied before A.

The generation of a product for a given feature configuration consists of the fol-
lowing steps, performed automatically by the system: (i) Find all delta modules with a

Delta-Oriented Programming of Software Product Lines 81

delta DAddEval after DAdd when Add && Eval {
modifies class Add {

adds int eval()
{ return expr1.eval() + expr2.eval(); }

}
}

delta DAddPrint after DAdd when Add && Print {
modifies class Add {

adds void print()
{ expr1.print();

System.out.print(” + ”); expr2.print(); }
}

}

Listing 3. Delta modules for Add and Eval and for Add and Print features

interface Exp { void print(); int eval(); }
class Lit implements Exp {

int value;
Lit(int n) { value=n; }
void print()

{ System.out.print(value); }
int eval()

{ return value; }
}

class Add implements Exp {
Exp expr1; Exp expr2;
Add(Exp a, Exp b) { expr1=a; expr2=b;}
void print()

{ expr1.print();
System.out.print(” + ”); expr2.print(); }

int eval()
{ return expr1.eval() + expr2.eval();}

}

Listing 4. Generated implementation for Lit, Add, Print, Eval features

valid application condition according to the feature configuration (specified in the when
clause); and (ii) Apply the selected delta modules to the core module in any linear or-
dering respecting the partial order induced by the after clauses.

As an example of a product implementation generated by delta application, consider
Listing 4 which shows the implementation of the Lit, Add, Print, Eval features of the
EPL. It is an ordinary JAVA program containing the interface Exp and the classes Lit
and Add. The implementation is obtained by applying the delta modules depicted in
Listings 2 and 3 to the core module (cf. Listing 1) in any order in which DAddEval and
DAddPrint are applied after DAdd.

Safe Program Generation. The automatic generation of products by delta applica-
tion is only performed if the DELTAJAVA product line implementation is well-formed.
Well-formedness of a product line means that all delta modules associated to a valid
feature configuration are well-formed themselves and applicable to the core module in
any order compatible with the partial order provided by the after clauses. The partial
order ensures that all compatible application orders generate the same product. A delta
module is well-formed, if the added and removed classes are disjoint and if the modi-
fications inside a class target disjoint fields and methods. A delta module is applicable
to a product if all the classes to be removed or modified exist, all methods and fields
to be removed or renamed exist and if classes, methods and fields to be added do not
exist. Furthermore, all delta modules applicable for the same valid feature configuration
that are not comparable with respect to the after partial order must be compatible. This
means that no class is added or removed in more than one delta module, and for every
class modified in more than one delta module the fields or methods added, modified and
renamed are disjoint. This implies that all conflicts between modifications targeting the
same class have to be resolved by the ordering specified with the after clauses.

82 I. Schaefer et al.

features Lit, Add, Neg, Print, Eval
configurations Lit && Print && (Add | Neg | Eval)
core Lit, Print { [...] }
delta DEval when Eval { [...] }
delta DAdd when Add { [...] }
delta DAddPrint after DAdd when Add && Print { [...] }
delta DAddEval after DAdd when Add && Eval { [...] }
delta DNeg when Neg { [...] }
delta DNegPrint after DNeg when Neg && Print { [...] }
delta DNegEval after DNeg when Neg && Eval { [...] }

Listing 5. Product Line Implementation in DELTAJAVA starting from Simple Core

In order to ensure well-formedness, DELTAJAVA is accompanied by a constraint-
based type system (not shown in this paper). For each delta module in isolation, a set
of constraints is generated that refers to the classes, methods or fields required to ex-
ist or not to exist for the delta module to be applicable. Then, for every valid feature
configuration, only by checking the constraints, it can be inferred whether delta module
application will lead to a well-typed JAVA program. The separate constraint generation
for each delta module avoids reinspecting all delta modules if only one delta is changed
or added. Furthermore, if an error occurs, it can easily be traced back to the delta mod-
ules causing it.

3 Implementing Software Product Lines

The delta-oriented implementation of a SPL in DELTAJAVA comprises an encoding of
the feature model, the core module and a set of delta modules necessary to implement
all valid products. The feature model is described by its basic features and a proposi-
tional formula describing the valid feature configurations (other representations might
be considered [6]). In this section, we show how SPLs are flexibly implemented in
DELTAJAVA starting from different core products using the EPL as illustration.

Starting from a Simple Core. The core module of a DELTAJAVA product line contains
an implementation of a valid product. One possibility is to take only the mandatory
features and a minimal number of required alternative features, if applicable. In our
example, the Lit and Print features are the only mandatory features. Listing 1 shows the
respective core module serving as starting point of a SPL implementation starting from a
simple core. In order to represent all possible products, delta modules have to be defined
that modify the core product accordingly. For the EPL starting from the simple core, this
are the delta modules depicted in Listings 2 and 3 together with three additional delta
modules implementing the Neg feature alone as well as in combination with the Print
feature and the Eval feature. Their implementation is similar to the implementation of
the DAdd, DAddPrint and DAddEval delta modules and, thus, not shown here. Listing 5
shows the complete implementation of the EPL containing the encoding of the feature
model (cf. Figure 1), the core module and the delta modules. For space reasons, the
concrete implementations of the core and delta modules are omitted.

Delta-Oriented Programming of Software Product Lines 83

delta DRemEval when !Eval && Add {
modifies interface Exp { removes eval;}
modifies class Lit { removes eval;}
modifies class Add { removes eval;}

}

Listing 6. Removing Eval from Complex Core

features Lit, Add, Neg, Print, Eval
configurations Lit && Print && (Add | Neg | Eval)
core Lit, Print, Add, Eval { [...] }
delta DRemEval when !Eval && Add { [...] }
delta DRemAdd when !Add { [...] }
delta DRemAddEval when !Add && !Eval { [...] }
delta DNeg when Neg { [...] }
delta DNegPrint after DNeg when Neg && Print { [...] }
delta DNegEval after DNeg when Neg && Eval { [...] }

Listing 7. Product Line Implementation in DELTAJAVA starting from Complex Core

Starting from a Complex Core. Alternatively, a SPL implementation in DELTAJAVA

can start from any product for a valid feature configuration containing a larger set of fea-
tures. The advantage of the more complex core product is that all included functionality
can be developed, validated and verified with standard single application techniques.
In order to illustrate this idea, we choose the product with the Lit, Add, Print and Eval
features as core product whose implementation is contained in Listing 4. In order to pro-
vide product implementations containing less features, functionality has to be removed
from the core. Listing 6 shows a delta module that removes the evaluation functionality
from the complex core. It is applied to the core module if the Eval feature is not in-
cluded in a feature configuration, but the Add feature is selected. This means that only
the eval method from the Add class is removed, but not the Add class itself.

Listing 7 shows the implementation of the EPL starting from the complex core mod-
ule depicted in Listing 4. In addition to the delta module DRemEval, a delta module
DRemAdd (not shown here) is required to remove the Add class if the Add feature is
not selected, and a third delta module DRemAddEval (not shown here) is required to
remove the eval method from the Lit class and the Exp interface, in case both the Eval
and the Add features are not selected. Further, the delta modules DNeg, DNegPrint and
DNegEval as in the previous implementation are required.

4 Comparing Delta-Oriented and Feature-Oriented Programming

In order to evaluate DOP of SPLs, we compare it with FOP [10]. Before the comparison,
we briefly recall the main concepts of FOP.

4.1 Feature-Oriented Programming

In FOP [10], a program is incrementally composed from feature modules following the
principles of stepwise development. A feature module can introduce new classes and

84 I. Schaefer et al.

interface Exp { String print(); }
class Lit implements Exp {

int value;
Lit(int n) { value=n; }
void print() { System.out.print(value); }

}

(a) LitPrint feature module

class Add implements Exp {
Exp x;
Exp y;
Add(Exp x, Exp y) { this.x = x; this.y = y; }
public String print() { return x + ”+” + y; }

}

(b) AddPrint feature module

refines interface Exp { int eval(); }
refines class Lit {

public int eval() { return value; }
}

(c) LitEval feature module

refines class Add {
public int eval()

{ return x.eval() + y.eval(); }
}

(d) AddEval feature module

Listing 8. Feature Modules for EPL in JAK

refine existing ones. The concept of stepwise development is introduced in GenVoca [9]
and extended in AHEAD [10] for different kinds of design artifacts. For our compari-
son, we restrict our attention to the programming language level of AHEAD, i.e., the
JAK language, a superset of JAVA containing constructs for feature module refinement.

In order to illustrate FOP in JAK, we recall the implementation of the EPL pre-
sented in [25]. The five domain features, shown in the feature model in Figure 1, are
transformed into six feature modules. The difference between the number of domain
features and the number of feature modules is due to the fact that combinations of do-
main features cannot be dealt with explicitly in JAK. Therefore, a suitable encoding of
the domain features has to be chosen. This results in the feature modules for the feature
combinations LitPrint, AddPrint and NegPrint combining every data feature with the
Print feature. Furthermore, for each data feature, there is a feature module adding the
evaluation operation, i.e., LitEval, AddEval and NegEval. The JAK code implementing
the feature modules LitPrint, AddPrint, LitEval, and AddEval is shown in Listing 8.
The generation of a product starts from the base feature module LitPrint. A program
containing the Lit, Add, Print, and Eval features can be obtained by composing the
feature modules as follows: LitPrint • AddPrint • LitEval • AddEval. The code of the
resulting program is as shown in Listing 4.

4.2 Comparison

Both delta modules and features modules support the modular implementation of SPLs.
However, they differ in their expressiveness, the treatment of domain features, solutions
for the optional features problem, guarantees for safe composition and support for evo-
lution. Both techniques scale to a general development approach [10,31].

Expressiveness. Feature modules can introduce new classes or refine existing ones fol-
lowing the principles of stepwise development [10]. The design of a SPL always starts
from the base feature module containing common parts of all products. In contrast, delta
modules support additions, modifications and removals of classes, methods and fields.

Delta-Oriented Programming of Software Product Lines 85

This allows choosing any valid feature configuration to be implemented in the core
module and facilitates a flexible product line design starting from different core prod-
ucts, as shown in Section 3. The core module contains an implementation of a complete
product. This allows developing and validating it with well-established techniques from
single application engineering, or to reengineer it before starting the delta module pro-
gramming to ensure its quality. For verification purposes, it might save analysis effort to
start with a complex product, check the contained functionality thoroughly and remove
checked functionality in order to generate other products. In JAK, an original method
implementation before refinement can be accessed with a Super() call. Delta modules
currently do not have an equivalent operation. However, a Super() call in delta modules
could be encoded by renaming the method to be accessed and adding a corresponding
call during program generation.

Domain Features. In FOP, domain-level features are intentionally separated from fea-
ture modules in order to increase the reusability of the refinements. The mapping from
domain features to the feature modules is taken care of by external tools. In the AHEAD
Tool Suite [10], the external tool guidsl [6] supports this aspect of product generation.
For a given domain feature configuration, guidsl provides a suitable composition of the
respective feature modules.

In a DELTAJAVA implementation, the features of the feature model and the corre-
sponding constraints are explicitly specified. This allows reasoning about feature con-
figurations within the language. For product generation, it can be established that the
provided feature configuration is valid, such that only valid products are generated.
For each delta module, the application condition ranges over the features in the fea-
ture model such that the connection of the modifications to the domain-level features is
made explicit. This limits the reusability of delta modules for another SPL, but allows
static analysis to validate the design of the very product line that is implemented. It can
be checked whether the application condition of a delta module can actually evaluate
to true for any valid feature configuration. Otherwise, the delta module will never be
applied and can be removed. Furthermore, for a given feature configuration, the set of
applicable delta modules can be determined directly without help of external tools. If,
for instance, a new delta module has to be added, it is easy to learn about the conse-
quences and potential conflicts in the existing implementation.

The Optional Feature Problem. The optional feature problem [20] occurs when two
optional domain features require additional code for their interaction. Feature mod-
ules [10] are not intended to refer to combinations of features. Thus, one way to solve
the optional feature problem is to move code belonging to one feature to a feature mod-
ule for another feature, similar to the combination of domain features in the EPL. This
solution violates the separation of concerns principle [20] and leads to a non-intuitive
mapping between domain features and feature modules. In the Graph Product Line [24]
implementation [5] (cf. Section 5), the optional feature problem is solved by multiple
implementations per domain feature which leads to code duplications. Alternatively,
derivative modules [23] can be used. In this case, a feature module is split into a base
module only containing introductions and a set of derivative modules only containing

86 I. Schaefer et al.

refinements that are necessary if other features are also selected. However, this may
result in a large number of small modules and might not scale in practice [20].

In contrast, the optional feature problem can be solved in DOP within the language.
A delta module does not correspond to one domain feature, but can refer to any combi-
nation of features. By the application condition of a delta module, the feature configura-
tions the delta module is applied for are made explicit such that code only required for
feature interaction can be clearly marked. In particular, delta modules can implement
derivative modules. The implementation of the EPL in Listing 5 follows the derivative
principle. Moreover, code duplication between two features modules can be avoided by
factoring common code into a separate delta module that is applied if at least one of the
respective features is selected.

Safe Composition. Feature composition in FOP is performed in a fixed linear order.
This linear ordering has to be provided before feature module composition to avoid
conflicting modifications. In DOP, the partial order specified in the after clauses of
delta modules captures only essential dependencies and semantic requirements between
different modifications of the same class or method. Instead of specifying a partial order,
conflicting modifications between delta modules could also be prohibited completely at
the price of writing additional delta modules for the respective combinations. Thus, the
partial order is a compromise between modularity and a means to resolve conflicting
modifications without increasing the number of delta modules.

During feature module composition, it is not guaranteed that the resulting program
is correct, e.g., that each referenced field or method exists. Such errors are only raised
during compilation of the generated program. Recently, there have been several ap-
proaches to guarantee safety of feature module composition [2,3,14,35] by means of
external analysis or type systems. DELTAJAVA has an integrated constraint-based type
system guaranteeing that the generated program for every valid feature configuration
is type correct and that all conflicts are resolved by the partial order. Constraints are
generated for each delta module in isolation such that an error can be traced back to the
delta modules where it occurred. Additionally, changed or added delta modules do not
require re-checking the unchanged delta modules.

Product Line Evolution. Product lines are long-lived software systems dealing with
changing user requirements. For example, if in the EPL printing should become an
optional feature, the JAK implementation has to be refactored to separate the printing
functionality from the implementation of the data. In the DELTAJAVA implementation,
only one delta module has to be added to remove the printing functionality from the
simple as well as from the complex core, while all other delta modules remain un-
changed. To this end, the expressivity of the modification operations in delta modules
supports modular evolution of SPL implementations.

Scaling Delta-oriented Programming. The AHEAD methodology [10] for developing
software by stepwise development is not limited to the implementation level and has
been instantiated to other domain-specific languages as well as to XML. Similarly, the
concepts of DOP can be applied to other programming or modeling languages. In [32],

Delta-Oriented Programming of Software Product Lines 87

Table 1. Summary of Comparison

Feature-oriented Programming Delta-oriented Programming

Expressiveness Design from Base Module Design from Any Product

Domain Features Bijection between Features and
Feature Modules

Delta Modules for Feature
Combinations

Optional Feature
Problem

Rearrange Code, Multiple Impl.,
Derivative Modules

Direct Implementation of
Interaction

Safe Composition External Tools, Type Systems Partial Order for Conflict
Resolution, Type System

Evolution Refactoring Addition of Delta Modules

a seamless delta-oriented model-driven development process is proposed. The variabil-
ity structure in terms of core and delta modules has to be determined only once for an
initial delta-oriented product line representation on a high level of abstraction. By step-
wise refinement of the delta-oriented product models without changing the variability
structure, a DELTAJAVA implementation of a SPL can eventually be obtained. In this
way, product variability can be managed in the same manner on all levels during SPL
development.

Summary. FOP is a general software engineering approach based on the principles
of stepwise development that has been used to implement SPLs. In contrast, DOP
is specifically designed for this task such that it differs from FOP as summarized in
Table 1.

5 Evaluation

In order to evaluate DOP in practice, we have implemented a set of case studies in
DELTAJAVA that have also been studied in the context of JAK [10]. These case studies
include two versions of the EPL [1,25], two smaller case examples [7], and the Graph
Product Line (GraphPL), suggested in [24] as a benchmark to compare SPLs architec-
tures. The first implementation of the EPL in AHEAD [1] follows the derivative module
principle. The second implementation of the EPL is the same as sketched in this paper
and presented in [25]. In the corresponding DELTAJAVA implementations, the design
of the delta modules has been chosen to mimic the AHEAD design. In order to evalu-
ate the flexibility of DOP, we have implemented each example in DELTAJAVA starting
from a simple core product and from a complex core product. For the EPL, we used the
simple and the complex core products presented in Section 3.

The results of our evaluation are summarized in Table 2 containing the number of
feature modules or delta modules and the corresponding lines of code required to imple-
ment the respective examples. The number of feature modules and delta modules does
not differ significantly in the considered examples. For the first version of the EPL [1],

88 I. Schaefer et al.

Table 2. Evaluation Results (LOC is the number of lines of code)

JAK DELTAJAVA DELTAJAVA

Simple Core Complex Core

feature
modules

LOC # delta
modules

LOC # delta
modules

LOC

EPL [1] 12 98 7 123 6 144
EPL [25] 6 98 5 117 5 124
Calculator [7] 10 75 6 76 6 78
List [7] 4 48 3 58 2 59
GraphPL [24] 19 2348 20 1407 19 1373

the only reason that 12 features modules are necessary is that also interfaces are im-
plemented by separate modules which is a design decision taken in [1]. In the second
version of the EPL [25], the number of delta modules plus the core module is actu-
ally the same as the number of features modules, since DELTAJAVA encodes the same
modular SPL representation. In the Calculator and List examples, less delta modules
are required because several feature modules could be combined into one delta mod-
ule, whereas in the GraphPL example with the simple core, additional delta modules
are used to factor out common code for combinations of features. In the considered ex-
amples, the differences between the number of delta modules required to implement a
SPL starting from a simple core or starting from a complex core are marginal. A more
conceptual analysis on how the choice of the core product influences the SPL design is
subject to future work.

In the smaller case examples, the lines of code in DELTAJAVA exceed the lines of
code required in JAK, because in DELTAJAVA the feature model encoding and the ap-
plication conditions have to be specified. Furthermore, as DELTAJAVA currently has no
call to the original variants of modified methods, the required renaming has to be done
manually, leading to additional lines of code, in particular for the EPL. This can be
avoided if DELTAJAVA is extended with an operation similar to the JAK Super() call as
pointed out in Section 4. In the larger case example of the GraphPL [24], delta modules
require much less code, because they can represent product functionality more flexibly.
First, common code for two features can be factored out into one delta module, and
second, combinations of features can be treated directly by designated delta modules
instead of duplicating code for feature combinations. This shows that DOP can be ben-
eficial in terms of code size for larger SPLs in which the optional feature problem [20]
arises. However, tool support has to be provided to deal with the complexity that is
introduced by the flexibility of DOP, e.g., for visualizing dependencies between delta
modules applicable for the same feature configuration.

6 Related Work

The approaches to implementing SPLs in the object-oriented paradigm can be clas-
sified into two main directions [19]. First, annotative approaches, such as conditional

Delta-Oriented Programming of Software Product Lines 89

compilation, frames [36] or COLORED FEATHERWEIGHT JAVA (CFJ) [17], mark the
source code of the whole SPL with respect to product features on a syntactic level. For
a particular feature configuration, marked code is removed.

Second, compositional approaches, such as DELTAJAVA, associate code fragments
to product features that are assembled to implement a particular feature configuration.
In [25], general program modularization techniques, such as aspects [18], framed as-
pects [26], mixins [33], hyperslices [34] or traits [15,11], are evaluated with respect
to their ability to implement features. Furthermore, the modularity concepts of recent
languages, such as SCALA [28] or NEWSPEAK [12], can be used to represent prod-
uct features. Although the above approaches are suitable to express feature-based vari-
ability, they do not contain designated linguistic concepts for features. Thus, DOP is
most closely related and compared to FOP which considers features on a linguistic
level. Apart from JAK [10], there are various other languages using the FOP paradigm,
such as FEATUREC++ [4], FEATUREFST [5], or Prehofer’s feature-oriented JAVA ex-
tension [30]. In [27], CAESARJ is proposed as a combination of feature modules and
aspects extending FOP with means to modularize crosscutting concerns.

The notion of program deltas is introduced in [25] to describe the modifications of
object-oriented programs. In [32], DOP is used to develop product line artifacts suitable
for automated product derivation and implemented with frame technology [36]. In [31],
delta-oriented modeling is extended to a seamless model-based development approach
for SPLs where an initial product line representation is stepwise refined until an imple-
mentation, e.g., in DELTAJAVA, can be generated. The ordering of delta modules within
the after clause resembles the precedence order on advice used in aspect-oriented pro-
gramming, e.g., in ASPECTJ [21]. The constraints that are generated for delta modules
in order to ensure safe product generation require the existence and non-existence of
classes, methods or fields which is similar to the constraints used in [22]. Delta mod-
ules are one possibility to implement arrows in the category-theoretical framework for
program generation proposed by Batory in [8].

7 Conclusion and Future Work

We have presented DOP, a novel programming approach particularly designed to imple-
ment SPLs. It allows the flexible modular implementation of product variability start-
ing from different core products. Because core products are complete product imple-
mentations, they can be developed with well-established single application engineering
techniques to ensure their quality. DOP provides a solution to the optional feature prob-
lem [20] by handling combinations of features explicitly.

For future work, we will extend DELTAJAVA with a Super() call as in JAK to di-
rectly express the access to methods that are modified by delta modules applied later
during product generation in order to avoid a combinatorial explosion for combinations
of optional features. Furthermore, we will improve the tool support for DELTAJAVA

with IDE functionalities, e.g., to show the set of applicable delta modules for a given
feature configuration. In order to propose a process for the selection of core products,
we are investigating how to the choice of the core product influences the design of the
delta modules. Finally, we are aiming at efficient verification techniques of SPLs imple-
mented by core and delta modules without generating the products. This work will use

90 I. Schaefer et al.

the information available in the delta modules to determine unchanged parts between
different products to reuse verification results.

Acknowledgements. We are grateful to Sven Apel, Don Batory and Roberto E. Lopez-
Herrejon for many insightful comments on a preliminary version of this paper. We also
thank the anonymous SPLC referees for detailed suggestions for improving the paper.
This work has been partially supported by MIUR (PRIN 2009 DISCO) and by the
German-Italian University Centre (Vigoni program 2008-2009). Ina Schaefer’s work
has been partially supported by the Deutsche Forschungsgemeinschaft (DFG) and by
the EU project FP7-ICT-2007-3 HATS.

References

1. Expression Problem Product Line, Webversion,
http://www.cs.utexas.edu/users/schwartz/ATS/EPL/

2. Apel, S., Kästner, C., Grösslinger, A., Lengauer, C.: Type safety for feature-oriented product
lines. Automated Software Engineering An International Journal (2010)

3. Apel, S., Kästner, C., Lengauer, C.: Feature Featherweight Java: A Calculus for Feature-
Oriented Programming and Stepwise Refinement. In: GPCE, pp. 101–112. ACM, New York
(2008)

4. Apel, S., Leich, T., Rosenmüller, M., Saake, G.: Featurec++: On the symbiosis of feature-
oriented and aspect-oriented programming. In: Glück, R., Lowry, M. (eds.) GPCE 2005.
LNCS, vol. 3676, pp. 125–140. Springer, Heidelberg (2005)

5. Apel, S., Lengauer, C.: Superimposition: A language-independent approach to software com-
position. In: Pautasso, C., Tanter, É. (eds.) SC 2008. LNCS, vol. 4954, pp. 20–35. Springer,
Heidelberg (2008)

6. Batory, D.: Feature Models, Grammars, and Propositional Formulas. In: Obbink, H., Pohl,
K. (eds.) SPLC 2005. LNCS, vol. 3714, pp. 7–20. Springer, Heidelberg (2005)

7. Batory, D.: A Tutorial on Feature Oriented Programming and the AHEAD Tool Suite (ATS).
In: Lämmel, R., Saraiva, J., Visser, J. (eds.) GTTSE 2005. LNCS, vol. 4143, pp. 3–35.
Springer, Heidelberg (2006)

8. Batory, D.: Using modern mathematics as an FOSD modeling language. In: GPCE, pp. 35–
44. ACM, New York (2008)

9. Batory, D., O’Malley, S.: The design and implementation of hierarchical software systems
with reusable components. ACM Trans. Softw. Eng. Methodol. 1(4), 355–398 (1992)

10. Batory, D., Sarvela, J., Rauschmayer, A.: Scaling Step-Wise Refinement. IEEE Trans. Soft-
ware Eng. 30(6), 355–371 (2004)

11. Bettini, L., Damiani, F., Schaefer, I.: Implementing Software Product Lines using Traits. In:
SAC, OOPS Track, pp. 2096–2102. ACM, New York (2010)

12. Bracha, G.: Executable Grammars in Newspeak. ENTCS 193, 3–18 (2007)
13. Clements, P., Northrop, L.: Software Product Lines: Practices and Patterns. Addison Wesley

Longman, Amsterdam (2001)
14. Delaware, B., Cook, W., Batory, D.: A Machine-Checked Model of Safe Composition. In:

FOAL, pp. 31–35. ACM, New York (2009)
15. Ducasse, S., Nierstrasz, O., Schärli, N., Wuyts, R., Black, A.: Traits: A mechanism for fine-

grained reuse. ACM TOPLAS 28(2), 331–388 (2006)
16. Kang, K.C., Cohen, S.G., Hess, J.A., Novak, W.E., Peterson, A.S.: Feature-Oriented Domain

Analysis (FODA) Feasibility Study. Technical report, Carnegie Mellon Software Engineering
Institute (1990)

http://www.cs.utexas.edu/users/schwartz/ATS/EPL/

Delta-Oriented Programming of Software Product Lines 91

17. Kästner, C., Apel, S.: Type-Checking Software Product Lines - A Formal Approach. In: ASE,
pp. 258–267. IEEE, Los Alamitos (2008)

18. Kästner, C., Apel, S., Batory, D.: A Case Study Implementing Features Using AspectJ. In:
SPLC, pp. 223–232. IEEE, Los Alamitos (2007)

19. Kästner, C., Apel, S., Kuhlemann, M.: Granularity in Software Product Lines. In: ICSE, pp.
311–320. ACM, New York (2008)

20. Kästner, C., Apel, S., ur Rahman, S.S., Rosenmüller, M., Batory, D., Saake, G.: On the Impact
of the Optional Feature Problem: Analysis and Case Studies. In: SPLC. IEEE, Los Alamitos
(2009)

21. Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J., Griswold, W.G.: An Overview
of AspectJ. In: Knudsen, J.L. (ed.) ECOOP 2001. LNCS, vol. 2072, pp. 327–353. Springer,
Heidelberg (2001)

22. Kuhlemann, M., Batory, D., Kästner, C.: Safe composition of non-monotonic features. In:
GPCE, pp. 177–186. ACM, New York (2009)

23. Liu, J., Batory, D., Lengauer, C.: Feature oriented refactoring of legacy applications. In:
ICSE, pp. 112–121. ACM, New York (2006)

24. Lopez-Herrejon, R., Batory, D.: A standard problem for evaluating product-line method-
ologies. In: Bosch, J. (ed.) GCSE 2001. LNCS, vol. 2186, pp. 10–24. Springer, Heidelberg
(2001)

25. Lopez-Herrejon, R., Batory, D., Cook, W.: Evaluating Support for Features in Advanced
Modularization Technologies. In: Black, A.P. (ed.) ECOOP 2005. LNCS, vol. 3586, pp. 169–
194. Springer, Heidelberg (2005)

26. Loughran, N., Rashid, A.: Framed aspects: Supporting variability and configurability for aop.
In: Bosch, J., Krueger, C. (eds.) ICOIN 2004 and ICSR 2004. LNCS, vol. 3107, pp. 127–140.
Springer, Heidelberg (2004)

27. Mezini, M., Ostermann, K.: Variability management with feature-oriented programming and
aspects. In: SIGSOFT FSE, pp. 127–136. ACM, New York (2004)

28. Odersky, M.: The Scala Language Specification, version 2.4. Technical report, Programming
Methods Laboratory, EPFL (2007)

29. Pohl, K., Böckle, G., van der Linden, F.: Software Product Line Engineering - Foundations,
Principles, and Techniques. Springer, Heidelberg (2005)

30. Prehofer, C.: Feature-oriented programming: A fresh look at objects. In: Aksit, M., Mat-
suoka, S. (eds.) ECOOP 1997. LNCS, vol. 1241, pp. 419–443. Springer, Heidelberg (1997)

31. Schaefer, I.: Variability Modelling for Model-Driven Development of Software Product
Lines. In: Intl. Workshop on Variability Modelling of Software-Intensive Systems (2010)

32. Schaefer, I., Worret, A., Poetzsch-Heffter, A.: A Model-Based Framework for Automated
Product Derivation. In: Proc. of MAPLE (2009)

33. Smaragdakis, Y., Batory, D.: Mixin layers: an object-oriented implementation technique for
refinements and collaboration-based designs. ACM Trans. Softw. Eng. Methodol. 11(2),
215–255 (2002)

34. Tarr, P., Ossher, H., Harrison, W., Sutton Jr., S.M.: N degrees of separation: multi-
dimensional separation of concerns. In: ICSE, pp. 107–119 (1999)

35. Thaker, S., Batory, D., Kitchin, D., Cook, W.: Safe Composition of Product Lines. In: GPCE,
pp. 95–104. ACM, New York (2007)

36. Zhang, H., Jarzabek, S.: An XVCL-based Approach to Software Product Line Development.
In: Software Engineering and Knowledge Engineering, pp. 267–275 (2003)

J. Bosch and J. Lee (Eds.): SPLC 2010, LNCS 6287, pp. 92–105, 2010.
© Springer-Verlag Berlin Heidelberg 2010

Architecting Automotive Product Lines:
Industrial Practice

Håkan Gustavsson1 and Ulrik Eklund2

1 Scania, Södertälje, Sweden, Hakan
Hakan.Gustavsson@scania.se

2 Volvo Car Corporation, Göteborg, Sweden
UEklund@volvocars.com

Abstract. This paper presents an in-depth view of how architects work with main-
taining product line architectures in the automotive industry. The study has been
performed at two internationally well-known companies, one car manufacture and
one commercial vehicle manufacture. The results are based on 12 interviews with
architects performed at the two companies. The study shows what effect differ-
ences such as a strong line organization or a strong project organization has on the
architecting process. It also shows what consequence technical choices and busi-
ness strategy have on the architecting process. Despite the differences the results
are surprisingly similar with respect to the process of managing architectural
changes as well as the information the architects maintain and update, especially
in the light that the companies have had no direct cooperation.

Keywords: Architecting, Process, Case study, Automotive industry.

1 Introduction

Software and electronics are today an important part in the development of automo-
tive products. Experts [1] estimate that 80 percent of all future automotive innovations
will be driven by electronics. Scania [2] claims that electronics in trucks and buses
makes up 10-15 percent of the value and is increasing. Volvo Cars [3] estimates the
value of electronics of a high-end car to 30 percent.

Architectural changes of distributed embedded systems are either evolutionary or
revolutionary [4], and the architecture plays a vital role to the success of the product
line. The main purpose of this paper is to understand how architecting is performed to
keep up with evolutionary changes. This is summarized in the research question to be
answered: What tasks are performed in the process of architecting automotive embed-
ded systems?

Decisions in the development process [5] and within the architecting process [6]
has been previously studied. Dobrica and Niemela [7] makes a comparison of eight
different available software architecture analysis methods. Experience reports of in-
troducing product lines in the automotive domain for the first time has been done
previously [8] as well as showing the benefits of the introduction [9]. In a survey of
279 IT architects in the Netherlands Farenhorst et al. [10] concludes that architects are

 Architecting Automotive Product Lines: Industrial Practice 93

lonesome decision makers; not very willing to share architectural knowledge, but
eager to consume.

This paper presents a comparison of how architects at two different companies
work with maintaining existing product lines. The case study has been performed at
two automotive companies, the truck and bus manufacturer Scania and the car manu-
facture Volvo Cars. In the next section a brief presentation is given of a general
automotive electrical system. In Sec. 3 the method used in the study is presented. An
outline of the case study is given in Sec. 4 followed by the results in Sec. 5. Finally
we discuss the findings from our work.

2 Background

2.1 The Systems and Their Architecture

The electrical system in both cars and trucks/buses are an embedded software system
consisting of 30-70 different Electronic Control Units (ECUs), each with a micro-
processor executing in the order of 1 MByte compiled code1. These ECUs control the
behavior of virtually all electrical functions, from power windows to valve timing of
the engine. The in-vehicle software share a number of characteristics common to the
automotive domain (see e.g. [11], [12] and [13] for further elaboration):

• A large number of vehicle models with varying feature content and con-
figurations which must be supported by the software

• Highly distributed real-time system
• Distributed development at vehicle manufacturers and suppliers
• Low product cost margins
• Stringent dependability requirements

This combination of characteristics, together with a steady growth of features realized
by electronics and software, makes the electrical system in a vehicle a highly complex
software system.

Almost all ECUs have a number of sensors and actuators connected to them de-
pending on purpose and location, and these can be shared among distributed func-
tions. Most ECUs are reprogrammable, i.e. has flash memory and not ROM, which
allows programming both in the manufacturing plant as well as at dealers and work-
shops after delivery to the end-user. The layout of which ECUs are connected to
which bus and what ECUs are acting as communication gateways between the buses
is the network topology of a vehicle, of which Fig. 1 is a representative example. The
interface between the software application on each ECU is in a Scania vehicle defined
by the J1939 standard [14], which is very detailed in what information is. Volvo Cars
uses a proprietary solution for the multiplexed communication which allows a high
degree of flexibility in defining and maintaining interfaces on the buses [15]. Much of
the activities regarding the logical architecture at both companies are focused on these
interfaces.

1 A few safety-critical ECUs have two microprocessors for redundancy or internal monitoring.

94 H. Gustavsson and U. Eklund

Fig. 1. The network topology of a Volvo XC90. The ECUs connected to CAN and MOST and
the main multiplexed networks are seen in their approximate physical location. See [16] for a
more in-depth description of the network topology of both Scania and Volvo vehicles.

2.2 Related Work

Almost all of the cases we found regarding product lines focused either on the prereq-
uisites for a successful product line approach or the change management of an organi-
zation adapting a product line where it previous not had one. Some examples from the
automotive industry are [17], [8] and [18].

Buhrdorf et al. [19] reports about the transition Salion did to a product line with a
reactive approach where the necessary variations was not explored when introducing
the product line, but rather handled in what they call the “steady state”. The archi-
tecting work in this paper is also reactive with the same definition, since it is about
updating the systems and their architectures to comply with prerequisites not known
when the architecture was first designed.

3 Methodology

The data used in this study is based on interviews with the persons most involved in
the activities of maintaining architectures, i.e. the architects themselves. Neither
Scania nor Volvo makes a distinction of the roles for system and software architects.
All architects available and willing to participate were interviewed, which resulted in
more than half of the architects at each company participating, 4 at Scania and 5 at
Volvo Cars. In addition to this the managers for the architecture groups were inter-
viewed at both companies, totaling the number of interviews to 11. Of the 11 respon-
dents 2 were women.

The interviews were performed by the two authors, which are native to Scania and
Volvo Cars respectively (see [20] for the definition of “native” in this context). One
lead the interview while the other took extensive notes, which was later edited for
spelling and grammar. The respondents had the possibility to read and comment the
notes from their respective interview to correct any misunderstandings, purse errors or
other mistakes in the recordings. This was done before the analysis took place.

 Architecting Automotive Product Lines: Industrial Practice 95

The interviews were semi-structured with open-ended questions. The researchers
paid special attention to not use any terminology that had special or different mean-
ings at the two companies to avoid the respondents perceive the same question differ-
ently depending in which company they were working. After the interview was
constructed, it was tested on one person at each company who had worked as a sys-
tem architect to evaluate the relevance.

The interview questions were defined in English and then translated to the native
language of the interviewers and respondents, Swedish, for a more natural and fluent
setting. Whenever a quote from the interviews is presented in the article the transla-
tion to English was done post mortem.

The interview started with some introductory questions to get some background
about the respondent, like education, professional experience of embedded systems,
time employed and a general idea of how they would define architecture. The major-
ity of each interview was based on a set of questions directed at exploring the respon-
dent’s view of their work with the architecture. The set of questions were aimed to
cover all stages of an architecting process from [21] to make sure no vital information
was missed. All 11 interviews progressed in essentially the same order.

3.1 Analysis Procedure

The analysis was made by the two researchers jointly looking for common themes
based on the interview questions. Also answers relating to these themes given in other
questions were including in this analysis. The themes were also analyzed if they
showed a close similarity between the two companies or significant differences. The
two authors used their insider knowledge about respective organization and products
in making the analysis and to enrich the conclusions made.

4 The Case Study

The main objective of this study was to get the richest insight possible into how archi-
tects maintain an existing architecture in practice. The selection of the two automotive
companies was made for three reasons. The first is that the authors already had inside
access to the subjects and the support of middle management to perform this and
similar studies. Second the two companies are similar enough for a comparison to be
manageable, such as each company having a product line architecture approach, but
still different enough for the interviews not to be a duplicate. The third, and not least,
reason is the possibility for the authors to use their knowledge as insiders to augment
the analysis of the data to provide an even richer insight into the two cases.

4.1 Context

Both companies studied are situated in Sweden and share characteristics common
among Swedish engineering industries such as; solid knowledge about the
product among the developers, putting value on personal networks, and similar educa-
tional and demographic background in the development departments. The overall
product development process at both companies follows a traditional stage-gate

96 H. Gustavsson and U. Eklund

model. An important difference is the balance of power; Scania has a stronger line
organization [22] while at Volvo Cars the project organization is stronger.

All participants had a similar educational background with an engineering master
degree from a Swedish university. They had worked with embedded systems between
5 and 25 years. They also had similar experience working as architects, with a major-
ity being an architect for 4-6 years. The main difference was that the architects at
Volvo Cars had on average worked twice as long in the company, compared to
Scania.

Scania is one of the world's leading manufactures of heavy commercial vehicles sell-
ing on a global market with a solid reputation of designing and producing vehicles
with the core values of “Customer first”, “Respect for the individual” and “Quality”.
During 20082 Scania produced 66,516 trucks and 7,277 buses. Scania is a public
company with Volkswagen AG as the largest stockholder. The development of all
critical parts of the product, such as engine, transmission, cabs and chassis are central-
ized to the research and development centre in Södertälje, Sweden.

Volvo Car Corporation is a manufacturer of premium cars with core values3 of
“safety”, “environment” and “quality”. Volvo Cars produced 374,297 vehicles in
20084. Volvo Cars is a subsidiary company to Ford Motor Company (as of 2010 Feb-
ruary 23), sharing technical solutions with other brands within FMC.

4.2 The Scania Product Line

Scania has a tradition of working with a modular product design since the early
1960's. The modular system has claimed to be the main reason why the company
stayed profitable every year since 1934 [23]. The internal training program teaches
the three basic corporate principles of modular thinking [24]:

1. Standardized interfaces between components
2. Well-adjusted interval steps between performance classes
3. Same customer-need pattern = same solution

These principles are today also applied on the electrical and electronic system, besides
the traditional mechanical parts. Scania does all design work towards the product line,
there is no work done towards a specific product model. A project at Scania is an
addition or update to one or more modules towards a specific time when it goes into
production, and there is no difference if the update is purely mechanical or includes
software as well, the product line approach is identical [24]. The Scania product line
uses the same architecture, as well as components, for all of its three product catego-
ries; trucks, buses and engines, seen in Fig. 2. Every sold product is customer ordered
and unique which is made possible through the modular system.

2 http://www.scania.com/scania-group/scania-in-brief/key-figures/
3 http://www.volvocars.com/intl/top/about/values/pages/default.aspx
4 http://www.volvocars.com/SiteCollectionDocuments/TopNavigation/About/Corporate/Volvo

Sustainability/VolvoCars_report_2008_ENG.pdf

 Architecting Automotive Product Lines: Industrial Practice 97

The software adaptation of each product is made during production. This is done
by extracting a configuration file from the manufacturing product specification, which
is then downloaded onto the unique product.

Fig. 2. The product line at Scania and the different products built on it

4.3 The Volvo Cars Product Lines

Presently Volvo Cars maintains 3 electrical architectures for the 3 platforms in pro-
duction. All vehicles in a platform are said to share the same architecture, which in-
cludes the software as well as the hardware it is executing on.

Volvo does most engineering work towards a new vehicle model, or model year,
but with the intention that a solution should later be used for other vehicles on the
same platform. In contrast to Scania, Volvo defines the product requirements for the
individual car models and not the product line as a whole. The development of the
architecture and sub-system solutions are shared between the platform and the indi-
vidual products, an approach driven by the developers at the Electrical and Electronic
Systems Engineering department themselves rather than a company-wide business
strategy.

All vehicles produced are made to order. With the possibility for the customer to
select optional features and packages the theoretical number of possible software
configurations surpasses the actual number built by orders of magnitudes.

4.4 Comparison of the Product Lines

Both companies can be said to have a product line, including both hardware and soft-
ware, and how they develop and maintain architectures. The electrical system share a
common set of features aimed at a particular market segment, e.g. premium cars or
heavy commercial vehicles, and is developed from a common set of assets (e.g. a
common architecture and shared systems between vehicle models). The architectures
prescribe how these shared systems interact. Since these criteria are fulfilled the
software are a software product line according to [9].

The two approaches to product lines were not driven by a business decision but by
the development organizations adapting to their environment. Both companies were
also early adopters of the practice of building several different vehicles on the same
manufacturing line, implemented years before the introduction of complex electrical
systems.

98 H. Gustavsson and U. Eklund

Supporting factors for establishing a product line of the electrical system were in
Volvo's case having a rather narrow spread in vehicle models together with an explicit
single options marketing strategy (versus fixed packages). This lead to a system with
a high degree of configurability. In Scania's case the supporting factors were the or-
ganization wanting to develop vehicles tailored to their customers, maximizing cus-
tomer value without having to redo similar development work over and over again.

Both companies handle variability in very similar way. The architecture is pre-
dominantly implemented with two mechanisms according the taxonomy by Svahn-
berg et al [25]: Binary replacement—physical, where different binaries can be
downloaded to the flash memory of all ECUs depending on the configuration of cus-
tomer-chosen optional features such as adaptive cruise control. This can be done in
the manufacturing plant using the plant's product data system with separate article
numbers for software as well as hardware (including nuts and bolts) and in the after-
market using proprietary systems. At Volvo this is accomplished by the Product In-
formation Exchange system for software [26].

The most common variability mechanism is Condition on variable where all ECUs
get information from a central on-board file defining the configuration of that vehicle.
This file is generated automatically in the manufacturing plant and flashed as a sepa-
rate binary to a central ECU. Some ECUs also store local variables similarly used in a
separate binary file with its own article number as well.

5 Results

The interviews yielded results mostly regarding the process for managing an architec-
tural change.

5.1 The Process

The process for managing changes to the architecture is very similar at the two
organizations with five distinct activities:

1. need
2. impact analysis
3. solution
4. decision
5. validation

This is a fairly general process, easily mapped to a generic process for architecture
work seen in Fig. 3, based on [21].

At Volvo Cars there is a greater emphasis on “why” the architecture needs to be
changed, as described by one of the architects on what is done first:

“Do a need analysis on what is driving the change. What isn't good enough? What
change is needed?”

 Architecting Automotive Product Lines: Industrial Practice 99

Candidate
Architectural

Solutions

Architecturally
Significant

Requirements

Architecturally
Significant

Requirements

Architectural
Concerns

Architectural
Backlog

Architectural
Synthesis

Architectural
Analysis

Architectural
Evaluation

Architectural
Refinements

Architectural
Validation

Updated
Architectural

Documentation
Validated

Architecture

Fig. 3. A generic process for creating and maintaining an architecture, adapted from [21]

At Scania the architects' focus is on “how”, i.e. the impact of an architectural
change. One possible conclusion is that the “why” is seen as a strategic responsibility
of the senior architect at Scania, and the other architects are more concerned with
“how”. Another possible reason is that the Scania architecting group has chosen to be
more supportive than controlling.

5.2 Needs to Change the Architecture

Architects at both companies mention functional changes and functional growth as
common reasons to update the architecture. This is not surprising since most new
features are realized by electronics and software, and that the number of features
grows almost exponentially [13].

At Volvo Cars all architects mention cost or cost reduction as a common reason to
change the architecture, this is not surprising since the cost margins are very small
and if an opportunity presents itself it is considered. At Scania cost was only men-
tioned by the manager, and then only in the context of how much the architectural
change would cost. The most common reason to change the architecture mentioned by
the architects at Scania was to adapt it to hardware changes, as described by one
Scania architect: “Control units become too old; there is no room for development”.

5.3 Architecture Impact Analysis

The architects at Scania clearly seek to identify who is concerned by a change and
what parts of the system are impacted by a proposed change. At Volvo Cars the archi-
tects request information about non-functional requirements or quality attributes and
use cases when analyzing the impact, as described by one architect:

“I need a good description of what the customer should expect form the system. If
it concerns a ready solution or if it is something we should develop internally, it

100 H. Gustavsson and U. Eklund

could be a supplier offering something which we should integrate in the system. If
there is a system solution which should be integrated I want to see that as well, if
there are variants and if it is to be sold as option or standard. . . “

A possible explanation to this could be that the architects at Scania are involved

earlier in the development of new features or systems, while at Volvo Cars the archi-
tects are more often given a proposed technical solution, for example by a supplier.
The managers at both Scania and Volvo Cars mentioned the motive for the change as
important information for understanding the change, but no other architects men-
tioned this. We have no explanation why this is so...

The time it takes to understand the impact on the architecture from a change seems
to be similar between the two companies, a few weeks to a month calendar time. It
seems to depend more on finding the right stakeholders and set up appointments with
them than the actual effort in man hours from the architects. Some architects at Volvo
Cars also say some architectural changes takes only minutes to evaluate the impact.
This could be explained by fact that such a question would not require a official
Change Request at Scania and therefore the respondents have not included these is-
sues in their answers, or that the architects at Volvo Cars usually have a more final
solution to evaluate.

5.4 Design Alternatives

Not very surprising, but notable no architecture analysis methods [7] were used or men-
tioned. Evaluation was in rare cases made using methods very similar to Pugh evalua-
tion matrix [27]. Volvo architects seem to more evaluate how well different design
alternatives fit into the present architecture, as mentioned by one of the architects:

“Put some different alternatives against each other and evaluate from different as-
pects which is best. Cost is one example. Often the need does not come from the
architecture, but from different sub-systems, from the outside. When you know
what needs to be done the implementation phase begins. I follow long into the pro-
ject and follow up that verification is done.”

In comparison to this the Scania architects are more involved in developing differ-

ent alternatives in the modelling activity. The architects see themselves as having a
supporting role to function and sub-system developers. This is exemplified by

“Requirements on new functionality are often what we start with. We then balance
that against the present architecture, layout of electronics and the electrical system
and weigh it against our (architectural) principles. How can we enable the func-
tionality? Sometimes it is easy to fit in and sometimes we realize we don't have the
necessary hardware and that requires a bigger effort and we go through a number
of steps.”

This difference in how involved the architects are in the development of subsys-

tems is probably driven by Volvo Cars having a much larger percentage of purchased
sub-systems than Scania.

 Architecting Automotive Product Lines: Industrial Practice 101

5.5 Deciding on the Architectures

Architects at both companies stated that most (all?) decisions when updating the ar-
chitecture were driven by non-functional requirements, quality attributes or con-
straints. However the attributes differed between the two companies even though the
products are fairly similar, trucks/buses versus cars. The attributes deciding what
update to make to the architecture could in most cases be derived from the core values
for each company, for Scania Customer First, Respect for the Individual and Quality,
and for Volvo Cars Safety, Environment and Quality. The attributes mentioned by
Scania architects were time (to implementation), personnel resources, system utiliza-
tion, including network bus load, safety, evolvability, usability, robustness, maintain-
ability and commercial effectiveness (of which cost is a factor).

The architects at Volvo Cars unanimously mention cost as the most important fac-
tor when deciding between architectural alternatives. Other factors they mention are if
the solution can realize the desired functionality, time and resources for implementa-
tion, environment friendliness exemplified by current consumption, weight, network
bus load, including timing aspects, driveability, comfort and safety requirements.
Risk, or minimizing the risk of a change, was also mentioned as a constraint by Volvo
architects. The risk of change was not mentioned at Scania, possibly due to being
obvious to think about.

A common constraint, which was mentioned by architects at both companies, was
a clear wish of minimizing the effect of any architectural changes to any already ex-
isting sub-systems. The architects usually made a point of considering how a change
would affect all sub-systems and not only the one proposing the change. There was a
common architectural concern to have as small changes as possible, to quote one
architect from Volvo Cars:

“. . . if we need to compromise so much it hurts we have not done a good job. If we
don't need to compromise so much it is good.”

5.6 Validation

The most interesting result found was that none of the architects at the two companies
validated the result of the implemented change themselves. Many of the architects at
Scania had a clear idea of which stakeholder they would get feedback from, the inte-
gration test group. The architects at Volvo Cars were more vague when expressing
how they follow up an architectural change:

“If it isn't a good solution we get to know there is a problem which we correct.
Normally we assume that testing finds (anything).”

Common between the two companies was that the architects mentioned review of
specifications on how a change in the architecture is followed up, but it is unclear
exactly what documents the architects are reviewing.

5.7 The Resulting Artefacts from the Architects' Work

The resulting artefacts from the architects’ work on the changes to the architecture are
very similar between Scania and Volvo Cars. It is the responsibility of the architects

102 H. Gustavsson and U. Eklund

to update the network topology if a requested change affects how and where an ECU
is connected to a network. At Volvo Cars the view of the topology is part of the offi-
cially released Architecture Description, one for each platform or product line, which
is edited by the architect for the platform. At Scania the view of the topology is a
separate document which is updated at every new release.

At both companies there will be a model describing the logical architecture cap-
tured in an UML tool. At Scania this model grows when a change concerns an area or
function not previously modelled. Volvo Cars already has a more comprehensive
model covering the complete existing system, so if the feature is not completely new
it is more of a question of updating the existing model. Another artefact that gets
updated is the signal database mentioned above. At Scania the architects defines mes-
sage sequence charts (MSC) defining the interaction between ECUs, something that is
not done at all by the architects at Volvo Cars.

The general conclusion is that the architects at both companies work with essen-
tially the same type of information, but packaged slightly differently. Meetings are
more emphasized at Scania, as stated from one of the architects;

“…there is more eye-to-eye communication than document communication com-
pared to other companies I have worked at.”

5.8 The Timing

The timing of when a change is introduced in the architecture varies and is driven by
different factors at the two companies. At Scania the most important factor mentioned
is when all concerned developer stakeholders are able to update their design. All con-
cerned developers synchronize the changes of their assets in the product line towards
a common start-of-production (SOP). These change projects are tracked on visual
planning boards [28].

The timing of architectural changes at Volvo Cars is usually driven by the project
timing for launching new car models (also called start-of-production at Volvo Cars),
or updating a new year model of an existing car. The architects respond to these
change requests if they are technically possible to do within that time frame. How-
ever, in the interviews two architects expressed hesitation when claiming that it was
only the project that determined the timing. To summarize: At Scania the timing of a
change of the architecture is determined by the contingence of the line organization
while at Volvo Cars it is determined by the need of the vehicle model project.

5.9 Other Observations

The architects at Volvo Cars had on average worked twice as long in the company,
while all architects at Scania except one had worked 4 years or less at the company.
The conclusion is that at Volvo Cars the architects were recruited internally form
other roles while at Scania the architects were employed specifically into that role.
One noticeable difference to this is the senior architect at Scania with 21 years in the
company; he is also the only one of the 11 interviewees with an official recognition as
senior or expert in the two organizations.

 Architecting Automotive Product Lines: Industrial Practice 103

The difference in work tasks between Scania and Volvo Cars is that at Scania the
architects usually works with a specific domain, e.g. HMI or chassis systems, while at
Volvo the architects were responsible for a platform and the entire system on it, e.g.
the large platform (S80, V70, XC60, . . .).

6 Discussion

The striking conclusion and the answer to the stated research question is the similarity
between the two companies in the tasks performed when maintaining and changing
architecture. The tasks mentioned by the architects at both companies are virtually
identical; need impact analysis solution decision validation.

The tasks do not seem to be different for architecture maintenance compared to de-
veloping a new architecture. Likewise they seem to be the same whether it is updating
a product line architecture or updating the architecture of a single-shot system. Also
the types of information the architects work with, one could say the viewpoints, is
almost identical between the two companies. The difference being sequence charts are
only used at one company but there the architects say they maintain them as a service
to other stakeholders and they are not architecturally relevant. The description of the
architects as lonesome decision makers made by Farenhorst et al. [10] could not be
seen in this study. One possible reason for this could be the cultural differences be-
tween Sweden and the Netherlands.

The similarity in process and information is surprising since the present proc-
esses of the two companies have evolved almost independently at respective com-
pany. The similarities could be explained by the systems in cars and commercial
vehicles are similar and that the companies are not too different in the demograph-
ics of their architects in terms of experience, education etc. One reason could be
that the processes found can easily be mapped to a general process for architecture
work, as found in [21].

As shown by Nedstam [6] there is large difference of how work is done in an or-
ganization with strong line management and a organization with strong projects.
Several of the observed differences between the two companies could have affected
how they work with architectural change, such as the differences in their product
line approaches, the focus on project versus line organization and differences in
quality attributes.

The fact that Volvo Cars has a higher degree of tool support while Scania are more
conscious with respect to processes was also expected to affect the work of the archi-
tects more than was found in this study.

Acknowledgments. We would like to thank the architects and managers at the two
companies for their interest and cooperation.

This work has been financially supported by the Knowledge Foundation and the
Swedish Agency for Innovation Systems (VINNOVA) as part of the FFI program.

104 H. Gustavsson and U. Eklund

References

1. Grimm, K.: Software Technology in an Automotive Company - Major Challenges. In: In-
ternational Conference on Software Engineering, pp. 498–503 (2003)

2. Edström, A.: Hasse vill ha mer processorkraft. Elektroniktidningen, 26–29 (2008)
3. Edström, A.: Urban på Volvo hyllar säkerheten. Elektroniktidningen (2006)
4. Axelsson, J.: Evolutionary Architecting of Embedded Automotive Product Lines: An In-

dustrial Case Study. In: Rick Kazman, F.O., Poort, E., Stafford, J. (eds.) Joint Working
IEEE/IFIP Conference on Software Architecture (WICSA) & European Conference on
Software Architecture (ECSA 2009), pp. 101–110 (2009)

5. Gustavsson, H., Sterner, J.: An Industrial Case Study of Design Methodology and Decision
Making for Automotive Electronics. In: Proceedings of the ASME International Design
Engineering Technical Conferences & Computers and Information in Engineering Confer-
ence, New York (2008)

6. Nedstam, J.: Strategies for management of architectural change and evolution. Lund Uni-
versity, Department of Communication Systems, Faculty of Engineering, Lund (2005)

7. Dobrica, L., Niemela, E.: A Survey on Software Architecture Analysis Methods. IEEE
Transactions on software engineering 28, 638–653 (2002)

8. Steger, M., Tischer, C., Boss, B., Müller, A., Pertler, O., Stolz, W., Ferber, S.: Introducing
PLA at Bosch Gasoline Systems: Experiences and Practices. Software Product Lines, 34–
50 (2004)

9. Clements, P., Northrop, L.: Software product lines: practices and patterns. Addison-
Wesley, Boston (2001)

10. Farenhorst, R., Hoorn, J., Lago, P., Vliet, H.v.: The lonesome architect. In: Joint Working
IEEE/IFIP Conference on Software Architecture (WICSA) & European Conference on
Software Architecture (ECSA), pp. 61–70. IEEE, Los Alamitos (2009)

11. Schulte-Coerne, V., Thums, A., Quante, J.: Challenges in Reengineering Automotive
Software, pp. 315–316. IEEE Computer Society, Kaiserslautern (2009)

12. Pretschner, A., Broy, M., Kruger, I.H., Stauner, T.: Software Engineering for Automotive
Systems: A Roadmap. In: International Conference on Software Engineering, pp. 55–71
(2007)

13. Broy, M.: Challenges in automotive software engineering. In: Proceedings of the 28th in-
ternational conference on Software engineering, pp. 55–71. ACM, Shanghai (2006)

14. SAE: Standard J1939 - Recommended Practice for a Serial Control and Communications
Vehicle Network. Society of Automotive Engineers (2009)

15. Casparsson, L., Rajnak, A., Tindell, K., Malmberg, P.: Volcano-a revolution in on-board
communications. Volvo Technology Report 1, 9–19 (1998)

16. IEEE-1471: IEEE Recommended practice for architectural description of software-
intensive systems. IEEE Std. 1471-2000 (2000)

17. Voget, S., Becker, M.: Establishing a software product line in an immature domain. In:
Chastek, G.J. (ed.) SPLC 2002. LNCS, vol. 2379, pp. 121–168. Springer, Heidelberg
(2002)

18. Tischer, C., Muller, A., Ketterer, M., Geyer, L.: Why does it take that long? Establishing
Product Lines in the Automotive Domain. In: 11th International Software Product Line
Conference, Kyoto, Japan, pp. 269–274 (2007)

19. Buhrdorf, R., Churchett, D., Krueger, C.: Salion’s Experience with a Reactive Software
Product Line Approach. In: van der Linden, F.J. (ed.) PFE 2003. LNCS, vol. 3014, pp.
317–322. Springer, Heidelberg (2004)

 Architecting Automotive Product Lines: Industrial Practice 105

20. Brannick, T., Coghlan, D.: In Defense of Being Native: The Case for Insider Academic
Research. Organizational Research Methods 10, 59 (2007)

21. Hofmeister, C., Kruchten, P., Nord, R.L., Obbink, H., Ran, A., America, P.: Generalizing a
Model of Software Architecture Design from Five Industrial Approaches. In: Proceedings
of the 5th Working IEEE/IFIP Conference on Software Architecture, pp. 77–88. IEEE
Computer Society, Los Alamitos (2005)

22. Bergsjö, D., Almefelt, L.: Supporting requirements management in embedded systems de-
velopment in a lean influenced. In: Proceedings of International Conference on Engineer-
ing Design, Dubrovnik, Croatia (2010)

23. Johnson, H.T., Senge, P.M., Bröms, A.: Profit beyond measure: extraordinary results
through attention to work and people. Nicholas Brealey, London (2000)

24. Kratochvíl, M., Carson, C.: Growing modular: mass customization of complex products,
services and software. Springer, Berlin (2005)

25. Svahnberg, M., Van Gurp, J., Bosch, J.: A taxonomy of variability realization techniques.
Software: Practice and Experience 35, 705–754 (2005)

26. Melin, K.: Volvo S80: Electrical system of the future. Volvo Technology Report 1, 3–7
(1998)

27. Pugh, S.: Total design: integrated methods for successful product engineering. Addison-
Wesley, Wokingham (1990)

28. Morgan, J.M., Liker, J.K.: The Toyota product development system: integrating people,
process, and technology. Productivity Press, New York (2006)

J. Bosch and J. Lee (Eds.): SPLC 2010, LNCS 6287, pp. 106–120, 2010.
© Springer-Verlag Berlin Heidelberg 2010

Developing a Software Product Line for Train Control:
A Case Study of CVL

Andreas Svendsen2,3, Xiaorui Zhang2,3, Roy Lind-Tviberg1, Franck Fleurey2,
Øystein Haugen2, Birger Møller-Pedersen3, and Gøran K. Olsen2

1 ABB, Bergerveien 12, 1375 Billingstad, Norway
roy.lind-tviberg@no.abb.com

2 SINTEF, Forskningsveien 1, Oslo, Norway
{Andreas.Svendsen,Xiaorui.Zhang,Franck.Fleurey,

Oystein.Haugen, Goran.K.Olsen}@sintef.no
3 Department of Informatics, University of Oslo, Oslo, Norway

birger@ifi.uio.no

Abstract. This paper presents a case study of creating a software product line
for the train signaling domain. The Train Control Language (TCL) is a DSL
which automates the production of source code for computers controlling train
stations. By applying the Common Variability Language (CVL), which is a
separate and generic language to define variability on base models, we form a
software product line of stations. We discuss the process and experience of us-
ing CVL to automate the production of three real train stations. A brief discus-
sion about the verification needed for the generated products is also included.

1 Introduction

The Train Control Language (TCL) is a domain-specific language (DSL) for describ-
ing train stations in the train signaling domain. A DSL is a programming or modeling
language dedicated to a particular problem domain. TCL is developed by SINTEF in
cooperation with ABB, Norway, and contains a minimal but sufficient set of concepts
within the train signaling domain. The purpose of TCL is to automate the production
of source code that controls the signaling system on a station.

Production of TCL stations can be further automated by using software product
line (SPL) technology. An SPL captures the variabilities and commonalities of a se-
ries of products that are sufficiently similar. Product line modeling involves informa-
tion about all product line members, which is different from modeling a singular
product.

The Common Variability Language (CVL) provides a generic and separate ap-
proach for modeling variability in models defined by DSLs such as TCL [5][4]. CVL
can be applied to models in any DSL that is defined by a metamodel by means of
Meta Object Facility (MOF) [7]. This paper presents a case study on how we applied
CVL to TCL for developing a station product line where all the product line members
are Norwegian train stations in use or under development. We report on the process of
using CVL to express the variabilities and commonalities among designated products

 Developing a Software Product Line for Train Control: A Case Study of CVL 107

of the station product line, and how we derived and decided on the final product line
based on that. We report on several issues that occurred during the development,
discuss the pros and cons of different alternative solutions and report on our own
experience trying out those solutions. Based on the experience of this case study, we
also make some initial thoughts on the methodological support for the CVL approach
and identify some open issues for future work.

The paper is structured as follows: Section 2 briefly presents the train domain, TCL
and software product lines. Section 3 introduces CVL and its tool support, before
Section 4 walks through the process of creating the station product line and the col-
lected experiences from this assignment. Finally, Section 5 concludes with some open
issues for future work.

2 Background

This section briefly introduces the train signaling domain and software product lines.
TCL, as a DSL for this domain, was developed for the purpose of generating inter-
locking source code (functional blocks) for the Programmable Logic Circuit (PLC) at
a station. TCL is used as the base language for our case study.

The interlocking system in the train signaling domain controls the basic elements
of the station (e.g. signals, switches, track circuits etc.) and also allocate train routes
in order to avoid collisions.

Fig. 1 from [9] illustrates the layout of a train station. A train route is a route be-
tween two main signals in the same direction, and it consists of several track circuits.
A track circuit is the shortest distance where the presence of a train can be detected. It
consists of line segments and switches connected by endpoints.

Fig. 1. Train Station Layout

2.1 The Current Process of Designing Interlocking Source Code

Svendsen et al. [10] and Endresen et al. [2] show that the current development of source
code for ABB’s Computer Based Interlocking (CBI) for a single station is a manual and
time-consuming process. First ABB receives a structural drawing of a station with its
interlocking table from the Norwegian Train Authorities, and then the train experts
develop the functional specification and design specification. These are formally re-
viewed before two independent teams create the interlocking source code for the station
based upon these specifications. This source code is then thoroughly tested.

108 A. Svendsen et al.

The current development process is manual and time-consuming. This is the reason
why model-driven development (MDD) is considered and TCL is developed.

2.2 Train Control Language

The TCL language is defined by an Ecore metamodel in the Eclipse Modeling
Framework (EMF) [1] as explained by Svendsen et al. [10] and Endresen et al. [2]. Its
tool support includes a graphical editor, a tree-view editor and code generators.

The use of TCL allows the train experts to only work on defining the station in the
TCL graphical editor. The code generators will then produce other representations
automatically, such as interlocking tables (truth tables) and interlocking source code.
This source code, which is a form of functional blocks, is then loaded into the Pro-
grammable Logic Circuits (PLCs) for that station. The model-to-text code generator,
written in MOFScript [8], requires adequate expertise in the train signaling domain and
an overall understanding of interlocking source code on various train stations [10].

A station modeled by the TCL graphical editor is illustrated in Fig. 2. The figure
shows the depiction of physical elements on the bottom and the more abstract con-
cepts train route (rounded rectangles) and track circuit (rectangles) on the top. This
station results in more than 3000 lines of boolean equations when generating the inter-
locking source code. We use this station as the starting point for our product line,
which we describe in Section 4.

Fig. 2. Station created by the TCL graphical editor

2.3 Software Product Lines

Feature modeling as a technique for defining features and their dependencies has been
widely adopted in the Software Product Line community. It was originally introduced
by Kang as part of Feature-Oriented Domain Analysis (FODA) [6]. There a feature is
defined for the first time as a “prominent or distinctive user-visible aspect, quality, or
characteristic of a software system”. Feature modeling is a means to reflect user
choices and requirements in an early phase of the product design.

Features are typically modeled in the form of tree-like feature diagrams along with
cross-tree constraints. A Feature Diagram is considered to be an intuitive way to visually
present the user choices of the features, and is therefore widely used and extended. The
FODA notation includes child features as optional, mandatory or alternative (XOR).

 Developing a Software Product Line for Train Control: A Case Study of CVL 109

3 Common Variability Language

CVL [4] is itself a DSL for modeling variability in any model of any DSL based on
MOF. In the CVL approach we have three models: The base model is the model de-
scribed by a DSL (e.g. train stations modeled by TCL), the variability model that
defines variability on the base model, and the resolution model that defines how to
resolve the variability model to create a new model in the base DSL. These three
models are illustrated in Fig. 3. The CVL model consists of the variability model and
the resolution model. The base model is oblivious of the CVL model (there are only
references from the CVL model to the base model). Several resolution models can
resolve the variability in one variability model, and several variability models can
describe the variability in one base model.

3.1 CVL Language

The concepts included in CVL make it possible to convey the variability into two
conceptually distinctive layers: Feature specification and product realization. The
feature specification layer is the user-centric part of the CVL model, and leaves the
details of the connection to the base model to the product realization layer.

In the context of software product lines, the feature specification layer expresses
high level features that the user would like to include, similar to feature diagrams. The
concepts of CVL (e.g., type, composite variability, constraint and iterator) are suffi-
cient to mimic feature diagrams (e.g. mandatory/optional feature, feature dependen-
cies, XOR/OR and cardinality).

DSL

Variation
model

CVL

Base
domain model

Generic &
Standardized

resolution
models

Focused on
a domain

Execute CVL
Transformations

Resolved
domain models

Description
of possible

variations in
the system

Domain
model of a
particular
family of
system

Selection of a set
of options in the
variation model

Family of systems
fully described in the
domain specific
language.
All regular DSL tools
can be applied to
these models

Fig. 3. CVL combining with a DSL

110 A. Svendsen et al.

Based on the feature specification layer, the product realization layer further de-
fines low level, fairly detailed, but necessary operations required to transform the base
model to a resolved product model. This includes information about how base model
elements are substituted for other base model elements.

CVL has concepts supporting typing of a set of model elements in the base model.
With these abstraction mechanisms, the user is able to customize a set of model ele-
ments in the base model and use it to replace any compatible base model fragments.

With the two-layered conceptual distinction of the variability, CVL separates the
modeling concerns as well as provides the possibility for users of different levels to
understand or define a CVL model incrementally. We can think of such a scenario:
the variability of the feature specification layer can be defined by domain experts of
higher level design, such as to identify features of product line members, while the
variability of the product realization can be defined by domain experts who are more
familiar with detailed design of the system.

3.2 CVL Tool Support

The CVL tool support includes a graphical editor and a tree editor for creating and
viewing the CVL model, and a model-to-model transformation to generate new re-
solved product models. CVL also provides a set of APIs, which can be implemented
by a base language editor, to support integration between the base language editor and
the CVL editor. This integration includes the possibility to create fragments (base
model elements involved in a substitution) from a selection of base model elements
and to highlight how base model elements are affected by a substitution. This is real-
ized by retrieving and storing the EObject references to the base model elements.

Fig. 4. CVL and TCL editor integration

 Developing a Software Product Line for Train Control: A Case Study of CVL 111

As illustrated in Fig. 4, the CVL graphical editor at the top left, with the feature-
diagram-like CVL diagram, and the CVL tree editor at the bottom left present the
variability of the feature specification layer. The model elements involved in the vari-
ability of the product realization layer are highlighted in the base model at the top
right and the base model fragment library to the bottom right. In Fig. 4 the highlight-
ing describes a substitution where the second track with one side track (top right) is
replaced by a new track with two side tracks (bottom right). Different levels of infor-
mation on a CVL model can be hidden and shown when presented to people with
different levels of system knowledge.

The CVL language and tool support are further explained in [4].

4 Station Product Line

TCL has automated the production of interlocking source code. For ABB, this auto-
mation does not only result in shorter time-to-market for a single station, but also in
preservation of consistency and completeness by eliminating some of the error-prone
manual process. However, whenever there is a need for a new station product, each
station has to be modeled separately using TCL. Even though the interlocking source
code is generated based on the station, the station model itself is manually created.

ABB has the need for designing several similar stations that vary slightly. Devel-
opment of more than 20 stations with two or three tracks and varying number of side
tracks and topology are currently being planned. Based on this need we now describe
an approach for using CVL to create a product line of stations using three of these
stations. The purpose of this product line is to automate the production of station
models. In this section we walk through the process of creating this product line, and
the collected experience from this assignment.

4.1 Preparing the Product Line

There are basically two strategies to follow when creating a product line model using
CVL. The comparing strategy involves comparing specifications or models of the
products to find the commonalities and differences. By using one of these models as
the base model, a CVL model which describes the differences can be created. The
constructive strategy involves selecting a base model as a starting point, and defining
the product specifics directly in CVL. The last strategy can be advantageous if well-
defined products do not exist when preparing the product line.

In our case study CVL has been applied to the train station domain, which is based
on ABB’s need to define more than three stations with corresponding interlocking
source code. Note that these stations are real stations that have to be validated and
verified. The train station domain is a static domain where the station products are
well defined from the authorities. As a result, the comparison strategy is the natural
choice for assembling the CVL product line model. From the structural drawings of
the station products (see Section 2 for more information about the input requirement
specification) the commonalities and differences were extracted. The comparison is
illustrated in Table 1.

112 A. Svendsen et al.

All the stations are simple two track stations, but they differ on how many side
tracks (to park trains) they have, how the elements in the station are named, the num-
ber of track circuits and the direction.

Table 1. Differences and commonalities between the stations

 SideTracks TrackCircuits
on each track

Direction Other

StationB 2 1 Down Main track as
track 2

StationD 1 1 Up
StationS 0 2 Up

Comparing the station drawings was pretty straightforward, but we noticed that

categorizing the commonalities and differences into meaningful entities required
knowledge about the domain. For instance the entity “SideTracks” in Table 1 is a
collection of several elements in the station model, and it corresponds to a side track
where trains can be parked. This illustrates that domain knowledge is not only neces-
sary when developing a single station, but also in the planning and extraction of in-
formation to a station product line. Note that “SideTrack” is not a concept of TCL as
such, but rather a collection of certain TCL elements. CVL can make this as an ab-
stract concept on top of TCL (see Section 4.3).

The constructive strategy of creating the CVL model would mean to raise the
abstraction level and consider what kind of functionality the product should have.
In this case it would mean identifying all structures the station product line should
support and using CVL to build the products properly. This could result in a more
carefully constructed product line model, since all the essential structures can be
included. We see that a combination of these two strategies, by starting with a
comparison of a few products, but generalizing the product line to support more
products, may be beneficial.

While choosing the product line members, we found it ideal to not only consider
the existing station descriptions, but also include other possible products. This was,
however, a trade-off of the complexity of the CVL model (see Section 4.4).

4.2 Choosing a Base Model

As presented in Section 3, the CVL model defines how a base model can vary. The
execution of a CVL model will perform a model-to-model transformation from this
base model to a new base model defined by the same metamodel. To define a sta-
tion product line in CVL, it is required to have a station base model as a starting
point.

There are several strategies for choosing such a base model. Since CVL replaces
values and sets of model elements, executing CVL can add, remove or replace func-
tionality. One obvious choice of base model can be a model with maximum set of
features included, meaning a complete model where CVL can remove features to get
a specific product model. In other words when we operate on a maximum base model

 Developing a Software Product Line for Train Control: A Case Study of CVL 113

a subtractive strategy is used. Another choice of base model can be a model with
minimum set of features included in the model itself, and other fragments in other
library models (more about CVL library in Section 4.3). Then the product models will
be generated by adding features to the base model. An additive strategy will thus be
used when operating on a minimum base model. A third strategy is to choose a base
model that has neither maximum nor minimum, but somewhere in between. This base
model can for instance be the base model that is most similar to the majority of the
product models, or a base model that is tailored for teaching purposes. This can be
viewed as operating on an intermediate base model, where both additive and subtrac-
tive strategies will be used. One choice of an intermediate base model may be the one
that results in the most compact CVL model. A compact CVL model can be measured
in the number of substitutions and the complexity of the fragments used in the substi-
tutions (e.g. number of boundary elements involved, where a boundary element in
CVL records a reference into or out of the fragment). A compact CVL model can be
easier to maintain.

As mentioned in Section 3, CVL supports a division between the feature specifica-
tion layer and the product realization layer, where the connection to the base model
resides only in the product realization layer. The feature specification layer is inde-
pendent of the chosen base model and does therefore not depend on the strategy for
choosing a base model. However, this requires the naming policy of the feature speci-
fication layer to be independent of whether an additive or subtractive strategy is used
(e.g. “No SideTrack” instead of “RemoveSideTrack”). The product realization layer
will use substitutions with additive or subtractive strategies based on the kind of base
model that is used.

Furthermore, in TCL the base model can either be a complete product that will
be one of the products of the product line, or it can be an incomplete product that
will be transformed to a valid product by CVL. Whether to use a complete product
as a base model depends on the base language and on the choice of strategy for
selecting a base model.

When creating the station product line we decided to follow the intermediate base
model strategy, by choosing a base model that has neither maximum nor minimum set
of features. Fig. 2 illustrates StationD, which we used as the base model for this prod-
uct line. This station has been manually modeled in the TCL graphical editor. The
reason for choosing this as a base model was to keep the base model as similar to all
the product models as possible. The number of substitutions and the complexity of the
substitutions can therefore be kept at a minimum.

Our experience shows that since CVL is based on substitutions on the base model,
an intermediate base model which is similar to the product models can result in a
simpler CVL model with fewer substitutions. However, there may in some cases be
advantageous to use a maximum or a minimum base model. Using a minimum base
model can ease the process of evolving the product line if new product models are
required. New features can then be added to the minimum base model in a straight-
forward way to produce a new product model. A strategy using a maximum base
model depends less on the use of library models, and may ease the maintenance of the
base model and library models themselves.

114 A. Svendsen et al.

4.3 CVL Library

CVL creates a product model by copying the base model and performing the se-
lected substitutions. When a set of base model elements is replaced by another set
of base model elements a copy is made of the second set of base model elements.
This implies that the replacing set of base model elements can either originate in the
base model itself or in another model, e.g. in a library. If the minimal base model
strategy is used, some model elements, not already in the base model, may have to
be added. This requires such a library where the additional model elements can be
found.

A library can either consist of complete models where a set of model fragments
is extracted, or it can be partial models with only the fragments themselves. In our
case this library could either consist of complete stations where some model frag-
ments are extracted (e.g. a side track), or the necessary fragments could be detached
in a model.

TCL itself does not have any concepts for structuring model elements (e.g. side
track). However, CVL can define fragments in the base language by recording refer-
ences to and from base model elements inside the fragment. By defining types in
CVL, these fragments of base model elements can be given an entity that can be con-
figured and reused. Furthermore, these types can be given names that originate from
the base language (e.g. “Additional TrackCircuit”). These fragments and types will
therefore define base model elements from a set of library models that can be used in
substitutions on the base model.

Our strategy for this product line was to create a dedicated fragment model, where
all the necessary fragments were stored. The reason for this choice was the lack of
other complete models with the fragments needed for the products. The fragment
model is illustrated in the lower right of Fig. 4. This resulted in missing context for
the fragments, yielding more work connecting the model elements together. There-
fore, by rather selecting model elements from a library of complete stations, connect-
ing the tracks together would have been more straightforward. However, this will
require the library to either have several stations with all kinds of fragments or one
complete station which contains every necessary fragment. This may not be practical
since we may want to create a product with a new kind of fragment, and creating a
complete new station in the library for this purpose defeats some of the intention of
the product line.

We noticed that if a fragment model is used it is helpful to model the immediate
context around the model elements in the fragment, to automate the process of con-
necting the model elements. However, this requires detailed knowledge of the base
language and what kind of context that is necessary. For this reason, complete models
may be a better choice for the library.

4.4 Creating the CVL Model

This section introduces the process and questions about creating the CVL model. There
are two parts of the model that need to be considered: The feature specification layer
and the product realization layer. These two layers can in principle be modeled by dif-
ferent developers since they are conceptually separate and require different level of

 Developing a Software Product Line for Train Control: A Case Study of CVL 115

domain knowledge. The feature specification layer requires an overview of the product
line and the products of the product line, while the product realization layer requires
detailed domain knowledge of how elements can be connected and substituted.

The feature specification layer of the CVL model resembles a feature diagram.
Creating an optimal feature specification layer of a CVL model requires it to be
oblivious of the product realization layer (see Section 4.2). Other requirements for an
optimal feature specification layer are discussed later in this section.

The product realization layer connects the feature specification layer to the base
model and the substitutions. The size and nature of the fragments that are used to
replace functionality of the base model have to be decided in the product realization
layer. Basically including one feature, e.g. side track, can either be performed in one
big operation or several small. Fragments should be created to optimize reuse such
that one fragment of elements can be copied and put into several places. However,
finding the right optimization can be a challenge and requires domain knowledge.

Based on the commonalities and differences in Table 1 we started creating the fea-
ture specification layer of a CVL model (i.e. a feature diagram) using the CVL
graphical editor (see Fig. 4). We played around with the structure of this layer making
it as flexible as possible supporting as many combination of products as possible in
the beginning. This resulted in an unnecessary complex CVL product line model since
every set of model element needed to be connected properly in the product realization
layer.

In our final feature specification layer of the station product line model all of the
stations have a base track and an additional track. Furthermore, the differences be-
tween the stations reside on one of these two tracks (i.e. between switch V2 and V1 in
Fig. 2). The direction of the additional track can either be “UP” or “DOWN”, and the
additional track can either have no sidetracks, one sidetrack or two sidetracks. Both
the base track and additional track can also include an additional track circuit. As is
specified in Table 1, StationB requires the main track to be named track 2. This re-
sults in the CVL model shown in Fig. 5. Note that to improve the readability, the
product realization layer is hidden.

Several interesting issues were revealed when creating this product line model.
First the question about what a good CVL model is. This question can be divided into
the feature specification and product realization layers. Both layers have to be human
readable to ease the selection of products and maintenance of the product line. The
feature specification layer should be modeled in such a way that it is oblivious to the
base model used, e.g. with right use of names. Furthermore the feature specification
layer should be structured in such a way that it is easy to see the choices of products.
The product realization layer should be compact regarding the number of substitutions
and the complexity of the substitutions. However, if the purpose is to make a new
product as quick as possible, a simple transformation using CVL with a minimal fea-
ture specification layer may be sufficient.

Another issue is the learning curve of using CVL. Using CVL to create a product
line of stations requires the developer of this product line to have knowledge about
CVL in addition to TCL. Even though CVL originates from a totally different do-
main than TCL (variability rather than train control), the CVL tool integration with
the base DSL turned out to be valuable. By being able to use the base DSL editor to

116 A. Svendsen et al.

Fig. 5. Station product line in CVL

select and highlight fragments, the developer does not necessary need to know the
details of CVL. Furthermore, CVL is a relatively small language with clearly de-
fined semantics, making it less time-consuming to learn it. Experience from making
the station product line shows that learning and using the simple constructs of CVL
efficiently is straightforward. However, using the more advanced concepts requires
more detailed knowledge of CVL.

Since CVL is a separate language to model variability, knowledge about CVL is
not specific to TCL, meaning that this knowledge can be used if there is a need to
develop product line models for other DSLs.

4.5 Generating Products

A CVL model does not only include the feature specification layer with information
about features, but also the product realization layer with information about how to
generate specific products. The resolution model can then choose which substitutions

 Developing a Software Product Line for Train Control: A Case Study of CVL 117

to execute. Executing the CVL model will generate specific products (i.e. station
models).

From the station product line illustrated in Fig. 5 several more than the three real
target stations can be generated by carefully making another selection of features in
the CVL model. For now, we are only interested in three specific products;
StationB, StationD and StationS. We therefore define three resolutions to the vari-
ability model and run the CVL execution engine, which gives us the three stations
mentioned. StationD is illustrated in Fig. 2, StationB in Fig. 6 and StationS in Fig. 7.
Note that when the CVL model (including resolutions) is specified, the generation
of the products is performed automatically. New station models are generated, and
their diagrams are initialized.

Fig. 6. StationB generated from CVL

The generated StationB has two side tracks and has direction set to “DOWN”. The
names of the tracks have also been changed to realize that track 2 is the main track. In
the generation of StationS, two track circuits (011 and 021) have been added (i.e.
rectangles representing track circuits). This can also be seen by looking at the extra
line segments and endpoints on the two tracks. In addition StationS has no side tracks.

From the generated product models, the TCL code generators can be used to gen-
erate interlocking source code and interlocking tables. For each of the three products
we have generated these representations and they are being validated by the signaling
experts working at ABB (see Section 4.6).

Svendsen et al. [10] claim that the usage of TCL to generate interlocking source
code and other representations of a station does not significantly impact the integra-
tion of safety standards or the formal techniques used to verify the correctness of the
stations. The main reason for this is that TCL only automates the process of creating
the representations, and that the same process of verification still can be followed. We
argue that by extending TCL with CVL, we only build on top of TCL to automate the
creating of stations further, and thus do not significantly impact the integration
of safety standards. Each station will still run through the same kind of verification

118 A. Svendsen et al.

Fig. 7. StationS generated from CVL

process, keeping the safety level that was imposed by TCL. Section 4.6 explains the
verification process of the stations.

4.6 Validation and Verification of the Generated Products

CVL is a generic language that can express variability in models of any DSL that is
defined by a metamodel. The CVL execution will make sure that all product models
that are generated comply with the metamodel of the base language. However, since
CVL is generic, it is oblivious to the semantics of the base language, and can there-
fore create semantically wrong models. However, this can be validated using the base
language tools, such as editors, code generators and model validators.

Since the train domain is a safety system, two steps are necessary for verification
of the interlocking source code generated from the station products. First verification
using Fagan inspection [3] has to be performed, which includes a set of rules, guide-
lines and checklists for use in ABB RailLock. This is first performed on the functional
specification and design specification, which are checked against a predefined
schema. Then it is performed once more on the interlocking source code, checking it
against the functional specification and design specification. When this verification is
completed, an independent party has to validate the source code against all safety
requirements using a formal mathematical method. This third party is using a tool
which is accepted as adequate by the Norwegian Railway authority.

Validation and verification of the interlocking source code generated from the three
station products, which were produced by CVL, are currently being performed.
Additional rules for checking automatically generated source code is also under de-
velopment. Note that since the generated products are real stations, they have to be
validated and verified using a certified process.

4.7 Summary

Fig. 8 summarizes the process of making a CVL model.

 Developing a Software Product Line for Train Control: A Case Study of CVL 119

 The Process of Developing an SPL Using CVL

Comparing all the Designated
Product Line Members

Starting with the Existing Products and
using CVL to Help Sketch Future Products

Maximum Base Model
+ Subtractive Strategy

Minimum Base Model
+ Additive Strategy

Intermediate Base Model
+ Subtractive and Additive Strategy

Complete Models Model Fragments

Feature specification

Product realization

Generating Product Models

The CVL model
should be compact

and easy to
understand.

Fragments should
be modeled in the
correct context.

The choice should
lead to the minimal
changes needed to
generate all product
line members from

the base model

Fig. 8. The process of developing an SPL using CVL

5 Conclusions and Future Work

This paper presented a case study of CVL creating a software product line for TCL.
We showed the process of creating the product line and automatically generating
station product models. Furthermore we discussed the need for verification of the
source code generated from these station product models. During this study we en-
countered some questions, where we gave some preliminary answers. As a summary,
we illustrated in a figure the method to follow when creating a CVL model.

This case study was performed on three real stations with two tracks, which is the
complexity of the stations being planned. CVL only records the incremental differ-
ences between base models. As long as the number of differences between base mod-
els remains stable, an increase of complexity in the base models themselves do not
significantly affect the CVL approach.

This case study has shown that CVL can function as a standardized language for
defining and executing a software product line to create product models. Furthermore,
CVL has shown to be effective to automate the process of creating a software product
line and generating its products.

Future work will include using CVL to create software product line models for
other DSLs to further show the applicability of the CVL approach. How to create
optimal CVL models, both on the feature specification and product realization layer,
is also an issue that will be further investigated.

Other work that is also in progress is an automated approach for comparing a set of
base models and deriving the CVL product line model [11]. Automating the evolution
of test-cases corresponding to base models is also being investigated [9]. We believe

120 A. Svendsen et al.

that such incremental analysis for safely avoiding retest of test-cases will give a huge
benefit and return on investment.

Acknowledgments. The work presented here has been developed within the MoSiS
project ITEA 2 – ip06035 part of the Eureka framework.

References

1. EMF, Eclipse Modeling Framework Project (Emf),
http://www.eclipse.org/modeling/emf/

2. Endresen, J., Carlson, E., Moen, T., Alme, K.-J., Haugen, Ø., Olsen, G.K., Svendsen, A.:
Train Control Language - Teaching Computers Interlocking. In: Computers in Railways XI
(COMPRAIL 2008), Toledo, Spain (2008)

3. Fagan, M.E.: Design and Code Inspections to Reduce Errors in Program Development.
IBM Systems Journal 15, 182–211 (1976)

4. Fleurey, F., Haugen, Ø., Møller-Pedersen, B., Olsen, G.K., Svendsen, A., Zhang, X.: A
Generic Language and Tool for Variability Modeling. SINTEF, Oslo, Norway, Technical
Report SINTEF A13505 (2009)

5. Haugen, O., Møller-Pedersen, B., Oldevik, J., Olsen, G.K., Svendsen, A.: Adding Stan-
dardized Variability to Domain Specific Languages. In: SPLC 2008, Limerick, Ireland
(2008)

6. Kang, K., Cohen, S., Hess, J., Novak, W., Peterson, A.: Feature-Oriented Domain Analysis
(Foda) Feasibility Study. Software Engineering Institute, Carnegie Mellon University,
Pittsburgh, PA. Tech. Report CMU/SEI-90-TR-21 (November 1990)

7. MOF, The Metaobject Facility Specification, http://www.omg.org/mof/
8. Oldevik, J.: Mofscript Eclipse Plug-In: Metamodel-Based Code Generation. In: Eclipse

Technology Workshop (EtX) at ECOOP 2006, Nantes (2006)
9. Svendsen, A.: Application Reconfiguration Based on Variability Transformations. School

of Computing, Queen’s University, Kingston, Canada, Technical Report 2009-566 (2009)
10. Svendsen, A., Olsen, G.K., Endresen, J., Moen, T., Carlson, E., Alme, K.-J., Haugen, O.:

The Future of Train Signaling. In: Czarnecki, K., Ober, I., Bruel, J.-M., Uhl, A., Völter, M.
(eds.) MODELS 2008. LNCS, vol. 5301, pp. 128–142. Springer, Heidelberg (2008)

11. Zhang, X.: Synthesize Software Product Line. In: The 32nd International Conference on
Software Engineering, Cape Town, South Africa (2010)

J. Bosch and J. Lee (Eds.): SPLC 2010, LNCS 6287, pp. 121–135, 2010.
© Springer-Verlag Berlin Heidelberg 2010

Dealing with Cost Estimation in Software Product Lines:
Experiences and Future Directions

Andy J. Nolan1 and Silvia Abrahão2

1 Rolls-Royce
SIN C-3, Rolls-Royce plc, PO Box 31

Derby DE24 8BJ, England
Andy.Nolan@Rolls-Royce.com

2 ISSI Research Group, Department of Computer Science
Universidad Politécnica de Valencia

Camino de Vera s/n, 46022, Valencia, Spain
sabrahao@dsic.upv.es

Abstract. After 5 years invested in developing accurate cost estimation tools,
Rolls-Royce has learnt about the larger potential of the tools to shape many as-
pects of the business. A good estimation tool is a “model” of a project and is
usually used to estimate cost and schedule, but it can also estimate and validate
risks and opportunities. Estimation tools have unified engineering, project and
business needs. The presence of good estimation tools has driven higher per-
formance and stability in the business. It was evident we needed this capability
to underpin decisions in our new Software Product Line strategy. The objective
of this paper is twofold. First, we report the experiences gained in the past on
the use of estimation tools. Second, we describe the current efforts and future
directions on the development of an estimation tool for Software Product Lines.
At the heart of the Product Line estimation tool is a simple representation of the
product – represented as the number of Lines Of Code (LOC). The next genera-
tion of tool, will need to consider wider aspects of product quality in order to
create more accurate estimates and support better decisions about our products.

Keywords: Cost Estimation, Software Product Lines, Industrial Experiences.

1 Introduction

The production of quality software, on time, and within budget, remains an open
problem of Software Engineering that has been addressed from different approaches.
An industrial approach to this problem is to use Software Product Lines (SPL). Sev-
eral benefits are associated to the introduction of product lines in software develop-
ment organizations such as cost reduction, time-to-market improvement, project risk
reduction, and quality improvement.

However, the associated costs and the quality of the software products may greatly
differ due to systematic reuse. In addition, product line engineering is often the more
economical choice in the long-term run. It might not be the best choice when project
managers want to amortize their core asset base across only a few products or across

122 A.J. Nolan and S. Abrahão

products with little commonality [1]. Therefore, there is a need for tools to help pro-
ject managers to analyze in which situations and scenarios product line investment
pays. To address this issue, several cost estimation models for Software Product Lines
(SPL) have recently been proposed in the literature. However, to understand their
benefits and weaknesses, it is important to analyze the experiences gathered in apply-
ing these models in industrial or organizational settings.

In this paper, we present an experience report about the use of cost estimation tools
at Rolls-Royce. The objective of this paper is (i) to report the experiences gained in
the past on the use of a cost estimation tool based on COCOMO (Constructive Cost
Model) [3] (ii) to describe how this tool was extended for its use with software prod-
uct lines as well as the lessons learned (iii) to describe future extensions for this tool
based on the preliminary results obtained within the MULTIPLE (Multimodeling Ap-
proach for Quality-Aware Software Product Lines) project conducted at the Universi-
dad Politécnica de Valencia in Spain with close collaboration of Rolls-Royce.

This paper is organized as follows. Section 2 discusses existing models and tools
for cost estimation in SPL. Section 3 discusses past experiences on the use of a Cost
Estimation tool at Rolls-Royce. Section 4 presents an overview of the SPL initiative
launched in 2008 as well as the development of an estimation tool which was built for
assessing the benefits of SPL. Section 5 describes the lessons learned and the future
extensions of the tool. Section 6 presents our conclusions and further work.

2 Related Works

In the last few years several cost estimation models for software product lines have
been proposed. Some representative proposals are: [16], [1], [19], [4], [7], [10], [9]
and [13]. Poulin [16] proposed one of the first models for analyzing the effects of em-
ploying a systematic reuse approach. The model is based on two parameters: the rela-
tive cost of reuse (RCR) and the relative cost of writing for reuse (RCWR). The first
parameter can be used for comparing the effort needed to reuse software without
modification to the costs associated with developing the same software for a single
use. The second parameter relates the costs of creating reusable software to the cost of
creating one-time use software. These parameters can also be applied in the context of
software product lines. The Poulin model uses the RCR and RCWR to calculate two
other indicators (i.e., reuse cost avoidance and additional development cost) that pre-
dict savings for developing a specific project.

Böckle et al. [1] proposed a software product line cost model to calculate the costs
and benefits that we can expect to have from various product line development situa-
tions. In particular seven reuse scenarios were identified. The cost model proposed
involves the following four costs: (1) the cost to an organization of adopting the prod-
uct line approach for its products; (2) the cost to develop a core asset base suited to
support the product line being built; (3) the cost to develop unique software that is not
based on a PL platform; (4) the cost to reuse core assets in a core asset base. The au-
thors then analyze the cost savings of converting products to a software product line as
they evolve over time.

Tomer et al. [19] proposed a model that enables software developers to systemati-
cally evaluate and compare alternative reuse scenarios. The model supports the clear

 Dealing with Cost Estimation in Software Product Lines 123

identification of the basic operations involved and associates a cost to each basic op-
eration (e.g., adaptation for reuse, new for reuse, new development, cataloged asset
acquisition). In 2004, Boehm et al. [4] proposed a software product line life cycle
economics model called Constructive Product Line Investment Model (COPLIMO).
The model facilitates the determination of the effects of various product line domain
factors on the resulting PL returns on investment.

Since the previous cost estimation models do not properly consider the software
quality cost, In et al. [9] proposed a quality-based product line life cycle estimation
model called qCOPLIMO as an extension of the Boehm et al. model [4]. This model
is based on the top of two existing models proposed as an extension of the COCOMO
II model: COPLIMO, which provides a baseline cost estimation model of the SPL life
cycle, and COQUALIMO which estimates the number of residual defects. The model
provides a tool to estimate the effects of software quality cost for enabling cost-
benefit analysis of SPL. However, quality is measured only as the cost per defect
found after product release and the tool is not granular in terms of the product itself.

Clements et al. [7] proposed the Structured Intuitive Model for Product Line Eco-
nomics (SIMPLE) model. Its purpose is to support the estimation of the costs and
benefits in a product line development organization. The model suggest four basic
cost functions to calculate (1) how much it costs an organization to adopt the PL ap-
proach for its products; (2) how much it costs to develop the core asset base to satisfy
a given scope: (4) how much it costs to develop the unique parts of a product that are
not based on assets in the core asset base; (4) how much it costs to build a product re-
using core assets from a core asset base.

In [10] Lamine et al. introduce a new software cost estimation model for SPL
called SoCoEMo-PLE. This model is based on two previous models: the integrated
cost estimation model for reuse [11] and the Poulin’s model [16]. The authors claim
that when compared to the two costs models used, the proposed new model gives dif-
ferent results and presents more details because it takes into account more features of
PLE development life cycle. However, no evidence for this claim was found.

Finally, other authors suggest that a decision analysis model could be integrated in-
to the cost model to provide an interpretation to the values obtained by the cost func-
tions. This is the case of the Nóbrega et al. [13] proposal where an Integrated Cost
Model for Product Line Engineering (InCoME) is presented. The aim of this model is
to perform investment analysis for a set of reuse scenarios to help an organization to
decide if an investment in a product line is worthwhile. The model was applied in a
small product line with 9 products, 10 core assets and two reuse scenarios. Although
the results seem promising, the model should be applied to other organizations with
larger PLs in order to test the generalizability of the results obtained.

An analysis of these cost estimation models revealed that the majority of them es-
timate costs and/or benefits of using SPL through several reuse scenarios (e.g., [1]
[19] [13]). Other models identify a clear separation of cost estimation and investment
analysis [13]. Some models consider variations in the cost of reuse [4] [9]. In general,
the proposed models suggest several parametric values that must be accurately cali-
brated. Finally, the majority of the proposed models often not considered other factors
such as quality and time-to-market.

124 A.J. Nolan and S. Abrahão

3 Past Experiences on the Use of a Cost Estimation Tool

This section gives a brief overview of the software development and cost estimation
practices at Rolls-Royce. This is important to understand as it was the foundation for
building the Product Line Estimation tool shown in Section 4.

3.1 Rolls-Royce Control Systems

Rolls-Royce provides power systems and services for use on land, at sea and in the
air, and operates in four global markets - civil aerospace, defense aerospace, marine
and energy. In all the business sectors in which Rolls-Royce operates, there are
demands for improved capability and effectiveness of the power systems, more
economic and faster product development, better transition to operation (minimum
post-delivery changes) and better in-service cost and availability, with commensurate
reduction in cost of purchase and/or cost of ownership.

The Control Systems department of Rolls-Royce’s Aerospace business is responsi-
ble for the Engine Electronic Controllers (EECs) for a range of small and large gas
turbine engines, for the aerospace industry. The EEC contains a significant amount of
software that is designed to ‘control’ the engine, as directed by the pilot, in a way that
is safe for the engine, safe for the aircraft, fuel-efficient, component life efficient and
environmentally efficient. We have been developing high integrity software for over
20 years and have extensive data on our processes and productivity. We have had
some level of success with clone-and-own- reuse but this tended to be opportunistic
from existing projects. Since 2008, we are developing our SPL for the business which
has potential for both the software and hardware aspects of our engine design.

Fig. 1. Rolls-Royce Trent 900 engine used to power the A380 – the control software is in ex-
cess of 200,000 lines of code

 Dealing with Cost Estimation in Software Product Lines 125

3.2 The Adoption of COCOMO II

Since 2004, Control Systems has invested in developing reliable estimation tools to pre-
dict software development cost and schedule. The work was undertaken as part of a six-
sigma Black Belt project to understand the factors that influenced good estimates. One
of the outputs from that study was a calibrated estimation tool based on COCOMO II
[2]. COCOMO is an algorithmic software cost estimation model developed by Boehm.
The model uses a basic regression formula, with parameters that are derived from his-
torical project data. COCOMO was first published in 1981 as a model for estimating ef-
fort, cost, and schedule for software projects.

COCOMO II is the latest extension to the original COCOMO and was developed by
the combined efforts of USC-CSSE, ISR at UC Irvine, and the COCOMO II Project Af-
filiate Organizations. The revised cost estimation model reflects the changes in profes-
sional software development practice that have come about since the 1970s.

The process of evaluation and tool development took around 1 month of effort. The
objective was to find a simple, accurate and believable estimation tool that would allow
managers to express and defend the critical project assumptions in a way that the busi-
ness could understand. Believable and dependable estimates were key requirements as
well as having a tool that anyone could use.

It was necessary to find accurate data for historic projects and then to estimate their
cost as if they were future projects. A “blind” estimate was generated and then validated
against the actual project results. There was a “common cause” discrepancy which was
down to tool calibration. In other cases, there were special cause exceptions which had
to be investigated. At the end of the analysis, we had both a calibrated estimation tool
as well as a thorough understanding of the COCOMO factors and how to drive them.
This knowledge became part of the user guide and training program.

The COCOMO II model is a very simple equation relating factors to final cost and
schedule. We added “front end” tools to help derive estimates for size (Lines of Code)
as well as “back end” tools to help unwrap the results into resource profiles, phases,
plans and even error predictions. The COCOMO model sat at the heart of an otherwise
comprehensive resource/project planning tool.

We built many versions of the tool to meet the needs of different domains – includ-
ing hardware development. In each case, we identified the “questions” we needed to
ask about the project/business, selected the factors from COCOMO II that would ad-
dress these questions, then built this into a tool. In those cases where COCOMO II
could not provide the factor to address a question, we would develop our own factors,
gather data from the business and perform a regression analysis to understand the sensi-
tivity and range for the new factors. Examples of new factors included requirements
volatility (from our customers) and Scrap & Rework generated from our evolutionary
development approach to engine, hardware and electronic development.

3.3 What an Estimation Tool Teaches You

An important breakthrough occurred when we relished that the estimation tools, like
COCOMO II, were not only useful for estimating costs, but were actually teaching us
what was important about a project or product. Estimation tools are actually models of a
project and like all models they are there to help you make good decisions. An estimation

126 A.J. Nolan and S. Abrahão

tool defines a formal and objective representation of a project or business and is by defi-
nition a simplification of reality.

An estimation tool need only be as precise and accurate as required to make a mean-
ingful and accurate decision. They are there to tell you something that you would not (or
could not) know without them. They are central to good project management and con-
trol, estimation, improvement and risk management.

The estimation tools are also there to remove the subjectivity from the decision mak-
ing process. It’s tempting for a manager, fuelled by ego and heroics, eager to prove
themselves, to exaggerate the truth or guess at key decisions. You also need a good es-
timation tool to help with reasoning, collaboration and negotiation in order to persuade
the business to invest in the right things e.g., in a product line. We have found that a
well-constructed estimate makes persuasion a whole lot easier then relying on good in-
tentions and opinions.

3.4 The Business Benefits

Through the development and deployment of estimation tools across the business, we
have seen an improvement in stability and productivity – on average around 11% cost
saving per project. This is primarily because, estimation tools, like COCOMO II, are
informing you of what is important. This information has shaped what we measure, how
we identify and validate improvements, how we identify and mitigate risks and how we
manage and estimate projects. They help us optimize and refine the business around
objective reasoning rather the subjective guesswork i.e., we make better decisions.

For example, if a project is taking on novel features, or there are concerns over the
aircraft maturity, we would expect a high level of requirements volatility and scrap &
rework. The estimation tool would quantify the impact (increased cost and a longer pro-
gram) and this would then be used to drive for changes in the development approach,
risk mitigations, negotiations with the customer and so on. If this was a critical factor
for success, then this attribute of the project would be carefully monitored and reported.
Similarly, if in order to achieve a low cost project, you assume a high performance
team, then this aspect of the project will need to be carefully monitored and reported.
The output from an estimate is a measurement plan of critical factors that need to be
monitored, controlled and where possible, improved.

4 The Estimation Tool for Software Product Lines

This section starts describing the software product line initiative launched at Rolls-
Royce followed by the description of new estimation factors considered in the devel-
opment of a cost estimation tool for SPL. The section ends by discussing lessons
learned from practical experiences using the tool.

4.1 The Software Product Line Initiative

The challenges facing Rolls-Royce Control Systems are not unique; we have a
program load greater than ever before. Our customers want faster development, so
program timescales continue to decrease, while functionality increases and our share-
holders demand lower costs and greater profitability. Each new project development

 Dealing with Cost Estimation in Software Product Lines 127

represents a significant engineering challenge, moving engineering from research to
product development at a rapid pace. Even though the approach used today is com-
petitive, our future order book growth means that we cannot sustain our current engi-
neering approach. We need a step change in productivity. SPL will help us step up to
these challenges.

In addition we have an extensive legacy portfolio that will require refresh as elec-
tronic equipment becomes obsolete. This will be an ongoing concern for any business,
like Rolls-Royce, involved in long-life products, that includes electronics, and inevita-
bly that use software solutions. It is this long-life that also has the potential for Product
Line solutions to cost effectively refresh our legacy portfolio – but we have to accept
that they are part of the ‘future’ in our initial Product Line market scope.

4.2 The Need for New Estimation Factors

When the SPL initiative was launched in 2008, the development of a reliable and com-
prehensive estimation tool was seen as critical to ensure we were making the right deci-
sions. Based on some additional data from within Rolls-Royce, we developed the first
version of the SPL Estimation tool [14] in under a day. Several versions later and about
4 weeks of prototypes and demos the first model was released and populated.

The original estimation tool was calibrated and developed around our existing
processes and approach to software development. With the development of the prod-
uct line, there were new questions we needed to ask, which led to the need for addi-
tional factors in the estimation tools.

• It needed to guide the business – the tool needs to help us persuade “the busi-
ness” – it needs to be able to estimate business level cash flow and benefits and
communicate trades and decisions to people who did not understand software.

• It needed to guide each project – each project should be able to use the estimation
tool to make trade decisions between bespoke and Product Line assets.

• It needed to guide the architects – we need to pick the right features and the right
variation mechanisms that add the greatest benefit.

In addition to these requirements, the tool needed to be able to answer the following:

• When to develop a Product line asset and when to rely on clone-and-own-reuse
and bespoke development.

• The costs of development and deployment of assets for a range of variation me-
chanisms.

• To factor for organizational overheads and new roles not normally associated
with traditional project development.

• The effect the Product Line Strategy has on the organization i.e., disruption and
risk as well as the benefits from alignment of processes and objectives.

• The costs for redeveloping the Product Line architecture i.e. product line refresh.

We did not adopt COPLMO directly because it did not contain the granularity we
needed or the “decision points” described above. The first estimation tool was devel-
oped and used in early 2009. The structure of the tool is shown below (see Fig. 3) and
contains the following additional decision points:

128 A.J. Nolan and S. Abrahão

PL Benefit Cross Over Point

PL
Dev

elo
pm

en
t

Pro
jec

t 1

Pro
jec

t 2

Pro
jec

t 3

Pro
jec

t 4

Pro
jec

t 5

Pro
jec

t 6

Pro
jec

t 7

Pro
jec

t 8

Pro
jec

t n

C
um

ul
at

iv
e

$M

Traditional Cumulative£M
Product Line £M

Fig. 2. The output from the Software Product Line estimation tool showing the break even
point of the initiative. This information was used to persuade the business to invest in a strate-
gic initiative rather then to focus on a project-by-project return on investment.

• Historically, size was measured in terms of the total (macro) number of lines
of code. Step 1 of the SPL estimation tool provided the size of each individual
asset based on a library of features from past projects.

• From historic analysis we have shown that approximately 70% of the software
costs arise from 30% of assets i.e., not all assets are equal. This was not an is-
sue for our historic estimation tools because we considered size at the macro
level only. With the introduction of the SPL, we added Step 2 to understand
the cost and value of each asset.

• A new step “P-Process Model” was added to model our safety-critical devel-
opment process and to understand which processes are required to develop an
asset and which processes are required to deploy an asset. We also recognized
that the process used to develop and deploy an asset varies depending on the
asset variation mechanism.

• Traditionally, features would only be considered at the time of project launch
and clone-and-own approaches used to acquire assets from pat projects. Step 3
was used to map out the life of features across the future engine programs.

• Step 4 was introduced so that the SPL team could understand the costs to de-
velop a project using the traditional methods and then compare and contrast
these costs with the SPL development costs (see step 10).

• Step 5 was introduced to model the additional costs to develop a SPL asset.
This information was taken from COCOMO II – the RUSE (developing for
reuse) and DOCU (additional documentation) factors.

• Step 6 was used to map the deployment of SPL assets into projects to under-
stand if there was a net benefit, per asset, when considering the development,
deployment and maintenance of assets. The step also revealed those features
that would be bespoke to each project.

• Step 7 was a mechanical process and generated all the information together to
understand the new costs for developing a project based on SPL assets.

 Dealing with Cost Estimation in Software Product Lines 129

• Step 8 was added to model the organization costs. This was derived from the
SIMPLE model [7] and consists of costs above-and-beyond traditional project
development. The model contains the costing for, new organization roles and
governance activities, new management activities, increased configuration
management and change control, reference architecture developers, process &
tool development, organizational training & orientation, consultancy costs and
business level interface roles and activities.

• Step 9 was added to model the effect of introducing the SPL initiative into the
business. With any change comes an initial “shock” followed by a settling in
period. Also, the organization would look and behave differently. COCOMO
II was again used to model the business environment.

• Step 10 performed the final analysis and compared and contrasted the benefits
of the SPL with a more traditional project centric organization.

Traditional PL Common Library

Step 4 Project
Reuse Plan

Step 1
Determine
Asset Size

Step 2
Determine

Asset Value

Step 3 Asset
to Project
Mapping

P Process
Model

Step 8 PL
Organisation

Costs

Step 10 Cost
Benefit

Step 5 PrL
Asset

Development

Step 6 PL
Deployment

Plan

Step 7 PL
Project Costs

Step 9 PL
Environment

Fig. 3. The structure of the Software Product Line estimation tool

4.3 How We Use the Estimation Tool

The tool is used to perform the following activities:

• Communicate with business leaders in a language they understand. It can model
the costs of investment and the point when we have return on our investments.

• Model decisions at the business, project and asset level. For example, through
sequencing our projects, we can smooth out the SPL asset development pro-
gram. At the asset level, the architect can make trades between variation mecha-
nisms and net return on investment. At the project level, they can make trades
between PL assets and bespoke features and use this information to either push
back or negotiate with the customer.

• Perform risk analysis by understanding variation and sensitivities of decision
points (modeled as factors in the estimation tool). For example, what is the ef-
fect of not having the capable development team, what is the impact of refactor-
ing the architecture, and so on.

130 A.J. Nolan and S. Abrahão

• Assess the return on investment of improvements. The team can perform im-
provement scenarios with the tool to understand which improvements give the
greatest return on investment.

In terms of accuracy, after 5 years of using COCOMO II, we have an R2 correlation of
0.98 between the predicted and actual costs i.e. at the business level, we have a accurate
and normalized estimation tool. Although in reality, at the per project basis, estimates
can be up to 20% in error (or higher if assumptions are wrong). We are gathering data
on each asset to validate the estimation tool. As the tool was based on historic projects,
adjusted for a change of process, we expect an equivalent level of accuracy.

4.4 Lessons Learned

The lessons learned from the use of the SPL estimation tool is as follows:

• The experiences at Rolls-Royce, both good and bad, could be expressed in sim-
ple meaningful terms as defined by the COCOMO II factors.

• The estimation tool could also be used to try “what if” scenarios, to elicit im-
provement opportunities and to validate improvement proposals.

• The tool taught the business what was important, what to manage, what to
monitor, where the risks lay and where opportunities would come from.

• Despite initial reservations, the tool was calibrated and in use in only 1 month.
The benefits have been on 10,000 times this effort.

• You need to have an owner who is passionate in estimation, to drive the ap-
proach into the business.

• Like any tool development, let it evolve – we had over 20 versions of the tool,
each an enhancement to address new questions that came to light during use.

• We had to make a decision between developing a simple tool that anyone could
use and a tool for experts – we opted for an experts tool making both develop-
ment and deployment far easier and allowing greater freedom to add complex
decision points into the tool designed around the use base.

• Never underestimate the drag as people would rather rely on subjectivity rather
than objective reasoning but never underestimate the power of a well con-
structed, formulated and reasoned argument.

• The tool has been successful mainly because it can meet the needs of a wide
range of users e.g., architects, project leaders and business leaders.

We also observed that future versions of the tool can be adopted to provide different
view points for different business needs. At present, we can model cash flow but future
tools can more accurately model schedule, asset availability, etc. Other views can be
added to represent the need for key resources and resource planning.

5 Future Directions

The SPL estimation tool can answer many questions about the development environ-
ment and trades between architectural, project and business decisions, but contains only

 Dealing with Cost Estimation in Software Product Lines 131

an approximation of the product itself. At present, the product is represented only as
lines of code, adjusted for complexity or difficulty. The next generation of estimation
tools will need to consider, in greater detail, quality attributes about the assets we are
developing. In this sense, we are working currently on extensions for this tool based on
the preliminary results obtained within the MULTIPLE project conducted at the Uni-
versidad Politécnica de Valencia, in Spain, with close collaboration of Rolls Royce.
In this section, we give a brief overview about this project and discuss how the results
obtained on it can be transferred to Rolls-Royce.

5.1 The MULTIPLE Project

MULTIPLE (Multimodeling Approach for Quality-Aware Software Product Lines) is
a three-year project (2010-2013) supported by the Spanish Ministry of Science and
Innovation. Rolls-Royce participates as an EPO entity – declaring interest for assess-
ing the benefits of the results derived from the project and possibly exploit them.

The objective of this project is to define and implement a technological framework
for developing high-quality SPL. This framework is based on the existence of several
models or system views (e.g., functionality, features, quality, cost) with relationships
among them. This approach implies the parameterization of the software production
process by means of a Multimodel which is able to capture the different views of the
product and the relationships among them.

As part of this project, we developed a Quality Model for conducting the production
plan of a SPL [12]. It is one of the views of the Multimodel and captures the quality at-
tributes relevant for the domain, the quality attributes relevant to certain products of the
family, as well as the variability among these attributes. The model allows measuring
the properties of several artifacts of a SPL (e.g., core asset base, core assets, SPL archi-
tecture, product architecture) by providing quality metrics and trade-off analysis me-
chanisms in order to help architects to select core assets that meet the business need.

The next section describes our current efforts on using the quality attributes of the
quality model as new parameters to the cost estimation tool.

5.2 Extension Mechanisms for the Rolls-Royce Cost Estimation Tool for SPL

Cost is usually an important factor in reuse-based development. However, other fac-
tors, such as product quality and time-to-market, are also expected to improve by re-
using software assets. Lower error rates, higher maturity products and more complete
functionality all contribute to improved customer satisfaction. Currently, we are ex-
tending the cost model for SPL with two additional factors: quality and variability.

5.2.1 Quality
To define the relevant quality attributes to be used as new parameters in the cost esti-
mation model for SPL, we took the complete SQuaRE-based Quality Model devel-
oped for the MULTIPLE project [12] and discussed the relative importance of each
quality attribute to the safety-critical embedded systems domain and SPL. Each qual-
ity attribute was classified according to the following scale: High (mandatory for this
domain), Average (important but not mandatory) or Low (not important for this do-
main). An extract of the results is presented in Appendix A. In general, the results

132 A.J. Nolan and S. Abrahão

show that the Operability quality characteristic and its associated quality attributes are
not relevant for safety-critical embedded systems since it assess the degree to which the
software product can be understood, learned, used and attractive to the user. The most
relevant characteristics and quality attributes is as follows:

• Functional suitability: the degree to which the software product provides
functions that meet stated and implied needs when the software is used under
specified conditions. We need to develop assets that have met the appropriate
certification standards, are functionally correct, are accurate and have determi-
nistic behaviour.

• Reliability: the degree to which the software product can maintain a specified
level of performance when used under specified conditions. Performance, in our
case, can include fault tolerance, error recovery, coping with the loss of engine
signals, hardware failure conditions and so on.

• Performance efficiency: the degree to which the software product provides ap-
propriate performance, relative to the amount of resources used, under stated
conditions. Performance is measured in terms as timing and memory utilisation
as well as response times to stimulus from the aircraft or engine.

• Compatibility & transferability: The ability of two or more software compo-
nents to exchange information and/or to perform their required functions while
sharing the same hardware or software environment. We need to understand the
level of compatibility with the electronic hardware standards, engine configura-
tions, and airframe communication.

• Maintainability: the degree to which the software product can be modified.
Modifications may include corrections, improvements or adaptation of the soft-
ware to changes in environment, and in requirements and functional specifica-
tions. This issue is not limited to just safety-critical software but the effects of
change can be disproportionately high in the safety-critical domain because of
the need to capture the certification evidence.

These attributes have a major impact on the cost of a SPL for safety-critical embedded
systems. In addition, we identified new attributes for Safety and Affordability that
should be incorporated to the Quality Model. The attributes for safety are as follows:
Predictability (the degree to which the software behaviour is predictable), Completeness
(the degree of test coverage for behaviour), Compliance (the degree of compliance to
industry safety standards), and Protection (degree of protection against unsafe condi-
tions). The quality attributes for affordability includes the cost to develop, cost to main-
tain and cost to deploy in new situation/context.

Future works includes the definition of quality attribute scenarios following an ap-
proach similar to the one performed by the SEI for eliciting and representing quality
attribute requirements observed in practice. In [15], a distribution of quality attribute
concerns according to the SEI-led ATAM evaluations is presented. The top 3 out of
140 attributes are: Modifiability (concern = New/revised functionality/ components;
distribution = 6.4%), Usability (concern = Operability; distribution = 4.1%) and Mod-
ifiability (concern = Upgrade/add hardware components; distribution = 3.9%).

 Dealing with Cost Estimation in Software Product Lines 133

5.2.2 Variability
Variability may add customer value but allowing too much variability could lead to
substantial follow-up costs during the lifecycle. Therefore, variability should be added
as a cost driver during the whole SPL lifecycle since each feature must be maintained
integrated in subsequent releases, tested and possibly considered during deployment
and customer support. In addition, we should also take into account the variability
that may exist in the different products of the family with respect to the quality attrib-
utes. Therefore, two dimensions of variability should be considered: (1) for the whole
SPL lifecycle and (2) with respect to the quality attributes. In the safety-critical do-
main, it will be necessary to prove the product is safe for all variants and combina-
tions of variability. Too much variability could have an exponential impact on the
verification, validation and certification activities.

5.2.3 Other Extension Mechanisms
New mechanisms should be defined and used in conjunction to the cost estimation
model for SPL to provide relevant information about cost-benefits to the business. For
instance, a mechanism to relate each business goal with the quality attributes. In addi-
tion, adding or removing functional features may influence the quality of the product
family. Therefore, we need a new mechanism to relate each feature with respect to the
quality attributes. There is also a need for other mechanisms to analyze the impacts
among quality attributes and to identify potential conflicts among them.

6 Closing Remarks

Along with each generation of the estimation tool came new questions to be answered.
Each new generation of the tool then added new factors (or factorization) to help answer
those questions. As we refined our understanding and fidelity of management, we
needed a higher fidelity of factors in the estimation tool.

The first generation of the estimation tools focused heavily on the development envi-
ronment, being able to understand, accommodate, monitor, control and improve aspects
of the development environment. The first generation estimation tools considered the
software product as a single large entity and defined it in terms of lines of code. The
second major generation of the tool was designed to answer new questions about the
product line and to do this, we needed a refined understanding of the software architec-
ture, its functional breakdown, variation mechanisms and the costs to develop and de-
ploy assets.

The software Product Line estimation tool can answer many questions about the de-
velopment environment and trades between architectural, project and business deci-
sions, but contains only an approximation of the product itself. At present, the product is
represented only as lines of code per feature, adjusted for complexity or difficulty. The
next generation of estimation tools will need to consider, in greater detail, quality attrib-
utes about the assets we are developing. We also need to further empirically validate the
accuracy of the estimates obtained using the SPL estimation tool.

Acknowledgments. This research is supported by the MULTIPLE project (with ref.
TIN2009-13838) funded by the “Ministerio de Ciencia e Innovación (Spain)”.

134 A.J. Nolan and S. Abrahão

References

1. Böckle, G., Clements, P., McGregor, J.D., Muthig, D., Schmid, K.: Calculating ROI for
Software Product Lines. IEEE Software (May/June 2004)

2. Boehm, B., Abts, C., Brown, A.W., Chulani, S., Clark, B.K., Horowitz, E., Madachy, R.,
Reifer, D., Steece, B.: Software Cost Estimation with COCOMO II. Prentice-Hall, Engle-
wood Cliffs (2000)

3. Boehm, B.: Software engineering economics. Prentice-Hall, Englewood Cliffs (1981)
4. Boehm, B., Brown, A.W., Madachy, R., Yang, Y.: A Software Product Line Life Cycle

Cost Estimation Model. In: Proceedings of the International Symposium on Empirical
Software Engineering (ISESE 2004), pp. 156–164 (2004)

5. Chen, Y., Gannod, G.C., Collofello, J.S.: Software Product Line Process Simulator. In: 6th
Int. Workshop on Software Process Simulation and Modeling (May 2005)

6. Clements, P., Northrop, L.: Software Product Lines: Practices and Patterns. Addison-
Wesley, Boston (2001)

7. Clements, P., McGregor, J.D., Cohen, S.G.: The Structured Intuitive Model for Product
Line Economics (SIMPLE), CMU/SEI-2005-TR-003 (2005)

8. Cohen, S.: Predicting When Product Line Investment Pays, Technical Note, CMU/SEI-
2003-TN-017 (2003)

9. In, H.P., Baik, J., Kim, S., Yang, Y., Boehm, B.: A Quality-Based Cost Estimation Model
for the Product Line Life Cycle. Communications of the ACM 49(12) (December 2006)

10. Lamine, S.B.A.B., Jilani, L.L., Ghezala, H.H.B.: A Software Cost Estimation Model for a
Product Line Engineering Approach: Supporting tool and UML Modeling. In: 3rd ACIS
Int. Conf. on Software Engineering Research, Management and Applications (2005)

11. Mili, A., Chmiel, S.F., Gottumukkala, R., Zhang, L.: An integrated cost model for soft-
ware reuse. In: Proc. of the 22nd International Conference on Software Engineering, Lim-
erick, Ireland, pp. 157–166. ACM Press, New York (2000)

12. Montagud, S.: A SQuaRE-based Quality Evaluation Method for Software Product Lines,
MSc. Thesis, PhD Program on Software Engineering, Formal Methods and Information
Systems, Dept. of Computer Science, Universidad Politécncia de Valencia, Dic. (2009)

13. Nóbrega, J.P., Almeida, E.S., Meira, S.: InCoME: Integrated Cost Model for Product Line
Engineering. In: Proceedings of the 34th Euromicro Conference Software Engineering and
Advanced Applications (SEAA 2008), pp. 27–34 (2008)

14. Nolan, A.J.: Building a Comprehensive Software Product Line Cost Model. In: McGregor,
J.D., Muthing, D. (eds.) Proceedings of the 13th International Software Product Line Con-
ference (SPLC 2009), San Francisco-CA, USA. IEEE Press, Los Alamitos (2009)

15. Ozkaya, I., Bass, L., Nord, R.L., Sangwan, R.S.: Making Practical Use of Quality Attribute
Information. IEEE Software, 25–33 (March/April 2008)

16. Poulin, J.S.: The Economics of Product Line Development (1997),
http://home.stny.rr.com/jeffreypoulin/Papers/IJAST97/
ijast97.html

17. Schackmann, H., Lichter, H.: International Workshop on Software Product Management
(IWSPM 2006 - RE 2006 Workshop), A Cost-Based Approach to Software Product Line
Management. Minneapolis/St. Paul, Minnesota (2006)

18. Schmid, K.: An Initial Model of Product Line Economics. In: Proceedings of the 4th Inter-
national Workshop on Product Family Engineering (PFE-4), pp. 38–50 (2001)

19. Tomer, A., Goldin, L., Kuflik, T., Kimchi, E., Schach, S.R.: Evaluating Software Reuse
Alternatives: A Model and Its Application to an Industrial Case Study. IEEE Transactions
on Software Engineering 30(9) (September 2004)

 Dealing with Cost Estimation in Software Product Lines 135

Appendix A

Table A-1. Excerpt of the Quality Model showing the relative importance for quality attributes

Quality
Charac.

Attribute Description What is
probably today

What it should
be for SPL

Functional
suitability

The degree to which the product provides func-
tions that meet stated and implied needs Relative Importance

 Appropriateness The degree to which the software
product provides an appropriate
set of functions for specified tasks
and user objectives.

[High]
Absolutely

Mandatory for
Safety and

business needs

[High]
Absolutely Man-
datory for Safety

and business
needs

 Functional
suitability
compliance

The degree to which the product
adheres to standards, conventions
or regulations in laws and similar
prescriptions relating to func-
tional suitability.

[High]
Mandatory

compliance to
Do-178B

[High]
Mandatory

compliance to
Do-178B

Reliability The degree to which the software product can
maintain a specified level of performance when
used under specified conditions

Relative Importance

 Availability The degree to which a software

component is operational and
available when required for
use.

[Medium]
Obviously we

want this but we
can mitigate

[High]
Otherwise SPL

fails

 Fault tolerance The degree to which the prod-
uct can maintain a specified
level of performance in cases
of software faults or of in-
fringement of its specified
interface.

[High]
We design this in-
to the architecture
and coding/design

standards

[High]
We design this

into the architec-
ture and cod-

ing/design
standards

Maintain-
ability

The degree to which the software product can be
modified Relative Importance

 Modularity The degree to which a system
is composed of discrete
components such that a change
to one component has minimal
impact on other components.

[High]
Driven through
the architecture

[High]
Driven through
the architecture

 Reusability The degree to which an asset
can be used in more than one
software system, or in building
other assets.

[Medium]
We are not good

at this

[High]

Evolution of the Linux Kernel Variability Model

Rafael Lotufo1, Steven She1, Thorsten Berger2,
Krzysztof Czarnecki1, and Andrzej Wąsowski3

1 University of Waterloo, Ontario
{rlotufo,kczarnec,shshe}@gsd.uwaterloo.ca

2 University of Leipzig, Germany
berger@informatik.uni-leipzig.de

3 IT University of Copenhagen, Denmark
wasowski@itu.dk

Abstract. Understanding the challenges faced by real projects in evolv-
ing variability models, is a prerequisite for providing adequate support for
such undertakings. We study the evolution of a model describing features
and configurations in a large product line—the Linux kernel variability
model. We analyze this evolution quantitatively and qualitatively.

Our primary finding is that the Linux kernel model appears to evolve
surprisingly smoothly. In the analyzed period, the number of features
had doubled, and still the structural complexity of the model remained
roughly the same. Furthermore, we provide an in-depth look at the ef-
fect of the kernel’s development methodologies on the evolution of its
model. We also include evidence about edit operations applied in prac-
tice, evidence of challenges in maintaining large models, and a range of
recommendations (and open problems) for builders of modeling tools.

1 Introduction

The cost of variability management in software product lines is meant to be offset
by the savings in deployment of product variants over time. Product families with
long lifetime and large number of variants should provide a bigger return over
time. For these reasons a product line architecture is typically implemented in
large projects with a long time horizon. The time horizon and the sheer size of
these projects place coping with scale and evolution as the forefront challenges
in successfully running software product lines.

Variability models evolve and grow together with the evolution and growth of
the product line itself. Thus realistic feature models are large and complex [1],
reflecting the scale of growth and evolution. Nevertheless, evolution of real vari-
ability models has not been studied. Multiple authors have been interested in
reasoning about feature model editing [2,3], in semantics of feature model refac-
torings [4], or in synchronizing artifacts in product lines [5,6], which indeed, as
we shall see, is a major challenge in maintaining a variability model. However,
none of these works was driven by documented challenges faced by practitioners.

We set out to study how feature models evolve, and the main challenges en-
countered in the process. Do the cross-tree constraints deteriorate or dominate

J. Bosch and J. Lee (Eds.): SPLC 2010, LNCS 6287, pp. 136–150, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Evolution of the Linux Kernel Variability Model 137

hierarchy over time? Does the number of cross-tree dependencies become unman-
ageable? Is the model evolved ahead of the source code, along with the source
code, or following the source code? We address these and similar questions, hop-
ing to inspire researchers and industries invested in building tools and analysis
techniques for variability modeling.

The subject of our study is the Linux feature model. As argued previously [1],
the model extracted from Linux Kconfig is, so far, the largest feature model pub-
licly known and freely available. We study the evolution of this model over the
last five years, when Linux and the model were already at a mature stage. The
model demonstrates that a lasting evolution of a huge product family is feasible
and does not necessarily deteriorate the quality of the feature model. Despite
the number of features doubling in the studied period, structural and seman-
tic properties of the model have changed only slightly over time, retaining the
desirable aspects, such as balanced composition and limited feature interaction.

The main contributions of this work are the following:

– A study of evolution of a real-world, large and mature variability model;
– Evidence of what operations on feature models are performed in practice;
– Evidence of what refactorings are applied to models in practice;
– Evidence of the difficulty for humans to reason about feature constraints;
– Input for designers of tools and techniques supporting model evolution.

We give background on Linux and its configuration language in Section 2. Sec-
tion 3 justifies the choice of the experiment subject and period, and sketches the
experiment design. Section 4 presents and analyzes the collected data. Remaining
sections summarize threats to validity, related work, and our conclusions.

2 The Linux Kernel and Its Variability Model

Born in 1991, the Linux kernel is one of the most mature open source projects
as of writing, and continues to be rapidly developed. It remains a crucial com-
ponent of numerous open and closed source projects, including distributions of
the GNU/Linux operating system, mobile phones, netbook computers, network
routers, hardware media players and similar appliances. This diversity of ap-
plications and users, enforces a highly configurable architecture on the kernel.
Indeed Linux kernel is among the largest well documented software product lines
studied so far [1,7].

Linux development community comprises both volunteers and paid developers
recruiting from more than 200 companies including Red Hat, IBM, Intel, Oracle,
Google and Microsoft among others [8]. The maturity of the project manifests
in multiple metrics such as the codebase size (exceeding 8 million lines), the
number of active developers (600–1200 per release and growing), and the level
of activity (up to 10000 patches per release).

Kernel versions numbers are triples: triple 2.6.12 represents a kernel from the
2.6 branch at minor revision number 12. A new minor revision is released every
3 months. All revisions studied in this paper belong to the 2.6 branch, and thus

138 R. Lotufo et al.

menu "Power management and ACPI options"1

depends on !X86_VOYAGER2

config PM3

bool "Power Management support"4

depends on !IA64_HP_SIM5

config PM_DEBUG6

bool "Power Management Debug Support"7

depends on PM8

config PM_SLEEP9

bool10

depends on SUSPEND ||HIBERNATION11

||XEN_SAVE_RESTORE12

default y13

endmenu14

PM_SLEEP

PM_DEBUG

PM

Power Management and
ACPI Options [PM_MENU]

PM_MENU → ¬ X86_VOYAGER
PM → ¬ IA64_HP_SIM
PM_SLEEP ↔

SUSPEND || HIBERNATION ||
XEN_SAVE_RESTORE

Fig. 1. A simple Kconfig model (left) and the corresponding feature model (right)

we will only use minor revision numbers when referring to them (so 12 denotes
2.6.12). We shall use the terms revision, release and version interchangeably.

The Linux kernel contains an explicit feature model (the Linux kernel feature
model) expressed in the domain specific language called Kconfig. The Kconfig
language was officially merged into revision 2.5.45 in October 2002 [9]. It has
been the language for the Linux kernel feature model ever since. Thus, the Linux
kernel feature model is a mature model with as much as 8 years of history in its
current form (and a good prehistory in predecessor specification languages). We
shall analyze the last five years of this history, which span the mature stage of
the model evolution, still characterized by an unprecedented growth.

We now present the Kconfig language. Configuration options are known as configs
in Kconfig. They can be nested under other configs and grouped under menus,
menuconfigs and choice groups. The kernel configurator renders the model as a
tree of options, which users select to specify the configuration to be built.

Figure 1 shows a fragment of the Linux variability model, containing a menu
(line 1) with two Boolean configs as children: PM (lines 3–5) and PM_SLEEP
(lines 9–13). Configs are named parameters with a specified type. A boolean
config is a choice between presence and absence. All configs in Figure 1 are bool
(e.g. line 4). Integer configs specify options such as buffer sizes. String configs
specify names of, for example, files or disk partitions. Integer and string configs
are entry-field configs—shown as editable fields in the configuration tool.

A depends-on clause introduces a hard dependency. For example, PM can
only be selected if IA64_HP_SIM is not (line 5). Conversely, a select clause (not
shown) enforces immediate selection of another config when this config is selected
by the user. Nesting is inferred by feature ordering and dependency: for example
PM_DEBUG is nested under PM (line 8). A default clause sets an initial value,
which can be overridden by the user. For example, PM_SLEEP defaults to y.

Menus are not optional and are used for grouping, like mandatory non-leaf
features in feature models. Choices (not shown) group configs, which we call

Evolution of the Linux Kernel Variability Model 139

choice configs, into alternatives—effectively allowing modeling of xor and or
groups. Menuconfigs are menus that can be selected, typically used to enable
and disable all descendant configs.

As in [1,9], we interpret the hierarchy of configs, menuconfigs, menus, and
choices as the Linux feature model. The right part of Figure 1 shows the feature
model for the Kconfig example in the left part of the figure. Table 1 maps basic
Kconfig concepts to feature modeling concepts. An entry-field config maps to a
mandatory feature with an attribute of an appropriate type, integer or string.
Conditional menus map to optional features; unconditional menus to mandatory
features. We map a choice to a feature with a group containing the choice configs.
A mandatory (optional) choice maps to a mandatory (optional) feature with an
xor-group. More details on Kconfig and its interpretation as a feature model
are available in [1].

3 The Experiment

3.1 Linux Feature Model as a Subject

Before we proceed to our experiment, let us address the basic relevance: are the
Linux variability model and the selected period of evolution relevant to study?

We analyze the evolution of the Linux kernel feature model between revisions
12 and 32—a period extending over almost 5 years, in which the Linux code base
was already large and well established, while still growing rapidly. Meanwhile,
the size of the kernel, measured as the number of lines, has doubled. It was
also a period of intensive changes to the Kconfig model, since maintenance and
evolution of this model follows the source code closely in size and in time.

Figure 2 plots the size of the Linux source code against the size of the Kconfig
files (a), and against the number of features declared in Kconfig (b). Since all
these measures are growing monotonically with time, the progression of samples
from the origin towards the right top corner is ordered by revision numbers. Each
point represents one of the 21 revisions between 12 and 32. We observe that in

Table 1. A simplified mapping of Kconfig models to feature models [1]

Kconfig concepts Feature modeling concepts

Boolean config

➟

Optional feature
Entry-field config Mandatory feature
Conditional menu Optional feature
Unconditional menu Mandatory feature
Mandatory Choice Mandatory feature + (xor,or)-group
Optional Choice Optional feature + (xor,or)-group

Config, menu or choice nesting ➟ Sub-feature relation

Visibility conditions, Selects,
➟ Cross-tree constraintConstraining defaults

140 R. Lotufo et al.

Kconfig kLOC

Li
nu

x
kL

O
C

4000

5000

6000

7000

8000

45 50 55 60 65 70 75 80

(a) Total kLOC for Linux against
kLOC of Kconfig files

Number of features

Li
nu

x
kL

O
C

4000

5000

6000

7000

8000

6000 7000 8000 9000 10000

(b) Total kLOC for Linux against the
number of features in Kconfig files

Fig. 2. Evolution of number of features and lines of code from revisions 12 to 32

Date

N
um

be
r

of
 c

om
m

its

0
50

100
150
200
250

0

1000

2000

3000

4000

2006 2007 2008 2009 2010

K
config

N
ot K

config

Fig. 3. Number of commits per week that touch Kconfig files compared to number of
commits that do not. Each spike matches one of the 21 revisions analyzed.

the given period the feature model grows almost linearly with the amount of
source code, and its textual representation (Kconfig files).

Figure 3 shows the number of patches added weekly to the Linux source code
that modify, and also that do not modify, Kconfig files. Both numbers exhibit
almost identical ‘heart-beat’ patterns, suggesting a causal dependency between
changes to the model and to the code.

All three diagrams are strong quantitative indications that the development
of the Linux kernel is feature-driven, since the source code is modified and grows
along with the modifications to and growth of the feature model. This feature-
oriented development on large scale makes the Linux model an interesting and
relevant subject of investigation. We can expect that challenges faced by Linux
maintainers can be exemplary also for other projects of similar maturity.

To scope our investigation, we focus on the model for the x86 architecture,
extracted from the main line of development1. This scoping does not significantly
skew our results, since x86 is the longest supported, the largest and the most
widespread architecture of the kernel. We have verified that the x86 feature
model exhibits the same pattern of growth as the entire model. For example,
see the growth of the number of features in Figure 4a plotted for the entire
kernel, and for the x86 architecture. Note that the x86 architecture was created

1 git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux-2.6.git

git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux-2.6.git

Evolution of the Linux Kernel Variability Model 141

Revision

To
ta

l

4000

5000

6000

7000

8000

9000

10000

15 20 25 30

X86 features
X86 features

All features

(a) Total number of features in Linux
Kconfig and x86 architecture

Revision

N
um

be
r

of
 c

on
st

ra
in

ts

0

2000

4000

6000

8000

10000

15 20 25 30

(b) # of constraints per revision

Fig. 4. Growth in number of features and number of constraints

in release 24 by merging the 32-bit i386 and the 64-bit x86_64 architectures.2
From releases 12 to 23 we consider the i386 architecture as the x86 architecture.

3.2 Data Acquisition

Since release 2.6.12 the Linux kernel uses Git (http://git.or.cz) as its version control
system. The Git commit history is a series of atomic patches extending over
multiple files, each of which contains the commit log, and a detailed explanation
of the patch. In the Linux project each patch is reviewed and signed-off by
several experts. Since Git allows history rewriting [10], only few patches contain
incorrect or misleading information. Thus we consider the Linux Git repository
a trustworthy source of information and we limit our attention span to releases
in which Git was used. Although historical revisions predating 2.6.12 have been
converted to the Git format, one has to keep in mind that they were created
using different tools, and thus in different circumstances. To assure quality and
consistency of our mining, we chose not to extend our investigation before 2.6.12.

We use a parser [1] extracted from the Linux xconfig configurator to build
the feature hierarchy tree. This ensures reliable and consistent interpretation
of syntax. We use CLOC (http://cloc.sourceforge.net) to measure code size. Blank
lines, comments, and files not recognized as code by CLOC are ignored.

4 Evolution of the Linux Kernel Variability Model

We shall now present and analyze the collected data, dividing it into two parts:
Section 4.1 on the macro-scale, and Section 4.2 on the micro-scale.

4.1 Evolution of Model Characteristics

In [1] we have identified and described a number of characteristics of the Linux
kernel feature model. We will now analyze how they change over time.
2 More details at http://kernelnewbies.org/Linux_2_6_24

http://git.or.cz
http://cloc.sourceforge.net
http://kernelnewbies.org/Linux_2_6_24

142 R. Lotufo et al.

Model Size. As previously said (see Figure 4a), the number of features of the
x86 feature model has almost doubled during the studied period, growing from
3284 in release 12 to 6319 in 32. The growth is steady and uniformly distributed,
indicating a regular development pace, and a repetitive development cycle. Also,
as seen in Figure 2 this growth is paralleled by the code growth, with a roughly
constant feature granularity (measured as average SLOC per feature).

Depth of Leaves. As the hierarchy is the only structuring construct in feature
models (and in Kconfig), the growth of the model must necessarily influence
either depth or breadth of the hierarchy.

In revision 12 the deepest leaf is at depth 9, and most leaves are at depth 5.
Somewhat counter-intuitively, both maximum depth and dominant depth have
decreased over time: maximum depth in revision 32 is 8 and most leafs are now
at a depth of 4—see Figure 5a. The dominant depth has decreased, even as the
number of features at depth 5 continued to increase. So this feature model has
been growing in width, not in height.

As reported in [1], the Linux kernel feature model is shallow and has been so
at least since revision 12. The Linux project evolves the model in such a way that
the basic structure of the hierarchy remains stable over considerable periods of
time, despite massive changes to features themselves.

Constraints. In [1] we report that the Linux kernel feature model constraints
are mostly of type ‘requires’. However we did find considerably many constraints
involving more than one feature, with extreme cases of constraints containing
up to 22 features. We now examine how these properties change over time.

Figure 4b shows that the number of constraints has increased over time: the
amount of constraints in revision 32 is almost double that of revision 12. It
is interesting to note that contrary to the belief that the number of constraints
grows quadratically with the number of features, the two numbers have grown in
the same proportion in the given period. Again, the Linux kernel model demon-
strates that it is feasible to construct software architectures and models that
only induce constant number of dependencies per feature. In this sense it proves
that feature models are a feasible modeling language for large projects.

Depth

R
ev

is
io

n

15

20

25

30

1 2 3 4 5 6 7 8 9

Number of
leafs

100
500
750

1000
1250
1500

(a) Depth per leaf per revision

Number of parents (log2)

N
um

be
r

of
 c

hi
ld

re
n

0
200
400

0
200
400

0
200
400

0
200
400

0
200
400

0
200
400

0
200
400

0
200
400

0
200
400

0
200
400

0
200
400

0 2 4 6 8

12
14

16
18

20
22

24
26

28
30

32

(b) Branching factor, per revision

Fig. 5. Basic characteristics of hierarchy and branching factor across revisions 12–32

Evolution of the Linux Kernel Variability Model 143

Branching Factor. We also measured the branching factor for each of the revi-
sions, in the same manner as in [1] (see Fig. 5b). We found that there was no
significant change in the shape of the histogram of children per feature, except
that the number of features for each branching factor have increased. For exam-
ple, there were approximately 300 features with one child, and outliers with 120
children in revision 12. In revision 32 these numbers are 400 and 160.

4.2 Summary of Model Content Changes

We have seen that the feature model has undergone many changes between revi-
sion 12 and 32. In particular, the size, average depth and number of constraints
were affected. We shall now look deeper into these changes. We will characterize
the edits that affected these characteristics, their overall motivation, and the
implications for tool developers. For the purpose of this investigation, we define
an edit to a feature model as a series of changes committed in the same patch.

In order to analyze motivation for individual edits to the model, we have
selected a set of 200 uniformly random patches from the Git log, out of 8726, that
in the given period touch Kconfig files. We have used this sample for training,
to identify six categories of reasons for changes in the Linux model:

New functionality: model modifications when adding new configurable
functionality;

Retiring obsolete features: modifications removing functionality from the project.
Clean-up/maintainability: modifications that aim at improving usability and

maintenance of the feature model;
Adherence to changes in C code: model modifications reflecting changes made

to dependencies in C code in the same patch;
Build fix: reactive modifications that adjust the feature model to reflect changed

dependencies in C code in prior patches;
Change variability: adjustments to the set of legal configurations of the feature

model without adding code for new functionality.

After defining the above categories, we have independently selected another 200
patches, but this time out of 7384 of those touching Kconfig files used in the
x86 architecture model. We classified this sample manually and interpreted the
results. We have restricted ourselves to the x86 features, in order to be able to
relate the results of this study to characteristics computed for x86 in Section 4.1.

Figure 6 shows the results. In the following paragraphs we discuss each of the
categories in detail, outlining its typical edit patterns, the effects it has on the
feature model, and the tooling that would be desirable for the given scenario.

New functionality. Close to half of the patches in our sample were related to
functionality changes—either adding to, or removing from the kernel. Each of
these predominantly simple patches comprises of adding functional C code, up-
dating a Makefile to specify how the new code will be compiled into the kernel,
and typically adding one new config with simple constraints and a documenting

144 R. Lotufo et al.

Reasons

N
um

be
r

of
 p

at
ch

es

0

20

40

60

80

New
functionality

Build fix Clean−up/
maintainability

Adherence to
changes in

C code

Change
variability

Retiring
obsolete
feature

Fig. 6. Reason for edits (sample)

help text. When more than one feature is added, they are typically siblings. Most
often these operations do not add further constraints to the model.

Feature additions rarely make intrusive changes to the feature model hierar-
chy, as almost 87% of all new features are added at leaves. Details are available
in Figure 7a, which also shows that more than 50% of new features are added
as leaves at levels 3, 4 and 5. Our hypothesis is that this is because the x86
architecture is very mature, and developers add features to existing elements
(“slots”) of the architecture, without extending the architecture itself.

Figure 7b shows the number of features added and removed in consecutive
releases. As expected, the number of feature additions in total and per release
exceeds that of feature removals. Figure 7b also shows that the number of fea-
tures added between releases 12 to 23 is much smaller than the additions from
release 24 to 32, and correlates well with Figure 3, where we see much higher
numbers of commits per week after revision 24 (January 2008).

Thus, most edits to the Linux kernel between revision 12 and 32 add new
functionality, new drivers and features, as opposed to performing code and model
refactorings. This is consistent with our findings (Figure 6) that almost half of the
sampled patches are motivated by inclusion of new functionality and features.
This also correlates to the findings of [11] which found that the super-linear
growth of the Linux kernel from 1994 to 2001 was due to the growth of driver
code, where drivers are typically added as new features.

Retiring obsolete features. As previously shown (Figures 4a, 6 and 7b), removing
features is a rare motive for edits. We have found that this mostly happens when
features are no longer supported by any developer, or when the feature has been
replaced by another, making the former feature obsolete. These operations are
the inverse of the operations shown in the previous section, and mostly consist
of removing C code, build instructions and the related config from the model.

Notably, the kernel project maintains a formal schedule of retiring features and
code, which can be found in the project tree.3 Every entry in this file describes

3 The file is Documentation/feature-removal-schedule.txt

Evolution of the Linux Kernel Variability Model 145

Depth

N
um

be
r

of
 fe

at
ur

es

0

200

400

600

800

1000

2 4 6 8 10 12

Non leaf
Leaf

(a) Depth of added features

Change
N

um
be

r
of

 fe
at

ur
es

0
300

0
300

0
300

0
300

0
300

0
300

0
300

0
300

0
300

0
300

0
300

0
300

0
300

0
300

0
300

0
300

0
300

0
300

0
300

0
300

added removed

12−13

13−14

14−15

15−16

16−17

17−18

18−19

19−20

20−21

21−22

22−23

23−24

24−25

25−26

26−27

27−28

28−29

29−30

30−31

31−32

(b) # of added, removed and moved
features

Fig. 7. Added and removed features for releases 12–32

what exactly is removed, why it is happening, and who is performing the re-
moval. This was the first time when the authors of this paper experienced such
a formalized and feature-driven (!) process for phasing out code.

Retiring features is not well supported by existing tools and model manip-
ulation techniques. It would be desirable to provide tools that: (a) eliminate
features from the model (including from the cross-tree constraints, without af-
fecting the configuration space of the other features, and possibly performing
diagnosis about the impact of removal), and (b) use traceability links to find
code related to the feature to verify correctness of code retiring.

Clean-up/maintainability. As seen in Fig. 6, developers frequently edit the model
to improve its maintenance and usability. These edits typically focus on the
end users by improving help text and feature descriptions or by refactoring
the hierarchy. Constraint refactorings are a common consequence of hierarchy
refactoring in the Kconfig syntax.

We assume that a feature f was subject to hierarchy refactoring if its parent
has changed between releases. Let f be a feature that moved from parent p1 to
p2 between revisions m1 and m2. We distinguish seven cases of parent change:

1. Parent introduction (PI): p2 introduced between p1 and f and p2 not in m1;
2. Parent moved in (PMI): p2 introduced between p1 and f and p2 exists in m1;
3. Parent removal (PR): p1 is removed from the feature model (p1 not in m2);
4. Parent move out (PMO): p1 is moved (found both in m1 and m2);
5. Parent rename (PRN): p1 is renamed: p1 not in m2 and p2 not in m1;
6. Feature move (FM): f is moved from p1 to p2 and both exist in m1 and m2;
7. Multiple (M): a combination of at least two of the above.

146 R. Lotufo et al.

Revision

N
um

be
r

of
 fe

at
ur

es

0

200

400

600

800

1000

1200

1400

12
−

13
13

−
14

14
−

15
15

−
16

16
−

17
17

−
18

18
−

19
19

−
20

20
−

21
21

−
22

22
−

23
23

−
24

24
−

25
25

−
26

26
−

27
27

−
28

28
−

29
29

−
30

30
−

31
31

−
32

Status
FM

M
PI

PMI
PMO

PR
PRN

(a) Cases of hierarchy per revision
Change type

N
um

be
r

of
 fe

at
ur

es

0

500

1000

1500

FM M PI PMI PMO PR PRN

(b) Hierarchy refactorings aggregated

Fig. 8. Causes of hierarchy refactoring

Figure 8a shows that there has been significant hierarchy refactoring performed
to features during the period, specially in releases 22–23. Curiously, release 22
is considered by the Linux kernel community as a bug-fix release.4

Figure 8b reveals that changes of parent are mostly caused by operations on
the parent itself, rather than by the explicit moving of a feature. When features
are moved, they are moved together with their siblings from a common origin
parent to a common destination parent. In fact, for all moves in the period,
we found that out of 65 origins, only 4 split its children into more than one
destination; and out of 68 destinations, only one came from more than one
origin. This suggests that feature model editors, should support moving groups
of siblings within a hierarchy (as opposed to only allowing moving subtrees rooted
in a single feature to a new place in the hierarchy). Another frequent operation
is splicing out features from the hierarchy (to remove them or to move them into
another position), without affecting the ancestors and the subtree. To the best
of our knowledge neither of operations is directly supported by existing editors.

After further investigation, we found that the underlying reasons for a high
level of hierarchy refactoring in releases 22–23 was a consistent replacement
of a menu and a config with a menuconfig, consequently eliminating one level
of the hierarchy and moving more than 500 features up in the hierarchy. The
replacement of menu with menuconfig is made to remove unnecessary mandatory
features and replace them with an optional feature capable of enabling/disabling
an entire tree hierarchy. This explains the decrease in the average depth over the
period, mentioned in Section 4.1.

Adherence to changes in C code. Our sample shows that approximately 15% of
edits to the feature model are made together with changes in dependencies in
C code. These changes in code are typically code refactoring or bug fixes. The
edits to the feature model in 90% of these patches are changes to constraints,
following the changes in dependencies in C code.

Build fix. When dependencies in code change and are not immediately reflected
in the feature model, developers and users may be unable to successfully compile
4 http://www.linux-watch.com/news/NS8173766270.html, seen 2010/02-28.

http://www.linux-watch.com/news/NS8173766270.html

Evolution of the Linux Kernel Variability Model 147

the kernel, and therefore significant development time and user satisfaction is
lost. We define a build fix to be a delayed adaptation of the model to a change
to the source code that appeared in another, earlier patch.

Edits to the feature model in these cases resemble those described in Ad-
herence to changes in C code. It is striking that build-fixes are so frequently
occurring—clearly indicating need for further research on tools that synchronize
the constraints in the model and dependencies in the build system.

Commit logs for changes in constraints indicate that developers do not have
enough support for reasoning. Comments range from : “After carefully examining
the code...”, “As far as I can tell, selecting ... is redundant” to “we do a select
of SPARSEMEM_VMEMMAP ... because ... without SPARSEMEM_VMEMMAP gives
us a hell of broken dependencies that I don’t want of fix ” and “it’s a nightmare
working out why CONFIG_PM keeps getting set” (emphasis added). They indicate
need for debugging tools for feature models that could demonstrate the impact
of edits on the model and on the build system.

Change variability. We have found that there are cases where edits change the
configurations with the purpose of adding (or removing) an existing functionality
to the feature model, allowing users more configuration options. These operations
do not add functional C code; they typically add new configs, make changes to
constraints, and add variability to C code by editing #ifdefs.

These edits, although few, can be highly complex. Depending on the cross-
cutting characteristics of the functionality in question, they may require changes
to several different files and locations. For example, commit 9361401 named
‘[BLOCK] Make it possible to disable the block layer [try #6]’ required
changes to 44 different files and more than 200 constraints.

5 Threats to Validity

External. Our study is based on a single system (Linux). However, we know that
this is a mature real world system. As the variability model is an integral part of
the Linux kernel, we believe that it should reflect properties of many other long
lived models that are successfully evolved, such as operating systems, and control
software for embedded systems. We have made initial explorations into the Ecos
operating system, which seems to confirm our expectations. Nevertheless, one
should not consider our recommendations as representative, since we make them
by studying this particular project and not by studying a wide sample of projects.

The Linux development process requires adding features in a way that makes
them immediately configurable. As a consequence, it not only enables imme-
diate configurability, but also makes the entire code evolution feature-oriented.
Arguably, such a process requires a significant amount of discipline and commit-
ment that may be hard to find in other industrial projects.

148 R. Lotufo et al.

Not all projects assume closed and controlled variability model. Many projects
are organized in plugin architectures, where variability is managed dynamically
using extensions (for example Mozilla Firefox or Eclipse IDE). Our study does
not provide any insight into evolution of variability in such projects.

We only look at a fragment of the Linux evolution. We consider this fragment
to be relevant since it covers roughly 25% of 20 years long history of Linux. It
clearly gives us a glimpse into the evolution of a mature and stable product line.

Internal Validity. Extracting statistical data can introduce errors. We are relying
on our own infrastructure for automatic analysis of the Kconfig models. This
infrastructure uses the parser extracted from Linux tools, for improved reliability.
Also, we are reasonably confident about the quality of the infrastructure, given
that we have used it before in another study.

Extracting statistics based on release points may ignore essential information.
However we consider any serious fluctuations of our data rather unlikely, should
the experiments be carried out at the level of individual patches (partly because
our statistics are consistent with each other).

Git allows rewriting histories in order to amend existing commits, for example
to add forgotten files and improve comments. Since we study the final version of
the history, we might miss some aspects of the evolution that has been rewritten
using this capability. However, we believe that this is not a major threat, as
the final version is what best reflects the intention of developers. Still, we may
be missing some errors and problems appearing in the evolution, if they were
corrected using history rewriting. This does not invalidate any of our findings,
but may mean that more problems exist in practice.

We use an approximation in interpreting parent change operations above.
Manual classification of edits was feasible and reliable due to excellent com-

ments in Git logs for most of the patches. We increased the robustness of the
manual analysis by first running a study on 200 features to identify categories,
and then analyzing another set of 200 features selected with uniform probability.
An improved study would involve independent cross checking of results.

6 Related Work

The evolution of the Linux kernel between 1994 and 2000 was studied by God-
frey [11], which also found that the Linux architecture is mature and had been
growing in a super linear rate, due to growth of driver code. We have found
that 3578 patches that modify Kconfig files are driver related. Similarly, Israeli
[12] collected several software metrics of the Linux kernel source code from 1994
and 2008, and also observed the functional growth by counting features. Adams
studies the evolution of the Linux kernel build system [13] and finds that consid-
erable maintenance to the system is performed to reduce the build complexity,
that grows, partly due to the increase in number of features.

Svahnberg and Bosch [14] have studied the evolution of two real software prod-
uct lines, giving details on the evolution of the architecture and features, closely

Evolution of the Linux Kernel Variability Model 149

related to implementation. They also found that the most common type of changes
to the product line is to add, improve or update functionality. Our work, however
focuses on the evolution of the model supporting the product line.

Extensive work [2,7,4] addresses issues relevant for detecting edits that break
existing configurations and product builds. In [2] an infrastructure is proposed
to determine if feature model edits increase, decrease or maintain existing con-
figurations. In [4] a catalog of feature model edits that do not remove existing
configurations is presented. Tartler et al. study the Linux kernel [7] and pro-
pose an approach to maintain consistency between dependencies in C code and
Kconfig.

Work on real case studies on moving to a software product line approach
can be found in [15,16,17]. They discuss techniques, processes and tool support
needed to make the transition. These works, like [14], focus on product line
evolution, not the model, but also suggest that tool support is essential.

7 Conclusion

To the best of our knowledge, this paper is the first to provide empirical evidence
of how a large, real world variability model evolves. We have presented the study
using the Linux kernel model as our case, collecting quantitative and qualitative
data. The following list summarizes the major findings of our work:

– The entire development process is feature driven. In particular the feature
model grows together with the code and it is being continuously synchronized
with the code. Also the code is systematically retired by eliminating features
(and the related implementation). Thus, Linux kernel is a prime example of
a mature large scale system managing variability using feature models.

– The model experiences significant growth, in number of features and size.
Nevertheless, the dependencies between features only grows linearly with
size: the number of features have doubled, but the structural complexity of
the model remained roughly the same, indicating a careful software architec-
ture which models features and their dependencies in a sustainable fashion.

– The purpose of most evolution activity is adding new features. The model
grows in the process, but only in the width dimension (as opposed to depth).
The second largest class of model manipulations are caused by the need to
reflect changes in dependencies in source code, in most cases, reactively. Most
of the changes at the macro-level are caused by hierarchy refactoring. Con-
straint refactoring is done for maintenance purposes and is also significant.

– To support evolution, tools should support use cases such as: eliminating fea-
tures with minimal impact on configuration space, refactoring constraints,
propagating dependencies from code to the feature model and tools that al-
low to manipulate hierarchy easily, while automatically adjusting constraints.

Finally, our investigation proves that maintaining large variability models is
feasible and does not necessarily deteriorate the quality of the model. In future
work we intend to work on some of the support tools mentioned above.

150 R. Lotufo et al.

References

1. She, S., Lotufo, R., Berger, T., Wąsowski, A., Czarnecki, K.: The variability model
of the linux kernel. In: VaMoS, Linz, Austria (2010)

2. Thüm, T., Batory, D.S., Kästner, C.: Reasoning about edits to feature models. In:
ICSE, pp. 254–264 (2009)

3. Janota, M., Kuzina, V., Wąsowski, A.: Model construction with external con-
straints: An interactive journey from semantics to syntax. In: Czarnecki, K., Ober,
I., Bruel, J.-M., Uhl, A., Völter, M. (eds.) MODELS 2008. LNCS, vol. 5301, pp.
431–445. Springer, Heidelberg (2008)

4. Alves, V., Gheyi, R., Massoni, T., Kulesza, U., Borba, P., de Lucena, C.J.P.: Refac-
toring product lines. In: GPCE, pp. 201–210 (2006)

5. Kästner, C., Apel, S.: Type-checking software product lines - a formal approach,
pp. 258–267 (2008)

6. Janota, M., Botterweck, G.: Formal approach to integrating feature and architec-
ture models. In: Fiadeiro, J.L., Inverardi, P. (eds.) FASE 2008. LNCS, vol. 4961,
pp. 31–45. Springer, Heidelberg (2008)

7. Tartler, R., Sincero, J., Schröder-Preikschat, W., Lohmann, D.: Dead or alive:
finding zombie features in the linux kernel. In: FOSD, pp. 81–86 (2009)

8. Kroah-Hartman, G., Inc., S.L., Corbet, J., LWN.net, McPherson, A.: Linux kernel
development: How fast it is going, who is doing it, what they are doing, and who
is sponsoring it (2009)

9. Sincero, J., Schröder-Preikschat, W.: The linux kernel configurator as a feature
modeling tool. In: ASPL, pp. 257–260 (2008)

10. Bird, C., Rigby, P.C., Barr, E.T., Hamilton, D.J., German, D.M., Devanbu, P.:
The promises and perils of mining git. In: Mining Software Repositories (2009)

11. Godfrey, M.W., Tu, Q.: Evolution in open source software: A case study. In: ICSM,
pp. 131–142 (2000)

12. Israeli, A., Feitelson, D.G.: The Linux kernel as a case study in software evolution.
Journal of Systems and Software, 485–501 (2010)

13. Adams, B., De Schutter, K., Tromp, H., De Meuter, W.: The evolution of the Linux
build system. ECEASST (2007)

14. Svahnberg, M., Bosch, J.: Evolution in software product lines: two cases. Journal
of Software Maintenance: Research and Practice, 391–422 (1999)

15. Dhungana, D., Neumayer, T., Grunbacher, P., Rabiser, R.: Supporting evolution
in Model-Based product line engineering. In: SPLC, pp. 319–328 (2008)

16. Hubaux, A., Heymans, P., Benavides, D.: Variability modeling challenges from the
trenches of an open source product line re-engineering project. In: SPLC (2008)

17. Jepsen, H.P., Beuche, D.: Running a software product line - standing still is going
backwards. In: SPLC (2009)

J. Bosch and J. Lee (Eds.): SPLC 2010, LNCS 6287, pp. 151–165, 2010.
© Springer-Verlag Berlin Heidelberg 2010

Variability Modeling for Distributed Development –
A Comparison with Established Practice

Klaus Schmid

Institut für Informatik, Universität Hildesheim
Marienburger Platz 22, D-31141 Hildesheim
schmid@sse.uni-hildesheim.de

Abstract. The variability model is a central artifact in product line engineering.
Existing approaches typically treat this as a single centralized artifact which de-
scribes the configuration of other artifacts. This approach is very problematic in
distributed development as a monolithic variability model requires significant
coordination among the involved development teams. This holds in particular if
multiple independent organizations are involved.

At this point very little work exists that explicitly supports variability model-
ing in a distributed setting. In this paper we address the question how existing,
real-world, large-scale projects deal with this problem as a source of inspiration
on how to deal with this in variability management.

Keywords: Software product lines, variability modeling, eclipse, debian linux,
distributed modeling, software ecosystems, global development.

1 Introduction

An increasing amount of software engineering is done in a (globally) distributed way.
This has multiple reasons and takes multiple forms. In particular, we see three major
forms of distributed development:

1. Distributed by discipline: different parts of a development are done by different
(sub-)organizations. These organizational units may be distributed on a world-wide
scale.

2. Distributed along a software supply chain: some components are developed by one
organization and other components are developed on top of this by a different or-
ganization. Such a supply chain may exist either within a single company or across
companies. This can in particular be a software ecosystem, i.e., the companies in-
volved are independent on an organizational level and only coupled through the
software product (line) [3].

3. Unstructured distributed development: the development distribution structure is not
matched to the software structure, i.e., people at different locations work on the
same parts of the software.

These forms of software development can be well combined with software product
line engineering [14, 5, 12], leading to development organizations of high complexity

152 K. Schmid

and the need to synchronize variability across the involved organizations. Distribution
type 1 is a rather common organization scheme for large scale development – and
thus also for large scale product line development. For example, Nokia develops cer-
tain parts of its phone software in labs around the world. Distribution type 2 is actu-
ally well known under the name of product populations [22]. Distribution type 3 has
also been applied in combination with software product line engineering. It should be
noted that while many case studies of product line engineering exist [12, 4] and a
significant number of them even deals with a distributed stetting, very little work
explicitly addresses the issue of distributed variability modeling.

In this paper, we focus on the question how distributed development impacts vari-
ability management, respectively what characteristics make a variability management
approach particularly suited for distributed development. As only distribution types 1
and 2 relate development structure and distribution, we will focus on those ap-
proaches to distributed development. We will also address in particular the situation
of software ecosystems, i.e., development is distributed across multiple organizations
which are only loosely coupled [3].

The remainder of this paper is structured as follows: in Section 1.1 we will intro-
duce the key research questions of this paper and in Section 1.2 we will discuss re-
lated work. Section 2 will then introduce the case studies that we chose to analyze,
Debian Linux and Eclipse. In Section 3 we will discuss to what extent our case stud-
ies are reasonable cases of variability management. On this basis we will discuss in
Section 4 the main concepts that can be taken from these case studies to support dis-
tribution and in particular distributed variability management. Finally, in Section 5 we
will summarize and conclude.

1.1 Research Questions

The main goal of this paper is to improve the understanding of how variability man-
agement can be effectively supported in the context of distributed development. As a
basis for answering this question, we decided to analyze some existing highly config-
urable infrastructures in order to identify what works in practice. The examples we
draw upon are Debian Linux [1] and Eclipse [9], respectively their package manage-
ment. Both are large-scale, well-known projects, which do heavily rely on highly
distributed development. Moreover, many independent organizations can contribute
packages, realizing a rather low level of interdependence among the organizations.
Thus, they show that these approaches can in particular be applied in the context of a
software supply chain (respectively a software ecosystem).

Of course, it is non-trivial that the configuration approach which is used in the
package management systems of Eclipse and Debian Linux can be compared to vari-
ability management approaches at all. In order to address this concern we will make
an explicit comparison of these approaches with variability management techniques
like feature modeling [11].

In summary, we will address the following research questions in this paper:

(RQ1) Can existing package management approaches like those of Debian Linux
and Eclipse be regarded as a form of variability management?

(RQ2) Which concepts in these package management approaches can prove useful
to handle distributed development, if any?

 Variability Modeling for Distributed Development – A Comparison 153

The main focus of our work will be on the aspect of distribution. Thus, while we will
address the aspect of expressiveness, it is our main goal to identify concepts that
might help variability management approaches to better cope with distribution.

1.2 Related Work

In this paper we analyze two existing software configuration systems and compare
them with variability management approaches. So far such analysis of existing
software configuration systems have been performed surprisingly few. A notable
exception is the analysis of the Kconfig system used in Linux kernel development by
She et al. [20].

A difference between the case studies we use here and case studies like [20] is that
here configuration is performed rather late, i.e., at installation time. However, this is in
accordance with recent developments in the product line community where later binding
of variability is increasingly common (e.g., [23]). This is sometimes termed dynamic
software product lines [10] and seems to be very relevant to software ecosystems [3].

A major aspect of distributed development is that the variability management
needs to be decomposed as well. This has so far received very little attention. A nota-
ble exception is the work by Dhungana et al. [8]. They introduce the notion of deci-
sion model fragments which can be manipulated independently and integrated at a
later point. They explicitly mention distributed development (type 1) as a motivation
for their work. The feature diagram references mentioned by Czarnecki et al. [6] are
also related as it seems their approach can also be used to support distributed devel-
opment, though this is not made explicit.

Recently, Rosenmüller et al. also addressed the issue of integrating multiple prod-
uct lines into a single, virtual variability model under the name of multiple product
lines [16, 15]. A major disadvantage of their approach from the perspective of our
discussion here is that it requires a single central point of control (the integration
model). We expect this to problematic, in particular in the context of open variability,
e.g., in software ecosystems [3].

In this paper, we do not aim at introducing a new approach. Rather we focus on how
existing approaches from industrial practice deal with the problem of distributed de-
velopment of a software product line, respectively a software ecosystem [3]. We will
analyze these approaches, show that they are comparable to existing variability man-
agement approaches, while offering at the same time new insights that should be taken
into account for designing future distributed variability management approaches.

2 Analysis of Case Studies

In this section, we provide an overview of the two case studies we will use as a basis
for our analysis: the Debian Package Manager [1] and the Eclipse Package Manager
[9]. While these are certainly not the only relevant, distributed software configuration
systems, we restricted our analysis to these two as they are well-known, widely used
and documentation of them is easily available. Also they are clearly examples of the
problem of distributed and rather independent development. In particular they are
used as a means to realize a software ecosystem [3]. We also considered to include
Kconfig in our analysis, but decided against this for multiple reasons: first of all a

154 K. Schmid

good analysis like [20] already exists, although the focus was in this analysis not on
distribution aspects. Second Kconfig supports the configuration of the Linux Kernel,
which is released in a centralized way. Thus, we expected to learn less from this ap-
proach compared to the ones we selected for more general distribution models like
software supply chains (cf. distribution 2) or software ecosystems.

Both the set of all Linux installations, as well as the set of possible Eclipse
configurations can be regarded as a rather open form of product line respectively a
software ecosystem. It is a product line, as the customer has even with a standard
distribution of Linux such a large range of possible configurations, that actually each
installed system can have a unique configuration. Further, it can be regarded as an
open product line, as additional systems can refer to and extend the existing base
distribution enlarging the overall capabilities and configuration space. It is this form
of openness of the variability model which is particularly interesting to us from the
perspective of distributed development.

It is important to note – and we will see this in more detail below – that the ap-
proach used by these management systems is completely declarative. This makes
them rather easy to compare to variability management and is different from ap-
proaches like makefiles, which contain procedural elements and can thus not be di-
rectly compared to declarative variability management approaches.

Some concepts are common to both the Eclipse and the Debian Linux package
management approach, thus, we will first discuss their commonalities, before we
discuss the specifics of both systems in individual subsections.

Both Linux and Eclipse are actually aggregates that consist of a number of pack-
ages. So-called distributions are formed, which are collections of packages which are
guaranteed to work well together. In the case of Linux the user can select a subset of
these packages for installation, while in the case of Eclipse a specific distribution
forms a set which is installed as is. The packages in a distribution are selected (and if
necessary adapted) to work well together. This is the main task of the organization
that maintains a distribution. It should be noted, however, that this organization is not
necessarily responsible for the actual development. It is thus more appropriate to
compare it to an integration department in traditional software development. There
exists a configuration model as a basis for defining a specific installation. This is
included in a distribution and is stored in a distributed (per-package) fashion, as we
will discuss later.

As the various packages that belong to a distribution can be developed by a large
number of different development organizations, we have already here the situation of
distributed development, although there is an explicit harmonization step in the form
of the maintenance of the distribution. It should be noted, however, that this is har-
monization is not needed per se, as both approaches are open to the inclusion of arbi-
trary third party packages. The step of distribution formation mainly plays the role of
quality assurance.

In both cases a package manager exists, which uses the descriptive information
from the packages to provide the user1 with configuration capabilities. Users can also
install additional packages (e.g., from the internet) which are not part of the initial

1 We will use the term user to denote any individual who performs a configuration process. In

practice the user will typically fill the role of an administrator.

 Variability Modeling for Distributed Development – A Comparison 155

distribution. As these packages can be developed completely independently, this fur-
ther enforces the notion of distributed development.

The user can use the package manager to create the final configuration. This step
results in a specialized installation. It is peculiar of this approach that the binding time
is rather late (i.e., the individual packages already contain compiled code), however,
this is not a must, as even source code can be part of packages. This is in particular
the case in the Linux environment. This difference in binding time may seem unusual,
as typically product line engineering is equated with development time binding. How-
ever, already in the past different approaches have been described that go beyond this
restriction (e.g., [23, 21, 17]). This is actually most pronounced in the context of dy-
namic software product lines (DSPL) [10].

2.1 Debian Linux Package Management

The installation packages for the Debian package manager consist of the following
parts [1]:

• Control-File: the control file contains the necessary dependency information as
we will discuss below.

• Data File: the data file contains the actual data to be installed. This can be source
code, binary files, etc.

• Maintenance scripts: these are used to perform maintenance actions before and
after the reconfiguration takes place.

The key information we are interested in here is contained in the control file as this
contains all relevant dependency and configuration information. The control file pro-
vides administrative information like the name and the version of the package, but
also dependency information. It also defines the required disk space and the supported
hardware architecture. This constrains the situations when it can be installed.

For the dependency information in a package seven different keywords are de-
fined: depends, recommends, suggests, enhances, pre-depends, conflicts, and re-
places. The semantics of these keywords overlaps as discussed below:

• Depends: this keyword expresses that the following text provides information on
other packages that are required for the proper use of this package. This can be
combined with a version qualifier with the implication that the package requires
this version (or a later one) of the package.

• Pre-Depends: similar to depends it defines that another package is needed and
must be fully installed prior to installation of the current one. Thus in addition to
the dependency information it provides execution information for the package
manager.

• Recommends: this expresses that the package is typically installed together with
the recommended packages. However, this is not a strict dependency, but rather a
hint for the configuration, that the recommended packages should as well be in-
stalled (but a configuration will also be successful without them).

• Suggests: this expresses that the suggested packages could be installed together
with the current one. This should be interpreted as a hint, it is similar to recom-
mends, but should be interpreted in a much weaker form.

156 K. Schmid

• Enhances: this defines that the package can be used together with the enhanced
packages. This should be interpreted as the inverse relationship to suggests.

• Conflicts: this expresses that the current package cannot be used in combination
with the mentioned packages.

• Replaces: this expresses that installation of files in the package will actually
replace or overwrite information from the referenced packages.

As we can see the different keywords actually combine different aspects in a non-
systematic may. These aspects are:

• Dependency and conflict information: this can be compared to the information
typically contained in a variability model.

• User guidance: some information is only meant as a hint to the user of the con-
figuration system (e.g., suggests, enhances). This is actually ignored by some
package management tools [1].

• Execution information: information like pre-depends actually influences how the
package manager performs the actual installation process.

Our main interest is of course on the dependency and conflict information. All of the
relationships (except for replaces) that are introduced by the control files have some
aspect of dependency and conflict information, although in some cases (e.g., suggests)
this is not strict in the sense that the given guidance can be ignored by the user, re-
spectively the installation system.

The remaining two parts of a package are the data file and the maintenance scripts.
The data file is basically a packed archive. There are actually two slightly different
formats, depending on whether the package contains source code or binaries (e.g.,
executables). Unpacking the archive generates all the necessary files, including direc-
tories, etc. This implies an all or nothing semantics, i.e., either the whole data con-
tained is added to the installation or the package is not installed.

Finally, there are maintenance scripts. These are mainly important as the package
manager may run while the system is actually running. The scripts are then used to
start and stop services to allow their (re-)installation. Another application of these
scripts is to customize the configuration process. For our analysis these scripts are not
of further interest.

2.2 Eclipse Package Management

The Eclipse package management provides two concepts that are relevant to our
analysis here: feature and plug-in [9]. The feature in the Eclipse terminology is a
coarse-grained capability. Actually the typical user installation consists of only three
major features [9]: platform, java development tooling, plug-in development tooling.

A feature by itself does not contain any functionality, rather it describes a set of
plug-ins that provide the functionality. In addition to acting as a sort of container for
the actual plug-ins it provides management information like where to get updates for
the feature.

A plug-in consists of a so-called manifest which provides a declarative description
of the plug-in and the relevant resources. The resources contain a set of java classes,
which implement the functionality, but may contain also other resources like scripts,
templates, or documentation.

 Variability Modeling for Distributed Development – A Comparison 157

The main part, we are interested in here, is the manifest. It declares plugin name,
id, version, provider, etc. It also defines the dependency information for the plug-in.
Dependencies are defined in the requires-section of the plug-in manifest [9]. This
section declares other plug-ins that are needed for successful usage of the current one.
The plug-ins can be further annotated with version information.2 In addition the re-
quires-information can be further refined as optional. The semantics of an optional
requires is that the referenced plug-in should be integrated into the platform if it is
found, but if it is not found the installation of the current plug-in is still possible (as
opposed to a pure requires). On the other hand, Eclipse does not provide any way to
express that a plug-in is mutually exclusive (conflicts) with another plug-in. The re-
quires-information can be further refined by making restrictions with respect to the
versioning information. This is supported by a proposal for the semantics of the ver-
sion numbering by Eclipse. Specific relations on the versions include: perfect match,
equivalent, compatible, greaterOrEqual.

The Eclipse feature and plug-in mechanisms also support some sort of modulariza-
tion. This is expressed by exports and extension points.

The classes that make up the plug-in can also be exported, enabling other plug-ins
to explicitly refer to them.

In addition the manifest may declare extension points and extensions. The extension
point architecture of Eclipse is a core part of its extensibility. Any plug-in may define
extension-points. This means it will allow explicit, external customization of its func-
tionality. A plug-in may also refer to an extension point and extend it. Typical examples
for extension points within the Eclipse-IDE are menu entries or additional views.

3 Package Managers as a Form of Variability Management

In this section, we will focus on the question of whether the package managers, de-
scribed above can be seen as a form of variability management (RQ1). In order to
characterize variability management several formalizations of variability modeling,
like [19, 7, 2] have been developed. As we will see, the package managers only sup-
port rather simple concepts of variability management, thus a simplified treatment of
variability management is sufficient in this context.

3.1 Variability Management Concepts

As a first step, we need to establish a mapping between the typical concepts used in
package managers and in variability management.

If we take as a basis for variability management the concepts from feature model-
ing, as they are described in a formal definition like [19], we find that a feature model
(represented by a feature diagram) can be characterized in the following way (we use
here the terminology introduced in [19]):

• Graph Type: this can either be a graph or a tree.
• Node Type: possible node types; these are Boolean functions like and, or, xor. This

describes how nodes can be decomposed. Also cardinalities (card) are classified as
node types.

2 For identifying required versions it is possible to define constraints as exact matches, com-

patible, etc. This is implemented using a specific version naming scheme.

158 K. Schmid

• Graphical Constraint Type: is a binary Boolean operator, e.g., requires (⇒) or
mutex (|).

• Textual Constraint Language: is a subset of the language of Boolean formula and
is used to describe the allowed compositions.

In addition, it should be noted that edges within a feature diagram denote a decompo-
sition. The allowed forms of decomposition are expressed by the node type.

The mapping of the main concepts in package managers to such a variability mod-
eling language are not straight-forward as the relationships are somewhat different
and the package managers do not support a diagram notation. Thus, we will discuss
this mapping here explicitly. In support of the discussion Figure 1 illustrates the main
concepts we will deal with.

The first major difference between the package management approaches and fea-
ture diagrams is that the approaches are textual not graphical. We can thus ignore the
difference between the graphical constraint type and the textual constraint language.
The nodes in the package management approaches correspond to packages (in Debian
Linux), respectively plug-ins in Eclipse. It should be noted that the concept of features
as it is introduced in Eclipse is rather coarse-grained and describes actually a con-
glomerate of plug-ins while the basic level on which dependencies are expressed are
on the level of individual plug-ins. This is shown in Figure 1 by illustrating packages,
but having the relations on the level of the individual contained units.3

C.1 C.2

A.1 A.2 A.3

A.4.1 A.4.2

C
conflicts

ha
s_
su
b

is
_s
ub

A.4

A

B.1 B.2

B

ha
s_
su
b

is
_s
ub

B Package

A Package

C Package

Fig. 1. Main concepts of variability in package managers

A major concept in most feature modeling approaches is that the features are decom-
posed in the form of a graph or tree. This is shown in Figure 1 as has_sub and is de-
scribed by the node-type as defined above. It should be noted, however, that such a
decomposition approach is not part of all forms of variability management approaches.

3 This corresponds closely to the situation in Eclipse, in the Debian Linux situation the pack-

ages shown in Figure 1 have no correspondence.

 Variability Modeling for Distributed Development – A Comparison 159

For example, some forms of decision modeling [18] or the approach described in [14]
do not rely on decomposition. Both package managers do also not have the concept of
decomposition. However, still often a tree-like or graph-like dependency structure is
introduced. This can be done using the requires-links. This can be seen as has_sub-
relation shown in Figure 1. On the other hand, as the various packages can be selected
individually and are interrelated mainly by requires-relations, this relation can also be
regarded as the inversion of the has_sub-relation, i.e., the is_sub-relation. Thus, in both
approaches, both relations has_sub and is_sub are replaced by requires, if they are rep-
resented at all.

3.2 Analyzing Package Management as Variability Management

We will summarize the expressiveness of the two package management approaches
and will use this as a basis to compare them with variability management as described
by the characterization from [19].

As discussed in Section 2.1 the Debian Linux package management has as main
concept the package. We can equate this with a node. As a basis for dependency man-
agement the relations depends and conflicts can be regarded. The depends-relation
can be equated with requires. The conflicts-relation is not exactly the same as the
mutex-relation, defined in [19], as it is not symmetrical, thus we keep the name con-
flicts in Figure 1. However, conflicts effectively emulates the mutex-relation as it does
not allow a configuration in which both packages participate. Noteworthy is also the
recommends-relation as it has the same direction as the has_sub-relation. However, it
is weak in the sense that it does not require the installation. The other relations de-
fined by the Debian Linux package management approach (pre-depends, suggests,
enhances, replaces) are variations of the mentioned relations, but augment it with
additional user advice or execution information. They do not provide any new infor-
mation from a logical point of view.

Below, we discuss the comparison in more detail:

• The most striking difference is probably that the decomposition hierarchy which is
typical for feature diagrams is not directly a part of the dependency management
defined by the package management approaches. As a consequence the resulting
structure is not one continuous graph, but is rather a set of graphs. Further, the hi-
erarchy in the sense of decomposition cannot be directly expressed, but can only be
simulated using a requires-relationship. While both aspects seem unusual for fea-
ture-based variability management, they exist in other variability management ap-
proaches like [18, 14, 7] as well.

• The and-, or-node types can be expressed as described in Table 1. The xor-node
type can only be represented for the Debian Linux package manager by means of
the conflict relationship. This is not available for Eclipse and can thus not be
simulated there. More advanced concepts like cardinality do not exist in either
approach.

• Constraints are always textual constraints, as there is no graphical notation for both
approaches, thus we discuss Graphic Constraint Type and Textual Constraint Type

160 K. Schmid

together.4 Again the Debian Linux approach allows the representation of mutex-
and requires-constraints (using conflicts and depends relations, respectively). The
Eclipse package manager falls short as it can represent the requires-relation,
but not the mutex-relation. More complex combinations (in the sense of complex
formula) are not available in either approach.

Table 1. Comparison of package management and a characterization of feature models ([19])

Concept
[19]

Debian Linux Package
Manager

Eclipse Package Manager

Graph Type Graph* Graph*

Node Type and, or – all elements that are
required must be installed, but
weaker versions like suggests
actually provide optionality

xor – can be simulated by using
the conflicts relation

and, or – the requires
relationship can be augmented
with an optional modifier

Graphical
Constraint
Type (GCT)

requires – is supported using
depends

mutex – the conflicts
relationship is a directed variant
of mutex

requires – exists as a relation

mutex – does not exist nor can
be simulated

Textual
Constraint
Language

From a logical point of view only the concepts mentioned under
GCT are supported, although the language is completely textual.
There exist extensions like references to specific version, which do
not exist in variability modeling techniques for product lines.

*
: As there need not be connections between nodes that are installed, either induced by requires
or any other relations, it might actually be more appropriately regarded as a set of graphs.

If we accept the use of the requires-relation to describe the decomposition, we can
deduce from [19] that the expressiveness of the Debian Linux approach is at least
similar to FODA [11].5 More problematic is the Eclipse package manager, which does
not support a form of exclusion (similar to alternatives, mutex-relations, conflicts-
relation, etc.). As a consequence, we need to accept that this approach is truly weaker
than other variability management approaches.

According to the above comparison we can deduce several findings. The first and
most important is that we can answer (RQ1) with yes for the Debian Linux approach,

4 Again, it should be noted that this also exists in other variability modeling approaches. For

example the approach described in [18] only provides a semantic approach without prescrib-
ing a specific representation (graphical or otherwise).

5 This is not fully correct, as FODA allows parameterization, which is not present in the De-
bian Linux model. However, this is also not part of the analysis given in [19].

 Variability Modeling for Distributed Development – A Comparison 161

albeit it truly provides only minimal expressiveness (comparable to FODA). For
Eclipse, answering (RQ1) is not easy, as the expressiveness is less powerful than any
of the variability management approaches given in the literature, due to the lack of the
mutex-relation. We will thus answer (RQ1) for Eclipse only as partially, however,
many elements of a variability management approach exist. Thus, it forms a valid
basis for our comparison in this paper.

In summary, we can say that both approaches lack in comparison with modern
variability management approaches significant expressiveness. Examples for this are
cardinalities, complex constraint conditions, etc. From this perspective it is surprising
that both approaches work very successful in practice. One reason for this is certainly
their limited application domain.

4 Concepts in Package Management That Support Distribution

After discussing whether the two package managers can actually be regarded as a
form of variability management, we will now turn to the question what concepts exist
in the two package managers which may prove useful for variability management, in
particular in a distributed setting (RQ2).

We will structure our discussion along the following topics:

• Decomposition
• Version-based dependency
• Information Hiding
• Variability Interfaces

Decomposition: Probably the most immediate observation one can make when ana-
lyzing the package managers is that they take a decomposition of what shall be man-
aged for granted. Of course this flows well with distribution. In Debian Linux the
basic concept is a package, but it should be noted that the contribution of a distributed
part of the development is often contained in several packages that are related with
each other (e.g., an implementation and a source package). In Eclipse the feature
concepts defines such a unit of distribution and may contain several plug-ins. How-
ever, also in the Eclipse case sometimes several features are developed and distributed
together, as the feature is also a configuration unit.

From the perspective of distributed variability management this decomposition
also leads to a decomposition of the variability model as this enables to assign respon-
sibility for different of the variability model to different teams. We believe this is one
major characteristic to support distributed variability management. Further, if we look
at the way the relations are typically used within the package management ap-
proaches, we see that the has_sub-relation is typically not used across packages that
build on each other, but rather requires is used in the form of the is_sub-relation in
Figure 1 (or across the hierarchy as also shown in Figure 1). This leads to the package
that builds on top of another one to know the package on which it is building, but not
vice versa. Thus a platform can be built without the need to know everything which
will build on top of it at a later time. We regard this as an important difference to the
decomposition hierarchy in feature models and term it inversion of dependency. It
should be noted, however, that for other variability management approaches that do

162 K. Schmid

not have a decomposition hierarchy this is straightforward. We regard this inversion
of dependency as very important for developing future software ecosystems, using
product line technologies [3].

Version-based dependency: the capability that all packages may have versions and
that the dependency management may use the version information to define what
combinations are acceptable is very useful to reduce the coupling between packages.
Thus, packages may still work together, even if their content changes and this may be
explicitly expressed in the relations. This is particularly prominent with the Eclipse
package manager, which even defines different forms of changes (and can put con-
straints on the acceptance of the different compatibility levels). This enables the
specification of the degree of decoupling of the development of the different packages
that is possible.

Information Hiding: Of course explicit variability management always leads to some
form of information hiding as the potential configurations only depend on the features
defined in the variability model, not on the base artifacts. However, Eclipse goes one
step further by explicitly defining what parts of the packages will be visible to other
packages. This concept does not exist in classical variability modeling, as there no
information hiding is induced on the basic artifacts. It is interesting to note that this is
similar to packages in the UML which also allow to restrict the visibility of their
content. Also information hiding in Eclipse goes hand in hand with explicit variability
interfaces.

Variability Interfaces: A very interesting mechanism within the Eclipse package
management approach is the extension point approach. Plug-ins can announce spe-
cific extension points where further variability is possible and can be resolved by
other packages. Typical examples of this are menus, views, etc. that can be aug-
mented by further plug-ins. Eclipse even introduces a schema definition for extension
points. While this would allow the definition and verification of the parameterization
of the extension point, this schema is currently not yet used in the Eclipse implemen-
tation according to the latest description [9].

The concepts of decomposition, information hiding and interfaces are all well-
known. They are typical of what we call today modularization [13]. However, if we
compare this with almost all existing variability modeling approaches, we have to
recognize that they are monolithic in nature (for a discussion of the exceptions see
Section 1.2). It seems reasonable to assume that the modularization concepts that are
useful in the construction of every software systems, in particular in a distributed
manner are as well useful in distributed variability modeling. This is emphasized by
the success that the discussed package management systems already have in industrial
practice today were they provide a foundation for respective software ecosystems.

The concept of version-based dependency further supports the decoupling of the
variability packages. Both discussed approaches posses this capability in some form.
Finally, the inversion of dependency, i.e., that only the refining variability package
needs to know the refined package, but not vice versa seems rather useful, as it further
decouples distributed development.

Thus, we can answer (RQ2) positively: there are certain concepts that have been
introduced in package management approaches that are helpful for distributed vari-

 Variability Modeling for Distributed Development – A Comparison 163

ability management in software product line engineering. The key concepts we could
identify are: decomposition, version-based dependency, information hiding, variabil-
ity interfaces, and inversion of dependency. Out of these only decomposition has to
our knowledge been applied so far [15, 8, 6]. The other concepts introduce some form
of modularization to provide a better basis for decoupling in distributed product line
development.

5 Conclusions

In this paper, we analyzed existing, large-scale, real-world package management
approaches to identify concepts they can offer for distributed variability management.
We established (RQ1) that these approaches can indeed be interpreted as a form of
variability management as they support the declarative definition of variation con-
straints. The concepts they support for dependency management can be mapped onto
existing variability management approaches. However, we had to recognize that only
very fundamental concepts are realized. Thus, these tools may significantly profit by
integrating more advanced capabilities from modern variability management ap-
proaches.

On the other hand these package management approaches have been developed
from the beginning to support distributed development and integration. Both provide
today the basis of a software ecosystem of their own. As a result they offer a slightly
different approach and concepts that can be well integrated into product line engineer-
ing to support improved modularity of variability management. We can thus answer
our second research question (RQ2) positively. The concepts we identified are:

• Decomposition
• Version-based dependency
• Information hiding
• Variability interfaces
• Inversion of dependency

However, it should be recognized that these concepts, while certainly useful for aug-
menting existing variability management techniques, they can still be further im-
proved. For example, it would be useful to provide a formal definition of variability
interfaces. As a result of the introduction of the above concepts together with further
work, we expect that in the future we will arrive at a meaningful theory on the modu-
larization of variability models [13]. We expect that such a theory will be particularly
relevant in the context of open and distributed variability as is required for software
ecosystems [3].

As a next step we plan to extend our work and will address in particular software
ecosystems more in depth. We will also extend our basis of analysis further to cover a
larger range of existing approaches. The results of this analysis will then drive the
development of an integrated approach for dependency management that combines
the strengths of established practical approaches with the best of existing, sophisti-
cated variability management techniques.

164 K. Schmid

References

[1] Aoki, O.: Debian Reference, (2007),
http://qref.sourceforge.net/Debian/reference/
reference.en.pdf (last verified: 13.3.2009)

[2] Benavides, D.: On the automated analysis of software product lines using feature models.
A framework for developing automated tool support. PhD thesis, University of Seville,
Spain (2007)

[3] Bosch, J.: From software product lines to software ecosystems. In: Proceedings of the
13th Software Product Line Conference, pp. 111–119 (2009)

[4] Catalog of software product lines,
http://www.sei.cmu.edu/productlines/casestudies/catalog
(last verified: 13.03.2010)

[5] Clements, P., Northrop, L.: Software Product Lines: Practices and Patterns. Addison-
Wesley, Boston (2002)

[6] Czarnecki, K., Helsen, S., Eisenecker, U.: Staged configuration through specialization
and multi-level configuration of feature models. Software Process Improvement and Prac-
tice 10(2), 143–169 (2005); Special Issue on Software Product Lines

[7] Dhungana, D., Heymans, P., Rabiser, R.: A formal semantics for decision-oriented vari-
ability modeling with dopler. In: Proceedings of the Fourth International Workshop on
Variability Modelling of Software-intensive Systems (VAMOS 2010), pp. 29–35 (2010)

[8] Dhungana, D., Neumayer, T., Grünbacher, P., Rabiser, R.: Supporting the evolution of
product line architectures with variability model fragments. In: Proceedings of the Sev-
enth Working IEEE/IFIP Conference on Software Architecture, pp. 327–330 (2008)

[9] The Eclipse Foundation. Eclipse 3.1 Documentation: Platform Plug-in Developer Guide
(2005), http://www.eclipse.org/documentation (checked: 13.3.2009)

[10] Hallsteinsen, S., Hinchey, M., Park, S., Schmid, K.: Dynamic software product lines.
Computer 41(4), 93–95 (2008)

[11] Kang, K.C., Cohen, S.G., Hess, J.A., Novak, W.E., Peterson, A.S.: Feature-Oriented Do-
main Analysis (FODA) Feasibility Study. Technical Report CMU/SEI-90-TR-21 ESD-
90-TR-222, Software Engineering Institute Carnegie Mellon University (1990)

[12] van der Linden, F., Schmid, K., Rommes, E.: Software Product Lines in Action - The
Best Industrial Practice in Product Line Engineering. Springer, Heidelberg (2007)

[13] Parnas, D.: On the criteria to be used in decomposing systems into modules. Communica-
tions of the ACM 15(12), 1053–1058 (1972)

[14] Pohl, K., Böckle, G., van der Linden, F.: Software Product Line Engineering: Founda-
tions, Principles, and Techniques. Springer, Heidelberg (2005)

[15] Rosenmüller, M., Siegmund, N.: Automating the configuration of multi software product
lines. In: Proceedings of the Fourth International Workshop on Variability Modelling of
Software-intensive Systems (VAMOS 2010), pp. 123–130 (2010)

[16] Rosenmüller, M., Siegmund, N., Kästner, C., ur Rahman, S.S.: Modeling dependent
software product lines. In: GPCE Workshop on Modularization, Composition and Gen-
erative Techniques for Product Line Engineering (McGPLE), number MIP-0802, pp. 13–
18. University of Passau (2008)

[17] Schmid, K., Eichelberger, H.: Model-based implementation of meta-variability con-
structs: A case study using aspects. In: Proceedings of VAMOS 2008, pp. 63–71 (2008)

[18] Schmid, K., John, I.: A customizable approach to full-life cycle variability management.
Science of Computer Programming 53(3), 259–284 (2004)

 Variability Modeling for Distributed Development – A Comparison 165

[19] Schobbens, P.-Y., Heymans, P., Trigaux, J.-C.: Feature diagrams: A survey and a formal
semantics. In: Proceedings of the 14th IEEE Requirements Engineering Conference (RE
2006), pp. 139–148 (2006)

[20] She, S., Lotufo, R., Berger, T., Wasowski, A., Czarnecki, K.: The variability model of the
linux kernel. In: Proceedings of the Fourth International Workshop on Variability Model-
ling of Software-intensive Systems (VAMOS 2010), pp. 45–51 (2010)

[21] van der Hoek, A.: Design-time product line architectures for any-time variability. Science
of Computer Programming 53(30), 285–304 (2004); Special issue on Software Variabil-
ity Management

[22] van Ommering, R.: Software reuse in product populations. IEEE Transactions on Soft-
ware Engineering 31(7), 537–550 (2005)

[23] White, J., Schmidt, D., Wuchner, E., Nechypurenko, A.: Optimizing and automating
product-line variant selection for mobile devices. In: Proceedings of the 11th Annual
Software Product Line Conference (SPLC), pp. 129–140 (2007)

J. Bosch and J. Lee (Eds.): SPLC 2010, LNCS 6287, pp. 166–180, 2010.
© Springer-Verlag Berlin Heidelberg 2010

Variability Management in Software Product Lines: An
Investigation of Contemporary Industrial Challenges

Lianping Chen1 and Muhammad Ali Babar2

1 Lero - the Irish Software Engineering Research Centre, Limerick, Ireland
lianping.chen@lero.ie

2 IT University of Copenhagen, Denmark
malibaba@itu.dk

Abstract. Variability management is critical for achieving the large scale reuse
promised by the software product line paradigm. It has been studied for almost
20 years. We assert that it is important to explore how well the body of knowl-
edge of variability management solves the challenges faced by industrial practi-
tioners, and what are the remaining and (or) emerging challenges. To gain such
understanding of the challenges of variability management faced by practitio-
ners, we have conducted an empirical study using focus group as data collection
method. The results of the study highlight several technical challenges that are
often faced by practitioners in their daily practices. Different from previous stu-
dies, the results also reveal and shed light on several non-technical challenges
that were almost neglected by existing research.

1 Introduction

Software intensive systems in a certain domain may share a large amount of com-
monalities. Instead of developing each product individually, software product line en-
gineering looks at these systems as a whole and develop them by maximizing the
scale of reuse of platforms and mass customization [20]. Thus, it is claimed that
Software Product Line (SPL) can help reduce both development cost and time to mar-
ket [15]. A key distinction of Software Product Line Engineering (SPLE) from other
reuse-based approaches is that the various assets of the product line infrastructure
contain variability, which refers to the ability of an artifact to be configured, custom-
ized, extended, or changed for use in a specific context [3]. Variability in a product
line must be defined, represented, exploited, implemented, and evolved throughout
the lifecycle of SPLE, which is called Variability Management (VM) [15]. It is a fun-
damental undertaking of the SPLE approach [15].

VM in SPL has been studied for almost 20 years since the early 1990s. Feature-
Oriented Domain Analysis (FODA) method [10] and the Synthesis approach [11] are
two of the first contributions to VM research and practice. Since then diverse meth-
ods/approaches have been proposed [7]. The goal of all these research efforts should
be to help practitioners to solve their real problems. Hence, there is a vital need to ex-
plore how well the VM body of knowledge solves the problems faced by industrial
practitioners, and what are the remaining and (or) emerging issues. Such an effort can
help to update the understanding of issues and VM challenges in SPL practice. Such

 Variability Management in Software Product Lines: An Investigation 167

an understanding is expected to help researchers to direct their research efforts to-
wards real and high priority issues and challenges in the industry, and thus can pro-
vide practitioners with more support for VM and improve their productivity. As such,
the specific research question that motivated this study was:

• What are the contemporary industrial challenges in variability management in
software product lines?

The goal of this paper is to report the results of an empirical study aimed at identify-
ing issues and challenges of VM in SPLE faced by industry practitioners. This paper
is organized as follows. Section 2 provides the details of the research methodology
used for this research. Section 3 presents the findings of this study. Section 4 dis-
cusses the findings from analysis of the data gathered during the focus group discus-
sions with respect to the published literature on variability management in software
product lines. Section 5 mentions some of the potential limitations of the reported
study and its findings and Section 6 finishes the paper with a brief discussion about
the outcomes from the reported study and future work in this area.

2 Research Method

We conducted an empirical study using focus group research method in order to identify
the issues and challenges of VM in SPLE faced by industry practitioners in their daily
activities. We decided to use the focus group research method because it is a proven and
tested technique to obtain the perception of a group of selected people on a defined area
of interest [1, 13, 24]. In the following sub sections, we describe the process of this
study according to the five steps involved in the focus group research method.

2.1 Define the Problem

In this step, we defined the research problem that needed to be studied by using the
focus group research. The research problem was derived from our research goal (i.e.,
to gain an understanding of issues and challenges of VM in SPL in practice) as de-
scribed in Section 1.

2.2 Plan Focus Group

In this step, we set the criteria for selecting participants, decided the session length, de-
signed the sequence of questions to ask during the session1, and prepared documents to
provide the participants with the study background, objectives, and protocols.

2.3 Select Participants

In this step, we selected participants according to the criteria devised during the plan-
ning stage. In order to gain insights into the VM challenges in practice, we followed
the following criteria for selecting the participants:

1 One of our colleagues also participated in designing the sequence of questions to ask during

the session.

168 L. Chen and M.A. Babar

• experience of variability management in practice,
• knowledge and expertise of issues/challenges of variability management, and
• willingness to share their experiences and candid opinion.

According to the selection criteria, our study needed practitioners with industrial ex-
perience in VM in SPLE. Such practitioners are usually very busy and are not likely
to respond to invitations from unfamiliar sources. Thus, a random sampling was not
viable.

Consequently, we decided to use availability sampling, which seeks responses
from those who meet the selection criteria and are available and willing to participate
in a study. The International Software Product Line Conference (SPLC) attracts a
large number of practitioners every year. We sent invitation emails to practitioners
who were going to attend SPLC 2008 and met our selection criteria.

2.4 Conducting the Focus Group Session

We held three focus group sessions, each of them lasting approximately one hour. The
flow of the discussion was designed to be as natural and as easy to follow as possible.
Each session started with a brief introduction of the participants and researchers. Then
the discussion flowed through a predefined sequence of specific topics related to the
challenges in different phases of SPLE, i.e., requirements phase, architecture phase,
implementation phase, testing phase, and any other aspect of VM in SPLE. The sepa-
ration between phases is based on the SPLE framework presented by Pohl et al. [20];
however, to not complicate the discussion flow, we decided not to separate the discus-
sions on domain engineering and application engineering in each phase. The sessions
were audio recorded with the participants’ consent.

2.5 Data Analysis

In this step, we transcribed the recorded discussion and coded the transcription. The
focus group sessions of this study resulted in approximately three hours of audio re-
cording. The audio recording was transcribed by transcribers. In order to verify that
there was no bias introduced during the transcription, the first researcher randomly
checked several parts of the transcription. No significant differences were found.

To analyze the transcribed data, we performed content analysis and frequency
analysis. We followed the iterative content analysis technique, which is a technique
for making replicative and valid inferences from data to their context [14], to prepare
qualitative data for further analysis. During content analysis, we mainly used Strauss
and Corbin’s [26] open coding method. With this method, we broke the data into dis-
crete parts, and closely examined and compared them for similarities and differences.
Data parts that are found to be conceptually similar in nature or related in meaning
were grouped under more abstract categories. The coding was performed by the first
researcher and checked by the second researcher.

To identify the relative importance of the challenges’ influence on industrial prac-
tices in variability management, we performed frequency analysis on the transcribed
data for the high level themes.

 Variability Management in Software Product Lines: An Investigation 169

3 Results

In this section, we present the results of the study. We first present the demographics
of the participants, then present the issues reported by the participants, and finally de-
scribe the frequency analysis.

Table 1. Demographic information about the participants

ID Title Experience Country Domain

Com-
pany
size

Type of
company

1
Principle member
of research staff

8+ years in SPL;
has been working
with 40 SPLs. Finland

Mobile
phones 112,262 In-house

2

Senior member of
the technical staff;
Principal

Worked in SPL
since 1990; con-
sulted various com-
panies. USA Various <50 Consultant

3
Project manager in
SPL 5 years in SPL Spain

Embed-
ded 51-200 Consultant

4
Software engineer,
SPL supporter

SPL initiative
started about 6 or 8
months USA

Defence,
aero-
space 106,000 In-house

5
Chief software ar-
chitect.

20 years in SE; 7
years in SPL USA

Embed-
ded 73,000 In-house

6

Software architect
and software de-
velopment process
manager

Introduced the SPL
approach 4 months
ago;

Ger-
many

Embed-
ded 4,000 In-house

7 Director

10 years in SPL;
consulted various
banks and insurance
companies

Austra-
lia Finance 40 Consultant

8 Research scientist

Work three days per
week in the com-
pany since 2004

Nether-
lands

Health-
care 123,801 In-house

9 Software architect

25+ years in SD;
around 5 years in
SA and SPL. USA

Embed-
ded 263,000 In-house

10

Global software
process and quality
manager 6 years in SPL

Switzer-
land

Embed-
ded 128,000 In-house

11 Senior scientist
About 8 years in
SPL

Nether-
lands

Embed-
ded 33,500 In-house

3.1 Demographics and Frequency of Participants’ Participation

Table 1 shows the profile of the participants of the focus group sessions. There were
11 participants in the focus group sessions. The majority of them were holding senior
positions in their respective organizations and were playing important roles (e.g. re-
sponsible for, advocator, and introducer) in their organizations’ SPL adoption and
management practices. The participants also had good knowledge of their companies’

170 L. Chen and M.A. Babar

SPL initiatives. It is worth to note that some of them had the title of “researcher”;
however, they were working in research centers in industrial companies rather than
academic research institutes. They usually had good knowledge of the VM challenges
in their organizations. So we considered them as SPL practitioners in this study.

Each of the participants came from a different company. These 11 companies varied
in type, size, domain, and geographical area. While the majority of the companies were in-
house development units, there were also three consultancy companies. All the
in-house development companies were of large size in terms of the number of employees2.
The consultant companies were of a small to medium size; however, the participants
from these three consultancy companies had worked with various other large compa-
nies, so they brought in their experience with those various companies as well. The
majority of the participants’ companies were working in embedded systems;
however, there were also representatives from other domains like finance and tele-
communications. The companies where the participants came from are located in seven
different countries covering three continents (i.e., America, Europe, and Australia).

The demographics information about the participants of our study gives us confi-
dence that we gathered data from practitioners who were knowledgeable about VM
challenges based on their experience in practice. Furthermore, although the number of
the participants is not high, they came from 11 different companies (most of them had
extensive experience in VM) and 7 different countries. So their views can be consid-
ered representative of the VM challenges faced by broad practitioners in industry with
similar characteristics.

Table 2 summarizes the amount of participations by each participant. The number
in the cell indicates the number of speeches from a particular participant. It can be ob-
served that there were no dominant speakers during the discussion. Every participant
got almost equal opportunity to share his/her experience and opinion on different as-
pect of VM in SPL.

Table 2. Frequencies of speeches by each participant

Participant ID 1 2 3 4 5 6 7 8 9 10 11
Frequency of speeches 43 41 19 37 37 29 25 21 31 31 40

3.2 Challenges Faced by Practitioners in Variability Management

The focus group discussions mainly followed the life cycle stages of SPLE, as we
mentioned in Section 2.4. However, when we were analyzing the results, we found
that the majority of the issues/challenges reported by the participants are not particu-
lar to a specific phase. Therefore, we decided not to organize our reporting of the
results follow the life cycle stages of SPLE. Instead, we divided them into two catego-
ries: technical issues and non-technical issues. The issues we found are summarized
below.

2 We used the European Commission SME definition: companies with 250 or more employees

are considered as large size, companies with 50 (inclusive) to 250 employees are considered
as medium size, and companies with 10 (inclusive) to 50 employees are considered as small
size. http://ec.europa.eu/enterprise/policies/sme/files/sme_definition/sme_user_guide_en.pdf

 Variability Management in Software Product Lines: An Investigation 171

3.2.1 Technical Issues
Handling complexity: When discussing issues in the requirements phase, the partici-
pants reported that handling the complex variability is challenging. One participant
mentioned that, “when you have 300 features it is very difficult to visualize…so for
us it’s not easy to visualize features and show that to the customer.” Maintaining
complex variability models is also challenging. As one participant responded, “I mean
there's no way to maintain it, I mean the maintaining, especially changing those deci-
sions, is extremely hard because the chances that you break something is very high,
because the context that you try it in is huge.” The participant also commented that
the research output from intelligent decision models area is far away from being ap-
plicable to the real industrial settings.

When discussing issues in the implementation phase, the participants reported that
for the variability that was a bunch of numbers is relatively easy to manage, but for
the variabilities that are much more complex than numbers are difficult to manage.
One participant said, “but other things are much more complex, e.g., certain types of
algorithms, or whatever there might be in our systems …that’s not something that we
know how to do very well yet….”

Knowledge harvest and management: When discussing issues in the requirements
phase, several participants mentioned that a more challenging task than how to repre-
sent the variability (e.g., using feature models) is how to harvest and share the knowl-
edge in an efficient way. They said that the technical artifacts (e.g., source code,
design, and requirements specifications) are so diverse, there is no single repository
where practitioners can find the required information; abstracting the requirements of
different systems into a coherent and consistent variability model is challenging. Un-
derstanding the implications of different features on customers’ buy-in, on the soft-
ware product line architecture was also reported to be challenging.

Extracting variability from technical artifacts: The participants reported that in the
situation that the software product line is built on similar pre-existing systems, ex-
tracting the variability and commonality of those systems from the various artifacts is
challenging.

The same is true in the architecture phase, the participants reported that extracting
the variability from technical artifacts of different similar products and building a
common architecture for those products are challenging. One participant said: “We
recently did [a] kind of a workshop where we took one single piece of code. Several
senior architects looked at it. It took almost five or six hours just to go through one
file. There were several thousands of lines of code. We tried to figure out why were
these decisions made and how can we decouple and componentize this piece of soft-
ware…because it is such a legacy system and there are so many variants, it’s hard to
tell the common places versus the points of variability”.

On implementation level, the participants reported that in the situation where dif-
ferent similar products were developed using clone and own practices heavily, ex-
tracting the variability from the source code files is challenging. There are some clone
detection tools but they have been developed mainly for single systems. If there are
multiple code bases, each for one product, comparing them and extracting out vari-
ability from them is very difficult. Componentizing the existing code and building va-
riability inside and around them are challenging.

172 L. Chen and M.A. Babar

Evolution of variability: The participants reported that in SPLE paradigm, SPLE re-
quirements span different systems. These systems inevitably evolve over time. So the
variability exists not only over space (change from system to system) but also over
time (change over time). Managing the evolving requirements of SPL is challenging.

When requirements changed, in some cases, the existing architecture does not sup-
port the required variability in the new requirements. Some participants mentioned
that, in an extreme case where the product line started with one single product, evolv-
ing the architecture towards a software product line is really an issue. One participant
reported that initially, the company just wanted to penetrate the market with one sin-
gle product without any variation. Then the product would grow over time and this al-
so meant the architecture needed to be changed. Small changes and variation points
were added gradually. After a couple of years, the architecture did not work anymore.
Participants said they had not come across good solutions for such challenges. In
some domains (e.g., mobile phones), the extending problem (extending the scope of
product line) is evident. Some typical evolution scenarios include: adding variation
points and variants, removing obsolete variation points and variants, changing rela-
tionships among variation points and variants.

Variability modeling and documentation: The participants mentioned that the vari-
ability modeling approaches are not very user friendly. How to document variabilities
in a way that is easy to understand and use by different stakeholders is an issue. The
participants also reported that compared to the structural aspects, managing the vari-
ability in the behavioral and timing aspects is more challenging and less solved.

Design decisions management and enforcement: The participants reported that
managing architectural design decisions and enforcing those decisions are challeng-
ing. For example, one participant reported that the architecture design decisions were
documented in Microsoft Word document, but they are very difficult to find by the re-
lated stakeholders. A better strategy to find these documented decisions is needed.
The participant also reported that understanding how the alternative decisions can
lead to different architectures, and what the implications of those decisions are on the
resulting systems is a key challenge. One participant said: “understanding how to do
that properly really requires a lot of experience with systems of that type actually.”

Tool support: The participants reported that there is a lack of sufficient tool support
for managing variability. One participant said: “it [the tool] works pretty good for
specific individual projects that you're going to deliver but for maintaining core assets
it doesn’t…you know…you have to get creative as far as how to manage variability in
requirements.” Two participants also reported the difficulties of integrating their cho-
sen requirements management tool (i.e. DOORS) with currently available variability
management tool. One participant said there was a tool change step from DOORS to
one of the available variability management tool, so they had to develop a connection
between those tools. But finally due to the fact that they cannot afford to maintain the
home developed connection, it was not used. They agreed that developing and espe-
cially maintaining home grown tool is too costly. The participants expressed their ex-
pectation to have an integrated, standardized, and end-to-end tool support, instead of
having different tools for closely related problems.

 Variability Management in Software Product Lines: An Investigation 173

Testing: The participants reported that testing variability in SPL is a challenge, which
can cause several problems. Large amounts of efforts are spent on software testing in
industry, but they could not see much effort from researchers. For example, one par-
ticipant said “If you see in practice, many people - a third or something on testing, a
quarter, should be even more probably – but then if you look at the same amount of
people in research […] I don’t know how many percent of the researchers are really
working on testing.” One participant also mentioned that there is little, if any, work
on testing the quality of the core asset to see how it is flexible enough to support the
variations, instead of testing the products that come out of the core asset.

3.2.2 Non-technical Issues
People: During discussion of the issues in architecture phase, the participants re-
ported that having good architects is essential for developing and maintaining a soft-
ware product line architecture. However, there is a lack of good architects who are
good at thinking at an abstract level, who know the mechanisms to make the architec-
ture extensible and flexible, and can apply those principles in practice. The architects
should also have a product line mindset. With this mindset, rather than architecting
their new variability in a sense that it is their own product, architects are going to be
architecting the new variability in a mindset that it has to fit on the platform that is al-
ready in existence without the clone and own approach.

Mindset change: The participants reported that changing employees’ mindsets of
building a single system to the mindset of building a family of systems is really chal-
lenging. One participant said: “the biggest problem you have really is people having
the traditional mindset of building a single system and they have difficulties just talk-
ing about variation. […] just having a framework for getting people to think about
things in a broader set is really the biggest challenge you have.”

Management support: When discussing issues in the architecture phase, the partici-
pants reported that to keep the architecture from deterioration, sustained support from
the organization (e.g. management support and required funding) is essential. How-
ever, keeping such sustained support can be challenging. These challenges generally
include examining why certain managers accept and support VM, and what are the
factors that can convince managers to give sustained support.

Organizational structure: The participants reported that the separation of the core
asset team and the product team puts the people in the product team working in the
situation where they have less choice. Getting them to accept the architecture that
they did not design themselves is challenging. Proper communication mechanisms
should be put into place to alleviate this issue. Some participants also reported that
within their organization, barriers exist between different departments who own dif-
ferent yet similar products, and they do not talk to each other, which makes organiza-
tional changes very challenging.

Business model: The participants reported that smooth application of VM practices
relies on a proper business model. For example, one participant said “Our business
model is probably one of our biggest challenges… the specific customer we work
with has a hierarchy where they don’t talk to one another and so they are not incentiv-
ized to share assets and so we kind of mirror that. And so the business model is

174 L. Chen and M.A. Babar

probably the biggest challenge we have in a sense that we are paid by lines of code
not how effective we share asset.” Obtaining a suitable business model is challenging
when the existing business model does not encourage reuse.

3.3 Frequency Analysis

During the coding process, five high level themes emerged. They are “Technical
(Tech)”, “Business (Biz)”, “Managerial (Mng)”, “Organizational (Org)”, and “Peo-
ple”. Each of these themes corresponds to one type of issues. For example, Tech cor-
responds to technical issues and Biz corresponds to business issues. To determine the
relevant importance of these five different types of issues to the VM industrial prac-
tices, we performed a frequency analysis. Table 3 shows the results. The number in
each cell represents the number of segments of speeches associated with the theme
represented by the column header. It can be seen that the sum of frequency for non-
technical challenges is close to technical challenges (i.e., 10+5+8+13=36, which is
close to 38). These findings indicate that non-technical challenges have significant
impact on VM practices. One participant also reported that: “non-technical challenges
are at least as important and difficult as those technical challenges.”

Table 3. Frequecies of discussion on each type of issues

Type Biz Mng Org People Tech

Frequency 10 5 8 13 38

4 Discussion

We discuss our findings in the context of (relation to) the research output in VM re-
search (a similar approach was used by Rabiser et al. [22]). Specifically, by research
output we refer to the VM approaches proposed in the literature. Some of these ap-
proaches have been systematically reviewed from different angles and purposes and
reported in our different publications [2, 5, 7-8]. The focus of the discussion in this
section is to discuss the findings from the focus group in light of the findings from lit-
erature reviews we have already reported in order to highlight the issues that still re-
main unsolved according to the perceptions of the participants of our study.

To facilitate the discussion, we have clustered the issues into two groups based on
the number of approaches reported in the literature [2, 5, 7-8]. The two groups are
shown in Table 4. The first group contains the issues for which no or only few ap-
proaches have been proposed. The second group contains the issues for which several
or many approaches have been proposed.

The issues in the first group identify the research areas that appear to have not been
given enough attention from VM researchers despite practitioners reporting that they
face these issues in their daily work and feel frustrated about not having an effective
and efficient solution to address these issues.

It is obvious that the challenges belonging to the non-technical issues (i.e., peo-
ple, mindset change, management support, organizational structure, and business
model) category appear to have received significantly less attention from the

 Variability Management in Software Product Lines: An Investigation 175

Table 4. The grouping of issues based on the number of approaches tried to tackle them

No/few approaches have been proposed Several/many approaches have been
proposed

− People
− Mindset change
− Management support
− Organizational structure
− Business model
− Handling complexity
− Knowledge harvest and management
− Evolution of variability
− Design decisions management and enforce-

ment
− Extracting variability from technical arti-

facts
− Testing

− Variability modeling and documenta-
tion

− Tool support

research community; none of the approaches we reviewed have tried to address any of
them according to the findings from one of our literature review studies [7]. From these
findings, it can be concluded that a large majority of the VM approaches nearly exclu-
sively focus on technical aspects of VM to the extent of ignoring the VM challenges
caused by non-technical factors involved such as business contexts and organizational
environments. Similar observations have been made in the area of architectural descrip-
tion languages [17]. Encouragingly, researchers have recently begun to pay more atten-
tion to these issues by discussing them at community events [23].

So far technical challenges of VM are concerned, the issues of handling complex-
ity, knowledge harvest and management, evolution of variability, design decisions
management and enforcement, extracting variability from technical artifacts, and test-
ing have not received sufficient attention from VM research community either. For
example, extracting variability from technical artifacts has been reported as a signifi-
cant challenge by the participants of our study. However, existing approaches for
identifying variability (e.g., FODA [10] and DRM [19]) mainly rely on a manual
process. Testing is also reported as a big challenge by the participants but there are
only a few approaches for addressing testing issue exist (e.g., the ScenTED [21]).
However, ScenTED does not test the core asset to see how it is flexible enough to
support the variations as specially mentioned by the participants. Evolution of vari-
ability is also reported as one of the challenges by the participants; however, only
three approaches, FDL [27], Ye’05 [28] and Loesch’07 [16], which are concerned with
evolution of variability were found. These approaches only provide very limited sup-
port for evolution of variability, a systematic approach to provide a comprehensive
support for variability evolution is not available. Handling complexity of variabilities
(e.g., the huge number of variabilities and the complex relationships among them, and
the complex unit of variability) has also been reported as a big challenge. Existing ap-
proaches all seem to fall short of scaling up to handle complex variability satisfacto-
rily [6]. Encouragingly, researchers have begun to pay more attention to some of these
issues by organizing community events [12] to discuss various ways of addressing the
issue of handling complex variability have been held.

176 L. Chen and M.A. Babar

The issues in the second group mainly reveal/reflect the limitations of existing ap-
proaches, because although many approaches have been proposed to tackle them,
practitioners are still facing these issues. In other words, the existing approaches that
attempt to address those issues have several limitations, which hinder practitioners
from fully utilizing (or benefiting from) them. The approaches addressing the vari-
ability modelling and documentation issue account for a large portion of the ap-
proaches we found [2, 7]. Even the standardization of variability modelling has been
initiated [9]. However, as reported by the participants of our focus group, these ap-
proaches are not very user friendly. How to document variabilities in a way that is
easy to understand and use by different stakeholders is still an issue. In addition, man-
aging the variability in behavioral and timing aspects is less solved and more chal-
lenging compared to structural aspects.

Many tools have been proposed for managing variability. Even some commercial
tools (e.g., Gears3 and pure::variants4) have been available. However, practitioners
expect to have an integrated, standardized, and end-to-end tool support, instead of
having different tools for closely related problems. Such requirements have not been
met, and practitioners are still suffering from this issue.

The issues in the second group call for more research to improve existing ap-
proaches or propose new approaches for satisfying practitioners’ requirements.

In the above discussion, we assumed that the participants’ statements on the
contemporary VM issues are correct (i.e., all issues that reported in Section 3.2 and
classified in Table 4 are open issues). There is a possibility that some issues that the
participants reported as issues are actually not issues as practitioners may not be fully
aware of the solutions to those issues proposed by the research community. We paid
attention to this aspect when we were analyzing the data. We did not find such situa-
tion (based on our literature review results). This might be because the participants of
our study were selected from the attendees of SPLC conference, so they tend to be
aware of the recent work reported on VM research.

The findings from this study can also be used for performing comparative analysis
with previously identified VM challenges such as reported in Bosch et al. [4]. Such com-
parison can provide useful information that would confirm the significance and relevance
of the VM challenges or indicate the less importance or resolution of certain VM chal-
lenges identified many years ago. Our comparison5 of the findings from this study and
the VM issues reported by Bosch et al. [4] has revealed interesting information. Our
analysis of the practitioners’ views have discovered the issues that were not reported by
Bosch et al. [4]; while we have also noticed that some of the issues mentioned in [4]
were downplayed by the participants of our focus group. For example, many of the iden-
tified issues of non-technical nature (e.g., mindset change, management support,

3 A tool from BigLever (http://www.biglever.com/)
4 A tool from the pure-systems GmbH (http://www.pure-systems.com/pure_variants.49.0.html)
5 We have performed a similar comparative analysis in which the data from this study and

Bosch et al. [4] were also used. The findings from that comparative analysis have been pub-
lished in [2].That comparative analysis was performed using a coding scheme defined at a
higher level of abstraction than the one used for this study. Despite the data analysis efforts
were led by two different researchers for [2] (i.e., the second author) and for this study (i.e.,
the first author), some overlaps between the findings reported in [2] and in this study, espe-
cially in the section 4 of this study, are unavoidable.

 Variability Management in Software Product Lines: An Investigation 177

organizational structure, and business models) were not particularly emphasized in Bosch
et al. [4]; nor these issues appear to have gained significant attention from other VM re-
searchers as mentioned in Table 4. We also noticed that some of the VM issues described
by Bosch et al. [4] (such as “first class representation of variability”, “late binding deci-
sions”, or “stakeholders concept overlap”) were either ignored or less emphasized by the
participants of our focus group study. One possible interpretation of this can be either
those issues are not that much important anymore or they have already been sufficiently
resolved by existing VM approaches. For example, the issue of first-class representation
seems to have been solved, because many approaches (e.g., COVAMOF [25] and OVM
[20]) have advocated first-class citizenship of variability. However, it is difficult to make
any conclusive remarks about our comparative findings because some of the VM chal-
lenges identified by others might have gone unmentioned because our sample size was
too small to be expected to cover an exhaustive list of VM challenges.

In summary, the findings from this study provide useful information about and
practice-based insights into the VM challenges in SPLE. These findings also not only
confirm many of the VM issues reported by Bosch et al. [4] but also identify more
challenges that practitioners appear to face while managing variability in SPL. Many
VM challenges discovered by analyzing the perceptions of the participants of this
study tend to be neglected by the VM researchers. This study has also revealed that
some of VM issues reported by Bosch et al. [4] might have been solved; for example,
the participants did not mention any problem in “first-class representation of variabil-
ity”, which was reported as a challenges by Bosch et al. [4]. The findings highlighting
the importance of dealing with previously not much emphasized challenges such as
“Non-technical issues” or “scalability” can be used by researchers to carve out new
research agenda and directions for VM research efforts. We also expect that the re-
sults from this study will encourage researchers to carry out more studies in order to
determine and understand the key problems in managing variability and the socio-
technical factors that can facilitate or hinder the successful technology transfer of the
outcomes of the VM research to industry.

5 Limitations

Like any empirical study, this study also has certain limitations. Our study was con-
ducted with participants having different roles in different companies' SPL initiatives.
Hence, the results are limited to the respondents’ knowledge and beliefs about the chal-
lenges and issues involved in VM throughout the SPLE lifecycle. This situation can
cause problems when practitioners’ perceptions may be inaccurate. However, like the
researchers of many studies based on opinion data (e.g., [1, 18]), we also have full con-
fidence in our findings because we have collected data from practitioners working in
quite diverse roles and directly involved in SPL activities within their organizations.
Sample size may be another issue as we had only 11 participants from 11 organizations
in 3 focus group sessions. To gain a broader representation of industrial challenges of
VM in SPL, more practitioners and organizations need to be included in a future study.
But we hope that a reader may be able to identify the challenges and some of the dis-
cussed solutions from the literature that are transferable to his/her environment. Despite
the abovementioned and potentially other limitations of this empirical study, the find-
ings from this study are expected to provide useful information about the VM issues that
are perceived to be unsolved and challenging by the participants of our study.

178 L. Chen and M.A. Babar

6 Conclusions and Future Work

Effective and efficient management of variability is vital to achieve the large-scale
reuse promised by the software product line paradigm. The overall goal of our re-
search is to investigate the contemporary industrial challenges of VM in SPL after
almost 20 years of research and practice. To achieve this objective, an empirical study
using focus group as the data collection method was designed and executed to explore
practitioners’ experience and perceptions about the VM challenges in SPL.

This research has gathered empirical evidence to update and advance the knowl-
edge about the VM challenges faced by practitioners. The findings of the study high-
lighted several technical issues, i.e., handling complexity, knowledge harvest and
management, extracting variability from technical artifacts, evolution of variability,
variability modeling and documentation, design decisions management and enforce-
ment, tool support, and testing of artifacts with variability. Especially, the findings of
the study shed light on non-technical challenges (i.e., issues regarding people, mindset
change, management support, organizational structure, and business model) faced by
practitioners in their daily practice of SPL. These non-technical challenges appear to
have been hardly addressed by existing VM approaches, which seem to be mainly fo-
cused on technical aspects of VM [2, 5, 7-8].

The research results presented here can help researchers to identify the areas that
demand further research; especially the results revealed and highlighted several ne-
glected areas of research (e.g., tackling various non-technical challenges). Practitio-
ners can also benefit from the findings. For example, the practitioners who are going
to adopt a software product line approach can know the variability management chal-
lenges that they need to be aware of; for practitioners who have already adopted a
SPL approach, the synthesized list of challenges can help them to get an understand-
ing on what challenges their colleagues are facing, thus they can be more knowledge-
able about the neglected issues in their own organizations.

Acknowledgements

We sincerely thank the participants of our focus group discussions. We gratefully
thank Dr. Nour Ali for participating in the design of the sequence of questions to be
asked during the focus group sessions and her help during execution of the study. We
are also thankful to all other colleagues who helped us to conduct the study. The first
author sincerely thanks Mr. Klaas-Jan Stol and Dr. Deepak Dhungana for reviewing
early drafts of this paper. This work is supported, in part, by Science Foundation Ire-
land grant 03/CE2/I303_1.

References

[1] Ali Babar, M., Bass, L., Gorton, I.: Factors Influencing Industrial Practices of Software
Architecture Evaluation: An Empirical Investigation. In: Overhage, S., Szyperski, C.,
Reussner, R., Stafford, J.A. (eds.) QoSA 2007. LNCS, vol. 4880, pp. 90–107. Springer,
Heidelberg (2008)

 Variability Management in Software Product Lines: An Investigation 179

[2] Ali Babar, M., Chen, L., Shull, F.: Managing Variability in Software Product Lines.
IEEE Software 27(3), 89–91, 94 (2010)

[3] Bachmann, F., Clements, P.: Variability in Software Product Lines, Tech. Report
CMU/SEI-2005-TR-012, Software Engineering Institute, Pittsburgh, USA (2005)

[4] Bosch, J., et al.: Variability Issues in Software Product Lines. In: Software Product-
Family Engineering (PFE 2001), pp. 13–21. Springer, Heidelberg (2002)

[5] Cawley, C., Chen, L., Ali Babar, M.: A systematic review of the research on variability
management in software product lines, Tech. Report Lero, University of Limerick, Ire-
land (2008)

[6] Chen, L., Ali Babar, M.: A Survey of Scalability Aspects of Variability Modeling Ap-
proaches. In: Workshop on Scalable Modeling Techniques for Software Product Lines at
SPLC 2009, San Francisco, CA, USA (2009)

[7] Chen, L., Ali Babar, M., Ali, N.: Variability Management in Software Product Lines: A
Systematic Review. In: Proceedings of the 13th International Software Product Line
Conference (2009)

[8] Chen, L., Ali Babar, M., Cawley, C.: A Status Report on the Evaluation of Variability
Management Approaches. In: Proceedings of the 13th International Conference on
Evaluation and Assessment in Software Engineering. British Computer Society (2009)

[9] Haugen, Ø.: Common Variability Language Request for Proposal – CVL RFP,
http://www.omgwiki.org/variability/lib/exe/fetch.php?id=
start&cache=cache&media=cvl-rfp-091209.pdf (Last accessed on March 10)

[10] Kang, K.C., et al.: Feature-Oriented Domain Analysis (FODA) Feasibility Study, Tech.
Report CMU/SEI-90-TR-021, SEI (1990)

[11] Kasunic, M.: Synthesis: A reuse-based software development methodology, Process
Guide, Version 1.0. Tech. Report Technical Report, Software Productivity Consortium
Services Corporation (1992)

[12] Kishi, T., Kang, K.-C.: Scalable Modeling Techniques for Software Product Lines
(SCALE 2009) - Bridging the Gap between research and practice. In: Proceedings of the
13th International Software Product Line Conference, pp. 311–312 (2009)

[13] Kontio, J., Lehtola, L., Bragge, J.: Using the focus group method in software engineer-
ing: obtaining practitioner and user experiences. In: Proceedings of 2004 Int’l. Sympo-
sium on Empirical Software Engineering, pp. 271–280 (2004)

[14] Krippendorff, K.: Content Analysis: An Introduction to Its Methodology, 2nd edn. Sage
Publications, Inc., Thousand Oaks (2003)

[15] Van der Linden, F.J., Schmid, K., Rommes, E.: Software Product Lines in Action: The
Best Industrial Practice in Product Line Engineering. Springer, New York (2007)

[16] Loesch, F., Ploedereder, E.: Optimization of Variability in Software Product Lines. In:
Proceedings of the 11th International Software Product Line Conference, pp. 151–162.
IEEE, Los Alamitos (2007)

[17] Medvidovic, N., Dashofy, E.M., Taylor, R.N.: Moving architectural description from un-
der the technology lamppost. Information and Software Technology 49(1), 12–31 (2007)

[18] Niazi, M., Wilson, D., Zowghi, D.: A framework for assisting the design of effective
software process improvement implementation strategies. Journal of Systems and Soft-
ware 78(2), 204–222 (2005)

[19] Park, S., Kim, M., Sugumaran, V.: A scenario, goal and feature-oriented domain analysis
approach for developing software product lines. Industrial Management + Data Sys-
tems 104(4), 296–308 (2004)

[20] Pohl, K., Böckle, G., van der Linden, F.J.: Software Product Line Engineering: Founda-
tions, Principles and Techniques. Springer, New York (2005)

180 L. Chen and M.A. Babar

[21] Pohl, K., Metzger, A.: Software product line testing. Commun. ACM 49(12), 78–81
(2006)

[22] Rabiser, R., Grünbacher, P., Dhungana, D.: Requirements for product derivation support:
Results from a systematic literature review and an expert survey. Information and Soft-
ware Technology 52(3), 324–346 (2010)

[23] Schmid, K., Babar, M.A., Grünbacher, P., Nonaka, M.: The Second International Work-
shop on Management and Economics of Software Product Lines (MESPUL 2008), Pro-
ceedings of the 12th International Software Product Line Conference, pp. 386–386
(2008)

[24] Seaman, C.B.: Qualitative methods in empirical studies of software engineering. IEEE
Transactions on Software Engineering 25(4), 557–572 (1999)

[25] Sinnema, M., Deelstra, S., Nijhuis, J., Bosch, J.: COVAMOF: A Framework for Model-
ing Variability in Software Product Families. In: Nord, R.L. (ed.) SPLC 2004. LNCS,
vol. 3154, pp. 197–213. Springer, Heidelberg (2004)

[26] Strauss, A.C., Corbin, J.: Basics of Qualitative Research: Grounded Theory Procedures
and Techniques, 2nd edn. Sage Publications, Inc., Thousand Oaks (1990)

[27] van Deursen, A., de Jonge, M., Kuipers, T.: Feature-Based Product Line Instantiation Us-
ing Source-Level Packages. In: Chastek, G.J. (ed.) SPLC 2002. LNCS, vol. 2379, pp.
19–30. Springer, Heidelberg (2002)

[28] Ye, H., Liu, H.: Approach to modelling feature variability and dependencies in software
product lines. IEE Proceedings Software 152(3), 101–109 (2005)

Consistent Product Line Configuration across
File Type and Product Line Boundaries�

Christoph Elsner1, Peter Ulbrich2, Daniel Lohmann2,
and Wolfgang Schröder-Preikschat2

1 Siemens Corporate Research & Technologies, Erlangen, Germany
2 Friedrich-Alexander University Erlangen-Nuremberg, Germany

christoph.elsner.ext@siemens.com,

{ulbrich,lohmann,wosch}@cs.fau.de

Abstract. Creating a valid software configuration of a product line

can require laborious customizations involving multiple configuration file

types, such as feature models, domain-specific languages, or preproces-

sor defines in C header files. Using configurable off-the-shelf components

causes additional complexity. Without checking of constraints across file

types boundaries already at configuration time, intricate inconsistencies

are likely to be introduced—resulting in product defects, which are costly

to discover and resolve later on.

Up to now, at best ad-hoc solutions have been applied. To tackle

this problem in a general way, we have developed an approach and a

corresponding plug-in infrastructure. It allows for convenient definition

and checking of constraints across configuration file types and product

line boundaries. Internally, all configuration files are converted to mod-

els, facilitating the use of model-based constraint languages (e.g., OCL).

Converter plug-ins for arbitrary configuration file types may be inte-

grated and hide a large amount of complexity usually associated with

modeling. We have validated our approach using a quadrotor helicopter

product line comprising three sub–product-lines and four different con-

figuration file formats. The results give evidence that our approach is

practically applicable, reduces time and effort for product derivation (by

avoiding repeated compiling, testing, and reconfiguration cycles), and

prevents faulty software deployment.

1 Introduction and Motivation

Creating consistent configurations for larger-scale product lines often is a labo-
rious task affecting various types of configuration files with subtle dependencies.
Whereas customer-visible variability might be bound via selecting options in
a feature model, the deployment of software to physical nodes may reside in
domain-specific models or text files [10], while fine-tuning is done via preproces-
sor variables in C header files. Choosing certain features in the feature model may
� This work was partly supported by the German Research Council (DFG) under

grants no. SCHR 603/4 and SCHR 603/7-1.

J. Bosch and J. Lee (Eds.): SPLC 2010, LNCS 6287, pp. 181–195, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

182 C. Elsner et al.

impede certain choices in the domain-specific model, while setting a preprocessor
variable in turn may presuppose a feature to be set. Configuration complexity in-
creases even further when employing configurable off-the-shelf components (e.g.,
Apache, Oracle) or when building combined products including other product
lines, which in turn expose their variability via certain configuration file formats.

One solution often recommended and applied to ease product configuration is
to explicitly limit the scope of the product portfolio by offering only a small sub-
set of possible configurations to the customer. When strictly applied, it is possible
to use a single top-level configuration file (e.g., a feature model configuration)
and automatically generate all the remaining configuration files no matter which
format [4]. However, a very common scenario in industry [6] is that a customer
actively negotiates the characteristics of the product. This makes application
engineering a laborious task requiring implementation of additional modules,
but also fine-grained configuration and customization at various locations with
subtle, implicit dependencies. In such a case, a predefined subset of products,
configurable via a single entry point, is not realistic.

Consistency constraints that span different configuration file types need to be
enforced at configuration time to prevent inconsistencies, in particular if the mis-
configuration is known to manifest only sporadically during runtime (e.g., due to
race conditions). One promising approach for consistency checking is to transform
all configuration files into a common representation and use constraint-checking
languages. Model-based development offers powerful constraint languages, such
as OCL [13] or XPand Check [21], and asserts that virtually every artifact may
be transformed into a model [3]. In fact, for various file types, there do exist con-
verters or converter frameworks into the modeling world, for example, for textual
grammars (XText [22]) or XML files (XMLSchema [9]). However, combining all
these single frameworks in an ad-hoc manner for a specific product line in order to
check constraints is a considerable amount of work. A product line engineer famil-
iar with a particular domain (e.g., embedded systems) might not be a modeling
expert as well, who is able to set up, combine, and tame all the modeling technolo-
gies and tools. Moreover, such an infrastructure should be developed in a generic
way in order to apply it to various product lines. Up to now, at best ad-hoc solu-
tions for doing constraint checking are applied in industry. As we have argued in
a previous paper [8], a general approach for constraint checking across arbitrary
configuration file types is missing.

To tackle this problem, we have developed an approach and corresponding tool-
ing for an extensible constraint-checking infrastructure. It supports scenarios
where multiple configuration file types are involved, which may even be spread
over several sub–product-lines and off-the-shelf components. Our infrastructure
provides for comfortable definition and checking of constraints independently of
the configuration file type used and achieves this by transforming all configuration
files to models in a transparentway. We have alreadydeveloped plug-ins for several
file types (such as feature models, XMLSchema, Ecore [9], KConfig, C preproces-
sor defines) and support different constraint definition languages (OCL, XPand
Check). Arbitrary file formats may be supported—by writing converter plug-ins

Consistent Product Line Configuration across File Type 183

for transforming configuration formats into the internally used modeling format
(Eclipse Ecore). We have applied our approach to a quadrotor helicopter prod-
uct line (I4Copter) comprising three sub–product-lines and four different config-
uration file formats. By discovering and resolving inconsistencies at configuration
time, we could considerably reduce the time and effort for product derivation. De-
tecting them at later stages of product derivation—at compile time, testing time,
or after deployment—, as it was necessary beforehand, was far more costly.

After introducing the I4Copter product line and its configurability as a con-
crete scenario guiding through the paper in Section 2, we contribute a practice-
oriented approach for mapping configuration files of different types to models
(Section 3). Then, we account for our generic, extensible constraint-checking
framework, which provides comfortable means for constraint definition while
minimizing the necessary knowledge about model-based development for the
product line developer and the configuration engineer (Section 4). Sections 5
and 6 report on its application to the I4Copter and the achieved results. Finally,
we discuss our approach and related work (Sections 7 and 8).

2 Scenario: Quadrotor Helicopter Product Line

The evaluation platform for our product line research is the I4Copter [19] quadro-
tor helicopter, which has been designed and developed to resemble embedded
real-time systems arising in real-world product line scenarios. The I4Copter soft-
ware product line comprises three sub–product-lines: one product line for appli-
cation logic, which also models the interface to the hardware (CopterSwHw),
the commercial operating system product line PXROS 1, and, as an alternative
operating system product line, the department-internal CiAO [11].

The CopterSwHw product line is implemented in C++; various software fea-
tures are optional and alternative (approximately 50 features in total). There are
several hardware variants of the I4Copter, comprising different frames, sensors,
and actuators, so that the hardware as well forms a product line. The software de-
pends on information about the available hardware components (approximately
60 features). Both the software part and the available hardware components of
the CopterSwHw product line are configured via C preprocessor directives.

The application logic may run either on the operating system product line
PXROS or on CiAO. For configuring PXROS (tasks and other parameters), a
simple textual domain-specific language (DSL) is used, out of which a generator
creates the corresponding C start-up code. While PXROS is more reliable and
mature, the department-internal operating system product line CiAO is much
more versatile. It uses pure::variants [2] feature models for configuring various
functional and architectural properties and comprises an own XML dialect, de-
fined in XMLSchema, for configuration of operating system tasks.

Domain-specific configuration constraints of the I4Copter span several files
and are therefore hard to enforce (see also Figure 1). When equipping the hard-
ware with an acceleration sensor using the Serial Peripheral Interface (SPI) bus,
1 HighTec EDV Systeme GmbH - http://www.hightec-rt.com/

http://www.hightec-rt.com/

184 C. Elsner et al.

PXROSCopterSwHw CiAO

…
#defineAC_PRESENT
...

…
#defineAC_DRIVER
...

Tasks : [
{
name: “SPITask”
...
},…
]

…
<task ...
name=”SPITask”>
…
</task>
...

CiAO

...

kernel_pip

...

.h DSL.h XML FM

#ifdef AC_DRIVER

…

#endif // AC_DRIVER

.cpp

startup(){
…
task_t t1=…
t1.name=“SPITask”;
...
}

.c

setup(){
…
Task[] tasks={…,
{…, “SPITask”,…}};
...
}

.cpp

aspect KernelPIP(){
pointcut ...
advice ...
}

.ah

describes configures affects
generation

affects
generation

affects
inclusion

suggests
requires

requires
requires

XOR

C
on
fig
ur
at
io
n

C
on
fig
ur
ed
P
ro
du
ct

Fig. 1. Exemplary domain constraints within the I4Copter product line

for example, this has to be described in the corresponding hardware header file
(AC PRESENT). The application software product line usually would (although
not necessarily!) be configured with the corresponding sensor device driver in
the software header file (AC DRIVER). Using any SPI device requires that an SPI
bus controller software module is present, which is implemented as an operat-
ing system task. Thus, a corresponding operating system task (SPITask) needs
to be initialized appropriately either by using the DSL of PXROS or the XML
language of CiAO. When choosing CiAO as the operating system, further con-
figuration details need to be enforced, as CiAO is highly configurable. When
including the SPITask, it must be ensured that it sends its messages to the bus
with the same priority as the task that triggered the message. This requires se-
lecting an appropriate priority mechanism in the feature model configuration,
for example the priority inheritance mechanism (kernel pip).

There exist various of such domain-specific constraints in the I4Copter prod-
uct line. Some are rather recommendations or warnings, others are mandatory.
The constraints span several different configuration file types and product lines.
This makes the configuration of the I4Copter product line sufficiently complex
to resemble the challenges faced in industrial-scale embedded systems develop-
ment. We will return to the I4Copter as an illustrative example when we explain
the general approach, its architecture, and validation.

3 Product Line Configuration and Modeling

Our approach is based on the assumption that every artifact involved in product
line configuration has a corresponding representation in the modeling world [3].

Consistent Product Line Configuration across File Type 185

Basically, the configuration of a concrete product is described by its set of con-
figuration files. The product line itself defines, either implicitly or explicitly, the
set of configuration file types it can deal with. As mapping of product lines and
configurations into the modeling world is not without pitfalls, we will now first
introduce general modeling terminology and then explain details how we perform
the mapping of configuration files and configuration file types.

3.1 Modeling Terminology

A model is a formal abstraction of a concept (e.g., a physical system or software)
describing its concrete entities and relationships [16]. A model is abstract in the
way that it is not tied to a certain textual or graphical representation. The
formal rules, which specify the entity and relationship types allowed in a certain
model, are provided by its metamodel. As an example, a simple metamodel for
modeling operating system tasks will comprise the root entity type TaskList,
which contains an arbitrary number of Task elements, which in turn have a name
element of type string and a priority of type integer. A model conforming to
this metamodel, for instance, defines a concrete TaskList comprising exactly one
Task with name = "SPITask" and priority = 1. For specifying metamodels, a
metamodeling technology is used (e.g., our implementation uses Eclipse Ecore).

Within one metamodeling technology, it is possible to define constraints,
such as the SPI bus constraints described in Section 2, in a formal, machine-
interpretable way. Common examples for such languages are OCL and XPand
Check. Constraints on models usually are specified using the elements defined in
the metamodel. For example, a constraint on a task model can leverage the fact
that each TaskList has a number of Tasks, which in turn have a name and a pri-
ority. Querying whether there is any Task called “SPITask” for the whole system
can therefore be formulated very concisely, for example in XPand Check, which
implicitly iterates over sets: myTaskList.tasks.name.contains("SPITask").
Subsequently, we will describe how we map product lines and their configura-
tions into the modeling world, that is, to metamodels and models.

3.2 Mapping Product Line Configurations to Models

A configuration file is an artifact that specifies the characteristics of a prod-
uct (e.g., a web-server configuration file, C header files, but also domain-specific
model and text files). A configuration file therefore corresponds to a model. The
elements and the relations allowed in the configuration file (i.e., the abstract
syntax part of the configuration file type exempt from its concrete syntax) cor-
respond to what is the metamodel of this model. Accordingly, a configuration of
a product line can be seen as a set of models, the product line itself as a set of
metamodels. Although the mapping is straight-forward, it is still open how to
actually derive metamodels from a product line.

We distinguish two classes of configuration file types, which differ in the way
to derive their metamodel. Firstly, there are those for which the product line

186 C. Elsner et al.

already provides an explicit specification file that can be converted to a product-
line–specific metamodel. Secondly, there are those where this is not the case, and
only a less expressive, generic metamodel can be used.

Product-Line–Specific Metamodels via Specification File. Some product
lines comprise an explicit specification of what is a valid configuration file for
them. For example, the CiAO product line defines the format for a valid task
configuration XML file in XMLSchema. For PXROS, we developed a simple
textual grammar specifying which constructs are valid in its domain-specific
configuration file. Feature models can be interpreted as metamodels as well [17].
Finally, model-driven product lines specify their metamodels explicitly (e.g.,
[20]). Tools that map specification files to product-line–specific metamodels are
already available in many cases, for instance, for XMLSchema files and for XText
grammars there exist converters that derive the corresponding Ecore metamodels
[9,22].

Generic Metamodels Without Specification File. There are, however, also
configuration files that lack any expressive and formal specification of what the
valid constructs are in the context of one particular product line. This is, for
example, the case for Java property files and for C header files containing pre-
processor defines. In principle, arbitrary identifiers may be set to arbitrary values
in a preprocessor define statement, such as #define AC PRESENT 1. Which de-
fines are necessarily required, optional, or unused, or what the permissible value
ranges are for a particular product line, is not specified explicitly and can only
be discovered by reading source code or documentation. Although a product
line engineer could use this information to reconstruct a product-line–specific
specification file (e.g., an XText grammar), this often will not be the case.

We therefore see the need to map certain file types to less expressive generic
metamodels. For a C header file with preprocessor defines, for example, such
a metamodel will only specify that a DefineList contains an arbitrary num-
ber of DefineStatements having an identifier of type string and a value of
type string. This fact makes defining explicit constraints more chatty and error-
prone. For example, having a specific metamodel, a constraint on the debug-
level define may be formulated very concisely: copterSwHw.debugLevel == 1.
Having only a generic metamodel, one needs to query the define value in a re-
flective way: copterSwHw.getPropByName("debugLevel").toInteger() == 1.
However, the simplicity of such a generic metamodel also has one benefit: it can
be reused across product line boundaries very easily.

Wrap-Up. To sum up, it is possible to map all configuration file types to meta-
models and the corresponding configuration files to models. Tooling for con-
version either exists or may be developed. However, combining all these single
technologies and tools in an ad-hoc manner for a specific product line in order to
check constraints is not appropriate. We will therefore present a corresponding
generic tool framework in the next section.

Consistent Product Line Configuration across File Type 187

4 Product Line Constraint-Checking Framework

In this section, we present the PLiC (Product Line Configuration) framework,
which allows for constraint-checking across product line boundaries and config-
uration file types, while minimizing the required modeling knowledge of product
line and configuration engineers. The PLiC framework is implemented as an
Eclipse extension and enriches the integrated development environment with
a builder component, which performs model conversion and validation in the
background when a configuration artifact changes within the workspace. Both
model converters (for specific configuration file types) and model validators
(for evaluating constraints of different checking languages) have been imple-
mented using the Eclipse extension point mechanism. Thus, additional config-
uration file types and constraint-checking languages can be implemented and
integrated easily.

We will describe the builder, the converters and validators that are already
available, and the extensibility of the PLiC framework later in this section. First,
we address the concepts that end users have to deal with.

4.1 End User View on the PLiC Framework

There are two roles of end users: product line engineer and configuration engineer
(cf. Figure 2). The former declares the set of possible configuration file types in
a so called PLiCFacade model (step 1) and implements the domain constraints
(step 2). The configuration engineer, in turn, creates the PLiCInstance model
(step 3), which specifies the locations of the configuration files. The PLiC frame-
work than permanently enforces the constraints on the configuration (step 4).

The PLiCFacade model. Within the PLiCFacade model (cf. Figure 3), the
product line engineer declares three distinct sets of elements: the plug-ins re-
quired (PLiCPlugins), the configuration file types the product line can deal with
(ConfigFileTypes), and references to other sub–product-lines (PLiCFacadeRefs).
A PLiCPlugin has a unique ID to identify the plug-ins installed in the work-
bench. It may either be a Validator or a Converter. A Validator is parameter-
ized with the path to a file (or directory) containing the set of constraints to
check. Converters, finally, exist in two flavors. SpecificConverters (in analogy

PLiC Framework

Product Line

MM

Product Line Configuration

Product Line
Engineer

Configuration
Engineer

PLiCFacade Model

Spec
Implicit and Explicit
Configuration File Types

CS
Constraints

PLiCInstance Model

ConfConfiguration Files

(1) creates

(2) creates

(3) creates
specifies

locates

MMMM MMMMM
Converted
Metamodels

Converted
Models

(4) enforces
constraints

Fig. 2. Product line engineer and configuration engineer using the PLiC framework

188 C. Elsner et al.

PLiCFacade PLiCInstance

+theMetamodel :
Metamodel
-.

ConfigFileType
+configFile : URI
+theModel : Model

ConfigFile

+pluginID : ID
PLiCPlugin +validationFile : URI

Validator

Converter

SpecificConverter

GenericConverter

+confSpecFile : URI
SpecificConfigFileType

GenericConfigFileType

conformsTo

Product Line Scope Configuration Scope

+ref : PLiCFacade
PLiCFacadeRef

+ref : PLiCInstance
PLiCInstanceRefconformsTo

co
nv
er
te
r
co
nv
er
te
r

Fig. 3. First, the product line engineer defines a PLiCFacade model for each product

line. It declares the plug-ins used, the configuration file types available, and references

to other PLiCFacades. The configuration engineer, in turn, defines the corresponding

PLiCInstance model. It specifies the locations of the actual configuration files and

references to other PLiCInstances.

to Section 3.2) convert a specification file to a product-line–specific metamodel.
A GenericConverter simply provides a single, nonspecific metamodel (e.g., a
C preprocessor define metamodel), that can be used in various product lines.

Accordingly, ConfigFileTypes are either specific or generic. In case of a Speci-
ficConfigFileType, the engineer needs to provide the URI to a specification file
(XMLSchema, grammar, etc.) that may be transformed via the referenced Speci-
ficConverter. For GenericConfigFileTypes, this is not necessary as the metamodel
of the referenced GenericConverter is generic and fixed.

The PLiCInstance model. In the PLiCInstance model, the configuration en-
gineer first references the corresponding PLiCFacade model it conforms to. Then
he declares all configuration files and their URIs within the file system (Config-
Files). Each ConfigFile needs to reference the ConfigFileType it corresponds to.
Finally, the configuration engineer draws the references to other used PLiCIn-
stances (sub–product-line configurations).

4.2 Builder

The builder plug-in works in the background and is invoked on each change in
the workspace. It keeps the created metamodels and models up to date, invokes
the constraint checks, and displays the check results. It builds all projects in a
linear order according to their project dependencies.

The builder achieves the actual conversion to metamodels and models by in-
voking the appropriate converter plug-ins. It stores the metamodels and models

Consistent Product Line Configuration across File Type 189

in the file system and sets references to them using the theMetamodel and the-
Model member variables of all ConfigFileTypes and ConfigFiles (cf. Figure 3).
Doing so, the PLiCFacade and PLiCInstance models provide single entry points
for performing constraint checks. Eventually, the constraints checks referenced
in the PLiCFacade model (via Validator elements) are evaluated on the PLiCIn-
stance model calling the appropriate validator plug-ins. Subsequently, we will
describe the development of converter and validator plug-ins.

4.3 Converters

Converter plug-ins perform the actual conversion to metamodels and models
and need to implement certain interfaces. A generic converter needs to provide
one method for querying its fixed metamodel and one for converting a configu-
ration file to a model conforming to the metamodel. A specific converter works
similar, however has, as an additional parameter, in each of its methods the
specification file, which defines the product-line–specific metamodel.

Up to now, we have developed two generic converters and five specific convert-
ers. The generic converters comprise a converter for files containing statements of
the form #define <ID> <Value> as output by the GNU compiler gcc when in-
voked over the source code with certain parameters. Furthermore, we developed
a converter for property-value files, as common for Java.

The specific converters create metamodels for specification files in Ecore,
XMLSchema, and XText textual grammars. EMF already provides Java APIs for
this purpose, whose complexity is hidden behind the lean converter interfaces. Fur-
thermore, we developed a specific converter for pure::variants feature models. We
intentionally keep the metamodel generated from a feature model simple. In par-
ticular, we ignore any hierarchical or dependency information of features and only
create one metamodel element for each feature, having the same attributes as the
feature. Actually, this is the only information necessary for constraint checking,
as the configuration editor of pure::variants will ensure that constraints defined
within the feature model itself are adhered to. Finally, we developed a specific
converter that generates a metamodel from KConfig files, which are used, for ex-
ample, to specify the configuration options of the Linux kernel.

4.4 Validators

A validator plug-in evaluates the constraints for a certain constraint definition
language. The corresponding interface comprises only one method, which receives
the PLiCInstance object to check and the file containing the constraint rules
and returns detailed information on warnings and errors that occurred during
validation of the models. Note that the builder (cf. Section 4.2) has enriched the
PLiCInstance object by setting the theModel property of each ConfFile element
to the built models. Doing so, the PLiCInstance provides a single entry point to
all generated models possibly subject to checking.

Currently, we provide two validator plug-ins, one for defining constraints in
the OMG Object Constraint Language (OCL) [13] and one for the XPand Check

190 C. Elsner et al.

language [21]. Examples for constraints will follow in the next section, where we
will present the application of the PLiC framework to the I4Copter.

5 Application Scenario: I4Copter

We have evaluated the approach and the PLiC framework with the I4Copter
product line described in Section 2. Six steps need to be performed in general
for any product line: (1) identify configuration file types, (2) select or develop
converters, (3) create PLiCFacade projects and models, (4) define initial con-
straints, (5) configure products using PLiCInstance projects and models, and
(6) constantly maintain and improve constraints during product line evolution.

1. Identify configuration file types. The first step is to identify the con-
figuration file types of each involved product line and configurable component.
Section 2 already comprises this task for the I4Copter. It comprises a hardware
product line tangled with an application logic product line, both configured via
header files. The operating system PXROS is configured via a configuration file
DSL, while the operating system product line CiAO uses an XML dialect defined
in XMLSchema and a pure::variants feature model for configuration.

2. Select or develop converters. The initially developed converters (cf. Sec-
tion 4.3) resemble the needs of the I4Copter product line. We use the preprocessor-
based generic converter for extracting models from C header files. For convert-
ing PXROS’ DSL configuration files, we have developed a simple grammar (less
than 20 rules) for XText, which we use to derive a corresponding metamodel and
a parser for converting a configuration file into a model. For the task configura-
tion file specified in XMLSchema and the pure::variants feature model, we use the
corresponding specific converters as well.

3. Create PLiCFacade projects and models. At this point, the product
line engineer creates a new Eclipse PLiCFacade project (or converts the existing
project) for each product line. Each project needs to provide exactly one PLiC-
Facade model file describing the required converter and validator plug-ins, the
configuration file types, and possibly the location of corresponding specification
files, as well as references to sub-facades.

4. Define initial constraints. For constraint definition, the product line engi-
neer chooses (or possibly develops) validator plug-ins for the checking languages
to use. For I4Copter, we only make use of the XPand Check language, as the
tooling support in Eclipse is far better than for OCL. In particular, the XPand
editor has an excellent code completion facility, which can be configured to load
all generated metamodels. This eases the definition of constraints considerably.
Furthermore, we generate additional helper functions for easy navigation through
PLiCInstances and generated models. Thus, we can query, for example, the max-
imum priority of tasks defined in the CiAO feature model from the top level
I4Copter product line configuration using the following string leveraging code
completion support: ciAOInstance().fmConf().kernel.maxTaskPriority.

Consistent Product Line Configuration across File Type 191

Fig. 4. Using the PLiC framework we specified the configuration dependencies of an

acceleration sensor in the XPand Check constraint language

Figure 4 shows the XPand Check code necessary to encode the constraints
regarding the selection of a sensor using the SPI bus as motivated textually in
Section 2. The example constrains span define files, XML and DSL files, as well as
feature model configurations. Note that, for a consistent configuration, each con-
straint needs to evaluate to true. By initially interviewing the I4Copter experts,
we were able to find various other obligatory and recommending constraints.

5. Configure products using PLiCInstance projects and models. Having
defined the PLiCFacade and the initial constraints, the product line configura-
tion engineer can start configuring a product. This works via creating a new
PLiCInstance project in Eclipse and filling its PLiCInstance model, which basi-
cally contains the locations of configuration files in the file system. The builder
component now constantly observes the configuration files, converts them to
models on each change and checks the constraints defined in the previous phase
in a background process. If constraints evaluate to false, the textual messages
associated with them (the error and warning strings in Figure 4) are displayed
in the Eclipse problems view, and the configuration engineer gets immediate
feedback and advice.

6. Constantly maintain and improve constraints during evolution. The
more domain knowledge is encoded in formal constraints, the more powerful our
approach is. When the product line engineer constantly maintains and improves
the set of constraints, and the configuration engineer contributes as well with
constraints gathered during configuration creation, our framework can give help-
ful guidance and considerably shortens time and cost of product configuration.

6 Results

Introducing our approach to the I4Copter was little effort. Setting up the PLiC
framework and performing an initial workshop for constraint mining and

192 C. Elsner et al.

formulation took less than a day. While, during the workshop itself, only few
constraints where actually defined, the I4Copter engineers got a feeling for the
potential of the approach and delivered several dozens of constraints in pseudo
code within the following days. We translated the pseudo code into XPand
Check, and—via learning by example—the I4Copter experts rapidly grasped the
relevant concepts and formulated the constraints in XPand Check themselves.

The recent introduction, however, impedes giving exactnumbers on theachieved
improvements. Furthermore, the success of our approach relies on various interde-
pendent factors, such as the complexity of the product line, the quality and number
of constraints, and the duration and rate of product derivations, so individual re-
sults are hardly transferable. We can, however, give anecdotal evidence that led
configuration engineers to the estimation that derivation time (start of configura-
tion to successful deployment) could be reduced by half with the currently defined
constraints. Each avoided compiler run due to a triggered constraint saves up to
three minutes, software unit testing ten minutes, avoiding software and hardware
testing in the testbed saves a test engineer several hours.

Locating the actual source of a configuration error can be even more time-
consuming. For example, choosing the SPITask but not the priority inheritance
mechanism in CiAO resulted in intermittent errors such as sporadically miss-
ing of deadlines and even fatal deadlocks for the quadrotor system. Detecting
and tracing back this behavior was a thankless, time-consuming task. Although
our constraint infrastructure could not prevent this misconfiguration when it
happened for the first time, the hereupon encoded constraint now directly trig-
gers at configuration time and gives helpful advice for correction, so that this
configuration error can no longer happen.

7 Discussion

In the following, we address several threats to the general applicability of our ap-
proach. Possible issues are the problem of semantic loss when converting among
metamodeling technologies, the modeling expertise required for our approach,
constraint evolution, and the relationship to generative product line approaches.

Semantic Loss. In principle, any formal, parsable file can be translated into
a model and its formal specification into a metamodel. However, even if a con-
verter is written very carefully, there will usually be semantic loss. UML’s MOF,
for example, is far more expressive than Ecore, which we use. But, for the pur-
pose of constraint checking, not all this semantic information is actually needed.
One can even intentionally keep a metamodel simple to simplify checking. As
mentioned, our metamodel converter for feature models does neither preserve the
hierarchy of features nor their dependencies. As the corresponding feature model
configuration tool already enforces these dependencies, converting and checking
them a second time would be unnecessary complicating and redundant.

Required Modeling Expertise. The configuration via PLiCFacade and
PLiCInstance models appears straight-forward to us, and, if desired, the same

Consistent Product Line Configuration across File Type 193

information could also be entered via plain text files or a graphical user inter-
face. So, the only point where modeling expertise is actually needed to a certain
extent is for defining constraints. A product line engineer (but not the config-
uration engineer) has to learn the corresponding constraint language. However,
as argued in Section 5, languages such as XPand Check come with mature,
content-assisting editors minimizing the necessary learning efforts.

Constraint Evolution. If not maintained, the formal constraints defined with
our infrastructure will go out of sync with the actual dependencies within the
software over time. This is, however, a general problem when defining dependen-
cies, and needs to be ensured for dependencies within features in feature models,
as well as for dependencies between #defines (such as, #ifdef DEBUG #define
USE SIMULATED SENSORS ... #endif). Thorough development processes includ-
ing, for example, code reviews and configuration testing, may assist in keeping the
set of constraints consistent.

Generative vs. Constraining Approach. Using constraints for creating valid
configurations does not oppose to using generative technologies. Generating
source code or some of the configuration files that the software requires is often
essential for efficient product derivation. We see our approach as a complement
to the generative strategy in three cases: First, when fine-tuning at various lo-
cation becomes necessary that cannot be anticipated beforehand, second, when
multiple, orthogonal configuration files are needed that cannot be created out
of one another, and, third, when introducing a single top-level configuration file
that basically mirrors all configuration options on the lower levels does not scale.

8 Related Work

Related work can be found both in the field of constraint checking and in large-
scale product line configuration.

Considerable research has been conducted with respect to constraint enforce-
ment involving different types of product line models. In [5], OCL constraints en-
sure thatUMLmodels enrichedwith feature templates result inwell-formedmodels
when parameterized with valid feature model configurations. The authors of [12]
relate feature models and orthogonal variability models to each other to facilitate
automated reasoning on variability. Commonly, existing approaches restrain their
focus on few dedicated model types and do not focus on building a general infras-
tructure. The FAMA tool suite [1] is a notable exception. It also provides an infras-
tructure for importing models and performing analyses on them. In contrast to our
approach, the internally used modeling format is not based on generic metamodel-
ing but on feature modeling. Whereas this considerably limits the types of (config-
uration) files and models that can be imported, the framework provides means for
performing more stringent analyses, for example, for satisfiability via SAT solv-
ing. It would be very interesting to integrate validators of this kind also into our
infrastructure for checking properties on the corresponding subset of model types.

Currently, we evaluate all constraints each time a file is changed and its
model is rebuilt. There is research on efficient algorithms regarding incremental

194 C. Elsner et al.

consistency checking, where only those constraints are reevaluated that actually
may be affected by a change [7]. Up to now, we have not run into any perfor-
mance problems, the builder background process finishes in less than a second for
building all metamodels, models, and evaluating the constraints of the I4Copter.

There are several approaches that deal with multiple product lines and their
configuration. The Koala approach, which is applied in industry, provides for
configuration of large-scale product lines via an architectural description lan-
guage [14]. Approaches stemming from research, for example, use a combination
of class and feature modeling [15] or service-oriented abstraction [18] to config-
ure product lines. One of the main features of our approach is that it is agnostic
to the configuration file type used and can check constraints among arbitrary
configuration files as long as there exists a converter for this.

9 Conclusion and Outlook

With this paper, we have presented an approach and an infrastructure for con-
straint checking across configuration file types and product line boundaries. We
have evaluated our approach using the I4Copter product line, which yielded
promising results for its applicability in similar complex contexts.

As future work, we consider blurring the boundary between constraint-based
and generative strategies by not only checking constraints, but also actually
changing configuration values according to values in other configuration files.
This, however, requires further analyses and tooling. On the one side, it is nec-
essary to identify the cases where automatic changing of configuration values is
reasonable and comprehensible for the configuring engineer, and in which cases
it would rather lead to unforeseen side effects. Furthermore, this approach re-
quires converting the changes on model level back to the source configuration
files. This back-transformation is far more intricate and we need to analyze the
circumstances under which this can successfully be done.

Acknowledgments. We thank Martin Hoffmann for providing insights and
defining various domain constraints within the I4Copter product line and Wanja
Hofer and Christa Schwanninger for their valuable feedback on this paper.

References

1. Benavides, D., Segura, S., Trinidad, P., Ruiz-Corts, A.: FAMA: Tooling a frame-

work for the automated analysis of feature models. In: 1st Int. W’shop on Vari-

ability Modelling of Software-Intensive Systems (VAMOS) (2007)

2. Beuche, D.: Variant management with pure::variants. Tech. rep., puresystems

GmbH (2006),

http://www.pure-systems.com/fileadmin/downloads/

pv-whitepaper-en-04.pdf% (visited 2009-03-26)

3. Bezivin, J.: On the unification power of models. Software and Systems Model-

ing 4(2), 171–188 (2005)

http://www.pure-systems.com/fileadmin/downloads/pv-whitepaper-en-04.pdf%
http://www.pure-systems.com/fileadmin/downloads/pv-whitepaper-en-04.pdf%

Consistent Product Line Configuration across File Type 195

4. Czarnecki, K., Eisenecker, U.W.: Generative Programming. In: Methods, Tools and

Applications, AW (May 2000)

5. Czarnecki, K., Pietroszek, K.: Verifying feature-based model templates against

well-formedness OCL constraints. In: 6th Int. Conf. on Generative Programming

and Component Engineering (GPCE 2006), pp. 211–220. ACM, New York (2006)

6. Deelstra, S., Sinnema, M., Bosch, J.: Product derivation in software product fam-

ilies: a case study. Journal of Systems and Software 74(2), 173–194 (2005)

7. Egyed, A.: Scalable consistency checking between diagrams - the ViewIntegra ap-

proach. In: 16th IEEE Int. Conf. on Automated Software Engineering (ASE 2003).

IEEE Control Systems Magazine, Washington (2001)

8. Elsner, C., Lohmann, D., Schröder-Preikschat, W.: Product derivation for solu-

tiondriven product line engineering. In: 1st W’shop on Feature-Oriented Software

Development (FOSD 2009). ACM, New York (2009)

9. Eclipse modeling framework homepage, http://www.eclipse.org/emf/ (visited

2010-02-22)

10. Kelly, S., Tolvanen, J.P.: Domain-Specific Modeling: Enabling Full Code Genera-

tion. John Wiley & Sons, New Jersey (2008)

11. Lohmann, D., Hofer, W., Schröder-Preikschat, W., Streicher, J., Spinczyk, O.:

CiAO: An aspect-oriented operating-system family for resource-constrained embed-

ded systems. In: 2009 USENIX TC, USENIX, Berkeley, pp. 215–228 (June 2009)

12. Metzger, A., Heymans, P., Pohl, K., Schobbens, P.Y., Saval, G.: Disambiguating

the documentation of variability in software product lines. In: 15th IEEE Int. Conf.

on Requirements Engineering (RE 2007), pp. 243–253. IEEE Computer Society,

Washington (2007)

13. Object Management Group (OMG): Object constraint language, version 2.2.

formal/2010-02-01 (February 2010)

14. van Ommering, R.: Building product populations with software components. In:

24th Int. Conf. on Software Engineering (ICSE 2002), pp. 255–265. ACM, New

York (2002)

15. Rosenmller, M., Siegmund, N.: Automating the configuration of multi software

product lines. In: 4th Int. W’shop on Variability Modelling of Software-intensive

Systems (VAMOS) (January 2010)

16. Stahl, T., Völter, M.: Model-Driven Software Development: Technology, Engineer-

ing, Management. John Wiley & Sons, Chichester (2006)

17. Stephan, M., Antkiewicz, M.: Ecore.fmp: A tool for editing and instantiating class

models as feature models. Tech. rep., University of Waterloo, 200 University Avenue

West Waterloo, Ontario, Canada (August 2008)

18. Trujillo, S., Kästner, C., Apel, S.: Product lines that supply other product lines: A

service-oriented approach. In: First Workshop on Service-Oriented Architectures

and Product Lines. Special Report. CMU/SEI-2008-SR-006 (September 2007)

19. Ulbrich, P.: The I4Copter project – Research platform for embedded and safety-

critical system software,

http://www4.informatik.uni-erlangen.de/Research/I4Copter/ (visited 2010-

02-22)

20. Völter, M., Groher, I.: Product line implementation using aspect-oriented and

model-driven software development. In: 11th Software Product Line Conf. (SPLC

2007), pp. 233–242 (2007)

21. Eclipse XPand homepage,

http://www.eclipse.org/modeling/m2t/?project=xpand (visited 2010-02-22)

22. Eclipse XText homepage, http://www.eclipse.org/Xtext/ (visited 2010-02-22)

http://www.eclipse.org/emf/
http://www4.informatik.uni-erlangen.de/Research/I4Copter/
http://www.eclipse.org/modeling/m2t/?project=xpand
http://www.eclipse.org/Xtext/

Automated Incremental Pairwise Testing of
Software Product Lines

Sebastian Oster1, Florian Markert2, and Philipp Ritter1

1 Real-Time Systems Group
2 Computer Systems Group

Technische Universität Darmstadt, Germany

{sebastian.oster,philipp.ritter}@es.tu-darmstadt.de,
markert@rs.tu-darmstadt.de

Abstract. Testing Software Product Lines is very challenging due to

a high degree of variability leading to an enormous number of possi-

ble products. The vast majority of today’s testing approaches for Soft-

ware Product Lines validate products individually using different kinds

of reuse techniques for testing. Due to the enormous number of possible

products, individual product testing becomes more and more unfeasi-

ble. Combinatorial testing offers one possibility to test a subset of all

possible products. In this contribution we provide a detailed description

of a methodology to apply combinatorial testing to a feature model of

a Software Product Line. We combine graph transformation, combina-

torial testing, and forward checking for that purpose. Additionally, our

approach considers predefined sets of products.

1 Introduction

Various domains already apply Software Product Line engineering successfully
to overcome the well-known needs of the Software Engineering community like
increasing quality, saving costs for development and maintenance, and decreasing
time-to-market [1]. Software Product Lines (SPLs) offer a systematic reuse of
software artifacts within a range of products sharing a common set of features.
The concept of Product Lines is not new and engineers in various domains like
the automotive sector have adopted this concept of development for the last
decades to benefit from the advantages mentioned above. Due to the variability
and the systematic reuse of software components in rather different combinations
and contexts, testing SPLs is very challenging.

One of the most common approaches for SPL testing is to test each product
derived from the SPL individually. In the automotive domain we are running
into a situation where each car of a certain brand has an individual software
configuration. Furthermore, test personnel often has a certain time period to
execute tests and the question arises what should/can be tested during that
period of time. Engineers from the Software Engineering Community and from
various industrial domains are seeking methodologies to reduce the effort of
testing SPLs. Thus, it seems to be promising to have a look at lessons learned in

J. Bosch and J. Lee (Eds.): SPLC 2010, LNCS 6287, pp. 196–210, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Automated Incremental Pairwise Testing of Software Product Lines 197

the field of test case reduction based on parameterization. Combinatorial testing
and especially pairwise testing are well-known approaches in that category.

1.1 Contribution

The contribution of this paper is the introduction of a methodology to apply
pairwise testing to SPLs. This is done by translating the feature model into a bi-
nary constraint solving problem (CSP). We then generate a set of valid products
containing all valid pairs of features. Testing this set of products is equivalent
to pairwise testing the whole SPL. The developed pairwise algorithm can han-
dle dependencies between features and guarantees the generation of valid prod-
ucts containing all valid pairs of features. Additionally, our pairwise algorithm
can process existing products of the SPL ensuring that the pre-selected prod-
ucts are part of the product set realizing pairwise coverage. Our algorithm then
generates products covering all remaining pairs which are not covered by the
pre-selected products. Our approach is presented by means of a cell phone SPL
which serves as a running example. We also briefly introduce our Model-based
Software Product Line Testing framework (MoSo-PoLiTe) which combines pair-
wise testing and provides a concept to derive test cases for the generated set of
products utilizing model-based testing.

1.2 Outline

The remainder of this paper is organized as follows: In the next section we
describe the fundamentals relevant for our approach. In Section 3 we then intro-
duce our Model-Based Product Line Testing framework (MoSo-PoLiTe) which
realizes our combinatorial/pairwise test approach. Furthermore, we describe our
pairwise testing methodology and its integration with the configuration manage-
ment tool pure::variants. Afterwards, we validate our implementation in Section
4. Section 5 summarizes related work especially focusing on SPL-testing and
feature model transformation. Finally, Section 6 summarizes and concludes our
paper and gives an overview of future work.

2 Fundamentals

To depict the functionality of our approach we introduce our running example—
a cell phone SPL based on the Google Android platform. The Android platform
offers a wide variety of functionalities. We use a mixture of existing and self-
developed features in our cell phone SPL. In the remainder of this paper we use
a small subset of our cell phone SPL comprising the following functionalities:

Basic Functions: Making voice calls and sending messages belong to the basic
functionalities of our running example.

Communication: A product of our Cell Phone SPL may contain Bluetooth,
WLAN, and UMTS for additional communication purposes

Extras: An mp3 player or a camera may be part of a cell phone.

198 S. Oster, F. Markert, and P. Ritter

2.1 Software Product Lines and Feature Modeling

In SPL engineering modular software components are reused within a specific
problem domain [1,2]. Feature models (FMs) offer an explicit representation of
the commonalities and variabilities in an SPL [3]. To satisfy this purpose an
FM consists of features which represent logical groups of requirements [4] or, as
defined in [5], “a system property that is relevant to some stakeholder”. FMs are
by themselves insufficient for a complete modeling of an SPL and are usually
supported by development artifacts such as code fragments, UML diagrams, or
function network diagrams that are traced to the corresponding features.

Kang et al. introduced the first FMs comprising mandatory, optional, and al-
ternative features as part of the FODA feasibility study in 1990 [6]. These feature
properties are called node notations. Additionally, it is possible to use textual
require and exclude constraints between features. Those cross-tree dependen-
cies together with the node notation and the hierarchical structure determine,
which combinations of features are permitted to create a product of the SPL [7].
A valid product is always a valid subtree of the corresponding FM. Since the
introduction of FODA, further extensions of FMs were introduced to improve
precision and expressiveness. We use a notation similar to the FODA FM with
an additional or-group and graphical cross-tree dependencies. Fig. 1 depicts the
FM of our running example.

8MP

Basic Functions

Voice Call

Cell Phone

B luetooth UMTSWLAN

Communication Extras

MP3 Cam eraMessage

MMSSMS 3MP

Or 2O r 1

Mandatory

Optional

O rE ither

O r-G roup

A lternative-
G roup

exclude
requ ire

Fig. 1. Feature model of our running example

The features Basic Functions, Messages, Voice Call, and SMS are
mandatory and part of every product derived from the cell phone SPL. The
feature MMS is optional for product instantiation. Communication and its
subfeatures: WLAN, Bluetooth, and UMTS are optional as well. The feature
Extras is mandatory and the underlying or-group prescribe that at least one
element of the or-group (MP3 or Camera) has to be selected. It is also possible
to select both MP3 and Camera within the same product. Either the 3MP (3
megapixel) or the 8MP (8 megapixel) has to be chosen if Camera is included.
Considering the notation and the constraints, 61 valid products can be derived
on the basis of this FM. The FM was added to the FM repository on the SPL
Online Tool website [8] in order to provide it to the community.

Automated Incremental Pairwise Testing of Software Product Lines 199

2.2 Combinatorial Testing

Combinatorial testing is a popular method to decrease the effort for testing sin-
gle systems by reducing the amount of test cases. To prove the correctness of a
program, it needs to be tested with all combinations of possible input parameter
values [9]. Due to the complexity and size of the majority of products, testing
all possible combinations of input parameter values is not feasible. A software
with five different input parameters where each parameter can be initialized
in 10 different ways would require 105 = 100000 different test cases to be val-
idated. Cohen et al. summarize existing approaches for combinatorial testing
distinguishing between mathematical, greedy, and meta-heuristic approaches in
[10]. One of the best-known applications of combinatorial testing is the pairwise
testing approach. This method is based on the assumption that the majority of
faults originate from a single parameter value or are caused by the interaction of
two values [11]. Therefore, pairwise testing generates all possible combinations
of pairs of input parameters. Many algorithms realizing pairwise testing exist;
amongst others AETG [12] and IPO [13] are frequently discussed. Both achieve
a 100% pairwise coverage and result in a very small set of test cases. Therefore,
we implemented a pairwise algorithm similar to those approaches and added
some additional functionalities to apply it to SPLs.

3 Our Approach — MoSo-PoLiTe

The MoSo-PoLiTe framework provides a test framework for SPLs and was ini-
tially developed during the feasiPLe BMBF project [14]. Fig. 2 depicts a rough
overview of the MoSo-PoLiTe testing process. The central component in MoSo-
PoLiTe is the FM of the SPL. It is created on the basis of the SPL requirements
during domain engineering. Since the FM only provides a hierarchical overview
of variable and common functionalities within the SPL it is traced to further
requirement documentation as described by Wübbeke in [15]. For a model-based
test case derivation it is additionally traced to a test model representing the be-
havior of the SPL. The frequently used test model is based on the model-based
testing approach of Weissleder et al. [16]. However, all model-based approaches
for SPLs like ScenTED [17] and CADeT [18] can be used for test case deriva-
tion because our approach results in complete products which need to be tested.
Further model-based testing approaches are summarized in [19]

The scope of this contribution is marked with a dashed line: We aim to gener-
ate a minimal set of products covering all pairs of feature combinations. There-
fore, testing this subset of products is equivalent to pairwise testing the whole
SPL. To generate a subset of products the FM is first flattened followed by the
subset extraction. The resulting products are subsets of the FM and can be
traced to the test model. Only the subset of the test model which remains when
tracing the FM subset to the test model is relevant for test case derivation for
the corresponding product.

200 S. Oster, F. Markert, and P. Ritter

Feature Model

Requirements

Reusable Test
model of SPL
under test

Subset
Extraction

Mapping

Mapping

Subsets of
the

Feature
Model

Subsets of
the Test
Model

Test Case
Generation

Product
Instantia tion

F lattening

Test

F la t Feature
Model

Set of products covering
all va lid pairs of features

Product 1
Product 2

P roduct n

Test Model
P roduct n

Scope of this
contribution

Test Cases
Product n

Feature Model P roduct n

Fig. 2. Brief overview of the MoSo-PoLiTe testing process

3.1 Translation into Constraint Solving Problem

To apply pairwise testing to FMs we either have to adapt an existing pairwise
algorithm so that it can handle the hierarchical structure, the different node
notations, and constraints of the FM or we have to change the structure of the
FM so that it can be processed using existing pairwise algorithms. We combine
both ideas: First, the structure of the FM is changed so that it is processable
by pairwise algorithms. Then, we implemented a pairwise algorithm based on
IPO [13] and AETG [12]. Standard pairwise algorithms do not take constraints
into account when certain pairs of features are combined in one product. As a
consequence these algorithms must be extended by standard constraint solving
techniques such as forward checking [20] which is well-suited for handling binary
constraints between variables. To translate an FM into an ordinary CSP we
implemented a flattening algorithm extracting parameters and parameter values
of an FM. A subset extraction algorithm then implements pairwise combination
and applies forward checking solving this CSP to generate a set of products
containing all valid pairs of features.

We are aware that SAT-Solving approaches can be used to implement pair-
wise testing to FMs [21] as well. However, we intent to utilize pairwise testing in
combination with our FMT approach described in [22,23] which integrates clas-
sification trees with FMs. There, we deal with (binary) constraints over larger
parameter value domains. Especially, for such problems CSPs seem to be the
natural choice [24,25].

Automated Incremental Pairwise Testing of Software Product Lines 201

3.2 Flattening

To extract parameters with corresponding values, a so-called flattening algorithm
was developed reducing the depth of the FM. Furthermore, this flat FM serves
as a temporary model in which every kind of FM can be translated by adapting
the transformation rules. The algorithm consists of the following two steps:

1. Every feature with its associated notation and dependencies is iteratively
pulled up until it is placed directly beneath the root node. Every feature
then serves as a parameter.

2. The algorithm assigns every parameter its correspondent parameter value.

Several model transformation rules control the flattening process. We imple-
mented these rules with MOFLON/Fujaba in the form of so-called SDM
diagrams—a mixture of UML activity diagrams and graph transformation [26]
as well as with Java in form of a pure::variants plug-in [27]. Each rule is itera-
tively applied to a subtree of an FM. A subtree always consists of three levels:
the grandparent node, the parent node, and the child node. Different rules are
required for the flattening process depending on the notations of the involved
features. Our FM supports four different node notations and for every possi-
ble combination of parent and child notation a separate transformation rule is
required. Therefore, 4 × 4 = 16 rules are needed. In the following we depict
one rule to exemplarily describe our flattening approach. For a complete de-
scription of all rules refer to [28]. Fig. 3 depicts a transformation pulling up an
alternative-group of child nodes with a parent node placed in an or -group. The
parent or -group stays unchanged and the alternative-group is pulled up aside
the parent. Due to the fact that the features 3MP and 8MP can only be cho-
sen if Camera is selected, we have to add require dependencies. Furthermore,
an additional feature is added into the alternative group: the ¬Camera feature
which is required for the situation that Camera is not selected. Without adding
this feature either 3MP or 8MP are always selected and, therefore, Camera is
always required. Selecting ¬Camera, the feature Camera is excluded and we
preserve the semantical equivalence between both FMs.

After the first step of the flattening algorithm, all features are placed directly
beneath the root node serving as parameters. In the next step, we extract the
corresponding values. Again different rules are applied to extract the values of
the features.

– optional: An optional feature is changed to a mandatory feature with two
child nodes. The optional feature MMS turns into a mandatory node with an

…

3MP

Camera

8MP

MP3

...

3MPCamera 8MPMP3 ¬ Camera

exclude

requ ire
requ ire

G randparent

Parent

Ch ild

Fig. 3. Transformation rule pulling up an alternative-child with an or-parent

202 S. Oster, F. Markert, and P. Ritter

Basic Functions,
Message, SMS,
Voice Call

Cell Phone

Blue-
thoothWLANCommu-

nication Extras MP3 CameraMMS ALT_F1UMTS

exclude
require

8MP

Basic
Functions,

Message, SMS,
Voice Call

BTWLANCom Extras MP3 CameraMMS 3MP ¬
CameraUMTS ¬ MP3 ¬

Camera
¬

UMTS¬BT¬WLAN¬Com¬MMS

1: ALT_F = Additional parameter node

values

parameters

root

Fig. 4. Flat feature model with parameters and values

alternative child-group containing a feature MMS and ¬MMS. For product
instantiation the feature MMS is selected and one element of the alternative
group has to be chosen as well. Therefore, either the feature MMS or the
feature ¬MMS is selected.

– mandatory: Mandatory nodes stay mandatory and obtain an additional
child node with the same notation and name. (e.g. Extras)

– or: Extracting the parameter values of an or-group is the most complex
rule. Each feature of the or-group is handled like an optional feature. To
ensure that a least one element of the or-group has to be chosen within a
product, the values for not including the features within a product exclude
each other.

– alternative: An alternative group stays unchanged but we add a single
placeholder feature in between the alternative group and the root node rep-
resenting the parameter (ALT F).

Fig. 4 shows the flat FM of our running example. This step ensures that every
possible feature configuration is considered for the pairwise combination. The
flattening process results in additional require and exclude dependencies between
features. Additionally, we also have to consider existing cross-tree dependencies
within the FM to ensure the semantical equivalence between the original and
the flat FM. All require and exclude dependencies are transferred to the values
of the features.

3.3 Subset Extraction

The Subset Extraction algorithm generates all valid pairwise combinations sim-
ilar to IPO and AETG regarding cross-tree-dependencies. A valid pair is a
combination of features not violating cross-tree dependencies, the hierarchical
structure, and the different feature notations in the FM. Then, the algorithm
incrementally combines those pairs of features to create valid products. The al-
gorithm starts with the first pair and iteratively adds pairs of the remaining
parameters. For each step forward checking [20] is applied to determine whether
the selected pair can be combined with remaining pairs of parameters to cre-
ate a valid product. If a certain pair results in such a deadlock, another pair

Automated Incremental Pairwise Testing of Software Product Lines 203

B,M,S,V Com Extras MMS WLAN BT UMTS MP3 Camera ALF_F

P 1 B,M,S,V Com Extras MMS WLAN BT UMTS ¬MP3 Camera 8MP

P 2 B,M,S,V ¬Com Extras ¬MMS ¬WLAN ¬BT ¬UMTS MP3 Camera 8MP

P 3 B,M,S,V Com Extras ¬MMS ¬WLAN BT ¬UMTS ¬MP3 Camera 3MP

P 4 B,M,S,V ¬Com Extras MMS ¬WLAN ¬BT ¬UMTS ¬MP3 Camera 3MP

P 5 B,M,S,V Com Extras ¬MMS WLAN ¬BT UMTS MP3 Camera 3MP

P 6 B,M,S,V Com Extras ¬MMS ¬WLAN ¬BT UMTS MP3 ¬Camera ¬Camera

P 7 B,M,S,V ¬Com Extras ¬MMS ¬WLAN ¬BT ¬UMTS MP3 ¬Camera ¬Camera

P 8 B,M,S,V Com Extras MMS WLAN ¬BT ¬UMTS MP3 Camera 8MP

P 9 B,M,S,V Com Extras ¬MMS WLAN ¬BT ¬UMTS MP3 ¬Camera ¬Camera

Fig. 5. The resulting products covering all valid pairs of features of the running example

is selected instead. The algorithm continues until all pairwise combinations are
covered by at least one product and will return the list of selected products. We
applied our algorithm to the presented running example. The algorithm iden-
tified 9 products which are listed in Fig. 5 covering all pairwise interactions of
features. Furthermore, the subset extractor can handle pre-selected products.
To realize this functionality, the pairs of the pre-selected products are extracted
and stored. When generating the set of pairs to cover these pairs are marked
as already covered and the algorithm uses the remaining pairs. We define this
functionality as “incremental pairwise combination”.

Our pure::variants plugin realizes flattening as well as the subset extraction
algorithm. First the FM is read out and stored in an own data structure. This
data structure can be processed in pure::variants as well. On the basis of this
data structure, flattening as well as the subset extractor are applied to the FM.
The pre-selection functionality is used within pure::variants to give the user the
opportunity to involve already existing/tested products. The resulting set of
products then contains the pre-selected products along with further products to
cover all valid pairs of features.

4 Testing the Implementation

To systematically test the implementation of the previously two-stage algorithm
in pure::variants we need to check the following characteristics:

– Semantical equivalence: All transformation rules of the 1st phase preserve
the semantics of the manipulated FMs.

– Consistency: we only generate valid products.
– Completeness: the generated products cover all pairs of features that do not

exclude each other.
– Efficiency: our heuristics generate a small set of products. We list some

results with the corresponding runtime of our algorithm.

We used some of the FMs listed in [8] to test our implementation. Furthermore,
we implemented a feature model generator similar to SPLOT [8] generating
feature models in pure::variants.

204 S. Oster, F. Markert, and P. Ritter

4.1 Systematic Validation

Our pure::variants feature model generator (pv-FMG) creates random FMs con-
sidering certain input parameters. A root node is created which obtains a ran-
dom number of children restricted by an adjustable maximum. The FMG sets
the notations of the features beneath this root node. When generating an FM
two possible configurations are possible: Every node receives a random notation
or the distribution of mandatory, optional, or, and alternative features can be
configured. The percentage of every notation, “mandatory”, “alternative”, “or”
and, “optional” can be adjusted by parameters. For our test runs the pv-FMG
uses the following distribution of notations: Alternative (21,7%), Or (24,1%),
Optional (23,0%), and Mandatory (28,1 %) according to [8]. Every child is han-
dled as a root node and obtains its own children in an analogous manner. Thus,
the algorithm creates a complete FM iteratively, aborted by a defined maximum
depth. To generate asymmetric FMs, the random number of added children can
be zero, too. In order to approximate real SPL FMs, the generator also creates
constraints. To satisfy this functionality, a valid random pair of features is se-
lected and a constraint (either require or exclude) is set. The number of inserted
constraints depends on the total number of nodes and a parameter configures
the percentage of nodes involved within a constraint.

Semantical Equivalence
Two FMs are semantically equivalent if they describe the same set of products
with respect to a given set of features. We validate the flattening algorithm by
comparing the propositional formulas of the original and the flat FM [29]. With
regard to our running example, the following logical expression is computed for
both FMs:

CellPhone ∧ BasicFunctions ∧ Message ∧ V oiceCall ∧ SMS∧
(¬WLAN ∨ Communication) ∧ (¬Bluetooth ∨ Communication)∧
(¬UMTS ∨ Communication) ∧ Extras ∧ (MP3 ∨ Camera)∧
(¬Camera ∨ (3MP ⊕ 8MP)) ∧ (¬3MP ∨ Camera)∧
(¬8MP ∨ Camera) ∧ (¬MMS ∨ Camera) ∧ ¬(Bluetooth ∧ MP3) (1)

We used the FMG to create additional FMs and apply the flattening algorithm.
Furthermore, for each model transformation we have proved beforehand by hand
that it always preserves the semantics of manipulated FM. For all FMs the
pure::variants implementation preserves the semantic equivalence.

Consistency
Theconsistency canbe checkedautomaticallywithinpure::variants.Pure::variants
has an integrated solver to check for inconsistency and whether a feature configu-
ration is a valid product or not. We rely on the fact that the internal solver works
correctly.

Completeness
To further evaluate our subset derivation algorithm we need to examine whether
we cover all valid pairs of features with our set of products. This cannot be

Automated Incremental Pairwise Testing of Software Product Lines 205

invalid
Pairs P 1

P 2

P 3

P 4 P 5

All valid pairs covered by
products P iAll Pairs

Fig. 6. Valid and invalid pairs of features

checked using pure::variants itself. The implementation of the subset derivation
algorithm is complete if all products that contain an uncovered feature pair are
inconsistent. Fig. 6 depicts this assumption.

We apply a SAT-Solver to prove that all uncovered pairs cannot be part of a
valid product in order to validate the implementation of our algorithm.

1. we generate all pairs of features ignoring require and exclude dependencies
within the FM and write them into a list

2. we remove all pairs which are covered by our products from the list
3. we check if all remaining pairs are invalid

For our experiments we use MiniSAT as SAT solver and solve the following
equation:

featuremodel ∧ (invalid pair1 ∨ invalid pair2 ∨ ... ∨ invalid pairn) (2)

If equation (2) is unsatisfiable, all pairs must have been invalid with respect to
the FM. Therefore, the products that are generated by our algorithm, must cover
all possible pairs of features. We applied MiniSAT to the FM in Fig. 1 combined
with all pairs that are not part of any generated product instance and, therefore,
must be invalid. We found 129 potentially invalid pairs and reviewed them with
one run of MiniSAT. MiniSAT took less than 1 second and 2 MB of memory to
find that the expression is unsatisfiable. This proves that all pairs not covered
by any of the generated product instances are invalid pairs like shown in Fig. 6.

Evaluation of Efficiency
To test the efficiency of our algorithm, we applied it to some FMs listed in [8]. The
results are listed in Table 1. The last two columns contain the number of products
realizing pairwise coverage and the runtime of the algorithm in milliseconds on
a 2Ghz Single Core machine with 2 GB RAM. For further evaluation we will
compare our approach with the one described in [21] in our future work. The
next subsection describes some statistics when applying our approach to random
FMs.

4.2 Statistics

To test our approach, we generate a set of 1023 random FMs automatically.
The probability of the node notations is selected with: Alternative (21,7%), Or

206 S. Oster, F. Markert, and P. Ritter

Table 1. Further Examples

Feature Model Features Possible Products Pairwise Products Runtime [ms]

Smart Home 35 1,048,576 11 0

Inventory 37 2,028,096 12 16

Sienna 35 2,520 24 16

Web Portal 38 2,120,800 26 15

Doc Generation 44 5.57 ·107 18 0

Arcade Game 61 3.3·109 25 32

Model Transformation 88 1.65·1013 40 46

Coche ecologico 94 2.32·107 114 47

Electronic Shopping 287 2.26·1049 62 797

y = 0,772x - 0,6401
R² = 0,7396

0

20

40

60

80

100

120

140

160

180

0 20 40 60 80 100 120 140

G
en

er
at

ed
 P

ro
du

ct
s

Nodes

y = 0,0297x2 - 0,8322x + 3,8868
R² = 0,607

-100

0

100

200

300

400

500

600

0 20 40 60 80 100 120 140

Ti
m

e
[m

s]

Nodes

0,00%

10,00%

20,00%

30,00%

40,00%

50,00%

60,00%

70,00%

80,00%

90,00%

100,00%

0 1 2 3 4 5 6 7 8 9 10

Pa
ir

w
is

e
Co

ve
ra

ge

Selected Products

0,00%

10,00%

20,00%

30,00%

40,00%

50,00%

60,00%

70,00%

80,00%

90,00%

100,00%

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47

Pa
ir

w
is

e
Co

ve
ra

ge

Selected Products

A) B)

C) D)

Fig. 7. Statistics

(24,1%), Optional (23,0%), and Mandatory (28,1 %) according to [8]. We set
the maximum depth to 5 and the maximal number of children per node to 4.
Therefore, the maximum possible number of features is 256. The generated 1023
feature models have a mean number of 35 features with a standard deviation
of 28 features. Fig. 7 A) shows the relation between the number of nodes in
the FM and the number of generated products. We apply linear regression to
the set of values and found a slope of 0.772 and a y-intercept of -0.6401.
The square of the correlation coefficient is 0.7396 which shows a strong linear
dependence of the two values. Therefore, the average of the number of generated
products will increase by 77.2% when the number of nodes in the FM is doubled.
The relation between the number of nodes in the FM, the calculation time and
the corresponding function is depicted in Fig. 7 B). In Fig. 7 C) the number of

Automated Incremental Pairwise Testing of Software Product Lines 207

product instances is related to the number of pairs covered. The left part shows
the results for the FM presented in Fig. 1. The coverage increases fast until 6
products are generated and slowly saturates to 100%, afterwards. Fig. 7 D)
shows the results for seven automatically generated FMs.

5 Related Work

In this section we summarize related work with regard to SPL-Testing and a
flattening algorithm which is similar to our approach.

5.1 SPL-Testing

Studying related work focusing on SPL-Testing we identified three best practices:

Contra-SPL-philosophy: These approaches contradict with the SPL-reuse-
philosophies. Every product derived from the SPL is tested individually ignor-
ing reuse as well as the division into domain- and application engineering. In
[30] the authors refer to this approach as product-by-product testing. However,
considering the number of derivable products of today’s SPLs this approach is
not feasible any more.

Reuse-Techniques: Methods of this category utilize reuse-techniques to reduce
the test effort. These approaches either make use of regression testing techniques
to incrementally test products or realize the reuse of domain tests during ap-
plication testing. Reusing domain tests created during domain engineering for
product tests is a very popular approach especially in the model-based testing
community. A summary of model based testing approaches for SPLs can be
found in [19]. Although all approaches utilizing reuse techniques benefit from re-
ducing the effort for testing, each product has to be tested individually. The next
category focuses on identifying a subset of products to approximate a complete
SPL-test according to some criteria.

Subset-Heuristics: This approach aims at reducing the effort for testing by
extracting a subset of feature combinations or products. Instead of testing every
product of the SPL, a subset for testing is created. We identified two different
methodologies: Methods generating a subset of products which are representa-
tive for testing purposes for the whole SPL and approaches using combinatorial
testing. In [31] the author introduces an approach generating a representative
set for each requirement. The major disadvantage of this approach is the fact
that it does not scale with real-world SPLs and that the effort to set up the
representative set is enormous.

McGregor initially introduced combinatorial testing to SPLs in [32]. However,
he neither describes how combinatorial testing may be applied to SPLs nor how
SPL-models like FMs or OVMs can be mapped onto an appropriate represen-
tation to apply existing combinatorial testing algorithms. Cohen et al. use the
OVM approach to model the variable and common parts of the SPL which are
mapped onto a relational model. This relational model serves as a semantic basis

208 S. Oster, F. Markert, and P. Ritter

for defining coverage criteria for the SPL under test [33]. Furthermore, Cohen et
al. describe the development of combinatorial interaction testing (CIT) achieving
a desired level of coverage. In [10] the authors use the CIT approach to system-
atically select products that should be tested. The approach described in [21] is
similar to the Cohen et al. approach. The significant difference is the fact that
Perrouin et al. utilize SAT-solvers and do not use a relational model. Further-
more, this approach focuses on the scalability. Nevertheless, the output of the
presented algorithm is not deterministic due to the random components. There-
fore, the number of found products may vary strongly. However, we combine
graph transformation, a well-known pairwise algorithm together with forward
checking to generate a set of products achieving 100% pairwise interaction cov-
erage in the whole SPL on the basis of the corresponding FM. The reason for
choosing a CSP approach for pairwise testing is that we want to apply this ap-
proach to the FMT approach which utilizes large ranges of values. Especially,
for such problems a CSP-based approach seems to be a natural choice [24,25].

5.2 Cartesian Flattening

In [34] the authors introduce a Cartesian Flattening of FMs which is similar to
our flattening algorithm. There, the motivation is to translate the FM into a
knapsack problem which is then used to generate highly optimal architectural
variants/products of the SPL. There are some significant differences to our flat-
tening approach concerning the handling of cardinality groups (or-groups in our
approach) which are translated into an XOR-group (alternative-group in our
approach) with a maximum number boundary in [34]. For testing purposes all
valid feature combinations need to be identified and we would lose the semantical
equivalence between the original FM and the flat FM if we would use a bound-
ary, limiting the maximum number of combinations. Due to the different field of
application, White et al. apply different transformation rules to prepare the FM
for their algorithms. However, this approach offers an additional evidence that
it is possible to change the structure of the FM in order to be able afterwards
to apply well known algorithms for different purposes.

6 Conclusion and Future Work

In this paper we introduced a description of how to apply pairwise testing to
feature models. The pairwise testing approach is based on the assumption that
the SPL under test is rather modular in its structure and that the majority of
possible errors occur when two modules/features interact. The introduced pair-
wise algorithm can also be applied apart from SPL engineering. According to the
best of our knowledge, this is the first pairwise algorithm combining binary con-
straint solving, forward checking, and a pre-selection functionality. Furthermore,
we introduced our current model-based testing approach for SPLs in which we
integrated the pairwise testing approach. Please note that our MoSo-PoLiTe ap-
proach can be applied with every model-based testing approach for SPLs offering
test case derivation for configurable products. A summary of existing approaches
can be found in Oster et al. [19].

Automated Incremental Pairwise Testing of Software Product Lines 209

In our future work we plan to apply our pairwise testing approach to a real
SPL provided by an industrial partner. We are interested in the degree of cov-
erage for real world examples to evaluate whether pairwise testing is sufficient.
During these evaluations we will focus on data-flow and control-flow coverage of
the underlying code. To complete our evaluation process, we will compare our
approach to SAT-Solver methodologies and with random product selection test-
ing. As a matter of fact, we can also apply three- and four-wise testing to SPLs
using our flat feature model. In our future work, we will evaluate the degree
of coverage of pairwise, three-, and four-wise testing. A technical report with a
detailed description of our pairwise algorithm including pre-selection is under
development.

References

1. Clements, P., Northrop, L.: Software product lines: practices and patterns.

Addison-Wesley Longman Publishing Co., Inc., Boston (2001)

2. Pohl, K., Böckle, G., Van der Linden, F.J.: Software Product Line Engineering:

Foundations, Principles and Techniques. Springer, New York (2005)

3. Czarnecki, K., Eisenecker, U.: Generative Programming: Methods, Tools, and Ap-

plications. Addison-Wesley Professional, Reading (June 2000)

4. Bosch, J.: Design and Use of Software Architectures - Adopting and Evolving a

Product Line Approach (2000)

5. Czarnecki, K., Helsen, S., Eisenecker, U.: Staged configuration through specializa-

tion and multilevel configuration of feature models. Software Process: Improvement

and Practice 10(2), 143–169 (2005)

6. Kang, K.C., Cohen, S.G., Hess, J.A., Novak, W.E., Peterson, A.S.: Feature-oriented

domain analysis (foda) feasibility study. Technical report, Carnegie-Mellon Univer-

sity Software Engineering Institute (November 1990)

7. Heymans, P., Schobbens, P.Y., Trigaux, J.C., Bontemps, Y., Matulevicius, R.,

Classen, A.: Evaluating formal properties of feature diagram languages. Software,

IET 2(3), 281–302 (2008)

8. SPLOT-Research: http://www.splot-research.org

9. Beizer, B.: Software testing techniques, 2nd edn. Van Nostrand Reinhold Co.,

New York (1990)

10. Cohen, M., Dwyer, M., Shi, J.: Interaction testing of highly-configurable systems

in the presence of constraints. In: ISSTA, pp. 129–139 (2007)

11. Stevens, B., Mendelsohn, E.: Efficient software testing protocols. In: Conference of

the Centre for Advanced Studies on Collaborative Research. IBM Press (1998)

12. Cohen, D.M., Dalal, S.R., Kajla, A., Patton, G.: The automatic efficient tests

generator. In: Fifth ISSRE IEEE, pp. 303–309 (1994)

13. Lei, Y., Tai, K.: In-parameter-order: a test generation strategy for pairwise testing.

In: IEEE High Assurance Systems Engineering Symposium, pp. 254–261 (1998)

14. feasiPLE Consortium (2006-2009), http://www.feasiple.de

15. Wübbeke, A.: Towards an Efficient Reuse of Test Cases for Software Product Lines.

In: Thiel, S., Pohl, K. (eds.) Proceedings of the 12th International Software Product

Line Conference Second Volume, pp. 361–368 (2008)

16. Weißleder, S., Sokenou, D., Schlinglo, B.: Reusing State Machines for Automatic

Test Generation in Product Lines. In: Proceedings of the 1st Workshop on Model-

based Testing in Practice (MoTiP 2008) (2008)

http://www.splot-research.org
http://www.feasiple.de

210 S. Oster, F. Markert, and P. Ritter

17. Reuys, A., Kamsties, E., Pohl, K., Reis, S.: Model-based System Testing of Software

Product Families. In: Pastor, Ó., Falcão e Cunha, J. (eds.) CAiSE 2005. LNCS,

vol. 3520, pp. 519–534. Springer, Heidelberg (2005)

18. Olimpiew, E.M.: Model-Based Testing for Software Product Lines. PhD thesis,

George Mason University (2008)

19. Oster, S., Wübbeke, A., Engels, G., Schürr, A.: Model-Based Software Product

Lines Testing Survey. In: Zander, J., Schieferdecker, I., Mosterman, P. (eds.) Model-

based Testing for Embedded Systems. CRC Press/Taylor&Francis (to appear,

2010)

20. Haralick, R., Elliott, G.: Increasing tree search efficiency for constraint satisfaction

problems. Artificial intelligence 14(3), 263–313 (1980)

21. Perrouin, G., Sen, S., Klein, J., Baudry, B., Traon, Y.L.: Automated and scalable

t-wise test case generation strategies for software product lines. In: Third Interna-

tional Conference on Software Testing, Verification and Validation (2010)

22. Oster, S., Markert, F., Schürr, A.: Integrated Modeling of Software Product Lines

with Feature Models and Classification Trees. In: Proceedings of the 13th Interna-

tional Software Product Line Conference (SPLC 2009). MAPLE 2009 Workshop

Proceedings. Springer, Heidelberg (2009)

23. Schürr, A., Oster, S., Markert, F.: Model-Driven Software Product Line Testing:

An Integrated Approach. In: 36th International Conference on Current Trends in

Theory and Practice of Computer Science. LNCS, pp. 112–131. Springer, Heidel-

berg (2009)

24. Bennaceur, H.: A Comparison between SAT and CSP Techniques. Constraints 9(2),

123–138 (2004)

25. Westphal, M., Wölfl, S.: Qualitative csp, finite csp, and sat: comparing methods

for qualitative constraint-based reasoning. In: IJCAI 2009: Proceedings of the 21st

international jont conference on Artifical intelligence, pp. 628–633. Morgan Kauf-

mann Publishers Inc., San Francisco (2009)

26. Oster, S., Schürr, A., Weisemöller, I.: Towards Software Product Line Testing using

Story Driven Modelling. In: Aßmann, U., Johannes, J., Zündorf, A. (eds.) Proceed-

ings of the 6th Int. Fujaba Days, TU Dresden, pp. 48–51 (2008)

27. Oster, S., Ritter, P., Schürr, A.: Featuremodellbasiertes und kombinatorisches

Testen von Software-Produktlinien. In: Proceedings of the SE 2010. GI-Edition

Lecture Notes in Informatics. Gesellschaft für Informatik (2010)

28. MoSo-PoLiTe: http://www.sharq.tu-darmstadt.de/projects/mosopolite/

29. Thum, T., Batory, D., Kastner, C.: Reasoning about edits to feature models. In:

ICSE 2009: Proceedings of the 2009 IEEE 31st International Conference on Soft-

ware Engineering, pp. 254–264. IEEE Computer Society, Washington (2009)

30. Tevanlinna, A., Taina, J., Kauppinen, R.: Product family testing: a survey. ACM

SIGSOFT Software Engineering Notes 29, 12 (2004)

31. Scheidemann, K.: Verifying families of system configurations. Doctoral Thesis TU

Munich (2007)

32. McGregor, J.D.: Testing a software product line. Technical Report CMU/SEI-2001-

TR-022 (2001)

33. Cohen, M.B., Dwyer, M.B., Shi, J.: Coverage and adequacy in software product

line testing. In: ROSATEA 2006: Proceedings of the ISSTA 2006 workshop, pp.

53–63. ACM, New York (2006)

34. White, J., Dougherty, B., Schmidt, D.C.: Selecting highly optimal architectural fea-

ture sets with filtered cartesian flattening. Journal of Systems and Software 82(8),

1268–1284 (2009)

http://www.sharq.tu-darmstadt.de/projects/mosopolite/

J. Bosch and J. Lee (Eds.): SPLC 2010, LNCS 6287, pp. 211–225, 2010.
© Springer-Verlag Berlin Heidelberg 2010

Linking Feature Models to Code Artifacts Using
Executable Acceptance Tests*

Yaser Ghanam and Frank Maurer

Department of Computer Science
2500 University Dr. NW, Calgary

Alberta, Canada T2N 1N4
{yghanam,fmaurer}@ucalgary.ca

Abstract. A feature model is a representation of the requirements in a given
system abstracted at the feature level. Linking conceptual requirements in fea-
ture models to actual implementation artifacts provides for many advantages
such as increased program comprehension, implementation completeness as-
sessment, impact analysis, and reuse opportunities. However, in practice, as
systems evolve, traceability links between the model and the code artifacts may
become broken or outdated. In this paper, we contribute an approach to provide
traceability links in a way that ensures consistency between the feature model
and the code artifacts, enables the evolution of variability in the feature model,
and supports the product derivation process. We do that by using executable ac-
ceptance tests as a direct traceability link between feature models and code arti-
facts. We evaluate our approach and present a brief overview of the tool support
we provide.

Keywords: agile product line engineering, feature models, traceability, vari-
ability evolution, executable acceptance tests.

1 Introduction

Feature modelling has become an essential aspect of software engineering in general
and software product line engineering (SPLE) in particular. A feature model is a rep-
resentation of the requirements in a given system abstracted at the feature level [30].
A feature can be broadly defined as a chunk of functionality that delivers value to the
end user. In SPLE, feature models represent a hierarchy of features and sub-features
in a product line and include information about variability in the product line and
constraints of feature selection.

Linking conceptual requirements in feature models to actual implementation artifacts
provides for advantages such as increased program comprehension, implementation
completeness assessment, impact analysis, and reuse opportunities [2]. Nevertheless,
traceability is a non-trivial problem. Berg et al. [3] analyzed traceability between the
problem space (i.e. the model) and the solution space (i.e. the development artifacts) in a
software product line context. The results suggested that the feature model provided an

* This research is supported by iCore – Alberta Innovates Technology Futures.

212 Y. Ghanam and F. Maurer

excellent visualization means at individual levels of abstraction. However, it did not
improve the traceability between artifacts across development spaces. Furthermore, in
practice, as the product line evolves, traceability relationships between the model and
the code artifacts may become broken or outdated [29]. This happens either because
changes in the model are not completely and consistently realized in the code artifacts;
or because changes due to continuous development and maintenance of the code arti-
facts are not reflected back in the model. This problem is not unique to SPLE. In fact,
outdated traceability between requirement specifications and other development arti-
facts has always been an issue in software engineering [13, 6].

Traceability links provided by some commercial tools (e.g. DOORS [7]) mitigate
this issue, but leave some other problems unsolved. For example, say feature A and
feature B are independent features in the product line. During the maintenance of
feature A, the developer introduced a change that unintentionally caused a technical
conflict between feature A and feature B. Although the tool will maintain the trace-
ability links between each piece of code and the correspondent feature, it cannot,
uncover the newly introduced conflict in order to reflect it back in the model.

In this paper, we propose the use of executable acceptance tests as a direct trace-
ability link between feature models and code artifacts. In the next subsection, we give
an overview of executable acceptance tests and their characteristics.

1.1 Executable Acceptance Tests

Requirement specifications – in its traditional format – exist in a number of docu-
ments and are written in a natural language. The correctness of the behaviour of a
system is determined against these specifications using test cases or scenarios. On the
other hand, executable specifications are written in a semi-formal language that aims
to reduce ambiguities and inconsistencies. Executable specifications take various
formats ranging from very formal [11] to English-like [22]. The English-like ones are
often called scenario tests [17], story tests [19], or acceptance tests [26]. They are
usually used in organizations where Agile Software Development [20] is practiced.
These names highlight the role of these artifacts as:

1. Cohesive documentation of the specifications of a given feature.
2. Accurate, high-level validity tests: by being executable, these specifications

can be run (executed) against the system directly in order to test the correct-
ness of its behaviour.

Throughout this paper, we will use the general term executable acceptance test (EAT)
to refer to the English-like specifications that can play the two roles above. In this
paper, we present an idea on how EATs can be used as a traceability link between
feature models and code artifacts. Fig. 1 shows an example of an EAT. If the behav-
iour of the system matches the expected one as specified in the EAT, the test passes.
Otherwise, the test fails indicating either a technical problem in the code, or a busi-
ness problem in understanding the specifications of the system. To link the EAT to
actual production code, a thin layer of test code – called fixture – is used. EATs are
usually executed using tools like FIT [10] and GreenPepper [14].

 Linking Feature Models to Code Artifacts Using Executable Acceptance Tests 213

Home owner is notified after two failed attempts
Start Screen.Login
Enter Name John PIN 1234
Check Info is valid False
Enter Name John PIN 4321
Check Info is valid False
Check Owner is notified

Fig. 1. Example of an EAT

1.2 Traceability from EATs to Code Artifacts

The fundamental basis of our approach is that EATs natively provide the necessary
links to code artifacts. The reason why acceptance tests can be executed against the
system is that they are linked to a thin layer of test code, and from there to actual
production code. Fig. 2 shows an example of this traceability. At the first layer, only
one row of a row-fixture EAT is shown for simplicity. This row is linked – by a test
automation framework (e.g. FIT) – to a method in the test code called addResi-
dentWithPIN(…). This method in turns uses the addResident(…) method in the pro-
duction code, specifically in the HomeResidentsList class. When the test is executed,
an attempt to add a resident with the given parameters will be made. In this scenario,
if the attempt is not successful – for a variety of reasons such as the PIN being too
short or too long – the EAT will fail. Otherwise, it will pass. Usually, a suite of EATs
is executed rather than a single EAT. Moreover, with appropriate test coverage, tools
generate reports stating which methods where involved in the execution process of a
certain EAT. Later in the paper, we will discuss how this traceability is useful in link-
ing features models with the code artifacts.

The rest of this paper is structured as follows. Section 2 is a review of relevant lit-
erature. Section 3 presents the proposed approach. Section 4 elaborates on the positive
implications of the approach. Section 5 is an evaluation of our approach in compari-
son to other traditional approaches. Finally, we conclude in Section 6.

2 Literature Review

There is a large body of research on feature modeling in software engineering in gen-
eral, and SPLE in particular. FODA [18] was one of the earliest techniques off which
many other techniques were based (e.g. [16] and [8]). In our work, we use feature
trees as described in traditional modeling techniques such as FODA, but the general-
ity of our work is not affected by that choice.

Efforts to study traceability links between feature models and other development
artifacts include the one by Filho et al. [15] in which they proposed the integration of
feature models with the UML meta-model to facilitate the instantiation process. An-
other effort was the one by Ramesh et al. [28] in which use cases (representing re-
quirements) were linked to design artifacts and from there to code artifacts. To group
requirements at a more meaningful and comprehendible level of abstraction, Riebisch
[29] suggested the use of feature models as an intermediate element between use
cases and other artifacts. The main issue with this approach is that in real settings a
massive effort is required to establish and maintain the traceability links due to the
informal descriptions of the requirements – which made automation impossible [25].

214 Y. Ghanam and F. Maurer

To solve the language informality issue, new techniques were proposed. For example,
Antoniol et al. [2] proposed an information retrieval method to link flat requirements
to code artifacts. The caveat of the approach is that it is based on the hypothesis that
programmers use names for program items (e.g. classes, methods, variables) that are
also found in the text documents. There is also the issue of managing and maintaining
the established traceability links. In a panel report, Huang [15] discusses the state-of-
the-practice in traceability techniques. The report asserts that requirement trace matri-
ces (RTMs) are often maintained either manually or using a management tool; and the
amount of effort needed to keep these links up-to-date is enormous. Commercial tools
are available to support traceability. CaliberRM [4], DOORS [7] and other tools are
used to manage and visualize traceability links. However, these links have to be estab-
lished manually, and the tools do not address issues specific to feature models such as
variability in requirement. Some software product line tools like pure::variants [27]
provide add-ins to allow requirement models in traditional management tools to be
remodeled as feature models.

Our contribution in this paper is novel because we link feature models to specifica-
tions that are executable. We also show in the sections to follow how this linkage
provides advantages specific to feature models and software product lines.

Acceptance Test Add resident | Robert | with PIN | 4421

Test Code
bool addResidentWithPIN (string user, string pin) {

//some setup code
bool result = homeResidents.addResident(user, pin);
return result;

}

Production Code
class HomeResidentsList {

public bool addResident (string user, string pin) ;
//other methods

}

Fig. 2. Traceability through EATs

3 Using Feature Models with EATs

We propose extending feature models by including EATs as concrete descriptors of
features at the lowest level of the feature tree. EATs should be associated with features
that originally would be considered leaf nodes in the tree as shown in Fig. 3. For in-
stance, the feature “Access by PIN” is associated with three EATs. These EATs de-
scribe scenarios that need to be satisfied in the implementation of this specific feature. 1

1 This is a simple example of a feature model. All features are mandatory unless there is a

white circle indicating their optionality. For instance, the “Access Control” feature is op-
tional. Grouping features (or sub-features) with an arch indicates that these features are alter-
natives. That is, only one feature can be selected from the group. If more than one feature can
be selected from a group, a multiplicity constraint of the form [min..max] will be included.

 Linking Feature Models to Code Artifacts Using Executable Acceptance Tests 215

Home Security

Burglary Detector Access Control

Motion detector Window contactsGlass break detector Access by PIN Access by fingerprint

EAT A EAT B

Features

EATsEAT E EAT F EAT GEAT C EAT D EAT H EAT I EAT J

Fig. 3. The proposed extension to feature models

Linking between an EAT node in the model and the actual specification happens
by associating a test unit to the EAT node. An EAT node can link to a test table, a test
page, or a test suite. We intentionally do not put any constraints on the granularity of
the test unit to leave it flexible for various contexts. Nevertheless, a single test table
may be insufficient given that usually more than one table is needed to specify some
behaviour. This makes a single table less cohesive than desired. On the other hand, a
test suite may be too large because it involves more than one feature creating depend-
encies between test units. Therefore, we suggest the use of a test page as a usual test
unit that provides reasonable cohesion and independence. Depending on the testing
tools, test pages can take various formats such as html files or excel sheets.

3.1 Linking Features to EATs

Following the earlier definition of a feature as a chunk of functionality that delivers
value to the end user, one EAT generally is not sufficient to represent a feature in a
system. In practice, a group of EATs represent the different scenarios or stories ex-
pected in a given feature in a system. This implies that in order to somehow link fea-
tures in a feature model to EATs, one-to-one relationships are not practical. Rather,
each feature in the feature model should be linked to one or more EATs (Fig. 4). The
“Access by PIN” feature is specified using three EATs. In order for the behaviour of
this feature to be deemed correct, all three EATs should pass. Moreover, in some
cases, a single EAT can be at a level high enough to cut across a number of features in
the system. Consider, for example, a high-level EAT such as “Owner entering prem-
ises” as in Fig. 4. Say in order for the scenario specified in this EAT to pass, more
than one feature should be involved (i.e. EAT X cuts across a number of features).
This implies that a many-to-many relationship is needed in order to accurately repre-
sent the relationship between EATs and features in a feature model.

Linking features to EATs has consequences. For one, the selection of a feature in
the product derivation phase automatically implies the inclusion of all its EATs. Sec-
ondly, EATs shall inherit all the dependencies and constraints originally imposed on
their parent nodes. For example, according to the model in Fig. 4, the two features
“Access by PIN” and “Access by fingerprint” are mutually exclusive. This implies
that the groups: {EAT E, EAT F, EAT G} and {EAT H, EAT I, EAT J} are mutually

216 Y. Ghanam and F. Maurer

Access by PIN

EAT E: Adding an owner

EAT F: Authenticating a PIN

EAT G: Tracking attempts

EAT X: Owner entering premises
Access by fingerprint

Motion Detector

Feature EAT
m n

addingOwner.htnl

authPIN.xls

tracking.html

enteringpremises.doc

Test unit11

Features EATs Test Units

Fig. 4. Relationships between features, EATs, and test units

exclusive too. The importance of explicating these consequences will be discussed
later in the paper.

4 Implications of Using EATs as Traceability Links

In the previous sections, we discussed how features in the feature model can be linked
to EATs in order to provide traceability links between the feature model and the code
artifacts. This section analyzes the implications of using EATs by highlighting three
main ways through which EATs provide significant contribution to feature models.

4.1 Consistency between the Feature Model and the Code Artifacts

EATs provide a means to ensure that the problem space (i.e. the specifications), and
the solution space (i.e. the implementation) are consistent. This consistency is due to
the fact that these specifications can be executed against the implementation, and the
result of their execution gives an unambiguous insight of whether or not the intended
requirements currently exist in the system. In our approach, we provide a link be-
tween feature models and EATs in order to inherit this important property. Within this
context, we realize two key advantages of our approach:

Continuous Two-way Feedback. Maintaining a practice where every feature in the
feature model has to be associated with some EATs is valuable. Changes due to con-
tinuous development and maintenance of the code artifacts are reflected back in the
model, because – at any point of time – the EATs are either in a passing state (visual-
ized as green) or a failing state (visualized as red). For instance, Fig. 5 shows how a
change in the code (e.g. bug fix) caused EAT B to fail – also causing the “Motion
Detector” to be denoted as incomplete. The opposite direction of feedback occurs
when introducing a new feature to the model. The accompanied EATs will initially be
in a failing state indicating that the feature is not implemented yet.

 Linking Feature Models to Code Artifacts Using Executable Acceptance Tests 217

Motion detector

EAT A EAT B

Motion detector

EAT A EAT B

New Feature

EAT K EAT L

change

(a) a change in the code caused an EAT to fail
providing immediate feedback in the feature model

(b) when adding a feature to the model, initially
EATs fail indicating incomplete implementation

Fig. 5. Continuous two-way feedback

Exploiting Hidden Variability Concerns. Using EATs helps in revealing unwanted
feature interactions that otherwise might be hidden. It also supports the realization of
common aspects of features. We illustrate these points further by going through a
number of scenarios.

Scenario 1: In some cases, the same EAT can be used as part of the specifications of
two different features. If the features are originally mutually exclusive, and the same
EAT passes in both, then this EAT is agnostic to the source of variation in the fea-
tures. This means that the specifications in this EAT are part of the common portion
of the parent node, which exploits a commonality aspect that was not originally ap-
parent. Fig. 6 shows that because EAT G and EAT J are the same (we use a dashed
line to denote this – it is also possible to give them the same name), we can abstract
the commonality as a mandatory sub-feature under “Access Control”.

Scenario 2: Using EATs allow finding unwanted feature interactions. EATs for inde-
pendent features may pass when the features are selected separately; but fail when
selected together. This is indicative of an unwanted feature interaction. This conflict
is either a problem in the implementation and should be resolved, or an unavoidable
real conflict that should then be reflected in the model as an “excludes” dependency
or using a multiplicity constraint.

Scenario 3: Some EATs for independent features fail when these features are selected
separately, but when selected together, they pass. This is indicative of a dependency

Access Control

Access by PIN Access by fingerprint

EAT E EAT F EAT G EAT H EAT I EAT J

Access by PIN Access by fingerprint

EAT E EAT F EAT GEAT H EAT I

Tracking attempts

Access Control

(a) EAT G and EAT J are the same, and they both
pass in mutually exclusive features.

(b) exploiting the commonality aspect as a mandatory
sub-feature.

Fig. 6. Abstracting the commonality as a mandatory sub-feature

218 Y. Ghanam and F. Maurer

between the features. It can be either due to unnecessary coupling in the implementa-
tion itself that should be resolved, or due to a necessary “requires” dependency that
should then be reflected in the model.

4.2 Supporting the Evolution of Variability in the Extended Feature Model

Using EATs as a basis for evolving variability in the feature model is rewarding in a
number of ways. Consider the following scenarios:

Scenario 1: A new feature or sub-feature is added to the feature model. In case the
newly added feature causes EATs of other features that were originally passing to fail,
this is a sign that a new conflict was introduced by the new feature. Without the direct
feedback of failing tests, it is less likely for this conflict to be immediately exposed.

Scenario 2: An existing feature or sub-feature is removed from the feature model. If
this feature was originally related to other features, then all dependencies are to be
resolved before removing the feature safely. However, in case there was a hidden
(unexploited) dependency between this feature and other features, removing this fea-
ture and its corresponding code might have a destructive effect on the other features.
The fastest way to discover such effects is by looking for EATs that started to fail
only after removing the feature.

Scenario 3: A new variant is to be added to a group of variants under a given feature.
For developers, using EATs provides guidance on where and how this new variant
should be accommodated in the system. For example, suppose we want to add a new
alternative “Access by Magnet Card” under “Access Control”. First of all, we may be
able to reuse the EATs of the other sibling alternatives and tweak them to reflect the
requirements of the new alternative. And because EATs are traceable to code artifacts,
we can look at the implementation of the sibling alternatives in order to have a better
comprehension on where in the code we should incorporate the new variant, and how
it should be handled. With appropriate tool support, we can also automate the process
of adding a variant by using the sibling nodes as templates, and directing the devel-
oper to the exact place in the code base where the new logic should be added [12].
This is particularly important for legacy systems with poor or outdated design docu-
mentation or for development environments where design documentation might not
be available at all.

Scenario 4: Abstracting a variability aspect to the common layer. Say an EAT is used
as part of the specifications of two mutually exclusive features, and this EAT passes
in both. This means that the specifications in this EAT can be abstract to become part
of the common layer of the parent node (as a mandatory sub-feature – this was dis-
cussed in the previous section).

4.3 Deriving Products Using the Extended Feature Model

In a software product line context, feature models are used to select features and vari-
ants that constitute a product instance. The selection process should take into consid-
eration the constraints and dependencies between features and variants, as conveyed
in the feature model. Nowadays, tool support is available to make this process easier,
faster and less error-prone. Once the features and configurations have been selected,

 Linking Feature Models to Code Artifacts Using Executable Acceptance Tests 219

an instance is derived that has the required feature composition and configuration.
This section discusses the beneficial roles EATs can play in the product derivation
process (aka. product instantiation process).

Selecting Configurations. During the derivation process, we usually need to set cer-
tain parameters (e.g. compiler directives, configuration classes) in order to select
certain configurations for the product instance at hand. We can rely on EATs to auto-
matically set up these parameters. This can be done because for an EAT to pass (in-
dependently of other EATs), it needs to set the correct parameter before it can execute
the production code. When we finish the selection process of features in the feature
model, we can run all the EATs that are relevant to the current selection. Given that
all EATs have passed for the current selection, this means that all parameters in the
system have been set properly, and the system is now ready to produce the right in-
stance (Fig. 7). Another role of EATs in this context can be described as “configura-
tion by example.” That is, EATs provide a good starting point for the developers to
learn how to configure a certain feature.

Home Security System

Burglary Detector

Motion detector Window contactsGlass break detector

EAT A EAT B EAT C EAT D

Production Code
if (FeatureSelector. WindowContacts

Feature Selector Code
class FeatureSelector {

public static bool WindowContacts;
//other parameters

}

Testing Code
FeatureSelector. WindowContacts = True;

Fig. 7. Using EATs to select configurations

Extracting Required Artifacts. In some derivation techniques, a subset of code
artifacts are extracted from a common base according to which features in the feature
model were selected. EATs can play an important role in supporting this process.
After the selection process of features in the feature model, we can run all the EATs
that are relevant to the current selection as shown in Fig. 8 (CU refers to code unit and
TU refers to test unit). Static code analysis can provide details on which code artifacts
are needed to produce the desired instance by computing the transitive closure of all
calls in the fixture classes used in the EATs of the instance.

4.4 Tool Support

In order to realize the benefits we discussed in the previous sub-sections, we built a
tool that supports traceability links between the feature model and code artifacts via
EATs2. To avoid reinventing the wheel, an open-source modeling tool was chosen in

2 We thank Felix Riegger for his contribution in providing the tool support.

220 Y. Ghanam and F. Maurer

Home Security System

Burglary Detector

Motion detector Window contactsGlass break detector

EAT A EAT B EAT C EAT D

Production Code EATsTesting Code

EAT A EAT B

EAT C EAT D

TU 1 TU 2

TU 3 TU 4

TU 5 TU 6

CU 1 CU 2

CU 3 CU 4

CU 5 CU 6

CU 7 CU 8

TU 1 TU 4

TU 5 TU 6

CU 1 CU 3

CU 5CU 4

CU 7

EAT A EAT B

EAT D

Extract for
the new instance

Fig. 8. Using EATs coverage reports to extract artifacts

order to be extended. We used Feature Model DSL as the basis (available online [1]).
The tool provides a feature modeling toolbox integrated in the Visual Studio envi-
ronment. It includes a visual designer to create and modify models. It also provides a
configuration window that allows the creation of configurations based on the feature
model. We extended the tool in two ways, namely: allow the linkage between features
and EATs, and define a course of action to complete the derivation process of indi-
vidual instances after the configuration process. The remaining of this section will
explain the currently available features.

The user can represent features and the relationships between them following the
typical feature modeling notation. In our extension of the tool, the leaves of the fea-
ture tree can be linked to EATs as shown in Fig. 9.

Fig. 9. The leaves of the feature tree can be linked to EATs

 Linking Feature Models to Code Artifacts Using Executable Acceptance Tests 221

The tool also allows the user to run EATs directly from the feature model as shown
in Fig. 10. Nodes that have passing tests are coloured in green and those with failing
tests are coloured in red. After feature selection, the tool checks the constraints to
ensure the validity of the selected subset of features, and it runs only those EATs that
are relevant to a given instance. This is shown in Fig. 11. The extended version of the
tool will be made available online in Spring 2010.

Fig. 10. The tool allows the user to run ATs directly from the variability model

Fig. 11. The tool runs only those EATs that are relevant to a given instance

5 Evaluation

In this paper, we proposed the use of EATs to link feature models to code artifacts.
This section presents an evaluation of the proposed approach. We evaluate the ap-
proach in two different ways. First, we compare our approach with traditional re-
quirement traceability approaches and other approaches that involve feature models,
as discussed in the literature review section. Then, we use the running example
presented throughout this paper to list the limitations of the approach (the advantages
of the approach were already discussed in the previous section). Using a running

222 Y. Ghanam and F. Maurer

example for validation and evaluation purposes has been a well accepted technique in
the community [31, 24, 5].

Table 1 lists a number of criteria against which we conduct our comparison. The
criteria are based on guidelines obtained from the literature such as [29] and [2].
The system evolution criterion describes how traceability links are affected with the
evolution of a system such as adding or removing requirements. In the case of fea-
ture model approaches, we are more concerned with the evolution of variability
such as adding or removing variation points and variants. We use the program
comprehension criterion to describe the ability of the developers to form a mental
model of the variability definition as described in the feature tree as well as the
realization of that variability at the code level. This evaluation is limited by the
subjectivity arising from the criteria being considered. We intend to conduct a more
thorough evaluation to collect empirical evidence of the feasibility and usefulness
of the proposed approach.

Having illustrated the advantages of our approach in comparison to other tradi-
tional approaches, we think there is a raft of issues that need to be addressed. For one,
we cannot currently predict how scalable our approach is – especially when dealing
with a large number of variation points and variants. This problem is inherited from
the scalability issues associated with feature modeling in general. Furthermore, de-
spite the fact that EATs provide an elegant way to specify functional requirements in
software systems, they have not yet been widely used in specifying non-functional
attributes such as usability and security (other non-functional attributes like perform-
ance can be specified and executed as described in [21]). For feature models that
contain variability due to non-functional aspects, our approach may not be sufficient.
Moreover, the most common practices involving EATs focus on code artifacts much
more than other development artifacts. For organizations that consider design arti-
facts, for instance, to be essential, the adoption of our approach may result in these
artifacts becoming rapidly outdated - mainly because from a developer’s perspective
there will be no need to maintain them anymore. However, the organization can solve
this problem by requiring that some EATs be used as placeholders to associate impor-
tant information such as links to design documents, standards or data files [23].
Another critical point that may be a real challenge in some organizations is the com-
mitment and discipline needed to provide sufficient EAT coverage of all features in
the system in a sustainable manner. Adopting test-driven development practices is one
way to deal with this issue.

It is also important to point out that contrary to the initial impression that this ap-
proach may lead to architectural drift, the approach may actually improve adherence
to the architecture. This is because of the transparency and traceability between the
model artifacts and the code artifacts, which provide the developers with a holistic
and consistent understanding of the product line. This, however, is still an open issue
to investigate in the near future.

 Linking Feature Models to Code Artifacts Using Executable Acceptance Tests 223

Table 1. Comparison between the different approaches of traceability

 Traditional Require-
ment Traceability

Traceability through
Feature Models

Traceability through
Feature Models and
EAT

Number of links Very large, because
every requirement is
linked to relevant de-
sign and code artifacts.

Somewhat large, be-
cause every feature is
linked to relevant de-
sign and code artifacts.

Fairly small, because
every feature is only
linked to the EATs files
specifying that feature.

Quality of links
over time

Links become broken
or/and outdated without
appropriate manual
revisions and updates.

Links become broken
or/and outdated without
appropriate manual
revisions and updates.

Links stay consistent
and up-to-date because
of the immediate feed-
back on broken or
outdated links.

System evolution

Not supported effi-
ciently. If a requirement
is added or removed,
links have to be re-
established.

Not supported effi-
ciently. If a new variation
is added or removed,
links have to be re-
established. Also, there
are no automatic checks
for new hidden conflicts
in the feature model.

Full support. Only links
for the added or re-
moved features or
variations need to be
handled. Failing EATs
indicate newly intro-
duced conflicts.

Impact analysis Provides information
on the artifacts that can
be potentially impacted
by a change. No details
on the actual impact.

Provides information
on the artifacts that can
be potentially impacted
by a change. No details
on the actual impact.

Provides information
on the artifacts that are
actually impacted by a
change, and provides
immediate feedback on
the actual impact of
that change.

Program com-
prehension

Improved over systems
with no traceability.
But requires an effort
for developers to link
requirements with code
tasks (reading RTMs is
not simple). Also, given
that variability is not
modelled explicitly,
handling each type of
variation in code is not
straightforward.

Reasonable, because
requirements are concep-
tualized at a more com-
prehendible level of
abstraction (i.e. features),
and variability is mod-
elled explicitly.

Good, because features
are linked directly to
code artifacts, and
hence variants can be
traced to code easily.
Also, developers get
instant feedback on
changes to the code.

6 Conclusion and Future Work

The significance of establishing good traceability links cannot be overstated as evi-
dent in the literature and in practical contexts. We presented an approach to link fea-
ture models to code artifacts using executable acceptance tests. This paper contributed
an approach to provide traceability links in a way that:

• ensures consistency between the feature model and the code artifacts,
• enables the evolution of variability in the feature model, and
• supports the product derivation process.

224 Y. Ghanam and F. Maurer

The valuable implications of these three characteristics were illustrated in detail, and
the approach was compared to traditional approaches to highlight its strengths. In
spite of the limitations our approach has, we think this is a first yet significant step
towards a framework to adopt efficient traceability practices in software product line
organizations. For future work, we need to conduct a more comprehensive evaluation
of this approach in an industrial setting. We also would like to continue working on a
complete tool support for creating, managing, refactoring, and linking EATs within
the context of feature models.

References

1. André, F.: Feature Model DSL Homepage (2009),
http://featuremodeldsl.codeplex.com/ (accessed February 10, 2010)

2. Antoniol, G., Canfora, G., Casazza, G., De Lucia, A., Merlo, E.: Recovering traceability
links between code and documentation. IEEE Transactions on Software Engineer-
ing 28(10), 970–983 (2002)

3. Berg, K., Bishop, J., Muthig, D.: Tracing Software Product Line Variability — From Prob-
lem to Solution Space. Presented at 2005 annual research conference of the South African
institute of computer scientists and information technologists on IT research in developing
countries, White River, South Africa (2005)

4. CaliberRM,
http://www.borland.com/us/products/caliber/index.html (accessed
March 1, 2010)

5. Cho, H., Lee, K., Kang, K.C.: Feature Relation and Dependency Management: An Aspect-
Oriented Approach. In: Proceedings of the 2008 12th international Software Product Line
Conference, pp. 3–11. IEEE Computer Society, Washington (2008)

6. Cleland-Huang, J., Zemont, G., Lukasik, W.: A Heterogeneous Solution for Improving the
Return on Investment of Requirements Traceability. In: Proceedings of the Requirements
Engineering Conference, 12th IEEE international, September 06-10. RE, pp. 230–239.
IEEE Computer Society, Washington (2004)

7. DOORS, http://www-01.ibm.com/software/awdtools/doors/ (accessed
March 1, 2010)

8. Fey, D., Fajta, R., Boros, A.: Feature Modeling: A Meta-Model to Enhance Usability and
Usefulness. In: Chastek, G.J. (ed.) SPLC 2002. LNCS, vol. 2379, pp. 198–216. Springer,
Heidelberg (2002)

9. Filho, I.M., Oliveira, T.C., Lucena, C.J.P.: A proposal for the incorporation of the features
model into the UML language. In: Proceedings of the 4th International Conference on En-
terprise Information Systems (ICEIS 2002), Ciudad Real, Spain (2002)

10. FIT, http://fit.c2.com (accessed November March 1, 2010)
11. Fuchs, N.E.: Specifications are (Preferably) Executable. IEE/BCS Software Engineering

Journal 7(5), 323–334 (1992)
12. Ghanam, Y., Maurer, F.: Extreme Product Line Engineering – Refactoring for Variability:

A Test-Driven Approach. In: The 11th International Conference on Agile Processes and
eXtreme Programming (XP 2010), Trondheim, Norway (2010)

 Linking Feature Models to Code Artifacts Using Executable Acceptance Tests 225

13. Gotel, O., Finkelstein, A.: An Analysis of the Requirements Traceability Problem. In: 1st
International Conference on Requirements Eng., pp. 94–101 (1994)

14. GreenPepper, http://www.greenpeppersoftware.com (accessed March 1, 2010)
15. Huang, J.C.: Just enough requirement traceability. In: Proceedings of the 30th Annual In-

ternational Computer Software and Applications, Chicago, pp. 41–42 (September 2006)
16. Kang, K.C., Kim, S., Lee, J., Kim, K., Shin, E., Huh, M.: FORM: A feature-oriented reuse

method with domain specific reference architectures. Annals of Software Engineering 5,
143–168 (1998)

17. Kaner, C.: Cem Kaner on Scenario Testing: The Power of ‘What-If...’ and Nine Ways to
Fuel Your Imagination. Better Software 5(5), 16–22 (2003)

18. Kang, K., Cohen, S., Hess, J., Novak, W., Peterson, A.: Feature-Oriented Domain Analysis
(FODA) Feasibility Study. Technical Report CMU/SEI-90-TR-021, Software Engineering
Institute, Carnegie Mellon University, Pittsburgh (1990)

19. Kerievsky, J.: Storytesting, http://industrialxp.org/storytesting.html
(accessed March 1, 2010)

20. Manifesto for Agile Software Development, http://www.agilemanifesto.org/
(accessed May 13, 2010)

21. Marchetto, A.: http://selab.fbk.eu/swat/slide/2_Fitnesse.ppt (ac-
cessed March 10, 2010)

22. Melnik, G., Maurer, F., Chiasson, M.: Executable Acceptance Tests for Communicating
Business Requirements: Customer Perspective. In: Proc. Agile 2006 Conf., pp. 35–46.
IEEE CS Press, Los Alamitos (2006)

23. Park, S.S., Maurer, F.: The benefits and challenges of executable acceptance testing. In:
APOS 2008: Proceedings of the 2008 international workshop on Scrutinizing agile prac-
tices or shoot-out at the agile corral, pp. 19–22 (2008)

24. Parra, C., Blanc, X., Duchien, L.: Context Awareness for Dynamic Service-Oriented Prod-
uct Lines. In: Proceedings of 13th International Software Product Line Conference
(SPLC), San Francisco, CA, USA (2009)

25. Pashov, I.: Feature Based Method for Supporting Architecture Refactoring and Mainte-
nance of Long-Life Software Systems. PhD Thesis, Technical University Ilmenau (2004)

26. Perry, W.: Effective Methods for Software Testing, 2/e. John Wiley & Sons, New York (2000)
27. Pure::Systems,

http://www.pure-systems.com/DOORS.102+M54a708de802.0.html
(accessed March 1, 2010)

28. Ramesh, B., Jarke, M.: Toward Reference Models for Requirements Traceability. IEEE
Transactions on Software Engineering 27(1), 58–93 (2001)

29. Riebisch, M.: Supporting Evolutionary Development by Feature Models and Traceability
Links. In: Proceedings of the 11th IEEE International Conference and Workshop on Engi-
neering of Computer-Based Systems, ECBS, May 24-27, p. 370. IEEE Computer Society,
Washington (2004)

30. Riebisch, M.: Towards a more precise definition of feature models. In: Riebisch, M.,
Coplien, J.O. (eds.) Modelling Variability for Object-Oriented Product Lines (2003) (Posi-
tion Paper)

31. Tun, T.T., Boucher, Q., Classen, A., Hubaux, A., Heymans, P.: Relating Requirements and
Feature Configurations: A Systematic Approach. In: International Software Product Line
Conference (SPLC 2009) (2009)

J. Bosch and J. Lee (Eds.): SPLC 2010, LNCS 6287, pp. 226–240, 2010.
© Springer-Verlag Berlin Heidelberg 2010

Avoiding Redundant Testing in Application Engineering

Vanessa Stricker, Andreas Metzger, and Klaus Pohl

Paluno (The Ruhr Institute for Software Technology)
University of Duisburg-Essen, 45127 Essen, Germany

{Vanessa.Stricker,Andreas.Metzger,Klaus.Pohl}@sse.uni-due.de

Abstract. Many software product line testing techniques have been presented in
the literature. The majority of those techniques address how to define reusable
test assets (such as test models or test scenarios) in domain engineering and
how to exploit those assets during application engineering. In addition to test
case reuse however, the execution of test cases constitutes one important activ-
ity during application testing. Without a systematic support for the test execu-
tion in application engineering, while considering the specifics of product lines,
product line artifacts might be tested redundantly. Redundant testing in applica-
tion engineering, however, can lead to an increased testing effort without
increasing the chance of uncovering failures. In this paper, we propose the
model-based ScenTED-DF technique to avoid redundant testing in application
engineering. Our technique builds on data flow-based testing techniques for
single systems and adapts and extends those techniques to consider product line
variability. The paper sketches the prototypical implementation of our tech-
nique to show its general feasibility and automation potential, and it describes
the results of experiments using an academic product line to demonstrate that
ScenTED-DF is capable of avoiding redundant tests in application engineering.

Keywords: Software product line testing, application engineering, data flow,
regression testing.

1 Introduction

Software product line engineering (SPLE) has proven to be a successful paradigm for
developing a diversity of similar software products at low costs, in short time, and
with high quality [1]. SPLE is based on the planned, systematic, and pro-active reuse
of development artifacts (including requirements, components, and test cases). To this
end, two processes are differentiated: In domain engineering, the commonality and
the variability of the products of the product line are defined and the reusable artifacts
are realized. In application engineering customer-specific products are derived from
the reusable artifacts. Application engineering exploits the variability of the reusable
artifacts by binding (resolving) variability according to the requirements defined for
the particular product.

1.1 Problem Statement

Several techniques for SPL testing exist that advocate the early test of product line
artifacts during domain engineering (see [2, 3, 4]). Although such an early test can

 Avoiding Redundant Testing in Application Engineering 227

uncover critical problems, two problems remain. Firstly, due to the variability of the
reusable artifacts, it is impossible (except for trivial product lines) to comprehensively
test all products in domain engineering (see [4]). Secondly, in cases where specific
variants are only developed based on concrete customer demand, not all artifacts
needed for testing a product might be available during domain engineering. Thus,
testing in application engineering remains key for SPL testing. Many techniques have
been proposed to efficiently support application testing by deriving test cases from
reusable artifacts developed in domain engineering (see Section 2).

However, in addition, the execution of test cases constitutes one important activity
during application testing. Without techniques that systematically support the test
execution in application engineering while considering the specifics of SPLE, product
line artifacts might be tested redundantly – without increasing the overall test cover-
age. Redundant testing can occur if two products, in addition to the commonality,
share similarities; e.g., if the same variant V1 is bound in product line products p1 and
p2. If V1 is independent of other variants and has been tested in p1 given a pre-defined
coverage criterion, testing V1 again for p2 using the same coverage criterion will
typically not increase the chance of uncovering defects in V1.

Summarizing, without systematic support for avoiding redundant testing in appli-
cation engineering, testing effort might be invested without additional benefits.

Addressing this problem for simple, structural test coverage criteria, such as branch
coverage, is straightforward. One only needs to trace the branches that have been
tested for p1 and has to determine the additional branches that have thus to be covered
in p2. However, branch coverage has been observed to be a too weak criterion during
testing. For instance, Rapps and Weyuker [5] have already stated in 1982 that – for
single software systems – a purely structural test of the software based on control
flow, is not sufficient and thus proposed considering the data flow in addition.

For software product lines, the weakness of the structural criteria is even bigger as
those structural criteria are not capable of grasping the dependencies between variants
of an SPL. As an example, let us assume that a variant V2 modifies the data that is
used by a variant V1 (e.g., additional data manipulations are introduced by V2). Let
us further assume that p1 only binds V1 but that p2 binds V1 and V2. In this case, only
testing V2 in p2 (and relying on the already tested V1 in p1) is not enough, as the
abovementioned data dependencies would not be tested.

Summarizing, if branch coverage was used as a criterion to avoid redundant test-
ing in application engineering, critical dependencies could go untested, leading to a
high probability that failures remain uncovered.

1.2 Solution Idea and Contribution of the Paper

In this paper, we propose the model-based ScenTED-DF technique to avoid redundant
testing in application engineering. ScenTED-DF builds on data flow-based testing
techniques for single systems and adapts and extends those techniques to consider
product line variability. Based on a data flow-based coverage criterion, the test cover-
age of previously tested SPL products are employed in order to identify the paths
(data flow) that have to be re-tested for the new SPL product.

The remainder of the paper is structured as follows: Section 2 describes how
ScenTED-DF progresses from the state of the art. Section 3 introduces the fundamentals

228 V. Stricker, A. Metzger, and K. Pohl

for our technique. Section 4 describes the key concepts and steps of ScenTED-DF,
illustrated by a small example. In Section 5 we present the evaluation of our technique,
which includes the prototypical implementation to show the general feasibility and
automation potential of the technique, as well as experiments using an academic product
line to demonstrate that ScenTED-DF is capable of avoiding redundant tests in applica-
tion engineering. Section 6 critically discussed the results and provides an outlook to
future work.

2 Progress from State of the Art

Many product line testing techniques have been presented in the literature (see [3, 2]).
Following the pro-active reuse concept underlying SPLE [1], the majority of those
techniques addresses how to define reusable test assets (such as test models or test
scenarios) in domain engineering and how to exploit those assets during application
engineering. Representatives for those techniques are the one from Bertolino and
Gnesi [6], Geppert et al. [8], McGregor et al. [7], and Nebut et al. [9]. In our previous
work, we have developed the ScenTED technique. ScenTED facilitates the system-
atic, requirements-based derivation and reuse of test cases for system, integration and
performance testing in SPLE based on control flow [4] (figure 1 in section 3 illus-
trates the difference between control and data flow based testing using an abstract
example). All those techniques avoid redundant testing activities by exploiting reuse
during test case generation. However, those techniques do not address the problem (as
introduced above) that the execution of those test cases during application engineering
can still mean that redundant testing activities are performed.

In [1], the problem of redundant testing activities during application engineering is
observed. Based on a cost model, the gains of reusing test results for the common
parts of the product line are estimated. However, reusing the test coverage from pre-
vious products is not considered as a further concept to avoid redundant activities.

In [10] an approach is introduced that aims at discovering the commonality among
execution traces customer-specific products of a product line to reduce test execution
of each new product. During each test of a new product, the current trace is checked
against the set of common traces and if the current trace has already been covered in a
previous test, this trace is used to replace the actual execution. In contrast to that tech-
nique, ScenTED-DF is able to also reuse partial traces (i.e., paths) from previous
tests, as data dependencies are explicitly considered. This means that our technique
provides a higher reuse potential than the one based on complete execution traces. In
addition, the reuse gain of our technique has been experimentally evaluated.

One testing technique from single systems engineering that bears a relation to the
problem addressed in this paper is regression testing [11]. Regression testing is per-
formed to assess that no defects are introduced in a new version of a software product.
To reduce the effort of regression testing, usually an impact analysis is performed to
identify the test cases that have to be re-executed for the new version of the product.
As a significant difference, the different products of a software product line cannot be
considered as different versions of the same product. Most notably, the SPL products
significantly differ in terms of bound features (variants). This firstly means that not all
test cases from one SPL product are relevant for another SPL product and secondly

 Avoiding Redundant Testing in Application Engineering 229

that additional test cases might be necessary to cope with the differences between the
products in term of the bound variants.

Summarizing, there currently exist no techniques that systematically address the
problem of avoiding redundant test activities between the products of a software
product line, while considering data flow dependencies. ScenTED-DF, which is intro-
duced in this paper, addresses this gap.

3 Fundamentals: Data Flow-Based Testing of Single Systems

Data flow-based testing techniques focus on finding failures in the system due to data
dependencies along execution paths. A data dependency exists if an action (e.g., as-
signment, statement, condition) in a software system reads the value of a data object
(e.g., local or global variable) that has been manipulated by a previous action on the
execution path. Figure 1a shows the control flow graph for a very simple program and
highlights the data dependencies that occur in this program. To understand the signifi-
cant difference from structural testing, Figure 1a also shows the two paths that are
enough to achieve branch coverage. As can be seen, data flow-based testing would
consider an additional path to cover the remaining data dependency.

Fig. 1. Control and data flow coverage in an abstract control flow graph

One widely used data flow-based test technique is the defs-uses-test [5]. It has been
developed for control flow graphs which are derived from the program code of a
software system. For each node of the control flow graph all accesses to variables are
annotated. Writing accesses are the so called defs and reading accesses the so called
uses. The uses are distinguished into c-uses for computational accesses in expressions
and into p-uses for predicate accesses in conditional statements. Figure 1b shows how
a control flow graph is annotated with defs and uses.

The main idea behind the defs-uses-test is to systematically determine the depend-
encies between the writing accesses (defs) of each variable x and the reading accesses
(uses) for that variable x. All paths from each action annotated with a def x to each

nin

n1 n2

nstart

n3

n5 n4

nout

nfinal

a=b+c

b<5

a<10

a)

nin

n1 n2

nstart

n3

n5 n4

nout

nfinal

c-use b
c-use c
def a

c-use a
def result

p-use b

def b
def c p-use a

C1 path 2C1 path 1

Additional path for DF coverage

result=a

b)

230 V. Stricker, A. Metzger, and K. Pohl

action annotated with a use x are identified as a data dependency, provided that the
paths are definition free, i.e., that there is not further writing accesses in any of the
actions between the def x and use x. All such data dependencies need to be covered
by the set of test cases to achieve 100% coverage of the system under test based on
the data flow. This is known as the all-du-path coverage criterion.

4 ScenTED-DF: Data Flow-Based Test for Product Lines

This section introduces ScenTED-DF, our data flow-based test technique that allows
avoiding redundant testing in application engineering. ScenTED-DF uses the defs-
uses-test as a foundation (see Section 3). This section explains how the defs-uses-test
is adapted towards product line context. First, we describe the test models that we use
for ScenTED-DF (Section 4.1). Second, the steps of the ScenTED-DF technique are
introduced (Section 4.2).

4.1 Data Flow-Based Test Model with Variability

Similar to our ScenTED technique [4], ScenTED-DF is a model-based testing tech-
nique. ScenTED uses activity diagrams as test models to specify the control flow of
customer-specific products. Accordingly, we augment those activity diagrams with
def and use statements (see Section 3), in order to incorporate the concepts needed for
the defs-uses-test.

ScenTED has introduced variable activity diagrams, i.e., activity diagrams that
consider the variability of the product line. In variable activity diagrams variation
points and variants are explicitly specified by relating elements of the activity dia-
gram to an orthogonal variability model (OVM) [1]. The OVM contains all variation
points of a SPL as well as their variants together with any constraints1. A small OVM
and how it is related to an activity diagram is shown in Figure 2 for an excerpt of an
eShop product line (the registration of an eShop buyer).

Augmenting those variable activity diagrams with defs and uses is straightforward,
as the concepts used in activity diagrams can be mapped to concepts of control flow
graphs (used in the initial defs-uses-test): The actions of an activity diagram are
mapped to nodes of the control flow graph. The decision- and merge- nodes of an
activity diagram are mapped to the decision nodes of a control flow graph. Accord-
ingly, defs and uses are annotated to the actions and decision nodes in the activity
diagram as it is done for the nodes of a control flow graph. Figure 2 shows how defs
and uses are annotated in the activity diagram.

4.2 Steps of ScenTED-DF

As mentioned above, the steps of ScenTED-DF are separated into those performed in
domain engineering and those performed in application engineering. The steps in
domain engineering are the preparation for the actual defs-uses-test in application

1 The approach is not dependent on the usage of OVM. Other approaches that allow the defini-

tion of relations between the variability and parts of the activity diagram can also be used, e.g.
feature diagrams [12].

 Avoiding Redundant Testing in Application Engineering 231

Start registration

Register buyer
standard

Register buyer
secure

Show welcome
page

def buyer
account

def buyer data

c-use buyer data
def buyer account

c-use buyer account
c-use buyer dataShow input

Carry out correction

Confirm input

c-use buyer data
def buyer account

c-use buyer account
c-use buyer
account

Data correct?

VP

1 Connection

1.1 Unsecured
V

1.2 Secured
V

VP

7 Customer

7.1 Chance
buyer

V
7.2 Registered

buyer

V
V7.2

V1.1 V1.2

1..1

Fig. 2. Variable activity diagram Register buyer annotated with data flow

engineering for different products p1…pk-1. This allows to exploit the capabilities of
SPLs and to reuse certain artifacts created in domain engineering that contain the
commonalities and consider the variability explicitly in application engineering. The
steps are described in detail below.

4.2.1 Steps in Domain Engineering
D1: Creation of data flow test model
As described in Section 4.1 ScenTED-DF uses activity diagrams as test model. Thus,
the first step in preparation for the data flow-based test which is performed in domain
engineering is the annotation of those activity diagrams with data accesses. The data
flow attributes are added for all data objects that are read or written by the respective
action. This step is a creative modeling activity which cannot be automated. However,
it can be supported by appropriate modeling tools.

D2: Identification of variable data dependencies
Ideally, as mentioned in Section 3, all data dependencies would be covered by the
defs-uses-test (all-du-path coverage). However, p-uses currently cannot be considered
in the ScenTED-DF technique, as the usage of data objects at decision nodes that
coincide with variation points is an issue to ongoing research. Thus, ScenTED-DF
resorts to the all-c-uses criterion (which guarantees 100% coverage of all data de-
pendencies between defs and c-uses) and introduces additional steps (see D3 and A3)
to ensure complete branch coverage (as a minimal coverage criterion).

Using the all-c-uses criterion, all data dependencies between writing accesses and
all possible reading accesses are computed in domain engineering, i.e., the set of all
data dependencies that might occur in all customer-specific products is computed.
The data dependencies that are relevant for a specific product are selected from this
set in application engineering (steps A1-A3). In ScenTED-DF data dependencies are
noted as a tuple of three elements: (data object, def, uses). Two different types of
dependencies between the data dependencies and the variants need to be considered:

232 V. Stricker, A. Metzger, and K. Pohl

1) A variant can be required for a data dependency to exist, i.e., the writing or read-
ing access that constitutes the data dependency is performed in an action that is as-
sociated to a variant. e.g. (Buyer data, Start registration, Register buyer standard)
requires the binding of V1.1 and V7.2 in Figure 2.

2) Data dependencies can be associated indirectly with variants; e.g. in cases where
the data dependency occurs on several paths which have branches and actions that
are associated to different variants. The data dependency (Buyer data, Start regis-
tration, Show input) in Figure 2 for example depends on the selection of variant
V7.2 but is independent from the selection of V1.1 or V1.2.

Data dependency Relation to variants
(data object, def, c-use) V1.1 V1.2 V7.2
(BuyerData, startRegistration, registerBuyerStandard) 1 * 1
(BuyerData, startRegistration, registerBuyerSecure) * 1 1
(BuyerData, startRegistration, showInput) * * 1
(BuyerAccount, registerBuyerStandard , showInput) 1 * 1
(BuyerAccount, registerBuyerStandard, confirmInput) 1 * 1
(BuyerAccount, registerBuyerStandard, showWelcomePage) 1 * 1
(BuyerAccount, registerBuyerSecure, showInput) * 1 1
(BuyerAccount, registerBuyerSecure, confirmInput) * 1 1
(BuyerAccount, registerBuyerSecure, showWelcomePage) * 1 1

Fig. 3. Data dependency matrix for Register buyer

A data dependency matrix is exploited to store the identified dependencies to the
different variants of the SPL. Based on the information annotated to the activity dia-
gram (see Section 3.1), this step can be automated. Figure 3 shows the data depend-
ency matrix for the activity diagram shown in Figure 2, in which a required variant
(as described above) is indicated by ‘1’ and variants that do not impact on data de-
pendencies by ‘*’ (don’t care). In cases where a variant must not be selected, this is
indicated by ‘0’ (not visible in the example). The computation of the matrix avoids
that the identification of data dependencies has to be performed for each derived
product and also allows for the automated identification of all relevant dependencies
for a newly derived product in application engineering (see A1).

D3: Ensuring branch coverage
As we currently do not support p-uses (see above), we added an additional criterion to
guarantee adequate test coverage. Therefore, a traceability matrix is introduced which
associates all branches to the different variants, such that the branch coverage can be
traced for the different variants. This association can be computed using the OVM.

4.2.2 Steps in Application Engineering
A1: Identification of data dependencies to be covered for a customer-specific product
The dependency and traceability matrices defined in domain engineering are reused
for the test of a new derived product pk. When a new product is derived, the data de-
pendencies of interest have to be determined. For this step, the dependency matrix is
used as well as the information about the variants that have been bound in the prod-
uct. The dependencies can be identified by checking the columns of the dependency

 Avoiding Redundant Testing in Application Engineering 233

matrix, which contain the bound variants of the product. Wherever a dependency is
marked (either as required or don’t care) in any of those columns, the row has to be
considered, otherwise the row can be ignored. In the same way all columns that are
marked required for a variant that is not selected have to be ignored, since a data de-
pendency can depend on more than just one variant. The remaining rows contain the
relevant data dependencies, which are analyzed in the next steps. For a product pk that
binds the variants V1.1 and V7.2 as shown in Figure 3, the relevant dependencies are:

depk={(BuyerData, startRegistration, registerBuyerStandard), (BuyerData, startRegistration, showIn-
put), (BuyerAccount, registerBuyerStandard, showInput), (BuyerAccount, registerBuyerStandard, con-
firmInput), (BuyerAccount, registerBuyerStandard, showWelcomePage)}

The set depk includes the very dependencies that have to be considered to achieve
full all-c-use coverage for product pk. However, the main motivation of ScenTED-DF
is to reduce test effort in application engineering by avoiding redundant tests with
respect to the data flow coverage. Accordingly, the main outcome of step A1 is the
computation of the set of data dependencies that actually have to be tested with new
test cases in order to achieve full test coverage for pk. This means that it has to be
identified which of the data dependencies relevant for the product pk are not covered
by the set of data dependencies dep1..k-1 = Ui=1..k-1 depi hat have successfully been
tested for other products p1…pk-1. Those dependencies can be identified by computing
the difference (delta) of the two sets: deltak = depk \ dep1..k-1. According to the idea
underlying the ScenTED-DF technique, testing dependencies that already have been
tested in other products would increase the testing effort without increasing the prob-
ability of uncovering failures. Thus, the intersection of depk ∩ dep1..k-1 constitutes the
amount of data dependencies that are already tested and for which redundant test case
execution can be avoided.

A2: Defining and executing new test cases for all untested data dependencies
To guarantee full test coverage, a set of test cases has to be determined that covers all
elements of deltak. The derivation of the set of test cases DTk adheres to the all-c-use
criterion which is defined in the defs-uses-test (see Section 2.3.2). The step of test
cases derivation cannot be automated. Neither ScenTED nor ScenTED-DF or the
original defs-uses-test addresses the derivation of concrete test data that are needed to
specify test cases. This is in general a research topic on its own, since the derivation
of test data has huge influence on the quality of the test and often involves high effort
as in many cases it is done “manually”. However, we expect, that avoiding redundant
test coverage also means that we can avoid deriving test cases that would only lead to
redundant testing.

A3: Ensuring branch coverage
Since the all-c-uses criterion does not assure branch coverage (as described for D2), a
set of additional test cases BTk is derived and executed to complement DTk. This step
aims at ensuring that the set of all branches b ∈ Bk of pk which are not covered by the
test cases in DTk is sufficiently covered. In order to avoid redundant branch coverage,
ScenTED-DF uses the coverage of the branches that have already been tested in
p1…pk-1 to achieve a full branch coverage based for pk.

This means that if the product under test is not the first product p1 of a SPL, but the
products p1…pk-1 have already been tested, it has to be identified which branches b ∈

234 V. Stricker, A. Metzger, and K. Pohl

of Bk are already covered. This can be done by using the traceability matrices and the
binding information. If the variants that have been associated with the branches b ∈
Bk have already been bound in p1…pk-1, complete branch coverage for this variant is
assured. For the remaining branches new test cases have to be derived.

After all test cases, for the data dependencies and branches, have been executed
successfully, it is important to store the information such as the binding information,
the tested dependencies, the test cases used to perform the complete test in such a
way, that these information can be taken into account for the test coverage of further
products.

5 Evaluation and Discussion

The main motivation for ScenTED-DF is to avoid, as far as possible, redundant test-
ing in application engineering, while guaranteeing the expected data flow-based test
coverage for the products of a SPL. This is achieved by exploiting the knowledge
about the variability and commonalities of a SPL and thus the similarities between the
different products of a SPL. This section presents an experimental evaluation of our
technique using an academic SPL. This SPL has been used in the past for several
experiments related to SPL testing. Before we introduce the SPL and the experimental
results, we summarize the tool support used during the experiments.

5.1 Prototypical Implementation

A tool prototype has been implemented to support the execution of the ScenTED-DF
technique presented above. The tool consists of two main components: (1) a graphical
editor which allows creating activity models annotated with data usage, and (2) im-
plementations of the algorithms that perform the different steps of ScenTED-DF in
domain and application engineering.

The graphical editor has been realized using the Eclipse Modelling Framework
(EMF) and the Graphical Modelling Framework (GMF). The editor allows modelling
activity diagrams augmented with variation points and variants (as introduced for the
original ScenTED technique), as well as defs and c-uses annotations (needed for
ScenTED-DF). Thereby, it supports step D1 (see Section 4.2.1).

The activity diagrams created using the graphical editor are used in the second
component of the tool prototype. This tool component performs an automatic compu-
tation of the data dependency and traceability matrices in domain engineering (steps
D2 and D3, see Section 4.2.1). In application engineering (step A1), the relevant data
dependencies are determined and the delta between new data dependencies and previ-
ously tested ones is automatically computed. Step A2 is not automated nor supported
as described in Section 4.2.1. Step A3, which aims at assuring branch coverage, can
has not been implemented in the tool prototype.

5.2 Example Product Line

The evaluation of our technique is based on a configurable eShop Platform which
allows deriving an eShop product according to the customers’ (i.e., shop owners’)
needs so that the goods can be sold to buyers via the Internet. This is an academic

 Avoiding Redundant Testing in Application Engineering 235

product line which has been developed to evaluate the various testing activities of the
ScenTED technique [13]. To use it for an evaluation of ScenTED-DF, it has been
extended with data flow annotations (i.e., defs and uses). Due to the size of the SPL,
we can only include the variability model (OVM) of the SPL in this paper, which is
shown in Figure 4.

The customer who likes to have an eShop to run his business can choose between
17 variants for 9 variations points addressing the different types of Buyers (VP7),
Payment options (VP 3), Data storage alternatives (VP 9), etc. The minimum number
of variants that has to be selected in a customer-specific product is 6 while the maxi-
mum number of variants that can be chosen in one product is 14. As it can be seen,
some of the variation points like the payment by Card are optional and do not have to
be included in any product. If they are included however, they impose certain con-
straints on the selection of other variants. Considering all 17 variants that can be
bound from the 9 variation points as well as their constraints and dependencies over
1500 different valid products can be derived from the eShop SPL (cf. [14]).

VP

1 Connection

1.1 Unsecured
V

1.2 Secured
V

VP

2 Search
Options

2.1 Search Hint
V

2.2 Category
Search

V

VP

3 Payment

3.1 Bill
V

3.2 Card
V

VP

4 Card

4.1 Debit Card
V

4.2 Credit Card
V

VP

6 Presentation

6.1 Text
V

6.2 Text and
Picture

V

VP

7 Buyer

7.1 Chance
Buyer

V
7.2 Registered

Buyer

V

VP

8 Buyer
Profile

8.1 Buyer Data
V

8.2 Purchasing
Statistics

V

VP

9 Data
Storage

9.1 MySQL
V

9.2 XML
V

VP

5 Bonus
System

5.1 Allowance
V

VP

V

Legend

Variation Point

Variant

1..1 1..2

1..1 1..1

<<requires>>

<<requires>>
<<requires>>

<<requires>>

<<requires>>

Fig. 4. Variability model of the eShop SPL

5.3 Experimental Evaluation

The eShop has been used to perform an experimental evaluation of ScenTED-DF. The
goal of this evaluation was to analyse in how far ScenTED-DF is able to avoid redun-
dant testing by identifying already covered data dependencies. In particular the fol-
lowing GQM-goal of the evaluation has been addressed:

Goal: Analyse the ScenTED-DF technique for the purpose of better understanding
the potential of avoiding redundant tests in application engineering from the view-
point of the researcher in the context of the eShop SPL.
In the following, the design of the experimental evaluation will be explained, as

well as the results and their critical discussion.

5.3.1 Design of the Experimental Evaluation
First of all, the activity diagrams describing the eShop SPL have been modelled using
the prototypical tool. Furthermore, they have been annotated with data usages (Step
D1). The prototype has been used to automatically compute the data and traceability
matrices (Step D2 and D3).

236 V. Stricker, A. Metzger, and K. Pohl

Since ScenTED-DF does not make any assumptions about the derivation order of
the products but assumes that they are tested in the order as requested by customers,
this unpredictability was to be considered in the evaluation of the technique. There-
fore, different sets of products (in different order) have been derived randomly. More
precisely, 20 sets, each of which containing the binding information for 20 products
pk, have been derived in a random order.

For this random derivation, the number of variants that are bound in each of the de-
rived products has been determined randomly. As has been explained above, a mini-
mum number of 6 and a maximum number of 14 variants can be selected during this
step. After picking a random number in the range of 6 to 14, the concrete variants to
be bound have been selected randomly from the OVM model2.

For each of those sets and each of the products, the ScenTED-DF technique has
been applied. The data flow coverage and the delta to already tested products have
been measured and are presented in section 5.3.2.

It should be noted that, so far, we did not derive concrete test cases and thus did
not execute test cases during the experiments. Instead, we assumed that appropriate
tests are executed in order to cover all data dependencies that have been identified to
be relevant for a product pk. Thus, we can only measure the relative data-flow cover-
age. In order to provide a basis to compute the actual efficiency gained by the applica-
tion of the technique, concrete test cases need to be derived using a test technique
used for single system development for each derived product of the eShop. We are
planning to perform this exercise in future work.

5.3.2 Results
During the evaluation of the ScenTED-DF technique we have been interested mainly
in two measures regarding the data flow coverage: (1) The number of the relevant
data dependencies for a product pk that have already been covered by earlier tested
products depk ∩ dep1..k-1 (see Section 4.2.2); (2) the overall number of data dependen-
cies in the eShop product line that have been covered by customer-specific products
during testing (depspl ∩ depk) has been analysed.

The computation performed in step D2 revealed that not all data dependencies of
the eShop product line are affected by variability. Therefore, it is expected that a
significant amount of effort can be saved during the test execution as these non-
variable dependencies only have to be tested in the first product p1. Afterwards, the
affected data dependencies can be assumed to be covered in further products p2…pk.
The tool prototype identified 58 different dependencies in the eShop SPL. However,
13 of these dependencies are found twice because they can be found on different
paths in the activity diagrams (see Section 4.1). Furthermore, 38 dependencies are
non-variable, i.e. those dependencies are not affected by any variant. That means that
the test results of approx. 65% of all possible dependencies will already be covered
after p1 independent of the binding information.

The examination of the 20 sets of customer-specific products has shown that the
amount of covered data dependencies strongly varies depending on the order of prod-
uct derivation and strongly depends on which variants are bound. Figure 5a shows the
number of products that have been tested in the different sets in order to achieve

2 Randomization has been realized using java.util.random.

 Avoiding Redundant Testing in Application Engineering 237

0

1

2

3

4

5

1 2 3 4 5 6 7 8 9 10 11

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12 p13 p14 p15 p16 p17 p18 p19 p20

Number of relevant
dependencies

Number of covered
dependencies

depspl\dep1..k-1

a) b)

pk

#dep

#pk

of
occurence

Fig. 5. Results of the experimental evaluation

100% coverage of all 58 data dependencies that occur in the eShop SPL (depspl). It
can be seen that the number of products that need to be tested (#pk) to reach 100%
data flow coverage range from one single product (in two occurrences) to 11 products
(in one occurrence).

The coverage of the overall data dependencies in the SPL for one of the randomly
generated sets of products is shown in Figure 5b (depSPL \ dep1..k-1). It can be seen that
after the initial product p1, 3 further customer-specific products p2...p4 are derived
which all benefit from the data flow coverage of p1. For those products no new de-
pendencies are relevant and thus p2 to p4 achieve 100% data flow coverage. For p5
new dependencies become relevant that are not covered by p1 to p4 and thus new test
cases have to be derived and executed to assure complete data flow coverage for this
product. After p7, however, all data dependencies of the eShop have been tested.

Figure 5b also shows for each product pk a bar displaying the number of relevant
data dependencies and a bar displaying how much of that data dependencies are al-
ready covered by the test of earlier products. It can be seen that after p1 for example
50 data dependencies have been tested. The bar for p2 shows that also for this product
50 data dependencies have to be covered. Since these are the same as those that have
already been tested 100% data flow coverage is given for p2. The bar for p3 shows,
that only 45 data dependencies are relevant for p3 so that not even all of the covered
data dependencies are needed to achieve 100% data flow coverage for the product.

5.3.3 Discussion of Results
Of course, not all of the 1500 products (in our eShop example) will be derived in
reality and thus testing them would involve too much effort in respect to the benefits
gained from an exhaustive test. However, ScenTED-DF assumes that with the con-
tinuous derivation of products the data dependency coverage eventually increases and
thus helps to avoid redundant tests. In fact, the evaluation above has provided first
evidence in favour of this assumption.

Since we start from the outset that for the SPL under test a data flow-based testing
techniques is used, ScenTED-DF does not impose additional effort to prepare the
testing, as the required test models including data flow attributes are created anyways
and all other steps till the test case generation are performed automatically. Instead

238 V. Stricker, A. Metzger, and K. Pohl

effort can be saved considering the characteristics of SPLs in which the derived prod-
ucts often will share many variants (similarities) and therefore also many of the re-
lated data flow dependencies are shared. Thus, only the new data dependencies have
to be tested while the already covered data dependencies do not have to be tested
again. In some cases, the new variants won’t even affect the dependencies, such that
the data flow of a new product is already completely covered by past tests.

The results presented in 5.3.2 demonstrate that, ScenTED-DF offers the potential
to save testing effort, since a certain amount of data dependencies do not have to be
tested again, as they are already covered in the test of earlier products. The amount
of “reuse” is promising and thus we expect increased efficiency when running real
test cases.

Of course, these results should be interpreted carefully. The amount of already
tested data flow coverage that is gained in a SPL has been measured as the sum of all
tested products. Considering the internal validity however, this measure cannot di-
rectly be used to reason about the effort that is needed or can be saved for the test of a
new customer-specific product. The technique does not prescribe the way test cases
are derived and a test case can cover more than one dependency and certainly more
than one branch. Thus, the number of dependencies that do not have to be tested does
not directly correlate with the number of test cases (derivation and execution) that do
not have to be executed again. It could be possible that, with good test case design,
the test cases covering the new dependencies also cover the already tested dependen-
cies. In this case there would be no saved effort in comparison to a test without avoid-
ing the redundant coverage. Furthermore, addressing the construct validity, as de-
scribed in section 5.3.2 the actual efficiency of the technique cannot be measured
without performing a complete single system test for each derived product, which
could also pose a threat to the conclusion validity.

Finally, the practical relevance of the results should be supported by real-life or at
least realistic SPLs, as the eShop is a relatively small and academic example. It con-
stitutes an extension of an earlier model with data flow annotations. Although the data
flow annotation to the product line has been performed as objective as possible, cer-
tain influence from the researcher on the resulting data dependencies cannot be totally
excluded. Thus, this poses a threat to external validity. For instance, the order of
products can have a much more severe impact on the number of covered data depend-
encies than it already had in the eShop example. However, considering the empirical
reliability, we assume that the experimental evaluation can be repeated in different
settings using the ScenTED-DF technique and will most likely reveal similar results.

6 Conclusion and Perspectives

This paper has introduced the model-based ScenTED-DF technique that allows avoid-
ing redundant testing in application engineering. The technique uses the defs-uses-test
technique and adapts and extends it to consider product line variability. Based on a
data flow-based coverage criterion, the test coverage of previously tested SPL prod-
ucts are employed in order to identify data dependencies that are covered and do not
have to be tested again. An experimental evaluation has been performed on an aca-
demic SPL example which revealed that the technique is able to exploit covered data

 Avoiding Redundant Testing in Application Engineering 239

dependencies from already tested products to ensure complete data flow coverage
without testing redundantly. Performance has not been a relevant aspect in this ex-
perimental evaluation. However, for larger SPLs a performance analysis of the pre-
sented algorithms should be performed.

A major shortcoming of the presented technique in its current status is that p-uses
are not supported since the usage of data objects in variation points is not formalized,
yet. The ScenTED technique does not make any statements about how conditional
expressions are to be annotated to variation points at which more than one variant can
be bound requiring (which would require a decision node in the customer-specific
product). Due to this lack of support for p-uses, stronger data flow-based coverage
criteria (such as all-uses) currently cannot be used within ScenTED-DF. Thus, future
work will focus on annotating variable activity diagrams with conditional expressions
and on extending ScenTED-DF as well as the prototypical implementation for the
support of p-uses. With this extended technique a more extensive evaluation using a
more complex SPL from an industrial setting is planned.

Acknowledgments. This work has been funded by the DFG under grant PO 607/2-1
IST-SPL.

References

1. Pohl, K., Böckle, G., van der Linden, F.: Software Product Line Engineering – Founda-
tions, Principles, and Techniques. Springer, Heidelberg (2005)

2. Lamancha, B.M., Usaola, M.P., Velthius, M.P.: Software Product Line Testing: A System-
atic Review. In: Shishkov, B., Cordeiro, J., Ranchordas, A. (eds.) Proceedings of the 4th
International Conference on Software and Data Technologies (ICSOFT), vol. 1, pp. 23–30.
INSTICC Press (2009)

3. Tevanlinna, A., Taina, J., Kauppinen, R.: Product Family Testing – a Survey. ACM SIG-
SOFT Software Engineering Notes 29(2) (2004)

4. Pohl, K., Metzger, A.: Software Product Line Testing: Exploring Principles and Potential
Solutions. Communications of the ACM 49(12), 78–81 (2006)

5. Rapps, S., Weyuker, E.J.: Data Flow Analysis Techniques for Test Data Selection. In: Pro-
ceedings of 6th International Conference on Software Engineering (ICSE 1982), pp. 272–
278. IEEE Computer Society, Los Alamitos (1982) Catalog No. 82CH1795-4

6. Bertolino, A., Gnesi, S.: Use Case-Based Testing of Product Lines. In: Paakki, J., Inver-
ardi, P. (eds.) Proceedings of the 9th European Software Engineering Conference held
jointly with 11th ACM SIGSOFT International Symposium on Foundations of Software
Engineering (ESEC/FSE), Poster Session, pp. 355–358. ACM Press, New York (2003)

7. McGregor, J.D.: Testing a Software Product Line. Software Engineering Institute, Techni-
cal Report, CMU/SEI-2001-TR-022, ESC-TR-2001-022, Product Line Systems Program.
Carnegie Mellon University (2001)

8. Geppert, B., Li, J., Roessler, F., Weiss, D.M.: Towards Generating Acceptance Tests for
Product Lines. In: Bosch, J., Krueger, C. (eds.) ICOIN 2004 and ICSR 2004. LNCS,
vol. 3107, pp. 35–48. Springer, Heidelberg (2004)

9. Nebut, C., Fleurey, F., Le Traon, Y., Jézéquel, J.: A Requirements based Approach to Test
Product Families. In: van der Linden, F.J. (ed.) PFE 2003. LNCS, vol. 3014, pp. 198–210.
Springer, Heidelberg (2004)

240 V. Stricker, A. Metzger, and K. Pohl

10. Li, J.J., Geppert, B., Roessler, F., Weiss, D.M.: Reuse Execution Traces to Reduce Testing
of Product Lines. In: SPLIT Workshop, Proceedings of the 11th International Product Line
Conference (SPLC), Second Volume (Workshops), pp. 65–72. Kindai Kagaku Sha Co.
Ltd., Tokyo (2007)

11. Li, Y., Wahl, N.J.: An Overview of Regression Testing. ACM SIGSOFT Software Engi-
neering Notes 24(1), 69–73 (1999)

12. Metzger, A., Heymans, P., Pohl, K., Schobbens, P.-Y., Saval, G.: Disambiguating the
Documentation of Variability in Software Product Lines: A Separation of Concerns, For-
malization and Automated Analysis. In: Sutcliffe, A., Jalote, P. (eds.) Proceedings of the
15th IEEE Intl. Conference on Requirements Engineering (RE 2007), pp. 243–253. IEEE
Computer Society, Los Alamitos (2007)

13. Metzger, A.: Testing in a Software Product Line. Panel Presentation at the 10th Interna-
tional Software Product Line Conference (SPLC) (2006)

14. Maßen, T.v.d., Lichter, H.: Determining the Variation Degree of Feature Models. In: Ob-
bink, J.H., Pohl, K. (eds.) SPLC 2005. LNCS, vol. 3714, pp. 82–88. Springer, Heidelberg
(2005)

Improving the Testing and Testability of
Software Product Lines

Isis Cabral, Myra B. Cohen, and Gregg Rothermel

Department of Computer Science,University of Nebraska-Lincoln

{icabral,myra,grother}@cse.unl.edu

Abstract. Software Product Line (SPL) engineering offers several ad-

vantages in the development of families of software products. There is

still a need, however, for better understanding of testability issues and

for testing techniques that can operate cost-effectively on SPLs. In this

paper we consider these testability issues and highlight some differences

between optional versus alternative features. We then provide a graph

based testing approach called the FIG Basis Path method that selects

products and features for testing based on a feature dependency graph.

We conduct a case study on several non-trivial SPLs and show that for

these subjects, the FIG Basis Path method is as effective as testing all

products, but tests no more than 24% of the products in the SPL.

1 Introduction

Software product line (SPL) engineering has been shown to improve both the
efficiency of the software development process and the quality of the software
developed, by allowing engineers to systematically build families of products with
well defined and managed sets of re-usable assets [4]. A large body of research on
SPL engineering has focused on reuse of core program assets [4, 15, 17], refined
feature modeling [8, 9, 23], and code generation techniques [2, 7]. There has also
been research on testing software product lines [3, 6, 10, 24].

Despite this prior work, there still remains a need to improve reuse during the
software testing process. Kolb and Muthig [15] point out that testing has not
made the same advances as other parts of the SPL lifecyle and remains a bot-
tleneck in SPL development. Their work highlights issues related to testability
of SPLs, where testability is viewed as the ease with which one can incorporate
testing into the development cycle and increase reuse while retaining a high rate
of fault detection. They comment that the primary strength of SPL develop-
ment, variability, also has the greatest impact on reducing testability [15], due
to the combinatorial explosion of feature combinations that occurs as variabil-
ity increases [6, 17]. In other related work, Jaring et al. [13] point out that the
testability of a product line can be viewed as a function of the binding time of
variability, and that providing early binding can increase the ability to test prod-
ucts early. McGregor [17] and Cohen et al. [6] have suggested ways to reduce
the combinatorial space by sampling products for testing using combinatorial
interaction testing [5]; this work does not address testability issues.

J. Bosch and J. Lee (Eds.): SPLC 2010, LNCS 6287, pp. 241–255, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

242 I. Cabral, M.B. Cohen, and G. Rothermel

While all of this work aims at the core problem of software product line
testing, none of it specifically considers reuse by examining the feature model
and analyzing testability at a finer grain. In this work we consider testing from
this perspective. We drill down into the issue of variability and analyze different
types of variability, e.g. optional features versus alternative choice features, as
they relate to testability. We conjecture that while the alternative choice features
have a negative impact on testability by increasing the number of products,
optional choice features do not. We then propose a new black box approach for
testing software product lines that attends to these issues. We hypothesize that
our approach can reduce testing effort while retaining good fault detection in
the presence of alternative features.

Our approach, which we call the FIG Basis Path method, translates a feature
model into a feature inclusion graph that is, in essence, a feature model depen-
dence structure. We associate all features with sets of test cases and then walk
this graph to generate a subset of independent paths (or products) that cover
the graph for testing. This is analogous to the basis path approach for testing
software applications [26] which finds a “possibly minimal” set of paths to cover
all nodes in a program’s control flow graph.

We report results of a case study on two software product lines. In both SPLs
we can achieve the same fault detection results as we can testing all products.
Further analysis shows that we can also use a grouped variant of the Basis Path
algorithm to test subfamilies of the SPL as defined by the alternative features.

2 Background and Related Work

There has been a lot of work on feature modeling of which we present only a small
subset [1, 2, 14, 19, 21]. In a feature model, a product line can be represented
by mandatory and variable features. The variable features may be optional or
alternative choices. In their simplest form alternative choice features allow for
an exclusive or relationship. We can also have cardinalities assigned that allow
for 0...n or 1...n relationships where the first number is the lower bound and the
second number is an upper bound. An exclusive or alternative feature is usually
the default for alternative features in a model and is a 1...1 relationship.

We present a small product line to help to explain these ideas and to illus-
trate our techniques. The feature model for this product line (shown using the
Orthogonal Variability Model (OVM)) [19] is seen in Figure 1 on the left (the
right portion of this figure will be discussed later). This product line defines a
family of 42 calculator programs. It has a core set of features, Exit and Clear
and one optional feature, Backspace. Users can select one of three languages
(English, Chinese or Spanish) used in the menus, titles and help. Finally the
memory features include Memory Store and Recall.

The mandatory features in our sample product line are Core and Language.
Within each of these there is some variation. Store is an Or feature from Memory
and it is required only if the Memory Recall feature is selected.

Feature models have been used for generative programming [2, 7, 23], provid-
ing a model based approach to the realization of product lines. Feature models

Improving the Testing and Testability of Software Product Lines 243

Fig. 1. Calculator SPL Feature Model

have also been used to model the product space for instantiating products for
testing [3, 6, 24]; for instance, the work of Uzuncaova et al. [24] transforms the
feature model into an Alloy specification and uses this to generate test cases,
while the work of Cohen et al. [6] uses the feature model to define samples of
products that should be included in testing. Similarly, the PLUTO methodology
[3] uses the feature model to develop extended use cases that contain variability
which can formulate a full set of test cases for the family of products. Schürr
et al. [22] use a classification tree method for testing from the feature model.
Other extensions of feature models have been for staged generation [8] or mod-
eling constraints [9]. None of this work explicitly uses the feature model as we
do, in a graph based representation, that can be used to select products (and
test cases) for testing. The work of Bachmeyer et al. [1] also uses a graph based
representation of a feature model, but they do not use this in the testing process.

Other work on software testing product lines includes that of Denger et al.
[10] who present an empirical study to evaluate the difficulty of detecting faults
in the common versus variable portions of an SPL code base concluding that
the types of faults found in these two portions of the code differ. They use both
white and black box techniques but do not test from the feature model.

3 Leveraging Redundancy for Testing via Feature Models

We begin with the conjecture that black box testing of software product lines can
be made more efficient and effective by designing the product line architecture
(and resulting feature model) in a manner that supports reuse of product line
testing results across different products. Others have argued that variability
decreases testability [15], but we believe that there should be a finer grained
examination of this argument. Both optional and alternative features can be
viewed as points of variability in a software product line, yet we believe they

244 I. Cabral, M.B. Cohen, and G. Rothermel

may behave differently from a black box testing approach and provide different
opportunities to reduce testing effort, as we explain next.

Our methodology involves the following steps: (1) transform the feature model
into a feature inclusion graph; (2) associate use cases with each feature; (3)
develop test cases for each use case; (4) Select basis paths on this graph; and (5)
for each path (product), run all test cases for the included features.

3.1 Feature Inclusion Graph

In this section we present a transformation of the feature model into a graph that
we call a feature inclusion graph (FIG), which represents feature dependencies
derived from the feature model. In a FIG, all features that appear on a non-
branching path are included in the same product, while branches represent the
variability in feature composition. We view the FIG as having a loose connection
to the control flow graphs used in software testing; a control flow graph shows
explicit flow of control in a program and can be used to select test cases for
white box testing. Harrold [12] has suggested that regression testing techniques
can be applied to different abstractions of software artifacts as long as they
can be represented as a graph and tests can be associated with edges. In our
scenario we do not have control flow; rather, our paths represent a combination
of features and its dependencies, but we use a common method from control flow
based testing to find a basis path set [26] for the graph – a set of independent
paths through the program graph.

The FIG contains all features of the SPL. We next show how it is derived using
different parts of a feature model from OVM [19]. In OVM, the core concepts
of an SPL model are the variation points and variants. Each variation point
(VP) has at least one variant and the edges between VPs and variants indicate
dependencies. In a FIG we apply the same OVM concepts. A FIG has two
main components, features and edges. The edges represent the variability of our
diagram making explicit all possible paths that we can traverse to generate the
minimum set of products. The features are classified as Mandatory, Optional, or
Alternative. Next, we describe how each feature and edge are represented in the
FIG and how they interact with each other.

In a FIG, a variation point is represented as a triangle and variants are rep-
resented as rounded rectangles. A Mandatory dependency is represented by a
solid edge between a VP and variant, while an optional dependency uses a dashed
edge. A diamond represents the variability of optional and alternative features.
Figure 2 shows an example of Mandatory and Optional features represented
in the OVM language and FIG diagram, respectively. In this example we see
on the left (Figure 2) two mandatory features in OVM (B and C). These are
both required in the same flow of control therefore we put them on a single
non-branching edge of our FIG (lower bottom of figure). Note that either B or
C can come first since the dependency is only important at the branches (e.g.
this is a partial order). On the right (Figure 2) we show two optional features
(again B and C). Here we have added three branched edges. The middle edge
represents the case in which neither feature is included, while each of the other

Improving the Testing and Testability of Software Product Lines 245

Fig. 2. Mandatory and Optional Features Fig. 3. Calculator Example

edges allow for the inclusion of either feature. We also include a back edge for
each feature since it is possible to include a second feature. Assuming that we
allow only one instance of a feature for a single product, we can see that there
are four possibilities in this graph: we can have no optional features, one of B or
C, or both B and C.

From a testability perspective we view this type of variation to be more
testable than some other types of variation, since we can include both features
(B and C) in a single product. With two optional features we have a 75% re-
duction in the number of products that we must instantiate in order to test all
features. We can apply this to the Core Variation Point and its variants in the
calculator SPL. The Core Variation Point has two mandatory features (Exit and
Clear (C)) and one optional feature shown in Figure 3. As we can see in this
case the optional feature (backspace) can be included in the first product tested
providing us with a single instance.

Alternative features are features that are mutually exclusive and present a
more difficult challenge for testability. We argue that these are the true deter-
rents to testability since only one feature can be present in an SPL at a time.
Even with these types of variation points we may still gain some benefit in re-
usability. Figure 4 shows three examples of alternative features in OVM (top)

Fig. 4. Alternative Features

246 I. Cabral, M.B. Cohen, and G. Rothermel

and its corresponding FIG (bottom). The first example has cardinality 0...1, i.e.,
this is really an optional feature and we can include at most one of the two al-
ternatives. In this case we expect to see a small benefit from the optional feature
characteristics. We need two of the three possible products to cover all features.

The second example (middle) shows the exclusive or 1...1 relationship. This
is the least testable type of variation since it forces the combinatorial space to
increase. Here we have two dashed edges to B and C, no back edges and no
middle edge. We have two possible products and need to test both to cover the
features of this graph. We see no reduction.

The last example (right) is when we have a 1...n relationship; the figure shows
a 1...2 relationship. We have a back edge from each feature, and we can cover
all features using a single product even though there are three products (B, BC,
and C), by including both B and C in our product for testing.

The graphs do not explicitly incorporate constraints in the representation.
We maintain a separate set of constraints that we can check during our graph
traversal, to ensure consistency, but will examine this in future work.

3.2 Selection Algorithms

In this section we present four methods for selecting products for testing. The
first two use the FIG and the second two do not. The first algorithm is our
core algorithm called the FIG Basis Path algorithm. The idea is to select a set
of independent paths in the program that cover all features in the graph. We
then present a variant of this called the FIG Grouped Basis Path algorithm, that
tests subfamilies of the product line grouped by the alternative features in the
SPL. We believe that this algorithm will be incorporated into the development
process more smoothly, where one particular subfamily is created at a time. The
third algorithm does not use the FIG, but is used in our empirical comparison
as a method that we believe will be less expensive; we call this the All Features
algorithm. This algorithm greedily chooses products until all features in the
product line have been included at least once. The last method we discuss is
also used as a basis for comparison. We expect that it will be stronger than the
other comparison method, but also perhaps more expensive. This is the Covering
Array method suggested by McGregor [17] and Cohen et al. [6]. In this method
we select a subset of products from the feature model that cover all pairs of
features in the SPL. We describe each method in more detail next.

The FIG Basis Path Algorithm (Algorithm 1) is based on the basis path
algorithms in [26]. In this algorithm we assume that the FIG is built and that
we have a set of constraints on the features. We begin by setting the basis path
set (BP) to be empty. We then iterate through all paths in the FIG in a depth
first traversal order (to ensure we find the longest paths first).In the algorithm
we reference the authors use a breadth first search, but our objective is slightly
different. For each path we check the constraint set to see if the path is feasible.
If it is, we then check if it is linearly independent with the other paths in BP.
(In our study we performed this step manually, however, it can be automated
with a constraint solver.) If it is independent we add it to BP. For example,

Improving the Testing and Testability of Software Product Lines 247

Algorithm 1. FIG Basis Path Algorithm
BasisPath(FIG)

BP = �
for all paths, P, ∈ FIG (using DFS order) do

if P is feasible then
if LinearlyIndependent(P, BP) then

add P to BP
end if

end if
end for

suppose we want to select the minimum set of products in the calculator SPL.
We show the FIG on the right portion of Figure 1. For each path, we evaluate if
it is feasible by checking existing constraints. In this case, all paths that include
the Memory Recall variant and do not include the Store variant will be removed
from the final set of paths (Products). We next begin our selection. In the first
path, 6 variants are selected, containing all of the mandatory features (Exit, and
Clear (C)) and optional features (Backspace), one language - Spanish - and two
variants from the Memory variant point: Store (M+) and Recall. The second
path substitutes the Store variant from the previous path (M+) to MS. The
third and fourth paths change only the Language variant.

The FIG Grouped Basis Path Algorithm is a modification of the FIG
Basis Path algorithm, in which subfamilies of the product line are grouped based
on the alternative features. We begin by generating all of the paths in the FIG
in depth first order and check each for feasibility. We then group all feasible
paths by alternative feature groups, where all paths that include a particular
alternative feature are included in its group. If there are paths that contain no
alternative features, we create an additional group to hold these. For example,
suppose we want to group based on the language VP in the calculator SPL. In
this case we would find all paths that contain Spanish and put them into one
group. All that contain Chinese go into in another, and the rest that contain
English are put into another. Once we have the grouping, we use the Basis Path
algorithm for each group where the FIG is replaced with the set of paths in the
group. We can skip checking feasibility since this has already been performed.

Our third algorithm, the All Features Algorithm, does not require a FIG.
This algorithm is less expensive than the first two because it does not involve
enumerating paths and walking the graph. Instead its goal is to include a set of
products that just cover all features. We begin by placing all features into one of
two sets, Mandatory and all others. We include additional constraints to enforce
our alternative features, then we order features in descending order based on the
the number of constraints on that feature. We keep a set we call used features
which starts as empty. For each product, we greedily add features (putting them
in the constraint order described) into a product, skipping those that are already
in the used feature set (unless mandatory or part of a requires constraint), or
that violate a constraint, until we have a product including the greatest number
of unused features. We then update the used features set. Once all features have
been included in at least one product we are done. For the calculator SPL,

248 I. Cabral, M.B. Cohen, and G. Rothermel

we create 3 products. The first product contains the mandatory features, the
Chinese language and all variants associated with the Memory variant. The
second and third products do not include any variant from Memory, but the
Language variant is changed to English and Spanish, respectively.

Our fourth algorithm, the Covering Array Method uses a pair-wise ap-
proach and covers all pairs of features in at least one product. This technique
tests interactions between features and has been shown to be effective in testing
many types of configurable software [20]. The base object used to select the sam-
ple is a covering array. A few differences can be noted between this and our other
methods. First, in the Covering Array method we consider optional features as
being both included and not included. Therefore we would not be able to simply
test a product with both A and B but would need to test A with and without B,
and B with and without A as well as neither feature. While possibly a stronger
testing criterion we expect that this method will be more expensive and may
not be helped by improved testability as we have described it.

4 Case Study

To gain insights into the operation of the FIG basis path approach we conducted
a case study, comparing the approach to the three other approaches described
in Section 3. Our goal is to address the following research questions:

RQ1: How does the FIG basis method compare with other test methods?
RQ2: Can we reduce the effort required to test groups of products through the

grouped basis method?

4.1 Study Objects

As objects of study we selected two software product lines, both developed by
other researchers and used in previous studies of SPLs. The first SPL is a Graph
Product Line (GPL) created by Lopez-Herrejon and Batory [16]; it is built us-
ing the AHEAD methodology and implemented as a series of .jak files [2] (an
extension of the Java language). The second SPL is a Mobile Software Product
Line [11] created by Lancaster University and widely used in previous studies.

Table 1 lists, for each of our software product lines, the total number of lines
of code excluding comments (LOCs), the number of classes present (Classes),
the number of products that can be created (Products), the number of faults
present (Faults), the number of variants classified as Optional, Alternative, and
Or (Variants) and the number of constraints classified as Require and Exclude
(Constraints). The total number of lines of code (LOCs) corresponds to the
product that has the most features selected.

The Graph Software Product Line (GPL) is an SPL that implements a family
of graph algorithms in which each product is a type of graph. The code base
includes 1435 lines of jak code and consists of 15 features. A graph is either
directed or undirected. Edges can be weighted or unweighted. A graph product

Improving the Testing and Testability of Software Product Lines 249

Table 1. Objects of Study

Variants Constraints
LOCs Classes Products Faults Opt. Alt. Or Require Exclude

GPL 1435 (jak) 12 38 60 0 4 1 10 1
MobileMedia - V5 2220 37 16 10 4 0 0 0 0
MobileMedia - V6 2173 38 24 10 4 0 1 4 0

requires at most one search algorithm: depth-first search (DFS) or breath-first
search (BFS), and at most one or more of the following algorithms: vertex num-
bering, connected components, strongly connected components, cycle checking,
minimum spanning tree and single-source shortest path. The GPL feature model
contains a total of 80 instances without constraints. After reading the documen-
tation for the GPL we created a feature model for it, as shown in Figure 5. To
create this model we needed to resolve some ambiguity in the documentation
and we also reduced the possible cardinality for combinations for the variant
point Alg. Ultimately we obtained 38 possible instances of the product.

Fig. 5. Graph SPL Feature Model

Mobile Media is an SPL that implements mobile applications that manipulate
media (photos, music and video) on mobile devices. Mobile Media has evolved
since 2005 to support several types of media. Mobile Media has nine releases
implemented in two paradigms: aspect oriented and object oriented.

For our study, we selected two versions of Mobile Media that were developed
using the object oriented paradigm, versions 5 and 6. In version 5, users are
allowed to manipulate image files in different mobile devices as well as send mes-
sages, set favorite pictures, copy images and perform other operations. Version
6 is a refactored version of version 5 and it includes one more variation point.
In this version, users are allowed to manipulate two different types of media:
photo and music. Both versions share a few operations but they have different
underlying code bases due to the refactoring. The Mobile Media Feature Model
allows us to derive a total of 16 and 24 instances for version 5 and 6, respectively.
Figure 6 presents the feature model for Mobile Media and its evolution.

250 I. Cabral, M.B. Cohen, and G. Rothermel

Fig. 6. Mobile Media SPL Feature Model

4.2 Test Suites

To conduct our study test suites were developed by associating each feature with
its correlated use case requirements. For each feature, we developed concrete test
cases that cover the primary scenario as well the alternatives use cases. We used
the documentation provided with the object to generate these. All test cases
were created by other researchers in our group not including the authors of this
paper. For the GPL product line, the test suites are command line test cases. For
Mobile Media the test cases are GUI based and implemented using a combination
of two open source testing tools, Microemulator [18] and Abbot [25].

4.3 Fault Seeding

In the Mobile Media application, during the course of working with the system,
we found 10 actual faults that caused the system to working improperly.We
corrected each fault based on the requirements provided with the application
and then re-seeded each fault into a single faulty version. We thus had 10 faulty
versions of this application for both version 5 and 6.

For the GPL application, we provided six students in our laboratory, who were
not involved with the study itself and had no knowledge of the approaches being
studied, with a document on an approach for doing fault seeding and subsets of
the .jak files. We asked each student to seed 10 faults into their set of files. This
yielded 60 faulty versions of this application.

4.4 Study Conduct

To conduct our study we applied each of the four testing approaches to each of
our fault free objects. We executed these test cases on our faulty versions, and
to determine whether a test case detected a fault, we compared the output of
the faulty version under that test with the output of the original (non-faulty)
version of the object under that test. All of our executions were performed on a
1.8GHz Intel Pentium M with 1GB of system memory running SuSE Linux 10.1
platform equipped with the Java 1.5 JDK.

Improving the Testing and Testability of Software Product Lines 251

5 Results

In this section we examine the results of our research questions. We begin with
RQ1 which asks how the FIG Basis Path method compares with other methods.
Table 2 shows the data for both applications. The first column shows the number
of products tested, followed by the number of test cases run. The rightmost
column shows the number of faults detected by each technique.

In considering this research question we examine three methods: the Covering
Array method, the All Features method, and the Basis Path method, and we
compare these to an All Products method which performs an exhaustive enu-
meration of all products. (The Grouped Basis Path method is considered for
RQ2.) As the table shows, in the GPL of the 60 faults inserted, 54 were found
when we tested all products. Both the Covering Array method and the Basis
Path method also found 54 faults, however the Basis Path method used fewer
than half as many products as the Covering Array method and 39.7% of the
test cases. The least expensive method was All Features (5 products and 26 test
cases); however, this technique missed 3 faults when compared with the other
techniques.

We next consider the results for the two versions of Mobile Media. In this case
we see that all methods found all of the faults in both versions. For version 5,
the All Features and Basis Path methods required only one product and 49 test
cases, compared with 348 test cases for the All Products method and 190 test
cases for the Covering Array method. For version 6, the All Features and Basis
Path methods required only two products with 71 and 85 test cases respectively,
compared with 839 test cases for the All Products method and 201 test cases
for the Covering Array method. We discuss the implications of these results in
the next section.

To answer RQ2 we examine data shown in Table 3. This table shows the
data grouped by the alternative features of each SPL. The left side of the table

Table 2. Number of Test Cases and Faults Detected by Technique: Mobile Media SPL

Graph SPL
Total Number of Products: 38
Total Number of Faults: 60

Method # Products Test Cases Faults Detected
Covering Array 20 141 54
All Features 5 26 51
Basis Path 9 56 54
All Products 38 256 54

Mobile Media 5 Mobile Media 6
Total Number of Products: 16 Total Number of Products: 24
Total Number of Faults: 10 Total Number of Faults: 10

Test #Faults #Test # Faults
Method # Products Cases Detected # Products Cases Detected
Covering Array 5 190 7 6 201 10
All Features 1 49 7 2 71 10
Basis Path 1 49 7 2 85 10
All Products 16 348 7 24 839 10

252 I. Cabral, M.B. Cohen, and G. Rothermel

Table 3. Number of Test Cases and Faults Detected by Alternative Variants

Graph SPL
All Feasible Paths Grouped Basis Path

Variant #Product #TC #Faults #Product #TC #Faults
Shortest 3 19 27 2 13 27
SCC 4 34 28 2 17 28
CC 6 46 21 2 17 21
MSTP 3 14 26 2 11 26
MSTK 3 29 29 2 24 29

Mobile Media v6
All Feasible Paths Grouped Basis Path

Variant #Product #TC #Faults #Product #TC #Faults
Music 4 139 10 1 40 10
Photo 5 220 10 1 49 10

Fig. 7. Number of Test Cases and Faults Detected Grouped by Alternative Features

shows data for all feasible paths in each group, including the number of products,
number of test cases, and number of faults detected. The right side of the table
shows the same data for the selected products using the Basis Path method.
In every group of products we see that we can reduce the number of products
tested while retaining the fault detection capability. For GPL, our reduction in
products ranges from 67% (CC) to 33% (Shortest, MTSP, MSTK). In addition
we have used between 37% and 79% of the test cases required for all feasible
paths, resulting in at least a 20% reduction in the required test cases. For Mobile
Media, we had a reduction of between 71.2% and 77.7% of the test cases and
75% (Music) to 80% (Photo) of the products.

In an additional analysis we wanted to determine whether any subset of n
paths could have been selected with the same fault detection results within each
group. For GPL, we performed a pair wise comparison between products since
we have selected two products for each group. For each group we combined all
combinations of 2-paths and calculated the fault detection. We show this data in
the form of a box plot (Figure 7). In each plot we see a range of fault detection,
indicating that the Basis Path method is providing the best fault detection (we

Improving the Testing and Testability of Software Product Lines 253

know that it is at the top of the box plot since all basis path results provided
the same fault detection as the full set of feasible paths in that group). Since the
Grouped Basis Path for Mobile Media selected only one product from the whole
set of feasible products, we evaluated the fault detection for all products that
belongs to the same group. The data in Figure 7 shows that there is a range
of fault detection between products in the Photo variant, but products with
the Music variant selected have the same fault detection. This confirms that we
cannot randomly select a subset of products within groups and necessarily be
assured of the same fault detection.

5.1 Discussion

For RQ1, based on this data we believe that the FIG Basis Path method is
efficient at finding faults and is at least as effective as other techniques. In the
product line that we define as less testable due to the alternative features (GPL)
we see that the Basis Path method performed the best. It found as many faults
as the other techniques for 60% fewer test cases than the CA technique, and
55% fewer products. In the Mobile Media application, where we believe we have
a more testable product due to the small number of alternative features, we see
that the FIG Basis Path was as effective at finding faults as all other methods,
and costs the same as the least expensive method, All Features. It was less
expensive than the covering array method as well. Given these results we suggest
that although the cost of computing the FIG Basis Path may be slightly higher
than that for All Features, the technique appears to work well for both types of
feature model elements (alternative and optional), therefore it is the more robust
technique. Further evaluation is needed to understand the efficiency of using a
FIG with higher granularity variants. We believe there is a correlation between
the granularity in the feature models and the efficiency of our technique. We also
have analyzed where the faults lie within our applications and many faults were
located in the mandatory and optional features. We need to further analyze the
impact of faults that are embedded inside of the variant portions of the code to
fully understand the effectiveness of these techniques.

For RQ2, we see that it is possible to test parts of the product space more
efficiently using the Grouped Basis Path method when the feature model has
alternative variant points. In the GPL application, where we believe we have a
less testable product due to the variability and a large number of requirements
constraints, we were able to select a small set of products that revealed all our
faults with fewer test cases and products. Furthermore, the boxplots tell us that
we cannot simply select the paths to test randomly. This suggests a further
use of the FIG Basis Path method, where we want to focus on parts of the
SPL at a time or where development is taking place in stages, based on specific
variation points. Conversely, the Grouped Basis Path method did not show any
improvement over the FIG Basis Path method in the Mobile Media application.
We believe the small number of constraints of the Mobile Media application has
some influence over the method. We conclude for RQ2 that we can use FIG
Grouped Basis Path to reduce test effort.

254 I. Cabral, M.B. Cohen, and G. Rothermel

6 Conclusions and Future Work

In this paper we have used the feature model to drive test case selection and
have asked if we can reduce test effort while retaining fault detection capability
through a graph-based selection algorithm. Using the FIG Basis Path method
we were able to detect the same number of faults as we did when testing all
products, by testing as few as 6% and no more than 24% of products in our
SPLs, and running only 10% of the test cases as All Products in the best case.
The most effective non-graph technique, the Covering Array method, required
us to test between 13% and 54% of products respectively in the same systems. In
the subject with only optional features, we see that our method does as well as
all other techniques in fault detection and costs no more than the least expensive
technique, All Features.

In future work we plan to examine this technique on larger software product
lines with more complex faults. We will also examine other variations of the
feature model such as 1...n relationships and the impact of constraints on our
model.

Acknowledgments

We thank B. Gavin, T. Yu, S. Huang, A. Sung, S. Kuttal and W. Xu for help
in seeding faults and W. Motycka for developing the test suite for the subjects
used in this work. We also thank Eduardo Figueiredo for providing us the source
of Mobile Media Software Product Line. This work was supported in part by
NSF under grants CCF-0747009 and CNS-0454203, and by the AFOSR through
award FA9550-09-1-0129.

References

1. Bachmeyer, R.C., Delugach, H.S.: A conceptual graph approach to feature model-

ing. In: Intl. Conference on Conceptual Structures, pp. 179–191 (2007)

2. Batory, D.: Scaling step-wise refinement. IEEE Transactions on Software Engineer-

ing 30(6), 355–371 (2004)

3. Bertolino, A., Fantechi, A., Gnesi, S., Lami, G.: Product line use cases: Scenario-

based specification and testing of requirements. LNCS, pp. 425–445. Springer, Hei-

delberg (2006)

4. Clements, P., Northrop, L.M.: Software Product Lines: Practices and Patterns.

Addison-Wesley, Reading (2001)

5. Cohen, D.M., Dalal, S.R., Fredman, M.L., Patton, G.C.: The AETG system: an

approach to testing based on combinatorial design. IEEE Transactions on Software

Engineering 23(7), 437–444 (1997)

6. Cohen, M.B., Dwyer, M.B., Shi, J.: Coverage and adequacy in software product

line testing. In: Workshop on the Role of Architecture for Testing and Analysis,

pp. 53–63 (July 2006)

7. Czarnecki, K.: Overview of generative software development. In: Banâtre, J.-P.,

Fradet, P., Giavitto, J.-L., Michel, O. (eds.) UPP 2004. LNCS, vol. 3566, pp. 313–

328. Springer, Heidelberg (2005)

Improving the Testing and Testability of Software Product Lines 255

8. Czarnecki, K., Helsen, S., Eisenecker, U.: Staged configuration through specializa-

tion and multilevel configuration of feature models. In: Software Process: Improve-

ment and Practice, pp. 143–169 (2005)

9. Czarnecki, K., She, S., Wasowski, A.: Sample spaces and feature models: There

and back again. In: Intl. Software Product Line Conference, pp. 22–31 (2008)

10. Denger, C., Kolb, R.: Testing and inspecting reusable product line components:

First empirical results. In: Intl. Symposium on Empirical Software Engineering,

pp. 184–193 (2006)

11. Figueiredo, E., Cacho, N., Sant’Anna, C., Monteiro, M., Kulesza, U., Garcia, A.,

Soares, S., Ferrari, F., Khan, S., Castor Filho, F., Dantas, F.: Evolving software

product lines with aspects: an empirical study on design stability. In: Intl. Confer-

ence on Software Engineering, pp. 261–270 (2008)

12. Harrold, M.J.: Architecture-based regression testing of evolving systems. In: Work-

shop on the Role of Architecture for Testing and Analysis, pp. 73–77 (July 1998)

13. Jaring, M., Krikhaar, R.L., Bosch, J.: Modeling variability and testability inter-

action in software product line engineering. In: Intl. Conference on Composition-

Based Software Systems, pp. 120–129 (2008)

14. Kang, K.C., Cohen, S.G., Hess, J.A., Novak, W.E., Peterson, A.S.: Feature-oriented

domain analysis (FODA) feasibility study. Technical report, Carnegie-Mellon Uni-

versity Software Engineering Institute (November 1990)

15. Kolb, R., Muthig, D.: Making testing product lines more efficient by improving

the testability of product line architectures. In: Workshop on Role of Software

Architecture for Testing and Analysis, pp. 22–27. ACM, New York (2006)

16. Lopez-Herrejon, R.E., Batory, D.S.: A standard problem for evaluating product-

line methodologies. In: Bosch, J. (ed.) GCSE 2001. LNCS, vol. 2186, pp. 10–24.

Springer, Heidelberg (2001)

17. McGregor, J.D.: Testing a software product line (cmu/sei-2001-tr-022). Technical

report, Carnegie Mellon Software Engineering Institute (2001)

18. MicroEmulator (2010), http://www.microemu.org/

19. Pohl, K., Böckle, G., van der Linden, F.: Software Product Line Engineering.

Springer, Berlin (2005)

20. Qu, X., Cohen, M.B., Rothermel, G.: Configuration-aware regression testing: An

empirical study of sampling and prioritization. In: International Symposium on

Software Testing and Analysis, pp. 75–85 (July 2008)

21. Schobbens, P.-Y., Heymans, P., Trigaux, J.-C.: Feature diagrams: A survey and

a formal semantics. In: Intl. Requirements Engineering Conference, pp. 136–145

(2006)

22. Schürr, A., Oster, S., Markert, F.: Model-driven software product line testing: An

integrated approach. In: Theory and Practice of Computer Science, pp. 112–131

(2010)

23. Thaker, S., Batory, D., Kitchin, D., Cook, W.: Safe composition of product lines.

In: Intl. Conference on Generative Programming and Component Engineering, pp.

95–104 (2007)

24. Uzuncaova, E., Garcia, D., Khurshid, S., Batory, D.: Testing software product

lines using incremental test generation. In: Intl. Symposium on Software Reliability

Engineering, pp. 249–258 (2008)

25. Wall, T.: Abbot Java GUI test framework (2010),

http://abbot.sourceforge.net/doc/overview.shtml

26. Yan, J., Zhang, J.: An efficient method to generate feasible paths for basis path

testing. Information Processing Letters 107(3-4), 87–92 (2008)

http://www.microemu.org/
http://abbot.sourceforge.net/doc/overview.shtml

J. Bosch and J. Lee (Eds.): SPLC 2010, LNCS 6287, pp. 256–270, 2010.
© Springer-Verlag Berlin Heidelberg 2010

Architecture-Based Unit Testing of the Flight Software
Product Line

Dharmalingam Ganesan1, Mikael Lindvall1, David McComas2,
Maureen Bartholomew2, Steve Slegel2, and Barbara Medina2

1 Fraunhofer Center for Experimental Software Engineering,
20740 College Park, Maryland, USA

{dganesan,mlindvall}@fc-md.umd.edu
2 NASA Goddard Space Flight Center (GSFC),

20771 Greenbelt, Maryland, USA
{david.c.mccomas,maureen.o.bartholomew,steve.slegel,

barbara.b.medina}@nasa.gov

Abstract. This paper presents an analysis of the unit testing approach devel-
oped and used by the Core Flight Software (CFS) product line team at the
NASA GSFC. The goal of the analysis is to understand, review, and recom-
mend strategies for improving the existing unit testing infrastructure as well as
to capture lessons learned and best practices that can be used by other product
line teams for their unit testing. The CFS unit testing framework is designed
and implemented as a set of variation points, and thus testing support is built
into the product line architecture. The analysis found that the CFS unit testing
approach has many practical and good solutions that are worth considering
when deciding how to design the testing architecture for a product line, which
are documented in this paper along with some suggested improvements.

Keywords: unit testing, implemented architecture, mock, function hook,
coverage, flight software.

1 Introduction

It is a well-known fact that the cost of finding and fixing a bug at the time of unit
testing is cheaper than finding and fixing bugs that are found during integration test-
ing, system testing or in the field. In addition, unit tests help developers while
performing software changes because they indicate when changes break existing
functionality. However, unit testing is not easy in practice for reasons including a)
modules often depend on other modules, making them hard to separate and unit test in
an independent fashion, and b) modules can also depend on unique features and func-
tions provided by the operating systems, and they may require the hardware in-the-
loop for the software to function properly, making it difficult to set up a controlled
unit test environment. In the context of software product lines, one of the important
concerns is the capability to unit test core modules without running and being de-
pendent on the behavior of any other core modules, which might not be developed or
correct at all times and for all possible scenarios. This capability is important because

 Architecture-Based Unit Testing of the Flight Software Product Line 257

the whole point of unit testing is to test an individual unit and to produce early and
quick feedback regarding the test results.

In the context of product lines the situation is even more complex. For example,
the core team must demonstrate the quality of their unit tests to the application team
in order to build confidence regarding the quality of the core modules. Furthermore,
when the application teams configure the variation points (e.g., features and modules
to enable) of core modules or when they modify the source code of core modules,
they need unit tests to help them quickly validate the correctness of the software.
Because flight software is mission critical and needs to be of very high quality, the
flight software branch at NASA GSFC has developed a practical approach for unit
testing of its flight software product line (CFS). The Lunar Renaissance Orbit (LRO)
mission which is currently orbiting the moon is one successful example usage of the
cFE (core Flight Executive), which is the core of the CFS.

This paper discloses the architecture of the unit tests that are used in CFS, with the
hope that other product line organizations may benefit from these ideas and concepts.
The unit testing strategies described in this paper are sufficiently general and there-
fore also applicable to other product lines. The central ideas of the unit test architec-
ture provided here include the ability to manipulate return codes of functions that are
defined in dependent modules, used by the function under test. In fact, the CFS unit
testing framework is designed and implemented as yet another set of variation points,
and therefore testing is built into the product line architecture. Thus, the architecture
supports plug-and-play of modules where modules can be bound to stub modules for
testing, and each instance of a product line can be assembly of mock modules. This
supports incremental unit and integration testing because when it has been determined
that a certain application works as expected using the stubbed modules, the “real”
modules can incrementally be added, one by one, and the same unit tests can be exe-
cuted again with growing confidence in the final product variant.

The results of the analysis of the CFS unit testing strategy and collection of unit
tests show that they share a common look-and-feel in terms of the way they set-up the
tests, manipulate return codes of functions defined in other modules they use as well
as how they set-up makefiles to run the unit tests. Furthermore, the dependent mod-
ules need not compile or run, thus this strategy provides early and quick feedback on
unit test results of the module under test.

The analysis of test coverage shows that all publicly visible APIs have dedicated test
programs, and many of the internal functions are indirectly tested through the test pro-
grams developed for public APIs. Thus, all functions of each core module can be unit
tested automatically. For each configuration parameter, there is a dedicated set of unit
tests that test the behavior of the relevant functions with respect to the boundaries of the
values of individual variation points. The analysis also identified a few design problems
from the unit testing point of view. One of the problems is that some functions return
the same return code from different paths, making it difficult to determine whether or
not the given test input data traversed the intended path of the function under test. This
example demonstrates the importance of design for unit testing. Another problem is that
some of the unit tests are lengthy due to the fact that they try to test more than one sce-
nario inside one test function, making it difficult to trace back from test failures to the
exact scenarios that failed. These problems are already added to the CFS issue tracking
system and are being addressed by the CFS team. An important premise of this

258 D. Ganesan et al.

statement is that the unit tests are consider an integral part of the product, and configura-
tion is managed just like the source code.

Contributions of the paper. While the software product line community has a grow-
ing collection of articles related to modeling and managing variability, there are only
a few practically inspired and validated technical papers focusing on unit testing in
the context of software product lines. To this end, we hope this paper makes the fol-
lowing contributions:

1. A practical method for unit testing in the context of product lines. The
method is derived from the way the CFS team implemented unit testing and
examples for the CFS are used to explain the method.

2. A simple, yet effective approach for extracting and analyzing the architecture
of the unit tests including a list of criteria were used for reviewing the unit
tests and which can be used by other analysis teams.

3. An improved understanding of the relationship between software architec-
tural design and unit tests. That is, an understanding of what makes unit
testing easier or harder to develop and maintain. In addition, the paper dem-
onstrates, using concrete examples, the importance of following architectural
rules to facilitate unit testing.

It should be noted that while this paper focuses on unit testing, other important types
of testing such as integration and system testing are also needed, and are briefly dis-
cussed at the end of the paper.

2 The CFS Product Line Architecture

This section introduces the CFS product line architecture as a context for understand-
ing the architecture of unit tests. For CFS business goals and heritage, see [2]. The
CFS has a layered structure. The top level layer has a catalog of reusable mission
independent modules (a.k.a. applications), which may be used in one or more mis-
sions. Mission-specific modules (a.k.a. applications), i.e. they are only used in one
mission, are also part of this top level layer. The second level layer (the Core Flight
Executive (cFE) services layer) is the core of the CFS. The core layer offers several
services, for example, the software bus module for inter-application communication,
and the executive service module that manages the lifecycle of each application on the
top level. Below the core layer, there is an OS abstraction layer (OSAL) which offers
a common API for all operating systems supported by CFS (e.g. Vxworks, Rtems, and
Unix), which was also released as open source [4]. There is also a board support
package layer (BSP) which loads the configured OS and boots the CFS as well as a
hardware abstraction layer, which offers a hardware-independent API for different
types of hardware processors and ports, see Fig. 1. The cFE services and its lower
layers are offered to various missions both inside and outside the NASA including a
catalog of CFS applications that can be reused. Each cFE core service is configurable
by choosing the values for appropriate constants declared in the interface or header
files of each service.

 Architecture-Based Unit Testing of the Flight Software Product Line 259

CFS Application A CFS Application B CFS Application C …

Core Flight Executive (cFE) Services Layer

Software Bus (SB)

File Service (FS)
services

Table Services (TBL)Executive Services (ES)

Event Services (EVS)

OS Abstraction Layer cFE Board Support
Package (BSP) Layer

Hardware Abstraction Layer

Real time OS Board Support Package (BSP) Device Drivers

Hardware

Fig. 1. The structure of the CFS Product Line

All CFS modules are fully implemented in the programming language C. Each
module has a set of C files with configuration parameters and public API functions
declared in header files. There are dedicated makefiles for each module, which com-
piles all its files and produces an object file. All core modules are linked into one
shared core library. Missions reuse this shared library and develop applications using
the APIs offered by the core modules. Missions can add their own application mod-
ules to the top level application layer. However, in order to preserve the built-in flexi-
bility and run-time reconfigurability, applications do not communicate directly with
each other. Instead, applications communicate by subscribing to and publishing mes-
sages from the software bus and it is the responsibility of the software bus to deliver
messages to all subscribed applications, see Fig. 2. The software bus is an abstraction
built on top of OS queues and sockets making the applications unaware of the com-
munication mechanism, which thus can be chosen at build time.

In [2], the CFS source code was analyzed with respect to its compliance to archi-
tectural rules. The detected violations of the architectural rules have now been
removed and a new version of the CFS has been released. The previous analysis con-
cluded that the CFS implementation is indeed consistent with the specified architec-
ture. That is, layering is in place, and all CFS applications communicate only using
the software bus. In this paper, we focus on the CFS’ unit testing strategy and will
explain the architecture of unit tests based on the software architecture of the CFS.
The overall high level question is how we can test CFS-like product lines, which have
to be of very high quality. The first step towards such testing is unit testing.

3 Technical Set-Up and Process for Reviewing Unit Tests

This section introduces the approach followed for the independent review of unit
testing strategies and their accompanying unit tests etc. For this paper, the review was
applied in an independent way: the CFS team provided the artifacts to the Fraunhofer
team, which has not been involved in any way with the development or testing of
CFS, for review, feedback and recommendations for improvements. The Fraunhofer
team used their reverse engineering and software architecture competency to review
the unit tests of the CFS. It was the task of the Fraunhofer team to independently

260 D. Ganesan et al.

Inter-task Message Router (SW Bus)

Software
Bus

Command
Ingest

Telemetry
Output

Memory

Dwell
Checksum

Memory

Manager

Some Mission Applications

cFE core Applications

Some CFS Applications

House-
keeping

Time
Services

Executive
Services

Event
Services

Table
Services

File
Services* * * * * *

*

Fig. 2. The context diagram of the software bus in the CFS. Each module (a bubble) runs in a
separate task, and communicates with other modules by publishing and subscribing to messages
using the software bus.

understand how the unit testing is performed, and to identify issues with the current
practice. These issues were then presented to the CFS team in technical meetings with
the CFS engineers, project leaders, test leaders, etc. This process has been going on
for 2 years and is reiterated whenever new releases or test suites have been developed.

The main goal of the review process is to get a good overview of the current state
of the test suites. In order to do so, the review process attempts to formulate answers
to the questions listed in Table 1. The approach to answering the questions is based on
first extracting the architecture of unit tests from the test code. After that, the ex-
tracted unit test architecture was analyzed to understand the strengths and weakness.
The practically relevant questions listed here are answered using a semi-automatic
approach based on a reverse engineering and visualization tool suite used by the
Fraunhofer team in projects with customers.

The Data Extraction Step: This first step involves parsing the existing source code
and test suites to extract relations between entities (e.g. call relations, include rela-
tions) at the code level. The extracted relations are stored in a relational format in two
databases: one database stores source code relations, and the other database stores
relations of the test suite. This extraction is completely automated using parsers de-
veloped at Fraunhofer. The makefiles are also needed for the analysis because a) they
contain information related to compiler switches, preprocessor symbols, and header
files b) they contain information related to which object file is linked with the other
object files. This linking knowledge is vital to extract correct dependency diagrams
among modules, among test suites, and from test suites to source code modules. The
ifnames tool is used to extract all conditional preprocessor symbols (excluding header
file guards), which are basically variation points supported by the system. These
variation points are later used to analyze how test suites handle them.

The Analysis, Query, and Visualization Step: In this step, the extracted data is
analyzed using SQL-like queries written based on the RPA toolkit [1]. The RPA lan-
guage supports several relation and set theoretic operators to query the extracted data.
For example, it is possible to extract all functions defined in the source code which
are not referenced by any of the test suites. Several RPA queries were developed for
answering questions such as: 1) Is the given function tested at all by a test program or
is the given function tested indirectly by a test program? 2) Is there is a stub or mock

 Architecture-Based Unit Testing of the Flight Software Product Line 261

Table 1. Questions for reviewing the existing unit test code

Question Purpose
1. Can core modules

be tested independ-
ently of the core
modules it uses?

To a) understand whether modules have unit tests, b)
if there are architectural design issues that make unit
testing hard.

2. How are variation
points of each
module being
handled during unit
testing?

To understand how to unit test the behavior with
respect to each variation point (e.g. maximum number
of messages in the software bus).

3. How easy is it to
create mock or stub
implementations of
dependent
modules?

To understand how complex it is to set-up so-called
mock or stub implementations of dependent modules.
Ideally, mock implementations are simple and their
return values are easy to manipulate to traverse all
paths.

4. Can modules be
unit tested without
access to special
hardware and/or
OS?

To understand whether modules can be unit tested on
standard desktop applications without requiring
developers to access special hardware and real-time
operating system.

5. How easy it is to
set-up the unit tests
of a module?

To understand whether it is easy to set-up unit tests.
Ideally, with a couple of instructions it should be
possible to unit test a function.

6. Are there dedicated
test programs for
each public
function of a
module?

To understand, from the coverage point of view: are
there unit test programs developed to test each
individual publicly visible API. From a reuse point of
view, the trust increases if there are dedicated test
programs for each API.

7. How lengthy and
complex is each
test program?

To understand the complexity of unit tests. Ideally, unit
tests focuses just on one scenario and do not mix
multiple scenarios into one test program. Measuring the
length and the number of conditional statements of each
test program shed light on how well unit tests are
structured internally.

8. How are the test
results collected
and reported for
further analysis?

To understand whether developers or testers can easily
track back from test failures to the exact scenario. Are
the code coverage results collected and stored either for
further investigation or to derive new test cases.

9. Is there a common
look-and-feel in
terms of the way
the modules are
unit tested?

To understand whether there is a well-defined
architecture for unit tests, including constraints or rules
for setting-up mocks, makefiles, set-up of tests and
reporting of test execution results. Common look-and-
feel a) helps programmers or testers to easily develop
new unit tests, b) facilitates understanding of unit tests
developed by different developers, and c) improves
maintainability of unit test programs.

262 D. Ganesan et al.

implementation of this function? 3) How many test programs call this given function,
and 4) Which test cases refer the given variation point. While querying is useful to
extract information, visualization is very powerful in revealing patterns in the struc-
ture of unit tests. Module level dependency diagrams and dependencies of test suites
to source code modules were extracted using RPA and visualized using the SAVE
tool, whereas the call graph of test suites are visualized using the Prefuse toolkit. The
module dependency diagrams were used to review the structure of the test suites in
terms of how dependencies to other modules are mocked.

Source Code Makefiles

Test Suites

Makefiles of test
suites

Data Extraction
(Automated)

Call relation, Include
relation, variation

points for test suites

Call relation, Include
relation, variation

points for source code

Visualization, Query and Analysis
2

1

Fig. 3. Two major steps in the analysis of unit test architecture

4 Unit Testing of Core Modules

This section discusses the extracted architecture of the CFS unit tests based on the
tool-supported process introduced in the previous section, see Fig. 4. Although it is
almost a complete graph, only the offered public interfaces are used and no internal
details of modules are shared with other modules. Also, there are clear reasons for
each dependency. For example, the Executive Services (ES) module is responsible for
initializing all modules, and all modules use the ES to register, create new tasks, or
exit their execution. Similarly, all modules use the Software Bus to send and receive
messages. The Event Service (ES) module helps modules log important events, and
thus it is used by all modules. The File Service (FS) module helps modules write and
read file data. The Timing Service module provides timing services to all modules.
The Table Service (TS) module helps application layer modules register data tables to
share data with other modules. The dependencies were extensively reviewed by the
CFS team members and all were deemed valid and necessary. The CFS’ Interface
Control Document (ICD), which is provided to application teams, specifies the inter-
faces of each core module. This English specification explains the behavior of each
publicly visible function in terms of constraints on the input and the output.

 Architecture-Based Unit Testing of the Flight Software Product Line 263

Executive Service (ES)

Software Bus (SB)

Timing Service (Time)

Table Service (TBL)File Service (FS)

Event Service (EVS)

cFE - Core

Fig. 4. Dependencies between core modules, extracted from the source code. Arrows represent
code relations such as include, call, access of data structures, etc.

Variability in the Core Layer: As described in [2], there are only a few conditional
preprocessor statements (e.g. #ifdef, #ifndef statements) in the core layer. For exam-
ple, the timing service controls some variation points using #ifdefs, such as the Mis-
sion Elapsed Time (MET) and Greenwich Mean Time (GMT) formats. There are
variation points in all modules, but instead of using #ifdefs, they are declared in the
header files of the modules and can thus be configured individually for each mission.
These variation points are basically constants. For example, the software bus has a
variation point: maximum number of messages in the bus. Even though there are no
#ifdefs, the cFE core can be executed on variety OS and hardware architectures be-
cause all modules of the core are programmed to the abstract interfaces of OS, hard-
ware, and board support package abstraction layers. Given this brief overview of the
architecture of the core layer and how variability is managed at the code level, the
remaining section focuses on how each module is unit tested independent of other
modules it uses. Fig. 5 shows an example of the high level unit test structure. This
example view for the Executive Services (ES) module shows that the stub concepts
are used in unit testing. For each core module, such a view was extracted from the test
source code. It shows that the ES module depends on stub implementations of inter-
faces of the EVS, the SB, the Time Services, the Table Services, the File Services
module, and also the stubs of OS and board support package APIs. This view is con-
sistent with the source code dependencies of the ES module, shown in the previous
Fig. 4, in that instead of using the real implementations of dependent modules, corre-
sponding stubs are used. Note that stubs implement exactly the same interfaces that
are implemented by real modules, and stubs are orthogonal – that is they are inde-
pendent and don’t need each other. At link time, the makefile of the module under test
links its object files with the object files of stubs it uses. All stubs run in the same
thread with the test suite. This analysis has shown that all core modules have the same
high level structure as in Fig. 5, and that all their makefiles are customized in the
same way in order to link to stub implementations of dependent modules. Thus, they
result in a good common look-and-feel in the high level structure of unit tests. Fur-
thermore, developers can also replace stubs by real modules and can perform incre-
mental module integration and validation.

264 D. Ganesan et al.

Executive
Service (ES)

ut_evs_stubs ut_sb_stubs ut_time_stubs ut_tbl_stubs ut_fs_stubs

es_ut.c

ut_osapi_stubs ut_bsp_stubs

ut_stubs
The test suite for the

Executive Service (ES)
Initializes data

structures for stubs

Fig. 5. The High level structure of Unit Tests (example view for the Executive Services (ES)
module). Arrows denote dependencies (e.g. calls). Dotted arrows are dependencies established
at link time. The ES module is linked to stubs that implement the interfaces of modules ES
depends on. The main function is defined in es_ut.c (ES unit test) which runs all test programs
implemented in es_ut.c.

Table 2. The number of stub functions used for testing each core module

Stub SB Stub ES Stub EVS Stub T ime Stub TBL Stub FS

SB NA 11 3 1 0 1

ES 10 NA 4 3 1 4

EVS 8 10 NA 1 0 1

Time 9 8 2 NA 0

TBL 9 15 3 1 NA 3

FS 0 2 0 1 0 NA

How the stubs are designed and implemented. The CFS implements stubs for each
of the publicly visible APIs of its modules. The test suite for a specific module uses
stub implementations of functions of other modules in order to fully run each function
of the module under test (see Table 2) and in order to provide an environment that
produces guaranteed results for each possible function call. In order to achieve 100%
path coverage of each function under test, developers or testers also need a way to
manipulate return values of the stubbed functions. Otherwise, unit tests will take a lot
of time to run and it may also be difficult to pinpoint where a test actually failed.
Keeping these requirements in mind, the CFS team has defined the data structure in
Fig. 6 for unit testing purpose.

typedef struct
{

uint32 count;
uint32 value;

} UT_SetRtn_t;

void UT_SetRtnCode (UT_SetRtn_t *varPtr,int32 rtnVal,int32 cnt){
varPtr->value = rtnVal;
varPtr->count = cnt;

}

Fig. 6. The Key data structure used for controlling return values of functions. Each stub imple-
mentation of core module functions has its own instance of this structure. Testers manipulate
the instance of this data structure. Stubs are programmed to return values of interest based on
the state of the count variable. The logic of each stub is based on the state of the count. For
example, a stub function can be implemented to return 0, if count is positive, and otherwise -1.
Fig. 8 shows an example stub function. Right: Setting up the return values for each instance of
the UT_SetRnt_t (in ut_stubs.c). The stub implementation for each function returns values
based on the state of the count initialized using this function.

 Architecture-Based Unit Testing of the Flight Software Product Line 265

The ut_stubs module, shown earlier, creates several instances of the above data
structure – one for each stub implementation of the core module functions. It is the
responsibility of the tester to write stubs and manipulate return values using the state
of count variable shown in Fig. 6. Note that all stubs have exactly the same function
signature as the real the implementation. This is an important requirement otherwise
the source code of the function under test has to be changed in order to unit test it,
which is, of course, not a good engineering practice.

Consider the interface specification of the create pipe function of the software bus
module, see Fig. 7. The original implementation returns one of four possible return
values. However, the original implementation also creates real queues using the OS
abstraction layer. If we want to unit test a function defined in another module that
uses this create pipe function, the developer or tester should be given an easy way to
manipulate return values so that different paths can be traversed easily. Also, in this
scenario, the mock implementation does not need to create queues for unit testing of
other modules. Such a mock implementation of create pipe is shown in Fig. 8. As we
can see, it does not do too much in contrast to the original implementation. Neverthe-
less, it is remarkably useful from the testing point of view because of the capability it
offers to control return values using the SB_CreatePipeRtn instance of the
UT_SetRtn_t data structure.

/**
** Name: CFE_SB_CreatePipe
**
** Purpose: API to create a pipe for receiving messages
** Inputs:
** PipeIdPtr - Ptr to users empty PipeId variable, to be filled by this function.
** Depth - The depth of the pipe (max number of messages the pipe can hold at any time).
** PipeName - The name of the pipe displayed in event messages
**
** Outputs:
** PipeId - The handle of the pipe to be used when receiving messages.
**
** Return Values:
** Status - CFE_SUCCESS, CFE_SB_BAD_ARGUMENT, CFE_SB_MAX_PIPES_MET, CFE_SB_PIPE_CR_ERR
**
**/
int32 CFE_SB_CreatePipe(CFE_SB_PipeId_t *PipeIdPtr, uint16 Depth, char *PipeName)

Fig. 7. Interface specification of the create pipe function of the software bus module

extern UT_SetRtn_t SB_CreatePipeRtn;

int32 CFE_SB_CreatePipe (CFE_SB_PipeId_t *PipeIdPtr, uint16 Depth, char *PipeName){
if (SB_CreatePipeRtn.count > 0)
{

SB_CreatePipeRtn.count--;

if(SB_CreatePipeRtn.count == 0)
{

return SB_CreatePipeRtn.value;
}

}
return CFE_SUCCESS;

}

Fig. 8. The mock implementation of the create pipe function (in ut_sb_stubs.c file). This exam-
ple shows how the UT_SetRtn_t data structure is manipulated to return different values.

266 D. Ganesan et al.

Suppose we want to force the create pipe to return CFE_SUCCESS, all we need to
do is just call the UT_SetRtnCode function as shown in Fig. 9 in our test function.
This enables the test program to systematically control return values of other func-
tions in order to traverse different paths of the program under test.

// forces CreatePipe to return CFE_SUCCESS

UT_SetRtnCode(&SB_CreatePipeRtn, -1, 2);

Fig. 9. Example of forcing a function to return the value of interest. See Fig. 6 (right) for the
definition of this UT_SetRtnCode function.

The review has shown that all mocked functions and test programs follow this
technique to manipulate return values. In addition, all mock implementations are very
small, as little as 10 lines or so. Thus, it indicates that this technique works in practice
and requires neither significant learning time nor major shift in the way of working.
Table 3 shows that there are dedicated test programs for each public function of each
core module. The two ES functions and one TBL function have no unit tests because
they are single line get functions. The right hand side of the below table shows that
not all internal functions are directly tested. However, further analysis has shown that
they are transitively tested using the test programs of the public interfaces. This shows
that the stub-based unit test architecture is possible to develop and works well in prac-
tice even though stubs and unit tests are manually developed at this point.

Table 3. Left: Interface coverage by unit tests. Right: The total number of functions unit tested
directly. Some internals functions are also directly unit tested because they are defined as non-
static C functions, otherwise internal functions are transitively tested using public APIs.

Core Module

of Functions
in Interface

Directly invoked
in Unit Tests

SB 30 30

ES 33 31

EVS 7 7

Time 24 24

TBL 14 13

FS 5 5

Core Module

of Funct ions
Defined

Directly invoked
in Unit Tests

SB 86 45

ES 117 68

EVS 33 12

Time 72 42

TBL 60 41

FS 11 11

Some design issues that make unit testing harder

Consider the code snippet defined in the software bus module (see the right of Fig. 10).
It shows that the function returns the same value “bad argument” from two different
conditional blocks. As a consequence, the unit testing code of this function becomes
slightly more complex than necessary because it needs to determine exactly which one
of the two code snippets returned that value. It does so by calling the stub implementa-
tion of the send event (similar to logging) function to make sure the number of times it
was called is equal to 1 if MsgPtr is null, otherwise 2 if the msg id is invalid. This
review identified a few functions that suffer from this design problem with respect to
return values. These issues are being addressed by the CFS team. The recommended
fix is to change such functions so that they all return a unique return value from each of
its path, and thus make the unit testing code clearer.

 Architecture-Based Unit Testing of the Flight Software Product Line 267

int32 CFE_SB_SendMsg(CFE_SB_Msg_t *MsgPtr) {
/* check input parameter */

if(MsgPtr == NULL){
CFE_EVS_SendEventWithAppID(“Send Err:Bad input argument”,…);
return CFE_SB_BAD_ARGUMENT;

}

MsgId = CFE_SB_GetMsgId(MsgPtr);
/* validate the msgid in the message */
if(CFE_SB_ValidateMsgId(MsgId) != CFE_SUCCESS) {
CFE_EVS_SendEventWithAppID(“Send Err:Invalid MsgId”, …);
return CFE_SB_BAD_ARGUMENT;

}
…

}

void Test_SendMsg_NullPtr(void){
…

ActRtn = CFE_SB_SendMsg(NULL);
ExpRtn = CFE_SB_BAD_ARGUMENT;
if(ActRtn != ExpRtn){

TestStat = CFE_FAIL;
}

ExpRtn = 1;
ActRtn = UT_GetNumEventsSent();
if(ActRtn != ExpRtn){

TestStat = CFE_FAIL;
}
…

}

Fig. 10. An example code snippet that makes unit testing difficult. It shows that the same return
code is used for different issues. To unit test this function, the mock implementation of send
event function counts the number of times the send event function is called, in order to make
sure the correct path is tested for the test data. The right figure shows that the test case has to
also test the side effect, that is, the number of logging events it was sent out by the function
under test. UT_GetNumEventsSent gets the number of logging event using the data structure
manipulated by the mock implementation of the SendEventwithAppId function, which simply
counts the number of times it is being called.

Some design decisions that make unit testing easier

Our review of unit tests has derived some insights on the influence of product line
architectural design decisions on unit testing. Here, some product line specific exam-
ples from the CFS are disclosed.

The key to flexible unit testing is programming to abstract interfaces and moving
out conceptually orthogonal variation points to the right module. For example, in the
CFS case, the core layer is designed and implemented in such a way that it is com-
pletely agnostic to the OS, hardware, and board support packages. More concretely,
consider the simple case of creating a queue, and sending and receiving messages
using the queue. Naturally, different OSes offer different Queue APIs. If the system is
programmed with a hard binding to the OS specific APIs then it is of course very
difficult to unit test such a system, and a different sets of unit tests have to be devel-
oped for each OS type. In the CFS case, abstract interfaces with diversified imple-
mentations are developed, and thus conceptually orthogonal variation points are
moved out of the module (see Fig. 11).

linux/osapi.c rtems/osapi.c vxworks6/osapi.c Test/ut_osapi_stubs.c

int32 OS_QueuePut(...){

...
sendTo(...);

...

}

int32 OS_QueuePut(...){

...
rtems_message_queue_send(...);

...

}

int32 OS_QueuePut(...){

...
msgQSend (...);

...

}

int32 OS_QueuePut (...) {

// Mock Implementation
}

Software Bus (SB)

Fig. 11. A common abstract API with different implementations, including a mock implemen-
tation for unit testing. The SB module is programmed to the abstract interface, and the actual
binding to a specific implementation is only at the link time.

268 D. Ganesan et al.

Some internal details of modules should be made public. While hiding modules’
secrets is one of the fundamental principles of software engineering [3], this principle
has to be weakened in order to write good unit tests. For example, consider the load
library function snippet (see Fig. 12), which loads the given shared library (LibName)
and calls the function with the given name (EntryPoint). This is defined in the Execu-
tive Service module. The CFE_ES_MAX_LIBRARIES is a variation point defined in
a public header file that must be set to a particular value. This function should return
an error code if it is called more than the number of times set during configuration.
Note that it uses the CFE_ES_Global data structure for keeping track of number of
libraries that are already loaded. This data structure is hidden inside the ES module,
meaning that no other module is allowed to access this data structure or know about it
or its details. However, in order to test that this function will return an error code if it
is called more than the configured number of times, the unit test must have access to
CFE_ES_Global data structure; otherwise it is very difficult to simulate this error
scenario. To this end, the CFS designers had made this global variable public to other
internal files of the ES module, and thus the unit test can access and manipulate this
variable. Architectural rules were defined to make sure such publicly visible secret
variables are not referenced by other modules using the approach presented in [2].
This is an example of how the risk of violating some engineering principles can be
mitigated by adding architecture/design rules.

int32 CFE_ES_LoadLibrary(char *EntryPoint, char *LibName, …) {
boolean LibSlotFound = FALSE;
for (i = 0; i < CFE_ES_MAX_LIBRARIES; i++) {

if (CFE_ES_Global.LibTable[i].RecordUsed == FALSE) {
LibSlotFound = TRUE;
break;

}
}
if(LibSlotFound == FALSE) return CFE_ES_ERR_LOAD_LIB;

}

Fig. 12. The Load library function loads the library (LibName) and calls a function
(EntryPoint) of that library. CFE_ES_MAX_LIBRARIES is a variation point defined in a
header file. CFE_ES_Global is a global variable, allowing the unit test to change the state to
validate the scenario that if this function is called more than the configured number of times, an
error will be returned code (see Fig. 13).

/* Test for loading more than max number of libraries */
for (j= 0; j < CFE_ES_MAX_LIBRARIES; j++) {

CFE_ES_Global.LibTable[j].RecordUsed = TRUE;
}
Return = CFE_ES_LoadLibrary("EntryPoint","LibName“, …);
UT_Report(Return == CFE_ES_ERR_LOAD_LIB, "CFE_ES_LoadLibrary",

"No free library slots");

Fig. 13. Test code from the load library function that tests the behavior of the load library
function when it is called more than the allowed number of times
(CFE_ES_MAX_LIBRARIES) (see Fig. 12). It manipulates the ES module’s internal data
structure that keeps track of the number of loaded libraries.

 Architecture-Based Unit Testing of the Flight Software Product Line 269

Table 4. Answers to questions based on the analysis

Question Answer and Comments
1. Can a core module be

tested independently of
core modules it uses?

Yes. Because of the novel design of simple
stubs, it only takes 3 minutes or so to run all the
unit tests of the core modules.

2. How are variation
points of each module
being handled during
unit testing?

There is a unit test program for each variation
point that checks the behavior for upper and
lower bound constraints. Some internal details
of a module are made public to support unit
testing.

3. How easy is it to create
mock or stub
implementations of de-
pendent modules?

Mock or stub implementations are easy to cre-
ate. At link-time, a module can be linked to one
or more stubs of dependent modules. This ca-
pability supports incremental integration too.

4. Can modules be unit
tested without access to
special hw and OS?

Yes. Testers can test on their desktop and do
not need to go to the test lab for unit testing.
The UTF framework provides simulators with
the same API as the original code.

5. How easy it is to set-up
unit tests for a module?

Just a couple of instructions are needed to set-
up a test program.

6. Are there dedicated
tests for each public
function of a module?

Yes, all interfaces have one or more dedicated
unit test programs.

7. How lengthy and
complex is each test
program?

Some are lengthy (~100 lines) because they test
more than one scenario and could be split into
smaller ones. Some are complex because the
function under test returns the same return code
from multiple paths requiring extra test code.

8. How are the tests results
collected and reported
for further analysis?

Currently, they use the gcov (GNU coverage)
line coverage tool. All failures are reported in a
text file that is manually reviewed by the tester.

9. Is there a common
look-and-feel in the
way the modules are
unit tested?

Yes. All core modules consistently use the con-
cept of stubs to do unit testing. Also, all test
makefiles for test suites share the same structure.

5 Closing Remarks

In this paper, we described the analysis of the CFS product lines’ unit testing strategy
and accompanying unit test cases and testing environment. The CFS has been refined
over more than 10 years and has gone through rigorous inspections and improvement
initiatives. In addition, the CFS captures knowledge from implementing dependable
flight software for more than 20 years of specifying, developing, testing and flying
such software. Thus, we are grateful that we can analyze and use CFS as an example
of good software engineering that we can all learn from, even though there are still

270 D. Ganesan et al.

some issues that can be removed and improved. For example, the CFS has tackled the
difficult practical unit testing problem that modules often depend on other modules,
making them hard to separate and unit test in an independent fashion. In addition,
modules can also depend on unique features and functions provided by the operating
systems, and they may require the hardware in-the-loop for the software to function
properly, making it difficult to set up a controlled unit test environment. The CFS
team’s approach to unit testing also handles the use of modules (real modules or stubs
for testing) as a set of variation points. This introduces a level of flexibility that al-
lows the user of CFS to also use the same set up for incremental integration testing
because stubs for testing can be swapped in or out depending on the situation, thus
limiting the risks that are associated with big bang integration testing. A future paper
will disclose the unit testing framework that allows application developers to unit test
their applications without running the core modules. Unit testing and the type of
incremental integration testing described above are only two aspects of testing, and
other forms of testing needs to be conducted in order to detect those types of defects
that such testing cannot detect. Supported by the NASA IV&V center, Fraunhofer, in
collaboration with the CFS team and using CFS as a testbed, are researching ways to
develop new testing techniques that address these challenges.

Acknowledgments. Lisa Montgomery and her NASA IV&V team and Sally Godfrey
NASA GSFC for supporting this work; Charles Wildermann, all members of the
GSFC CFS team for comments and discussions; Rene Krikhaar for the RPA toolkit;
The Prefuse visualization team, at Stanford University, for making it available to us;
Lyly Yonkwa for fruitful discussions; three anonymous reviewers for comments.

References

1. Feijs, L., Krikhaar, R., Van Ommering, R.: A Relational Approach to Support Software Ar-
chitecture Analysis. Software Practice and Experience 28(4), 371–400 (1998)

2. Ganesan, D., Lindvall, Ackermann, C.M., McComas, D., Bartholomew, M.: Verifying Ar-
chitectural Design Rules of the Flight Software Product Line. In: SPLC (2009)

3. Hoffman, D., Weiss, D.: Software Fundamentals – Collected Papers of David L. Parnas.
Addison-Wesley Publications, Reading (2001)

4. The OS Abstraction Layer of the CFS, http://opensource.gsfc.nasa.gov

Sans Constraints?
Feature Diagrams vs. Feature Models

Yossi Gil�, Shiri Kremer-Davidson, and Itay Maman

IBM Research—Haifa

Abstract. In this paper we study constraints—inter-dependencies be-

tween basic features in a feature model which are not captured by di-

agrams. We offer a method for the removal of these constraints and

explain why their removal require an (inevitable) exponential increase

to the tree size. We show that the elimination of constraints makes it

possible to provide an efficient solution for the feature editing problem,

recently raised by Thüm, Batory and Kästner. We tie feature models with

computer science fields which may appear very foreign to our domain,

including circuit complexity, graph algorithms and algebraic complexity.

The objective of this tie is double folded: drawing the attention of the

foreign community to the problems we address in our field, and to sug-

gest the use of current results in these fields for better understanding of

the mathematics behind the modeling of software product lines.

1 Introduction

Ever since “Feature-Oriented Domain Analysis (FODA)—Feasibility Study”, the
seminal work of Kang et al. [9], people tend to think of variability in software
product lines (SPL) in terms of feature models. A compact representation of
commonalities and variability of all members of a given software product line is
achieved by erecting a feature model. This model defines a set of basic features,
while each valid combination of these features defines a member of the product
family. Feature models are used extensively during the development process, and
often control the production and assembly of pieces of code and other artifacts
to realize any of the members of a family.

Following FODA, features are organized in a tree structure, in which the
parental relationship represents a logical grouping of features. We shall call this
graphical organization of the interaction between features [22] in a hierarchical
fashion, a feature diagram, where leaves will be referred to as basic features.
The internal nodes are of several kinds, typically mandatory-, optional-, or-
and alternative- nodes. FODA introduces also visualization aids: Connections
between a feature and its group of children are distinguished as And (no arc),
Or (filled arc) and Xor (unfilled arc). The children of And-groups can be either
mandatory (filled circle) or optional (unfilled circle). The particular notations

� On sabbatical from the Technion—Israel’s institute of Technology

J. Bosch and J. Lee (Eds.): SPLC 2010, LNCS 6287, pp. 271–285, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

272 Y. Gil, S. Kremer-Davidson, and I. Maman

will be of a lesser importance here. The more crucial property is that no basic
feature occurs in the tree more than once.

A feature model is more general than a feature diagram, in that it augments
this tree with additional cross tree constraints, which express interaction which
went uncaptured by the diagram. The cross tree constraints are written as logical
formulas of arbitrary complexity over the basic features.

Cross tree constraints give feature models maximal expressive power, since
any interdependency between the basic features may be thus captured. Moreover,
even a simple logical condition such as

(¬a ∧ b) ∨ (b ∧ c) ∨ (c ∧ d) (1)

cannot be written as a constraints-free feature diagram. (See Section 3.2 below.)
On the other hand, the tree form is particularly amenable to logical maneuver-

ing that in the general case require complex Logic Truth Maintenance Systems
(LTMS) [2]. The reason is that in the tree structure, decisions made in two
disjoint subtrees are orthogonal: they only interact at a single point, the least
common ancestor of the roots of these subtrees.

1.1 Cost and Utility of Constraints

The main question intriguing us in writing this paper is that of a better under-
standing of the issue of orhogonalization: what are the circumstances in which
cross tree constraints can be eliminated and what is the cost of doing so. In
other words, we strive for a better understanding of the difference between fea-
ture models and feature diagrams. En route, we shall try to offer a better un-
derstanding of the the kinds of operators used in a feature diagram, that is, the
kinds of their internal nodes, mandatory, optional, etc.

Our study links feature diagrams to notions in the theory of computational
complexity. As it is often the case in this field, most results are not encouraging.
A lower bound proof cannot be integrated as a novel component in our next
shining CASE tool. Still, our theoretical work does offer a better comprehension
of the things we can and cannot do.

In a sense, our work is complementary to that of Czarnecki and Wa̧sowski [4]
who gave a heuristic for translating any logical formula into a feature model,
except that this heuristic did not guarantee that the generated model will not
contain cross tree constraints. We show that that one cannot hope for anything
better in the settings that Czarnecki and Wa̧sowski considered, i.e., a direct
translation of a general formula into a tree structure. We will relax this condition,
and will consider translations in which the variables of the original formula are
“mapped” into a new set of basic features, and discuss the inherent cost of doing
that.

We shall argue that constraints are inevitable, since the expressive power, that
is, the number of different statements which can be made, of diagrams is much
more limited than that of models. Moreover, we explain how the introduction of
of compound features necessitates the introduction of constraints.

Sans Constraints? Feature Diagrams vs. Feature Models 273

On the other hand, we show that at the cost of blowup of either the diagram
size, or the translation map, all constraints can be eliminated. One of our surpris-
ing findings is that recent results in algebraic complexity can be used for more
efficient solution of the problem of edits to a sans constraints feature model [18];
this solution applies also in the case that all constraints are of the sort required
for representing compound features.

1.2 Feature Diagram Kinds

Our study will consider a number of different kinds of feature diagram. Of the
least expressive power is the Monotone kind, in which tree nodes are restricted
to be And and Or only. This somewhat restrictive model may be convenient to
use in the case that feature interaction is minimal.

Next is the familiar Logical kind, in which the nodes may be any of these three
operators: Or, And, or Xor. Following that, we have the Polynomial kind, in
which nodes are restricted to And and Xor, which will turn out to be surpris-
ingly interesting. On the one hand, we shall see that it is sufficiently expressive
to accommodate any logical formula. On the other hand, it will be shown that it
has efficient general solutions for some problems that were considered intractable
in the SPL literature, and hence requiring various heuristics.

Next in the hierarchy is what we call the Foda kind, which augments the
Polynomial kind with a Select operator, which in a sense is a k-ary Xor, in
that it yields 1 only in the case that exactly one of the inputs is 1.

However, several enhancements to this basic notations were proposed in the
literature, including n-out-of-m nodes, at least k nodes [3], etc. To reason about
these variants we introduce the Unrestricted kind of feature diagrams, in which
an arbitrary, yet bounded degree, operators are allowed in any tree node. A par-
ticular subkind of the Unrestricted kind may be defined to cover interesting cases
which cannot be represented by the Foda kind. For example, one may introduce
an operator that captures the recalcitrant example of (1). Unfortunately, the
introduction of new operators will never be sufficient. As hinted above, we show
that there are exponentially many conditions that will not be expressible even
in Unrestricted feature diagrams, regardless of the set of operators it offers.

Table 1 is a chart of the domain of our interest, breaking it down by diagram
kinds. Columns denote the operations that one may be interested in with respect
to each of these model. The first four content columns are manipulations intrinsic
to the SPL realm. The last three columns denote operations for the elimination
of constraints, i.e., for the conversion of general logical formulae into the special
form dictated by the model.

Each cell content denotes the time complexity of the perspective operation,
using the familiar O notation, i.e., O(n) is linear, O(n2) is quadratic, nO(1) is
polynomial, and 2O(n) is exponential. A question mark denotes that even though
the complexity is unknown, we have a good guess of the complexity;

The large number of question marks says that the domain is still largely terra
incognita. The importance of drawing this map is greater than charting the

274 Y. Gil, S. Kremer-Davidson, and I. Maman

Table 1. Constraints in different kinds of feature diagrams

K ind Satisfiability C losure Equivalence Inclusion Detection Refactoring M apping

Monotone O(n) O(n) O(n) O(n) ? O(n2) ?
Logical O(n) O(n) O(n) O(n) ? NP-HARD ?
Polynomial O(n) O(n) O(n) O(n) ? NP-HARDa 2O(n)

Foda O(n) O(n) ? ? ? ? 2O(n)

Unrestricted O(n) O(n) ? ? ? ? 2O(n)

a If the input is provided in a multilinear format then only O(n lg2 n).

unknowns (with the hope of drawing attention of the computational complexity
community to our needs).

1.3 SPL Problems

Continuing with our description of Table 1, Satisfiability is the problem of deter-
mining whether a model has a product in it. If arbitrary constraints are allowed,
then the problem is intractable, since it is tantamount to the NP-complete 3SAT
problem. In contrast, with all kinds of feature diagrams, not only the basic prob-
lem is linear time, but also is its more general variant, in which it is asked whether
a product exists even in face of partial decisions on some of the features.

The more general C losure problem is that of determining all consequences of a
partial decision on some of the features.The difficulty lieswith that decisions canbe
made not only on basic features, but also on internal nodes. In both the Monotone
and the Polynomial kinds, we have a representation of the consequences of partial
decisions, which is not only compact, but also amenable to further manipulations.

In the more general kinds, a compact representation is easy to achieve; all you
do is conjunct the assignments to the partial decisions with the tree structure.
However, it is not clear that this representation is useful for further manipulations.

The Equivalence problem is the one raised by Thüm, Batory and Kästner in
their quest [18] for a method to determine whether an edit of a feature model
changed the set of permissible products. In face of constraints, the problem is
obviously intractable, and there is little wonder why these authors had to resort
to heuristics in tackling it. However, as indicated by the table, there is a linear
time algorithm for doing that in the Monotone, Logical, and Polynomial kinds.
We suspect that a same complexity algorithm exists even for the Foda kind.
We do not dare making such a guess for the Unrestricted kind, but as Thüm et
al. observed, the problem can always be reduced to a satisfiability problem. (A
converse reduction is not known so, we cannot say the problem is NP-complete.)

Next is the related Inclusion problem, also raised by Thüm et al., which
is to determine whether the set of permissible products of one feature model
is contained in that of another. Again, a non-heuristic solution is hopeless in
the case that constraints are involved. Perhaps surprisingly, in the Polynomial
kind (and hence in all inferior kinds), the problem cannot be reduced to that of
divisibility of multilinear multivariate polynomials, which can be carried out in

Sans Constraints? Feature Diagrams vs. Feature Models 275

linear time (even in the face of compound-feature type of constraints). We offer
no guess as of the complexity of the problem in more general kinds.

1.4 Representability in Feature Diagrams?

The final bulk of three columns in Table 1 is concerned with issues involved in
the elimination of constraints. Given a set of conditions on the basic feature set,
we ask the following questions: Detection: can one determine whether they can
be arranged as a feature diagram? Refactoring: If this is indeed possible, how
can this process be carried out? Finally, if such a refactoring is impossible, we
ask the M apping question: is there a way of “mapping” the basic features into a
different set of basic features which can be arranged in a diagrammatically form,
while preserving the “essence” of the original problem.

As it turns out, there are elegant combinatorial characterization of the cases
which can be described as feature diagrams of the Monotone and Logical kinds.
In the case of Monotone, a fairly efficient refactoring algorithm was recently
discovered [6]. Unfortunately, no such algorithm is known in the Logical kind,
and all we have is a brute force method of trying out all possible feature diagrams
against a given input, with the hope that one will do. This is essentially the case
also for the other kinds.

The Polynomial kind is interesting in this respect. There is an elegant algo-
rithm, using polynomial factorization algorithms for detecting whether a set of
constraints can be written in a Polynomial diagram. Moreover, if the input is
given in a special, “reduced” form, which occurs sometimes, then refactoring
can be done in O(n lg2 n) time.

The final column in the table deals with the issue of translating a general set of
constraints into a feature model, by a process which can be thought of as variable
substitution in algebra. We show a method for devising such a substitution in
the higher kinds. Admittedly, the substitution is exponential in the sense that
it leads an exponential blowup in the size of the diagram, or in the size of
substitution. But, as as we argue below, nothing better is possible, since feature
diagrams are exponentially less expressive than feature models. Also, a more
efficient method for translation would lead to sub-exponential algorithm for NP
hard problems, an achievement that we cannot hope for. . .

Perhaps a conciliating thought is that if the constraints are small with respect
to the original model, i.e., of logarithmic size, then an exponential price can still
be tolerated.

Outline. The remainder of this article is organized as follows. Section 2 gives some

definitions and explains how compound features are to be represented as constraints.

We elaborate the topic of limitations of the expressive power of feature diagrams in

Section 3. Section 4 gives special attention to the Polynomial kind of feature diagrams.

Section 5 concludes and lays out directions for future research. Due to space limitations,

we do not give equal attention to all cells of Table 1, and proofs are sketchy at best. Also,

the paper is largely self contained and should be accessible to general, not necessarily

theoretical computer science community.

276 Y. Gil, S. Kremer-Davidson, and I. Maman

2 Definitions

The representation of feature models as propositional calculus is well
known [23,2,16]. Here, we will redo this briefly, dwelling in the (equivalent) realm
of Boolean algebra. Recall that Boolean algebra has Boolean expressions (hence-
forth, expressions for short) defined by an alpha set A of variables which form
the atomic expressions, and the closure of the atomic expressions with binary
operators: conjunction (which we will sometimes write as multiplication), dis-
junction, implication, exclusive-or (which we will write as ⊕), unary negation
and the nullary operators (constants) 0 and 1.

The Foda kind also uses a k-ary Select operator which we will write as ς; the
expression ς(E1, . . . , Ek) is thus 1 when one, and only one, of E1, . . . , Ek is 1.
Observe that ς(E1, E2) = E1 ⊕ E2, but ς(E1, . . . , Ek) �= E1 ⊕ · · · ⊕ Ek for k > 2.
There is no need to have a special operator for optional features. These can
be written as a simple Xor with a dummy, “not existing” basic feature. Other
operators may be introduced as well.

The size of an expression E is simply the number of nodes in its tree repre-
sentation, that is 1 if E is a variable, or 1+ |E1|+ · · ·+ |Ek| if E = ψ(E1, . . . , Ek)
and ψ is a k-ary operator.

2.1 Feature Diagrams over Basic Features

Now, a feature diagram is an expression in which no variable (basic feature)
participates more than once. More formally,

Definition 1 (Feature Diagrams). Let Ψ be a finite set of Boolean operators.
A feature diagram over Ψ is either a variable a ∈ A, or an expression of the
form ψ(F1, . . . , Fk) where ψ ∈ Ψ is a k-ary operator, and F1, . . . , Fk are feature
diagrams over Ψ , such that the sets of variables used in F1, . . . , Fk are disjoint.

(Observe that this recursive definition does not offer a special handling of the
constants {0,1}. The perspective by which these are nullary operators is suffi-
cient. With this perspective, the set of operators {Xor,Not} is “equivalent” to
the operators set {Xor,1}.)

Now, the Monotone feature kind is simply feature diagrams over the operators
set Ψ = {And,Or}; in the Logical kind, Ψ = {And,Or,Not}; the Polynomial
kind is defined by Ψ = {And,Xor,1}. In the Foda kind, the set of operators is
infinite (yet “regular”) Ψ = {And, ς2, ς3, . . .}. The Unrestricted kind of feature
diagrams, does not say anything about the set Ψ , other than the demand that
it is finite, and hence of bounded arity.

An assignment (respectively, a partial assignment) α to a set of variables V ⊆
A, is a function (respectively, a partial function) α : V → {0,1}. If V is the set of
all variables participating in an expression E, then an assignment to V satisfies E
if E evaluates to 1 under this assignment; a partial assignment is consistent with E
if it can be completed into a satisfying assignment. The closure α(E) of a partial
assignment α consistent with expression E, is a superset of α consisting of the
assignments to variables in E which are common to all satisfying completions of α.

Sans Constraints? Feature Diagrams vs. Feature Models 277

Any specific feature diagram identifies the set of satisfying assignments to its
variables. In the software product lines world, a feature diagram represents com-
monalities and variability of a product line, while its set of satisfying assignments
is isomorphic to the set of products.

2.2 Feature Diagrams with Compound Features

The SPL literature often speaks of compound features. For example, Fig. 1
depicts a feature diagram of a hypothetical product line of cellular phones.

Fig. 1. A feature diagram of a cellular

phone product line

Intuitively, the figure says:
“When designing a particular cellular

phone, make a color decision and a
hardware decision. Color is either red

or blue (but not both). Hardware must
include a dialing unit, and and an ac-
cessory which is either a bluetooth or
a camera, which if included, is either a
one- or a three- mega pixel.

It is tempting to apply a straight-
forward translation of this tree into
an expression, converting every Xor
node into a ⊕ and every And node
into conjunction, obtaining

(red ⊕ blue) ∧
(

dialing ∧
(
(oneMegaPixel ⊕ threeMegaPixel) ⊕ bluetooth

)
)

.

Obviously, this expression is not equivalent to the diagram. For instance, it allows
decisions where oneMegaPixel, threeMegaPixel and bluetooth are simultaneously
included. The difficulty is that such a translation does not introduce variables
for the internal nodes, thereby making it cumbersome to express the restrictions
induced by the structure of the original tree (diagram).

The remedy is simple. First, augment any k-ary operator ψ with its k +1-ary
labeled variant ψ′, defined by ψ′(�, E1, . . . , Ek) = �∧ψ(E1, . . . , Ek), and second,
introduce a constraint

¬� → (¬E1 ∧ · · · ∧ ¬Ek). (2)

Thus, ψ′ yields 1 only when the labeling variable �, which is nothing but a
compound feature, is 1. However, when the compound feature is 0 all arguments
of ψ must be 0.

A nice property of the constraint (2) is that it is local, i.e., not cross-tree.
The fact that it only adds another dependency between a node and its children
makes it possible to devise efficient algorithms also when compound features are
present.

Also note that the constraint (2) makes sense only for “0-funneling” operators,
i.e., operators which are 0 when all their parameters are 0. We will not be
interested in non 0-funneling operators.

278 Y. Gil, S. Kremer-Davidson, and I. Maman

3 Expressive Power of Feature Diagrams

The reason that pure feature diagrams are so appealing is that satisfiability and
closure are easily solvable in these.

Theorem 1 (Satisfiability and Closure). There exists a linear time and
space algorithm which, given an Unrestricted labeled feature diagram F and a
partial assignment α to its basic and compound features, determines

1. Whether α is a consistent assignment to F .
2. The closure assignment α(F), that is the set of all assignments which are

forced by α.

Proof. (Sketch.) The algorithm first traverses F bottom up, assigning a {0,1, ?}
value to each node in it. In reaching an internal node, it checks whether the
values coming from its children are such that the condition implied by the oper-
ator in this node can be satisfied according to these values. It further examines
whether α has prescribed a value for this internal node, and whether this value
is consistent with the children’s’ values.

In the second phase, the algorithm traverses the tree top-down, propagating
with it from each node it visits any implications it has on the values of its children.

	

We can also show that there are no other implications of α other than the
{0,1, ?} assignments that the algorithm makes. In a sense, this algorithm gen-
erates another simpler feature diagram F ′ = F ′(α). Also, the algorithm can be
made to suggest corrections to α in the case that it is inconsistent with F , and can
be strengthened to deal with arbitrary local constraints, rather than the limited
form (2), provided of course that each node has a bounded number of children.

3.1 Unrestricted Feature Diagrams

On the negative side, we note that the expressive power of feature diagrams is in-
herently restricted. To see this, consider the total number of Boolean functions
{0,1}n → {0,1}. Since the number of distinct inputs such a function has is 2n,
and each of this is either 0 or 1, there are 22n

such functions. On the other hand,
the number of distinct trees over n variables is in 2O(n log n). (Any such tree can
be written in O(n) memory cells of O(lg n) bits each—cells which will contain the
variable symbols, operator symbols and pointers used for representing this tree.)

It follows that only an exponentially small fraction of all Boolean functions
can be represented as feature diagrams over the same set of variables. And, it
should be easy to be convinced that this predicament is not made any better by
allowing constraints over compound features, since their total number is linear
in the number of basic features.

3.2 Logical Feature Diagrams

Recall that Logical feature diagrams are those that use And, Or and Not
operators. As it turns out, the expressive power of Logical feature diagrams is

Sans Constraints? Feature Diagrams vs. Feature Models 279

even more restricted than the above counting argument suggests. First, there
are very simple Boolean function which cannot be computed by a tree requiring
that each variable participates only once.

Theorem 2 ([15]). Let f be the Boolean function of n variables whose value
is 1, whenever 2 or more of the inputs are 1. Then, the size of any expression
which computes f using And, Or and Not operators is in Ω(n lg n).

Recall that the set {And,Or,Not} is a basis for Boolean algebra, i.e., any
other bounded arity operator can be represented with a constant number of
applications of these. One may try to conclude from this that there is no feature
diagram which computes function f , regardless of the content of Ψ . While being
probably true, this conjecture is an open question. The difficulty lies with the
fact in using these three operators to substitute other, more general operators,
some of the inputs may need to be replicated, thus invalidating the techniques
used in the proof of Theorem 1.

Karchmer, Linial, Newman, Saks and Wigderson [10] gave a complete combi-
natorial characterization of Boolean functions which can be computed by Logical
featurediagrams(called readonce formulae in thecomputationcomplexity jargon).

Let f be a Boolean function over a set of variables V . We say that the pair of
sets 〈U0, U1〉, where U0, U1 ⊆ V is a 1-witness of f if setting all variables in U0

to 0 and all variables in U1 to 1 forces f to be 1. The pair is a minterm of f if
in addition, any other 1-witness of f , 〈U ′

0, U
′
1〉, such that U ′

0 ⊆ U0 and U ′
1 ⊆ U1,

satisfies U ′
0 = U0, and U ′

1 = U1.
Consider for example the Boolean function h defined by

h(a, b, c, d) = (¬a ∧ b) ∨ (b ∧ c) ∨ (c ∧ d). (3)

Then, 〈{d}, {a, b, c}〉 is a 1-witness of h, while 〈∅, {b, c}〉 is a minterm of h.
In a similar fashion, we can define 0-witnesses of f , except that it forces the

value of f to 0, and along the same lines, the maxterms of f as those 0-witnesses
of f in which the two sets are as small as they can be. For example, for the func-
tion h defined in (3), we have that 〈{b, c}, {d}〉 is a 0-witness (since setting {b, c}
to 0 and d to 1 ensures that the value of h is 0 regardless of the value of the re-
maining variable a). We also have that 〈{b, c}, ∅〉 is a maxterm of h.

Theorem 3 (Detection [10]). Function f can be represented in a Logical fea-
ture diagram if and only if it holds that the intersection of the variables par-
ticipating in an arbitrary minterm of f with the variables participating in an
arbitrary maxterm of f , contains precisely one variable.

In the example (3), the intersection of the variables in the minterm 〈∅, {b, c}〉 and
the variables in the maxterm 〈{b, c}, ∅〉 is the two element set {b, c}, and hence,
even the simple function defined in (3) cannot be written as a feature diagram.

Also, we can now show that Polynomial feature diagrams are strictly more
expressive than Logical ones.
Theorem 4 (Logical vs. Polynomial). Every Logical feature diagram F can
be rewritten as an equivalent Polynomial feature diagram with F ′, with |F ′| ∈
O(|F |). The converse is however false.

280 Y. Gil, S. Kremer-Davidson, and I. Maman

Proof. The Or operator can be written using Xor while referring once to its
arguments by the equality A∨B = 1⊕((1 ⊕ A) ∧ (1 ⊕ B)) . Conversely, in exam-
ining the Xor operator in the spectacles of Theorem 3, we see that 〈{A}, {B}〉
is a minterm of A ∧ ¬B ∨ ¬A ∧ B, while 〈{A, B}, ∅〉 is one of its maxterms.
However, the intersection of the sets involved in these two terms is of size 2. 	

Notwithstanding its elegance, Theorem 3 is not likely to give a procedure for
refactoring.

Theorem 5 (Refactoring). Given a Boolean expression E, |E| = n which
meets the conditions of Theorem 3, the problem of rewriting it as a Logical feature
diagram is NP-hard.

Proof. Let S be an instance of 3SAT. Then, S is not satisfiable if and only
if E = ¬S is a tautology. However, if E is a tautology, then it meets the conditions
of of Theorem 3, and a refactoring procedure, would have resulted in a degenerate
tree with a single 1 node, whereby resolving the problem of satisfiability of S. 	

Note that Theorem 5 does not imply that there is no effective procedure for
Detection. We conjecture however that no such procedure exists.

Unfortunately, the literature does not offer an equivalent of Theorem 3 for
the Foda- and Unrestricted kinds.

We do not know whether there is a detection, or even a nice characteriza-
tion, of formulae that can be rewritten in the Foda form or in the Unrestricted
form for a particular selection of Ψ . However, it follows from the combination
of theorems 1 and 5 that the refactoring problem for the Polynomial, Foda and
Unrestricted kinds is NP-hard as well.

3.3 Monotone Feature Diagrams

It is well known that monotone Boolean expressions, i.e., expressions which
involve And and Or only, are not as expressive as general expressions (see
e.g., [1,11]). We briefly attend to these, demonstrating that despite that, the
dealing with constraints even in this setting is not much easier. First, note that
the same counting argument with which this section begun, applies. It is math-
ematical folk-lore [5] that the number of Boolean monotone functions of n vari-

ables is > 2(n
� n

2 �) ∈ 2Ω(2n/2), so there is no hope of representing all such functions
in Monotone feature diagrams.

There is a characterization of monotone functions which can be written as
Monotone feature diagrams, similar to, and even simpler than Theorem 3 (in
mintrerms, U0 = ∅, in maxterms, U1 = ∅). Also, NP-hard issues of the sort of
Theorem 5 do not apply.

Still, there is no known effective procedure which given a monotone formula
decides whether it can be written as an Monotone feature diagram. All we have
is a quadratic time algorithm which takes an expanded formula and converts it
into a feature diagram if possible [6].

Sans Constraints? Feature Diagrams vs. Feature Models 281

4 Polynomial Feature Diagrams

The Galois field of size two, denoted by F2 has the elements {0,1} and two
operations, addition (which is nothing but our Xor function) and multiplication
(a logical And). A feature diagram that is restricted to use these two operations
therefore computes a multivariate polynomial (polynomials for short) in this
field. For completeness, we allow the use of the constant 1, which allows for
arithmetical negation (just as logical negation).

Polynomials in F2 can be treated either formally, that is as ordinary poly-
nomials except for the fact that their coefficients are in {0,1}, or as functions
from {0,1}n to {0,1}, where n is the number of variables participating in the
polynomial. In the latter interpretation, the polynomial can be simplified by
using the equation x2 = x, which holds for all x ∈ F2. Thus, if polynomials
are treated as functions, interest is restricted to multilinear polynomials, i.e.,
polynomials in which the degree of each variable in each of its monomials is 1.

We are of course interested in the multilinear form, and luckily Polynomial
feature diagrams compute precisely that, since each variable can participate
at most once in any multiplication. This is not the situation with constraints,
i.e., general logical formulae, which by allowing more than one inspection of
a variable, may generate formal polynomials. These formal polynomials can of
course be brought into a multilinear form, but this operation may be costly, since
for doing that, the polynomials need to be expanded.

Theorem 6 (Reed Muller Expansion). Every Boolean function has a unique
representation as multilinear polynomial with no negative terms.

Proof. See e.g., [13, pp. 58-61]. 	

4.1 Refactoring

An elegant property of multilinear polynomials is that they have a unique factor-
ization into factors which are disjoint in their set of variables. This factorization is
precisely our Refactoring operation, what we need in order to express such polyno-
mials as feature diagrams. The Detection problem is similar. If a multilinear poly-
nomial cannot be factored, then it cannot be represented as a feature diagram.

Theorem 7 (Polynomial vs. Foda). There exists a feature diagram F ∈ Foda
such that F �∈ Polynomial.

Proof. Applying Reed Muller expansion we have ς(A, B, C) = A⊕B⊕C⊕ABC,
which cannot be factored into variable disjoint factors. 	

McGeer and Brayton [12], described an O(n lg2 n) time algorithm which given
a multilinear polynomial, either produces its unique factorization, or announces
that no such factorization exists.

Thus, we have a procedure for determining whether a logical formula can be
written as a Polynomial feature diagram. To do so, first expand the formula into
its Reed-Muller expansion, and then apply the McGeer and Brayton algorithm
to produce a feature diagram re-factorization if it exists.

282 Y. Gil, S. Kremer-Davidson, and I. Maman

The above process is exponential time, since the expansion may span expo-
nentially many multilinear monomials. Interestingly, there are algorithms that
factor F2 polynomials even without making this expansion [8]. But, this algo-
rithms do so with the formal interpretation. A factorization without expansion in
the multilinear interpretation is unlikely, as follows from the proof of Theorem 5.

4.2 Mapping Constraints into Polynomial Feature Diagrams

Table 2 enumerates the 8 assignment to variables a, b, c and d which satisfy the
expression E = (¬a ∧ b) ∨ (b ∧ c) ∨ (c ∧ d). (This is the same as function h above
(3)). The table also introduces 8 indicator variables i1, . . . , i8 for each of these
assignments.

We can define the indicator variables in terms of the original variables,
i1 = ¬a ∧ ¬b ∧ c ∧ d

i2 = ¬a ∧ b ∧ ¬c ∧ d

...
...

i8 = a ∧ b ∧ c ∧ d

(4)

Furthermore, the original variables can be defined in terms of the indicator
variables. This definition is done by enumerating, for each original variable, the
indicator variables in which it participates in a non-negated form. For example,
for variable a these indicator variables are i6, i7, i8. We write therefore,

a = i6 ∨ i7 ∨ i8

b = i2 ∨ i3 ∨ i4 ∨ i5 ∨ i7 ∨ i8

c = i1 ∨ i4 ∨ i5 ∨ i6 ∨ i7 ∨ i8

d = i1 ∨ i3 ∨ i5 ∨ i6 ∨ i8

(5)

This example shows that we have a general process of computing a mapping
such as (4) that rewrites a logical condition in terms of indicator variables, and
an inverse mapping, such as (5), that computes the original variables from the
indicator variables. Observe that the original condition (3) can now be written
as a simple labeled Polynomial feature diagram

�1

(

�3(i1 ⊕ i2) ⊕ �4(i3 ⊕ i4)
)

⊕ �2

(

�5(i5 ⊕ i6) ⊕ �6(i7 ⊕ i8)
)

(6)

To see why the above ensures that precisely one of i1, . . . , i8 is 1, recall that the
use of labels forces all variables in the subtree under the label to 0 if the label

Table 2. Assignments to a, b, c and d which satisfy (¬a ∧ b) ∨ (b ∧ c) ∨ (c ∧ d)

a b c d

i1 0 0 1 1
i2 0 1 0 0

a b c d

i3 0 1 0 1
i4 0 1 1 0

a b c d

i5 0 1 1 1
i6 1 0 1 1

a b c d

i7 1 1 1 0
i8 1 1 1 1

Sans Constraints? Feature Diagrams vs. Feature Models 283

is 0. Thus, if the outermost ⊕ evaluates to 1 then either �1 or �2 is 0. Say that �2

is 0, then so are i5, . . . , i8. In this case, �1 is 1, and hence one of �3 and �4 is 0.
If (say) �3 is 0 then so are i1 and i2, while precisely one of i3 and i4 is true. We
have thus obtained,

Theorem 8 (Elimination of Constraints I). Let E be an arbitrary Boolean
expression over a variables’ set J . Then, there is a labeled Polynomial feature
diagram over variables set I, |I| ∈ 2O(|J|) , and mapping expressions i = Ei(J)
for all i ∈ I and j = Ej(I) for all j ∈ J , which define a bijective mapping
between the satisfying assignment of E and the satisfying assignments of F .
Furthermore, the expressions Ei and Ej are Logical, and such that each variable
in these occurs only once.

Proof. As per the above example. 	

As mentioned in Section 2, constraints are implicitly part of labeled feature
diagrams. The next theorem shows that constraint may be eliminated completely,
resulting in an unlabeled feature diagram.

Theorem 9 (Elimination of Constraints II). Let E be an arbitrary Boolean
expression over a variables’ set J . Then, there is an unlabeled Polynomial feature
diagram over variables set X, |X | ∈ O(|J |), and mapping expressions x = Ex(J)
for all x ∈ X and j = Ej(X) for all j ∈ J , which define a bijective mapping
between the satisfying assignment of E and the satisfying assignments of F .

Note that the evolution of 8 into Theorem 9 managed to reduce the number
of variables in the feature diagram from exponential to linear; the cost is that
variables may occur more than once in the mapping expressions, and in general,
these expressions may be exponentially large.

Proof. Instead of giving a full proof, we demonstrate the idea behind it using
the same example. Let F = (x1 ⊕ x2) ⊕ (x3 ⊕ x4) for the expression E of our
running example. Then there are precisely 8 satisfying assignments to E, 4 in
which precisely one of x1, x2, x3, x4 is set, and another 4 in which precisely three
out of these four variables are set. These 8 assignments define the mappings i1 =
E1(x1, x2, x3, x4), . . . , i8 = E8(x1, x2, x3, x4). We will have that ik is 1 exactly
when x1, x2, x3, x4 conform to the kth assignment. For example we have i1 =
x1 ∧ ¬x2 ∧ ¬x3 ∧ ¬x4. To obtain the values of the original variables set, we
substitute back these expressions into (5), a substitution which brings about the
exponential blowup. 	

4.3 Equivalence and Inclusion of Polynomial Diagrams

Perhaps the most applicable result we have is that the equivalence and inclusion
of Polynomial diagrams can be done in linear time.

Let F1 and F2 be labeled Polynomial feature diagrams over the same set of
variables V , and let Γ1 and Γ2 be (respectively) the set of satisfying assignments
to V under F1 and F2.

Theorem 10. There is a linear time algorithm for deciding whether Γ1 = Γ2.

284 Y. Gil, S. Kremer-Davidson, and I. Maman

Proof. Since each variable occurs once, the unlabeled version of F1 and F2 is a
multilinear polynomial of V . Now, apply Shpilka and Volkovich’s recent algo-
rithm for identity testing [17], taking care to check for the label variables in each
recursive of checking for tree shuffling. 	

Theorem 11. There is a linear time algorithm for deciding whether Γ1 ⊆ Γ2.

Proof. Elementary algebra tells us that the solutions of the polynomial equa-
tion F1 = 1 are a subset of the solutions of F2 = 1 whenever the polyno-
mial F1 − 1 divides F2 − 1. Luckily, the Shpilka and Volkovich’s algorithm [17]
applies also to divisibility. 	

5 Related Work and Conclusions

The question of expressiveness of feature diagrams has been discussed in several
prior works. Some of these [16,7,19] study this issue via the notion of Free Feature
Diagrams : a parametrization over the four degrees of freedom that span the space
of all feature diagrams.

This paper takes a different approach. Our key observation is that feature
diagrams are a special kind of boolean functions: a false decision at any node in
the function’s expression tree immediately falsifies all variables in the sub-tree
rooted at that node.

This observation allows us to abstract over the specifics of feature diagrams
language and to rigorously analyze the general concept of “feature diagrams”
using the well established techniques of boolean algebra.

Elimination of constraints (via a transformation into a tree) was studied by
Broek et-al [20,21]. Those works treat only the most general kind of trees contain-
ing all possible operators (mandatory, optional, or and xor). This paper makes
the distinction between different kinds of feature diagrams (Sec. 1.2)—based on
the mixture of operators used in each kind of diagram—thus making it possible
to provide kind-specific results.

Most of the results we present are not encouraging, and while Table 1 enu-
merates open problems in algorithms and in computational circuit complexity,
our conjectures are that no truly efficient algorithms are to pop out in many of
those. Nonetheless, as shown in the past [14], theoretical limitations in this area
do not necessary impose substantial difficulties in practice.

This work however gave a number of algorithms for efficiently dealing with
feature diagrams given in the Polynomial form. It would be interesting to try
to implement these, and see whether (i) the implementation of the hard core
theoretical computer science algorithms will not introduce intolerable overheads,
and whether (ii) the promises of the Polynomial kind of feature diagrams can be
fulfilled. Moreover, we believe that these algorithms might be extensible to the
more powerful Foda kind, and even deal with arbitrary local constraints of nodes
of bounded degree.

Acknowledgments. We thank Amir Shpilka and Ilan Newman for fruitful
discussions.

Sans Constraints? Feature Diagrams vs. Feature Models 285

References

1. Alon, N., Boppana, R.B.: The monotone circuit complexity of boolean functions.

Combinatorica (1987)
2. Batory, D.: Feature models, grammars, and propositional formulas. In: Obbink, H.,

Pohl, K. (eds.) SPLC 2005. LNCS, vol. 3714, pp. 7–20. Springer, Heidelberg (2005)
3. Czarnecki, K., Helsen, S., Eisenecker, U.W.: Formalizing cardinality-based feature

models and their specialization. Software Process: Improvement and Practice (2005)
4. Czarnecki, K., Wasowski, A.: Feature diagrams and logics: There and back again.

In: SPLC 2007 (2007)
5. Gilbert, E.N.: Lattice theoretic properties of frontal switching functions. J. Math.

Phys. (1954)
6. Golumbic, M.C., Mintz, A., Rotics, U.: An improvement on the complexity of

factoring read-once boolean functions. Discrete Applied Mathematics (2008)
7. Heymans, P., Schobbens, P.-Y., Trigaux, J.-C., Bontemps, Y., Matulevicius, R.,

Classen,A.:Evaluating formal properties of feature diagram languages. IETSoftware

(2008)

8. Kaltofen, E.: Factorization of polynomials given by straight-line programs. In: Ran-

domness and Computation, pp. 375–412. JAI Press, Greenwich (1989)

9. Kang, K., Cohen, S., Hess, J., Nowak, W., Peterson, S.: Feature-oriented domain

analysis (FODA) feasibility study. Technical report, CMU/SEI-90TR-21 (1990)

10. Karchmer, M., Linial, N., Newman, I., Saks, M., Wigderson, A.: Combinatorial

characterization of read once formulae. J. Discrete Math. (1993)

11. Karchmer, M., Wigderson, A.: Monotone circuits for connectivity require super-

logarithmic depth. SIAM J. Discrete Math. (1990)

12. McGeer, P.C., Brayton, R.K.: Efficient prime factorization of logic expressions. In:

DAC 1989 (1989)

13. Meinel, C., Theobald, T.: Algorithms and Data Structures in VLSI Design.

Springer, New York (1998)

14. Mendonca, M., Wasowski, A., Czarnecki, K.: Sat-based analysis of feature models

is easy. In: SPLC 2009 (2009)

15. Newman, I., Wigderson, A.: Lower bounds on formula size of boolean functions

using hypergraph-entropy. SIAM J. of Discrete Math. (1995)

16. Schobbens, P.-Y., Heymans, P., Trigaux, J.-C., Bontemps, Y.: Generic semantics

of feature diagrams. Computer Networks (2007)

17. Shpilka, A., Volkovich, I.: Improved polynomial identity testing of read-once for-

mulas. In: Dinur, I., Jansen, K., Naor, J., Rolim, J. (eds.) Approximation, Ran-

domization, and Combinatorial Optimization. Algorithms and Techniques. LNCS,

vol. 5687, pp. 700–713. Springer, Heidelberg (2009)
18. Thüm, T., Batory, D.S., Kästner, C.: Reasoning about edits to feature models. In:

ICSE (2009)

19. Trigaux, J.-C.: Quality of Feature Diagram Languages: Formal Evaluation and

Comparison. PhD dissertation, University of Namur, Namur, Belgium (2008)

20. van den Broek, P., Galvão, I.: Analysis of feature models using generalised feature

trees. In: Variability Modelling of Software-Intensive Systems (2009)

21. van den Broek, P., Galvão, I., Noppen, J.: Elimination of constraints from feature

trees. In: SPLC 2008 (2008)

22. Zave, P.: Feature interactions and formal specifications in telecommunications.

Computer (1993)

23. Zhang, W., Zhao, H., Mei, H.: A propositional logic-based method for verification

of feature models. In: Davies, J., Schulte, W., Barnett, M. (eds.) ICFEM 2004.

LNCS, vol. 3308, pp. 115–130. Springer, Heidelberg (2004)

J. Bosch and J. Lee (Eds.): SPLC 2010, LNCS 6287, pp. 286–299, 2010.
© Springer-Verlag Berlin Heidelberg 2010

Mapping Extended Feature Models to Constraint Logic
Programming over Finite Domains

Ahmet Serkan Karataş, Halit Oğuztüzün, and Ali Doğru

Middle East Technical University, Department of Computer Engineering,
06531 Ankara, Turkey

{karatas,oguztuzn,dogru}@ceng.metu.edu.tr

Abstract. As feature models for realistic product families may be quite
complicated, automated analysis of feature models is desirable. Although several
approaches reported in the literature addressed this issue, complex feature-
attribute and attribute-attribute relationships in extended feature models were not
handled effectively. In this article, we introduce a mapping from extended feature
models to constraint logic programming over finite domains. This mapping is
used to translate basic, cardinality-based, and extended feature models, which
may include complex feature-feature, feature-attribute and attribute-attribute
cross-tree relationships, into constraint logic programs. It thus enables use of off-
the-shelf constraint solvers for the automated analysis of extended feature models
involving such complex relationships. We also briefly discuss the ramifications of
including feature-attribute relationships in operations of analysis. We believe that
this proposal will be effective for further leveraging of constraint logic
programming for automated analysis of feature models.

Keywords: Variability modeling, extended feature model, feature attribute,
constraint logic programming.

1 Introduction

Modeling and managing variability in software product families is a key concept.
Among different proposals, feature modeling has been found very effective for
managing variability for software product lines (SPLs). Industrial experiences showed
that feature models often grow large with hundreds, or even thousands of features and
complex cross-tree relationships among features and attributes of features. Therefore
automated analysis presents an important challenge for researchers to overcome for
adoption of feature modeling for practical product line engineering.

Since their introduction, software researchers have been trying to establish a solid
foundation for giving a formal semantics to feature models and reasoning on these
models. Theory and implementation behind these foundations have evolved and
matured in parallel to the evolving feature model paradigm. But there are still some
gaps between the theory and practice that has to be filled. Automated analysis on
basic or cardinality-based feature models are covered by some of the earlier studies,
but extended feature models where numerical attributes are included lack such in
depth coverage [4].

 Mapping Extended Feature Models to Constraint Logic Programming 287

As stated by Benavides et al. in [4] including feature-attribute relationships for
analyses on feature models and proposing new operations of analyses leveraging
extended feature models is still a challenge. In this paper we address this challenge
and propose a mapping to translate extended feature models including complex
feature-feature, feature-attribute and attribute-attribute relationships, to Constraint
Logic Programming over Finite Domains, designated CLP(FD). For the sake of
completeness we also show that basic and cardinality-based feature models are treated
uniformly under our scheme. In addition, we present a brief discussion on including
feature-attribute relationships in operations of analyses.

The organization of this paper is as follows. In Section 2, we briefly discuss the
feature models and well-known extensions, automated reasoning on feature models,
CLP(FD) and point to related work. In Section 3, we present the definitions necessary
to form an abstract syntax for our mapping. In Section 4, we propose our approach for
the mapping process. In Section 5, we present an illustrative example using an
available off-the-shelf CLP(FD) solver. Finally, Section 6 presents discussions and
points to future work.

2 Background and Related Work

2.1 Feature Models

A feature is a distinguishable characteristic of a concept (e.g. system, component,
etc.) that is relevant to some stakeholder of the concept [18]. A Feature Model is a
hierarchically arranged set of features, the relationships defining the composition
rules among these features, the relationships defining the cross-tree constraints, and
some additional information such as issues/decisions that record various trade-offs,
rationale, and justifications for feature selection [14].

Feature models have been popular in Software Product Line Engineering since
their introduction by Kang et al. as part of Feature Oriented Domain Analysis
(FODA) [14]. Following Kang et al.’s initial proposal several extensions to feature
models have been devised. We refer the reader to [17] for a detailed survey on the
feature models. Here we shall briefly discuss the basic feature models and two
important extensions to the basic feature models, namely, cardinality-based feature
models and extended feature models.

In basic feature models there are two types of relationships among features:
decomposition relationships and cross-tree relationships. Decomposition relationships
determine the type of the relation between a parent feature and its children, and
include four relations: mandatory, optional, alternative, and or. Cross-tree
relationships are used to specify cross-tree constraints, and include the relationships
requires and excludes. In some feature models a feature diagram is a tree, whereas in
some feature models a feature diagram is allowed to be a directed acyclic graph.

An important extension to feature models has been the introduction of cardinalities.
In the basic feature models it is possible to express cardinalities, such as 1, 0...1, 0...*,
1...* which covers the most common cases [16]. In practice, however, often situations
arise in which a set of features has a multiplicity like 0...6, 1...6, or simply 6.

288 A.S. Karataş, H. Oğuztüzün, and A. Doğru

Cardinality-based feature models include UML-like cardinalities to handle such
situations. In [16] Riebisch et al. propose to use UML multiplicities as group
cardinalities in feature models to be able to express multiplicities like <m..n>.
Czarnecki et al. propose another cardinality-based extension in [10, 11] that includes
feature cardinalities as well as group cardinalities.

Extended feature models provide further information about features using feature
attributes. An attribute of a feature is any characteristic of the feature that can be
measured. Every feature attribute belongs to a domain, the space of possible values
where the attribute takes its values [6]. Domain of an attribute can be discrete (finite or
infinite) or continuous; we restrict ourselves to finite domains in the scope of this work.

Kang et al. mentioned relationships between features and feature attributes in [14]
and “non-functional” features related to feature attributes in [15]. Using attributes in
feature models were introduced by Czarnecki et al. in [9]. Later Benavides et al. [6]
proposed a notation for extended feature models.

2.2 Automated Reasoning on Feature Models

Proposals on automated analysis of feature models can be divided into four groups:
propositional logic based analyses, description logic based analyses, constraint
programming based analyses, and other proposals. Among many automated reasoning
analysis approaches of feature models only some of the proposals are capable of
handling extended feature models. However, to the best of our knowledge none of the
automated reasoning approaches proposed so far cover complex feature-attribute
and/or attribute-attribute relationships. We refer the reader to [4] for a detailed
literature review on automated analysis of feature models.

Allowing complex feature-feature cross-tree relationships, which are in the form of
generic propositional formulas, in feature models were proposed by Batory in his
work where he shows the connections among grammars, feature models and
propositional formulas [1]. Using constraint programming for automated analyses of
feature models were first proposed by Benavides et al. [2, 3, 6]. The authors provided
a set of mapping rules to translate feature models into a CSP and described how
constraint programming based automated reasoning can answer key questions such as
“how many products can be derived from a feature model?”, “is it a valid feature
model?”, “what is the list of all products?”.

2.3 Constraint Logic Programming over Finite Domains

Constraint Logic Programming (CLP) is essentially a generalization of Logic
Programming. In CLP the more general concept of constraint-solving over a
computational domain replaces unification, the basic operation of logic programming.
In the case of CLP over Finite Domains the domain of each variable is restricted to be
finite, often that of finite sets consisting of integer values.

CLP(FD) is regarded a mature field of computer science and proven to be very
effective for modeling discrete optimization and verification problems. It also offers a
wide variety of analysis facilities, which would be very useful for the implementation
of the analysis operations on feature models.

 Mapping Extended Feature Models to Constraint Logic Programming 289

Another important advantage of CLP(FD) is that it is possible to find a variety of
off-the-shelf solvers, thus strong tool support is available [12]. The clp(FD) solver [8]
we have used to implement our mapping is an example of the solvers for CLP(FD).
The clp(FD) solver is available as a library module for SICStus Prolog [13].

3 Abstract Syntax

In this section we present the abstract syntax to construct complex feature-feature,
feature-attribute, and attribute-attribute relationships that will serve as the input to the
mapping.

Definition 1 (relop): A relop is a relational operator, relop ∈ {=, ≠, <, ≤, >, ≥}, where
the domains of the operands are restricted to be (possibly infinite) subsets of integers.

Definition 2 (Compatibility): Two domains D1 and D2 are compatible if and only if ∀x ∈ D1 and ∀y ∈ D2 , x relop y is well defined.

Example: If D1 = {1, 2, 3}, D2 = {1..1000} and D3 = {640x480, 800x600, 1024x768}
then D1 and D2 are compatible, whereas D1 and D3 or D2 and D3 are not.

Note that it is always possible to find a mapping from a finite domain to integers. For
instance, for the domain D3 in the previous example one can introduce a mapping
such as 640x480 → 1, 800x600 → 2, 1024x768 → 3. We assume that it is the
responsibility of the modeler to introduce such mappings as necessary.

Definition 3 (Condition): A condition is a Boolean expression either in the form
Expression1 relop Expression2, or in the form Feature.attribute = truth-value where;

• Domain of Feature.attribute is {true, false}.
• Domains of Expression1 and Expression2 are compatible.
• An expression is

i. an integer constant, or
ii. value of an attribute, or

iii. any well-formed formula constructed by combining integer constants
and/or attributes’ values with the integer operators {+, –, *, div, mod}.

Example: The following are valid conditions:

─ Phone.memory < 256
─ X.a ≥ Y.b div 2
─ F.a = X.b + Y.c – 60
─ Search.case-sensitive = true

One of the strengths of extended feature models is the ability to define complex cross-
tree constraints involving feature attributes. For instance “feature 3D Graphics
requires Memory.size ≥ 512” states that inclusion of the feature 3D Graphics
engenders a constraint on the value of the attribute size of the feature Memory. To
allow inclusion of attributes in the cross-tree relationships in feature models we define
cross-tree relationships as follows:

290 A.S. Karataş, H. Oğuztüzün, and A. Doğru

Definition 4 (Excludes): An excludes relationship is in the form

P excludes Q

where P and Q are features.

Definition 5 (Requires): A requires relationship is in the form

P requires Q

where

• P is a feature.
• Q is

i. a feature, or
ii. a condition, or

iii. any well-formed formula constructed by combining features and/or
conditions with the propositional logic connectives.

Example: The following are valid excludes/requires relationships:

─ X excludes Y
─ X requires Y
─ F requires (X.a > 10)
─ F requires (X and not Y and (Z.a < X.a or Z.a > 100))

Definition 6 (Complex Constraint): A complex constraint is a requires/excludes
relationship, or any well-formed formula constructed by combining features and/or
requires/excludes relationships with the propositional logic connectives.

Example: The following are valid complex constraints:

─ A and B implies not C
─ F requires (X.a > Y.b or Z.c > 100)
─ (X excludes Y) or (X excludes Z)
─ (F requires ((X.a > 256 and Z) or (X.a > 512))) and (F excludes Z)

We have allowed features to take part in complex constraints so that our definition
agrees with the mapping of complex feature-feature cross-tree relations described by
Batory [1].

In some cases it may be desirable to specify conditional constraints as well. For
instance, “if the value of the attribute maximum number of participants of the feature
Conference Call is greater than 4, then the feature Conference Call requires
Connection.speed ≥ 1024 kbps” is a conditional constraint. If the value of the
maximum number of participants is not greater than 4 then the feature Conference
Call imposes no constraints on the attribute speed of the feature Connection. The
constraint becomes effective if the condition is true. To allow such cases we introduce
the concept of guarded constraint.

Definition 7 (Guarded Constraint): A guarded constraint is a relationship in the form

If Guard then Complex Constraint

where Guard is any Boolean combination of conditions.

 Mapping Extended Feature Models to Constraint Logic Programming 291

As in the case of complex constraints, guarded constraints can be combined with the
propositional logic connectives to build more complex constraints.

Features and attributes of features are at two different levels of detail. In order to
treat these two levels uniformly in a mapping we introduce the notion of an implicit
attribute.

Definition 8 (Implicit Attribute): Every feature has an implicit attribute named
selected that ranges over the domain {true, false}.

An implicit attribute gets the value true if the feature is selected to be a part of some
product and false otherwise. Therefore the value of the attribute selected of the
concept feature (the root of the feature diagram) will always be true.

Example: If X.selected = true, then the feature X is a part of the product, whereas if
Y.selected = false, then feature Y is not.

4 Mapping

In this section we describe our mapping approach. The mapping from a feature model
to a CLP(FD) program has the following properties:

• The attributes, including the implicit attributes ‘selected’ of each feature, make
up the set of variables.

• The domains of all attributes are finite. The domain of the implicit attribute
‘selected’ of each feature is {true, false}.

• Every relationship (decomposition, cross-tree) becomes a constraint.

First we present the mapping for decomposition relationships in feature models in
Section 4.1, and then we present the mapping for complex feature-feature, feature-
attribute, and attribute-attribute cross-tree relationships in Section 4.2.

4.1 Mapping Decomposition Relationships

Mapping Mandatory Relation: Let P and C be two features, where P is the parent of
C, in a mandatory relation, then the equivalent constraint is: P.selected ⇔ C.selected
Mapping Optional Relation: Let P and C be two features, where P is the parent of
C, in an optional relation, then the equivalent constraint is: C.selected ⇒ P.selected
Mapping Or Relation: Let P, C1, C2, …, and Cn be features, where P is the parent of
C1, C2, …, and Cn, in an or relation, then the equivalent constraint is: C1.selected ∨ C2.selected ∨ … ∨ Cn.selected ⇔ P.selected
Mapping Alternative Relation: Let P, C1, C2, …, and Cn be features, where P is the
parent of C1, C2, …, and Cn, in an alternative relation, then the equivalent constraint
is: (C1.selected ⇔ (¬C2.selected ∧ … ∧ ¬Cn.selected ∧ P.selected)) ∧ … ∧ (Cn.selected ⇔ (¬C1.selected ∧ … ∧ ¬Cn–1.selected ∧ P.selected))

292 A.S. Karataş, H. Oğuztüzün, and A. Doğru

Mapping Feature Cardinality: Let F be a feature with the cardinality <n, m>, then
we map the feature as an optional feature if n = 0, and as a mandatory feature
otherwise. If the upper bound is a constant (e.g. not *) then we also propose to map an
extra attribute for feature F with the name number of instances and the domain {n, …,
m} as described in the following subsection. This additional mapping enables
including the number of instances of this feature in the complex cross-tree constraints.

Mapping Group Cardinality: Let P, C1, C2, …, and Ck be features, where P is the
parent of C1, C2, …, and Ck, and <n, m> the group cardinality in a decomposition with
group cardinality. To give our mapping we make use of the choose operator proposed
by Batory in [1]. In general, choosen,m(e1… ek) means that at least n and at most m of
the expressions e1… ek are true, where 0 ≤ n ≤ m ≤ k. Then the equivalent constraint
is: choosen,m(C1.selected, …, Ck.selected) ⇔ P.selected

A possible implementation of the choosen,m operator would be as follows. Let S be the
set of subsets of C = {C1, C2, …, Ck} with cardinality at least n and at most m, then
we construct the following subformula for every Si ∈ S and Ti = C – Si, such that Si =
{X1, X2, …, Xp} and Ti = {Y1, Y2, …, Yq}: fi = (X1.selected ∧ … ∧ Xp.selected ∧ ¬Y1.selected ∧ … ∧ ¬Yq.selected)

Thus, we will have |S| subformulas: f1, f2, …, f|S|. Then, we combine all these
subformulas with logical disjunction: F = f1 ∨ f2 ∨ … ∨ f|S|
Finally, the mapping is as follows: (P.selected ⇒ F) ∧ (¬P.selected ⇒ (¬C1.selected ∧ … ∧ ¬Cn.selected))
The reader would have noticed that we have adopted an approach similar to the one
proposed by Benavides et al. [2, 6] while mapping decomposition relationships. The
main difference is that features make up the variables in the proposal of Benavides et
al. whereas attributes make up the variables in our proposal. Note that this part is not
the original part of our proposal, but we have included it to show that basic and
cardinality-based decomposition relationships in feature models are treated and
mapped to CLP(FD) uniformly under our scheme. Therefore this part, combined with
the mapping presented in the following subsection, establishes the completeness of
our proposal.

Mapping Complex Cross-Tree Relationships

Mapping Domains of Attributes: Let F be a feature and a an attribute of F with the
domain Da = {n1, …, nk}, then the equivalent constraint is: F.a ∈ Da
Mapping a Condition: Let C be a condition, and {F1.a1, …, F1.ai, …, Fn.b1, …,
Fn.bk} the set of all attributes except the implicit attributes involved in C, then the
equivalent constraint is: (C ∧ F1.selected ∧ … ∧ Fn.selected)

Mapping Excludes Relationship: Let X and Y be the features in an excludes
relationship such that X excludes Y, then the equivalent constraint is: ¬ (X.selected ∧ Y.selected)

 Mapping Extended Feature Models to Constraint Logic Programming 293

Mapping Requires Relationship: Let F be the feature and E the expression in a
requires relationship such that F requires E, then we first build the equivalent
constraint for the expression E (ECE) in two steps, where the ordering of the steps is
not important, as follows:

• Let {F1, …, Fn} be the features in E, then each Fi, where i ∈ {1, 2, …, n}, is
replaced with Fi .selected.

• Let {C1, …, Cm} be the conditions in E, then each Ci, where i ∈ {1, 2, …, m}, is
replaced with the ECCi, where ECCi is the equivalent constraint for Ci.

Then the equivalent constraint for the requires relationship is: F.selected ⇒ ECE
Example: Consider the requires relationship F requires (X and (Z.a < X.a or Z.a >
100)). When we replace each feature in the expression with its implicit attribute we
get the following formula: X.selected ∧ (Z.a < X.a ∨ Z.a > 100)
In this formula we have two conditions; (i) Z.a < X.a and (ii) Z.a > 100, where these
conditions are mapped as:

i. (Z.a < X.a ∧ Z.selected ∧ X.selected)
ii. (Z.a > 100 ∧ Z.selected)

Thus, we get the following ECE: X.selected ∧ ((Z.a < X.a ∧ Z.selected ∧ X.selected) ∨ (Z.a > 100 ∧ Z.selected))
Finally, the equivalent constraint for the sample requires relationship is: F.selected ⇒ X.selected ∧ ((Z.a < X.a ∧ Z.selected ∧ X.selected) ∨ (Z.a > 100 ∧ Z.selected))
Mapping a Complex Constraint: Let C be a complex constraint, {R1, …, Rn} the set
of requires relationships in C, {E1, …, Em} the set of excludes relationships in C, and
{F1, …, Fk} the set of features that are not part of an excludes or requires relationship
in C. Then the equivalent constraint for C is built in three steps, where the ordering of
the steps is not important, as follows:

• Replace each Ri in C with its equivalent constraint where i ∈ {1, 2, …, n}.
• Replace each Ei in C with its equivalent constraint where i ∈ {1, 2, …, m}.
• Replace each Fi in C with Fi.selected where i ∈ {1, 2, …, k}.

Example: Consider the complex constraint (X excludes Y) or (F requires Z.a > 10).
The equivalent constraint for the excludes relationship is: ¬ (X.selected ∧ Y.selected)
The equivalent constraint for the requires relationship is: F.selected ⇒ (Z.a > 10 ∧ Z.selected)
When we replace these equivalent constraints we get the following final constraint: ¬ (X.selected ∧ Y.selected) ∨ (F.selected ⇒ (Z.a > 10 ∧ Z.selected))

294 A.S. Karataş, H. Oğuztüzün, and A. Doğru

Mapping a Guarded Constraint: Let GC be a guarded constraint such that if G then
CC, then we first build the equivalent constraints for the guard G and the complex
constraint CC as follows:

• Let {C1, …, Cn} be the conditions in G. Then, each Ci, where i ∈ {1, 2, …, n}, is
replaced with the ECCi, where ECCi is the equivalent constraint for Ci, which
gives us the ECG (Equivalent Constraint for G).

• The ECCC (Equivalent Constraint for CC) is built as shown above.

Then the equivalent constraint for the guarded constraint is: ECG ⇒ ECCC
Example: Consider the guarded constraint if X.a > 10 and Y.selected = true then F
requires Z.b = 20. To build the ECG we replace X.a > 10 with its ECC X.a > 10 ∧ X.selected, which gives us: (X.a > 10 ∧ X.selected) ∧ Y.selected = true
The ECCC, equivalent constraint for F requires Z.b = 20, is: F.selected ⇒ (Z.b = 20 ∧ Z.selected)
Thus, the sample guarded constraint is mapped as: ((X.a > 10 ∧ X.selected) ∧ Y.selected = true) ⇒ (F.selected ⇒ (Z.b = 20 ∧ Z.selected))
When all the mappings are completed, the formulas thus obtained are combined with
the logical conjunction, which yields the corresponding formula for the whole feature
model.

5 An Example Mapping

In this section we present an example mapping from the feature model given in Figure
1 to CLP(FD). To implement this example we have used the clp(FD) solver [8].

Fig. 1. A Sample Feature Model for a Mobile Phone

 Mapping Extended Feature Models to Constraint Logic Programming 295

Assume that we have the following complex cross-tree relationships in the sample
feature model:

• (C1) When there are two CPU’s on board, Task Scheduler must be a part of the
product (CPU 1 and CPU 2 implies Task Scheduler)

• (C2) If Video Call.mpc ≥ 4 then Video Call requires Screen.resolution ≥
320x640 and 3G Connector.speed ≥ 6

• (C3) 3D Car Race requires (GPU and RAM.size ≥ 512) or (RAM.size ≥ 1024)
• (C4) If Screen.resolution < 320x640 then Screen excludes GPS
• (C5) Task Scheduler requires CPU 1.speed ≥ CPU 2.speed

Note that we have an attribute, namely Screen.resolution, with the domain {128x160,
240x320, 320x640, 360x640} which does not consist of integer values. As we allow
only integer values in operands of a relop we introduce the following conversion
before we start: {128x160 → 1, 240x320 → 2, 320x640 → 3, 360x640 → 4}, thus the
domain of the attribute Screen.resolution becomes {1, 2, 3, 4}.

First, we map the domains of the implicit attributes to their equivalent constraints.
All of the implicit attributes will range over the domain {true, false}. MobilePhone.selected ∈ {true, false} ∧ Hardware.selected ∈ {true, false} ∧ TaskScheduler.selected ∈ {true, false} ∧ Games.selected ∈ {true, false} ∧ … ∧ Tetris.selected ∈ {true, false}
Next, we map the domains of the other attributes to their equivalent constraints. ThreeGConn.speed ∈ {2, …, 14} ∧ Screen.resolution ∈ {1, …, 4} ∧ RAM.size ∈ {1, …, 2048} ∧ VideoCall.mpc ∈ {2, …, 8} ∧ CPU1.speed ∈ {800, …, 2400} ∧ CPU2.speed ∈ {800, …, 2400}
After mapping of the domains is complete we start mapping the decomposition
relationships to their equivalent constraints, and start with mapping the mandatory
relations. MobilePhone.selected ⇔ Hardware.selected ∧ Hardware.selected ⇔ Screen.selected ∧ Hardware.selected ⇔ Processors.selected ∧ Hardware.selected ⇔ RAM.selected ∧ Processors.selected ⇔ CPU1.selected
Then, we map the optional relations. VideoCall.selected ⇒ MobilePhone.selected ∧ Games.selected ⇒ MobilePhone.selected ∧ … ∧ GPU.selected ⇒ Processors.selected
Next, we map the or relation. (Chess.selected ∨ ThreeDCRace.selected ∨ Tetris.selected) ⇔ Games.selected

296 A.S. Karataş, H. Oğuztüzün, and A. Doğru

At this point we have finished mapping decomposition relations for our example, so
we start mapping the complex cross-tree relations. The first constraint we will map is
C1, which is a complex constraint. (CPU1.selected ∧ CPU2.selected ⇒ TaskScheduler.selected)
Next, we map C2, which is a guarded constraint. (VideoCall.mpc ≥ 4 ∧ VideoCall.selected) ⇒ (VideoCall.selected ⇒ Screen.resolution ≥ 3 ∧ Screen.selected ∧ ThreeGConn.speed ≥ 6 ∧ ThreeGConn.selected)
Then, we map C3. ThreeDCRace.selected ⇒ (GPU.selected ∧ RAM.size ≥ 512 ∧ RAM.selected) ∨ (RAM.size ≥ 1024 ∧ RAM.selected)
Next, we map C4, another guarded constraint. (Screen.resolution < 3 ∧ Screen.selected) ⇒ ¬ (Screen.selected ∧ GPS.selected)
Last constraint to map is C5, which includes an attribute-attribute relation. TaskScheduler.selected ⇒ (CPU1.speed ≥ CPU2.speed ∧ CPU1.selected ∧ CPU2.selected)
Finally we combine all of the formula above with the logical conjunction to get the
complete formula for the whole model.

Using the clp(FD) solver, with the above formula coded, some of the products
automatically derived by the solver are as follows:

• {Mobile Phone, Hardware, Screen, Screen.resolution ∈ {1, …, 4}, Processors,
CPU 1, CPU 1.speed ∈ {800, …, 2400}, RAM, RAM.size ∈ {1, …, 2048}}

• {Mobile Phone, Hardware, Screen, Screen.resolution ∈ {3, 4}, Processors, CPU
1, CPU 1.speed ∈ {800, …, 2400}, CPU 2, CPU 2.speed ∈ {800, …, 2400},
RAM, RAM.size ∈ {1024, …, 2048}, GPS, Task Scheduler, Games, Chess, 3D
Car Race}

• {Mobile Phone, Hardware, Screen, Screen.resolution ∈ {3, 4}, Processors, CPU
1, CPU 1.speed ∈ {800, …, 2400}, CPU 2, CPU 2.speed ∈ {800, …, 2400},
GPU, RAM, RAM.size ∈ {512, …, 2048}, GPS, 3G Connector, 3G
Connector.speed ∈ {6, …, 14}, Task Scheduler, Games, Chess, 3D Car Race,
Video Call, Video Call.mpc ∈ {4, …, 8}}

6 Discussions and Future Work

In this paper we have proposed a mapping from extended feature models, which may
include complex feature-feature, feature-attribute and attribute-attribute cross-tree
relationships, to constraint logic programming over finite domains. For the sake of

 Mapping Extended Feature Models to Constraint Logic Programming 297

completeness we have also shown that basic and cardinality-based feature models are
treated uniformly under our scheme. The only restriction we impose is that the
domains of the attributes be finite.

One of the strengths of this proposal originates from the availability of a wide
variety of off-the-shelf CLP(FD) solvers being used for many real-life applications.
CLP(FD) systems evolved to provide efficient implementations for the
computationally expensive procedures that had proven to be very effective for
modeling discrete optimization and verification problems. Moreover, due to their
declarative style, CLP systems lead to highly readable solutions. The tools also
provide a wide variety of facilities for the users [12].

Therefore, once the mapping is completed it is straightforward to implement many
useful analysis operations, such as model validation, product checking, valid partial
configuration checking, finding all products, calculating number of products,
calculating variability, calculating commonality, obtaining commonality of a feature,
optimization and so on. In particular, CLP(FD) systems provide various higher-order
predicates, such as minimize(Goal, Function) and minimize-maximum(Goal, [F1, …,
Fn]), that can be used for optimization operations. One can also make use of the wide
variety of built-in predicates available for list manipulation to perform operations
such as finding all products, calculating number of products, or calculating
variability. (The reader may consult [4] for the definitions of the aforementioned
operations.) The efficiency of these implementations in the view of the demands of
product line engineering practice remains to be appraised.

We should note that, the inclusion of feature-attribute relationships would require
revised definitions of some of the analysis operations. For instance, consider the
simple extended feature model in Figure 2.

Fig. 2. A Simple Extended Feature Model

Assume that there is a cross-tree relationship, “X requires Y.a > 6”. When we seek
the answer to the question “which are the products of this model?” there might be
two possible ways to answer.

The first answer would include a single product:

P1 = {C, X, Y where Y.a ∈ {7, 8, 9, 10}}

Whereas the second answer would list 4 products:

298 A.S. Karataş, H. Oğuztüzün, and A. Doğru

P1 = {C, X, Y where Y.a = 7} through P4 = {C, X, Y where Y.a = 10}

A feature has two possible states: it is either a part of a product, or not. The situation,
however, may not be so simple when attributes are involved. An attribute may take on
a variety of values once the feature it belongs to is a part of the product. This brings
about a new kind of variability: variability in terms of attributes.

Partially specialized features, the features that still have unresolved variability in
their attributes’ values, bring into discussion the concept of feature specialization and
feature configurations. Thus, it would be necessary to introduce configurations of
features, which can also be used during staged configurations using feature models
[10]. Introduction of a new type of variability, such as variability in the value of the
attributes of a feature, would require the reformulation of analysis operations such as
“number of products”, “all products”, “filter” and so on. For instance, as there is a
new level of variability, calculations for the variability factor of a feature model and
commonality of a configuration with respect to a feature model would have to be
reformulated. Clearly, this subject needs further research and rigorous examination of
the effects of including feature-attribute and attribute-attribute relationships for
analyses on feature models.

Another challenge, regarding the inclusion of feature-attribute and attribute-
attribute relationships for the analyses of feature models, is the introduction of new
operations of analysis [4]. Industrial experience would provide motivation on this
matter, but it may also be possible to discover new requirements arising from the
nature of the analysis needs. Further research is needed on this issue as well.

As the mapping from extended feature models to CLP(FD) has a well-defined
structure, it would be possible to incorporate it into existing feature modeling and
analysis tools such as FAMA [5] or develop new tools. Such an effort would require
the design of a formal language to represent extended feature models that may include
complex feature-feature, feature-attribute and attribute-attribute cross-tree
relationships, or extend existing languages such as TVL [7] as necessary.

Our ongoing research activities focus on three issues: (i) the need for the
reformulation of some or all of the existing operations of analysis, (ii) the need for
introduction of new operations of analysis, (iii) development of a tool (possibly built
upon free software) that will automate the mapping and analysis operations.

References

1. Batory, D.: Feature models, grammars, and propositional formulas. In: Obbink, H., Pohl,
K. (eds.) SPLC 2005. LNCS, vol. 3714, pp. 7–20. Springer, Heidelberg (2005)

2. Benavides, D., Ruiz-Cortés, A., Trinidad, P.: Coping with automatic reasoning on software
product lines. In: Proceedings of the 2nd Groningen Workshop on Software Variability
Management (November 2004)

3. Benavides, D., Ruiz-Cortés, A., Trinidad, P.: Using constraint programming to reason on
feature models. In: The Seventeenth International Conference on Software Engineering
and Knowledge Engineering, SEKE 2005, pp. 677–682 (2005)

 Mapping Extended Feature Models to Constraint Logic Programming 299

4. Benavides, D., Segura, S., Ruiz-Cortés, A.: Automated analysis of feature models 20 years
later: A literature review. Information Systems 35(6), 615–636 (2010)

5. Benavides, D., Segura, S., Trinidad, P., Ruiz-Cortés, A.: FAMA: Tooling a framework for
the automated analysis of feature models. In: Proceeding of the First International
Workshop on Variability Modelling of Software-intensive Systems (VAMOS), pp. 129–
134 (2007)

6. Benavides, D., Trinidad, P., Ruiz-Cortés, A.: Automated Reasoning on Feature Models. In:
Pastor, Ó., Falcão e Cunha, J. (eds.) CAiSE 2005. LNCS, vol. 3520, pp. 491–503.
Springer, Heidelberg (2005)

7. Boucher, Q., Classen, A., Faber, P., Heymans, P.: Introducing TVL, a Text-based Feature
Modeling Language. In: Proceedings of the Fourth International Workshop on Variability
Modelling of Software-intensive Systems (VaMoS 2010), Linz, Austria, January 27-29,
pp. 159–162 (2010)

8. Carlsson, M., Ottosson, G., Carlson, B.: An Open-Ended Finite Domain Constraint Solver.
In: Proc. Programming Languages: Implementations, Logics, and Programs (1997)

9. Czarnecki, K., Bednasch, T., Unger, P., Eisenecker, U.: Generative programming for
embedded software: An industrial experience report. In: Proceedings of the ACM
SIGPLAN/ SIGSOFT Conference on Generative Programming and Component
Engineering (GPCE 2002). LNCS, vol. 2487, pp. 156–172. Springer, Heidelberg (2002)

10. Czarnecki, K., Helsen, S., Eisenecker, U.: Staged Configurations Using Feature Models.
In: Nord, R.L. (ed.) SPLC 2004. LNCS, vol. 3154, pp. 266–283. Springer, Heidelberg
(2004)

11. Czarnecki, K., Kim, C.H.P.: Cardinality-based feature modeling and constraints: a
progress report. In: International Workshop on Software Factories, San Diego, California
(October 2005)

12. Fernandez, A., Hill, P.M.: A comparative study of eight constraint programming languages
over the Boolean and finite domains. Journal of Constraints 5, 275–301 (2000)

13. http://www.sics.se/isl/sicstuswww/site/index.html
14. Kang, K., Cohen, S., Hess, J., Novak, W., Peterson, S.: Feature-Oriented Domain Analyses

(FODA) Feasibility Study, Technical Report CMU/SEI-90-TR-21, Software Eng. Inst.,
Carnegie Mellon Univ., Pittsburgh (1990)

15. Kang, K., Kim, S., Lee, J., Kim, K.: FORM: A feature-oriented reuse method with
domain-specific reference architectures. Annals of Software Engineering 5, 143–168
(1998)

16. Riebisch, M., Bollert, K., Streitferdt, D., Philippow, I.: Extending Feature Diagrams With
UML Multiplicities. In: 6th Conference on Integrated Design & Process Technology
(IDPT 2002), Pasadena, California, USA (2002)

17. Schobbens, P., Trigaux, J.C., Heymans, P., Bontemps, Y.: Generic semantics of feature
diagrams. Computer Networks 51(2), 456–479 (2007)

18. Simos, M., et al.: Software Technology for Adaptable Reliable Systems (STARS)
Organization Domain Modeling (ODM) Guidebook Version 2.0., STARS-VC-
A025/001/00, Manassas, VA, Lockheed Martin Tactical Defense Systems (1996)

Abstract. Product line engineering allows for the rapid development of variants
of a domain specific application by using a common set of reusable assets often
known as core assets. Variability modeling is a critical issue in product line en-
gineering, where the use of feature modeling is one of most commonly used
formalisms. To support an effective and automated derivation of concrete prod-
ucts for a product family, staged configuration has been proposed in the re-
search literature. In this paper, we propose the integration of well-known re-
quirements engineering principles into stage configuration. Being inspired by
the well-established Preview requirements engineering framework, we initially
propose an extension of feature models with capabilities for capturing business
oriented requirements. This representation enables a more effective capturing of
stakeholders’ preferences over the business requirements and objectives (e.g.,.
implementation costs or security) in the form of fuzzy linguistic variables (e.g.,
high, medium, and low). On top of this extension, we propose a novel method,
the Stratified Analytic Hierarchy process, which first helps to rank and select
the most relevant high level business objectives for the target stakeholders (e.g.,
security over implementation costs), and then helps to rank and select the most
relevant features from the feature model to be used as the starting point in the
staged configuration process. Besides a complete formalization of the process,
we define the place of our proposal in existing software product line lifecycles
as well as demonstrate the use of our proposal on the widely-used e-Shop case
study. Finally, we report on the results of our user study, which indicates a high
appreciation of the proposed method by the participating industrial software de-
velopers. The tool support for S-AHP is also introduced.

1 Introduction

A key aspect of software product line engineering is capturing the common characte-
ristics of a set of software-intensive applications in a specific problem domain [1].
Product line engineering allows for the rapid development of variants of a domain
specific application by using a common set of reusable assets often known as core as-
sets. Such an approach supports the management of commonality as well as variabili-
ty in the software development process [2][3]. Feature modeling is an important con-
ceptual tool that offers modeling support for software product lines. It provides for
addressing commonality and variability both formally and graphically, describing in-
terdependencies of the product family attributes (features) and expressing the per-

Stratified Analytic Hierarchy Process:
Prioritization and Selection of Software Features

Ebrahim Bagheri1,3, Mohsen Asadi1,2, Dragan Gasevic1, and Samaneh Soltani1

1 Athabasca University, Canada
2 Simon Fraser University, Canada

3 National Research Council Canada
{ebagheri,dragang}@athabascau.ca, masadi@sfu.ca,

soltanisa@gmail.com

missible variants and configurations of the product family.

J. Bosch and J. Lee (Eds.): SPLC 2010, LNCS 6287, pp. 300–315, 2010.
© Springer-Verlag Berlin Heidelberg 2010

One of the important issues in any of the feature modeling methodologies is the se-
lection of the best and at the same time allowable combination of features that would
satisfy the mission of the target application and the stakeholders’ requirements. Many
researchers in the software product line domain have proposed techniques to deal with
these challenges and produce appropriate software product line configurations
[4][5][6]. In order to handle a large number of comparisons during the configuration
process, in many cases, a configuration is gradually developed in several stages
breaking down a large amount of required feature comparisons into a set of consecu-
tive stages. In each stage, a subset of preferred features are selected and finalized and
the unnecessary features are discarded yielding a new feature model whose set of
possible configurations are a subset of the original feature model. This feature model
is referred to as a specialization of the feature model and the staged refinement
process constitutes staged configuration [6].

For an effective staged configuration process there is a need to systematically man-
age different business-oriented requirements, which will drive the process of staged
configuration. This can be addressed by extending feature modeling languages with
attributes reflecting business-specific concerns (e.g., security and implementation
costs). In this paper, we propose such an extension to cardinality-based feature mod-
els in Section 2. While this expressivity might appear quite useful, when it is com-
bined with feature models, it can sometimes be a double-edged sword. That is, such
comprehensiveness makes the selection of the best set of features for a particular ap-
plication difficult. Therefore, it is important to understand the relative importance of
features and business-specific concerns of a product family from various perspectives.
The difference in the importance and priority of features in dissimilar domains would
allow for the creation of application specific preference ordering between them.

It is clear that for an advanced staged configuration process, in addition to the use
of feature models, there is a need to both capture and leverage business-oriented re-
quirements more effectively. Such a support method must enjoy three important cha-
racteristics to be of interest to the professional software engineers: i) It must be easy,
straightforward and fast to use: Complicated methods that take too many factors into
account and are hence slow often fail to become prevalent in industrial settings; ii) It
should provide correct, reliable and provable/repeatable outcomes: Provability is an
important factor in any software engineering process, since the underlying reasons for
certain decisions need to be traceable back to their original causes and roots for future
decision making purposes; iii) It needs to be able to effectively communicate with and
capture the intentions of the process stakeholders: This is a very important success
factor as stakeholders’ satisfaction plays a key role in the continuity of the project.

In this paper, we introduce a new method called the Stratified Analytic Hierarchy
Process (S-AHP) for prioritizing (ranking) and filtering the features of a product fami-
ly to enhance and expedite the feature selection and product configuration process
(Section 3). S-AHP is basically concerned with finding the most appropriate set of
features that need to be included in the final software product, given the stakeholders’
requirements and their important goals and objectives. The output of S-AHP will be
the input of typical feature modeling configuration algorithms that specialize a feature
model based on the stakeholders’ requests and relevant integrity constraints. S-AHP is
based on a pair-wise comparison scheme, which although is simple to use and

Stratified Analytic Hierarchy Process: Prioritization and Selection of Software Features 301

straight-forward to comprehend for software practitioners, it can at the same time sig-
nificantly reduce the number of required comparisons from an otherwise computa-
tionally explosive number of possibilities. Furthermore, it provides means for tracing
between stakeholders’ objectives and the feature selection decisions. To support for
the systematic use of the proposed method, we show how the proposed method can be
incorporated into the current SPL lifecycles and outline the tooling support that we
have provided for our method (Section 4). Further, we describe a detailed case study
illustrating the proposed method (Section 5). Before concluding the paper, the results
of a user study that we conducted to evaluate S-AHP will be provided (Section 6) and
relevant related work will be reviewed (Section 7).

2 Extending Cardinality- ased Feature Models

The cardinality-based notation for feature modeling integrates four existing exten-
sions of the FODA notation: feature cardinalities, group cardinalities, feature diagram
references, and attributes [2]. Cardinality-based feature models are based on a meta-
model that defines their abstract syntax [6]. In Figure 1, we depict a modified version
of its metamodel where some important concepts for the purpose of our work have
been included and two new concepts are added to the meta-model. As it can be seen
in the extended meta-model, each feature can be annotated with one or more con-
cerns. We have adopted the concept of concerns from the Preview framework in the
multiple-viewpoint requirements elicitation domain [7]. The Preview framework has
improved the requirements elicitation process by the explicit identification of the im-
portance of organizational needs and priorities via the recognizing of concerns. The
role of concerns in Preview is to concentrate on factors that are central to the success
of a system under development. Similarly we employ concerns within the feature se-
lection process to understand and evaluate the factors that are central to the final
product’s success. Therefore, in order to enhance the selection of features for a partic-
ular application, during the feature modeling process we should take the concerns of
the business requirements and high-level objectives of the stakeholders and their rela-
tive importance and priorities into account. Similar to Preview, used for requirements
analysis of a single system, we consider concerns as the high-level strategic objectives
of the application domain and product family stakeholders. Hence, they can be used to
ensure consistency and alignment between the vital goals pursued by the design of the
product family and the product family features.

Fig. 1. A modified meta-model for the cardinality-based feature models

B

302 E. Bagheri et al.

Concerns should be expressed at a high-level of abstraction to avoid overlap with
some of the actual features of the product family. Examples of concerns can include
but are not limited to implementation cost, time, risk, volatility, customer importance,
and penalty. Furthermore, each concern can be described by a textual description tag,
referred to in this paper as a qualifier tag. For instance, options available for cost
could be expensive, affordable, and cheap. In this way, each feature will be assigned
several concerns based on the discretion of the modeler. Each concern can be further
described by a tag qualifying that concern. A good choice for qualifier tags would be
the use of fuzzy linguistic variables such as high, medium, and low. This will give the
modeler the option to qualify assigned tags for different concerns in a similar way.

3 Business Centered Staged Configuration

In this section, we introduce our proposed method (S-AHP) that satisfies the require-
ments mentioned in the introduction for an efficient feature selection process and con-
siders the stakeholders’ concerns, goals and strategic objectives during its course. Our
proposal is based on the Analytic Hierarchy Process (AHP) [8], which is a well-
established framework in the domain of decision theory.

3.1 Analytic Hierarchy Process

AHP [8] is a rather easy-to-use pair-wise comparison method that computes relative
rankings of various phenomena based on the judgments of its users. Compared with
methods that are based on absolute value assignment such as scale-based (1-to-10)
rankings and voting schemes [1], AHP is less susceptible to judgmental errors and in-
accuracy [9]. Furthermore, AHP provides complete justification for its ranking results
based on the provided comparisons. AHP undertakes a pair-wise comparison process
between the objectives of a study. AHP takes a matrix in which each row of the ma-
trix contains observations of the stakeholders’ judgments on the relative importance
of a phenomenon compared to some other phenomena. Given this matrix, AHP com-
putes the relative importance and ranking of the available phenomena. The steps to
perform AHP are summarized as follows:
1. Let M (n, n) be an input square matrix and mi,* refers to the ith row of M and m*,j re-

fers to the jth column of M. Each cell in the matrix such as mi,j represents the rela-
tive comparison value between the phenomena i and j;

2. The columns of M are normalized in such a way that each cell is divided by the
sum of the values in its column;

3. The eigenvalues of the normalized matrix are calculated;
4. The relative importance and rank of mi,* is computed as R(mi,*) = (Σ 0<j<|n| M[i, j]

)/n.
By performing the above steps, AHP computes a rank for each row, where each

row corresponds to some phenomenon. Suppose AHP is employed to rank the n fea-
tures present in a given feature model. AHP will take a square matrix with size of n as
a starting point. Each cell in the matrix will contain a relative importance of a feature
regarding the other features. Therefore, in order to compute the relative ranking of

Stratified Analytic Hierarchy Process: Prioritization and Selection of Software Features 303

each feature, AHP will need to perform n × (n-1)/2 comparisons. Since complicated
feature models have a large size and some features are not comparable with the oth-
ers, it would not be suitable to use AHP directly for feature ranking. In our proposed
S-AHP method, we employ concerns attached to the features to reduce the number of
required comparisons and to make the comparison of heterogeneous features feasible.

3.2 Formalizing the Configuration Process

Generally, the feature model and its annotated information (i.e. concerns and concerns
tag values) in our context can be formalized as a triple < , , > where
• is the initial feature model;
• is the set of concerns relevant for the feature model (e.g. implementation cost
and security);
• is the set of concern tag values (e.g. high, low, medium)

Based on this triple, we define the feature configuration process as follow:

< , , > Concern prioritization stage < ′, ′, ′> feature ranking stage < ′, ′, ′ >
Feature specialization stage < ″, C′, ′>

The specialization process starts given the initial feature model, the concern set,
and the set of tag values relevant to each concern. First, the concern prioritization
stage is performed by executing AHP to identify the desirable set of business con-
cerns (C′) from the stakeholders’ perspective. This stage gathers the relative impor-
tance of each concern in comparison to the other concerns from the involved stake-
holders. This would allow us to filter out the least significant concerns and their cor-
responding tag values from and a new set ′ is created. Moreover, features whose
concern set are a subset of the removed concerns, and their deletion does not violate
the feature model constraints are removed from the feature model, which entails the
creation of a new feature model ′. Then, the relative importance of the concern tags
is calculated. This process is done by employing the AHP algorithm with the matrix
containing the values of relative importance for each concern tag. Finally, the calcu-
lated rank for each of the tag values are applied to the relevant features. In cases when
a feature has been annotated with more than one concern, the representative rank val-
ue of that feature is selected based on the users’ opinion. Finally, the feature speciali-
zation step is done iteratively to select or remove features from the feature model (′)
based on their ranks and constraints.

3.3 Feature Configuration Stages

As it can be seen from the process explained above, ranking of features is performed
in two layers, which create a stratified (layered) process: i) the identified concerns are
prioritized and the less important concerns are filtered out; and ii) the qualifier tags of
the remaining selected concerns are compared and prioritized. The structure and for-
mulation of S-AHP is such that it significantly reduces the number of comparisons re-

304 E. Bagheri et al.

quired for ordering the features of a given feature model. This section describes the
stages performed to produce a valid feature model configuration with S-AHP.
3.3.1 Concern Prioritization Stage. This stage aims at comparing and ranking the
list of concerns for a specific target application. All defined concerns on the feature
model and their relative importance for the target application are considered, and the
pair-wise comparison process (AHP) is undertaken to produce a ranked list of con-
cerns. It can be realized as follows:
1. Assume C is set of concerns. A square matrix P|C |×|C|= {P[i, j] = α | 1 ≤ i, j ≤ |C| and

α is relative importance of concern i to concern j} is created. Traditionally within AHP,
the values 1, 3, 5, 7, and 9 have been used to represent the degree of importance
showing equal value, slightly more value, strong valued, very strong value and ex-
treme value, respectively; Each cell in the P such as pi,j contains one of the values
from 1, 3, 5, 7 and 9 and shows how significant concern i is with respect to concern
j;

2. The steps of AHP are performed on matrix P where Pi,* (i.e., row i of matrix P)
shows the relative importance of concern i with respect to all other concerns;

3. The priority of each concern is calculated and a relative ranking for the list of con-
cerns is developed.
Assuming that we have four concerns called con1 to con4, the first step creates a

4×4 matrix whose entries show the relative importance of the concerns from both the
stakeholders’ perspective and technical value (See Table 1-a). For instance, P [1, 3]
=7 would show that concern 1 is slightly more important than concern 3 and hence,
we would also infer that P [3, 1] =1/7.

Table 1. Example concern prioritization steps

a) relative importance of concerns b) normalized values
 Con1 Con2 Con3 Con4 Sum
Con1 0.6 0.65 0.5 0.53 2.28
Con2 0.18 0.21 0.21 0.32 0.92
Con3 0.08 0.06 0.07 0.03 0.24
Con4 0.12 0.06 0.21 0.1 0.49

 Con1 Con2 Con3 Con4
Con1 1 3 7 5
Con2 1/3 1 3 3
Con3 1/7 1/3 1 1/3
Con4 1/5 1/3 3 1

Once the matrix is created, AHP is executed to estimate the eigenvalues of the ma-
trix (Table 1-b). Since we have four concerns, the division of the last column (Sum)
will result in the relative significance of each concern: [0.58, 0.23, 0.06, 0.13]. This
shows that the ordering between the four concerns is con1>con2>con4>con3. The
stakeholders will have the chance to filter out the lesser important concerns based on
the ranking outcome.
3.3.2 Feature Ranking Stage. This steps aims at ranking the relative importance
of the qualifier tags of the remaining concerns and uses them to rank the available fea-
tures within the feature model. This will provide a final ranking over the most impor-
tant concerns and their most significant qualifier tags. Given such a ranking, each
feature can be prioritized based on the significance of its annotated concerns. So, the
idea is that features that have more important concerns attached to them are more im-
portant than the others.

The process for ranking qualifier tags is similar to ranking concerns where qualifier
tags sit on the rows and columns of the developed matrix, instead of concerns.
1. Let V′ = {t | t is possible values of c and c∈ C′ };

Stratified Analytic Hierarchy Process: Prioritization and Selection of Software Features 305

2. A Matrix M|V′|×|V′|= {M [i, j] =β | 1 ≤ i, j ≤ |V′| and β is relative importance of the tag
concern i to tag concern j} is developed;

3. AHP is executed over the matrix M where Mi,* shows the relative importance of
qualifier tag i with respect to all other tag concerns;

4. Rankings of features are calculated by applying a predefined function (i.e. mini-
mum, maximum, or mean) on the qualifier tag value ranks for each feature. The
predefined function is a function that is used to select a rank for a feature when a
feature has more than one concern. This function is defined by the domain engineer
for the features based on stakeholders’ input.
One important point to note is that some features might be annotated with more

than one concern, e.g., a feature can be described as having a high performance (with
the relative importance of 0.54) and low security (with the relative importance of 0.1).
This annotation means that the feature will provide high system performance; a con-
cern liked by the stakeholders (0.54), but at the same time may cause security prob-
lems, which is not liked by the stakeholders (0.1). The decision on which value to as-
sign to the feature would depend on the modelers’ strategy. A conservative modeler
would fear for a security breach as a result of the inclusion of this feature and would
hence take a minimization strategy and would select the lower value as the representa-
tive importance for this feature (0.1), but a modeler designing the application for an
already secure environment, might adopt a more avant-garde strategy and assign
higher importance (0.54) to the feature. It is also possible to take the average value as
the representative (0.32).
3.3.3 Feature Model Specialization Stage. After ranking the available features
based on their relative significance to the target application stakeholders, we start
conducting feature specialization steps iteratively. Each specialization step uses fea-
ture ranks to select the most appropriate features for that specific application. During
the different iterations of the feature model specialization stage, selection or filtration
of features can be performed based on the developed rankings in the previous stage
(i.e., the feature ranking stage). For this stage, we adopt the six steps introduced in [6]
to limit the configuration space and adapt some of the steps of the adopted process.
The steps defined in [6] are as follow: i) Refining feature cardinalities: it eliminates
or decreases the cardinality of features; ii) Refining group cardinalities: it decreases
the interval of possible grouped features that can be chosen within a group; iii) Re-
moving a grouped feature from a feature group: this step removes one of a group sub-
features with all of its decedents. In our process, this step removes the features which
have the least importance calculated by the feature ranking stage. iv) Assigning an
attribute value: values are assigned to uninitialized attributes during this step; v)
Cloning a solitary sub-feature: this step provides the possibility of cloning a feature
as well as its entire sub-tree.

Feature model specialization is performed iteratively. It gradually moves the spe-
cialized feature model towards its final configuration. The main contribution of our S-
AHP process is that it provides suitable rankings for the available features that can be
selected by the stakeholders in each stage. This ranking of features is based on the
business objectives and high-level goals of the stakeholders and therefore facilitates
the feature selection process.

Finally, in order to support the proposed configuration process, we have created a
prototype extending the Feature Model Plug-in (fmp) [13] with required functionality

306 E. Bagheri et al.

for managing the concerns and supporting our configuration process. fmp is a widely
used plug-in for feature modeling and configuration. A screenshot of the tool’s dialog
for editing concerns and their qualifier tags is given in Figure 2a, while the part of the
fmp extension for filtering out the most important concerns is shown in Figure 2b.
Similarly, the tool allows users to effectively perform the other steps of S-AHP.

a) b)

Fig. 2. S-AHP extension of the Feature Plug-in: a) Editing concerns and associating with
features; b) Concerns prioritization

4 Process Changes in Software Product Line Methodology

Software product line methodologies have commonly defined two lifecycles, namely
Domain Engineering and Application Engineering [10]. In domain engineering, the
common assets, family reference architecture and the variability models are devel-
oped. Afterwards, in the application engineering lifecycle, the common assets are
reused and variability models are configured to produce a product family. By apply-
ing our approach for modeling the concerns within the feature models, some slight
changes need to be made on the processes within the software product line lifecycles.
In order to provide a clear understanding of these changes, we mention the phases in
each lifecycle and highlight our changes and extensions in each of these phases. Due
to the limited space for this paper, Table 2 only summarizes the activities added by S-
AHP to the well-known software product line lifecycles.

5 Case Study

The online store is a commonly used example in the literature. This example is em-
ployed to represent the behavior of feature modeling frameworks [12]. Figure 3 de-
picts a small feature model designed to depict some of the aspects of such an online
store. In this model, the features have been annotated with four concerns, namely se-
curity, customer ease, international sale, and implementation cost. The concerns are

Stratified Analytic Hierarchy Process: Prioritization and Selection of Software Features 307

qualified using high, medium and low values; therefore, the modelers are able to ex-
press their belief with regards to the features in the context of these concerns. The
concerns and their qualifier tags are shown in the lower part of the leaf features and
the legend explaining their interpretation is placed in the top left part of Figure 3. For
instance, using cash as a payment method has been considered to be highly secure,
terrible for international sales and inexpensive from an implementation perspective.

Table 2. Process changes in software product line process by S-AHP

Life-
cycle Phase Traditional Activities Added activities by S-AHP

D
om

ain Engineering

Product
line scoping

• Product portfolio scoping
• Domain scoping
• Asset scoping

• Examine strategic managements’ view-
points

• Identify major concerns
Domain
Requirements En-
gineering

• Family requirements elicitation
• Family requirements analysis
• Family requirements specification,
• Family requirements validation and verifica-

tion

• Refine concerns (break down to sub-
concerns)

• Define concerns tag values

Variability Model-
ing (Feature Mod-
eling)

• Identifying features
• Identify feature relation
• Model features

• Annotate features with concerns
• Assign tag values to features concerns,

if it is determined.
• Define aggregation function when there

are more than one concern in each fea-
ture

Domain
Design

• Design reference architecture
• Detail design of assets

• Update feature concerns and their values
based on design information

Domain
Realization and
Testing

• Make/buy/mine/commission
• Test

• Update feature concerns and their values
based on implementation information

A
pplication Engineering

Application Re-
quirement Engi-
neering

• Application requirements elicitation
• Application requirements analysis
• Application requirements specification
• Application requirements validation and veri-

fication
• Reuse family requirement model

• Indicate relative importance of concerns
for the specific product

Application De-
sign

• Binding variability based on application re-
quirements

• Verify and Validate specialized feature model
• Automatically create application

• Ranking the concerns
• Ranking tag values
• Ranking features
• Bind variables based on the provided

ranks
Application reali-
zation and testing

• Complete application
• Test Application
• Deploy application

N/A

Furthermore, we can assume that the feature model is accompanied by the follow-

ing four dependency constraints: 1) cash payment implies pickup shipping; 2) credit
card payment implies automatic fraud detection; 3) never changing the password im-
plies the inclusion of special characters in the password; and 4) manual fraud detec-
tion excludes credit card payment. These constraints will be automatically applied if
any of their antecedents are included in the feature model through the specialization
process. Now, supposing that an actual online store needs to be developed based on
the requirements, needs and goals of its target audience, S-AHP can be used to select
the best set of features. In case AHP is used, since there are 20 open features in the
model, 190 comparisons need to be made. As will be shown S-AHP requires a much
less number of comparisons. It should be noted that in a real-world large-scale feature

308 E. Bagheri et al.

model, the number of features and concerns are much higher. In the first step, the
concerns are ranked through a pair-wise comparison process as shown in Table 3.

Fig. 3. A small feature model for an online store

We can consequently calculate the relative importance of the concerns with each
other, which shows the following order (Table 3): International sale>Implementation
cost>customer ease>security. It can be inferred that the stakeholders are interested in
focusing on the international sale aspect and implementation costs of the product
while customizing the feature model. It is possible to filter the less important concerns
and proceed to the second stage. Based on the filtration, the new matrix (Table 4) is
developed by inquiring the stakeholders about their preferences on the selected con-
cern’s qualifier tags (see Figure 3 for letter interpretations).

Table 3. Relative importance of concerns as well as the final concerns ranks

 Security Customer
ease International sale Implementation

cost
Normalized

Sum Importance

Security 1 1/3 1/7 1/5 0.22 0.06
Customer ease 3 1 1/5 1/3 0.4802 0.12
International sale 7 5 1 3 2.2305 0.56
Implementation cost 5 3 1/3 1 1.0505 0.26
Sum 16 9.33 1.67 4.5 3.9812 1

It is clear from the developed ranking that the stakeholders are interested in having

high international sale in their online store. In addition, they are not interested in
spending a lot of money on technical implementation issue; therefore, they should se-
lect those features which would result in high international sale with low implementa-
tion cost. Based on this information, a ranking of features can be simply developed.
As an example and based on averaging the qualifier tag values of the concerns at-
tached to each feature, the manual fraud detection method (0.3) would be more desir-
able than its automatic (0.1) counterpart, and the credit card-based payment method
(0.4) is also more attractive than the other methods (cash: 0.15; debit: 0.05). So, the
modelers would select manual fraud detection and credit card based payment features;

Stratified Analytic Hierarchy Process: Prioritization and Selection of Software Features 309

however, this selection would be in conflict with one of the dependency rules (manual
fraud detection excludes credit card payment). In this case, the modelers will probably
decide to remove the manual fraud detection feature since it is less important than the
credit card-based payment method (0.4>0.1) and also include automatic fraud detec-
tion to satisfy the dependency rule (credit card payment implies automatic fraud de-
tection). This decision can conclude the first stage of the configuration process, which
results in the selection of the appropriate features for payment method and fraud de-
tection; hence, peer features to the credit card payment method and the automatic
fraud detection that have not been selected in this stage will be removed from the on-
line store feature model.

Table 4. Tag values ranks calculated by S-AHP

 G H I J K L Importance
G 1 5 7 7 5 3 0.4
H 1/5 1 5 5 3 1 0.15
I 1/7 1/5 1 3 3 1/7 0.01
J 1/7 1/5 1/3 1 1/5 1/7 0.04
K 1/5 1/3 1/3 5 1 1/5 0.1
L 1/3 1 7 7 5 1 0.3

The first specialization in the staged configuration of the online store feature model
can be seen in Figure 4. The feature model can be further specialized through more
rounds of refinement and feature selection based on the developed ranking, so that the
most desirable configuration of the feature model is achieved. An important point
here is the significant difference between the required number of comparisons in AHP
and S-AHP. For this rather small feature model, AHP would require 190 comparisons,
while S-AHP needs 6 comparisons in its first layer and 15 comparisons in the second
layer, making it 21 comparisons in total. It is clear that as the size of the feature model
grows larger, the efficiency and utility of S-AHP will become even more noticeable.

Fig. 4. A specialization of the online store feature model. The shaded area shows the result of
the specialization performed in the first stage .

310 E. Bagheri et al.

6 User Evaluation

It is also important to see how S-AHP is perceived by software designers and practi-
tioners to be applied to real world problems. For this purpose, we have evaluated the
usefulness of S-AHP by providing S-AHP to software practitioners and asking for
their feedback on how helpful they find it for the tasks that they usually perform. Ele-
ven software practitioners were invited to participate in the study whose range of
software development experience was from 6 to 15 years, with an average of 9.5
years. The participants expressed that they were familiar with various application de-
sign and planning methodologies including SSADM, OOP, and RUP, and were in-
volved in major industrial design projects spanning the areas of geographical informa-
tion systems, accounting, mobile applications, customer relation management and
others. The participants were asked to provide their evaluation of the S-AHP method
from their perspective for its usefulness, efficiency, easiness for use, and practicality.
The participants were asked eight questions by using a seven-level Likert scale where
1 being strongly unfavorable to the concept and 7 being strongly favorable to the con-
cept. The following eight questions were asked. We provide the average value that S-
AHP received for each of these questions along with the question: 1) It is simple to
use S-AHP: 6.0; 2) I can effectively complete my work using S-AHP: 5.0; 3) I am
able to complete my work quickly using this method: 5.1 ; 4) I am able to efficiently
complete my work using this method: 5.3; 5) It was easy to learn to use S-AHP: 6.1;
6) I believe I became productive quickly using S-AHP: 4.8; 7) I believe S-AHP in-
crease the chances of selecting the most suitable/important software features: 5.8; 8)
Overall, I am satisfied with this method: 5.8. The participating software practitioners
in the study felt that S-AHP is effective in helping them more conveniently choose the
best set of software features, and that its simplicity makes it practical for real-world
software development environments. In addition, it was pointed out that the proper se-
lection of the most relevant set of concerns for each project has effect on the final set
of selected features; therefore, close attention needs to be made in order to select the
best concerns.

7 Related Works

The research community has put much emphasis on developing methods for the syn-
tactical validity checking of model configurations. These methods mainly focus on
forming grammatical correspondences for the graphical representation of feature
models and perform automated syntactical analysis (e.g. using AI configuration tech-
niques such as SAT or CSP solvers) based on the model dependency rules and con-
straints [12][14]. However, considering the strategic objectives of the stakeholders
and the specific domain requirements can create a semantic validation process that
will ensure that the requisites of the target audience is met [15]. Such semantic valida-
tion process can complement syntactical consistency checking methods in order to
create a valid and at the same time useful final configuration of a feature model.

Some researchers have proposed to annotate features of a model with priority in-
formation, which will be later used to select high priority features at specialization
time [2]. The idea of prioritization of features is interesting, but it does not seem to be

Stratified Analytic Hierarchy Process: Prioritization and Selection of Software Features 311

suitable for the context of feature models and product families. This is because feature
priorities change based on the context where the feature model is being specialized
and configured; therefore, priority values for features should be developed during
specialization, which is supported by the S-AHP method. As an example, a password
control feature for an application would take high priority on a network installation,
while it would have less priority in a standalone unique installation. Therefore, single
priority values are not sufficient and methods that support dynamic priority assign-
ment are required.

Closely related to the idea of feature selection, the requirement engineering com-
munity has significantly contributed to the development of requirement prioritization
techniques for requirement selection [16][17]. In contrast to feature modeling tech-
niques, requirement specifications are commonly defined in an unstructured (free-
text) or semi-structured forms; therefore, semantic validation of requirements by a
human requirement engineer is more viable than automatic syntactic correctness
checking. In this context, one suggestion for prioritizing requirements has been the
use of requirement priority groups as a way to nest similar requirements together and
create an internal rank for requirements in each group. This approach is not so suita-
ble for feature models, since the structure of the feature model tree is of high impor-
tance while the decision about the priority and specialization of the feature model is
being made; therefore, creating priority groups that would become feature tree struc-
ture oblivious might result in irrelevant feature model configurations.

Similarly, hierarchical Analytic Hierarchy Process (AHP) [8] has been proposed in
the requirement engineering literature to create a structure for interrelated require-
ments. In this method, only requirements at the same layer are compared with each
other and hence reduce the total number of required comparisons in contrast to AHP;
however, this method is not so suitable for feature models since the features in the in-
terim layers of the feature tree are usually not included in the feature comparison
process, which removes the need for a hierarchical structure; therefore, this method
does not actually reduce the number of required comparisons for a feature model.
From a different perspective, the Bubble sort technique has been used order the re-
quirement statements. Bubble sort is in essence very similar to AHP with the slight
difference that requirement comparisons are made to determine which requirement
has a higher priority, but not to what extent. It is clear that Bubble sort suffers from
similar issues to AHP, e.g., the large number of required comparisons. There have
been proposals to reduce the number of required comparisons in comparison-based
techniques, which are generally referred to as incomplete pair-wise comparison me-
thods [9]. These techniques are based on some local and/or global stopping rule,
which determines when further comparison will not reveal more useful information
with regards to the prioritization of the options. Such techniques can be beneficial if
used along with techniques such as AHP, S-AHP, Bubble sort and others. Additional-
ly, (hierarchical) cumulative voting has been used to prioritize requirements where
top vote-getter requirements are prioritized higher than the others. One of the draw-
backs of that approach is that as the number of requirements (options) increases, it be-
comes very hard for the stakeholders (voters) to select the best voting tactic, which
would reveal their preferences about the highest priority requirements [18].

Other techniques such as our own experience with the formulation of multi-
attribute utility theory for architectural tradeoff decision making have shown that

312 E. Bagheri et al.

these methods are too complicated and hard to understand by practitioners [15,19].
This observation necessitates the development of an easy–to-use and straightforward
yet efficient method for feature selection.

8 Concluding Remarks

Proper feature selection and feature model customization requires the systematic con-
sideration of the stakeholders’ needs and objectives as well as the constraints and de-
pendency rules of the feature model. To this end, we have introduced a useful set of
methodical activities to support feature selection, called S-AHP. The aim of S-AHP is
to communicate with the stakeholders and understand their priorities with regards to
business objectives and high-level goals and to use this information to find the most
important features of a feature model for the stakeholders. Here, we outline how S-
AHP satisfies the requirements of an efficient feature selection method based on the
challenges and characteristics introduced earlier in the article:
1. S-AHP is able to tame the relatively large number of comparisons needed for de-

veloping the ranking between the features. This is achieved by a layered pair-wise
comparison of the feature annotations, namely the concerns and their qualifiers.
We showed that for a relatively small example a reduction from 190 to 21 compar-
isons was reached.

2. It overcomes feature incompatibility and the comparison problem by introducing
the concept of concerns. Since features are annotated with multiple concerns they
can be indirectly compared and ranked. This is due to the fact that concerns are
comparable, and their priorities can be effectively propagated to their correspond-
ing features.

3. This method prevents the appearance of different comparison scales by clearly em-
ploying and defining default comparison scales (1, 3, 5, 7, 9). A strategy to use
these values can serve as a consistent comparison scale to be employed by the
stakeholders and the practitioners.

4. The activities within S-AHP are very easy to perform and are based on a simple
pair-wise comparison method. The relative simplicity of this approach is advanta-
geous because it does not add complexity to the complicated feature selection
process. Furthermore, it can be quickly and inexpensively implemented in a
spreadsheet program such as Microsoft Excel without the need to purchase com-
mercial decision support tools.

5. S-AHP is also able to effectively communicate with the stakeholders at a higher
level. This is achieved thanks to the concerns and their qualifier tags. With the em-
ployment of concerns, the stakeholders do not need to be aware of the structure or
meaning of the feature models, but would be able to understand whether the cus-
tomized feature model satisfies their requirements and objectives.
In summary, S-AHP is a simple yet effective approach for ranking and filtering

various features of a product family, which expedites the product specialization and
staged configuration of a feature model. Its main advantages are its simplicity, practi-
cality and its involvement with the target audience and product stakeholders that al-
lows for the alignment of the final product with the strategic objectives and goals of

Stratified Analytic Hierarchy Process: Prioritization and Selection of Software Features 313

for a uni-dimensional pair-wise comparison of the concerns where the comparison of
two concerns is represented by a single value from taken from the comparison scale.
As future work, we are interested in investigating whether multi-dimensional exten-
sions of S-AHP would be beneficial that would simultaneously incorporate matters
such as cost and value in the comparisons in order to perform tradeoff decision
making.

References

[1] Clements, P., Northrop, L.: Software product lines: practices and patterns. Addison-
Wesley Longman Publishing, Amsterdam (2001)

[2] Czarnecki, K., Helsen, S., Eisenecker, U.: Formalizing cardinality-based feature models
and their specialization. Soft. Proc. Improv. and Practice 10, 7–29 (2005)

[3] Heymans, P., Schobbens, P., Trigaux, J., Bontemps, Y., Matulevicius, R., Classen, A.:
Evaluating formal properties of feature diagram languages. IET Soft. 2(3), 281 (2008)

[4] White, J., Dougherty, B., Schmidt, D.C., Benavides, D.: Automated Reasoning for Multi-
step Software Product-line Configuration Problems. In: SPLC 2009 (2009)

[5] Boskovic, M., Bagheri, E., Gasevic, D., Mohabbati, B., Kavinai, N., Hatala, M.: Auto-
mated Staged Configuration with Semantic Web Technologies. International Journal of
Software Engineering and Knowledge Engineering (in press)

[6] Czarnecki, K., Helsen, S., Eisenecker, U.: Staged Configuration Through Specialization
and Multi-Level, Dep. of Electrical and Computer Eng., University of Waterloo (2004)

[7] Sommerville, I., Sawyer, P.: Viewpoints: principles, problems and a practical approach to
requirements engineering. Annals of Software Engineering 3, 101–130 (1997)

[8] Saaty, T.L.: The Analytic Hierarchy Process. McGraw-Hill, New York (1980)
[9] Karlsson, J., Olsson, S., Ryan, K.: Improving Practical Support for Large-scale Require-

ment Prioritising. Requerments Engineering 2 (1997)
[10] Linden, F.J., Schmid, K., Rommes, E.: Software Product Lines in Action: The Best In-

dustrial Practice in Product Line Engineering. Springer, Heidelberg (2007)
[11] Linden, F., Phol, K., Bockle, G., Sikore, E., Gunter, B.: Software Product Line Engineer-

ing: Foundations, Principles, and Techniques. Springer, Heidelberg (2005)
[12] Batory, D.: Feature models, grammars, and propositional formulas. In: Obbink, H., Pohl,

K. (eds.) SPLC 2005. LNCS, vol. 3714, p. 7. Springer, Heidelberg (2005)
[13] Czarnecki, K., Kim, C.H.: Cardinality-based feature modeling and constraints: A progress

report. In: International Workshop on Software Factories (2005)
[14] Batory, D., Benavides, D., Ruiz-Cortes, A.: Automated analysis of feature models: Chal-

lenges ahead. Communications of the ACM 49, 47 (2006)
[15] Bagheri, E., Ghorbani, A.A.: The analysis and management of non-canonical requirement

specifications through a belief integration game. Knowledge and Information Systems 22,
27–64 (2009)

[16] Perini, A., Ricca, F., Susi, A.: Tool-supported requirements prioritization: Comparing the
AHP and CBRank methods. Inform. and Soft. Tech. 51, 1021–1032 (2009)

314 E. Bagheri et al.

the stakeholders. Furthermore, due its simplicity the development of tool support for
this approach is quite easy and very inexpensive, and even many freely available tools
for AHP can be easily used in the context of S-AHP. Currently, S-AHP only supports

[17] Aurum, A., Wohlin, C.: Eng. and Managing Software Requirements. Springer, Heidel-
berg (2005)

[18] Berander, P., Jönsson, P.: Hierarchical Cumulative Voting (HCV) – Prioritization of Re-
quirements in Hierarchies. Int’l. J. Soft. Engi. & Know. Eng. 16, 819–849 (2006)

[19] Makki, M., Bagheri, E., Ghorbani, A.A.: Automating Architecture Trade-off Decision
Making through a Complex Multi-attribute Decision Process. In: Morrison, R.,
Balasubramaniam, D., Falkner, K. (eds.) ECSA 2008. LNCS, vol. 5292, pp. 264–272.
Springer, Heidelberg (2008)

Stratified Analytic Hierarchy Process: Prioritization and Selection of Software Features 31 5

J. Bosch and J. Lee (Eds.): SPLC 2010, LNCS 6287, pp. 316–330, 2010.
© Springer-Verlag Berlin Heidelberg 2010

Streamlining Domain Analysis
for Digital Games Product Lines

Andre W.B. Furtado, Andre L.M. Santos, and Geber L. Ramalho

Centro de Informática (CIn) – Universidade Federal de Pernambuco (UFPE)
Av. Professor Luís Freire, s/n, Cidade Universitária, CEP 50740-540, Recife/PE/Brazil

{awbf,alms,glr}@cin.ufpe.br

Abstract. Digital games and their development process are quite peculiar when
compared to other software in general. However, current domain engineering
processes do not addresses such peculiarities and, not surprisingly, successful
cases of software product lines (SPLs) for digital games cannot be found in the
literature nor the industry. With such a motivation, this paper focuses on
streamlining and enriching the Domain Analysis process for SPLs targeted at
digital games. Guidelines are provided for making Domain Analysis tasks
aware of digital games peculiarities, in order to tackle the challenges of and
benefit from the unique characteristics of such a macro-domain. A case study
for an SPL aimed at arcade-based games is also presented to illustrate and
evaluate the proposed guidelines.

Keywords: digital games development, software product lines, domain analysis.

1 Introduction

The idea of family-based production strategies was first introduced by David Parnas
in 1976 [1]. According to him, a set of programs is considered to constitute a family
whenever it is worthwhile to study programs from the set by first studying the
common properties of the set and then determining the special properties of the
individual family members. Building on top of that, Czarnecki & Eisenecker [2] ad-
vocated that the first step in the transition from single systems to system families is to
adopt a domain engineering or software product line (SPL) process.

Many cases of successful software product lines in practice can be found for differ-
ent domains [3], such as consumer electronics, printing machines and avionics. How-
ever, this is not true for domains belonging to digital games development, a field
typically characterized by ad hoc, low-level development [4]. In fact, current SPL and
domain engineering processes do not address the peculiarities and specific constraints
related to digital games development. This is concerning since such an industry, in a
consistent manner, presents expressive numbers that consolidate its relevance. For
instance, both computer and console games were responsible in 2008 for 11.7 billion
dollars in sales [5], while the video game industry (at least in the U.S.) has a 19%
growth year over year.

As a starting point to conciliate Domain Engineering processes with digital games
development, this paper presents a set of guidelines for streamlining multiple Domain

 Streamlining Domain Analysis for Digital Games Product Lines 317

Analysis tasks towards empowered digital games SPLs. Our focus is not only on
establishing a clear understanding on what game development peculiarities should be
tackled as Domain Analysis challenges, but also on identifying where Domain Analy-
sis can benefit from the unique characteristics of such a macro-domain.

The remainder of this paper is organized as follows. Section 2 elaborates on the
peculiarities of digital games development. Section 3 revisits traditional Domain
Analysis tasks in the light of digital games development, providing guidelines as
appropriate. Section 4 presents a case study of the proposed guidelines for an arcade-
based games SPL. Finally, Section 5 presents conclusions about the research and
points out future directions.

2 The Peculiarities of Digital Games Development

Neward [6] points out that there are a number of challenges coming up that we cannot
solve with our current set of languages and tools, and that we stand on the threshold
of a “renaissance in programming languages”. Greenfield et al. [7], for instance, ad-
vocates that the total global demand for software is estimated to grow by an order of
magnitude over the next decade: “design patterns and specialized tools demonstrated
limited but effective knowledge reuse; however, without deeper increases in produc-
tivity, total software development capacity seems destined to fall far short of total
demand”.

Nonetheless, the expectations on digital games are already extremely high [8]. In-
novative hardware, advanced business models, applicability to multiple domains (en-
tertainment, education, training, etc.) and innovative gameplay make digital games to
be perceived as one of major streams where bleeding-edge technologies and ideas are
showcased. This way, it seems that the exponential growth of the total global demand
for software is a trap waiting for the game development industry, since:

• The hardest part of making a game has always been the engineering [4];
• Many game developers struggle with component integration and managing

the complexity of their architectures, while expanding deadlines and escalat-
ing costs have notoriously plagued the game industry [8].

• Game development is a field typically characterized by ad hoc, low-level de-
velopment [9]. Historically, excessive high performance constraints forced
digital games development to trade more refined software engineering tech-
niques for a result-oriented but less organized development process, as well
as reusability for in-house development, in a methodology that became
known as “pedal to the metal” [10].

The many ways in which the digital games domain differ from other software in gen-
eral are also an indication that domain engineering processes, if targeted at digital
games development, should be streamlined in order to become more effective. Chal-
lenges and opportunities include:

• The concept of “genres” is extremely popular in the digital games macro-
domain. It is commonly used as an attempt to define taxonomies into whose
branches games can be classified. However, genres are blurry and imprecise:

318 A.W.B. Furtado, A.L.M. Santos, and G.L. Ramalho

there is no agreement on a universal set of genres neither on the individual
meanings of specific genres.

• The development of a digital game is not a direct outcome of user require-
ments or business needs, which may not even exist. Games are not focused
on solving user problems, but to entertain them. On the other hand, psycho-
chemical requirements such as immersion, surprise, delight and nostalgia are
present in digital games. This way, traditional Requirements Engineering
cannot be applied as is to game development. For example, the well-known
concept of “use cases”, with well-defined roles, flows and input/output arti-
facts may not make sense to a game development process. Game Design
documents and experimentation processes are more realistic in this area.

• User interaction is unique in digital games, especially when compared to
other types of software generally based on mouse, keyboard and limited
graphical interface standards (e.g., windows-based GUIs). In digital games,
adherence to standards is many times trumped by the desire to provide inno-
vative experiences.

• An impressively huge diversity of game instances, even from decades ago, is
still in use today in the digital games domain. In contrary to the majority of
other software domains, nostalgia causes “retro” instances to be kept alive for
generations. Many samples are also available due to other reasons peculiar to
game development, such as the diversity of platforms, prototyping culture
and user-generated content. This translates into rich, valuable and available
input for designing future software in the domain.

• Studies on the applicability of software product lines in the game develop-
ment domain are still incipient. Industrial secrecy to support competitive
advantage is very high in the domain, since such projects involve great in-
vestments. For example, it is difficult to find comprehensive studies about the
applicability of design patterns in game engines [11].

3 Addressing Game Development Peculiarities via Domain
Analysis

In the context of a Domain Engineering process, many of the digital games develop-
ment peculiarities presented in the previous section can, and should, be addressed
during the Domain Analysis phase. Such a phase was first introduced by Neighbors
[12] as “the activity of identifying the objects and operations of a class of similar
systems in a particular problem domain.” It can also be defined [13] as a process by
which information used in developing software systems is identified, captured and
organized with the purpose of making it reusable when creating new systems. This
section discusses and supplements some vital Domain Analysis tasks in the light of
digital games development.

3.1 Envisioning and Scoping the Game Domain

The great diversity of games created so far has turned the digital games universe into
an extensively broad domain. Therefore, creating a SPL targeted at digital games in

 Streamlining Domain Analysis for Digital Games Product Lines 319

general, ranging from 2D platform games to 3D flight simulators, constitutes a too
broad and ineffective endeavor. In such a scenario, the SPL processes, its tools and
assets would not be able to fully exploit SPL benefits such as component reuse and
assemblage, or domain-specific languages (DSLs) expressiveness. In other words, a
narrower subset of games should be chosen.

One of the most often used attempts to narrow down and classify digital games are
game genres, which together compose a game taxonomy. Examples of popular genres
are adventure, role-playing (RPG), shooter, simulation and strategy. Nevertheless,
defining genres can be a quite difficult task as many people have different opinions on
the meaning of a genre or various ways of stereotyping them [14]. Likewise, it is not
rare for a game to fall into more than one category. Some authors even argue that
describing different types of games requires different dimensions of distinctions (nar-
ratology, ludology, simulation, gambling, etc.), i.e., orthogonal taxonomies which
allow design concerns to be separated.

In fact, classifying games into genres is a difficult task not only because a game
can be hybrid, but also due to the fact that some genres are “horizontal”, such as for
casual games, educative games, serious games, adult games and advergames. The
high evolution speed experienced by game genres is also an issue. Crawford [15]
points out that, due to the dynamic nature of game taxonomies, they can be expected
to become obsolete or inadequate in a short time.

Moreover, there is a lack of consensus at the level of the classification schemas,
some being more popular than others. For instance, some schemas are largely semi-
otic, while others rely more strongly on configurative patterns of interface and me-
chanics. In short, due to a general lack of commonly agreed-upon genres or criteria
for the definition of genres, classification of games are not always consistent or sys-
tematic and sometimes outright arbitrary between sources.

One interesting example of game genre disagreement is the “Shoot’em up” genre,
where the player controls a single character, often a spacecraft, shooting large num-
bers of enemies while dodging their attacks. Such a genre encompasses various types
or subgenres and critics differ on exactly what design elements constitute a shoot 'em
up game. Some restrict the definition to games featuring spacecraft and certain types
of character movement; others allow a broader definition including characters on foot
and a variety of perspectives.

As a consequence, game genres alone are not reliable enough to describe and envi-
sion a SPL domain aimed at digital games. Solely relying on game genres is a trap
that very likely will lead to ambiguities and difficulties during Domain Engineering
activities, such as when selecting domain samples to analyze during Domain Analy-
sis. For example, a loosely defined “Racing Games SPL” can mean different things:
third-person racing games, arcade racers or racing simulators, not to speak about other
possibilities such as street racing games, off-road racing games and others specifically
focused on motorcycles, trucks, speedboats or even horses.

Instead of embracing the challenge of reaching the perfect game genre taxonomy, we
are actually focused on ensuring that digital games development can benefit from sys-
tematic planning and management in the context of a specific application family. In
such an ambiguous universe of game genres, we propose an alternative solution, which
has the added benefit of bootstrapping the domain scoping process: the definition of a
game domain vision to formerly describe a game family that share functionality. Such

320 A.W.B. Furtado, A.L.M. Santos, and G.L. Ramalho

a vision intends to reach a common agreement on what ultimately defines the domain to
be approached, independent of game genres. It does so by means of the following tasks,
detailed in the next sub-sections: setting expectations for core game dimensions, estab-
lishing a negative scope, identifying target platforms and the creating a vision statement.

Setting expectations for core game dimensions. If from one hand the digital games
macro-domain is broad, requiring game domain analysts to narrow it down so that it
becomes viable to the context of a software product line, from the other hand such a
macro-domain is still more specific than the broader “software” concept, lying some-
where in between. Therefore, setting expectations for core game dimensions which
are ubiquitous to digital games development, yet not too specific neither too generic,
can be used to drive the envisioning phase of a digital games SPL.

The list below presents suggested digital games core dimensions to be explored in
the creation of digital games SPLs:

1. Player: concepts related to the game player(s), such as number of players,
co-playing modes (e.g., in turns or simultaneously, cooperative or “death-
match”, etc.), score, high-score, lives and others. This should not be con-
fused with “main character” entities controlled by the players.

2. Graphics: what players are supposed to see, including the world view
(2D, isometric, first-person, etc.), heads-up displays (HUDs) and eventu-
ally more advanced techniques such as particle systems to simulate fire,
dust, rain, etc.

3. Flow: how the domain games evolve as perceived by players, encompass-
ing levels, phases, missions, screens, rooms, scenes, etc.

4. Entities: the underlying types and mechanics of beings and things that
players are supposed to control and interact with.

5. Events: triggers and reactions that drive the behavior of the world and en-
tities of the domain games.

6. Input: how players provide input to interact with the domain games, en-
compassing (a combination of) devices and eventually more advanced op-
tions such as speech recognition and controller-free systems.

7. Audio: what audio feedback players are supposed to get from the domain
games, including sound effects, background music and optionally more
advanced technologies such as 3D sound, speech synthesis (text-to-
speech) and special effects (echo, pitch, reverb, bullhorn, etc.).

8. Physics: the physical mechanics of the produced games, including colli-
sion detection and acting forces.

9. Artificial Intelligence: artificial intelligence behaviors performed by enti-
ties and the world of the domain games.

10. Networking: whether the domain games are standalone applications or
can interact with servers (to store high scores, for instance) and/or other
running game instances.

11. Any other custom core game dimension that applies to the domain. For
instance, an important core game dimension that constrains role-playing
games (RPGs) is the Battle System, which determines whether fights
against enemies happen in turns or as real-time action, randomly or
planned, etc. On the other hand, card games can have special constraints

 Streamlining Domain Analysis for Digital Games Product Lines 321

based on card decks, such as the number of decks, usage of full or partial
decks, etc.

The expectations for such core game dimensions come from multiple (and many
times informal) sources, such as expertise from domain experts, previous knowledge
from domain analysts, trends and influences from successful game titles, requirements
from game developers or designers and an overall assessment of the high-level goals
of the game SPL. By no means should the resulting set of expectations be considered
final or totally accurate. On the contrary, it will very likely be modified and refined by
subsequent activities and iterations.

Establishing a negative scope. A negative scope is focused on stating expectations
that will not belong to the specific game domain being defined, and therefore will
have no built-in support from the SPL assets, such as DSLs and transformations. This
task is especially useful regarding expectations that the game SPL customers (game
developers and designers) would implicitly take for granted, but are out of scope by
design. For example, a SPL focused on a racing games domain may explicitly state,
through its negative scope, that refueling and campaign modes are out of the SPL
expectations.

Initially, negative expectations can be derived from core game dimensions. Later,
the Domain Analysis activities can refine the negative scope, explicitly stating the
domain features that should not be taken into account. The negative scope, however,
does not avoid SPL customers to add missing features to their games as extensions
and customizations to the SPL. In fact, the SPL can still provide extensibility mecha-
nisms (“hooks”), such as parameterization, partial classes, events, sub-classing, poly-
morphism, dynamic class loading, dependency injection, etc. [16]. For example, a
game entity movement can be originally restricted to a built-in set or formula (8-
directions via the arrow keys, mouse position-based, etc.), but be extensible enough to
enable game developers to define alternative possibilities (such as bouncing) by
overwriting methods that move entities around.

Identifying target platforms. We suggest the game domain documentation to include
the target platforms to be supported by the SPL, such as consoles, mobile devices, PC
(running under a client operating system), web (running under a browser), digital TV,
etc. Constraints on the target platforms, such as the need for a specific browser technol-
ogy (Flash, Silverlight, etc.), operating system or runtime can also be described if the
information is available or as a result of refining the domain envisioning in future itera-
tions. Product portfolios [17] can be used to describe all families supported by the game
SPL, by means of their target platforms. A product map can also be conceived in order
to map capabilities and restrictions of core game dimensions into the target platforms.
For example, one of the target platforms in a mobile games domain may have its graph-
ics expectations restricted to some specific screen sizes.

Creating a vision statement. A comprehensive yet concise vision statement summa-
rizes the essence of a game domain vision. Although the vision statement is estab-
lished only after other game domain vision elements, it will generally be presented
first when introducing the game SPL to stakeholders, as it happens with an executive
summary of a business plan.

322 A.W.B. Furtado, A.L.M. Santos, and G.L. Ramalho

Additional guidance is provided to envision and scope a digital games SPL:

• As highlighted by agile development methodologies, analogies are a power-
ful mechanism to facilitate understanding.

• The extent of the vision is key to determine the success of a digital games
SPL. If it is too broad, it may attempt to encompass too many genres, there-
fore it will have excessive variability resulting in ineffective game SPLs. On
the other hand, if the vision is too narrow, it may be difficult to reuse proc-
esses, components and tools, making it harder to achieve a return on the game
SPL upfront investments.

• The vision should not depend on game-world content, unlike other works of fic-
tion such as films or books. For example, an action game is still an action game,
regardless of whether it takes place in a fantasy world or outer space [18].

• The vision should be comprehensive, but not meticulously precise. False
positive samples (games that may fit into the vision but are later discarded by
Domain Analysis) can still exist. As the vision gets refined by Domain
Analysis, the domain boundaries are made clearer.

• The domain envisioning elements proposed by this section (expectations for
core game dimensions, negative scope, etc.) can be customized by the game
SPL in order to more properly fit the contents and layout of Game Design
Documents already in use by the organization. In fact, such envisioning ele-
ments can be seen as a simplified version of a meta-Game Design Document,
to be refined by game SPLs and instantiated during application development.

• If game domain analysts foresee that different player profiles (or even other
types of end-users) will be addressed by the game SPL, Personas [19] can be
modeled and become part of the vision. Examples of Personas include teach-
ers and students in educative games, hardcore and casual gamers for games
with multiple levels of difficulties, different content generator roles for cus-
tomizable games, etc. The specific needs of each Persona can be used as in-
put when conceiving game SPL assets later on.

• Game domain analysts have an additional dilemma to deal with when envi-
sioning the domain. If from one side each wave of games is attempting sev-
eral technical feats (and experiences) that are mysterious and unproven to
surprise players [4], on the other hand there should be a threshold on any core
game dimension innovation, in order to avoid it from becoming a rupture.
However, this should not rule out a completely new gameplay experience,
especially if it is solidly based on user experience research.

3.2 Defining and Refining Game Domain Features

SPLs and software factories commonly approach the modeling of domain features by
making a clear separation between the problem domain and the solution domain [7].
Modeling the former is an input to modeling the latter, which is then ultimately used
to bridge the Domain Analysis to subsequent Domain Engineering phases (Domain
Design and Implementation).

 Streamlining Domain Analysis for Digital Games Product Lines 323

In digital games, however, the problem domain is peculiar since the concept of
user requirement is not clear. Raph Koster, in his acclaimed book A Theory of Fun for
Game Design [20], concludes that we play games because they offer “juicy patterns
for our brains to consume”. As the human brain is addicted to learning new patterns, it
welcomes any activity that teaches it something new, until it loses the interest due to a
mismatched difficult level, when it becomes too easy or too hard to assimilate new
patterns. Balancing the difficulty level is already a big challenge by itself, since every
human being is unique and therefore has personal skills and backgrounds that shape
his/her own gameplay thresholds.

That said, the problem domain for digital games permeates the subjective topics of
pattern-matching, fun, immersion, escapism, delight and competitiveness, combining
areas ranging from social behavior to adrenalin/dopamine, which are better addressed
by psychochemical sciences rather than Software Engineering. If in other industries
the requirements and design patterns (such as “safety” and “comfort” in the automo-
bilist industry) clearly map to the solution domain (air-bag, anti-break systems, auto-
matic transmission, hydraulic steering, etc.), in digital games such mapping is not
evident enough. Moreover, while requirements and software product lines in general
evolve as a direct consequence of identifying new user needs, in digital games the
evolution and innovation processes are mostly based on experimentation and creativ-
ity. This way, although it is well known that software in general is very likely to
change during the development process, the churn seems to be higher for digital
games as interim experimentation and exploratory results can radically change and
shape the final product. For instance, in some professional game development studios,
designers are not required to come up with a detailed game specification until the first
playable is approved.

The implications of that in game SPLs are twofold:

• Unless problem domain psychochemical features are refined and made
more concrete, modeling them does not seem to be useful to the game
SPL, due to their subjective and cross-discipline nature. Typical problem
domain feature examples for that are “appealing physics” and “nostalgia”,
which can only benefit from Domain Engineering processes if their under-
standing and underlying requirements are really made specific. However,
some non-experimental game features can still exist and be traced back
from the solution domain to the problem domain, as illustrated by Table 1
(the list can increase for domains in which games have secondary goals, such
as in corporative training “serious” games). In such a case, this research sug-
gests the same approach proposed by Greenfield et al. [7], which evolves the
problem domain along with the solution domain for the SPL.

• Besides common, optional and eventually parameterizable features, the prod-
ucts (games) generated by a game SPL will present extended features as the
result of an exploration/experimentation process. While Application Engi-
neering processes targeted at creating instances of a given game SPL can ad-
dress the common and optional features, exploratory features need to be
handled as SPL extensions. Later on, extensions can still be retrofitted to
the SPL, as part of the game SPL feedback process.

324 A.W.B. Furtado, A.L.M. Santos, and G.L. Ramalho

Table 1. Non-experimental features can enable tracing between problem and solution domains

Problem Domain Features Solution Domain Features
Take breaks avoiding progress to be lost Save/Load, Pause/Resume, "Continues"
Register player performance High-scores table, achievements
Provide social interaction Multiplayer mode (online and local)
Establish a player identity Avatar, game elements customization
Availability
(to play independent from time/space)

Mobile platforms, digital convergence
(multi-device experience for a same game)

Readiness to play Intuitive/one-click installers,
zero-deployment games

Replay-value Multiple narrative paths,
multiplayer support, achievements

Low learning curve Tutorials, scaffolding (hints and tips that stop
being offered as players acquire experience)

Advertise a specific brand
(typical for advergames)

Hooks for brand insertion, which can end up as
patterns: background of “loading” screens,
mid-action fly-outs, specific areas or canvas
designated for branding, etc.

Teach or train the player on
a given real-world topic

Missions and problem-solving challenges that
incorporate the topic contents, notorious in
serious end educative games.

“Braid” is an Xbox game that very conveniently illustrates this discussion. While it

has all typical gameplay elements of a platform game, it innovates by adding time
interaction and manipulation to the gameplay experience. For example, in one of
Braid’s phases, if the main character moves to the right, time advances for all other
entities of the game. On the other hand, if the main character moves left, time goes
back for other entities, i.e., they undo the actions they have previously done, such as
by moving back to their original positions. Other game features are also impacted by
time flow manipulation, such as the background music, which is played in reverse
mode when time goes back.

While this feature unconsciously addresses many psychochemical desires of Braid
players (such as the surprise element to play with time flow, along with satisfaction
and re-wards from solving new sorts of time flow-based puzzles), very likely it was
not conceived as the result of a well-defined Domain or Application Engineering
process focused on user requirements. More probably, such a feature came from ex-
ploratory processes leveraging previous game design experience, and was gradually
validated by experimentation through prototypes.

Supposing that Braid was created in the context of a platform games SPL, how-
ever, such time flow manipulation feature could be retrofitted into the SPL as part of
its feedback process. The feature could be refined into more detailed and well-
understood solution domain features, such as “entity actions recording”, “entity ac-
tions playback” and “entity actions rollback”. On the other hand, it could also impact
already existing features. For example, the “background music” feature could be pa-
rameterized in order to allow the game background music to be played in reverse
mode. As a practical consequence of that, SPL assets (languages, frameworks, etc.)
would be adjusted to be compliant with and enact the updated feature set.

 Streamlining Domain Analysis for Digital Games Product Lines 325

3.3 Analyzing Game Samples

A couple of peculiarities stand out when analyzing game samples. Firstly, a very
important concern is to select games which are the most representative, since domain
analysts do not have infinite resources. In digital games, good indicators for game
sample representativeness are re-releases (“remakes”), the number of sequels of
a game and whether it received broad industry and media recognition.

Not rarely, a game has sequels consisting of very similar titles, such as Pac-Man,
Pac-Man II, Mrs. Pac-Man and derived variations. In such a case, game domain ana-
lysts can opt for analyzing sequel titles as a single group, considering unique
sequel features as extensions or variations of the original game. If the se-
quel/variation games have expressive peculiarities, this may be an indication that the
SPL domain can be partitioned into sub-domains.

As opposed to software in general, whose design if focused on enabling features to
be easily reached and explored by end-users, many functionalities in a digital game
are locked from the beginning. For instance, some levels should be cleared in order to
unlock advanced levels. Such advanced levels, on the other hand, might reveal addi-
tional behavior (features) not originally noticed in previous levels. The web game
RunMan: Race Around the World1 is an interesting example: the concept of a world
map, which links different playable areas, is not know by the player until all levels
from the first area are cleared.

This way, it might not be trivial to explore all features of a digital game, and con-
sequently perform Domain Analysis properly, without playing (and many times mas-
tering) the game. The lack of specifications or access to game design documents
negatively impacts such an already challenging concern. This research suggests the
following techniques for game domain analysts to overcome locked features:

• Enabling “god modes” or activating “cheat codes”, if available. Those re-
sources give enhanced powers to players such as the freedom to teleport
across game levels or an unlimited number of lives, ammo, etc. However,
when using such techniques, the game domain analyst should keep track of
what a built-in game behavior is versus what was modified, so that the game
analysis is not jeopardized. It is also worth noticing that god modes and cheat
codes are, by themselves, features that can be addressed by the game SPL.

• Exploring official and “underground” literature related to the game.
This includes strategy guides released by the publisher or others, playbooks2,
specialized magazines, reviews, online forum conversations and logs. Game
wikis (including game-specific Wikipedia topics) are reasonable resources in
this context, since addicted players worldwide do a very good job in docu-
menting the behavior, scripts, characters and many other attributes of their
favorite games.

• Interviewing experienced players who master the game or the game do-
main. Such players can also be interviewed for eliciting anticipated game
features that do not exist yet.

1 http://whatareyouwait.info
2 An instruction book containing play scripts or diagramming various possible plays to be

performed

326 A.W.B. Furtado, A.L.M. Santos, and G.L. Ramalho

While the feature model notation [21] tell variability by means of documenting
whether a feature is common or optional in a domain, it cannot tell to what extent an
optional feature is variable. For example, it is impossible to document, using a feature
model, all possible flow configurations among the screens of the games belonging to
a domain (e.g., only one screen, two screens where the first screen leads to the sec-
ond, two screens configured in a loop, three screens, etc.). Since understanding how
variability behaves for the domain features has a huge impact on how core domain
assets such as domain-specific languages are conceived, it is recommended that the
game domain analyst annotates the feature model at least with textual informa-
tion describing the variability universe for a given feature.

3.4 Anticipating Features for a Game Domain

The identification of commonalities and variabilities should not be restricted to the
features identified in the analyzed samples. Game domain experts, together with game
domain analysts, may foresee innovative features that could enhance the generated
games and therefore extend the feature model with new anticipated features, or even
new anticipated sub-domains. Therefore, besides existing applications, both future
applications (i.e., applications whose goals are rather clear, but development has not
yet started) and potential applications (i.e., applications for which no clear require-
ments or goals exist yet, but that are seen as relevant) should be considered in the
Game Domain Analysis.

Besides traditional brainstorming and brainwriting sessions involving the game
SPL stakeholders (domain experts, players, etc.), other useful techniques can be
employed for anticipating features for game domains:

• Retrospection and trend analysis [22]: in such a technique, the goal is to
identify the ancestors of a given artifact (such as a game sample or feature)
and understand how they evolved along the time. From this information, it
may be possible to project future trends, new resources and functionality that
can be built atop the current artifact state. The high availability of game sam-
ples (for instance, due to the “retro” branch of the game developer and player
communities) makes this technique not only valid but encouraged.

• Morphologic box [23]: created by the Swiss astrophysicist Fritz Zwicky, this
technique is a systematic form of idea finding where a solution for a problem
is searched by trying out combinations from a matrix containing solution top-
ics (or variables) and their possible values. The matrix is called a “morphol-
ogic box” and the combination of its values can result in unusual or even
“weird” solutions, which are actually in tandem with the creativity element so
essential to game development and design.

4 Case Study: The ArcadEx Game SPL

Following the guidelines presented in this paper, a game SPL was conceived, called
ArcadEx. Its vision is presented below. Although such a vision is not enough to deter-
mine how every single possible generated product will look like, it provides a compre-
hensive, unambiguous high-level overview of what is expected from the SPL, with no

 Streamlining Domain Analysis for Digital Games Product Lines 327

sole dependency on a game genre name. At the same time, it provides a baseline for
refining the domain scope in next iterations and carrying out Domain Analysis.

• ArcadEx Vision Statement: The ArcadEx SPL is focused on generating uni-
or multiplayer bi-dimensional arcade games for PC, with short levels com-
posed by screens containing entities and walls, quick play action (in contrast
to more in-depth gameplay or stronger storylines), simple, easy to grasp con-
trollers, iconic characters and eventually rapidly increasing difficulty. Players
control main characters who, or whose projectiles, collide with other entities
such as non-player characters (NPC) or items. Victory condition is specified
by the game designer as (a set of) game events: enemies are defeated, an ob-
ject is collected, etc.

• Target Platform: PC (Windows).
• Expectations for Core Game Dimensions

1. Player: single or local multiplayer mode is supported; each
player controls one or more main characters.

2. Graphics: Bi-dimensional world. Action screens display the
world as viewed from above. Heads-up Displays (HUDs) based
on progress bars, text, icons or radars can be used to display
game or entity properties, such as health or time indicators.

3. Flow: ArcadEx games are composed by a series of screens. A
screen can display information or host actual game action. A
screen can lead to and be reached from one or more screens.

4. Entities: main characters are controlled by players. Other entity
types are items and non-player characters. Entity attributes in-
clude position, velocity, direction and rotation. Animations (su-
perposition of images at a given frame rate) are supported.

5. Events: entities can be created or destroyed; collision detection;
screen transition; changing an entity attribute value. Other events
to be defined and refined by Domain Analysis.

6. Input: keyboard and/or gamepad controller.
7. Audio: sound effects supported as event reactions; background

music can be associated with game screens and played in loop.
8. Physics: collision detection, bouncing and some attraction

forces. Screens can contain blocking walls.
9. Artificial Intelligence: primitive AI concepts (e.g. path finding).
10. Networking: ArcadEx games are standalone. There is no support

for any kind of connectivity.
11. End-User Customization: players will be able to edit the ap-

pearance of main characters (i.e., compose their frame images)
through the use of a visual tool.

• Negative Scope
1. Physics: no built-in support for elaborated physics models, such

as fluids and friction.
2. Audio: audio in ArcadEx will be as simple as playing back-

ground music and sound effects, without any built-in support to
add special effect such as echo, 3D sound, etc.

328 A.W.B. Furtado, A.L.M. Santos, and G.L. Ramalho

3. Graphics: game screens of ArcadEx generated games will not
support scrolling as a built-in feature. In other words, the
boundaries of a screen will always be inside the dimensions of
the game window. No built-in support for UI controls, such as
menus, textboxes or drop-down lists.

For the ArcadEx SPL, about 30 games were selected and analyzed following the sug-
gested guidelines, such as Pac-Man, Space Invaders, Asteroids, Defender, Geometry
Wars, 1942, Missile Command and Rally-X, among others. About 2 to 4 man/hours
were dispended in the analysis of each domain game. Guidelines were especially
useful for discarding samples to analyze, filtering out conflicting features such as
isometric (2D ½) views and more elaborated physics mechanisms. As the outcome of
such Game Domain Analysis experience, a feature model with almost 150 features
was built to describe the commonality and variability of the domain. Due to space
constraints, only a subset of it (Flow concept) is displayed, in Figure 1.

Fig. 1. Feature model subset for the ArcadEx game SPL: the Flow concept

5 Conclusions

Motivated by the peculiarities of digital games and their development process, this
paper presented techniques for enriching Domain Analysis tasks targeted at digital
games SPLs. Special considerations were given for tasks related to scoping the game
domain, defining and refining game domain features, analyzing samples and antici-
pating features for a game domain. A case study for arcade-based games was used to
illustrate and evaluate the proposed guidelines.

Some limitations of the presented work is that is does not constitute a complete
Domain Analysis process per se, with a well-defined and comprehensive set of roles,
tasks, inputs and outputs. Likewise, it does not attempt to comprehensively evaluate
how current generic Domain Engineering tasks fit into digital games development.

 Streamlining Domain Analysis for Digital Games Product Lines 329

Moreover, one important future work from here is conceiving controlled experiments
to more formally validate the process

Although bridging the suggested Domain Analysis guidelines to Domain Design
and Implementation is part of this research, such a discussion was left out of the scope
of this paper. It consists in partitioning the game domain into sub-domains, assessing
their automation potential and characterizing their variability (from routine configura-
tion to creative construction). Then, sub-domains are prioritized and used as input
towards SPL core assets such as DSLs and generators, compliant with a domain-
specific game architecture. Such architecture is composed by fine-grained game com-
ponents and game engines, which are ubiquitous in game development but now get
promoted to “domain frameworks” through an adaptation layer.

As a concluding note, it is important to reemphasize that there is no such thing as a
one-size-fits-all process. The proposed guidelines should be tailored to each game
SPL reality, needs and constraints, in order to fully promote reuse and automation to
the game development macro-domain.

References

1. Parnas, D.: On the Design and Development of Program Families. IEEE Transactions on
Software Engineering (March 1976)

2. Czarnecki, K., Eisenecker, U.W.: Generative Programming: Methods, Tools, and Applica-
tions. Addison-Wesley, Reading (2000)

3. Software Engineering Institute (SEI). Software Product Line Hall of Fame,
http://www.sei.cmu.edu/productlines/plp_hof.html (retrieved on April
1, 2009)

4. Blow, J.: Game Development: Harder Than You Think. ACM Queue 1(10), 28–37 (2004)
5. Entertainment Software Association: Essential Facts about the Computer and Video Game

Industry (2009)
6. Neward, T.: Why the Next Five Years Will Be About Languages. Keynote at the The

ServerSide Java Symposium, March 27 (2008)
7. Greenfield, J., et al.: Software Factories: Assembling Applications with Patterns, Models,

Frameworks, and Tools. Wiley & Sons, Chichester (2004)
8. Folmer, E.: Component Based Game Development: A Solution to Escalating Costs and

Expanding Deadlines? In: Schmidt, H.W., Crnković, I., Heineman, G.T., Stafford, J.A.
(eds.) CBSE 2007. LNCS, vol. 4608, pp. 66–73. Springer, Heidelberg (2007)

9. Reyno, E.M., Cubel, G.A.C.: Model-Driven Game Development: 2D Platform Game Pro-
totyping. In: Game-On 2008, 9th International Conference on Intelligent Games and Simu-
lation, pp. 5–7 (2008)

10. Rollings, A., Morris, D.: Game Architecture and Design. The Coriolis Group (2000)
11. Madeira, C.: FORGE V8: A Computer Games and Multimedia Applications Development

Framework (in Portuguese), MSc dissertation, Federal University of Pernambuco (2003)
12. Neighbors, J.M.: Software Construction Using Components, Ph.D. Thesis, University of

California (1980)
13. Prieto-Diaz, R.: Domain Analysis: An Introduction. ACM SIGSOFT Software Engineer-

ing Notes 15(02), 47–54 (1990)
14. Oxland, K.: Gameplay and Design. Pearson Education, London (2004)
15. Crawford, C.: The Art of Computer Game Design: Reflections Of A Master Game De-

signer. Osborne/McGraw-Hill, U.S (1984)

330 A.W.B. Furtado, A.L.M. Santos, and G.L. Ramalho

16. Anastasopoulos, M., Gacek, C.: Implementing Product Line Variabilities. In: Symposium
on Software Reusability (SSR), Toronto, Canada, pp. 109–117 (2001)

17. Nascimento, L.M.: Core Assets Development in Software Product Lines: Towards a Prac-
tical Approach for the Mobile Game Domain. M.Sc dissertation, Federal University of
Pernambuco, Recife, Pernambuco, Brazil (2008)

18. Rollings, A., Adams, E.: Fundamentals of Game Design. Prentice-Hall, Englewood Cliffs
(2006)

19. Bonnie, R.: The Power of the Persona. The Pragmatic Marketer Magazine 5(4) (2007)
20. Koster, R.: A Theory of Fun for Game Design, Paraglyph (2004)
21. Kang, K., Cohe, S., Hess, J., Nowak, W., Peterson, S.: Feature-oriented domain analysis

(FODA) feasibility study. Technical Report CMU/SEI-90TR-21, Software Engineering In-
stitute, Carnegie Mellon University (1990)

22. Araujo, A.R.S.: Play4Fun: A Casual Digital Games Factory (in Portuguese) M.Sc disserta-
tion, Federal University of Pernambuco (2009)

23. Zwicky, F.: Morphological Astronomy. The Observatory 68(845), 121–143 (1948)

Designing and Prototyping Dynamic Software
Product Lines: Techniques and Guidelines

Carlos Cetina, Pau Giner, Joan Fons, and Vicente Pelechano

Centro de Investigación en Métodos de Producción de Software

Universidad Politécnica de Valencia

Camino de Vera s/n, E-46022, Spain

{ccetina,pginer,jjfons,pele}@dsic.upv.es

Abstract. Dynamic Software Product Lines (DSPL) encompass sys-

tems that are capable of modifying their own configuration with respect

to changes in their operating environment by using run-time reconfigu-

rations. A failure in these reconfigurations can directly impact the user

experience since the reconfigurations are performed when the system is

already under the users control. Prototyping DSPLs at an early devel-

opment stage can help to pinpoint potential issues and optimize design.

In this work, we identify and addresses two challenges associated with

the involvement of human subjects in DSPL prototyping: enabling DSPL

users to (1) trigger the run-time reconfigurations and to (2) understand

the effects of the reconfigurations. These techniques have been applied

with the participation of human subjects by means of a Smart Hotel case

study which was deployed with real devices. The application of these

techniques reveals DSPL-design issues with recovering from a failed re-

configuration or a reconfiguration triggered by mistake. To address these

issues, we discuss some guidelines learned in the Smart Hotel case study.

1 Introduction

Software Product Line engineering has proven itself to be an efficient way for
dealing with varying user needs and resource constraints. However, the focus has
been on the efficient derivation of customized product variants that, once cre-
ated, keep their properties throughout their lifetime. Previous research [12,8,1]
shows that Dynamic Software Product Lines (DSPL) can assist a system to
determine the steps that are necessary to reconfigure itself. Specifically, these
systems can perform run-time reconfigurations in order to activate/deactivate
their own features dynamically at run-time according to the fulfillment of context
conditions.

For traditional Software Product Lines, once a product is obtained for a given
configuration, it can be tested intensively before it reaches the users. However,
the case of DSPLs is different since different configurations are obtained at run-
time. A failure in DSPL reconfigurations directly impacts the user experience

J. Bosch and J. Lee (Eds.): SPLC 2010, LNCS 6287, pp. 331–345, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

332 C. Cetina et al.

because the reconfiguration is performed when the system is already under the
user control. Prototyping DSPLs at an early development stage can help to
pinpoint potential issues and optimize design.

In this work, we identify and addresses two challenges associated with the
involvement of human subjects in DSPL prototyping: enabling DSPL users to
(1) trigger the run-time reconfigurations and to (2) understand the effects of
the reconfigurations. On the one hand, reconfigurations are triggered by con-
text events many of which are difficult to be reproduced in practice (e.g., the
event of an unintended fire in the kitchen). To address this challenge, we have
developed a technique that is based on RFID-enabled cards to easily specify
the current DSPL context. On the other hand, when reconfigurations are per-
formed, some of the effects are easily perceived (e.g., an alarm is triggered) while
others are not (e.g., some sensors are deactivated). Thus, we consider that the
direct observation of the DSPL system is not enough for evaluating the run-time
reconfigurations. To address this challenge, we provide prototype’s users with
a configuration viewer tool which helps them to understand and evaluate the
effects of the reconfigurations.

These techniques have been applied in the context of context aware smart
spaces [5]. In particular, bu means of a Smart Hotel DSPL which was deployed
with real devices. The Smart Hotel reconfigures its services according to changes
in the surrounding context. A hotel room changes its features depending on users’
activities to make their stay as pleasant as possible. Overall, the Smart Hotel
comprises eight scenarios and eighteen reconfigurations among these scenarios.
This DSPL was deployed in a scale environment with real devices to represent
the Smart Hotel with human subjects using the prototype.

The application of these techniques reveals DSPL-design issues with recov-
ering from a failed reconfiguration or a reconfiguration triggered by mistake.
To address these issues, we discuss some guidelines learned in the Smart Ho-
tel in connection to: (1) introducing user confirmations to reconfigurations, (2)
improving reconfiguration feedback and (3) introducing rollback capabilities to
reconfigurations.

In particular, the contribution of this paper is twofold as follows:

– The identification and solution of two challenges associated with the in-
volvement of human subjects in DSPL prototyping: to (1) trigger run-time
reconfigurations and to (2) understand the effects of the reconfigurations.
Furthermore, theses techniques enable users to provide valuable feedback
for DSPL redesign.

– The guidelines for addressing the following key issues of DSPL design: to (1)
recover from a failed reconfiguration, and to (2) recover from a reconfigura-
tion triggered by mistake.

The paper is organized as follows. Section 2 presents the running DSPL case
studiy of the paper. Section 3 introduces the techniques for DSPL prototyping.
Section 4 discusses the guidelines learned in the case study. Finally, Section 5
provides an overview of related work, and section 6 concludes the paper.

Designing and Prototyping Dynamic Software Product Lines 333

2 Case Study: The Smart Hotel DSPL

This section introduces the case study of a smart hotel, which reconfigures its
services and devices according to changes in the surrounding context. The smart
hotel was chosen as the reconfiguration-based case study for two main reasons:
first, its nature as a shared environment in which different users use the same
room over time. The clients each have their own preferences for the room, which
should be adjusted to improve the quality of their stay; secondly, the preferences
of the clients change depending on the activity performed (e.g., the clients usually
have different preferences when they are watching a movie than when they are
working).

Overall, the smart hotel case study describes the stay of one client in different
scenarios. This includes the check-in process and the way the room interacts
with the client and changes its features depending on the clients activities in
order to make the stay as pleasant as possible. To give an idea of the dimensions
of the case study, we present the following metrics:

According to the Feature Modelling technique, the Smart Hotel presents thirty
nine Features. Some examples of these features are the Temperature Con-
trol feature, which offers a heating and cooling system; the Device Synchro-
nization feature which synchronizes the devices that the user can have (e.g.,
laptop, mp3 player, or PDA) or the Security feature, which secures the room
when the user is absent.

The main concepts of the Smart Hotel DSPL architecture are Services, De-
vices, and the Communication Channels among them. The Smart Hotel has
thirteen Services, twenty Devices and thirty-five Channels. For in-
stance, the Multimedia Service can establish communication channels to
devices such as PDAs or MP3 players.

In the Smart Hotel, users can perform different activities. Specifically, our case
study addresses eight Scenarios. These scenarios are: Check-in, Entering
the Room, Working, Watching a Movie, Sleeping, Leaving the Room, House-
keeping and Check-out.

Detailed documentation about this case study is publicly available online at
http://www.carloscetina.com/papers/smart-hotel.eps

2.1 The Run-Time Reconfigurations of the Smart Hotel DSPL

This section briefly presents the run-time reconfiguration Process of the Smart
Hotel DSPL. The feature model specifies the possible configurations of the sys-
tem, while the Dynamic Product Line Architecture can be rapidly retargeted to
a specific configuration (see Fig. 1).

The first step of the Reconfiguration Process is to feed an ontology with con-
text events. The context conditions check for values in this ontology. For
instance, an EmptyRoom condition is fulfilled when none of the presence
detection sensors is perceiving presence. This can be used to trigger the

http://www.carloscetina.com/papers/smart-hotel.eps

334 C. Cetina et al.

Smart Home
(DSPL

Architecture)

Trigger: Architecture Increments/Decrements are calculated

Trigger: New
Context Event

Effect: Inserting
Context Event into
the Ontology

Trigger: Fulfillment of
a Context Condition

Effect: Changes in
the state of features
(Resolution)

Run-Time System

Effect: DSPL reconfiguration

1

3

Variability
Modelling

(Feature Model)

Context
Ontology

(OWL)
2

Fig. 1. Overview of the reconfiguration process

activation of both the In Room Detection and the Occupancy Simulation
features when all the inhabitants leave room. We can also define another
context condition, Comfort, to trigger the activation of features related to
ease and well-being such as LightingbyOccupancy or PipedMusic.

The second step of the Reconfiguration Process is triggered when a context
condition is fulfilled. Since a given condition can trigger the activation/
deactivation of several features, we define the Resolution concept to rep-
resent the set of changes triggered by a condition. A resolution is a list of
pairs where each pair is conformed by a Feature and the state of the fea-
ture. Each resolution is associated to a context condition and represents the
change (in terms of feature activation/deactivation) produced in the system
when the condition is fulfilled.

For instance, the REmptyRoom resolution means that, when the DSPL
senses that it is empty (condition), it must reconfigure itself to deactivate
Lighting by Presence and to activate both Presence Simulation and In Room
Detection.

The third step of the reconfiguration process (see Fig 1) addresses the archi-
tecture reconfiguration of the DSPL. In the REmptyRoom example, the DSPL
queries the Feature Model to determine the architecture for that specific con-
text. The architecture increments and decrements are calculated in order to
determine the actions that are necessary to modify the current configuration
of the DSPL.

These increments and decrements indicate how system components should be
reorganized for the reconfiguration in order to move from one configuration of
the system (User in the room, see left side of Figure 2) to another configuration
(Nobody in the room, see right side of Figure 2). As illustrated in Fig. 2, the
presence sensors are no longer used for lighting (communication channels a and
b are disabled), and they are used to provide information to the security service
instead (communication channels e and f are enabled). In addition, the presence
simulation service (labelled as 3) is activated, and the communication channels
required for this service to communicate with multimedia (channel c) and lighting
(channel d) are established.

Designing and Prototyping Dynamic Software Product Lines 335

Second Scenario: Nobody is at home.

Lights

Lighting
Service

21Alarm

Security
Service

TV

Multimedia
Service

Presence
Sensors 1

Presence
Sensors

3

2

Security
Service

Presence
Simulator

Alarm

TV Lights

Multimedia
Service

Lighting
Service

Reconfiguration

Device

Service
Channel

First Scenario: The user is at Hotel room.

Smart Home
(DSPL

Architecture)

Second Scenario: Nobody is at Hotel room.

a b

c d

e
f

Fig. 2. Impact of active features on system components for two scenarios

3 Techniques for DSPL Prototyping

In this work, two major challenges were identified and addressed with the in-
volvement of human subjects in the DSPL prototyping. These human subjects
are potential users evaluating the prototype. DSPL reconfigurations are trig-
gered by context events, many of which are difficult to reproduce in practice
(e.g., a flood in the basement). To successfully prototype DSPLs, we must en-
able users to trigger those reconfigurations that are relevant for the
DSPL, not only those reconfigurations that can be easily triggered.

When reconfigurations are performed some of the effects can be easily per-
ceived (e.g., an alarm is triggered in the smart hotel) while others are not (e.g.,
some sensors are deactivated in the smart hotel). To successfully prototype
DSPLs, we must enable users to understand and evaluate the effects of
reconfigurations. If participants misunderstand reconfiguration effects, they
will not be able to provide valuable feedback for system redesign.

3.1 Enabling Prototype’s Users to Trigger Reconfigurations

Reconfigurations in the case study are triggered by different environmental con-
ditions. When users are experimenting with the reconfiguration scenarios, they
should be able to reproduce these situations in order to validate the system
reaction. Since many context events are difficult to reproduce in practice (e.g.,
simultaneous events that occur in different rooms), simulating them is a must.

The control of context events is essential for the prototyping of DSPLs, since
context changes are the events that drive the reconfiguration of the DSPL. Mech-
anisms should be provided to users to allow them to easily change the current
context of the system. In this way, users can move from one configuration to
another configuration by applying context changes.

In order to provide an intuitive representation of context events that users
could manipulate easily, we provided them with cards that depicted these events.
The use of the card metaphor was chosen since it is a familiar concept for most
people [18].

Each context card represents a context event (such as “fire in the room”). Dur-
ing evaluation sessions, the users were given a deck of context cards. The deck

336 C. Cetina et al.

Fig. 3. Context Cards for triggering DSPL reconfigurations

included the events that could affect the particular DSPL being evaluated. The
users could then make use of the context cards as the building blocks for triggering
the reconfiguration of the DSPL.

The design of the context cards was driven by the elements defined in the
Smart Hotel ontology. Each card involved a specific instantiation of a class from
the ontology. The information provided in the card included the type element
and, optionally, some relevant attributes regarding its particular instantiation
(such as the location where the event takes place). When the cards were designed,
we tried to avoid including too much information. Thus, the users could easily
recognize the different cards at a glance (see Fig. 3, right).

In order to automate the evaluation process, the Context Cards were enhanced
with RFID tags (see Fig. 3, left). When a card is placed on the table it is
automatically detected by an RFID antenna, and the context ontology is updated
accordingly. In this way, the cards can be easily manipulated as if it was part
of a card game. Furthermore, they are also closely integrated with the DSPL
reconfiguration engine. That is, setting a context card close to the RFID antenna
triggered the different reconfigurations.

During the case study, the users could add and remove multiple cards from
the table in order to define a specific context. The reconfiguration engine recon-
figured the DSPL to fit the new context as it changed. Thus, the users could
observe how the DSPL was reconfigured as they changed the context events.

The use of context cards enables users to evaluate the reaction of the system
in different combinations of context events. Furthermore, putting users in control
of the context definition provides valuable feedback for DSPL redesign. During
our experimentation sessions, the users suggested new context cards and specific
reconfigurations for certain context combinations that had not been previously
considered by designers. Some new context cards were designed to group different
events on a single card. Thus, a single card could represent the instantiation of
several elements of the Smart Hotel ontology. This simplifies the activation of
multiple conditions for users.

3.2 Enabling Prototype’s Users to Evaluate the Reconfigurations

According to Dey in [3], one of the biggest challenges to the usability of context-
aware applications (as is the case of a DSPL such as [12,9,19,13,15]) is the

Designing and Prototyping Dynamic Software Product Lines 337

difficulty that users have understanding why the applications do what they do.
Dey defines the intelligibility concept as the support for users in understanding,
or developing correct mental models of what a system is doing. This is done
by providing explanations of why the system is taking a particular action and
supporting users in predicting how the system might respond to a particular
input.

Since the DSPLs that we are developing are context-dependant, intelligibility
becomes a challenge for their evaluation. When the Smart Hotel is reconfig-
ured, some of the consequences are easily perceivable by users (e.g., an alarm
is triggered) while others are not (e.g., some sensors are deactivated). Thus, we
considered that the direct observation of the physical devices by the user is not
enough for evaluating the DSPL reconfigurations. Mechanisms are required by
users to allow them to fully understand the reconfiguration consequences (e.g.
changes that are produced in rooms where the user is not present, etc.).

For the evaluation process a Configuration Viewer has been developed to
provide users with visual information about the reconfiguration effects in the
system. This tool provides a graphical representation of the relevant entities in
the Smart Hotel room. These entities include the devices, services, and com-
munication channels among them. When a context condition is activated, it is
also depicted in the Configuration Viewer. Thus, the user can easily perceive
that motion sensors are enabled and provide information to the alarm system
when the room becomes empty. Without the Configuration Viewer, users cannot
be sure whether or not the presence detection has been turned on when they
leave the room. As Fig. 4 shows, direct observation of the physical devices is not
enough to evaluate run-time reconfigurations.

Since we are interested in the evaluation of DSPL reconfigurations, it is not
enough to represent the Smart Hotel room in a single state. Therefore, comple-
mentary information is provided to the users through our tool to depict what
has changed from the previous configurations. By clicking on services or devices,
the users get detailed information indicating changes in the configuration (e.g.,
the motion sensors provide the user with the following message: “motion sensors
no longer in use to control lighting, currently in use to control security.”).

User at Hotel room User left the Hotel room

Reconfiguration

Fig. 4. Visualizing reconfiguration effects by means of the Configuration Viewer

338 C. Cetina et al.

This use of the Configuration Viewer enabled users to provide more accurate
feedback for DSPL redesign during the Smart Hotel case study since they could
determine what has actually changed.

3.3 Prototype Operation

In the prototype, a scale environment with real devices was used to represent the
Smart Hotel. Therefore, the users could interact with the same devices that can
be found in a real deployment (see Fig. 5, top-left). The Configuration Viewer
was used during the experiments to keep track of the system evolution. This
tool graphically depicts the devices, the services, and the connections among
them that are present in the system at any given moment (see Fig. 5, bottom-
left). Since the reconfigurations are performed as a response to context events,
mechanisms are provided for triggering them. We adopted RFID cards to set the
Smart Hotel context (see Fig. 5, right). Each of the cards symbolized context
information such as the presence of users or the occurrence of different events.
These cards were combined to insert events in the ontology and to trigger re-
configurations in the Smart Hotel.

During the experiment, the same user interaction with the environment (ac-
tivating a presence detector) produced different results according to the current
configuration of the system (which depended on the context expressed by the
cards). For example, an initial scenario could consist of a room where one in-
habitant is present. The cards that defined this scenario are the ones illustrated
in Fig. 5. In this scenario, the system architecture was organized in such a way
that the piped music was available and the presence sensors were used by the
lighting service. The user of the prototype could listen to the music and the
lights were turned on/off as the user interacted with the sensors. If the card that
represented the hotel inhabitant was removed, the sensors were automatically
no longer used for the purpose of light control but for security instead. As a con-
sequence, when the user of the prototype interacted with the sensors again, the

Current context

New Context Event

KNX Devices

Configuration
Viewer

Smart Hotel Smart Hotel Context

Fig. 5. Experimentation set-up

Designing and Prototyping Dynamic Software Product Lines 339

alarm went off (see this reconfiguration example and the prototype techniques
online at http://www.autonomic-homes.com).

4 Guidelines for DSPL Design

Based on our experiences from these prototype techniques, we present the guide-
lines that we learned to assist researchers in the context of DSPL design.

4.1 Introducing User Confirmations to Reconfigurations

Using the Smart Hotel prototype, some subjects reported that they had triggered
unintended reconfigurations by mistake (in opposition to a reconfiguration bug).
In other words, they mistakenly set up the context for one reconfiguration sce-
nario (i.e. from EnteringTheRoom to LeavingTheRoom), when they really wanted
a different reconfiguration scenario (i.e., from EnteringTheRoom to Working).
Unintended reconfigurations of this kind were not counted as DSPL failures
since they were human mistakes. However, this behaviour raised an interesting
point regarding whether or not a reconfiguration should be confirmed before its
execution.

After analyzing the unintended reconfigurations performed in our case study,
we realized that they can be classified into three different categories. These cate-
gories take into account the implications of returning to the source configuration.
The three categories are the following:

Round-trip. If there is a reconfiguration that leads directly to the source
configuration from the unintended configuration, then we classify the
reconfiguration as a round-trip one (see Figure 6, left). In our case study,
some subjects performed unintended round-trip reconfigurations between
EnteringTheRoom and LeavingTheRoom configurations. For these unintended
round-trip reconfigurations, the subjects did not require any special support
since they could easily find the way to return to the source configuration. In
fact, most of the reconfigurations were not reported as unintended ones in
our case study, and those that were reported as unintended did not require
support to find the way back. Based on this experience, we do not think
that DSPLs should ask for user confirmation before performing a round-trip
reconfiguration.

One-way. If there is no reconfiguration that leads directly (or indirectly) to the
source configuration from the unintended configuration, then we classify the
reconfiguration as a one-way one (see Fig. 6, center). In our case study, some
of the subjects performed unintended one-way reconfigurations between the
LeavingTheRoom and Check-Out configurations. For these unintended one-
way reconfigurations, the subjects always required support since they could
not find a way back to the source configuration. Based on this experience,
we suggest that DSPLs should ask for user confirmation before performing
a one-way reconfiguration. This suggestion comes from the fact that once a
one-way reconfiguration has been performed, it is not possible to find a way
back to the source configuration.

340 C. Cetina et al.

Source
Configuration

Unintended
Configuration

Source
Configuration

Unintended
Configuration

Source
Configuration

Unintended
Configuration

Stop
Configuration

Round-trip One-way N-stops

1 2 1 1

2

3

Fig. 6. Categories for confirmation of reconfigurations

N-stops. If there is a set of of reconfigurations that leads to the source con-
figuration from the unintended configuration, then we classify the recon-
figuration as a N-stops one (see Fig. 6, right). In our case study, some of
the subjects performed unintended N-stop reconfigurations between the En-
teringTheRoom and Activity configurations. For these unintended N-stops
reconfigurations, almost all the subjects could easily find the way to return
to the source configuration. However, a few subjects took a long time to find
the way back. Based on this experience, we suggest that DSPLs should ask
for user confirmation before performing an N-stops reconfiguration when the
number of stops exceeds a certain limit. The purpose of our suggestion is to
only require confirmation for critical reconfigurations. We also suggest iden-
tifying the acceptable limit of stops by applying Considerate Computing [6]
techniques. These techniques take into account the domain particularities of
the DSPL in order to determine when the number of reconfiguration stops
is not trivial.

Since unintended reconfigurations can occur in DSPLs driven by context events
[12,9,19,13,15] or by user actions [7], we believe that confirmation patterns de-
fined in this study can help DSPLs engineers to mitigate the unintended recon-
figurations. Furthermore, we think that these confirmation patterns are specially
relevant for DSPLs driven by context events, since users of these DSPLs usually
do not control all the feasible context events and can miss a specific configura-
tion because of it. The confirmation guidelines that came from our case study
experience can contribute to avoid this kind of undesired behaviour.

4.2 Improving Reconfiguration Feedback

When the users of the prototype perceived the effects of a specific reconfigura-
tion, they sometimes noticed that the result was not the expected one. In those
cases, they indicated the presence of a reconfiguration failure. One of the main
issues with the identifications of these reconfiguration failures was related to the
termination of the reconfigurations.

Designing and Prototyping Dynamic Software Product Lines 341

Since, each reconfiguration involves changes in different devices, services or
communication channels, a delay between the event and the system reaction
is introduced. This delay varies from reconfiguration to reconfiguration. Some
subjects reported that it was difficult for them to determine whether the recon-
figuration process was completed or there were still actions pending. This could
lead to misidentifying failure or to misevaluating severity, since a subject could
start evaluating a reconfiguration before it was actually finished.

To address this issue, our configuration viewer was enhanced with notification
messages that indicated the completion of each reconfiguration. The subjects
were provided with feedback regarding the overall process as well as at the ser-
vice/device level. When a service or device was in the process of reconfiguration,
it was depicted as busy (a waiting icon) in the configuration viewer.

Most of the subjects reported that they found this reconfiguration feedback to
be very useful not only for failed reconfigurations but also for regular reconfig-
urations. Therefore, we suggest that DSPLs should provide feedback about the
termination of reconfigurations, especially, when reconfigurations involve human
users.

4.3 Introducing Rollback Capabilities to Reconfigurations

Our case study raised another important concern in connection with DSPL re-
covery after a failure. Once a reconfiguration was performed and evaluated using
the prototype, a few subjects required support to resume the experimentation.
They reported problems in performing the next reconfiguration after the failure.
In other words, they did not find a simple way to reach another configuration of
the case study. Below, we present the main kinds of issues reported and how we
think they should be addressed in DSPLs.

Unexpected configurations. After a failure reconfiguration, a few subjects
reported that the resulting configuration was not the expected one. In place
of the expected configuration (i.e., WatchingAMovie), they got another con-
figuration (i.e., Working). In most of these cases, the subjects could perform
a new reconfiguration in order to reach the expected configuration. However,
a few of the cases required several reconfigurations to reach the expected
configuration. To address this issue, in DSPLs, we suggest introducing some
sort of “undo” operation that returns the system directly to the previous
configuration.

This has several implications for the design of DSPLs since some actions
have collateral effects that cannot be easily undone (e.g., sending an e-mail).
The handling of compensation actions to reverse a reconfiguration should
be studied, also the consequences of a rollback need to be explained so that
users can be provided information to help them choose among different com-
pensation actions and understand how they relate to their desired goals.

Unknown configurations. After a failure reconfiguration, some subjects re-
ported that they failed to identify the resulting configuration in the Smart
Hotel documentation. In other words, the resulting configuration was differ-
ent from all the documented configurations that made up the case study.

342 C. Cetina et al.

The Feature Model of the Smart Hotel defines more configurations than
the ones considered in our case study. These unknown configurations im-
ply that the subjects could not identify the set of reconfigurations that led
to the expected configuration. Therefore, they needed support to continue
the experimentation. To address this issue, we strongly suggest an “undo”
operation that returns the system directly to the previous configuration.
Note that for Unknown configurations, we think that the “undo” operation
should be mandatory. However, for Unexpected configurations, we think that
the “undo” operation should be optional since users have an alternative to
achieve the expected configuration.

The DSPL that supports this case study makes use of Feature Models at run-time
to determining how to perform the reconfigurations. According to a recent dis-
cussion on DSPL architectures [2], other DSPL approaches make use of different
techniques to perform reconfigurations (i.e., QoS properties or UML profiles).
Although the details are different, these DSPLs are based on variability specifi-
cations, and their reconfiguration can also lead to Unexpected configurations or
Unknown configurations. Even though these DSPLs could achieve an expected
configuration from any given Unexpected or Unknown configuration, our expe-
rience suggests that introducing an “undo reconfiguration” operation is simpler
and more practical from the viewpoint of the DSPL user.

Finally, Table 1 summarizes the the guidelines presented in this section. On
the one hand, left column shows the different kinds of reconfigurations identified

Table 1. Summary of reconfiguration kinds and their design implications

Reconfiguration Design Implications

Round-trip

Reconfiguration

This reconfiguration does not require to add User Confirmation
since there is another reconfiguration that leads directly to the

source configuration.

One-way

Reconfiguration

This reconfiguration requires to add User Confirmation since since

there is not another reconfiguration that leads directly (or indi-

rectly) to the source configuration.

N-stops

Reconfiguration

This reconfiguration requires the use of Considerate Computing to

estimate the N which requires to add User Confirmation.

Not immediate

Reconfiguration

This reconfigurations requires to add visual feedback about the re-

configuration status. We recommend that this feedback compro-

mises both the time left and the scope of the reconfiguration.

Unexpected

Reconfiguration

This reconfigurations does not require to add roll-back capabilities
since the users can figure out another reconfiguration to reach the

expected configurations. However, we recommend to add roll back

capabilities when the context that drives the reconfigurations of

the DSPL is not under the control of the users.

Unknown

Reconfiguration

This reconfiguration requires to add roll-back capabilities since the

users cannot figure out another reconfiguration to reach the ex-

pected configuration (some roll-backs may imply compensations).

Designing and Prototyping Dynamic Software Product Lines 343

by means of the prototype techniques. On the other hand right column shows
the design implications for each reconfiguration kind.

5 Related Work

Since DSPL architectures are retargeted to different configurations at run-time,
they could benefit from current approaches for adaptive architecture design.
Specifically, Yacoub and Ammar [20] proposed a method for reliability risk as-
sessment at the architecture level. This method is based on component-based
systems in which implementation entities explicitly invoke each other. Liu et
al. [14] identified architectural design patterns to build an adaptive architecture
that is capable of preventing or recovering from failures. In comparison with our
work, these methods do not address runtime reconfigurations that are driven by
variability specifications such as Feature Models. However, we believe that some
of techniques proposed in [20,14] (such as estimation of availability and severity)
can also contribute to take DSPL prototyping one step further.

In the context of SPL evaluation, several approaches have produced results in
connection to the design of SPL. For example: the F-SIG Feature-softgoal inter-
dependency graph [11] and Zhang et al. [21] Bayesian Belief Network. There are
also other methods that are not based on Feature Models such as COVAMOF
(ConIPF Variability Modelling Framework) [16]. Most of these approaches usu-
ally remain at the Domain Engineering phase of SPLs only, they do not address
run-time reconfigurations as our work does. Therefore, these approaches are not
suitable for DSPL prototyping.

Other approaches address SPL products at run-time. The RAP approach [10]
defines how some requirements should be mapped to the architecture and how
the architecture should be analyzed in order to validate whether or not the re-
quirements are met. Etxeberria et al. [4] also take into account SPL products at
run-time . However, both the RAP and Etxeberria approaches are oriented to
static products only. Conversely, our work addresses the evaluation of reconfig-
urable products such as these in DSPLs. Furthermore, we address the challenges
of evaluating reconfigurable products and we provide guidelines to improve the
development of future DSPLs.

6 Concluding Remarks

With more and more devices being added to our surroundings, simplicity be-
comes greatly appreciated by users. Dynamic Software Product Lines (DSPL)
encompasses systems that are capable of modifying their own behavior with
respect to changes in their operating environment by using run-time reconfig-
urations. However, failures in these reconfigurations directly impact the user
experience since the reconfigurations are performed when the system is already
under user control. This is in contrast to traditional SPLs where all the config-
urations are performed before delivering the system to the users.

344 C. Cetina et al.

Prototyping DSPLs at an early development stage can help to pinpoint po-
tential issues and optimize design. To this end, we successfully identified and
addressed two challenges associated with the involvement of human subjects in
DSPL prototyping. On the one hand, DSPL reconfigurations are triggered by
context events many of which are difficult to reproduce in practice. On the other
hand, when reconfigurations are performed, some of the effects are easily per-
ceived (e.g., an alarm is triggered) while others are not (e.g., some sensors are
deactivated). If users misunderstand the reconfiguration effects, they will not be
able to provide valuable feedback for DSPL redesign.

The above techniques have been applied with the participation of human sub-
jects by means of a Smart Hotel DSPL which was deployed with real devices. In
this case study, the hotel room changes its features depending on users’ activi-
ties to make their stay as pleasant as possible. Since detailed documentation is
publicly available online and the design of case studies is recognized as a difficult
step [17], we believe that the Smart Hotel case study can be applied to more
research in the context of DSPL.

The application of the prototyping techniques to the case study revealed
DSPL-design issues with recovering from a failed reconfiguration or a recon-
figuration triggered by mistake. To address these issues, we also discussed some
guidelines learned in the Smart Hotel in connection to: (1) introducing user
confirmations to reconfigurations, (2) improving reconfiguration feedback and
(3) introducing rollback capabilities to reconfigurations. These guidelines enable
DSPL engineers to analyse the DSPL reconfigurations in order to set up the
DSPL platform regarding confirmations, feedback and rollback capabilities.

Finally, we conclude that the Smart Hotel DSPL achieved satisfactory results
with regard to run-time reconfigurations; nevertheless, our prototype highlighted
that DSPL engineers must provide users with more control over the reconfigu-
rations or they will not be comfortable with DSPLs.

References

1. Cetina, C., Fons, J., Pelechano, V.: Applying Software Product Lines to Build

Autonomic Pervasive Systems. In: 12th International Software Product Line Con-

ference, SPLC 2008, September 8-12 (2008)

2. Cetina, C., Trinidad, P., Pelechano, V., Ruiz-Cortés, A.: An architectural discus-

sion on dspl. In: 2nd International Workshop on Dynamic Software Product Line

(DSPL 2008) (2008)

3. Dey, A.K.: Modeling and intelligibility in ambient environments. Journal of Ambi-

ent Intelligence and Smart Environments (JAISE) 1(1), 57–62 (2009)

4. Etxeberria, L., Sagardui, G.: Variability driven quality evaluation in software prod-

uct lines. In: SPLC 2008: Proceedings of the 2008 12th International Software

Product Line Conference, Washington, DC, USA, pp. 243–252 (2008)

5. Evesti, A., Eteläperä, M., Kiljander, J., Kuusijärvi, J., Purhonen, A., Stenudd,

S.: Semantic information interoperability in smart spaces. In: Proceedings of the

8th International Conference on Mobile and Ubiquitous Multimedia, pp. 158–159

(2009)

6. Gibbs, W.W.: Considerate computing. Scientific American 292(1), 54–61 (2004)

Designing and Prototyping Dynamic Software Product Lines 345

7. Gomaa, H., Hussein, M.: Dynamic software reconfiguration in software product

families. In: Software Product-Family Engineering, pp. 435–444 (2004)

8. Hallsteinsen, S., Hinchey, M., Park, S., Schmid, K.: Dynamic software product

lines. Computer 41(4), 93–95 (2008)

9. Hallsteinsen, S., Stav, E., Solberg, A., Floch, J.: Using product line techniques to

build adaptive systems. In: 10th International Software Product Line Conference,

2006, August 21-24, 10 pages (2006)

10. Immonen, A.: A method for predicting reliability and availability at the architec-

ture level. In: Software Product Lines, pp. 373–422 (2006)

11. Jarzabek, S., Yang, B., Yoeun, S.: Addressing quality attributes in domain analysis

for product lines. IEE Proceedings Software 153(2), 61–73 (2006)

12. Lee, J., Kang, K.: A feature-oriented approach to developing dynamically reconfig-

urable products in product line engineering. In: 10th International Software Prod-

uct Line Conference 2006 (2006)

13. Lemlouma, T., Layaida, N.: Context-aware adaptation for mobile devices. In: Pro-

ceedings IEEE International Conference on Mobile Data Management 2004 , pp.

106–111 (2004)

14. Liu, Y., Babar, M.A., Gorton, I.: Middleware architecture evaluation for de-

pendable self-managing systems. In: Becker, S., Plasil, F., Reussner, R. (eds.)

QoSA 2008. LNCS, vol. 5281, pp. 189–204. Springer, Heidelberg (2008)

15. Parra, C., Blanc, X., Duchien, L.: Context Awareness for Dynamic Service-

Oriented Product Lines. In: 13th International Software Product Line Conference,

SPLC 2009, pp. 24–28 (August 2009)

16. Sinnema, M., Deelstra, S., Nijhuis, J., Bosch, J.: Covamof: A framework for model-

ing variability in software product families. In: Nord, R.L. (ed.) SPLC 2004. LNCS,

vol. 3154, pp. 197–213. Springer, Heidelberg (2004)

17. Tichy, W.: Should computer scientists experiment more? Computer 31(5), 32–40

(1998)

18. Weal, M.J., Cruickshank, D., Michaelides, D.T., Howland, K., Fitzpatrick, G.: Sup-

porting domain experts in creating pervasive experiences. In: Fifth Annual IEEE

International Conference on Pervasive Computing and Communications, PerCom

2007. pp. 108–113 (March 2007)

19. White, J., Schmidt, D.C., Wuchner, E., Nechypurenko, A.: Automating product-

line variant selection for mobile devices. In: 11th International Software Product

Line Conference, SPLC 2007, September 10-14, pp. 129–140 (2007)

20. Yacoub, S.M., Ammar, H.H.: A methodology for architecture-level reliability risk

analysis. IEEE Trans. Softw. Eng. 28(6), 529–547 (2002)

21. Zhang, H., Jarzabek, S., Yang, B.: Quality prediction and assessment for product

lines, p. 1031 (2003)

A Software Product Line for the Mobile and
Context-Aware Applications Domain�

Fabiana G. Marinho1, Fabŕıcio Lima1, João B. Ferreira Filho1, Lincoln Rocha1,
Marcio E.F. Maia1, Saulo B. de Aguiar1, Valéria L.L. Dantas1,

Windson Viana1, Rossana M.C. Andrade1,
Eldânae Teixeira2, and Cláudia Werner2

1 Group of Computer Networks, Software Engineering and Systems (GREat),

Computer Science Department (DC)

Federal University of Ceará (UFC)

Campus do Pici, Bloco 910, Zip Code 60455-760, Fortaleza, CE, Brazil

{fabiana,marcio,valerialelli,lincoln,sauloaguiar,windson,bosco,
fcofabricio,rossana}@great.ufc.br

2 Software Reuse Group

Systems Engineering and Computer Science Program (COPPE)

Federal University of Rio de Janeiro (UFRJ)

PO Box 68511, CEP 21945-970, Rio de Janeiro, RJ, Brazil

{danny,werner}@cos.ufrj.br

Abstract. The mobile and context-aware application domain presents

challenging requirements to software development. Although several so-

lutions have been proposed for this type of application, reuse is not sys-

tematically used throughout the software development lifecycle. Then, in

this paper we propose an approach for the development of a mobile and

context-aware Software Product Line (SPL). A SPL for the mobile and

context-ware mobile guide domain is presented in order to illustrate the

steps of the proposed approach. Furthermore, the lessons learned in the

SPL development are discussed. Both approach and SPL are the main

contributions of this paper.

Keywords: context-awareness, mobility, software product line.

1 Introduction

The evolution of mobile computing has contributed to make information available
everywhere and at any time. This evolution fostered the development of ubiqui-
tous computing envisioned by Mark Weiser [21] and has allowed organizations to
focus on software applications that consider user mobility, context-awareness and
adaptability. This application domain, here named mobile and context-aware soft-
ware, must hold adaptability as a principle. Mobile and context-aware software
� This work is a result of MobiLine project supported by CNPq (MCT/CNPq 15/2007

- Universal) under grant number 484523/2007-4. The main goal of MobiLine project

is the construction of a mobile and context-aware SPL.

J. Bosch and J. Lee (Eds.): SPLC 2010, LNCS 6287, pp. 346–360, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

A Software Product Line for the Mobile and Context-Aware Applications 347

should be configured in order to be deployed on various device models. In addi-
tion, mobile and context-aware software should be able to adapt itself according
to the changes in its context (e.g., users location, network conditions, etc.). There-
fore, the adaptation mechanisms must be taken in account: i) during the design
phase, in order to cope more easily with changes in the applications requirements
and target environment; and ii) during the software execution phase, in order to
be able to dynamically adjust its behavior dynamically following users needs, pref-
erences, and current context.

In order to achieve adaptability, while requiring minimal user participation,
mobile and context-aware software must use context information to provide ser-
vices, interfaces or content tailored to the user’s needs, expectations, and cur-
rent situation [4]. Several solutions were proposed for development of mobile
and context-aware software [11][4][17][7][16][19]. Although most of them pro-
vide mechanisms that allow reuse, these solutions are not systematically used
throughout the software development phases.

Software Product Lines (SPL) aim to construct software based on a family of
applications, guiding organizations both on the development of new applications
based on reusable artifacts (development with reuse), and on the construction
of these artifacts (development for reuse) [13]. In [6] the UbiFEX-Notation for
modeling features of context-aware product lines is proposed. We agree with [6]
that approaches based on SPL can help the development of mobile and context-
aware software in order to improve reusability and reconfigurability. However,
like most existing approaches, UbiFEX-Notation is used only in the design phase,
not supporting runtime adaptation, which is the problem addressed in this paper.

To investigate the viability of this assumption, a SPL for the mobile and
context-aware application domain is proposed. It comprises three cycles. The
first cycle identifies the commonalities present in mobile context-aware appli-
cations. The second cycle explores features presented in a specific sub domain.
For this work, the Mobile Visit Guide sub domain was chosen, due to the exis-
tence of a large amount of applications, which permited the analysis of common
requirements. Finally, in the last cycle, which corresponds to the SPL Applica-
tion Engineering, the GREat Tour Mobile Guide, a product configuration of the
proposed SPL is derived using core assets generated in the two previous cycles.
Furthermore, an important contribution is a detailed description of how to build
context-aware product lines.

The remainder of this paper is organized as follows: Section 2 presents related
work; Section 3 describes the three cycles; Section 4 discusses the lessons learned;
and finally, Section 5 presents conclusions and an outline of future work.

2 Related Work

The construction of SPL for the context-aware mobile domain is a relatively new
area. Therefore, it is not clear how to cope with the fundamental complexity of
this domain, such as context awareness, contingencies management and device
heterogeneity [2]. Although there is still a lot to be accomplished in order to

348 F.G. Marinho et al.

fully understand this domain, ongoing works on SPL can be used to improve the
reusability and reconfigurability of software products for this domain.

Lee and Kang [12] propose a SPL modeling approach based on binding time
analyses of feature models. It consists in the identification of the association
units and in determining the moment of association of the identified units. Fur-
thermore, the Activation Rule concept is introduced, providing information con-
cerning competition or mutual exclusion restrictions, dependency and priority,
which must be considered during the activation of the association units. The
authors state that it is possible to explicitly identify which functionalities can
be associated with a product at execution time. However, the proposed approach
does not define how to incorporate the concepts presented in the features model.

Van der Hoek [10] proposes the concept of ”any-time variability”, which in-
volves the ability of a software artifact to vary its behavior at any point in the life
cycle. This approach provides three functionalities: a variability representation;
a tool to specify these variabilities; and tools to apply the results at different
points of the life cycle. This work does not explore how context information is
identified. Furthermore, the representation of variabilities has no way of identi-
fying how this information influences the systems dynamic configuration.

Fernandes and Werner [6] propose the UbiFEX-Notation for feature mod-
eling in context-aware product lines. It allows the explicit representation of
entities and context information in a certain domain. It also represents the
influence of this information in the product configuration. However, UbiFEX-
Notation does not define how to implement these concepts for dynamic product
reconfiguration.

Wagelaar [20] suggests the separation of internal interactions between char-
acteristics and interactions caused by external factors. External factors are de-
scribed in context models. The approach proposed by Wagelaar uses ontology
to express the context and feature model. It also presented a mechanism to
determine the validity of the configuration of a product for a given context.

Simons [18] states that in the process of developing a context-aware applica-
tion, context model must contain not only information of type definitions, but
also reflect meta information about the context, thus, the author proposes a
UML profile called CMP (Context UML Profile).

Hartmann and Trew [9] proposes the variability context model that represents
the variability of the product environment and is used to apply restrictions to
the variability model, allowing the modeling of multiple product lines.

In SPL-based approaches, variability is typically defined at product configu-
ration time, postponing decisions to be made at execution time. Our proposal
considers the product variability as part of the feature modeling and the product
configuration, detailing how to build a context-aware product line for the mobile
application domain. Thus, the main contribution in the SPL proposed in this
paper is to allow the creation of mobile and context-aware products that are
reconfigurable and adaptable at runtime.

A Software Product Line for the Mobile and Context-Aware Applications 349

3 Software Product Line Development Process

The development of mobile and context-aware applications, considering the re-
quirements of dynamic adaptation and reconfiguration can be accomplished more
easily if carried out based on Service-Oriented Architecture (SOA). When us-
ing SOA, a large problem can be decomposed into smaller atomic parts, which
facilitates the deployment, management, maintenance and evolution of mobile
applications [14]. Mobile and context-aware applications based on SOA must be
developed using mechanisms to find, access and assemble these small parts in a
secure and fault-tolerant way. Therefore, these mechanisms must be incorporated
into the SPL used to configure such applications.

The SPL scope for developing mobile and context-aware applications must
identify the collection of applications that fit this domain and organize any
relevant information using a feature model, aiming to identify commonalities and
variabilities. Since this is an extensive domain, any attempt to build a general
SPL for mobile and context-aware products would probably be inaccurate.

Considering this scenario, our proposal decomposes the mobile and context-
aware domain into two different analysis levels that are referred throughout
this paper as Base Level and Specific Level. Fig. 1 shows the Base and Specific
Levels in terms of Domain Engineering and Application Engineering to configure
a specific product.

The Base Level (Cycle 1) regards the features present in mobile and context-
aware applications. The main characteristics identified were dynamic execution

Fig. 1. Mobile Visit Guide SPL development process and a product configuration

350 F.G. Marinho et al.

environment, adaptability, and context-awareness, along with common features
derived from the distributed nature of these applications, such as Message Ex-
change, and Service Description and Discovery [14]. These features were used as
input for the Specific Level.

The Specific Level consists of the requirements present in a given business
domain (Cycle 2). A second feature model is produced, merging the features
required by the business domain with the features selected from the Base Level.
The business domain chosen was the Mobile and Context-aware Visit Guide
[1]. It comprises applications running on mobile devices to help visitors in an
unknown environment (museums, parks, cities, etc.).

In the last cycle, a selection of the necessary components to configure a prod-
uct is conducted by performing a clipping in the SPL for the Mobile Visit Guide.
It reuses some core assets generated in the two previous cycles to configure an
application. In this case, the product is a Mobile Visit Guide to the Computer
Science Department at the Federal University of Ceará, called the GREat Tour.

3.1 Feature Model and Context Feature Model Notation

The feature models were created using the Odyssey-FEX [6] notation. It classifies
the features into three dimensions: variability, optionality and category. Vari-
ability is divided into variation point, variant and invariant. Variation points
represent points where decisions are taken. It can be configured by means of
variants, that represent alternative features for configuring a variation point.
Invariants are non-configurable domain features. An important concept is cardi-
nality, which defines the minimum and maximum number of features that can
be chosen.

Odyssey-FEX highlights the relationship semantics among features in the
model, seeking to improve their representation and expressiveness. It combines
Odyssey-FEX-specific relationships (Implemented By, Communication Link, and
Alternative) with UML relations (inheritance, composition, aggregation, and as-
sociation). These relationships are not only hierarchical, but they allow graphs
to be formed, permiting the model expansion in several dimensions.

This paper uses the UbiFEX-Notation for context modeling [6]. Using UbiFEX-
Notation, Context Entity is a feature used to represent context elements. Context
information is an attribute of a context entity. Thus, Context Entities and their
corresponding Context Information comprise the Context Definition, which is a
situation that may trigger application adaptation. This adaptation is guided by
the Context Rules.

3.2 SPL Cycle 1: Domain Requirements Engineering of Mobile and
Context-Aware Applications

The SPL Cycle 1 identities commonalities and variabilities in mobile context-
aware applications. This cycle generates the Base Level feature model, use cases
and class diagrams, and any reusable components implemented in Cycle 1.

A Software Product Line for the Mobile and Context-Aware Applications 351

Table 1. Percentage of each feature in a total of 57 applications

Features
Message Ex-
change

Mobility Service
Description

Service
Discovery

Service Coor-
dination

Security Context Man-
agement

Percentage (%) 87% 100% 85% 85% 21% 70% 8%

Fig. 2. Part of the feature model for Mobile and Context-Aware Applications

To identify these commonalities, a domain analysis was conducted using two
separate approaches: i) review of a subset of published papers regarding context-
aware mobile concepts. It identified six features for the Base Level: Message Ex-
change, Mobility, Service Description, Discovery and Coordination, as well as
Security [14]; and ii) review of the applications developed in our Mobile Com-
puting Research Group in the last five years1.

Table 1 shows the presence of each feature in these applications. Mobility,
Message Exchange, Service Description and Discovery were present in most of
the applications and were modeled as mandatory. Although Context Manage-
ment was rarely present(8%), it was modeled as mandatory, since our approach
deals with context-aware applications. Finally, Security and Service Coordina-
tion were modeled as optional features. Fig. 2 shows part of this feature model.
The complete model can be found at [15] and a detailed description of each
feature can be found at Maia et al. [14].

Domain Design of Mobile and Context-Aware Applications. The archi-
tecture generated during the first cycle represents high-level conceptual features
and their relationships (Fig. 3). To understand these relationships is important to
define the way each functional feature is affected by other features. For instance,
Fig. 3 shows non-functional features such as Adaptability, Context-Awareness,

1 http://www.great.ufc.br/index.php?lang=en

352 F.G. Marinho et al.

Fig. 3. Architecture for Mobile and Context-Aware Applications (Base Level)

Autonomy and Quality of Service affecting the functional features. With Odyssey-
FEX, this relationship is modeled by using composition rules.

Domain Context Modeling of Mobile and Context-Aware Applica-
tions. The product configuration is highly dependent on context modeling,
which is characterized by Context Entities and Context Rules. For instance,
consider Network as being a Base Level Context Entity. It has five Context In-
formation, namely Ontology Representation, Network type, Security, Latency
and Server. Thus, for the first Context Rule, which is ”if the Network Type
assumes Cellular Network, it implies that the Service Discovery must use the
Centralized feature”. Another context rule is ”if the Ontology Representation
is present, it implies that the Service Discovery uses Description based on Key-
words or Semantic”. These Context Definitions and Rules are defined in tables
(Table 2) and (Table 3). A complete set of Context Definitions and Context
Rules can be found at [15].

3.3 SPL Cycle 2: Domain Requirements Engineering of Mobile
Guide Applications

The Specific Level of the domain engineering comprises the requirements elici-
tation of a family of applications for a specific domain. The Mobile Visit Guide
domain was used to specify the feature model for the Specific Level. Therefore,
two actions were executed: i) identify the specific requirements of this sub do-
main, and ii) select relevant features from the Base Level generated at the first
cycle.

A Software Product Line for the Mobile and Context-Aware Applications 353

Table 2. Examples of context definitions for Mobile and Context-Aware Applications

Expression Name Context Information Feature Relational Operator Value
E1:Cellular Network Network.Type = cellular

E2:Ontology Present Network.Ontology Representation = true

Table 3. Examples of context rules for Mobile and Context-Aware Applications

R1: Cellular Network implies (Centralized)

R2: Ontology Present implies (Keywords OR Based on State)

In order to identify the features from the Specific Level, three surveys of
Mobile Visit Guide were considered [1][8][5]. Tables 4 and 5 show the number of
each feature present in a total of 15 Mobile Visit Guide analyzed.

Once specific features from the Mobile Visit Guide sub domain were identi-
fied, the features from the Base Level were configured and a complete feature
model for Mobile and Context-Aware Visit Guides was created. The features
selected from the Base Level were Context Management, Service Description
and Discovery, Message Exchange, as well as Security. Fig. 4 shows part of the
feature model for mobile and context-aware visit guides. The complete model
can be found at [15].

According to Fig. 4, the actors that interact with the application are User,
Item and Environment. Each Environment (Specific Level) has a Service Dis-
covery mechanism (Base Level) to inform available services at a given moment
(e.g. information about an Environment or Item). These services were described
using a Service Discovery mechanism (Base Level). Additionally, this environ-
ment must use a Message Exchange mechanism (Base Level), based on Tuple
space and Events.

To start the application, the User authenticates using a username and pass-
word provided by the Security feature (Base Level). Once authenticated, a user
may visualize a map of the entire guide; choose to view information according

Table 4. Mobile Visit Guide features present in a total of 15 applications

View Map View Location View Environment Capture User Profile Capture Location Permission Control
05/15 14/15 01/15 09/15 12/15 01/15

Table 5. Mobile Visit Guide features present in a total of 15 applications

Define Route Authentication View Environment Profile Define Profile List Items View Item Profile
07/15 01/15 01/15 06/15 15/15 01/15

354 F.G. Marinho et al.

Fig. 4. Part of the feature model for Mobile and Context-Aware Visit

to his profile (Context Manager from the Specific Level) which was previously
defined. Once an Environment is chosen, the user may select to view a list of
items and choose to access information about a given item.

The Context Management is responsible for acquiring and providing informa-
tion about the user indoor location. As a specific environment is entered, the
user may obtain information about its location, items and the presence of other
users. The behavior of the application is also affeted by device restrictions, such
as remaining battery or available libraries.

Domain Context Modeling of Mobile Guide Applications. The clipping
on the Base Level SPL carries its features, and Context Definition and Rules
that affect the selected features. Once the features from the Specific Level are
created, Context Definition and Rules for the Specific Level must be defined.
For instance, the Context Entity Mobile Device has four Context Information,
namely Memory, Libraries, Display and Battery. Thus, according to tables 6
and 7, ”if the presence of Video Libraries in the Mobile Device assumes False, it
implies that the feature based on Text and Image is used”. The complete set of
Context Definition and Rules can be found at [15].

3.4 SPL Cycle 3: GREat Tour Application Engineering

Application engineering uses the common assets available by the product line to
create products. In this cycle, an application called GREat Tour was specified
and implemented. These activities were distributed as 1) Application Require-
ments Engineering, 2) Application Design and 3) Application Context Modeling
and Realization [10].

Application Requirements Engineering. GREat Tour is a tour guide for
a research and development laboratory at the Federal University of Ceara. This

A Software Product Line for the Mobile and Context-Aware Applications 355

Table 6. Example of context definition for Mobile Visit Guide Applications

Expression Name Context Information Feature Relational Operator Value
E1:Libraries Available MobileDevice.Libraries = true

Table 7. Examples of context rule for Mobile and Context-Aware Applications

R1: NOT(Libraries Available) implies (Text AND Image)

application runs on the visitor’s mobile device and provides information about
the laboratory environment, researchers and environments that are visited. The
behavior of these functionalities can be adapted according to the visitor current
context, comprised by location, profile/preferences and device characteristics.

In order to configure the GREat Tour product, a clipping of the Mobile Visit
Guide feature model was conducted. It is important to remark that the depicted
model maintains variabilities that will be resolved only during the application
runtime, according to the visitor’s current context. The complete GREat Tour
model is available at [15].

Application Design. In application design, an architecture that deals with
the requirements of the product is derived from the reference architecture of
the SPL Basic Level (Fig. 3). The major components and layers of the GREat
Tour architecture are presented in Fig. 5. For example, the Message Exchange
in this configuration is both Synchronous (SOAP for communicating with the
Content Web Servers) and Asynchronous (communication with the Tuple Space).
However, the event message model was not configured, since it was not necessary
for this particular application.

Service Description, Discovery and Coordination are assured by the Tuple
Space. The Context Management is distributed in the architecture. Context

Fig. 5. GREat Tour Architecture Modules and Layers

356 F.G. Marinho et al.

Table 8. Examples of GREat Tour context definition

Expression Name Context Information Feature Relational Operator Value
E1:Same Environment Location Indoor = environment item

E2:Similar Profile User Profile ≥ 60%item profile

Table 9. Example of GREat Tour context rule

R3: Same Environment AND Similar Profile implies (List Items)

Acquisition services are deployed into the device and other context information
is inserted on the Tuple Space by external sensors (for instance, those that inform
people presence in a room).

Some variability points are still presented in this product, since they will
be enabled or disabled according to the current context of the application. An
example is the Context Acquisition, which may be aquired by sensors present in
the mobile device or accessed from the Tuple Space.

ApplicationContextModelingandRealization. Thebehavior of theGREat
Tour Mobile Guide is affedted by context information. For example, ”the feature
List Items is loaded automatically at runtime if the visitor has a profile consistent
with the profile of an item in the present environment”.Tables 8and9 showa subset
of theContextDefinitionandRules of theGREatTourMobileGuide.The complete
set is available at [15].

Fig. 6. GREat Tour executing in a mobile device emulator

A Software Product Line for the Mobile and Context-Aware Applications 357

Table 10. Main problems encountered in MobiLine SPL development

Classification Problems Identified Action Plan
– Generic SPL scope definition – Study phase to identify the main con-

cepts related to mobile and adaptive
software development

– Understanding the need for the
development of generic SPL and
specific SPL

– Requirements identification common to
all mobile applications developed by
members of the project

Domain – Specific SPL scope definition – Study and documentation of require-
ments related to Mobile Guides devel-
opment

– Domain modeling – Study the techniques of domain model-
ing

– Participation in events related to the
modeling and development of SPL

– Difficulty in understanding SPL
concepts

– Frequent changes and revisions
of the models

– Workshops for discussion and exchange
of experiences

– Training among the members of the
group

Theory – Traceability maintenance be-
tween the generated artifacts

– Allocation of experienced members in
modeling and design

– Use of the Odyssey Environment to help
the mapping between the phases of the
project development

– Part time allocations – Allocation of experienced members in
order to avoid the need for new re-
sources, such as M.Sc and Ph.D students

Project Management – Effort above than expected to
develop the generic SPL result-
ing from the requirements quan-
tity and complexity

– Constant monitoring of project
activities

– Odyssey Environment does not
support different Java versions

– Maintain a single version of Java on ma-
chines used for modeling

Tools – Difficulty to visualize the com-
position rules documented in
the models

– Elaboration of a document containing
all rules included in the model

– Impossibility to automatically
configure the specific feature
model from the generic feature
model

– Use a copy of the generic feature model
to allow the specific feature model devel-
opment

Fig. 6 illustrates a few screenshots of GREat Tour Mobile Guide. The first
user interface shows the realization of the Authentication feature. Once the user
is logged, the Context Acquisition initiates. The system presents to the user its
current location (I). When the user changes its environment position (II), the
system shows another map indicating the new location. In this new room (after
step II), rule R is satisfied and a List of Items is showed (step III). The Item is
a Video describing the 3D mobile prototyping lab.

This application was developed in Java Mobile platform and it uses artifacts
created during the firsts two cycles, such as the Tuple Space and the Context
Management middleware. However, components and services were created specif-

358 F.G. Marinho et al.

ically for this application and they can be rewritten to a more reusable solution.
The application tests were conducted using testing requirements for mobile de-
vices proposed in [3].

4 Lessons Learned

MobiLine is a research project that aims at investigating characteristics existing
in the development of mobile and context-aware software to build a software
product line for this domain. During the process of developing this product line
some difficulties had to be been overcome.

The problems identified are classified into four categories: Domain, Theory,
Project Management and Tools. The Domain category is related to the complex-
ity involved in the project, such as, mobility, context-awareness and adaptability,
among others. The Theory category groups the problems faced in understand-
ing and using the concepts of SPL. The Project Management category addresses
the problems associated with the monitoring effort, and teams commitment and
motivation. Besides, in the Tools category, difficulties encountered with the use
of the adopted tools are described. The categories, the main identified problems
and the actions taken are described in Table 10.

5 Conclusions and Future Work

This work presented a methodology for building mobile and context-aware SPL.
Also, examples of modeling within the context of the MobiLine project were
presented to illustrate the proposed approach.

The main contribution of this paper is a SPL for mobile and context-aware
applications, along with process to build it. Therefore, the reader may find details
and decisions that the authors faced, from the mobile and context-aware software
domain engineering, all the way to the application configuration. Additionally,
all artifacts that were generated are available either in the paper or in external
links found throughout the paper. The results presented were obtained in the
scope of the Mobiline project funded by Brazilian National Agency for Science
and Technology (CNPq).

However, the proposed methodology only deals with the representation of
concepts concerning context sensitivity in feature models, a model with a high
level of abstraction. On the other hand, the architecture definition that serves
as a basis for application instantiation within the same domain, representing the
framework where architectural domain elements can be adapted or extended, is
a key task in the construction process of a SPL. Accordingly, one of the main
problems is the construction of an architecture that supports the adaptation
dynamics and tracking between different levels of abstraction.

Hence, a future work is to study semantic mechanisms that exploit ontology
and formal methods to help software engineers in the creation, specification
and organization of architectural elements. The semantic augmentation of the
feature model and context model is also being developed as a way to improve
the integration of the different levels of abstraction.

A Software Product Line for the Mobile and Context-Aware Applications 359

References

1. Baus, J., Cheverst, K., Kray, C.: A survey of map-based mobile guides. In: Map-

based Mobile Services, ch. 13, pp. 193–209. Springer, Heidelberg (2005)

2. Bronsted, J., Hansen, K.M., Ingstrup, M.: Service composition issues in pervasive

computing. IEEE Pervasive Computing 9, 62–70 (2010)

3. Dantas, V.L.L., Marinho, F.G., da Costa, A.L., Andrade, R.M.C.: Testing require-

ments for mobile applications. In: 24th International Symposium on Computer and

Information Sciences, ISCIS 2009, pp. 555–560 (14-16, 2009)

4. Dey, A.K.: Understanding and using context. Personal Ubiquitous Comput 5(1),

4–7 (2001)

5. Eisenhauer, M., Oppermann, R., Schmidt-Belz, B.: Mobile information systems for

all. In: Proceedings of the Tenth International Conference on Human-Computer

Interaction, vol. 4, pp. 354–358 (2003)

6. Fernandes, P., Werner, C.: Ubifex: Modeling context-aware software product lines.

In: Software Product Lines, 12th International Conference, SPLC 2008, Limerick,

Ireland, Proceedings, Second Volume (Workshops), September 8-12, pp. 3–8. Lero

Int. Science Centre, University of Limerick, Ireland (2008)

7. Grimm, R., Davis, J., Lemar, E., Macbeth, A., Swanson, S., Anderson, T., Ber-

shad, B., Borriello, G., Gribble, S., Wetherall, D.: System support for pervasive

applications. ACM Transactions on Computer Systems 22(4), 421–486 (2004)

8. Grün, C., Werthner, H., Pröll, B., Retschitzegger, W., Schwinger, W.: Assisting

tourists on the move- an evaluation of mobile tourist guides. In: ICMB 2008: Pro-

ceedings of the 2008 7th International Conference on Mobile Business, pp. 171–180.

IEEE Computer Society, Washington (2008)

9. Hartmann, H., Trew, T.: Using feature diagrams with context variability to model

multiple product lines for software supply chains. In: SPLC 2008: Proceedings of

the 2008 12th International Software Product Line Conference, pp. 12–21. IEEE

Computer Society, Washington (2008)

10. van der Hoek, A.: Design-time product line architectures for any-time variability.

Science of Computer Programming 53(3), 285–304 (2004)

11. Kon, F., Román, M., Liu, P., Mao, J., Yamane, T., Magalhães, C., Campbell, R.H.:

Monitoring, security, and dynamic configuration with the dynamictao reflective

orb. In: Coulson, G., Sventek, J. (eds.) Middleware 2000. LNCS, vol. 1795, pp.

121–143. Springer, Heidelberg (2000)

12. Lee, J., Kang, K.C.: A feature-oriented approach to developing dynamically re-

configurable products in product line engineering. In: SPLC 2006: Proceedings of

the 10th International on Software Product Line Conference, pp. 131–140. IEEE

Computer Society, Washington (2006)

13. Van der Linden, F.J., Schmid, K., Rommes, E.: Software Product Lines in Action:

The Best Industrial Practice in Product Line Engineering. Springer, New York

(2007)

14. Maia, M.E.F., Rocha, L.S., Andrade, R.M.C.: Requirements and challenges for

building service-oriented pervasive middleware. In: ICPS 2009: Proceedings of the

2009 international conference on Pervasive services, pp. 93–102. ACM Press, New

York (2009)

15. Mobiline - a software product line for the development of mobile and context-aware

applications (March 2009), http://mobiline.great.ufc.br/index.php

http://mobiline.great.ufc.br/index.php

360 F.G. Marinho et al.

16. Rocha, L.S., Castro, C.E.P.L., Machado, J., Andrade, R.M.C.: Using dynamic re-

configuration and context notification for ubiquitous software development. In:

Proceedings of 21ht Brazilian Symposium on Software Engineering (SBES-XXI),

pp. 219–235. SBC Press (2007) (in portuguese)

17. Román, M., Hess, C., Cerqueira, R., Ranganathan, A., Campbell, R.H., Nahrstedt,

K.: A middleware infrastructure for active spaces. IEEE Pervasive Computing 1,

74–83 (2002)

18. Simons, C.: Cmp: A uml context modeling profile for mobile distributed systems.

In: HICSS 2007: Proceedings of the 40th Annual Hawaii International Conference

on System Sciences, p. 289b. IEEE Computer Society, Washington (2007)

19. Viana, W., Andrade, R.M.C.: Xmobile: A mb-uid environment for semi-automatic

generation of adaptive applications for mobile devices. Journal of Systems and

Software 81(3), 382–394 (2008)

20. Wagelaar, D.: Towards context-aware feature modelling using ontologies. In: MoD-

ELS 2005 Workshop on MDD for Software Product Lines: Fact or Fiction? Montego

Bay, Jamaica (October 2005) (position paper)

21. Weiser, M.: Some computer science issues in ubiquitous computing. Communica-

tions of the ACM 36(7), 75–84 (1993)

J. Bosch and J. Lee (Eds.): SPLC 2010, LNCS 6287, pp. 361–376, 2010.
© Springer-Verlag Berlin Heidelberg 2010

Using MDA for Integration of Heterogeneous
Components in Software Supply Chains

Herman Hartmann1, Mila Keren2, Aart Matsinger1,
Julia Rubin2, Tim Trew1, and Tali Yatzkar-Haham2

1 Virage Logic, Eindhoven, The Netherlands
{herman.hartmann,aart.matsinger,tim.trew}@viragelogic.com

2 IBM Research, Haifa, Israel
{Keren,mjulia,tali}@il.ibm.com

Abstract. Software product lines are increasingly built using components from
specialized suppliers. A company that is in the middle of a supply chain has to
integrate components from its suppliers and offer (partly configured) products
to its customers. To cover the whole product line, it may be necessary for inte-
grators to use components from different suppliers, partly offering the same fea-
ture set. This leads to a product line with alternative components, possibly using
different mechanisms for interfacing, binding and variability, which commonly
occurs in embedded software development.

In this paper, we describe a model-driven approach for automating the inte-
gration between various components that can generate a partially or fully con-
figured variant, including glue between mismatched components. We analyze
the consequences of using this approach in an industrial context, using a case
study derived from an existing supply chain and describe the process and roles
associated with this approach.

1 Introduction

Software product line engineering (SPLE) aims to create a portfolio of similar soft-
ware systems in an efficient manner by using a shared set of software artifacts. SPLE
is usually separated into two phases: domain engineering and application engineering,
and a variability model is used to capture the commonality and variability and to con-
figure a variant [1]. When implementing SPLE using model-driven architectures
(MDA), it is conventional to create a domain-specific language (DSL) during domain
engineering. During application engineering this DSL is used to create specific appli-
cations [2]. In component-based software development, a domain-specific component
technology is used to create reusable artifacts, and a particular application is created
by selecting components and binding variation points [3,4].

Due to the growing influence of software supply chains, an increasing portion of a
product line is developed using commercial components [5]. In a supply chain, each
of the participants uses components containing variability, combines them with in-
house developed components, and delivers components containing variability to the
next party in the supply chain [6,7].

362 H. Hartmann et al.

In an earlier paper we analyzed the consequences of integrating heterogeneous
components in a software supply chain for resource constrained devices [8]. When
software components from different suppliers have to be integrated, there may be
mismatches between their interfaces, which have to be bridged by glue code. For in-
stance, a set of interfaces might contain different numbers of methods (interface split-
ting), method parameters can be passed in different forms, e.g., as a struct vs. a list of
separate parameters, methods having the same name might have different functional-
ity implemented (functional splitting), etc.

A product line must be able to satisfy the requirements of its potential customers.
Often, no single supplier can cover the full range of variability needed to achieve this,
so it is frequently necessary to use components from several suppliers for a particular
functional area. This leads to a product line that contains alternative components, only
one of which can be used in a particular implementation [9], and a large number of
glue components. In current practice there are three different approaches for integra-
tion and configuration of components, each with their limitations, as described below.

1. The possible glue components are created during domain engineering and con-
figured during application engineering using a variability management tool.
However, the manual creation of, possibly, a large number of glue components
will require an unacceptably high development effort.

2. The required glue component is created during application engineering, at the
moment that the specification of that glue component is known. This introduces
an increase of throughput time which would be unacceptable in many situations.

3. A common standard interface and component technology is defined for a set of
non-matching components. Glue components are created for each component to
match these interfaces. Many components will therefore be bound through two
glue components. This approach has the drawback that the glue components
might become unnecessary complex if the standard interfaces have to cater for
the interactions between any combination of components, thereby leading to ad-
ditional development effort in comparison with the creation of custom glue.

To solve this problem we exploit the power of model-driven code generation to create
custom glue between the combinations of supplied components that are actually used.

For resource constrained devices, some component technologies use static binding,
rather than dynamic binding, and reachability analysis to exclude unnecessary code
[3] and to create optimal system performance. The challenge that arises from a soft-
ware supply chain is the ability to deliver a partly configured product to the next party
in the supply chain. Components that have to be bridged may contain optional sub-
components. The glue components should only bridge between the components that
are actually present so glue components should only be generated when the presence
of those optional components is known. This can only be determined when the final
configuration choices are known. In a supply chain, these final configuration choices
could be made by a downstream participant. Furthermore, each supplier and the re-
ceiving parties may all use different build environments, which complicates the crea-
tion of the complete software stack. Other challenges from a supply chain relate to the
protection of Intellectual Property and commercial interest, which means that, in
many cases, the customer should neither receive source code, nor be aware of varia-
tion points that are offered to other customers.

Using MDA for Integration of Heterogeneous Components in Software Supply Chains 363

We therefore address the following research questions:

1. Can MDA be used to bridge mismatches between components from alterna-
tive suppliers and can this method be used to support staged configuration?
The set of mismatches we address in this paper is given in section 2.

2. What is the development process that is associated with this approach and
what level of MDA expertise is required by the engineers?

Paper overview: In the paper, section 2 introduces a case study, Section 3 describes
our approach and how it is supported with MDA and variability management tools.
The management of the expertise expected of engineers is presented in section 4.
Section 5 contains a discussion and identifies areas for future research, with Section 6
making a comparison with related art, followed by our conclusions in Section 7.

2 ZigBee Case Study

We demonstrate the applicability our approach by a realistic case study. In order to
restrict the complexity of the first evaluation, the capabilities of the glue code in our
tools are restricted to adapting between syntactic differences and the differences be-
tween component technologies. This caters for cases in which the semantics of inter-
faces are standardized, independently of the tech-
nology that may be used to implement them. As a
case, we chose a heterogeneous ZigBee stack.
ZigBee is a specification for a suite of high level
communication protocols using small, low-power
digital radios for wireless personal area networks
[10]. The ZigBee stack is defined as a layered pro-
tocol (see Fig. 1). The standard is platform-
independent, so implementers make their own
choices for the exact form of the APIs between the
layers. We focus on the lower layers, i.e. Physical,
MAC, and Network. There is considerable varia-
tion between the network layers for different appli-
cation profiles, e.g. “Plant Monitoring”, “Home
Automation” and “Smart Metering”, so software
suppliers usually only support a few such profiles.
The MAC layer is independent of the application
profiles, but has to be configured for the particular
integrated circuit (IC). Therefore, in order to serve
a range of customers, an IC vendor has to integrate ZigBee implementations from al-
ternative suppliers, each of whom made their own software implementation technol-
ogy choices (in our case nesC [11] and tmCom, a precursor to that used in the MPEG
Multimedia Middleware standard [12]).

The supply chain consists of IC vendors, software vendors, and the manufacturers
that create the final product. In the supply chain, we found multiple parties for each
link (typically more than five), each offering different sub-sets and extensions of the
ZigBee standard. For each layer, a set of required, alternative and optional features is

P
lant M

onitoring

H
om

e A
utom

ation

S
m

art M
etering

Application Framework

Application Objects

Network Layer

Medium Acces Control (MAC) Layer

Physical (PHY) Layer

P
lant M

onitoring

H
om

e A
utom

ation

S
m

art M
etering

Application Framework

Application Objects

Network Layer

Medium Acces Control (MAC) Layer

Physical (PHY) Layer

Fig. 1. Layers in the ZigBee protocol
stack with profiles

364 H. Hartmann et al.

specified, together with the dependencies between them. Examples of optional fea-
tures are: power-saving, guaranteed time slot, and security mechanisms.

In this case study, we take the position of an IC vendor that is using software from
specialized suppliers. We investigated the source code of three ZigBee stacks. Table 1
gives a subset of the features of these stacks, whose suppliers we will identify as A, B,
and C. For a particular customer, the IC vendor selects the most suitable supplier and
creates a partly configured product. For instance, a product can be configured with the
components of Supplier C, where “Beaconing” and “Guaranteed Time Slot” are pre-
configured, leaving “Power Saving” and “Security” to be configured by the customer.

In Table 1, Man stands for manda-
tory, Opt stands for optional, and No
stands for not supported. We also
listed the implementation technol-
ogy. For the MAC layer, an
Open-ZB implementation was used
[13], based on nesC technology [11].
The differences between the technol-
ogy choices of the Open-ZB imple-
mentation and those of the other
suppliers were studied. In order to
demonstrate the requirements for

glue code generation, a dummy ZigBee Network layer was created, whose interfaces
exhibited the union of the differences that had been found, thereby covering all the
differences that we encountered in practice. The main differences between the tech-
nologies used in the Network component and the Open-ZB MAC are summarized in
the Table 2.

Table 2. Differences between the technologies used in the ZigBee case study

 Network layer Open-ZB MAC layer
Component technology tmCom nesC
Binding Dynamic Static
Interfaces Uni-directional Bi-directional
Naming convention tmI<port>NXP<interface>[Ntf]

<method>
<port>_<interface>
 .<method>

Calling convention Referencing structure Individual parameters
Specific keywords STDCALL command, event

Both components have two ports (for data and control), which are connected corre-

spondingly. To bridge the technology difference, an additional glue component must
be added, as shown in Fig.2. The role of this glue component is to exhibit tmCom
style interfaces toward the Network component and nesC style interfaces toward the
MAC component. The glue component translates each down-call (command) that it
receives from the Network component into a corresponding call to the MAC compo-
nent. In this translation, it deals with naming and parameter-passing conventions. For
the up-calls (events) originating from the MAC component, nesC uses static binding,
based on a configuration description, whereas the tmCom Network layer employs

Table 1. Feature set of selected suppliers

Feature\ Suppliers A B C
Network layer No Opt Opt
Beaconing Opt No Opt
Guaranteed Time Slot Opt No Opt
Security No Opt Opt
Mesh-configuration No Man No
Power Saving No No Opt
Impl. Technology nesC C C

Using MDA for Integration of Heterogeneous Components in Software Supply Chains 365

run-time binding, with a subscription pattern at the granularity of its interfaces [14].
Therefore the glue component implements the notification subscription management,
which uses a table to map between the nesC functions called by the MAC and the
tmCom functions in the Network layer. The glue code must provide the additional
subscription management functions.

During development, staged con-
figuration may be required. Once the
supplier has been selected, the re-
maining choices for optional features
shown in the table can either be made
in-house or by the customer. For ex-
ample, when Supplier C is selected,
the optional feature “Power Saving”
can be selected in-house and the
choice for “Security” can be handed
over to the customer. In this case, the
customer receives code in which “Se-
curity” is still a variation point but
“Power Saving” is already configured.

3 MDA for the Integration of Heterogeneous Components

This section begins with an overview of our approach and then elaborates on each
step. The overview of our approach is described with respect to the transformations
illustrated in Fig. 3.

Fig. 3. Model transformations for integration and configuration of components

The presented model-driven approach uses the new variability pattern introduced
in [8]. In this approach, an initial reference architectural model is defined containing
conceptual components and their composition. These conceptual components repre-
sent architectural variation points, each of which describes the alternative suppliers of

Glue

Network (tmCOM)

MAC (OpenZigbee - nesC)

Data

Data Control

Notification
Subscription
Management

nesC module

nesC
configurations

tmCOM
interfaces

nesC
interfaces

Control

Fig. 2. Integration of Network and MAC layers

366 H. Hartmann et al.

that component. Later, this model is transformed into one in which the conceptual
components are substituted by models of components from the selected suppliers.

We term the initial model a supplier-independent component model (SICM). This
model, which is represented in terms of a new UML profile, consists of supplier-
independent (SI) components and their dependencies. When the application engineer
selects suppliers for the SI components, model-to-model transformations create a new
model. In this new model, the SI components have been substituted by supplier-
specific (SS) components that contain the interface descriptions for the corresponding
development artifacts, which are tagged with their component technology.

Now, glue components are inserted by a second model-to-model transformation
wherever a pair of incompatible interfaces is found. Then, a combination of model-to-
code transformations and reusable code snippets is used to create the required glue
code and other auxiliary files, such as build scripts, which can be transferred to the
next participant in the supply chain.

To evaluate this approach, tool support for glue modeling was implemented as an
extension to the IBM Rational toolset [15], including a new UML profile for model-
ing the supplier variability and glue specification, and model-to-code transformations
for generating code artifacts. For feature modeling, a commercially available variabil-
ity management tool was used [16], for which no extensions where needed. The proc-
ess of using this approach, is illustrated in Fig. 4, and is further elaborated in the
following subsections.

Fig. 4. Process description

3.1 Creation of a Feature Model and a Reference Architecture

As the first step in the process, the domain engineer defines the feature model that
represents the product line variability, using a variability management tool. A distinc-
tion can be made between variation points that relate to product features, denoted as
functional variation points (FVP), and variation points that describe alternative sup-
pliers, denoted as supplier variation points (SVP), according to [9].

Then the SICM is created using the new UML profile. The SICM contains the SI
components with their ports and variation points, as well as the dependencies between
these components (left hand side of Fig. 3).

As potential component suppliers are identified during domain engineering, models
of the SS components are defined. These components contain the interface descrip-
tions for the supplied development artifacts. Subsequently, an implement connection
with variability conditions is used to connect the SS components to their correspond-
ing SI component, as shown in Fig. 5 for the ZigBee case study.

To complete the product line domain definition, the domain engineer activates va-
lidation rules to check that the SICM is legal and complete (e.g., each SI component
must have a corresponding SS component to implement it).

Using MDA for Integration of Heterogeneous Components in Software Supply Chains 367

The conceptual model of the entities used in this approach is shown in Fig. 6. It
shows how the SS Components implements the SI components and their relation to
the glue components. It also shows the relations between the components and the
variation points (FVP, SVP). The different variability conditions for a particular SI
component represent the SVP and are linked to the feature model in the variability
management tool. The feature model is also linked to the FVPs of the SI components.
Additionally, since different suppliers can implement the same FVP differently, and
with different binding times, the SS components contain the configuration mappings
of their FVPs to the FVPs of the SI components that they implement.

Fig. 5. SVP’s of the case study Fig. 6. Conceptual model of entities used

In the Zigbee case study the domain engineer modeled a subset of the ZigBee pro-
tocol architecture with two SI components, NWK_vp and MAC_vp, connected by two
ports. Two alternative SS components are modeled for each SI component, Nwk and
tmNwk for the NWK_vp SI component, and tmMac and Mac for the MAC_vp SI com-
ponent (Fig. 5).

3.2 Configuration for Supplier Selection

During application engineering, an early step is the selection of the suppliers for each
component, based on the different features that each supplier provides, together with
non-functional criteria, such as cost. This choice is made using a variability manage-
ment tool, which assigns values to the SVPs. A model-to-model transformation cre-
ates a new model in which any SI components with assigned SVPs are replaced by the
selected SS component, corresponding to the middle model in Fig. 3. This transforma-
tion naturally supports staged configuration without any other measures being re-
quired to keep the partially configured feature and component models synchronized.

3.3 Identification of the Need for Glue

When resolving supplier variation points, the conceptual components of the initial model
are replaced by the selected specific components, possibly from different suppliers. Here
we consider the case in which alternative SS components associated with the same SI

368 H. Hartmann et al.

component are implemented differently. Yet they should have similar functionality and
equivalent ports. Glue components are required wherever connected ports have mis-
matched interfaces or where they have been implemented in different technologies.
These conditions are detected automatically by validation of the UML model, based on
the following criteria:

1. For each pair of SS components with connected ports, a required interface of an SS
component does not match a provided interface, or any interface from which it in-
herits. Here, interface matching relates to the interfaces names and their method
signatures (i.e. method names and the number, order and type of their parameters).

2. The components use different component technologies.

The model component elements are checked for the conditions above. Wherever the
validation fails, a glue component is inserted between mismatched components by a
model-to-model transformation, resulting in the right hand model in Fig. 3. At this
point, the inserted component provides a specification for the glue, with its implemen-
tation still to be generated, as described in Section 3.4. Some component technolo-
gies, such as Koala [3] and nesC [11], require a top-level component to specify the
composition of the components that use that technology, as illustrated in Fig. 2.
Where required, the top-level component is also generated at this point.

When all SVPs have been resolved and all glue components have been added, we
obtain the final, supplier-specific component model (SSCM).

3.4 Configure and Generate Glue Components

This section starts with a description of the meta-model for glue components. We then
proceed with a description of tool support for the application engineer, who can inter-
actively generate the glue code without being exposed to mechanisms of code genera-
tion, i.e. the model to text transformations.

Modeling of Glue Components
A glue component should resolve mismatches between interfaces, methods, method
parameters and other mismatches between the glued components. Furthermore, it may
also supply additional functionality that some component technologies may require.
For example, in the case study, the nesC MAC expects that its notification interfaces
will be bound statically at build time, whereas the tmCom NWK expects that the
server provides a dynamic subscription management facility, which must now be pro-
vided by the glue. Other inconsistencies of supplier's implementation that must be re-
solved within the glue component are initialization, debugging, logging, and power
management.

In order to create the glue components most efficiently during application engi-
neering, their implementation is fully-generated from a model. This is in contrast to
generating the skeleton of the code and completing it manually. The model combines
information from the SSCM with parameterized code snippets created during domain
engineering, and is configured interactively during application engineering using a set
of wizards, which will be elaborated in the remainder of this section.

Using MDA for Integration of Heterogeneous Components in Software Supply Chains 369

A meta-model for glue component models is defined in Fig. 7. Each glue compo-
nent is associated with two SS components to be glued (the “TargetEnd” association),
one of them may also be specified as "WrappedEnd' for cases where a top-level wrap-
per component is needed. The glue component contains ports according to the con-
nected ports of the replaced SI components. For each such port it holds a number of
interface maps. The glue component also has indicators for whether initialization and
subscription management are to be included.

The relationships between the provided and required interfaces of the glue compo-
nents are addressed at three levels of component integration: interface maps, method
maps and parameter maps. Each kind of map has its specific attributes and snippets.
This arrangement is able to support component integration even when different sup-
pliers group methods into interfaces in different ways.

Fig. 7. Meta-model for a Glue Component

These relationships between interfaces are represented in the meta-model as fol-
lows. It contains an InterfaceMap for each interface provided by the glue. Each inter-
face map contains a set of method maps that have one caller entity and a number of
callee entities. This 1:n relationship caters for cases where the methods of the client
and server are not matched, so that a single client call must result in a sequence of
calls to the server. Each callee entity contains a set of parameter maps, which are used
to control the transformations between those parameters that are passed in different
forms by the caller and callee methods. Parameterized code snippet templates, stored
in a library, are used for generating snippet instances inside of all these maps; these
snippets are essential part of the generating glue code.

The code that is generated from the glue model consists of a set of methods for
each provided interface of the glue component. The core of the caller method's body
is a sequence of calls to the methods in the CalleeMethodsInfo list, together with the
necessary parameter transformations. This sequence is contained within prerun and
postrun code snippets, which can support other functionalities, such as memory man-
agement for temporary parameter structures or logging. When the application engi-
neer has populated all the maps, a model-to-code transformation is used to generate
the software artifacts, such as glue code, wrapper component, and build scripts.

370 H. Hartmann et al.

Tool Support for Glue Code Generation:
To make the glue specification process faster with an effective use of the snippet tem-
plates tool support was developed on top of IBM RSA [15]. The implemented tool in-
cludes a set of wizards and dialogs to support the application engineer during glue
configuration. These wizards hide the mechanics of code generation from the applica-
tion engineer. For illustration, screen shots of the Interface Map Wizard, applied to
the ZigBee case study, are shown in Fig. 8.

The Interface Map Wizard assists the user in specifying the mapping between pro-
vided and required interfaces that need gluing. Central part of the wizard is the Inter-
face Map Editor, which allows to select one or more callee methods for each caller
method, and to specify the transformations between the parameters of the methods.
These transformations are captured as code snippets. The code for a snippet can be
entered by the user either explicitly or by selecting a predefined snippet from a snip-
pet library. The snippet library allows snippets to be reused across different interface
maps and glue components. The snippet text can also be parameterized by predefined
parameters such as interface name, callee or caller method name, etc. Parameter val-
ues can automatically be substituted by the model attributes taken from SSCM.

Fig. 8. Screenshots of the wizard for the Interface Map Configuration process

In addition, to reflect technology naming conventions, the tool allows usage of
naming hints, which may significantly automate the method and parameter name
matching process. We characterize the name's structure as a combination of the part
that identifies the specific method or parameter, and additional parts (prefix, suffix
and delimiters), e.g. the identifier of the interface, that together comprise the full iden-
tifier. In this way the additional parts may be stored for each supplier or technology,
and used during the glue configuration process.

For the ZigBee case study we first created examples of glue methods manually,
from which a library of parameterized code snippets was extracted. They are used lat-
er to configure numerous glue component maps in conformance with the meta-model
described in Section 3.4. Code generation was implemented using the extensible JET-
based Rational Software Architect transformation framework. A fragment of the code
generated by our prototype is shown in Fig. 9.

Using MDA for Integration of Heterogeneous Components in Software Supply Chains 371

Static void STDCALL _tmIMCPS_Data_Request (ptmThif thif, NXPDataRequest_t* pdata)
{

//BEGIN PRERUN SNIPPET
DBG_PRINT((dbgUnit, BG_INTERFACE_ENTER, MCPS_DATA.request));
//END PRERUN SNIPPET

uint8_t SrcAddrMode = pData.SrcAddrMode;
uint8_t SrcPANId = pData.SrcPANId;
uint32_t SrcAddr = pData.SrcAddr;
uint8_t DstAddMode = pData.DstAddMode;
uint16_t DstPANId = pData.DstPANId;
uint32_t DstAddr = pData.DstAddr;
uint8_t msduLength = pData. msduLength;
uint8_t msduHandle = pData. msduHandle;
uint16_t TXOptions = pData.TXOptions;

call MCPS_Data_Request (SrcAddrMode, SrcPANId, SrcAddr, DstAddMode, DstPANId,
DstAddr, msduLength, msduHandle, TXOptions)

//BEGIN POSTRUN SNIPPET
DBG_PRINT((dbgUnit, BG_INTERFACE_LEAVE, MCPS_DATA.request));
//END POSTRUN SNIPPET

}

Caller signature

Callee signature

Parameter mappings

Static void STDCALL _tmIMCPS_Data_Request (ptmThif thif, NXPDataRequest_t* pdata)
{

//BEGIN PRERUN SNIPPET
DBG_PRINT((dbgUnit, BG_INTERFACE_ENTER, MCPS_DATA.request));
//END PRERUN SNIPPET

uint8_t SrcAddrMode = pData.SrcAddrMode;
uint8_t SrcPANId = pData.SrcPANId;
uint32_t SrcAddr = pData.SrcAddr;
uint8_t DstAddMode = pData.DstAddMode;
uint16_t DstPANId = pData.DstPANId;
uint32_t DstAddr = pData.DstAddr;
uint8_t msduLength = pData. msduLength;
uint8_t msduHandle = pData. msduHandle;
uint16_t TXOptions = pData.TXOptions;

call MCPS_Data_Request (SrcAddrMode, SrcPANId, SrcAddr, DstAddMode, DstPANId,
DstAddr, msduLength, msduHandle, TXOptions)

//BEGIN POSTRUN SNIPPET
DBG_PRINT((dbgUnit, BG_INTERFACE_LEAVE, MCPS_DATA.request));
//END POSTRUN SNIPPET

}

Caller signature

Callee signature

Parameter mappings

Fig. 9. Example of the generated glue code for the ZigBee case

3.5 Building the Components and Delivery to the Customer

Prior to the final build of the product, all the FVPs must have been configured, but we
require flexibility in the configuration time for any FVP. The integrator makes an ini-
tial configuration, e.g. to protect intellectual property of other customers and suppliers
and each customer receives a specialized configuration space containing only the re-
maining unconfigured variation points.

At the point that the code is validated and delivered, the mappings from the SI
components’ unconfigured FVPs to the corresponding variation points in the devel-
opment artifacts are added to the generated build script. Subsequently, this mapping is
used to translate the customer’s configuration description. To address these two is-
sues, we adopt a two-stage approach. For each programming language:

1. The components are passed through the early stages of the build process for their
respective component technologies, to the point where standard language source
and header files are generated. For example, Koala [3] identifies which source files
will be required and generates macros to rename functions to permit static binding.

2. Having transformed all components to a standard form of source file for their lan-
guage, build scripts are generated. These files include the FVP settings, such as the
definition of pre-processor symbols used in the realization of variation points. Ad-
ditional build scripts are generated for each glue component and a further, top-level
build script identifies all the required components and validation is performed.

Where the customer only receives binary code, or where it is not possible to separate
the two stages above, the final build is performed remotely on the supplier’s site (e.g.,
by exposing the complete configuration and build process as a web service).

4 Development Roles

Given the small proportion of software developers who have experience with MDA
technology, to be deployable in the short term, it is essential that only a few develop-
ers need to be familiar with the more esoteric aspects of MDA, such as defining UML

372 H. Hartmann et al.

profiles and model transformations [2]. This section describes the development roles
involved in the approach and the different levels of knowledge that each role requires
in performing the activities, as illustrated in Fig. 4 and described in section 3.

The task Create Feature Model is performed by the requirements manager and re-
quires a working knowledge of feature modeling. The task Create Reference Architec-
ture is performed by the domain architect, who defines the product line architecture,
represented by the SICM, and who also identifies the potential suppliers and creates
the SS component models. This role requires a working knowledge of MDA.

The tasks Configure for Supplier Selection, Identify need for Glue and Configure and
Generate Glue are performed by the COTS engineer. The COTS engineer is responsi-
ble for the integration of components from different suppliers and creating glue com-
ponents. The COTS engineer should be familiar with the component technology and
development environments used by the suppliers but he does not need specific knowl-
edge of MDA since his tasks are assisted by the set of wizards that hide underlying
MDA complexities. The tasks Build Components and Deliver to Customer are per-
formed by the customer support engineer. The customer support engineer liaises with
customers and determines what configuration is required prior to delivery. He will use
the variability management tool to define a specific product configuration and uses
the MDA tool to create the SSCM and to perform the final export. These tasks do not
require knowledge of MDA principles. The customer, being the next link in the sup-
ply chain, requires no specific technical skills. He uses the variability management
tool to make the final configuration of the received product artifacts, but is not ex-
posed to any MDA technology.

As part of domain engineering team we recognize additional tasks, not described in
Fig 4, to support the domain architect. The COTS engineer provides the requirements
to the transformation developer, e.g. when a new component technology is used, who
defines the transformations to generate the glue code and related artifacts. Here, the
transformation developer requires very specific skills related to the transformation
tooling. The COTS engineer has tasks during domain engineering as well as applica-
tion engineering.

Finally, we identified the Language Designer [2] who is responsible for the defini-
tion of the meta-model and the model-to-model transformations. This work requires
an in-depth knowledge of MDA. Since the meta-model and transformation can be re-
used for any component composition, these activities would typically be done by the
MDA tool vendor.

5 Discussion and Further Research

The approach described in this paper allows components from different suppliers to
be integrated, despite syntactic differences in interfaces and semantic differences re-
lated to component technologies that are based on a common programming language
and variability mechanisms. It also supports staged configuration, where some varia-
tion points are resolved by the next participant in the supply chain.

The approach addresses the application engineering phase of SPLE, abstracting from
the variability mechanisms used by each supplier and supporting the creation of glue
components where they are required. It aims to make that glue generation as efficient as

Using MDA for Integration of Heterogeneous Components in Software Supply Chains 373

possible, without making speculative investments during domain engineering. Once the
glue snippet templates have been created for a few exemplars they are reused for nu-
merous glue components.

The approach recognizes the limited experience of MDA available in the industry
and restricts the number of development roles that need to be familiar with it. This is
achieved by using a balance of reusable model-to-code transformations and param-
eterized code snippets, with a development environment that provides guidance to the
applications engineer. Furthermore, our approach supports the export of standard pro-
gramming languages and makefile technology, thereby avoiding exposure of the cus-
tomer to unfamiliar technology.

The approach retains the sophisticated feature modeling techniques and supporting
variability management tools developed for SPLE. For instance, these support staged
configuration through the ability to present the engineer with a specialized configura-
tion space, in which choices made at earlier stages are no longer accessible, although
the constraints resulting from these choices are still in effect. However, the links to
the development artifacts and, in particular, the mapping to the different variability
mechanisms used by different suppliers, is now passed to the component models. The
variability management tool is no longer required to determine where glue compo-
nents will be required; this is now determined by a single model validation rule, pro-
viding a scalable solution. Hence, the variability model is now not directly connected
to development artifacts [1], or model transformations [17], but the choice of the SVP
now, indirectly, may lead to the generation of a glue component.

One of the challenges for further research is in the ability to deliver to customers
partially-configured development artifacts while preserving the full capabilities of
component technologies, such as nesC [11] and Koala [3], that minimize the memory
requirements of the code through their reachability analyses of their components. The
current approach converts all components into standard source files and generates a
uniform style of build script, which propagates the remaining FVPs, thereby avoiding
the customer from being confronted with multiple build environments. Currently, the
creation of standard source files uses the native build process for each component
technology. However, the build process for some component models, such as nesC
[11], only creates conventional C files once the C pre-processor has been run, by
which time all variation points with design-time binding will have been instantiated.
However, by developing new build environments that are aware of variation points,
both staged configuration and reachability analysis can be supported for these models.

A principal area for further research is the bridging of greater semantic gaps be-
tween components. This would allow the approach to be applicable to a much larger
range of glue code generation. The current approach supports moderate mismatches
because of the ability to map one caller function to a sequence of callee functions.
This is sufficient for the ZigBee case, whose standard defines the semantics of mes-
sages within the communication stack, but there are many standards for embedded
products that only consider the interaction between the product and its environment,
with no consideration for the APIs of the software within the product. Egyed and Bal-
zer [18] have proposed a reference architecture for stateful glue components, which
may form the basis of more capable glue components for COTS integration. Here fur-
ther research is required to extend the automated support to be able to guide creation
of this style of wrapper. A related issue is that the current approach only inserts glue

374 H. Hartmann et al.

components between pairs of components. However, there are cases, such as the gen-
eration of code to map from the operating system abstraction layers (OSAL) of each
supplier to the actual OS, that cannot be done in a pairwise manner, because of the
need for common book-keeping for shared OS resources. Therefore, a more general
model of glue code must be developed for these cases.

6 Comparison with Related Art

From the perspective of staged configuration in software supply chains [6], we ad-
dress organizations in the middle of the chain, which must both integrate components
from different sources and pass partially-configured artifacts on to downstream cus-
tomers. The problem of the use of feature models for coordinating the configuration
of artifacts using different variability mechanisms is addressed by Reiser et al. [19].
However, they do not consider the creation of glue components. We have previously
discussed merging feature models from alternative suppliers for a particular feature
area [14], but that paper did not consider how glue components would be addressed.

Gomaa [20] addressed the use of UML to represent feature models. While doing so
would have resulted in only a single tool being used, UML must be heavily profiled
for this purpose.

Voelter and Groher describe the integration of a variability management tool with a
model-based software development environment [17]. However, they address the
links to transformations for in-house developed components, rather than the needs of
a software supply chain.

The definition of the SICM for the ZigBee case study was straightforward, given
the reference model in the standard. Where there is no pre-existing reference mode,
the architectural reconciliation approach, proposed by Avgeriou et al. [21], to defin-
ing a COTS-based architecture can be used. However, while their approach aims to
avoid architectures that require excessive amounts of glue code, they do not address
how the essential glue code would be created efficiently.

Zhao et al. [22] address the combinatorial explosion of potential glue components
when bridging between different component technologies. They use a generic gram-
mar to specify the implementation of glue, but they avoid having to handle hybrid
build processes by using SOAP as a common communication format between all
technology types. This is approach is unacceptable for resource-constrained devices,
in which code size and performance remain critical. Smeda et al. [23] address the cre-
ation of the specification of glue components from the composition of parameterized
templates in the context of an architectural description language and address the crea-
tion of a modeling tool for this language. However, they do not address how auto-
mated support could be given to developers to assist in template composition.

Stahl et al. [2] and Krahn et al [24] describe the different roles needed in MDA and
the skills required. Where they provide a classification for the roles during domain
engineering, we additionally provide the different roles and skills, associated with our
approach, during application engineering and for the customer’s organization.

Using MDA for Integration of Heterogeneous Components in Software Supply Chains 375

7 Conclusions

In this paper, we presented a model-driven approach for automating the integration of
heterogeneous components from different suppliers, covering syntactic mismatches
and semantic mismatches related to different component technologies. We exercised
our approach on a case study that is derived from an existing supply chain, for which
we used a commercially available variability management tool [16], and a prototype
was implemented as an extension to IBM Rational MDA tool [15]. We described the
process and roles that are associated with our approach.

In this paper we showed that the approach has the following benefits compared to
prior art and current practice:
• Glue components are generated efficiently only when they are required, thereby

avoiding unnecessary development effort during domain engineering.
• Staged configuration is supported; offering the next party in the chain to do the

final configuration, while providing a route to preserving the capabilities of com-
ponent technologies in this domain to minimize code size.

• The additional skills required to deploy MDA are localized in the organization by
providing tool support for configuration and glue code generation, which ensures
that only a limited group of developers are exposed to unfamiliar technology.

Finally, we identified how our approach can be extended to support specialized com-
ponent technologies and to bridge greater semantic differences.

References

1. Pohl, K., Bockle, G., van der Linden, F.: Software Product Line Engineering. Springer,
Heidelberg (2005)

2. Stahl, T., Voelter, M.: Model-Driven Software Development. Wiley, Chichester (2005)
3. van Ommering, R.: Building Product Populations with Software Components. PhD.

Rijksuniversiteit Groningen (2004)
4. Atkinson, C., et al.: Component Based Product Line Engineering with UML. Addison-

Wesley, Reading (2002)
5. Wallnau, K., Hissam, S., Seacord, R.: Building Systems from Commercial Components.

Addison-Wesley, Reading (2002)
6. Czarnecki, K., Helsen, S., Eisenecker, U.: Staged Configuration through Specialization and

Multi-Level Configuration of Feature Models. Software Process Improvement and Prac-
tice 10, 143–169 (2005)

7. Hartmann, H., Trew, T.: Using Feature Diagrams with Context Variability to Model Mul-
tiple Product Lines for Software Supply Chains. In: 12th International Software Product
Line Conference (2008)

8. Hartmann, H., Keren, M., Matsinger, A., Rubin, J., Trew, T., Yatzkar-Haham, T.: Integrat-
ing Heterogenous Components in Software Supply Chains. To be published in 1st ICSE
workshop on Product Line Approaches in Software Engineering (2010)

9. Hartmann, H., Trew, T., Matsinger, A.: Supplier Independent Feature Modeling. In: 13th
International Software Product Line Conference (2009)

10. ZigBee Alliance, http://www.zigbee.org/

376 H. Hartmann et al.

11. Gay, D., Levis, P., van Behren, R., Welsh, M., Brewer, E., Culler, D.: The nesC Language:
A Holistic Approach to Networked Embedded Systems. In: Conference on Programming
Language Design and Implementation ACM 2003 (2003)

12. ISO/IEC 23004-3:2007, Information Technology – Multimedia Middleware – Part 3:
Component Model. International Organization for Standardization (2007)

13. Cunha, A., Koubaa, A., Severino, R., Alves, M.: An Open-Source Implementation of the
IEEE 802.15.4/ZigBee Protocol Stack on TinyOS. Polytechnic Institute of Porto (2007)

14. ISO/IEC 23004-1:2007, Information Technology – Multimedia Middleware – Part 1: Ar-
chitecture. International Organization for Standardization (2007)

15. IBM Rational Software Architect for WebSphere software, http://www-
01.ibm.com/software/awdtools/swarchitect/websphere/

16. Pure::Variants, Variability Management Tool, http://www.pure-systems.com
17. Voelter, M., Groher, I.: Handling Variability in Model Transformations and Generators.

In: 7th OOPSLA Workshop on Domain-Specific Modeling (2007)
18. Egyed, A., Balzer, R.: Integrating COTS Software into Systems through Instrumentation

and Reasoning. Automated Software Engineering 13, 41–64 (2006)
19. Reiser, M., Tavakoli Kolagari, R., Weber, M.: Unified Feature Modeling as a Basis for

Managing Complex System Families. In: 1st International Workshop on Variability Mod-
eling of Software-intensive Systems (2007)

20. Gomaa, H.: Designing Software Product Lines with UML. Addison-Wesley, Reading
(2005)

21. Avergiou, P., Guelfi, N.: Resolving Architectural Mismatches of COTS through Architec-
tural Reconciliation. In: Franch, X., Port, D. (eds.) ICCBSS 2005. LNCS, vol. 3412, pp.
248–257. Springer, Heidelberg (2005)

22. Zhao, W., Bryant, B., Burt, C., Raje, R., Olson, A., Auguston, M.: Automated
Glue/Wrapper Code Generation in Integration of Distributed and Heterogeneous Software
Components. In: 8th IEEE International Enterprise Distributed Object Computing Confer-
ence (2004)

23. Smeda, A., Oussalah, M., ElHouni, A., Fgee, E.-B.: COSABuilder: an Extensible Tool for
Architectural Description. In: 3rd International Conference on Information and Communi-
cation Technologies (2008)

24. Krahn, H., Rumpe, B., Völkel, S.: Roles in Software Development using Domain Specific
Modeling. In: 6th OOPSLA Workshop on Domain-Specific Modeling (2006)

Mapping Features to Reusable Components:
A Problem Frames-Based Approach�

Tung M. Dao and Kyo C. Kang

The Department of Computer Science and Engineering,

Pohang University of Science and Technology (POSTECH), Pohang, Korea

{tungdm,kck}@postech.ac.kr

Abstract. In software product line engineering (SPLE), feature model-

ing has been extensively used to represent commonality and variability

between the products of a domain in terms of features, based on which

reusable components are developed. However, the link between a fea-

ture model and product requirements, that fundamentally decide how

the features are developed into reusable components, has not been ade-

quately addressed in SPLE methods. This paper introduces an approach

to combining feature modeling and problem frames in an attempt to

address this problem. First, features are mapped to problem frames us-

ing heuristics derived from feature modeling and feature mapping units.

Requirements are then identified and analyzed to ensure that they are

fully satisfied. Finally, a solution modeling method maps the problem

frames to architectural components. A Home Integration System (HIS)

case study is used to demonstrate the feasibility of the approach.

Keywords: feature model, problem frames, reusable components, soft-

ware product line.

1 Introduction

Software product line engineering (SPLE) is an emerging paradigm that helps
organizations develop their software products from core assets (e.g., reusable
components) [1]. Instead of developing a single system from scratch, SPLE allows
organizations to develop a family of software systems that share common and
variable features. Consequently, feature models play an essential role in SPLE.
Since their initial introduction in FODA [2] nearly two decades ago, many prod-
uct line methods have been suggested, including Generative Programming (GP),
FOPLE, FORM, and FeatuRSEB, in which feature models are systematically
and extensively applied [3]. In the FORM method [4], for example, during the
domain engineering step, a feature model is generated as an output of domain
analysis. The feature model is then used to derive a reference architecture and
develop reusable components.

� This research was supported by the National IT Industry Promotion Agency (NIPA)

under the program of Software Engineering Technologies Development.

J. Bosch and J. Lee (Eds.): SPLC 2010, LNCS 6287, pp. 377–392, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

378 T.M. Dao and K.C. Kang

Ultimately, the derivation process is a transformation from common and vary-
ing requirements in the problem space to reusable components in the solution
space of a product line. Thus, when a feature is developed into a reusable com-
ponent, it is critical to systematically identify, analyze, and understand all of the
requirements as well as the potential concerns or issues related to that feature.
This implies that the link between the two concepts of features and require-
ments in software product line engineering needs to be addressed in a way that
effectively supports the development of reusable components. The demand for
establishing an explicit link between features and requirements, however, has
not been adequately taken into account in software product line methods. This
results in a serious problem because components are developed that may not
fully meet their requirements.

From one point of view, in order to implement a feature as a highly reusable
component, the feature should be at a relatively high level of abstraction. This is
reflected in the definition of feature. For example, in FODA [2], Kang defines a
feature as: “a prominent or distinctive user-visible aspect, quality or characteris-
tic of a software system or systems”. On the other hand, to develop a feature into
a component that exhibits the expected behavior, requirements related to the
feature must be precisely defined and analyzed. Bosch in [5] defines feature as,
“a logical unit of behavior specified by a set of functional and non-functional re-
quirements”. Therefore, it is important that we establish explicitly links between
features and requirements.

Usually, requirements and related concerns of a feature are not fully identified
and understood when the feature is defined in feature modeling. Instead, require-
ments and potential concerns of a feature are only completely explored when it is
placed into the context of a concrete software development problem. Therefore, it
is essential to establish mappings between a feature model and a problem-oriented
software development model, e.g., problem frames, a method for requirements en-
gineering [6]. There have been some attempts made to map features to other mod-
els (e.g., UML models). In [7], Laguna et al. define feature patterns that can be
directly mapped to UML models including class models, use casemodels, and pack-
agemodels. UML models, however, are solution-oriented.Consequently,mappings
between features and UML models do not solve the problem. In this paper, we pro-
pose using problem frames with feature models to effectively transform features
into reusable components that satisfy product line requirements.

There are reasons for choosing problem frames along with the feature model.
First, problem frames can relate a feature to its requirements (problems), do-
mains, and specifications, ensuring that the feature is clearly defined through
the requirements. Instead of focusing on the solution, problem frames focus on
the problem itself, which needs to be clearly understood before constructing any
solution. Moreover, current research [8] [9] [10] shows that a feature model tends
to abstract three important concepts- the requirements, domain properties, and
specifications. Conversely, in a problem frame, requirements, domain proper-
ties, and specifications are the key separate elements. By analyzing a problem
based on the distinct concepts of requirement, domain, and specification, the

Mapping Features to Reusable Components 379

requirements for the problem are unambiguously derived. Furthermore, problem
frames support transformation of a feature into its components. Problem frames
are generally recurring problem patterns that have known or pre-defined solu-
tions. Naturally, problem frames allow reusable patterns (problem and solution
patterns) to be applied in an explicit manner. Therefore, if a feature is realized
with a problem frame, known solutions for the development of a component for
the feature are available.

Although the problem frame method has been used effectively to derive re-
quirements of a single software system, it has rarely been applied in product
line software engineering [11]. The main reason behind this is that a product
line domain is far broader and more complicated than that of a single system.
This makes it difficult for problem decomposition, a key process in the problem
frame method [6]. However, with the introduction of feature modeling, problem
frames can be practically and logically applied in product line engineering. A
feature model, with its structural knowledge in terms of features, regulates how
the concepts in a domain are structured and decomposed. Therefore, a feature
model can be used to guide the process of problem decomposition.

The rest of the paper is organized as follows. In section 2, we briefly review
the main concepts of the problem frame methodology. In section 3, we outline our
proposed method. Sections 4 and 5 discuss the key aspects of the proposed ap-
proach. An example is described in section 6, and related researches are discussed
in section 7. Finally, section 8 concludes the paper and outlines our future plan.

2 Concepts of Problem Frames

Problem Frames [6], which is a relatively new and emerging method for require-
ments engineering for single software system development, was first introduced
in 1995 by Jackson in the hope that problem frames could capture very complex
software problems in a simple way by systematically structuring or decompos-
ing the problem into sub-problems. There are two main concepts behind the
problem frame methodology: problem decomposition and problem recognition.
Problem decomposition is that a large problem should be decomposed into rel-
atively small sub-problems to handle its complexity. Through problem decom-
position, we hope to factor out the sub-problems that are recurring problem
patterns. Problem recognition implies that a problem has its own characteristics
and should be recognized as a certain problem class which has known solutions.
The problem, therefore, will be solved by reliable solutions.

A problem frame defines an intuitively identifiable problem class in terms of
its context which is encoded as domain, specification, and requirement. A prob-
lem frame is represented using the problem frame diagram which consists of a
problem domain or a physical world (W), requirements (R), and machine (S)
(Fig. 1). The problem domain is denoted by a plain rectangle describing the given
properties of the problem world or the problem surroundings. The requirements,
represented by a dotted oval, describe the certain effects or required phenomena
(a) that we wish to be true in the problem domain. The dotted line represents

380 T.M. Dao and K.C. Kang

Machine
(S)

Problem Domain
(W)

Requirements
(R)

ab

Fig. 1. Problem frame diagram

the requirements in reference to phenomena, which are events, states, entities,
and/or values, that we can observe in the problem domain. The machine, which
is denoted by a rectangle with a double vertical stripe, describes, in terms of
specifications, the behavior (b) of the machine that must be exhibited in the in-
formation system to realize the requirements. Note that a rectangle with a single
vertical line is used instead of a plain one to indicate that the problem domain
is a design domain which needs to be further refined (Fig. 5e). A correctness
argument then makes sure that the relationship (�) between S, W and R is
satisfied. It means that given the domain properties W and the machine that
we want to build with specifications S, the requirements R must be satisfied.

To date, Jackson has introduced six important problem frames: Required
Behavior, Commanded Behavior, Information Display, Commanded Information
Display, Transformation, and Workpieces, each of which represents a recurring
problempatternatahigh level of abstraction so that it is concise, easily understood,
and applicable to many domains in reality. The required behavior problem frame,
for example, is described by Jackson [6] as follows: “There is some part of the physi-
cal world whose behavior is to be controlled so that it satisfies certain conditions. The
problem is to build amachine that will impose that control.” The description implies
that whenever a software problem manifests a core concern of required behavior, it
can be captured and analyzed with a required behavior problem frame. A problem
frame, therefore, represents a certain core concern which can have many variants
and manifestations in different forms. Obviously, the core concerns are captured in
the problem frame model. Natural questions that arise are: Are the “concerns” rep-
resented in a feature model? How do we recognize the concerns? The answer to the
first question is apparently “yes” since both features and problem frames are ab-
straction of software requirements which contain concerns. This means that map-
pings between a feature model and a problem frame model exist. If we answer the
later question, the product line engineering area could benefit from it: the concerns
implicated by a feature could then be identified early, analyzed with the problem
frame method, and finally solved with known and reliable solutions. Based on the
application of problem frames and feature modeling, the reuse paradigmcan be ap-
plied extensively linking domain problems to domain solutions. The next section
will outline how this idea is implemented.

3 Outline of the Method

The main idea of the proposed method is to apply the concept (i.e., require-
ments, domains, and specifications) of problem frames to SPLE. As a starting
point, a feature model, which is created in domain engineering, abstracts a soft-
ware product line in terms of features. Next, the feature model is mapped to

Mapping Features to Reusable Components 381

problem frames by applying the mapping heuristics derived from feature mod-
eling and a set of feature mapping units (to be discussed in section 4). Through
this mapping, each feature is realized with a problem frame from which the fea-
ture’s requirements and potential concerns are clearly identified and analyzed
by applying problem analysis. Finally, the problem frames are transformed to
components using the UML-based approach for problem frame oriented soft-
ware development [12]. Here, we do not aim to develop a complete product line
method; instead, we focus only on the domain engineering in which reusable
artifacts (e.g., components) are developed.

Domain properties Requirement

SpecificationsProblem frame
models

Domain model Req. model

Design model
UML models

reusable
components

Assets

Assets

Feature model

Specific
applications

User Req
analysis and

feature
selection

OVM
model

Ref. Architecture

mapping

UML modeling

generating

in
sta

n
tia

tin
g

select

su
p
p
o
rt

Domain engineering App engineering

generate

Fig. 2. Outline of the proposed method

The steps for relating features to reusable components are summarized as
follows (Fig. 2):

1. Represent the problem space of a product line with a feature model.
2. Develop mappings between features and problem frames by applying map-

ping heuristics and feature mapping units.
3. Model solutions: model components for features using known solutions for

their corresponding problem frames (using UML).

The orthogonal variability model (OVM) may be used to keep the variability
consistent across the models.

4 Mapping between Feature Models and Problem Frames

From our experience of applying the approach in domains including Home In-
tegration System (HIS) and Elevator product lines, we understand that one of

382 T.M. Dao and K.C. Kang

the most important factors of the approach is the mappings between the prob-
lem frames and features; that is, how we precisely realize features with problem
frames. This eventually depends on the organization or structure of a feature
model. There are many variants of feature model proposed by various product
line methods [3]. However, it is our experience that the feature model proposed
by FORM can support our approach. The following section explains how the
mapping heuristics are derived from the FORM feature model.

4.1 Mapping Heuristics

In FORM, the idea of classifying features into four layers, called Capability (CA),
Operating Environment (OE), Domain Technology (DT), and Implementation
Technique (IT), is similar to requirements, domains, and specifications in prob-
lem frames. Features in the CA layer are at the highest level of requirement
abstraction that is understandable to both users and developers. In the problem
frame framework, requirements are modeled with problem frames (or problems
which need to be further decomposed into recognized problem frames). Conse-
quently, features classified as Capability correspond to requirements R of problem
frames or problems. Features in the OE layer are close to the domain properties
(physical world W) of problem frames in the sense that they both describe the
environment of a system or systems. Therefore, those features are mapped to
the domain properties of a problem frame. The DT layer includes features that
describe solutions pertaining to a specific domain, thus these features correspond
to specifications S or the machine of problem frames. Likewise, features belong-
ing to the IT layer represent solutions at a lower level of abstraction compared
with that of the DT layer, and they also correspond to specifications S of prob-
lem frames. This observation allows us to derive the first heuristic as follows.
Heuristic 1. Let f(x) denote that a feature x belongs to a layer f, then: - CA(x)
is mapped to a problem (represented by R), or a problem frame (represented by
machine S); - OE(x) is mapped to a domain W; - DT(x) or IT(x) is mapped to
a specification S.

Features are organized into layers using the relationships, composed-of, gen-
eralization, and implemented-by, such that the organization of a feature model
represents the structure of a domain. A feature is structurally related to its
sub-features by the composed-of relationship, a representation of an aggregation
defined as: “the abstraction of a collection of units (e.g., features) into a new unit
(e.g., a feature)”. “Refining an aggregation into its constituent units is called de-
composition” [2]. This is similar to problem decomposition in the problem frame
methodology, in which a whole problem is decomposed into sub-problems so that
the decomposition should represent the best natural structure of the problem
(domain). Consequently, composed-of relationships in a feature model implicate
how a problem in a corresponding problem frame model should be decomposed
into sub-problems: this results in the following heuristic: Heuristic 2. The
composed-of relationship guides the process of problem decomposition.

When features f and g are generalized into a feature h, it means that the com-
monalities between f and g are abstracted into a new feature h. When features

Mapping Features to Reusable Components 383

are organized with the generalization relationship, they must belong to the same
layer. This observation lets us define the third heuristic: Heuristic 3. If features
are organized with the generalization relationship, their corresponding mappings
into problem frames must be made to the same type of problem frame element (i.e.,
requirements, domain, or specification).

If a feature f is implemented by a feature g, then g is a known solution of
f, and g belongs to either layers DT or IT. Therefore, when it is mapped to a
problem frame model, g will become a specification S, i.e., a solution of f. This
means that we can safely skip the mappings of the features that are organized
by the implemented-by relationship as they have defined solutions. Thus we
have the following heuristic: Heuristic 4. Features that are organized by the
implemented-by relationship can be safely removed from a feature model before
mapping it to problem frames.

These heuristics imply a strong relationship between the two models. This
connection manifests itself in two ways. First, there are mappings between fea-
tures of a feature model and artifacts (requirements, domains, and specifications)
of a problem frame. Second, there is similarity between the structural relation-
ships between features in a feature model and the structural decompositions in
problem frames. A question that appears here is how we can precisely realize a
feature or features with a problem frame(s) (e.g., a required behavior).

The next section will describe how a group of features can be systematically
mapped to a certain frame in terms of feature mapping units.

4.2 Feature Mapping Units

Realization of a feature or features with a problem frame is made possible us-
ing feature mapping units (FMU) of four types of core concerns, i.e., required
behavior, commanded behavior, information display, and inforamtion transfor-
mation. A FMU has its root feature in the CA layer. Sub-features are related to
their root via composed-of relationships. Since a FMU is mapped to a problem
frame, the behaviors implied by the FMU type must be exhibited by its member
features. The four FMU types are defined below.

Required Behavior FMU. If a feature f1 (requiring feature) requires feature
f2 (required feature) to represent its behaviors α, β, γ at a particular time during
f1’s operation, then feature f1 and f2 form a required behavior FMU.
- Mappings: f1 will be mapped to the machine domain (S), f2 and its behaviors
α, β, γ will be mapped to the controlled domain (W[α, β, and γ]) that is required
to represent behaviors α, β, γ at the time tα, tβ , tγ respectively, to satisfy the
required behavior requirements (R) (Fig. 3a).

- Example: The fire action and sprinkler features together form a required
behavior FMU because the fire action feature needs the sprinkler feature to
either activate it when a fire event is detected or else to deactivate.

Commanded Behavior FMU. If the behaviors of a feature (f1) are controlled
by a feature (f2) that functions in accordance with the commands issued by a
user, then features f1 and f2 form a commanded behavior FMU.

384 T.M. Dao and K.C. Kang

f1

f2

f1 [machine]
(S)

f2 [controlled
domain] (W)

Required
behavior (R)

f1 maps to machine (s)
f2 maps to the controlled domain (w)
relation between f1 and f2 maps to required behavior (R)

S(f1), W(f2[]) Rα, β, γ ├

f1 requires certain
behavior of f2

elevator

lift cabin

service

door
handling

motor
handling

calling
handlingsensor

cabin

motor

controlling display
elevator
controller
(EC)

lift
cabin
(LP)

Oper
ator
(O)

commanded
behaviorO!comm

ands

LP!status
EC!pulses

commands

sensor’s
signals

commands behavior

mail system

encoded
mail

viewable
mail

encoded
mail (EM)

viewable
mail (VM)

transform
ation

mail
machine

(MM)

EM!input

MM!output

output
format

transformed to

elevator

obtain behaviors
to display

lift
cabin

indication
handling

floor speed direction

Info. display
machine

(ID)

Lift cabin
(LC)

Display
domain

Display
frame

LC!status

ID!info information

sensors’
signals

b. An example of a commanded behavior mapping unita. Required behavior mapping unit

c. An example of an information display mapping unit d. An example of a transformation mapping unit

Fig. 3. Feature mapping units

- Mappings: f2 will be mapped to the machine domain (S), and f1 with its
behaviors α, β, γ will be mapped to the controlled domain (W[α, β, and γ]) that
is commanded to represent behaviors α, β, γ when the user issues commandα,
commandβ , commandγ respectively, to satisfy the commanded behavior require-
ments (R).

- Example: The controlling feature and the lift cabin feature form a commanded
behavior FMU because the former commands the behaviors (e.g., stopped, mov-
ing) of the latter whenever an operator of the elevator issues a command(e.g., a
floor register) (Fig. 3b).

Information Display FMU. When a feature (f1) sends a request to display the
behaviors or states of other feature (f2), we define f1 and f2 form an information
display FMU.
- Mappings: f1 will be mapped to the machine domain (S), f2 and its behaviors
α, β, γ will be mapped to the controlled domain (W[α, β, γ]) whose behaviors
or states α, β, γ need to be displayed on the display domain.
- Example: The lift cabin feature and the indication handling feature form
an information display FMU because the latter seeks to display behaviors and
states (e.g., current floor, direction, speed) of the former (Fig. 3c).

Transformation FMU. When one of the two features (f1) plays the role of
feeding the input to the other feature (f2), with computer-readable information,
to output it in a particular format, we say f1 and f2 form a transformation
FMU.

Mapping Features to Reusable Components 385

- Mappings: f1 will be mapped to the input domain (W[input]), and f2 will be
mapped to the output domain (W[output]).

- Example: The encoded mail feature and the viewable mail feature form a
transformation FMU because the encoded mail must be transformed to a view-
able format (Fig. 3d).

5 Solution Modeling

5.1 Problem Analysis

Once a feature model is mapped to problem frame models, problem analysis
is conducted to help developers clearly understand each feature and realize the
potential concerns by analyzing the corresponding problem frames of the fea-
ture. This analysis is based on a correctness argument, which brings together
a problem frame’s requirements, domain properties, and machine specifications
to discharge the problem frame’s concerns and ultimately make sure that the
requirements are satisfied. Because a problem frame defines a class of problems
which have common and relevant characteristics, it has recurring concerns. For
example, by analyzing a required behavior problem frame which corresponds to
features (fire action, locker, sprinkler, and alarm) (Fig. 5b-f), we can identify
concerns that may cause strange behaviors resulting in dissatisfaction of the
requirements. One example would be concerns related to behaviors of problem
domains (sprinkler and alarm) where the alarm is turned on but the sprinkler
does not work because its water source is empty. Another example is the concerns
related to machine specifications, for instance, the control signals that activate
the sprinkler but turn off the alarm.

The analysis of the concerns essentially shapes architectural components im-
plementing the problem frames. Many research examples [13] [14] show the ex-
plicit links between problem frames and architectural styles. Therefore, in our
approach we apply the research results to select architectural styles that are
best suited for the development of a component during the analysis. For exam-
ple, when a feature f is realized with a required behavior frame, the architectural
style for a component implementing the feature f would be the Layered style.
The output of this analysis is organized in a tabular format. Row i represents a
FMU fi and its related analysis factors- Problem frames (PFi and requirement
Ri) corresponding to feature fi, Phenomena (Pi) observed on PFi, Domains
(Di) within PFi, Concerns (Ci) related to PFi, Architectural styles (ASi) rec-
ommended for PFi. A problem analysis for the Fire action feature (Fig. 4) was
conducted and its results are shown in the Table 1.

After this step, major concerns as well as potential issues of a feature can be
discovered and analyzed. Based on this analysis, possible architectural styles for
components that implement features are introduced. The following section will
describe the final step involving transforming the problem frames to reusable
components.

386 T.M. Dao and K.C. Kang

Table 1. A sample of analysis output: from features to architectural styles

FMU Problem
frames

Phenomena Domains Concerns A. Style

f1: {Fire
action, ...
sprinkler,
and alarm}

PF1: Re-

quired be-

havior

P1: -Events: acting,

detecting; -States:

activated, detected;

-Interface: status

signals, controlling

signals

D1: Sprin-

kler,

alarm, en-

vironment

C1: Chang-

ing behavior

in real-time;

Hardware

concerns

AS1: Lay-

ered style

f2: {Fire
detection,
smoke sen-
sor, and
moisture
sensor}

PF2:

Transfor-

mation

P2: -Events: fire event;

-Status: working/not

working; -interface:

Status signal, raw

signal, output signal

D2: sen-

sors,

environ-

ment

C2: Reliabil-

ity of sensor

signals be-

cause of bad

environment

conditions; sen-

sor malfunction

AS2: Lay-

ered style

or pile and

filter

5.2 Component Modeling

Problem Frames to Reusable Components. Our goal is to generate spec-
ifications for components that implement features using a modeling language.
In our approach, we use the UML-based method in [12] to model the problem
frames. There are some reasons for choosing this method. First, developers are
familiar with UML because its concepts and notations are highly standardized
and widely used. Second, a problem frame is defined in terms of three separate
artifacts of requirements, domain properties, and specifications; and the UML-
based method provides ways to specify these [12]. The requirements are mod-
eled using class diagrams and use case diagrams; the domains are modeled by
class diagrams, behavior diagrams, and sequence diagrams; the specifications are
modeled using class diagrams, object diagrams, behavior diagrams, and package
diagrams.

To map a simple problem frame to a component, we propose a general scheme
in which the machine domain and problem domains of a problem frame are
modeled with classes using the object-oriented modeling method. The machine
domain is modeled with a MachineDomain class. The problem domains are mod-
eled with ControlledDomain classes. Interactions between the machine domain
and problem domains are modeled with interface classes that are realized or
implemented by the MachineDomain and ControlledDomain classes.

Variability Management. Although the UML-based approach can be used
for modeling problem frames, it does not mention how to deal with design varia-
tions. One of the major difficulties in product line engineering is how to manage
variations that are captured by a feature model. When features are mapped to
problem frames, variations in a feature model must also be consistently mapped
to the problem frame model. Variations captured by the feature model must be
reflected as variations in requirements, domain properties, or specifications of

Mapping Features to Reusable Components 387

the problem frame model. Variations in the problem frame model must finally
be reflected to the architectural component model.

However, problem frames and UML are not equipped with the concept of
intended variability. In our method, we employ the orthogonal variability man-
agement (OVM) [15]. OVM manifests itself as a flexible and practical model
for managing variability. Because it is an orthogonal model, it can be indepen-
dently applied for any model in which variability exists. Using OVM, all the
variation points in a feature model will be consistently referenced to those in its
corresponding problem frame models and UML models. For example, there is
a variation point detection in which the heat detection feature that detects fire
with a thermal sensor (heat sensor) is an optional feature (Fig. 4). The variation
point detection, with its variant heat sensor, is explicitly mapped to the problem
frame model that has an optional domain heat sensor and to the UML model
which states that the HeatSensor object is optional (Fig. 6).

6 Example: Home Integration System (HIS)

6.1 Introduction to HIS

HIS is a home integration system product line which controls and manages a
collection of devices to maintain the security and safety of a building or a house.
The main features of HIS for illustrating the proposed approach are described
below and organized using a feature model (after applying the heuristic 4 to
simplify the feature model).

Fire Detection and Action: The fire events are detected by smoke detectors
and heat sensors installed in the house. When a fire event is detected, HIS turns
the alarm and all the sprinklers on and unlocks all HIS-controlled doors. Once
the fire is under control, the alarm and all the sprinklers will be turned off but
the doors will remain unlocked for the duration of the time preset by the owner.

Intrusion Detection and Action: Intrusion events are detected by the motion
sensors. When an intrusion event is detected, HIS turns on the alarm and locks
all the HIS-controlled doors.

Flood Detection and Action: Flood events are detected by the moisture
sensors. When a flood event is detected, HIS shuts off the water main to the
house. When moisture is detected on the basement floor, the sump pump will
be activated.

6.2 From Feature Models to Problem Frame Models

First, the root feature HIS, which is comprised of three features: Intrusion,
Fire, and Flood, is mapped to the HIS problem which is then decomposed into
three corresponding sub-problems, P Intrusion, P Fire, and P Flood (heuristic
2). The decomposition of these problems can take place in parallel since they
are independent from each other. Here, the process of further decomposing the

388 T.M. Dao and K.C. Kang

HIS

Intrusion Fire
Flood

Detection Action Action Detection Detection Action

Alarm Door
operation

Extinguish
by water

Alarm
Smoke

detection

Sprinkler

Heat
detection

Moisture
detection

Locker

Pumping

Water
source

Siren
Smoke
sensor

Thermal
sensor

Moisture
sensor

Water main

Pump

...

...

Optional Composed-ofLegend:

Capability
layer

Operating
Environment
Layer

Fig. 4. The feature model of HIS

P Fire problem is described in detail. According to the HIS feature model, the
Fire feature is comprised of two features, Detection and Action. Consequently,
by applying heuristic 2, the P Fire problem will be further decomposed into two
corresponding sub-problems, P Detection and P Action (Fig. 5a-d-e).

P Action, A Required Behavior Frame. From feature modeling, we know
that the door operation feature requires the behaviors of the locker feature be
open or locked, therefore the two features form a required behavior FMU. Like-
wise, the {water, sprinkler} features and the {alarm, siren} features are required
behavior FMUs. Therefore, the action feature which is comprised of three FMUs
is realized by a required behavior problem frame (Fig. 5b-f).

P Detection, A Transformation Frame. The smoke sensor and heat sensor
features feed raw signals on the heat and smoke information of the surroundings
to the detection feature which then decides whether there is a fire event or not.
Therefore, the detection, smoke sensor, and heat sensor features form a transfor-
mation FMU which is realized by a transformation problem frame (Fig. 5c-g).

6.3 From Problem Frames to Reusable Components

We will move on to demonstrate the development of the C Detection and C Action
architectural components from their corresponding problem frames, P Detection
and P Action. The fire detection and fire action features are realized by the
P Detection and P Action problem frames which represent a recognized prob-
lem in terms of requirements, domains, and specifications. First, problem anal-
ysis is conducted to determine a correctness argument which ensures that the
R Detection and R Action requirements are satisfied (Fig. 6). Many of the poten-
tial concerns and issues which may affect the satisfaction of the requirement are
explored. Also, architectural styles best for developing the components are iden-
tified. A sample of the problem analysis for P Detection and P Action problems

Mapping Features to Reusable Components 389

HIS
machine Flood

Intrusion

Fire

HIS

Locker

Sprinkler

Siren

Action
machine

Required
behavior

Action

Door operation Water Alarm

Locker Sprinkler Siren

Door operation
locker

requires
[clocked, open]

Water sprinklerrequires
[idle, activating]

Alarm sirenrequires
[idle, go off]

HIS

Intrusion Fire Flood

Action Detection

Detection

Smoke Heat

Smoke sensor
detection

feeds input
to

Heat sensor
Detection

feeds heat
input to

Smoke sensor Heat sensor

Fire

Action

Fire
machine

Detection

a) b) c)

d) e)

Heat
sensor

Smoke
sensor

Detection
machine

Transfor
mation

g)

P_ Action

P_ Detection

f)

Fig. 5. From feature models to problem frames

is documented in the Table 1. Next, the architectural components, C Detection
and C Action, are modeled using the UML specification language. Interactions
and communication between the artifacts of a problem frame (machine domains
and controlled domains) are critical for understanding and mapping the frame
to the UML component model.

C Detection Component. The problem domain, which includes the Heat
sensor and Smoke sensor sub-domains of the transformation problem frame, is
modeled with the DetectionDomain class which is comprised of the HeatSen-
sor and SmokeSensor classes of the sub-domains (Fig. 6). The interactions (a,
b, c) between the problem domain and the machine are modeled by the in-
terfaces: - SensorSignal, which sends data on heat and smoke to the machine;
- FireDetectionInfo, which abstracts detection information about detected fires
and non-detected fires issued from the machine. The DetectionDomain class
then implements the SensorSignal interface. The machine domain is modeled
with the DetectionMachine class which realizes the SensorSignal interface and
implements the FireDetectionInfo interface.

C Action Component. The problem domain, which includes the Locker,
Sprinkler, and Siren sub-domains of the required behavior problem frame, is
modeled with the ActionDomain class. The ActionDomain class is comprised
of the Locker, Sprinkler, and Siren classes of these corresponding sub-domains
(Fig. 6). The interactions (d, e, f) between the problem domain and the machine
are modeled by the interfaces: - StatusSignal, which communicates the status of

390 T.M. Dao and K.C. Kang

1. Given a current air condition in the environment of the system

2. Because they (smoke and heat) have certain properties making them
measurable. The sensors are able to capture theat information about
smoke and heat
3. The machine (Fire detection) then reads this information and process
it to decide whether there is a fire event
4. If a fire event is detected, the machine sends pulses to lock the door,
AND activate the sprinkler, AND turn on the siren
5. Satisfy the “Fire” requirement

(Requirement)

(Domain properties)

(Specifications)

(Specifications)
(Requirements)

- signals about heat from the heat sensor (HS) to the detection machine.
These signals will be transformed to readable and useful information about heat.
- signals about smoke from the smoke sensor (SS) to the detection machine.
These signals will be transformed to readable and useful information about smoke.
- data form the Detection machine (DM) to the detection information domain.

HS!signal (a):

SS!signal (b):

DM!data(c):
- AM!signal/LO!status (d):

- AM!singal/SP!status (e):

- AM!signal/SR!satus (f):

signals from the Action Machine (AM) to control behavior of
the Locker (LO)/status of the LO to the AM.

signals from the AM to control behavior of the Sprinkler
(SP)/status of the SP to the AM.

signals from the AM to control behavior of the Siren (SR)
/status of the SR to the AM

1.Requirement

Locker
(LO)

Sprinkler
(SP)

Siren (SR)

Action
machine

(AM)

R_Fire
action

Heat sensor
(HS)

Smoke
sensor (SS)

Detection
machine

(DM)

R_Fire
detection

Fire

2. Domain

3.Specifications

4.Specifications
5.Requirement

Fire
machine

(FM)

Detection
info

a

b

c

d

e

f

VP
Fire

detection

Heat sensor
V

C_Detecion component

C_Action component

P_Detection

P_Action

Correctness argument

Fig. 6. Mapping problem frames to C detection and C action components

the Locker, Sprinkler, and Siren domains to the machine; - Command, which
abstracts the commands of activate and deactivate issued by the machine. The
ActionDomain class then implements the StatusSignal interface and realizes the
Command interface. The machine domain is modeled with the ActionMachine
class which realizes the StatusSignal interface and implements the Command
interface.

7 Related Works

There has not been much work done to try to integrate problem frames into
product line software engineering. Approaches that use problem frames to com-
pensate feature models mainly focus on managing variability. In [10], Salifu et
al. suggested using problem descriptions to represent and analyze variability in
context-aware software products. Changes in the properties of external domains
are captured and analyzed to see how they affect the products’ behavior. This
approach is good at describing unintentional variability in the product line con-
text (domains). However it did not consider representing the intended variability
of requirements, and it is difficult to apply in product line engineering.

Classen et al. [8], proposed problem frames instead of feature diagrams to
analyze the variability in product families. They claimed that feature diagrams
tend to mix up three important descriptions: requirements, domain properties,
and specifications. Therefore they are inadequate for capturing problem struc-
tures. However, the relationships between a feature model and a problem frame

Mapping Features to Reusable Components 391

model are not mentioned. Without a feature model, representing and analyzing
variability in a large domain with problem frames is complicated and impractical.

Zou [11] introduced extended notations to support requirements, domains, and
machine variability in problem frames so that problem frames can be applied to
product line engineering. However, these additional notations make the problem
frames diagrams more complicated and may change their original meaning. It
is not practical to model variability using problem frames, especially when the
target domain is complex.

Classen et al. [9] claimed that concepts in each feature should be requirements,
domain properties, and specifications. This idea was applied to identify and solve
interactions between features (i.e., feature interaction problems) in a product line
domain.

Even though the researches mentioned above applied problem frames to prod-
uct line engineering, they inadequately addressed the relationship between the
feature model and problem frames (features and requirements).

8 Conclusion

In this paper, we introduced an approach in which feature models and problem
frames are integrated in an attempt to effectively develop reusable components
in product line software engineering. The central idea of this approach is the ap-
plication of the concepts of problem frames and feature modeling to realize the
feature mapping units from which reusable components are modeled and devel-
oped. The most important benefit of this approach is that the reuse paradigm is
extensively applied in both the problem space and the solution space of a prod-
uct line. For future research, we plan to apply this method in more practical and
larger domains with complex feature models. This will mean that the approach
will be thoroughly validated. We also plan to further enhance and formalize the
method. To date, mappings between feature models and problem frames have
been made through feature mapping units and using mapping heuristics rather
than a formal approach. The last challenging future work option is to develop a
tool that supports this approach.

References

1. Kang, K.C., Lee, J., Donohoe, P.: Feature-oriented product line engineering. IEEE

Software 19, 58–65 (2002)

2. Kang, K.C., Cohen, S.G., Hess, J.A., Novak, W.E., Peterson, A.S.: Feature-oriented

domain analysis (foda) feasibility study. Technical report, Carnegie-Mellon Univer-

sity Software Engineering Institute (November 1990)

3. Robak, S.: Feature modeling notations for system families. In: ICSE 2003 Workshop

on Software Variability Management, Portland, Oregon, pp. 58–62 (2003)

4. Kang, K.C., Kim, S., Lee, J., Kim, K., Kim, G.J., Shin, E.: Form: A feature-oriented

reuse method with domain-specific reference architectures. Annals of Software En-

gineering 5, 143–168 (1998)

392 T.M. Dao and K.C. Kang

5. Bosch, J.: Design and use of software architectures: adopting and evolving a

product-line approach. ACM Press/Addison-Wesley Publishing Co., New York

(2000)

6. Jackson: Problem Frames: Analysis and Structuring Software Development Prob-

lem. Addison-Wesley Professional, MA (2001)

7. Laguna, M.A., González-Baixauli, B., Marqués Corral, J.M.: Feature patterns

and multi-paradigm variability models. Technical Report 2008/01, Grupo GIRO,

Departamento de Informática (May 2008)

8. Classen, A., Heymans, P., Laney, R., Nuseibeh, B., Tun, T.T.: On the structure

of problem variability: From feature diagrams to problem frames. In: Pohl, K.,

Heymans, P., Kang, K.C., Metzger, A. (eds.) Proceedings of the First Interna-

tional Workshop on Variability Modelling of Software-intensive Systems, Limerick,

Ireland, LERO, pp. 109–117 (January 2007)

9. Classen, A., Heymans, P., Schobbens, P.Y.: What’s in a feature: A requirements

engineering perspective. In: Fiadeiro, J.L., Inverardi, P. (eds.) FASE 2008. LNCS,

vol. 4961, pp. 16–30. Springer, Heidelberg (2008)

10. Salifu, M., Nuseibeh, B., Rapanotti, L., Tun, T.T.: Using problem descriptions

to represent variabilities for context-aware applications. In: VaMoS, pp. 149–156

(2007)

11. Zuo, H., Mannion, M., Sellier, D., Foley, R.: An extension of problem frame notation

for software product lines. In: APSEC 2005: Proceedings of the 12th Asia-Pacific

Software Engineering Conference, Washington, DC, USA, pp. 499–505. IEEE Com-

puter Society, Los Alamitos (2005)

12. Choppy, C., Reggio, G.: A uml-based approach for problem frame oriented software

development. Information and Software Technology 47(14), 929–954 (2005); Special

Issue on Problem Frames

13. Choppy, C., Hatebur, D., Heisel, M.: Architectural patterns for problem frames.

Software, IEE Proceedings 152(4), 198–208 (2005)

14. Wang, C., Depei, Q., Chuda, L.: Architecture-based problem frames constructing

for software reuse. In: IWAAPF 2006: Proceedings of the 2006 international work-

shop on Advances and applications of problem frames, pp. 19–24. ACM, New York

(2006)

15. Pohl, K., Metzger, A.: Variability management in software product line engineer-

ing. In: ICSE 2006: Proceedings of the 28th international conference on Software

engineering, pp. 1049–1050. ACM, New York (2006)

J. Bosch and J. Lee (Eds.): SPLC 2010, LNCS 6287, pp. 393–405, 2010.
© Springer-Verlag Berlin Heidelberg 2010

Eliciting and Capturing Business Goals to Inform a
Product Line’s Business Case and Architecture

Paul Clements1, John D. McGregor2, and Len Bass1

1 Software Engineering Institute, Carnegie Mellon University,
4500 Fifth Avenue, Pittsburgh PA 15213 USA

2 Department of Computer Science, Clemson University, Clemson SC 29634 USA
clements@sei.cmu.edu, johnmc@cs.clemson.edu, lenbass@cmu.edu

Abstract. Business goals constitute an important kind of knowledge for a soft-
ware product line. They inform the product line’s business case and they inform
its architecture and quality attribute requirements. This paper establishes the
connection between business goals and a product line’s business case and archi-
tecture. It then presents a set of common business goal categories, gleaned from
a systematic search of the business literature that can be used to elicit an or-
ganization’s business goals from key stakeholders. Finally, it presents a well-
defined method, which we have tried out in practice, for eliciting and capturing
business goals and tying them to quality attribute requirements.

Keywords: Software product line, architecture, product line architecture, busi-
ness case, business goals, business goal scenario, quality attribute requirements.

1 Introduction

Developing similar software systems together as a software product line can bring
about improvements – sometimes of an order of magnitude – in cost, time to delivery,
and quality. Software product lines represent a strategy that results in a sizable in-
vestment over its lifetime. Such an investment requires a justification, often in the
form of a business case. Once the investment is made, a product line architecture
serves as the backbone of the technical effort.

Both of these critical product line artifacts (the business case and the architecture)
are well-served by an explicit articulation of the development and customer organiza-
tions’ business goals. Business goals describe the objectives an organization wishes to
accomplish. A business case can only help determine if a product will serve an or-
ganization’s interests if those interests are known and captured. A product line archi-
tecture must deliver necessary quality attributes to the product line at large as well as
individual products and, as we will show, business goals have a direct and fundamen-
tal influence on those quality attributes.

However, business goals are not always written down in an accessible fashion;
many times they’re implicit and have never been identified.

394 P. Clements, J.D. McGregor, and L. Bass

This paper offers three main contributions.
• First, it shows the connection between business goals and a product line’s

business case and architecture. In particular, it shows how business goals can
lead to specific quality attribute requirements for a system or a family (product
line) of systems. This relationship is critical for the architect (or product line
architect) to understand and use, but until now has remained implicit at best
and ignored at worst.

• Second, it presents a set of common business goal categories, gleaned from a
systematic search of the business literature that can be used to elicit an organi-
zation’s business goals from key stakeholders. These business goals can in-
form the product line’s business case and its architecture.

• Third, it presents a well-defined method, which we have tried out in practice,
for eliciting and capturing business goals and tying them to quality attribute
requirements.

2 Business Goals and the Product Line Business Case

A business case is, briefly, a justification of an action:

A business case is a tool that helps you make business decisions by predict-
ing how they will affect your organization. Initially, the decision will be a
go/no-go for pursuing a new business opportunity or approach. After initia-
tion, the business case is reviewed to assess the accuracy of initial estimates
and then updated to examine new or alternative angles on the opportunity...
In this role, management uses the business case to determine possible
courses of action.[2]

A primary purpose of a business case is showing how a candidate strategy will help
the organization meet its business goals. Strategies that can be examined in the light
of a business case include whether to build a set of products as a product line or indi-
vidually; whether to add a new product to the product line or build it separately;
whether to expand the scope of the product line (requiring the core assets to be modi-
fied), and others. One way to view the business case is that it allows management to
ask “Is this strategy we are considering consistent with our business goals? Will it
help us achieve them?” In order for that to happen, those business goals have to be
known and articulated.

A product line business case goes hand-in-hand with the product line scope (which
defines what products are in the product line and which are not). A product line with a
scope that is too narrow will not provide sufficient return on investment. A product
line with a scope that is too broad could collapse under its own weight, due to the
costs of being overly general. This close, mutually informative relationship between
business case and scope is captured in the “What to Build” product line pattern [6].
The pattern, shown in Figure 1, captures the relationship of the business case with
other practices. It shows that creating the business case is informed by information
from the Understanding Relevant Domains, Market Analysis and the Technology
Forecasting practices.

• Understanding Relevant Domains – The business case reflects the culture of
the organizations building the products. The culture of an aircraft manufacturer

 Eliciting and Capturing Business Goals to Inform a Product Line’s Business Case 395

is different from that of a financial institution. The factors considered in their
business cases will be quite different.

• Market Analysis - The data from the market analysis provides a basis for
projecting sales and income for the products being justified.

• Technology Forecasting – The technology forecast predicts the need for new
technologies that will cost to acquire and that may require training for per-
sonnel.

In addition to technology, the social and legal environments may also change during
the lifetime of the product line and these changes should also be forecast [14]..

Technology
Forecasting

Building a
Business Case

Scoping

Domain
Models

Product
Set

Market
Climate

Product
Line

Scope

Justification

Product Set

Business
Case

Technology
Predictions

Technology
Predictions

Market
Climate

Understanding
Relevant
Domains

Market Analysis Technology
Forecasting

Building a
Business Case

Scoping

Domain
Models

Product
Set

Market
Climate

Product
Line

Scope

Justification

Product Set

Business
Case

Technology
Predictions

Technology
Predictions

Market
Climate

Understanding
Relevant
Domains

Market Analysis

Fig. 1. The “What to Build” pattern [6]. The arrows mean “informs.”

As with many things, a business case is something that you don’t hear about when
it works well, but a poor or missing business case can derail the entire product line
effort. One of the most serious flaws in a business case is failing to take into account
the interests and motivations of all of the important stakeholders, who can be the
“owners” or instigators of an organization’s business goals.

The business case aids an executive in making an investment decision by providing
answers to critical questions. Questions that a comprehensive business case should
answer include the following [1]:

1. What problem are we trying to solve?
2. What needs to change, how much, by when?
3. What are possible solutions to meet the need?
4. What are the two or three likely solutions?
5. What are the costs, benefits, and risks of each viable alternative?
6. What are the return-on-investment metrics?
7. Which is the “best” alternate solution?

396 P. Clements, J.D. McGregor, and L. Bass

In a list such as this, having the business goals explicitly articulated can help answer
whether and how an alternative under consideration would be beneficial.

Business case practices for a product line effort differ from those for a single sys-
tem only in the nature of the changes being considered and analyzed. The organiza-
tion is making an economic case built on the current costs of doing business and the
benefits derived from following the strategic direction. The initial go/no-go decision
answers the question: "Do we build the set of products we're considering as a product
line or not?"

Cohen lays out steps for building a business case for a product line [8]:

1. Establish Product Line Context
2. Estimate the Likely Costs and Analyze Potential Risks for All Alternatives
3. Estimate the Likely Benefits and Contrast With Current Business Practice
4. Develop a Proposal for Proceeding
5. Close the Deal: Make Final Adjustments and Proceed to Development

Once again, business goals can be seen as informing this process. They form an in-
dispensable part of the context, and actually establish precisely what constitutes
“benefit.”

Many companies have their own outlines for a business case but we have one that
we have used with several customers. It includes the following sections:

1. Mapping of the business goals to the product line strategy
2. Description of alternative approaches to meeting the goals
3. Analysis of the strengths/weaknesses/ opportunities/threats associated with

the product line (SWOT analysis)
4. Analysis of strategic factors that influence the product line strategy
5. Comprehensive scenario analysis including cost/benefits
6. Recommended course of action

Sections 1 and 3 of the outline describe the strategic direction of the product line. This
is the business justification for using the product line approach. We have used Por-
ter’s Five Forces model for strategy development when developing the production
strategy with customers [15]. The forces in this model drive the identification of busi-
ness goals related to balancing those external forces with internal actions.

Section 5 of the business case outline obviously has a direct relationship with busi-
ness goals, which in effect define what constitutes a “cost” and a “benefit.” While
these could have strictly monetary implications, other interpretations are certainly
possible. For example, a business goal having to do with meeting responsibilities to
employees could reveal as beneficial a strategy that helps developers go home on the
weekends.

Equation 1 shows the basic formula used in the product line cost modeling lan-
guage SIMPLE [7] to compute a quantitative justification. Some information needed
to evaluate that formula is not directly financial. The business goals for a product line
inform the analysis of a candidate strategy by defining such parameters as the timeline
for product deliveries (which is needed for the value of “t” in the SIMPLE formula),
anticipated revenue streams that result from by-products of the core asset develop-
ment activities included as one of the benefit (Ben) functions, and anticipated refresh

 Eliciting and Capturing Business Goals to Inform a Product Line’s Business Case 397

cycles of the core assets based on obsolescence, which cuts across each cost function.
These values affect the content of the SIMPLE formula.

Equation 1 SIMPLE Formula

))),(),(()()((
11

tproductCtproductCtCtCBen ireuse

n

i
iuniquecaborg

m

j
j +++− ∑∑

==

This equation provides clues to some business goals that may be implicit and should
be made explicit during elicitation.

• Ben is a function that captures quantitative benefits of a strategy. This term
reminds us about the need to elicit goals related to revenue streams and non-
tangible benefits such as increased customer confidence or loyalty that may
be quantifiable. Non-tangible benefits are not only on the customer side but
may, as we will see, occur on the developing organization side as well.

• Corg is a function capturing the organizational cost of a strategy. To calculate
Corg, elicitation should explore whether there are any business goals related
to evolving or resizing the organization. This will impact the cost of running
the organization.

• Ccabis the cost of establishing the core asset base. If there are goals to sell the
core asset base this will require extra costs for bundling, security, licensing,
etc.; there may be major quality improvement initiatives that will affect the
cost of the core assets

• Cunique is the cost of any development that is unique to a particular product.
Here there may be goals of improving the market position of the organization
by mining unique code to produce new core assets

• Creuse is the cost of reusing core assets to build a product. Process changes
may affect the cost of reusing assets by increasing the cost in the short run
but decreasing it in the long run

Regardless of the questions, steps, or outline used to capture a business case, there are
some cross-cutting issues that should be made explicit.

1. First, the time horizon for the business case for a software product line is dif-
ferent from the business case for a single product. This justification covers
multiple products and the operation of an on-going production capability. Es-
timates for products that will be built further into the future probably will not
be as accurate as those for a product or products that will be built immedi-
ately. One reason for this is that business goals can and often do change over
time [14], and any method to capture them must take that into account.

2. Second, the core assets complicate the computation of costs and benefits. As-
sets are created and maintained on an on-going basis. A number of product
line organizations such as Nokia and Overwatch Textron supplemented the
benefits derived from their product line by selling the core assets to other
product line organizations [10]. Having the assets available clearly has value
for the organization, but there are no clear guidelines for how to balance that
value against the development and maintenance costs.

398 P. Clements, J.D. McGregor, and L. Bass

3 Business Goals and the Product Line Architecture

Here’s what the SEI’s Framework for Software Product Line Practice [2] has to say
about the product line architecture:

The product line architecture is an early and prominent member in the collec-
tion of core assets. The architecture is expected to persist over the life of the
product line and to change relatively little and slowly over time. The architec-
ture defines the set of software components (and hence their supporting assets
such as documentation and test artifacts) that populates the core asset base. The
product line architecture–together with the production plan–provides the pre-
scription… for how products are built from core assets. Once it's been placed
in the core asset base for the product line, the architecture is used to create
product architectures for each new product.

Like all software architectures, one of a product line architecture’s primary obliga-
tions is to deliver the necessary quality attributes to the individual products. It has
been argued elsewhere [4] that achievement of quality attributes is in fact the architec-
ture’s most compelling reason for existence. In a product line, quality attribute
achievement is even more important, because the various products in the product line
may exhibit different quality attributes but the same architecture should apply to all.

Properties of a system that help determine whether it satisfies the fitness criteria
derive from business goals. Otherwise, why do they exist? If we ask, for example,
“Why do you want this system to have a really fast response time?” we might hear
that this will differentiate the product from its competition and let the developing
organization capture market share, or that this will make the end user more effective
and this is the mission of the acquiring organization, or other reasons having to do
with the satisfaction of some business goal.

The fact that the rationale for a quality attribute requirement is always a business
goal gives us a new lens through which to examine quality attribute requirements. By
identifying business goals that are at work, we can ask which quality attributes would
be important to help achieve the business goal and what aspect of the quality attribute
contributes to that achievement. We can compare this list to the existing quality at-
tribute requirements (if there are any) and see if there is a mismatch.

Not all business goals for an organization are achieved through the construction of
a system. For example, “reduce cost” may come about by lowering the facility’s
thermostats in the winter or reducing employees’ pensions.

Other business goals may directly affect the system without precipitating a stan-
dard quality attribute requirement per se. For example, we know of a case where a
manager pressed for an architecture to include a database because the organization’s
database group was currently sitting idle. No requirements specification would cap-
ture such a “requirement.” And yet that architecture, if delivered without a database,
would be just as deficient from the point of view of the manager as if it had failed to
deliver an important user function.

Figure 2 illustrates the salient points so far. In the figure, the arrows mean “lead
to;” the solid arrows are the one highlighting the relationships of most interest to
architects.

 Eliciting and Capturing Business Goals to Inform a Product Line’s Business Case 399

Fig. 2. Some business goals lead to quality attribute requirements (which in turn lead to archi-
tectures); others lead directly to architectural decisions without imposing quality attribute re-
quirements; still others lead to non-architectural solutions.

4 A Canonical Set of Business Goals

The business literature provides a plethora of papers on business goals or business mod-
els for organization. We conducted a structured literature review using the Proquest
ABI/Inform Global database, which covers over 3,000 business-oriented publications, as
well as a simple Google search. In both cases, various combinations of “business goals,”
“business models,” and “survey” or “studies” were used as search terms. Space limita-
tions prevent us from reproducing the entire collection of business goals we harvested
from the papers uncovered by our search; a full accounting is given in [5].

We conducted an affinity (clustering) exercise with the goals uncovered from our
search of the business goal literature. The result is the set of ten business goal catego-
ries shown in Fig. 3.

One goal could easily fit in more than one category. In an elicitation method, the cate-
gories should prompt questions about the existence of organizational business goals that
fall into that category. If the categories overlap, then this might cause us to ask redundant
questions. This is not harmful and could well be helpful. SIMPLE is an example of how
the second goal category (“Meeting financial objectives”) can be analyzed.

Fig. 3. A canonical set of business goals

1. Growth and continuity of the organization

2. Meeting financial objectives

3. Meeting personal objectives

4. Meeting responsibility to employees

5. Meeting responsibility to society

6. Meeting responsibility to country

7. Meeting responsibility to shareholders

8. Managing market position

9. Improving business processes
10. Managing quality and reputation of products

400 P. Clements, J.D. McGregor, and L. Bass

Furthermore, Osterwalder and Pigneur [14] provide us with a perspective for dis-
cussing goal change over time. They identify five forces that will change over time
and which need to be considered when establishing business goals. These forces are
legal, social, technological, competitive, and customer. Any specific business goal has
to be considered in light of how these five forces might cause it to change over time.

5 Expressing Business Goals

If business goals are important to inform a product line’s business case as well as its
architecture, it stands to reason that a way to articulate a business goal in a well-
formed manner would be useful. Capturing business goals and then expressing them
in a standard form will let them be discussed, analyzed, argued over, rejected, im-
proved, reviewed – in short, all of the same activities that result from capturing any
kind of requirement. To this end, we introduce business goal scenarios.

The purpose of a business goal scenario is to ensure that all business goals are ex-
pressed clearly, in a consistent fashion, and contain sufficient information to enable
their processing through the further steps of our technique.

Similar to our own quality attribute scenarios [5], our business goal scenario has
seven parts. They all relate to the system under development, the identity of which is
implicit. Together, they provide a provenance for a business goal that will contribute
to its understanding and its interplay with other goals. The seven parts are:

1. Goal-source. Who (or what artifact) provided the statement of the goal?
2. Goal-subject. This is the stakeholder who owns the goal and who wants it to be

true. The stakeholder might be an individual, an individual in an identified or-
ganization if more than one organization is in play, or (in the case of a goal that
has no one owner and has been assimilated into an organization) the organization
itself. To express a business goal meaningfully, as well as capture information to
resolve goal conflicts, we need to know the person who owns the goal. This we
call the goal-subject. If the business goal is, for example, “maximize dividends
for the stakeholders,” who is it that cares about that? It is probably not the
programmers, the system’s end users, or (if an acquired system) anyone in the
acquisition organization. Stakeholder theory [12] will help us identify the goal-
subject(s) of a business goal, as well as help us identify people who might have
business goals to contribute. We will seek stakeholders with high “salience” [12]
from whom to elicit business goals, and record those stakeholders as the goal-
subjects.

3. Goal-object. This is the entity to which the goal applies. All goals have goal-
objects – we want something to be true about something (or someone) that (or
whom) we care about. Seen in this light, the goals cataloged throughout this paper
can all be re-elaborated by making their respective goal-objects explicit. By exam-
ining the collected goals and categories we observed in our literature survey, we
were able to discern the following goal-objects: Individual, System, Portfolio, Or-
ganization’s employees, Organization’s shareholders, Organization, Nation, and
Society. For example, for goals we would characterize as furthering one’s self-
interest, the goal-object is “Individual.” For goals we would characterize as ethical,
the goal-object can be “Nation” or “Society.” For some goals the goal-object is

 Eliciting and Capturing Business Goals to Inform a Product Line’s Business Case 401

clearly the development organization, but for some goals the goal-object can be
more refined, such as the organization’s rank-and-file employees or shareholders.
Goals with multiple goal-objects are common, but not harmful to the process of
eliciting business goals.

4. Environment. This is the context for this goal. It acts as a rationale for the goal.
A good source for this entry is the five different environmental factors of Oster-
walder and Pigneur [14] (social, legal, competitive, customer, and technological).
The goal’s environment captures what is relevant to the goal in each of these five
encompassing areas.

5. Goal. This is any business goal able to be articulated by the person being inter-
viewed.

6. Goal-measure. This is a measurement to determine how one would know if the
goal has been achieved.

7. Value. This is how much the goal is worth. It might be expressed in terms of
what might be willingly paid to achieve it, or a ranking against other goals in a
collection or as a range such as “high, medium, or low”.

6 A Method for Eliciting Business Goals

To elicit business goals, we crafted a seven-step method reminiscent of some of our
other workshop-oriented stakeholder-centric architecture-focused methods such as
ATAM [4]. ATAM relies on stakeholder participation and scenario generation to
gather data. The elicitation method recognizes that much of the most valuable infor-
mation is in the heads of the stakeholders rather than in documents and models, but
that the stakeholders need to be guided through the process. Stakeholders want to
share their information but they need a structured way to provide it.

A stakeholder-centric, scenario-based method requires an explicit criterion that can
be applied to the sources of scenarios to ensure a complete survey of possible goals.
For example, the CONOPS for the product line organization lists all the roles. Each
relevant role provides scenarios. The scenarios must be prioritized since there are
usually many more scenarios than time to analyze them. Finally, the method needs an
intuitive analysis method so that it can be applied quickly.

Because an outcome of the business goal elicitation method is a set of quality at-
tribute requirements with a pedigree rooted in business goals, we call our method the
Pedigree Attribute eLicitation Method (PALM). The steps of PALM are:

1. PALM overview presentation: Overview of PALM, the problem it solves, its
steps, its expected outcomes.

2. Business drivers presentation: Briefing of business drivers by project manage-
ment. What are the goals of the customer organization for this system? What are
the goals of the development organization? This is a lengthy discussion that gives
the opportunity of asking questions about the business goals as presented by pro-
ject management.

3. Architecture drivers presentation: Briefing by the architect on the driving
(shaping) business and quality attribute requirements.

4. Business goals elicitation: Using the standard business goal categories to guide
discussion, we capture the set of important business goals for this system. Business

402 P. Clements, J.D. McGregor, and L. Bass

goals are elaborated, and expressed as business goal scenarios. We consolidate al-
most-alike business goals to eliminate duplication. Participants then prioritize the
resulting set to identify the most important ones.

After step 4, one of the purposes of PALM – namely, the capture of business goals to
inform the business case – will have been discharged. The next two steps relate the
business goals to quality attribute requirements to inform the product line architecture.

5. Identifying potential quality attributes from business goals. For each impor-
tant business goal scenario, participants describe a quality attribute that (if
architected into the system) would help achieve it. If the QA is not already a re-
quirement, this is recorded as a finding.

6. Assignment of pedigree to existing quality attribute drivers. For each archi-
tectural driver named in Step 3, we identify which business goal(s) it is there to
support. If none, that's recorded as a finding. Otherwise, we establish its pedigree
by asking for the source of the quantitative part: E.g.: Why is there a 40ms per-
formance requirement? Why not 60ms? Or 80ms?

7. Exercise conclusion. This constitutes a review of results, preview of next steps,
and gathering of participant feedback.

PALM can be used to sniff out missing quality attribute requirements early in the life
cycle. For example, having stakeholders subscribe to the business goal of improving the
quality and reputation of their products may very well lead to (for example) security,
availability, and performance requirements that otherwise might not have been considered.

PALM can also be used to inform the architect of business goals that directly affect
the architecture without precipitating new requirements. For example, if an organization
has the ambition to use a product as the first offering in a new product line, this might
not affect any of the requirements for that product and therefore not merit a mention in
that product’s requirements specification. But this is a crucial piece of information that
the architect needs to know early so it can be accommodated in the design.

PALM can also be used to examine particularly difficult quality attribute requirements
to see if they can be relaxed. We know of more than one system where a
quality attribute requirement proved quite expensive to provide, and only after great effort,
money, and time were expended trying to meet it was it revealed that the requirement had
no analytic basis, but was merely someone’s best guess or fond wish at the time.

Finally, different stakeholders have different business goals for any individual system
being constructed. The acquirer may want to use the system to support their mission; the
developer may want to use the system to launch a new product line. PALM provides a
forum for these competing goals to be aired and resolved. This is especially useful in the
early stages of a product line, when the business case is being crafted.

7 Experience with PALM

We applied PALM to a system being developed by Boeing’s Air Traffic Management
unit. To preserve confidentiality, we will call this system The System Under Consid-
eration (TSUC) and summarize the exercise in brief.

 Eliciting and Capturing Business Goals to Inform a Product Line’s Business Case 403

TSUC will provide certain on-line services to the airline companies to help im-
prove the efficiency of their fleet. Thus, there are two classes of stakeholders for
TSUC – Boeing and the airline companies. The stakeholders present when we used
PALM were the chief architect and the project manager for PALM.

Some of the main goals that were uncovered during this use of PALM were:

• Impact of the system both on the user community and the developer
community

• TSUC was viewed as the first system in a future product line.
• The lifetime of TSUC in light of future directions of regulations affect-

ing air traffic.
• The possibility of TSUC being sold to additional markets.
• Governance strategy for the TSUC product.

The exercise helped the chief architect and the project manager share the same vision
for TSUC, such as its place as the first instance in a product line and the architectural
and look-and-feel issues that flow from that decision.

The ten canonical business goals ended up bringing about discussions that were
wide ranging and, we assert, raised important issues unlikely to have been thought of
otherwise. Even though the goal categories are quite abstract and unfocussed, they
were successful in triggering discussions that were relevant to TSUC. The result of
each of these discussions was the capture of a specific business goal relevant to
TSUC.

8 Related work

Two related communities already use scenarios to capture business goals: The Archi-
tecture Development Method of The Open Group Architecture Framework (TOGAF)
[17] includes a treatment of business scenarios, which is their vehicle for capturing
and expressing business goals..

Techniques such as goal-oriented requirements engineering [3][18] are well-
positioned to gather and manage the relation between goals and requirements but
goal-oriented requirements engineering methods tend to be heavyweight and do not
provide a canonical set of business goals from which to begin.

Kazman and Bass [11] presented an early study in which a categorization of busi-
ness goals was created. The categories were formed by looking at the business goals
derived from twenty-five applications of the Architecture TradeOff Analysis Method
(ATAM). These were the starting point for the categorization developed for PALM.

Nord et al. described how to integrate the ATAM and CBAM techniques. The
CBAM and ATAM techniques both elicit scenarios form stakeholders. Many of these
reflect the business goals of the organization for which the architecture is designed.

Evellin et al. [9] reported that using a catalog of non-functional requirements dur-
ing business goals elicitation resulted in the identification of some goals that had not
been discovered. They did not relate these to the software architecture. Rosen [16]
explains the importance of business analysis, and hence business goals, to the success
of a project. He lists questions that a software architect should have in mind when
participating in the development of a business model.

404 P. Clements, J.D. McGregor, and L. Bass

PALM provides a more comprehensive approach than other techniques. It is not a
complete business analysis method but it is complete with respect to the elicitation of
business goals and is lighter weight than many of the goal-oriented requirements
engineering methods.

9 Conclusions

Systematically eliciting and capturing business goals for a system is eminently useful
in crafting a product line’s business case as well as its architecture. PALM is a
method for doing so. For the product line architect, PALM goes on to tie the business
goals to quality attribute requirements that would lead to systems that satisfy those
goals. PALM can help identify quality attributes that are missing, or are superfluous
or too restrictive.

Business goals are not always written down in an accessible fashion; many times
they’re implicit and have never been identified. The business goal categories at the
heart of PALM serve as elicitation aids or “conversation starters.” You can use these
categories to draw out an organization’s specific goals (if any) in each category, using
the business goal scenario format to capture them. Then you can ask how the strategy
being explored in the business case (such as adopting the product line approach) could
contribute to each goal using SIMPLE to help make quantitative judgments.

PALM was applied to an industrial system in the air traffic domain and helped elicit
specific quality attribute requirements that might otherwise have been overlooked. The
architecture community has identified architecturally significant requirements as those
requirements that will most heavily influence the design of the architecture. Architectur-
ally significant requirements must support high priority business goals or there is no
reason to focus on them when designing the architecture. The output of PALM becomes
immediately useful to the architect.

References

[1] How to Develop an IT Business Case. RMS Business Skills Training. Resource Man-
agement Systems, Inc., New York (2003), http://www.rms.net

[2] A Framework for Software Product Line Practice, Version 5.0,
 http://www.sei.cmu.edu/productlines/frame_report/index.html

[3] Anton, A., McCracken, W., Potts, C.: Goal Decomposition and Scenario Analysis in
Business Process Reengineering. In: Wijers, G., Wasserman, T., Brinkkemper, S. (eds.)
CAiSE 1994. LNCS, vol. 811. Springer, Heidelberg (1994)

[4] Bass, L., Clements, P., Kazman, R.: Software Architecture in Practice. Addison-Wesley,
Reading (2003)

[5] Clements, P., Bass, L.: Relating Business Goals to Architecturally Significant Require-
ments for Software Systems (CMU/SEI-2009-TN-026). Software Engineering Institute,
Carnegie Mellon University, Pittsburgh, PA (2009) (forthcoming)

[6] Clements, P., Northrop, L.: Software Product Lines: Practices and Patterns. Addison-
Wesley, Reading (2002)

 Eliciting and Capturing Business Goals to Inform a Product Line’s Business Case 405

[7] Clements, P.C., McGregor, J.D., Cohen, S.G.: The Structured Intuitive Model for Product
Line Economics (SIMPLE) (CMU/SEI-2005-TR-003). Software Engineering Institute,
Carnegie Mellon University, Pittsburgh, PA (2005)

[8] Cohen, S.: Case Study: Building and Communicating a Business Case for a DoD Product
Line (CMU/SEI-2001-TN-020, ADA395155). Software Engineering Institute, Carnegie
Mellon University, Pittsburgh, PA (2001)

[9] Evellin, C.S., Cardoso, J., Almeida, P., Guizzardi, G., Renata, S.: Eliciting Goals for
Business Process Models with Non-Functional Requirements Catalogues. In: Halpin, T.,
Krogstie, J., Nurcan, S., Proper, E., Schmidt, R., Soffer, P., Ukor, R. (eds.) Enterprise,
Business-Process and Information Systems Modeling. LNBIP, vol. 29 (2009)

[10] Jensen, P.: Experiences with Product Line Development of Multi-Discipline Analysis
Software at Overwatch Textron Systems. In: Proceedings of the 11th International Soft-
ware Product Line Conference, Kyoto, Japan, September 10-14, pp. 35–43. IEEE Com-
puter Society, Washington (2007)

[11] Kazman, R., Bass, L.: Categorizing Business Goals for Software Architectures,
CMU/SEI-2005-TR-021 (2005)

[12] Mitchell, R.K., Agle, B.R., Wood, D.J.: Toward a Theory of Stakeholder Identification
and Salience: Defining the Principle of Who and What Really Counts. The Academy of
Management Review 22(4), 853–886 (1997),

 http://www.jstor.org/stable/259247
[13] Nord, R., Barbacci, M., Clements, P., Kazman, R., Klein, M., O’Brien, L., Tomayko, J.:

Integrating the Architecture Tradeoff Analysis Method (ATAM) with the Cost Benefit
Analysis Method (CBAM), CMU/SEI-2003-TN-038, Software Engineering Institute
(2003)

[14] Osterwalder, A., Pigneur, Y.: An ontology for e-business models. In: Currie, W. (ed.)
Value Creation from e-Business Models, pp. 65–97. Butterworth-Heinemann, Oxford
(2004)

[15] Porter, M.E.: Competitive Strategy. Free Press, New York (2004)
[16] Rosen, M.: The Role of Architecture in Business Analysis,

 http://msdn.microsoft.com/en-us/library/bb508953.aspx
[17] The Open Group, The Open Group Architecture Framework (TOFAF), Version 9,

http://www.opengroup.org/togaf/
[18] van Lamsweerde, A.: Goal-Oriented Requirements Engineering: A Guided Tour. In: Pro-

ceedings, RE 2001, 5th Intl. IEEE Symposium on Requirements Engineering, Toronto,
pp. 249–268 (August 2001)

J. Bosch and J. Lee (Eds.): SPLC 2010, LNCS 6287, pp. 406–419, 2010.
© Springer-Verlag Berlin Heidelberg 2010

Aligning Business and Technical Strategies for Software
Product Lines

Mike Mannion1 and Juha Savolainen2

1 Glasgow Caledonian University, 70 Cowcaddens Road, Glasgow, G4 0BA, UK
m.a.g.mannion@gcu.ac.uk

2 Nokia Research Center, Itämerenkatu 11-13, 00180 Helsinki, Finland
juha.e.savolainen@nokia.com

Abstract. A successful software product line strategy has business goals, a
business strategy, a target market and a technical strategy that is aligned with
the business goals and the target market. A common challenge in a number of
organizations is for business and engineering units to understand what business
and technical strategy alignment actually means in practice and to maintain that
alignment as business goals and target markets evolve. If they are misaligned,
then at best significant development inefficiencies occur, and at worst there is
loss of market share. This paper explains different business and technical
strategies, describes commonly used engineering techniques to manage com-
monality and variability and their deployment under different strategies.

Keywords: Product lines, business alignment, business strategy, feature model-
ing, software architecture.

1 Introduction

A successful software product line strategy has business goals, a business strategy, a
target market and a technical strategy that is aligned with the business goals and the
target market. A common challenge in a number of organizations is for business and
engineering units is to understand what business and technical strategy alignment
actually means in practice and to maintain that alignment as business goals and target
markets evolve. If they are misaligned, then at best significant development ineffi-
ciencies occur, and at worst there is loss of market share. This paper is aimed at those
who have responsibility for the delivering the business and technical strategies and to
help them collaborate at the interface between the two.

In this paper we explain which technical strategies are broadly aligned with
which business strategies. Our view is that there are both technical and political
factors that can have an effect on this alignment. In the next section we outline
business and technical strategies. Section 3 describes several commonly used engi-
neering techniques to manage commonality and variability and discusses their de-
ployment under different technical strategies. Section 4 discusses these ideas in the
context of related work. This paper is partially based on our tutorial on aligning
business and technical strategies [14].

 Aligning Business and Technical Strategies for Software Product Lines 407

2 Software Product Line and Technical Strategies

A software product line business strategy focuses on commercial goals, products to be
developed, markets for the products and financial, marketing and sales, engineering,
and customer support strategies to underpin those choices. A corresponding technical
strategy is focused on product software development and product derivation proc-
esses, software architecture choices, design, implementation and test methods to un-
derpin those choices.

Good software product line engineering is managing commonality and variability
of a product line efficiently and effectively as it evolves. Each product is formed by
taking applicable assets from a base of common assets, tailoring them as necessary
through preplanned variation mechanisms, adding any new components that may be
necessary, and assembling the collection according to the rules of a common, product-
line-wide architecture. In theory, building a new product is more assembly than crea-
tion using a predefined guide that specifies the exact product-building approach. In
practice new products not only require new components but also new variation
mechanisms to be created either for the new components or to access existing compo-
nents in a different way. This requires a deep insight into the product line and a skill-
ful blend of engineering and management.

Cost
Leadership

Differentiation
Focus

Cost Focus

Differentiation

COMPETITIVE ADVANTAGE

Lower Cost Differentiation

Broad Market

COMPETITIVE
SCOPE

Narrow Market

Fig. 1. Competitive strategies

Michael Porter [1] identified 4 primary generic competitive business strategies
across two axes, market scope and competitive advantage (Figure 1). With a Cost
Leadership strategy an organization targets a broad market and keeps costs lower than
its rivals either selling below or at average industry prices. To implement a cost lead-
ership strategy is to reduce the feature set of the product, improve process efficien-
cies, gain unique access to a large source of lower cost materials or make optimal
outsourcing and vertical integration decisions.

With a Differentiation strategy an organization targets a broad market with a prod-
uct or service that has a unique combination of attributes that is valued by customers
more than competitors’ products, allowing a premium price to be charged, which will

408 M. Mannion and J. Savolainen

more than cover the extra costs incurred in offering the unique product. A differentia-
tion strategy is implemented by having a well-founded corporate reputation for
quality and innovation and a strong sales team with the ability to successfully com-
municate the perceived strengths of the product. Sometimes these strategies are
stretched either because an organization floods the market with a large number of
similar products relying on its brand name for sales rather than customer understand-
ing of product differences, or there is a drive towards mass-customization where each
customer receives a personalized copy of the product.

With a Cost Focus or Differentiation Focus strategy an organisation targets a narrow
market segment and within that seeks cost advantage or differentiation. It implements
this strategy by tailoring a broad range of product development strengths. The strategy
can generate high customer loyalty and act as a barrier to entry for competitors. Organi-
sations have lower volumes and therefore less bargaining power with their suppliers
although organisations pursuing a differentiation-focused strategy may be able to pass
higher costs on to customers since close substitute products do not exist.

Fig. 2. Business Strategies and Technical Strategies

Figure 2 shows a set of technical strategies that are commonly aligned with product
line strategies: no reuse, possibly reuse, operational excellence, product leadership
and customer understanding (we have borrowed the last three terms from Tracy &
Wisrsema‘s types of value discipline [2]).

When the primary generic competitive strategy is Cost Leadership the emphasis for
the product development team is on maximizing the reuse of common assets more than
permitting variation. New products are typically constructed by small changes to an
existing product. Over a period of time a new product assumes its own maintenance
trajectory separate from other products, there is little or no product line or reuse, and the
technical strategy is effectively single-system development with some reuse.

Under Cost Focus, a small set of product features are tailored to the needs of the
market segment. A common technical strategy is to concentrate on making the prod-
uct operationally excellent through the development of a common reference archi-
tecture, a set of components that are used in each product and few variations. This
confines the locus of changes, reducing costs and delivering value-for-money.

 Aligning Business and Technical Strategies for Software Product Lines 409

When the primary generic competitive strategy is Differentiation the emphasis is
on adding product feature combinations (at competitive prices) that rivals do not have
i.e. permitting variation rather than focusing on reuse. A common technical strategy
is product-specific architecture-centric, high variation management, asset-based reuse.
Under Differentiation Focus the shape of this technical strategy will be a function of
the amount of variation to be managed. In product leadership the focus is on deliv-
ering feature variations that enable the product line to maintain its brand image as a
market innovator and hence leader. In customer understanding the focus is on cre-
ating customized product variants. At the extreme of product leadership, an organiza-
tion may simply generate a large number of product variants that are actually very
similar but overwhelm the market, and rely more on the brand of the organization for
sales and less on understanding the differences across the product set. At the extreme
of customer responsiveness is mass-customization in which the goal is to create cus-
tomized product variants and each customer receives a personalized copy of the prod-
uct. At both extremes variability management becomes less centralized and each
product has its own configuration of components.

3 Techniques for Managing Commonality and Variability

A number of techniques for managing commonality and variability exist. The choice
of technical strategy within which these techniques are deployed has a clear effect on
the characteristics of this deployment. This section describes 3 popular techniques for
managing commonality and variability and discusses their characteristics under the 3
different technical strategies shown in Figure 2.

3.1 Management of Commonality

Commonality provides the basis for reuse. Similarities among a set of products per-
mit economic benefits to be achieved by sharing common parts between products.
Whilst the identification of commonality often appears to be straightforward, its engi-
neering must be carefully managed. Over time what is common can become variable
and what is variable can become common. In [3] we categorized features into three
different categories based on how they are shared among products:

• Common features that are required by all product line variants
• Partial features that are required by some of the product line variants
• Unique features that are requirement by exactly one product line variant

The categorization of the wanted product selections provides the basis for required
variability. However, depending on the business strategy the required variability is
differently converted to provided variability that is represented by the feature types,
which constrain how the variability can be realized. Operational excellence tries to
reduce costs by increasing commonality, customer understanding intends to increase
differentiation by increasing variability, and product leadership aims to balance the
commonality and variability aspects.

410 M. Mannion and J. Savolainen

Fig. 3. Commonality categorization with increasing cost towards right [4]

Previously [4] we showed that typical product lines have many levels of common-
ality that differ from their evolution characteristics and the overall cost of commonal-
ity to the product line. Figure 3 shows a commonality categorization.

The least cost form of commonality is one that is not modeled or managed. We
use the term implicit commonality for this purpose i.e. commonality not shown in
feature trees or any other artifacts because it is not managed centrally and used as is.
Commonality can be also managed as mandatory features. Mandatory features re-
quire effort during the analysis process and their management in a feature model is
more costly then implicit commonality.

Considerable costs are incurred if mandatory features are attached to a variation
point. A variation point is sometimes needed if a feature has been variable before or
is potentially variable. Variability points are expensive, partly because the mecha-
nisms to handle the potential variability must be analyzed, designed, and imple-
mented. Optional features represent variability, but can also support commonality.
An optional feature can be common to some products, thus expressing commonality
among the set of products that share this feature.

When the technical strategy is operational excellence all common features are re-
used always together. If a unique feature is highly valuable for a product, it is devel-
oped independently for the product, and not considered for reuse. If a unique feature
is not highly valuable then it is ignored and not implemented. If a partial feature is
highly valuable for a product, it is developed and reused in all products. If a partial
feature is not highly valuable then it is also ignored and not implemented. As a con-
sequence, some products will have these features even if they did not originally
require these features. Under operational excellence most features have implicit com-
monality to minimize cumulative costs from analysis, development and derivation.
Mandatory features with variation points should be avoided because all features
should be either strictly mandatory or optional and used only by one product.

When the technical strategy is product leadership all features are viewed as po-
tentially reusable. Common features shared by all products become mandatory fea-
tures. New features are typically introduced as unique, optional features in order to
maximize the revenue from these new features, but shortly shared with a number of

 Aligning Business and Technical Strategies for Software Product Lines 411

products increase volumes by adding the new feature to new price points. Over time,
partial features tend to dominate as most features are common to some products (near
commonality [5]) and only a few features are common to all or unique to one. Under
product leadership the focus is on the evolution of variability. Ideally product leader-
ship tries to benefit from the differentiating value of new features by introducing them
in limited products, but also to achieve low cost by sharing common features. In
Figure 3 the selection property of most features drifts from right to left over time e.g.
optional features tend to become mandatory.

When the technical strategy is customer understanding unique features are intro-
duced to make products different from each other in ways that are valuable for users.
This approach has an impact on the inclusion of partial features. Sometimes, a product
may be prevented from including a feature that is already a differentiating feature for
another product [6]. Common features are still allowed for cost reduction reasons.
When using a customer understanding strategy, a large amount of optional features are
needed to realize the needed variations in the customer requirements. If this strategy is
used to full effect then optional features are only combined with implicit commonality.

3.2 Feature modeling

Feature modeling is a popular approach to manage and visualize commonality and
variability in a product line. There are a number of ways to perform feature decom-
position. Whilst functional decomposition is very popular other approaches can be
used to determine or at least influence decomposition. These include the infrastruc-
ture (e.g. structure, interfaces, platform, licenses) of available software and hardware
assets; the organizational structure and staff capability, and the business strategy
adopted by the organization for the product line, the product line’s relative importance
to the organisation’s business and the corresponding resource priorities that are allo-
cated. Over the lifetime of a product line several factors interact with each other.

While a number of different feature modeling methods have been published, in this
paper we use simple feature trees to visualize various effects that different business
strategies may have on the structure and variability in the feature models. The nota-
tion is the same as used in our previous work [7]. Mandatory features are always
selected if their parents are selected (in all examples we assume this). An optional
feature may or may not be selected. From a set of alternative features, one must se-
lect one and only one. From a set of multiple features, at least one must be selected
but more than one can be selected.

Given a product line model of features, it is possible to select the features for a new
instance of the product line from this model. There are two primary methods of selec-
tion of features [8]. Free selection allows an engineer to browse a product line model
and simply copy and paste a single feature from anywhere in the model to the new
product features. It does not use the constraints built into the model structure to guide
model traversal and can lead to selection combinations being made that do not satisfy
the constraints of the product line model, e.g. two mutually exclusive features can be
selected or features that must be included can be omitted. In addition there can be an
untenable number of choices making single product specifications time-consuming to
select and check that they are free of errors.

412 M. Mannion and J. Savolainen

An alternative method to free selection is constraint-based selection, which is
grounded in using the constraints built into the product line model to drive selection
and permits choices to be made only at variation points. This ensures that the choices
produce a set of single product features that satisfy the constraints built into the prod-
uct line model and reduces the time spent on specification. Before the feature selec-
tion process begins, the values of global parameters are defined and all unavailable
features and their descendents are made not selectable. Then starting from the root of
the feature model, each tree is traversed depth-first and selected features are added to
the new product. During traversal not every feature will be visited. Visitation will
depend on prior selection.

Fig. 4. A feature model for a product line using operational excellence business strategy

Since operational excellence targets implicit commonality, the modeling of man-
datory features in a feature tree is not typically used. Rather a simple list of features
is sufficient. However, to demonstrate the differences in business strategies the exam-
ple in Figure 4 is shown. In Figure 4, all other features except the product specific
features are mandatory. At the extreme, this strategy supports only a single set of
alternative features from which each product can choose one and only one. In most
product lines this extreme is rare and most products can have more than one unique
feature. Typically, no selection of features is required when utilizing operational
excellence. All mandatory features are reused by default and product specific features
are developed by the product programs. However, if more then one unique or even
some partial features are allowed then constraint-based selection may become useful.

Under Product leadership all possible variability is in the feature model and there
is an assumption that this variability will change during the product line evolution.
The intention is to realize all reuse opportunities, also in partial features.

To simplify the constraint-based selection process a default value is a property that
can be attached to an optional feature to indicate whether the feature is by default
selected or not. A feature that is selected by default is called excludable (i.e. it does
not have to be explicitly selected to be included in the new product) and one that is by

 Aligning Business and Technical Strategies for Software Product Lines 413

Fig. 5. A feature model for a product line using product leadership business strategy

default not selected includable (i.e. it has to be explicitly selected to be included in the
new product). In Figure 5, excludable features are tagged with [ON] and includable
features with [OFF].

By a careful use of default values, one can decrease the effort needed in selecting
features during derivation. Each time one needs to override a default value, additional
effort is naturally needed. Default values can be attached to more complex variability
types. One feature from a set of mutually exclusive features can be excludable
whereas others can be includable. In addition, a set of multiple features (must select
one, but can select many) may contain many excludable features. Products will select
features using constraint-based selection and default values will make that selection
efficient.

A company that uses a customer understanding strategy may not use feature trees
at all if the number of constraints on the variability is low. If a feature tree is used,
then it is typically dominated by optional and multiple features. Default values are
normally not very useful since products do not share similar selections, because they
can be very different and try to prevent unnecessary sharing of features. Free selec-
tion is the most appropriate method for products to select features.

3.3 Feature Dependency Management and the Software Architecture

Feature dependency management deals with the functional and implementation de-
pendencies among features. These dependencies have a major impact on how features
can be realized through software architecture. When deploying features to the archi-
tecture, the dependencies between features become the dependencies between archi-
tectural elements.

A typical approach to achieve operational excellence is through architecture using a
product platform approach for product lines. All common features are placed in the
platform and reused together in all the products. Products may independently create
differentiating functionality on top of the platform. Figure 5 shows a mobile phone
product platform in which the common features are SMS, an MP3 players, Multimedia

414 M. Mannion and J. Savolainen

Fig. 6. Platform architecture

Services and EDGE (fast data transfer on 2G networks). However each of products V1,
V2 and V3 require distinctive features. The reader should note that a typical product
platform would have many more features as a part of the platform compared to number
of variable features than what is described in this example.

Product platforms are used to maximize the coverage of common features, which
are always selected and reused by all the products. Only those features that provide a
great incentive for individual products will be independently developed beyond the
platform.

One consequence of a platform-based approach is that reuse opportunities from
partial features are typically ignored or undervalued. One way of reusing partial fea-
tures is to introduce optional features to the platform. The benefits of the platform
approach start to reduce rapidly after introducing optional features to the platform.
Eventually this may lead to abandoning the platform approach for its alternatives. A
technical decision to abandon the platform approach must be aligned with the busi-
ness strategy. Otherwise the only result will be increased cost of developing products
without any benefits.

Since the platform is always used as is the product derivation costs are minimal.
Another reduction in cost happens because dependency management in the platform
approach is easy. In theory, there are no restrictions on dependencies within the plat-
form. The only restriction is that the product can depend on the platform, but the
platform cannot depend on the products.

Having no restrictions on the dependencies within the platform allows very effi-
cient implementation of new features, potentially reducing the overheads that various
abstraction layers, hierarchical component invocations could be. However, if the
functionality of the platform needs to be evolved often then costs may rapidly in-
crease. Therefore, typically e.g. circular dependencies should be avoided also within
the platform and stable interfaces should be aimed. This would also make easier to
add new functionality to the platform itself.

Product leadership requires an architecture that can handle the variability while
still getting the benefits from reuse. The chosen architecture depends often on the
background of the product line. If the company has the background of platform based
development then it is possible to try to extend the approach by introducing either
more layers or components on top of the basic product platform.

 Aligning Business and Technical Strategies for Software Product Lines 415

Fig. 7. Platform architecture evolving towards shared asset based reuse

Figure 7 shows a layer for shared but not common-to-all assets introduced on top
of the product platform. Components in this new layer are selected by the products
based on the features that these components support and most products (V2 and V3 in
Figure 7) are built only by making these selections. Some products (V1 in Figure 7)
may still create product specific functionality on top of the shared components and the
platform. When the number of products increases and the scope of the product line is
enlarged the common product platform may disappear and all components become
centrally shared assets from which products may make selections.

Feature dependency modeling is driven by ability to make selections i.e. each
product gets all the features that it has explicitly selected and nothing else. Not hav-
ing excess features is especially important in embedded products that are mass-
produced, where the bill of materials can be the deciding factor in the success of the
product line. The limitations on how shared components can be connected together
both restricts the selections as well as reduces the overall cost since the architecture
can be based on some stable ground.

When the number of desired combinations of features increases and the number of
truly common features becomes very small, a change to compositional development
may be a choice. A shared asset-based approach with centralized variability man-
agement seems to work best when combined with a good reference architecture. If the
product selections do not cluster, then creating a common reference architecture may
be close to impossible. This can happen because the company uses a customer
understanding business strategy. That is, the whole intent is to exactly match the
customer needs even if it limits the ability to reuse or hinders the ability to create
efficient a reuse infrastructure. Ultimately this may lead to stopping reuse altogether
if no such low value elements exist that do not negatively affect the differentiation. In
practice, we have not seen examples that have completely ignored reuse after starting
using the product lines.

416 M. Mannion and J. Savolainen

Table 1. Summary

Engineering
technique

Operational Excellence Product Leadership Customer
Understanding

Management
of
commonality

Mostly common features Mostly partial features Mostly unique
features

Feature
Modelling

Graphical model of small
number of variable fea-
tures. Product derivation
by constraint-based
selection.

Graphical model of large
number of variable features
(with default values).
Product derivation by
constraint-based selection.

No graphical
model - too much
variability.
Product derivation
by free selection.

Feature
Dependency
Management
& Software
Architecture

Common reference archi-
tecture needs manage
little variability.

Common reference archi-
tecture needs manage a lot
of variability.

No common
reference
architecture

Table 1 summarises the combination of engineering techniques and their properties

under different technical strategies. The list of engineering techniques is illustrative
based on our experience but is not exhaustive. Other techniques which may be used
by an organization can be added as appropriate. The choice of technical strategy
within which these techniques are deployed has a clear effect on the characteristics of
this deployment. In turn, the actual deployment of a given engineering technique can
be compared to what one might expect for a given technical strategy. Such a table
can be valuable when reviewing overall project progress, reflecting on the alignment
of the business and technical strategies and understanding whether the choice of engi-
neering technique and its deployment are broadly in alignment with the choice of
technical strategy. If there is significant deviation then the table can also be used as a
tool to support the evaluation of whether the deviation is significant and what the
impact is in terms of the risk of misalignment, whether it needs to be managed and
how. Misalignment can and does occur over time for several reasons including: the
development team not always being clear about the business strategy through poor or
infrequent communications, new emergent engineering tools and technologies being
deployed within a technical strategy that have a detrimental impact on existing prod-
uct line solutions, and loss of product line expertise as senior staff changes occur as
people change jobs. In addition, based on our experiences, one of the most frequent
sources of misalignment is the previous success in software reuse in a different part of
the organization. If one particular technical strategy is successfully used once, there
is a organizational tendency to deploy that strategy again --- the assumption being that
since it worked well last time, there appears to be no reason why it will not work
again. This is fine if the business strategy used for all these different product lines is
identical. However, if the business strategy is different, then misalignment is likely to
occur.

In addition, apart from the deep technical issues that can cause business and tech-
nical strategies to be misaligned there are also some broader political factors that have

 Aligning Business and Technical Strategies for Software Product Lines 417

to be regularly monitored and managed. In previous work [13] we identified two
examples in which the manipulative and often subtle manipulation of the technical
strategy can cause a significant drift from the intended business strategy. First, tyr-
anny of reuse occurs when maximizing reuse is the dominant technical priority re-
gardless of what might be the best solution for a particular product or the product line.
Emphasis is placed on ensuring all products use every reusable component, common
user interface guidelines, standard interfaces leading to a common structure and be-
haviour to all products, and differentiation between the products is reduced. Second,
local product optimization occurs when a product manager or product team priorities
its own product or set of products over the corporate business needs. Within a very
broad product line, e.g. a mobile phone, there are often sub-product lines of particular
products, each with its own product manager and each manager wants to have a suc-
cessful product. If performance success is measured by the number of products sold
and this measure singularly dominates managerial performance evaluations, then this
can lead to a poorly optimized product portfolio.

In presenting these ideas we recognize that there are a number of outstanding chal-
lenges including:

• the choice of business strategy types may need to be refined to suit different prod-
uct line organizations

• the list of factors we have identified is not exhaustive and there will be other tech-
nical, political, financial and social ones

• what types of misalignment are there, what are the risks of misalignment and how
can they be managed ?

• what combinations of factors appear to have a greater impact than others on ensur-
ing alignment ?

• when, how, with what frequency should strategy alignment be evaluated ?
• what practical and realistic steps can be taken to manage misalignment?

4 Related Work

In [9] the influence of a number of key business factors in managing a successful
software product line was demonstrated empirically through a quantitative survey of
software organizations involved in the business of developing software product lines
over a wide range of operations, including consumer electronics, telecommunications,
avionics, and information technology.

In [10] a software product line engineering evaluation framework was presented
that consisted of four dimensions: business, architecture, organisation and process.
The purpose of the framework is to generate an evaluation profile that can serve as
benchmark for effective software product line engineering, support capability evalua-
tions of software production teams and aid the development of software product line
engineering improvements plans. Zubrow and Chastek [11] listed a number of
evaluation categories that are of interest to a product line manager, a core asset devel-
opment manager, and a product development manager. Under each category, a broad
set of measures is defined that returns information about performance (measuring
cost, schedule, and quality of product efforts), compliance (measuring the adherence

418 M. Mannion and J. Savolainen

of the product line effort to established procedures and processes), and effectiveness
(characterizing how the overall product line effort is meeting its goals).

In [12] a production strategy describes how product line practices should be em-
ployed so that a product line organization will achieve its production goals. A pro-
duction strategy is derived from an organization’s business strategy. It is generated
by eliciting and documenting an organization’s requirements for the production sys-
tem as a series of scenarios, identifying the production factors critical to the success
of the organization’s product line, identifying strategic actions that will address those
critical factors, refining the strategic actions into a coherent strategy based on estab-
lished business strategy development techniques, and strategy evaluation.

Whilst these broad frameworks are very useful contributions to they do not drive
down into the detail of how the choice of a particular business strategy can affect or
be affected by different engineering techniques that are used for managing commonal-
ity and variability. Our experience is that as a product line evolves this level of prac-
tical detail becomes important as tangible evidence for understanding, evaluating and
managing the extent to which business and technical strategy alignment are in place.

5 Conclusion

A successful software product line is usually one in which there are clear business
goals, a business strategy, a target market and a technical strategy that is aligned with
all of these. This paper explains different business and technical strategies and shows
how they should be broadly aligned. The paper then describes some commonly used
engineering techniques to manage commonality and variability, and then explains
how these techniques should broadly be deployed under the different technical strate-
gies. The subsequent mapping between technical strategy and engineering technique
can be a useful framework for evaluating whether the choice of business strategy and
the implementation of a selected technical strategy remain aligned. If they are mis-
aligned, then at best significant development inefficiencies occur, and at worst there is
loss of market share.

References

1. Porter, M.: Competitive Strategy: Techniques for Analysing Industries and Competitors.
The Free Press, New York (1980)

2. Treacy, M., Wisrsema, F.: The Discipline of Market Leaders: Choose Your Customers,
Narrow Your Focus, Dominate Your Market. Perseus Books, Cambridge (1997)

3. Savolainen, J., Kuusala, J.: Consistency Management of Product Line Requirements. In:
Proceedings of 5th IEEE International Symposium on Requirements Engineering (RE
2001), Toronto, Canada, August 27-31, pp. 40–47. IEEE Computer Society, Los Alamitos
(2001) ISBN 0-7695-1125-2

4. Savolainen, J., Bosch, J., Kuusela, J., Männistö, T.: Default Values for Improved Product
Line Management. In: Proceedings of the Software Product Line Conference (SPLC), pp.
51–60 (2009)

5. Lutz, R.R.: Toward Safe Reuse of Product Family Specifications. In: Symposium on Soft-
ware Reusability (SSR 1999), pp. 17–26. ACM Press, New York (1999)

 Aligning Business and Technical Strategies for Software Product Lines 419

6. Savolainen, J., Kauppinen, M., Mannist, T.: Identifying Key Requirements for a New
Product Line. In: Proceedings of 14th Asia-Pacific Software Engineering Conference
(APSEC 2007), Nagoya, Aichi, Japan, December 04 (2007) ISBN: 0-7695-3057-5

7. Ferber, S., Haag, Savolainen, J.: Feature Interaction and Dependencies: Modeling Features
for Reengineering a Legacy Product Line. In: Chastek, G.J. (ed.) SPLC 2002. LNCS,
vol. 2379, pp. 235–256. Springer, Heidelberg (2002)

8. Mannion, M., Kaindl, H.: Using Parameters and Discriminants for Product Line Require-
ments. Systems Engineering 11(1), 61–80 (2008)

9. Ahmed, F., Fernando Capretz, L.: Managing the business of software product line: An em-
pirical investigation of key business factors. Information and Software Technology 49,
194–208 (2007)

10. van der Linden, F., Bosch, J., Kamsties, E., Känsälä, K., Obbink, H.: Software Product
Family Evaluation. In: Nord, R.L. (ed.) SPLC 2004. LNCS, vol. 3154, pp. 110–129.
Springer, Heidelberg (2004)

11. Zubrow, D., Chastek, G.: Measures for Software Product Lines (CMU/SEI-2003-TN-031).
Software Engineering Institute, Carnegie Mellon University, Pittsburgh, PA (2003)

12. Chastek, G., Donohoe, P., McGregor, J.: Formulation of a Production Strategy for a Soft-
ware Product Line, Technical Note (August 2009), CMU/SEI-2009-TN-025

13. Savolainen, J., Kuusela, J., Mannion, M., Vehkomäki, T.: Combining Different Product
Line Models to Balance Needs of Product Differentiation and Reuse. In: Mei, H. (ed.)
ICSR 2008. LNCS, vol. 5030, pp. 116–129. Springer, Heidelberg (2008) ISBN 978-3-540-
68062-8

14. Savolainen, J., Mannion, M.: From product line requirements to product line architecture:
optimizing industrial product lines for new competitive advantage. In: Proceedings of the
13th International Software Product Line Conference, p. 315 (2009)

Non-clausal Encoding of Feature Diagram for
Automated Diagnosis

Shin Nakajima

National Institute of Informatics

Tokyo, Japan

nkjm@nii.ac.jp

Abstract. Automated support for finding unsatisfiable fragments is de-

sirable to help removing deficiency in inconsistent feature diagrams. In

encoding feature diagrams into propositional logic formulas, such a prob-

lem reduces to finding unsatisfiable cores. Standard algorithms work on

clausal formulas, which looses the structural aspect of feature diagram.

In this paper, we propose a new automated method, which employs

a boolean constraint propagation algorithm for non-clausal formulas.

The method can eliminate the problems in the previous approaches,

where translation back and forth is required between feature diagram

and clausal formulas.

Keywords: FODA Feature Diagrams, Unsatisfiability Checking, Non-

clausal Formulas.

1 Introduction

Feature diagram, proposed in Feature Oriented Domain Analysis (FODA) [4],
is a primary modeling notation in feature analysis. Various approaches to auto-
mated analysis of feature diagram have been studied [2]. M. Mannion [6] pro-
posed the idea of connecting propositional logic formulas to feature diagrams.
D. Benavides et al [2] transformed an invalid feature diagram into a Constraint
Satisfaction Problem (CSP) in linear integer arithmetic domain, and solved it
with Constraint Logic Programming (CLP). Such methods are now matured so
that tool-supported automated analysis is possible, and one such tool is reported
in [7]. Automated support for locating bugs in feature diagrams becomes one of
the important issues [1][8][9].

In encoding feature diagrams into propositional logic, the consistency analy-
sis problem turns to be satisfiability checking and the problem of locating bugs
reduces to finding unsatisfiable cores in the formula. Standard algorithms, how-
ever, work on clausal formulas [5], which looses the structural aspect of feature
diagram. Translation back and forth is required between feature diagram and
clausal formulas. A lot of book-keeping is needed to extract unsatisfiable frag-
ments from the conflict clauses.

In this paper, we propose a new method of automated bug location, which
employs a boolean constraint propagation (BCP) algorithm for non-clausal for-
mulas. We concentrate ourselves on the automated bug location problem. In

J. Bosch and J. Lee (Eds.): SPLC 2010, LNCS 6287, pp. 420–424, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Non-clausal Encoding of Feature Diagram for Automated Diagnosis 421

particular, we discuss how the structural aspect and a piece of information ob-
tained in the editing are used in designing the algorithm.

2 Propositional Logic-Based Analysis

In propositional logic-based methods, each primitive relationship is translated
into a formula (γn) [2]. A whole feature diagram is a conjunction of such formulas;
Γ =

∧
n γn. The problem of consistency or validation checking turns to be that

of satisfiability, |= Γ . It results in being unsatisfiable when the given feature
diagram is invalid.

Generally, an unsatisfiable formula has a set of mutually inconsistent sub-
formulas, namely unsatisfiable cores. A candidate to retract can be found from
such cores. If the cores are minimal, bugs can be located in a pin-point manner.
However, calculating the minimal unsatisfiable core for propositional logic for-
mula is hard; it is a coNP problem, and hence, only heuristics-based approaches
have been used to deal with it.

Standard algorithms for the check work on clausal formulas or Conjunctive
Normal Form (CNF), and require a translation of Γ into CNF with a standard
Tseitin’s encoding method [5]. Although the translation is possible in princi-
ple,some drawbacks are known due to the semantic gap between the problem
and CNF. The conversion entails a considerable loss of information about the
problem’s structure such as the graph view of feature diagram. Furthermore,
extracting a piece of information needed for locating bugs becomes hard since
lots of new propositional variables are introduced in the Tseitin’s encoding.

3 Proposed Approach

3.1 Analysis Problem

In order to eliminate the problems in the previous approaches, we propose to
use Boolean Constraint Propagation (BCP) algorithm for non-clausal formulas.
The algorithm works directly on Γ , a conjunction of γn.

Each γn represents a fragment in the given feature diagram and thus Γ , not
in CNF, faithfully reflects the problem. When some of γk’s are identified in
unsatisfiable cores, those corresponding features in the original diagram can be
concluded readily in unsatisfiable fragments. Table 1 shows how each primitive
relationship of feature diagram in [3] is represented in Disjunctive Normal Form
(DNF). These can easily be extended to a super-feature that has more than two
sub-features.

The translation from the standard form [2] to DNF is easily done by using
equivalence relationships such as de Morgan’s rules. Note that the translation is
local in that each γn in the original formula is converted to γ′

n in DNF without
affecting any other fragments; namely the structure is preserved.

∧
n γn =

∧
n γ′

n, γ′
n =

∨
i(

∧
j lni,j),

The suffix n of lni,j denotes that such a DNF formula is obtained from a particular
primitive n.

422 S. Nakajima

3.2 Constraint Propagation Algorithm

We present the algorithm for finding unsatisfiable core. Furthermore, we assume
that Γ (=

∧
n γ′

n) is unsatisfiable. Such satisfiability or unsatisfiability can be
ensured with the technique such as the one presented in [7].

Modern SAT solvers to implement extensions of DPLL algorithm introduce
certain heuristics used in unit propagation [5]. It basically selects a candidate
clause to which the current propositional values are tried to see if it is satisfied.
Such heuristics are important because each propositional variable or an atom
appears in many sub-formulas in the given large CNF. Contrary to such general
cases, our problem can be simplified by making use of the graph structure of
feature diagram.

In our encoding, a propositional variable appears only in a small number of
γ′

ns, and those formulas are readily identified by considering the graph structural
aspect. The propagation can be easy just to look at the features connecting with
the edges in the graph.

The formulas are attached to each feature node in the diagram. Each node n
has a formula αn

j , βn
i , and δn; αn

j is a constraint condition corresponding to the
attributes of n when it is a super feature of more than one sub-features, and βn

i

represents a composition rule. δn is true for a selected feature including the root
and false for a de-selected one.

Figure 1 shows the propagation algorithm. It starts at a given start feature
to traverse the graph in a breadth-first manner to find unsatisfiable formula γ′

n.
Since the whole diagram Γ is a conjunction of γ′

n, the algorithm succeeds when
it finds at least one such unsatisfiable formula.

The algorithm uses four global variables. Q is a FIFO-queue to store feature
nodes to be explored in a breadth-first manner. V is a Set to contain features
whose associated formulas have been already explored, and W is a FIFO-queue
to maintain features whose formulas have been under-constraint. S is a Set to
store feature nodes in unsatisfiable core.

In Figure 1, formulas(P) returns a set of formulas to contain P. It first
constructs a conjunct consisting of all such formulas, δP ∧βP ∧αsuper(P)∧αP ,
and translates it to a set of DNF formula (see Table 1).

Table 1. Disjunctive Normal Forms

(a) Mandatory A0∧B0 ∨ ¬A0∧¬B0
(b) Alternative A0∧B1∧¬B2 ∨ A0∧¬B1∧B2 ∨ ¬A0∧¬B1∧¬B2
(c) Or A0∧B1 ∨ A0∧B2 ∨ ¬A0∧¬B1∧¬B2
(d) Optional A0 ∨ ¬B1
(e) Opt. Alt. A0∧¬B1 ∨ A0∧¬B2 ∨ ¬B1∧¬B2
(f) Opt. Or A0 ∨ ¬B1∧¬B2
(g) Dependency B2∧D1 ∨ ¬B2∧¬D1
(h) Exclusion ¬B2 ∨ ¬D1
(i) Implies B2 ∨ ¬D1

Non-clausal Encoding of Feature Diagram for Automated Diagnosis 423

Queue Q, W; Set S, V;

void unsatisfiable core () {
for (〈p, v〉 ∈ ν) {

initialize(); f = propagate(p, v);

if(f == UNSAT) break;

}
display core ();

}

Status propagate(Prop p, Bool v) {
enq(Q, 〈p, v〉);
while (¬empty(Q)) { 〈p, v〉 = deq(Q); if (p ∈ V) then skip;

put(S, p); add(ρ, p �→v); F = formulas(p); pending = false;

for (γ ∈ F) {
(ρ |= γ) → skip;

(ρ 	|= γ) → return UNSAT;

(ρ{q �→w} |= γ) → enq(Q,{〈q, w〉}); /* Unit Propagation */

otherwise → pending = true; enq(W,extract(ρ,γ));
}
if(¬pending) then put(V,p);

}
if(¬empty(W)) then return propagate(deq(W),true) else return NEXT;

}

Fig. 1. Constraint Propagation Algorithm

The main for loop checks satisfiability of each γ (∈ F) under the bindings of
ρ. It takes the otherwise branch when satisfiability of γ is not determined. Such
γ will be queued to W to explore later. They are resumed when the algorithm
reach a point where further unit propagation is not possible. Alternatively, when
it detects unsatisfiability, propagation immediately returns, and display core()
displays all the feature nodes in S which belong to unsatisfiable fragments of the
given inconsistent feature diagram.

3.3 Heuristics for Start Variable Selection

As in the case of DPLL-based SAT solver, the algorithm in Figure 1 is sensitive
to the start variable in ν. The choice affects not only the execution time to
detect unsatisfiability, but also results in different shapes of unsatisfiable cores.
A certain heuristic method should be investigated.

In this paper, we assume an iterative process of constructing and debugging
feature diagrams. We start with an original feature diagram Γold which has
at least one valid configuration. Then, we edit the feature diagram to have a
modified version, whose formula is denoted as Γnew . In the editing process, some
features together with their attributes are newly introduced while others may
be modified. These changes can be collected on-line by GUI-based tool such as
FD-Checker [7]. The set contains feature nodes only since a piece of information
on their attributes is encoded as formulas and recovered from them.

424 S. Nakajima

Our problem is to find unsatisfiable fragments of the unsatisfiable feature
diagram, sub-formulas γ′

ks, when we know that Γnew is unsatisfiable. Since the
editing process leads to unsatisfiability, we can safely guess that such fragments
can be traced from the changes, from which we can obtain the appropriate start
variables for ν in Figure 1.

4 Conclusions

We described a new algorithm to find unsatisfiable fragments in inconsistent fea-
ture diagrams, which is implemented in FD-Checker [7] so that we can compare
it with the approach in [8]. The algorithm is designed to allow further heuristics.
Selecting start variables is important from a viewpoint of obtaining fragment
not too large nor too small for a good help in debugging. Finding appropriate
heuristics for the selection is one of the future work.

References

1. Batory, D.: Feature Models, Grammars, and Propositional Formulas. In: Obbink,

H., Pohl, K. (eds.) SPLC 2005. LNCS, vol. 3714, pp. 7–20. Springer, Heidelberg

(2005)

2. Benavides, D., Segura, S., Ruiz-Cortes, A.: Automated Analysis of Feature Models

20 Years Later: A Literature Review. J. Information Systems (2010)

3. Czarnecki, K., Eisenecker, U.: Generative Programming: Methods, Tools, and Ap-

plications. Addison Wesley, Reading (2000)

4. Kang, K., Cohen, S., Hess, J., Nowak, W., Peterson, S.: Feature-Oriented Domain

Analysis Feasibility Study. CMU/SEI-90-TR-21 (1990)

5. Kroening, D., Strichman, O.: Decision Procedures. Springer, Heidelberg (2008)

6. Mannion, M.: Using First-Order Logic for Product Line Model Validation.

In: Chastek, G.J. (ed.) SPLC 2002. LNCS, vol. 2379, pp. 176–187. Springer,

Heidelberg (2002)

7. Nakajima, S.: Constructing FODA Feature Diagrams with a GUI-based Tool. In:

Proc. SEKE 2009, pp. 20–25 (2009)

8. Nakajima, S.: Semi-Automated Diagnosis of FODA Feature Diagram. In: Proc. SAC

2010, pp. 2191–2197 (2010)

9. White, J., Benavides, D., Schmidt, D.C., Trinidad, P., Dougherty, B., Ruiz-Cortes,

A.: Automated Diagnosis of Feature Model Configurations. J. Software and Systems

(2010)

A Method to Identify Feature Constraints Based
on Feature Selections Mining

Kentaro Yoshimura, Yoshitaka Atarashi, and Takeshi Fukuda

Hitachi Research Laboratory, Hitachi, Ltd.

7-1-1 Omika, Hitachi, Ibaraki 319-1292, Japan

{kentaro.yoshimura.jr,yoshitaka.atarashi.uw,
takeshi.fukuda.ge}@hitachi.com

Abstract. In this paper, we describe a novel method to identify con-

straints among features in a software product line, based on feature selec-

tions made in the past. Our approach takes feature selections of derived

products as the input and extracts association rules between features

such as “Products that selected feature i also selected feature j.” We

evaluated our method by applying it to a product line at Hitachi and

identified 21 new constraints among 123 optional features.

1 Introduction

Once a software product line is established, it requires continuous evolution to
react to market opportunities, changing technology trends, and competitors’
new products [1]. Many successful practices, such as those for mobile phones [2]
and automobiles [3], have increased the number of features to hundreds or even
thousands due to continuous evolution.

Modeling feature constraints is a mechanism to reduce the number of theo-
retical feature combinations, and to guide engineers selecting features to specify
a complete product [4][5]. New features are introduced, and their constraints
change as the product line evolves [6].

This paper addresses the problem of identifying new feature constraints in an
evolving product line. We describe a novel method to recommend new feature
constraints based on feature selections mining. Our approach takes feature se-
lections made in the past as the input and computes association rules between
features as recommendations for new feature constraints.

2 Our Method

2.1 Overview

Figure 1 shows an overview of our method. Our approach takes feature selections
of a product line as the input and extracts association rules between features as
recommendations of new feature constraints such as “Products that selected
feature i also selected feature j.” A user reviews each recommendation and
accepts or rejects it. If the user accepts the recommendation, it is introduced
into the core asset as a new feature constraint.

J. Bosch and J. Lee (Eds.): SPLC 2010, LNCS 6287, pp. 425–429, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

426 K. Yoshimura, Y. Atarashi, and T. Fukuda

Core asset Feature

selections

User New

constraints

Deriving

products

Confirm-

ing

Recommen-

dations

Mining

rules

Fig. 1. Overview of our method

Table 1. Example of feature selections

Product ID feature 1 feature 2 feature 3 feature 4 feature 5

1 � �
2 � �
3 � �
4 � �
5 � � �
6 � � �
7 � �
8 � �

2.2 Association Rule Learning

This subsection describes the basic concept of our approach. Our approach ap-
plies association rule learning [7] to recommend new feature constraints in a
large database of feature selections. Association rule learning is a well-known
algorithm for mining relationships between sets of items in a large database of
customer transactions, e.g., supermarkets transactions.

The problem of association rule learning is defined as: Let I = {i1, i2, . . . , in}
be a set of n binary attributes called items. Let D = {t1, t2, . . . , tm} be a set of
transactions called the database. Each transaction in D has a unique transaction
ID and contains a subset of the items in I. A rule is defined as an implication of
the form X ⇒ Y where X, Y ⊆ I, and X ∩ Y = ∅. The sets of items X and Y
are called the antecedent and consequent of the rule, respectively.

To illustrate the concepts, we use a small example from the feature selections
shown in Table 1. The set of features is {feature 1, feature 2, feature 3, feature
4, feature 5} and the products containing the features (“�” codes selection
of a feature in a product) are shown in the matrix to the right. An example
association rule for the product line could be {feature 2 ⇒ feature 3}, meaning
that if feature 2 is selected, a product also requires feature 3.

2.3 Mining Feature Selections

Association rules can be supposed for all combinations between two features.
To extract interesting rules from hypothetical ones, we calculate the threshold

A Method to Identify Feature Constraints 427

measures such as support, confidence, and lift for all combinations of features,
and extract rules with the minimum threshold measures.

The support supp(X) of an itemset X is defined as the proportion of selections
in the data set that contain the itemset. In the example product line, the support
of a rule supp(feature 2 ⇒ feature 3) is calculated as 3/8 = 37.5%.

The confidence of a rule is defined as the following equation.

conf (X ⇒ Y) =
supp(X ⇒ Y)

supp(X)
(1)

For example, the confidence of the rule conf(feature 2 ⇒ feature 3) is calculated
as supp(feature 2 ⇒ feature 3)/supp(feature 2) = 0.375/0.5 = 75%.

The lift of a rule is defined as the following equation.

lift(X ⇒ Y) =
conf (X ⇒ Y)

supp(Y)
(2)

For example, the lift of the rule lift(feature 2 ⇒ feature 3) is calculated as
conf (feature 2 ⇒ feature 3)/supp(feature 3) = 0.75/0.375 = 2.0.

In this example, let us define the threshold measures supp, conf, and lift as
20%, 80%, and 2.0. Table 2 shows the extracted rules from all hypothetical rules
in the example feature selections.

Table 2. Extracted rules with minimum thresholds: supp≥20%, conf≥80%, lift≥2.0

Rule ID Antecedent Consequent Support Confidence Lift

1 ¬feature 4 feature 3 25.0% 100.0% 2.7

2 feature 3 feature 2 37.5% 100.0% 2.0

3 feature 1 ¬feature 2 25.0% 100.0% 2.0

4 ¬feature 4 feature 2 25.0% 100.0% 2.0

3 Case Study

3.1 Case Study Setting

In this section, we describe how we applied our approach to an industrial product
line at Hitachi. The domain of the product line is a kind of embedded control sys-
tem that consists of sensors and actuators to control a mechanical system. This
system was designed as a software product line and products were generated with
selecting large number of variation points that included 123 optional features.
When we conducted the case study, the organization derived 8,513 products
from the product line infrastructure. We evaluated our method by apply it to
the selections of optional features for the products.

Our approach for mining a database requires effective tool support because of
the large number of feature selections that need to be processed. For association
rule learning, we adopted R [8] which provides an interface for association rule
computing.

428 K. Yoshimura, Y. Atarashi, and T. Fukuda

In this case study, we defined the threshold measures supp, conf, and lift as
1%, 95%, and 2.0, and identified 31 association rules as recommendations of new
feature constraints.

3.2 Evaluation

We evaluated the recommendations to see if they are real new feature constraints
of the product line. In this case study, we compared the recommendations with
the specifications of the product line and interviewed expert engineers. Table 3
shows the evaluation results of the case study.

First, we found that three of the recommendations were already specified as
feature constraints in the current specification.

Then, we examined the undocumented recommendations. The results were that
the recommendations include seven spurious relationships. Rule 4 in Table 2 is an
example of a spurious relationship. This rule {¬feature 4 ⇒ feature 2} is created
by an intervening feature {¬feature 4 ⇒ feature 3 ⇒ feature 2} (Rule 1 and 2).

Finally, we asked expert engineers if the rest of recommendations are real new
feature constraints in the product line. The engineers examined 21 recommen-
dations and accepted them as new feature constraints.

Table 3. Evaluation results

Classifications # rules %

Already identified in spec. 3 10%

Spurious relationships 7 23%

New feature constraints 21 68%

Total 31 100%

4 Related Work

Savolainen et al. [9] described a way for observing the optional features by focus-
ing on their usage pattern and evolving their default values. Savolainen et al.’s
method reduces the configuration effort of optional features, but their approach
does not consider the combinations of features. Our approach extends their con-
cept of the usage pattern observation to the relationship between features, i.e.,
feature constraints.

Loesch and Ploedereder [10] provided a way to optimize variability in a prod-
uct line. They reconstructed the variability model based on the concept lattice
model, so there is a gap to migrate into the feature-oriented approach that is
widely used. However, our approach can complement the feature-oriented ap-
proach with the association rules of the features in the field.

5 Conclusion

Identifying new and changing feature constraints is a key activity for product
line evolution. This paper described a novel approach enabling us to recommend

A Method to Identify Feature Constraints 429

new feature constraints by applying association rule learning to feature selections
made in the past. Our approach can be a helpful tool for identifying new feature
constraints.

Although statistical analysis is a reactive approach to trace the evolution of
product lines, knowing about patterns that appear frequently in feature selec-
tions may provide great insight to organizations. Analyzing and refactoring core
assets, especially for large-scale product lines, becomes exponentially more dif-
ficult. Therefore, we will extend the method in this paper and take statistical
methods as a key approach for continuous product line evolution.

References

1. Krueger, C.W.: The 3-tiered methodology: Pragmatic insights from new genera-

tion software product lines. In: SPLC 2007: Proceedings of the 11th International

Software Product Line Conference, pp. 97–106 (2007)

2. Bosch, J.: Software product families in Nokia. In: Obbink, H., Pohl, K. (eds.)

SPLC 2005. LNCS, vol. 3714, pp. 2–6. Springer, Heidelberg (2005)

3. Reiser, M.O., Weber, M.: Managing highly complex product families with multi-

level feature trees. In: RE 2006: Proceedings of the 14th IEEE International Re-

quirements Engineering Conference, pp. 146–155 (2006)

4. Kang, K., Cohen, S., Hess, J., Novak, W., Peterson, A.: Feature-oriented domain

analysis (FODA) feasibility study. Technical report, CMU/SEI-90-TR-21, Software

Engineering Institute, Carnegie Mellon University (1990)

5. Weiss, D.M., Li, J.J., Slye, H., Dinh-Trong, T., Sun, H.: Decision-model-based code

generation for sple. In: Proceedings of the 12th International Software Product Line

Conference, SPLC 2008, pp. 129–138 (2008)

6. Bosch, J., Florijn, G., Greefhorst, D., Kuusela, J., Obbink, J.H., Pohl, K.: Vari-

ability issues in software product lines. In: van der Linden, F.J. (ed.) PFE 2002.

LNCS, vol. 2290, pp. 13–21. Springer, Heidelberg (2002)

7. Agrawal, R., Imieliński, T., Swami, A.: Mining association rules between sets of

items in large databases. In: SIGMOD 1993: Proceedings of the, ACM SIGMOD

International Conference on Management of Data, pp. 207–216 (1993)

8. The R Foundation: The R project for statistical computing,

http://www.r-project.org/ (Visited on Febraury 12, 2010)

9. Savolainen, J., Bosch, J., Kuusela, J., Männistö, T.: Default values for improved

product line management. In: SPLC 2009: Proceedings of the 13th International

Software Product Line Conference, pp. 51–60 (2009)

10. Loesch, F., Ploedereder, E.: Optimization of variability in software product lines.

In: SPLC 2007: Proceedings of the 11th International Software Product Line Con-

ference, pp. 151–162 (2007)

http://www.r-project.org/

J. Bosch and J. Lee (Eds.): SPLC 2010, LNCS 6287, pp. 430–434, 2010.
© Springer-Verlag Berlin Heidelberg 2010

Software Product Line Engineering for Long-Lived,
Sustainable Systems

Robyn Lutz1,2, David Weiss1, Sandeep Krishnan1, and Jingwei Yang1

1 Department of Computer Science, Iowa State University
2 Jet Propulsion Lab/Caltech

{rlutz,weiss,sandeepk,jwyang@cs.iastate.edu}

Abstract. The design and operation of long-lived, sustainable systems (LSS)
are hampered by limited support for change over time and limited preservation
of system knowledge. The solution we propose is to adopt software product-line
engineering (SPLE) techniques for use in single, critical systems with
requirements for sustainability. We describe how four categories of change in a
LSS can be usefully handled as variabilities in a software product line. We
illustrate our argument with examples of changes from the Voyager spacecraft.

Keywords: software product line, sustainable system, long-lived system,
variability, commonality/variability analysis.

1 Introduction

Sustainable: “meets the needs of the present without compromising the ability of
future generations to meet their own needs”

- UN Brundtland Report, on sustainable development [1].

Our society is becoming increasingly dependent on software-intensive sustainable
systems. Examples include embedded medical devices, web-based archives,
interplanetary spacecraft, power grid monitors, telecommunication switches, and
sensor networks. Future examples include nuclear power plants, health databases, and
global networks of solar arrays, perhaps in orbit. Many such systems are safety critical,
with varying degrees of autonomy. They typically evolve over long periods of time in
response to changed needs, new technologies, and failed components.

We consider a sustainable system to be one that has the following attributes.

• It has an extended lifetime,
• It makes efficient use of resources to achieve its goal.
• It maintains its capabilities despite obstacles and failures.
• It is adaptable, so as to accommodate change, and is expected to evolve with

changes in technology and requirements.

More broadly, a sustainable system is forward-looking and is structured so as to guide
future decisions. The goal of evolving over time to meet changes in technology and

 Software Product Line Engineering for Long-Lived, Sustainable Systems 431

requirements, distinguishes sustainable systems from legacy systems. Accordingly we
use the term long-lived, sustainable systems, or LSS, for them.

In this paper our perspective is the preservation of system knowledge over time in
the service of handling change (both anticipated and unanticipated) in LSS. While the
preservation of knowledge and change handling are not unique to LSS, extended LSS
lifetimes exacerbate the problems. LSS have a longer period of operations over which
both planned and unplanned change can occur. Their long operational periods are
accompanied by considerable personnel turnover, resulting in knowledge loss that
complicates operations and adaptive maintenance. Historically, these inadequacies
have jeopardized LSS [2]. Their design and maintenance is challenged by the need to
envision, plan for, and handle on-going change, and to preserve and pass on the
knowledge needed to do so.

The problem, then, is how to better design and operate a LSS to preserve system
knowledge and to support needed changes over time. The solution we propose is to
adopt software product-line engineering (SPLE) techniques for use in single LSS, an
adoption that we believe is natural to both. SPLE provides a process framework to
identify, document, and make decisions regarding alternatives now and in the future,
taking into consideration their risks, dependencies and consequences, both in cost and
value. It focuses on sustaining artifacts and domain knowledge over a long haul.

Change can be usefully treated as variability, and SPLE handles variability well.
To illustrate this we discuss examples of anticipated and unanticipated changes from
the twin Voyager spacecraft, launched in 1977 and still actively collecting science
data. We show how Voyager “did it right” in planning and organizing for change, and
in maintaining system knowledge.

We suggest that the lessons to be learned from Voyager regarding the design and
operation of a LSS system are not just consistent with software product line
engineering but are, in fact, most readily transferable to other LSS in the context of
SPLE techniques. SPLE describes how a set of similar systems—a software product
family—develops over time. We treat an evolving LSS as if it were a set of similar
systems that developed over time. (In fact, PLE also evolves over space, that is, there
may be several products in a product line that are produced and maintained
concurrently, so our problem is simpler.) This paper thus proposes to apply SPLE
techniques to single systems, where those single systems must be long-lived and
sustainable, and presents, in the context of Voyager, the advantages of doing so.

2 LSS Example: The Voyager Spacecraft

The two Voyager spacecraft, launched in 1977 and now the farthest human-made
objects from Earth, are among the best-known LSS. The spacecraft continue to return
truly invaluable data as they approach the heliopause. For example, Voyager 2
recently discovered a strong magnetic field that holds the interstellar cloud together
[http://voyager.jpl.nasa.gov/]. The Voyagers are expected to continue to communicate
until loss of power and fuel mutes them around 2020. The spacecraft have efficiently
used their early-1970’s era resources to adapt to a changing set of ambitious scientific
goals. The spacecraft software has also been repeatedly changed to handle failed
components and reduced power. Voyager did not explicitly use software product line

432 R. Lutz et al.

engineering. However, viewed in retrospect, Voyager exemplified the SPLE process
of carefully identifying possible variations that might be needed in the future, of
designing a modularized architecture that would allow those anticipated changes to be
made, and of specifying the constraints that would guide the decisions to be made.
Voyager also demonstrated that even unanticipated change is made easier when a
serious effort has been made to design for possible future changes.

3 SPLE for LSS Change Management

The software product line engineering FAST process used here, identifies, distinguishes,
and documents what is assumed to stay the same (across systems and time) and what
may change [3, 4]. It relies on three artifacts: (1) a commonality/variability analysis that
formally specifies the allowable range of values for each variability, the constraints
among the choices of value for the variabilities, and the binding time for each variability;
(2) a modularized architecture with a mapping between modules and the
commonality/variability specifications described above; and (3) a specification, called a
Decision Model, of the partially-ordered sequence of choices that must be made to build
a new product, subject to the constraints and binding times specified earlier.

Some required behavior must be invariant for a LSS to succeed. For example, a
software requirement that has to be satisfied throughout the lifetime of the Voyager
spacecraft is that it shall be able to communicate with Earth and automatically detect
and respond to a loss of uplink from Earth. Similarly, a LSS is built and operated on
certain assumptions regarding those things that will not change (e.g., in the
environment). Such assumptions can usefully be modeled as commonalities. Note
also that if the assumptions later become false, we have a way in FAST to document
both what the change is and why the change occurred, preserving knowledge and
providing guidance to later generations of maintainers, as suggested in [5].

We next describe how the handling of both anticipated and unanticipated change
can be improved by the use of software product line engineering techniques.

3.1 Anticipated Changes

We can anticipate some changes that likely will be made during the lifetime of a LSS.
Several standard techniques assist in this identification: investigation by domain
experts, experience with similar systems, goal/obstacle analysis, defect patterns in
similar systems, and analysis of previous changes. On spacecraft, we know that if
hardware breaks, the software will often have to be updated to take on the required
capability previously allocated to hardware [2]. Similarly, we know that as different
mission phases are reached (e.g., launch, interplanetary cruise, planetary) the software
will need to be updated. In LSS, many of these changes will be made to handle failure
or degradation of hardware components.

Such anticipated changes can usefully be modeled as product line variabilities in
the commonality/variability analysis. The FAST process documents the envisioned
ranges of optional and alternative requirements and parameters. Making an
anticipated change after launch then becomes analogous to taking a different path
through the Decision Model. In so doing, you use the Decision Model to check that

 Software Product Line Engineering for Long-Lived, Sustainable Systems 433

the impact of the change is acceptable, based on the constraints between the proposed
alternative and the choices implemented earlier to produce the existing product. This
provides some assurance that the software architecture can accommodate the change.
Checking the constraints can often be partially or fully automated.

Modifiability, or “changeability”, is a defining attribute for a LSS. In [6], the
quality attributes of modifiability are organized into four categories: (1) extensibility
(changing capabilities, adding new functionality, repairing bugs); (2) deleting existing
capabilities; (3) portability (adapting to new operating environments); and (4)
restructuring (modularizing, optimizing, or creating reusable components).

We describe critical changes that occurred on the Voyagers during operations for
the first three of these categories. Because of page limits, we exclude the fourth
category here, but note that several subsequent spacecraft re-used Voyager hardware
and software. We interleave examples from the two spacecraft, despite some small
differences between them. For each change, we show how it fits into a SPLE context.

Anticipated extensibility: At launch, the Voyagers’ authorized flight plan included
only Jupiter and Saturn, primarily for budget reasons. However, the spacecraft had
been designed for extension to take advantage of the fact that Jupiter, Saturn, Uranus
and Neptune were aligned, something that happens once every 175 years. When the
flight was extended for the “Grand Tour” to all four planets, the architectural design
was in place to allow this. Note that the cost of designing for this extensibility was far
outweighed by the value of the scientific knowledge gained from it.

Anticipated deletion: It was known that each instrument drawing significant power
would have to be turned off at some point, as the onboard battery capacity decreased.
For example, the cameras were turned off in 1990 after the last planetary encounter.
Weighing the tradeoffs and deciding when in the mission to turn each instrument off
was a complicated task, but made possible by anticipating its need.

Anticipated portability: A new algorithm was required to obtain images at Neptune.
Without it, the low sunlight levels, combined with the torque imparted when the tape
recorder was turned on and off, would have caused images to be smeared. The new
feature automatically fired the attitude jets to compensate for the spacecraft torque at
the longer exposure rate.

3.2 Unanticipated Changes

Unanticipated change is a problem for any system. SPLE provides a structure for
dealing with unanticipated change as well as anticipated change. In particular, it
allows one to reason about the effects, dependencies, and risks of a proposed change.

Unanticipated extensibility: In 1987, a new science opportunity appeared. A
supernova occurred that Voyager could observe. Software commands were thus
designed and sent to the UV spectrometer to capture data from the stellar explosion,
taking advantage of a design that anticipated the need to reprogram the spacecraft.

Unanticipated deletion: Slewing rates for the scan platform (containing the cameras,
etc.) were unexpectedly restricted by a new project policy for the planetary encounters
of Uranus and Neptune. The change was in response to an earlier incident where the
platform jammed, likely induced by a period of heavy usage.

434 R. Lutz et al.

Unanticipated portability: Soon after launch, Voyager 2’s primary receiver failed and
its backup receiver was reduced to “hearing” in a very narrow, changing frequency
band. To compensate, a new ramping algorithm was quickly designed and
implemented, so that prior to sending any software commands to the spacecraft,
ground operations could tune the transmission to the receiver’s current state.

SPLE excels at identifying what needs to be known and storing it so that the new
customer (here, the spacecraft team) need only be concerned with the information
preserved in the structures, rather than having to learn all the underpinnings of the
system. Because the system is specified and designed for change, new personnel
know where to look to understand the system and the implications of change.

4 Conclusion

Our hope is that use of SPLE techniques will make it easier to make changes to LSS
where the value/cost ratio is high, as it is on spacecraft and other critical or one-of-a-
kind systems. It remains to test this hypothesis, perhaps as a shadow effort with an on-
going LSS project. In particular, we think that these SPLE techniques will be easy to
use and fit in readily with the way sustainable projects work.

The benefits that we anticipate may accrue from the use of SPLE for LSS include:

• Improved preservation of project knowledge over extended lifetimes, leading
to lower cost to maintain.

• Better capture of assumptions (commonalities) and dependencies among
choices (variabilities) that can help reduce risk of change.

• Increased emphasis on investigating and ranking possible changes and on
verifying architectural support for modifiability.

• Viewing potential changes as options that, when exercised, can bring high
value, and so merit investment to preserve the needed information.

Acknowledgments. This work was supported by grants 0541163 and 0916275 from
the National Science Foundation.

References

1. Our Common Future, Report of the World Commission on Environment and Development.
Oxford University Press, Oxford (1987)

2. Lutz, R.R., Mikulski, I.C.: Empirical Analysis of Safety Critical Anomalies during
Operation. IEEE Trans. Software Engineering 30(3), 172–180 (2004)

3. Weiss, D.M., Lai, C.T.R.: Software Product-Line Engineering, A Family-Based Software
Development Process. Addison-Wesley, Reading (1999)

4. Weiss, D.M., Li, J.J., Slye, H., Dinh-Trong, T., Sun, H.: Decision-Model-Based Code
Generation for SPLE. In: SPLC 2008, pp. 129–138 (2008)

5. Parnas, D.L., Clements, P.C.: A rational design process: How and why to fake it. IEEE
Trans. on Software Engineering 12(2), 251–257 (1986)

6. Bass, L., Clements, P., Kazman, R.: Software Architecture in Practice. Addison-Wesley,
Reading (1998)

An Approach to Efficient Product Configuration
in Software Product Lines

Yuqing Lin, Huilin Ye, and Jianmin Tang�

School of Electrical Engineering and Computer Science

The University of Newcastle, NSW2308, Australia

{yuqing.lin,huilin.ye,jianmin.tang}@newcastle.edu.au

Abstract. Feature modeling has been widely used in software prod-

uct line engineering to represent commonality and variabilities among

products in a product family. When developing a new software product

belonging to a product line, a feature model representing the product line

will be used to configure products. The product configuration process is

a decision making process, various kinds of constraints and complex rela-

tionships among configurable features make the decision making a time

consuming and error prone task. In this paper, we present an approach

which will improve the efficiency and quality of product configuration.

1 Introduction

Software product line is a collection of software products that share common
characteristics as a family in a specific application domain. In addition to the
commonalities shared by all the products in a SPL, individual products might
vary significantly. The variabilities among the products in a SPL must be appro-
priately represented and managed. Feature oriented modeling approaches have
been widely used in software product line engineering for this purpose. Features
are prominent and distinctive system requirements or characteristics that are
visible to various stakeholder in a product line [2]. A feature model specifies the
features, their relationships, and the constraints of feature selection for product
configuration in software product lines. There are a lot of work been done on
the automated analysis of the feature model, for example, identifying the void
feature model, validating software product etc. for more detail, see [3].

In this paper, we will be focusing on the product configuration using the fea-
ture model. Product configuration is a process of selecting features for developing
a product in a SPL. A product in a SPL is defined by a unique combination of
legally selected features in the SPL. A feature model is usually represented as a
tree in which the variabilities of features are represented as variation points. A
variation point consists of a parent feature, a group of variable child features,
called variants, and a multiplicity specifying the minimum and maximum num-
ber of variants that can be selected from the variation point when configuring
� This work is supported by Australian Research Council Discovery Project (DP

0772799).

J. Bosch and J. Lee (Eds.): SPLC 2010, LNCS 6287, pp. 435–439, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

436 Y. Lin, H. Ye, and J. Tang

a product. The selection of variants at a variation point is not only constrained
by the multiplicity but also by the dependencies between the variants at this
variation point and the variants at other variation points. The following two
dependencies have been identified by Kang et al [2].

1. Requires: If a feature requires, or uses, another feature to fulfil its task, there
is a Requires relationship between the two features.

2. Excludes: If a feature conflicts with another feature, they cannot be chosen
for the same product configuration, i.e. they mutually exclude each other.
There is a bi-directional Excludes relationship between the two features.

When configuring a product we usually need to go through the whole feature
tree and make a configuration decision at each variation point to select vari-
ant(s) of the variation point. Various issues in the product configuration have
been discusses, for example, in [4], authors have proposed a framework to use
reasoning algorithms to provide automated support for Product Configuration,
especially for Collaborative Product Configuration. Other approaches treat the
configuration process as a constraint satisfaction problem (CSP) [7] [5]. These
approaches provide support or solutions for the decision making of the configu-
ration process. In this paper, we will be optimizing the configuration process to
make the configuration process more efficient.

2 Configuration Coverage

Before we present the proposed approach the following measures are defined for
the approach.

– Positive coverage and negative coverage of variant:

When a variant v at a certain VP is selected for a product configuration, positive
coverage of v, represented as PC(v), is a set of variable features that will be auto-
matically included in or excluded from the product based on their dependencies
with v. When a variant v at a certain VP is excluded for a product configuration
negative coverage of v, represented as NC(v), is a set of variable features that
will be automatically included in or excluded from the product based on their
dependencies with v.

– Configuration Coverage (CC) of a valid selection at a variation point:

For all the variants associated with a variation point, we call a subset of variants a
valid selection if it obeys the multiplicity of the variation point. The complement
of a valid selection is the set of variants that are not included in the selection at
the variation point. When a certain valid selection has been made at a variation
point the configuration coverage of the variation point is the union of all the
positive coverages of the variants in the valid selection and all the negative
coverages of the variants in the complement of the valid selection. Below is an
example to illustrate how to calculate the above defined measures

An Approach to Efficient Product Configuration in Software Product Lines 437

1..2

VP

v1 v2 v3 v4

u5u3u2u1 u4 u6

u8u7

require

require
require

require
require

require require

requirerequire

require

Fig. 1. A variation point V P and its variants

In the Fig 1 we show a fraction of a feature model. There are 4 variants v1,
v2, v3 and v4 associated with the variation point V P . The multiplicity specifies
that only up to 2 variants can be selected in a product configuration. Based on
the dependency relationships shown in teh same figure, we know that:PC(v1) =
{u1, u3}, NC(v1) = ∅, PC(v2) = {u2, u4, u7, u8}, NC(v2) = ∅, PC(v3) = {u5},
NC(v3) = {u6}, PC(v4) = {u4, u8}, and NC(v4) = {u6}.

All possible selections at the V P are listed below,
v1,v2, v3, v4, v1 ∪ v2, v1 ∪ v3, v1 ∪ v4, v2 ∪ v3, v2 ∪ v4, v3 ∪ v4
The configuration coverage (CC) of each valid selection is listed as following:

CC(v1) = PC(v1) ∪ NC(v2) ∪ NC(v3) ∪ NC(v4) = {u1, u3, u6},

CC(v2) = {u2, u4, u7, u8, u6}, CC(v3) = {u5, u6}, CC(v4) = {u4, u8, u6},

CC(v1∪v2) =PC(v1)∪PC(v2)∪NC(v3)∪NC(v4) ={u1, u2, u3, u4, u7, u8, u6},

CC(v1 ∪ v3) = {u1, u3, u5, u6}, CC(v1 ∪ v4) = {u1, u3, u4, u6},

CC(v2 ∪ v3) = {u2, u4, u7, u8, u5, u6}, CC(v2 ∪ v4) = {u2, u4, u7, u8, u6},

CC(v3 ∪ v4) = {u5, u6}.

The maximum configuration coverage from the above set of CCs is the CC{v1,
v2} when v1 and v2 are selected at this variation point. We call this maximum
configuration coverage MAXCC. MAXCC of a variation point is the maximum
CC over all possible selection of variants at the variation point. The bigger the
MAXCC, the (potentially) more variable features will be included/excluded
once a decision made at the variation point, therefore, the more important is the
variation point to be considered earlier in the configuration process.

438 Y. Lin, H. Ye, and J. Tang

3 The Proposed Approach and Case Study

Our proposed approach will make use of the measurement MAXCC, using which
we can identify a small set of variation points from a feature model, the MAXCC
of this set of variation points will cover all the variant selections in the whole
feature model. The smallest is the set, the less decisions are to be made in the
product configuration process, implies that more efficient and less error-prone of
the configuration.

To identify this set of variation points, we could use a simple greedy approach,
i.e. selecting the variation points with the biggest coverage until the union of the
coverage covers the feature model. A more precise approach is to model the
problem as the minimum vertex cover problem and use some approximation
algorithm to solve the problem. To do that, we will first transfer the feature
model into a directed graphs, The transformation is quite straightforward, every
variable feature in the feature model become a vertex in the resulting graph and
the dependencies between two variable features become the arcs in the resulting
graph. Once we model the feature model into a direct graph, we can then take
our problem as a discrete optimization problem. In graph theory, a “vertex-
cover” of a directed graph (digraph) is a set of vertices such that each arc of the
digraph is incident to at least one vertex of the set. A minimum vertex-cover is a
vertex-cover of the smallest size. The problem of finding a minimum vertex-cover
is a classical optimization problem in computer science. In our experiment, we
have used the HSAGA algorithm [6] which is efficient and very often can produce
good solutions.

A case study based on a Library Software Product Line demonstrating how the
proposed approach works has been conducted. A feature model was established
for the product line. It contains 23 variation points, 35 variants, and complex
dependencies between the variants. We applied the proposed approach to the
feature model and identified a sequence of variation points containing only 10
variation points but cover the whole variant selections of the Feature Model.
Instead of making decisions at 23 variation points we can now only make selec-
tion at the 10 identified variation points, which will increase the configuration
efficiency and reduce the chances of making wrong configuration decisions.

4 Conclusions and Future Works

In the product configuration, software engineers should start with this set of
variation points when configuring a product from the feature model. This set of
variation points represent the key decisions for configuring a member product.
Focusing on this set of variation points will reduce the configuration effort for
software engineers as the decisions made on these variation points will imply the
decisions on other variation points in the feature model. Another advantage is
that the software engineers are unlikely to selecting conflicting variants since the
dependency constraints in a feature model have been encoded in CCs. In this
approach, we only considered the Requires and Exclude relationships, there are

An Approach to Efficient Product Configuration in Software Product Lines 439

other complex dependencies exist in the feature model. In the future, we would
like to develop a more flexible model so we can deal with more complex depen-
dency relationships. A formal evaluation on the performance of the proposed
approach will also be done in the near future.

References

1. Czarnecki, K., Helsen, S., Eisenecker, U.: Staged configuration through specializa-

tion and multilevel configuration of feature models. Software Process: Improvement

and Practice 10(2), 143–169 (2005)

2. Lee, K., Kang, K., Lee, J.: Concepts and Guidelines of Feature Modelling for Product

Line Software Engineering. In: Gacek, C. (ed.) ICSR 2002. LNCS, vol. 2319, pp. 62–

67. Springer, Heidelberg (2002) ISBN: 978-3-540-46020-9

3. Benavides, D., Segura, S.: A. Cortes Automated Analysis of Feature Models 20 Years

Later: A Literature Review. Information Systems (in press)

4. Mendonca, M., Cowan, D.: Decision-making coordination and efficient reasoning

techniques for feature-based configuration. Science of Computer Programming 75(5),

311–332 (2010)

5. Mendonca, M., Wasowski, A., Czarnecki, K., Cowan, D.: Efficient compilation tech-

niques for large scale feature models. In: Proceedings of the 7th international con-

ference on Generative programming and component engineering, pp. 13–22 (2008)

6. Tang, J., Miller, M., Lin, Y.: HSAGA and its application for the construction of

near-Moore digraphs. Journal of Discrete Algorithms 6(1), 73–84 (2008)

7. Felfernig, A., Friedrich, G., Jannach, D., Zanker, M.: Towards distributed configura-

tion. In: Baader, F., Brewka, G., Eiter, T. (eds.) KI 2001. LNCS (LNAI), vol. 2174,

pp. 198–212. Springer, Heidelberg (2001)

J. Bosch and J. Lee (Eds.): SPLC 2010, LNCS 6287, pp. 440–445, 2010.
© Springer-Verlag Berlin Heidelberg 2010

A Hybrid Approach to Feature-Oriented Programming
in XVCL

Hongyu Zhang1 and Stan Jarzabek2

1 School of Software, Tsinghua University, Beijing 100084, China
hongyu@tsinghua.edu.cn

2 School of Computing, National University of Singapore, Singapore 117543
stan@comp.nus.edu.sg

Abstract. Feature-Oriented Programming (FOP) is a programming paradigm
for developing programs by composing features. It is especially useful for
software product line development, as each product line member implements
some combinations of features. FOP attempts to modularize features and to
enable their flexible composition into programs. Recent studies have shown that
it is not practical to modularize and then compose features that have fine-
grained impact on base programs. In this paper, we present a hybrid approach to
feature modularization/composition problem. We modularize only separable
features that can be well contained in dedicated files. We handle inseparable
features by annotating base programs using preprocessing-like directives. We
show how the hybrid approach can be achieved in XVCL, a generative
technique to manage variabilities in software product lines.

1 Introduction

Feature-Oriented Programming (FOP) is a programming paradigm for developing
programs by composing features [2, 11]. FOP extends the principle of separation of
concerns to features. It attempts to modularize feature implementation and provides a
mechanism to compose features into a base program in required, legal combinations.
The ability to compose features in flexible way is particularly useful for software
product line development, where we need to handle a family of similar products
characterized by common features, but with each product implementing some unique
features.

Researchers have experimented with techniques that can realize the concept of
FOP. AHEAD [2] is among the mature techniques. Some researchers also suggested
Aspect-Oriented Programming (AOP) as a possible technique to realize FOP [1, 10].
Both AHEAD and AOP can handle the separable features, which can be well
modularized in dedicated files and can be composed into base programs at a relatively
small number of variation points. Recently Kastner and Apel found that AHEAD and
AOP have limitations in handling features that have fine-granular impact on base
programs at many variation points [7, 8]. These limitations could lead to the excessive
use of inheritance and hook-methods, causing difficulties in program understanding
and maintenance. Such inseparable features create a major challenge for FOP.

 A Hybrid Approach to Feature-Oriented Programming in XVCL 441

In this paper, we present a hybrid approach to feature modularization/composition
problem. We modularize only separable features and handle inseparable features by
annotating programs using preprocessing-like directives. We show a realization of the
proposed hybrid approach in XVCL (XML-based Variant Configuration Langue) [4,
5, 14], which is a generative technique to manage variabilities in software product
lines. Although XVCL has been applied in many product line and software
maintenance studies, its usage in FOP was not well explored before.

Unlike other approaches such as AHEAD or AOP, our approach does not force all
the features to be separated and modularized. Our approach is both annotative and
compositional. For features that can be well separated, we modularize their
implementations by placing their code in separate modules. When clean feature
modularization becomes problematic, we directly annotate the base programs with
necessary feature code. By doing so, we avoid the limitations of current FOP
techniques (such as the excessive use of inheritance and hook-methods), and improve
the maintainability of the feature programs. We allow developers to choose the
method for handling different features, thus achieving higher degree of flexibility in
programming practices.

2 A Hybrid Approach to FOP

Feature-Oriented Programming (FOP) is based on the principle of advanced
separation of concerns [13]. Features are often treated as a form of concerns that can
characterize software products. In FOP, each module (or each layer of modules)
localizes the code implementing a feature. If we could find a way to clearly separate
all the features using FOP, no doubt our software engineering problems would be
much less than they are today. However, some of the features are so tightly coupled
with other features or with the base programs that their physical separation becomes
difficult. We thus classify the features into two types:

Separable features: Features that can be easily separated from the base programs.
The impact of these features can be well modularized in dedicated files and can be
composed into base programs at a relatively small number of variation points.

Inseparable features: Features that are difficult to be separated from the base
programs. Examples of such features include:

 Features that require fine-grained changes. The examples of fine-grained
changes include changes in method signature, changes in the middle of a
method, and extensions of expressions. To handle such fine-grained changes, the
existing modularization and composition mechanisms often lead to complicated
and unmaintainable implementations.

 Features that are inherent properties of base programs. These features are
integral parts of the descriptions of concepts. They cannot be separated from the
base programs without hampering the program integrity and understandability.
For example, for a Buffer class, its data type (such as Int, Char, Byte, Double,
etc) is an integral property of the class. Therefore it is better to implement this
data type feature as generics, instead of separating it into independent modules.

442 H. Zhang and S. Jarzabek

 Features that have intensive interactions with other features. Some features
heavily crosscut other features. One example of such feature is exception
handling. Separating the exception handling code from the base program is
shown to be difficult. Performance and security features are other examples.
Performance/Security has pervasive impact on many design decisions. While we
can conceive and express performance/security concerns conceptually (e.g., by
documenting design decisions that have to do with performance/security),
“physical” modularization of these features may not be feasible.

To handle separable features, we can modularize their impact into dedicated modules,
and then compose these modules with the base programs. This process is the same as
what current FOP approaches do. The modularization of feature-specific code helps
programmers understand and maintain features. To handle inseparable features, we
can directly annotate the base programs to incorporate the impact of these features.
The basic concept is close to the concept of C/C++ preprocessing directives. We can
thus understand the base programs and the inseparable features as a whole. In this
way, we avoid the limitations of current FOP approaches (such as the excessive use of
inheritance and hook-methods).

3 A Realization of the Hybrid FOP in XVCL

3.1 An Overview of XVCL

XVCL (XML-based Variant Configuration Language) is a variation mechanism for
managing variability in software product lines based on generative techniques [3].
XVCL has been applied to support product lines in lab studies and industrial projects
[4, 5, 14].

In XVCL, generic and adaptable programs are called x-frames. X-frame body is
written in the base language, which could be a programming language such as Java or
PHP. An x-frame is also marked-up by XVCL commands (in the form of XML tags),
which enables the composition and adaptation of the x-frame. Typical XVCL
commands include the <adapt> command that composes two x-frames, the <select>
and <ifdef> commands that allow one to select pre-defined options based on certain
conditions, the <break> command that marks breakpoints (slots) where additional
code can be inserted, and the <insert> command that inserts additional code into a
specified slot. To derive a customized program from x-frames, one needs to design a
Specification x-frame (SPC), which records specific product configurations according
to the user requirements. Given SPC, the tool XVCL processor performs composition
and adaptation by traversing x-frames along <adapt> chains, executing XVCL
commands embedded in visited x-frames, and constructing concrete programs.

XVCL is a software reuse technique based on the idea of “composition with
adaptation”. Like macros, x-frames contain code fragments along with adaptation
commands. Unlike macros, XVCL has unique capabilities that enhance reuse, such as
scoping and overriding rules for meta-variables, insertions at breakpoints and while
loops that facilitate generating custom component instances from a generic x-frame.
Unlike OO inheritance, C++ template and Aspect-Oriented Programming (AOP)

 A Hybrid Approach to Feature-Oriented Programming in XVCL 443

techniques, XVCL can handle variants at any granularity level. One can explicitly
mark the variation points in a program and specify required adaptations.

More details about XVCL can be found at the XVCL homepage1. Although XVCL
has been applied to many product line and software maintenance studies, its usage in
FOP was not well explored before.

3.2 Implementing FOP Using XVCL

We use XVCL to realize the proposed hybrid approach to FOP. To implement
inseparable features, we use XVCL commands (such as <select> and <ifdef>) to
directly mark the variation points in base programs at which customization will
occur. These commands will select necessary code to be included into the generated
program based on the values of meta-variables that are set in the specification x-
frame (SPC).

We place the implementation of separable features in dedicated x-frames. To
support feature modularization, we use the XVCL <select> commands to encapsulate
all necessary code fragments for implementing a feature. We also use the XVCL
<break> commands to specify the slots in the base programs at which possible
extensions could be made. During program composition, we select suitable code
fragments in the feature x-frame and insert them into the slots defined in the base
programs.

In our XVCL-based hybrid approach to FOP, we develop two types of x-frames:

 x-frames that implement the base programs. The base programs can be
developed in the conventional object-oriented manner and can be annotated with
XVCL commands to accommodate inseparable features.

 x-frames that implement separable features.

These two types of x-frames can be composed together to form a complete,
compilable program. A valid combination of features for a specific system is
described in an SPC. The XVCL processor performs the composition of base classes
and features according to the instructions given in the SPC, and generates a specific
system that implements the required features.

3.3 Experiments

We have evaluated our approach through the development of the Graph Product Line
(GPL). GPL has been proposed by Lopez-Herrejon and Batory [9] as a standard
problem for evaluating software product line technologies. It is a family of classic graph
applications. In GPL, we identify Directed/Undirected and Weighted/Unweighted
features as inseparable features. These features are inherent properties of the base
programs. Their code is tightly coupled with the base program at the fine-granular level
and cannot be easily isolated. Therefore we use the <ifdef> commands to annotate the
base program with the optional feature code. We modularize other features (such as the
Cycle feature) in dedicate x-frames. By separating these features from the base

1 http://xvcl.comp.nus.edu.sg

444 H. Zhang and S. Jarzabek

programs, we enhance the readability of the base programs. Given a set of features, a
specific GPL product can be generated from the x-frames.

To further evaluate our method, we re-engineered the Berkeley DB system into
hybrid FOP representations. The Berkeley DB case study was also used by Kastner et
al. [7], who refactored the system into features using AspectJ. In our study, we
reengineered 23 Berkeley DB features into x-frames. Features such as EvictorDaemon
are implemented as inseparable features, features such as FSync are implemented as
separable features.

3.4 Tool Support

To facilitate XVCL-based development, especially for a large and complex product
line, we have also developed a set of tools including a development workbench (an
IDE for editing x-frames), a feature configuration checker (for checking the validity
of a selected feature combination), and a feature query tool (for analyzing the impact
of a feature on x-frames). These tools support the development of x-frames, their
reuse and evolution, mitigating potential problems of understandability and scalability
of complex x-frames. More details about these tools can be found at [6, 12].

4 Conclusions

Feature-Oriented Programming (FOP) is a programming paradigm for developing
programs by composing features. We classify features into two types: 1) inseparable
features that affect base programs at fine-granular level and cannot be easily separated
from base programs, and 2) separable features that can be easily separated from base
programs and contained in dedicated modules. Recent studies show that current FOP
techniques based on advanced separation of concerns principle, such as AHEAD and
AOP, have limitations in implementing inseparable features.

In this paper, we have presented a hybrid approach to feature modularization/
composition problem. We modularize only separable features and handle inseparable
features by annotating programs using preprocessing-like directives. We have presented a
realization of the above approach in XVCL, a generative technique to manage features in
software product lines.

In future, we plan to further investigate new tools that can facilitate XVCL-based
FOP development. One trade-off in our approach is that we cannot guarantee
correctness of programs generated from meta-programs (x-frames). We will address
this issue in future work. We also plan to carry out a larger-scale evaluation of the
proposed hybrid approach.

Acknowledgments. We would like to thank Roberto E. Lopez-Herrejon for providing
us the source code of their implementation of GPL in AHEAD. This research is
supported by the Chinese NSF grant 60703060, the NUS research grant RP-252-000-
336-112, and the MOE Key Laboratory of High Confidence Software Technologies at
Peking University.

 A Hybrid Approach to Feature-Oriented Programming in XVCL 445

References

1. Apel, S., Leich, T., Saake, G.: Aspectual Feature Modules. IEEE Trans. Software
Eng. 34(2), 162–180 (2008)

2. Batory, D., Sarvela, J., Rauschmayer, A.: Scaling Step-Wise Refinement. IEEE Trans.
Software Eng. 30(6), 355–371 (2004)

3. Czarnecki, K., Eisenecker, U.: Generative Programming: Methods, Tools, and
Applications. Addison-Wesley, MA (2000)

4. Jarzabek, S.: Effective Software Maintenance and Evolution: Reuse-based Approach. CRC
Press, Taylor & Francis (2007)

5. Jarzabek, S., Zhang, H.: XML-based method and tool for handling variant requirements in
domain models. In: Proc. Int’l. Symp. on Requirements Engineering (RE 2001), Toronto,
Canada (2001)

6. Jarzabek, S., Zhang, H., Lee, Y., Xue, Y., Shaikh, N.: Increasing Usability of
Preprocessing for Feature Management in Product Lines with Queries. In: Proc. ICSE
2009, Vancouver, Canada, May 2009, pp. 215–218 (2009)

7. Kästner, C., Apel, S., Batory, D.: A Case Study Implementing Features Using AspectJ. In:
Proc. Int. Software Product Line Conference (SPLC 2007), Kyoto, Japan, September 2007,
pp. 223–232 (2007)

8. Kästner, C., Apel, S., Kuhlemann, M.: Granularity in Software Product Lines. In: Proc.
ICSE 2008, Leipzig, Germany, May 2008, pp. 311–320 (2008)

9. Lopez-Herrejon, R.E., Batory, D.: A standard problem for evaluating product-line
methodologies. In: Bosch, J. (ed.) GCSE 2001. LNCS, vol. 2186, pp. 10–24. Springer,
Heidelberg (2001)

10. Mezini, M., Ostermann, K.: Variability Management with Feature-Oriented Programming
and Aspects. In: Proc. SIGSOFT FSE 2004, Newport Beach, CA, pp. 127–136 (2004)

11. Prehofer, C.: Feature-oriented programming: A new way of object composition.
Concurrency and Computation: Practice and Experience 13(6), 465–501 (2001)

12. Sun, J., Zhang, H., Li, Y., Wang, H.: Formal Semantics and Verification for Feature
Modeling. In: Proc. 10th Int. Conf. on Engineering of Complex Computer Systems
(ICECCS 2005), Shanghai, June 2005, pp. 303–312 (2005)

13. Tarr, P., Ossher, H., Harrison, W., Sutton Jr., S.M.: N Degrees of Separation: Multi-
Dimensional Separation of Concerns. In: Proc. ICSE 1999, Los Angeles, CA, USA (May
1999)

14. Zhang, H., Jarzabek, S.: XVCL: A Mechanism for Handling Variants in Software Product
Lines. Science of Computer Programming 53(3), 381–407 (2004)

J. Bosch and J. Lee (Eds.): SPLC 2010, LNCS 6287, pp. 446–450, 2010.
© Springer-Verlag Berlin Heidelberg 2010

An Approach for Developing Component-Based
Groupware Product Lines Using the Groupware

Workbench

Bruno Gadelha1, Elder Cirilo1, Marco Aurélio Gerosa2, Alberto Castro Jr.3,
Hugo Fuks1, and Carlos J.P. Lucena1

1 Department of Informatics, Pontifical Catholic University of Rio de Janeiro (PUC-Rio)
R.M.S Vicente, 225, Gávea, Rio de Janeiro - RJ, Brazil, 22453-900
{bgadelha,ecirilo,hugo,lucena}@inf.puc-rio.br

2 Computer Science Department, University of São Paulo (USP)
R. Matão, 1010, São Paulo 05508-090, Brazil

gerosa@ime.usp.br
3 Department of Computer Science, Federal University of Amazonas (UFAM)

Av. Gal. R.O.J. Ramos, 3000, Manaus, Brazil
alberto@ufam.edu.br

Abstract. Groupware are computer-based systems designed to support groups
of people working together providing a shared environment. Given that devel-
oping this kind of application is not a trivial task because of the huge amount of
time wasted on implementing infrastructure aspects, a few component-based
approaches appeared. Groupware Workbench structures groupware using com-
ponents and tools that encapsulate the technical difficulties of distributed and
multi-user systems based on the 3C Collaboration Model. In this paper we
propose the development of a Collablet product line using the Groupware
Workbench. This approach combines the benefits of Software Product Lines
and software components providing a systematic way for tailoring customized
groupware through the use of Collablets automatically derived from product
lines.

Keywords: software product lines, component-based development, groupware.

1 Introduction

Groupware development isn’t a trivial task because it shares a particular set of com-
mon requirements [1] and on the top of that it needs specific software development
techniques. One key issue that should be mitigated in groupware development is the
huge amount of time wasted on implementing infrastructure aspects like protocols,
synchronism, session management and others, leaving little time for implementing
innovative solutions [2]. Following this line of thought, [3] cite several groupware
component-based approaches allowing software reuse and making groupware devel-
opment faster.

 An Approach for Developing Component-Based Groupware Product Lines 447

The Groupware Workbench [4] structures collaborative systems using components
(Collablet Elements) and tools (Collablets) that encapsulate the technical difficulties
of distributed and multi-user systems based on the 3C Collaboration Model [5, 6].
This model considers that collaboration is achieved by the interplay of communica-
tion, coordination and cooperation efforts. The 3C Collaboration Model guides all the
development process from the domain analysis, organizing the feature model, through
implementation where Collablet Elements are developed and classified according to
the model.

In this paper we propose the development of a Collablet product line using the
Groupware Workbench combining the benefits of SPL and software components. Our
goal is to provide a systematic way for tailoring customized groupware through the
use of Collablets derived from product lines. Collablets result from the joining of
Collablet Element followed by adapting them to provide specific functionality.

2 A Discussion Forum Collablet Product Line

Discussion forum is an asynchronous textual communication tool, largely used to
delve deeper into a subject of study. It is used in many different contexts and pur-
poses, from entertainment where users discuss some topic of interest like TV shows,
music and more, to education where students can “share their thinking with each
other, comment on each other’s ideas and find partners that share interests in order to
get into a deeper discussion” [7].

Different uses for discussion forums impose different requirements. This section
describes the development of a product line for developing discussion forums as Col-
lablets – from the domain analysis until the instantiation of a product and installation
on a groupware environment developed using Groupware Workbench.

2.1 Domain Analysis

In order to capture commonalities and variabilities on the discussion forums domain,
it is necessary to know in advance their most common uses. Bellow, we describe three
different scenarios of use for discussion forums:

• Scenario 1 – General Purpose Forum. General purpose forums are widely
available on the internet and are open to user participation. In these forums,
the discussion topic can vary from games to technical computer issues and the
purpose of the discussion can be for entertainment, education, work or other.
In general, there are no mediators, and all users play the same role, posting and
answering posts to each topic. Some of these forums require user registration
for keeping user data and future announcements.

• Scenario 2 – Frequently Asked Questions (FAQ). This kind of resource can
be viewed as a discussion forum given that that users post their doubts and ex-
perts answer them. In this scenario, we can identify at least three different
roles for the users: general users, mediators and expert users. General users are
only allowed to post questions, but not to answer them. Mediators select posts
to be answered by experts according to their relevance and check whether a

448 B. Gadelha et al.

similar question has been answered. Expert users are the ones who answer
questions and make them visible to other users.

• Scenario 3 – Educational Forums. In this kind of forum, topics are usually
suggested by teachers or mediators, and topics are opened during a certain pe-
riod of time for posts. Posts may be evaluated by teachers, depending on the
educational methodology that is being applied. Like in scenario 2, here we can
also identify different roles for the participants (students, mediators, teachers,
and others). In this situation, a new set of requirements like session manager
and categorization of messages should be taken into account.

Although having different objectives, applications for the scenarios abovementioned
share a common set of characteristics. They are applications for posting and answer-
ing messages. These messages are displayed according to some criteria (hierarchically
or by order of post) depending on each situation.

This way, based on the requirements of these scenarios and on our experience on
developing and using groupware, we indentified a set of common and variable fea-
tures for discussion forums development. These features were analyzed and classified
according to the 3C Collaboration Model. One issue that should be observed is that
although discussion forums are communication-oriented, most of the identified fea-
tures are coordination- and cooperation-oriented, reflecting the intra-relationships of
these dimensions of the collaboration model.

The identified features were then organized in the Forum PL 3C feature model,
which is depicted in Fig 1. The feature model not only shows the features with their
respective variability information (mandatory or optional), but also their purpose.
Once again, the purpose of the derived products (communication) is indicated by the
root of the feature model.

Fig. 1. Forum PL 3C-Feature Model

 An Approach for Developing Component-Based Groupware Product Lines 449

2.2 Design and Implementation

In order to provide a flexible architecture to support the variability provided by the
Forum PL, the features identified in the previous phase were designed and imple-
mented as independent Collablet Elements in Groupware Workbench. This assures
that these components may be tailored and reused not only on Forum PL, but in any
other product line or component-based software implemented with GW.

The independent Collablet Elements must be implemented and deployed on GW
according to its 3C purpose. It keeps the workbench organized for future software
maintenance and reuse, in addition to maintaining consistence with the previous de-
velopment phase.

Product derivation [8] in the software product line engineering refers to the process
of constructing a product from a set of reusable assets. In the Forum PL, products are
derived by the composition of reusable Collablet Elements and configuration of spe-
cific Collablets. These artifacts encapsulate the technical difficulties of distributed and
multi-user systems based on the 3C Collaboration Model.

2.3 Product Derivation

In order to facilitate the selection and composition of Collablet Elements and configu-
ration of the Collablets, we specialize the GenArch [9] product derivation tool to
incorporate a new model entitled Collab-specific Model.

The product derivation process starts by configuring the feature model. It encom-
passes the selection of Collablet features that satisfy the requirements of a certain
product requested by customers. Based on the previous defined feature model con-
figuration, the GenArch derivation process is devised in three steps: (i) selection of
the Collablet Elements that will compose the specific Collablet; (ii) selection of the
implementation elements (class, aspects, files, components, folders) that will be part
of the derived product; and (iii) customization of Tool Descriptor Files – XML files
that declare the Collablet Elements and their settings.

The selection of Collablet Elements from the Groupware Workbench is accom-
plished based on the configuration knowledge provided by the configuration model,
which relates Collablet features to Collablet Elements. After that, the GenArch tool
uses the information provided by the Collab-specific model that relates the Collablet
Elements with implementation elements; in order to decide which implementation
elements (classes, interfaces, extra files, etc.) will be part of the final product.

3 Conclusion

In this paper, we proposed the development of a Collablet Product Line (CPL) using the
GW aiming to provide a systematic way for tailoring customized groupware derived
from product lines. As an example, we developed a CPL for discussion forums.

The use of GW in the development of the product line was adequate, since the
structure provided by GW was already designed for the reuse of software compo-
nents. In addition, the GW already provides mechanisms for composition of Collablet
Elements to the creation of Collablets and composition of Collablets for groupware.
The concept of product line systematizes the groupware development process using

450 B. Gadelha et al.

the GW, supplying the need of having technical management aspects that are impor-
tant throughout the life cycle of the software.

This paper addresses ongoing research on the GPL development. We are currently
investigating how to combine and instantiate two or more Collablets Product Lines in
order to provide customizable Collablets on groupware composition according to
specific group dynamics and needs.

Acknowledgments

This research is partially supported by project “Modelagem Computacional de
Sistemas Biológicos e Sociais Baseada em Sistemas Multiagentes” from CNPq, num.
550865/2007-1. Bruno Gadelha, Elder Cirilo, Hugo Fuks and Carlos J. P. Lucena
receive grants from CNPq. Hugo Fuks and Carlos J. P. Lucena also receive grants
from FAPERJ.

References

1. Tietze, D.A.: A Framework For Developing Component-Based Co-Operative Applications.
Ph.D. Dissertation, Technischen Universität Darmstadt, Germany (2001)

2. Greenberg, S.: Multimedia Tools and Applications, vol. 32(2), pp. 139–159 (February 2007)
ISBN 1380-7501

3. Gadelha, B., Nunes, I., Fuks, H., Lucena, C.J.P.: An Approach for Developing Groupware
Product Lines (GPL) based on the 3C Collaboration Model. In: CRIWG 2009, pp. 328–343
(2009)

4. Gerosa, M.A., Fuks, H.: A Component Based Workbench for Groupware Prototyping. In:
1st Workshop on Software Reuse Efforts (WSRE), 2nd Rise Summer School (2008)

5. Ellis, C.A., Gibbs, S.J., Rein, G.L.: Groupware - Some Issues and Experiences. Communi-
cations of the ACM 34(1), 38–58 (1991)

6. Fuks, H., Raposo, A., Gerosa, M.A., Pimentel, M., Lucena, C.J.P.: The 3C Collaboration
Model. The Encyclopedia of E-Collaboration, Ned Kock (org), 637–644 (2007)

7. Gerosa, M.A., Filippo, D., Pimentel, M., Fuks, H., Lucena, C.J.P.: Is the Unfolding of the
Group Discussion Off-Pattern? Improving Coordination Support in Educational Forums Us-
ing Mobile Devices. Computers and Education 54(2), 528–544 (2010)

8. Czarnecki, K., Eisenecker, U.W.: Generative programming: methods, tools, and applica-
tions. Addison-Wesley, USA (2000)

9. Cirilo, E., Kulesza, U., Lucena, C.: A Product Derivation Tool Based on Model-Driven
Techniques and Annotations. JUCS 14, 1344–1367 (2008)

Towards Consistent Evolution of Feature Models

Jianmei Guo and Yinglin Wang

Department of Computer Science and Engineering,

Shanghai Jiao Tong University, Shanghai 200240, China

{guojianmei,ylwang}@sjtu.edu.cn

Abstract. This paper explores the possibility of consistent evolution of

feature models (FMs), which should resolve the requested changes and

maintain the consistency of FMs. According to the definition of FMs, we

first analyze the primitive elements of FMs and suggest a set of atomic

operations on FMs. Then we analyze and apply the semantics of change

to FMs to support consistency maintenance during FMs evolution. The

resolution of a requested change to an FM requires obtaining and execut-

ing a sequence of additional changes derived from the requested change

for keeping the consistency of the FM. Our approach limits the con-

sistency maintenance of an FM in a local range affected only by the

requested change instead of the whole FM, which reduces the effort and

improves the efficiency for the evolution and maintenance of FMs.

1 Introduction

Software product line (SPL) engineering captures commonalities and variabil-
ities of an SPL in terms of features and documents them in a feature model
(FM) [3,2,4]. SPLs and their FMs evolve continually with various unanticipated
stakeholder requests and dynamic changes in the runtime environments of SPLs.
Their evolution and consistency maintenance are still open issues.

Some researchers classified FMs evolution via changes as refactorings, special-
izations, and generalizations [7, 10, 11]. Such classification explains how changes
to an FM have altered the products of an SPL [11]. It represents the types of
FMs evolution at a high level but cannot reflect various concrete change opera-
tions during the evolution process. How one changes an FM X into a target FM
Y using a sequence of sound operations is not obvious.

Many approaches were proposed to support automated analysis of FMs. They
mostly use SAT solvers [5, 11], BDD tools [8], or CSP solvers [9] to automate
various reasoning tasks, e.g., checking satisfiability, detecting “dead” features,
computing commonalities. They, however, suffer from the NP-hard problem of
feature combinatorics and thus take a long time to perform with large FMs [6].

This paper explores the possibility of consistent evolution of FMs. We ap-
ply and extend techniques from ontology evolution [12] to FMs evolution. The
consistent evolution of an FM is defined as the timely adaptation of the FM to
the requested changes and the consistency maintenance for those changes. The
consistency of FMs is regarded as an agreement among the features in terms of
the semantics of FMs.

J. Bosch and J. Lee (Eds.): SPLC 2010, LNCS 6287, pp. 451–455, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

452 J. Guo and Y. Wang

Our main contributions are as follows. First, we analyze the primitive elements
of FMs and propose a set of atomic operations on FMs (see Section 2). Second,
our approach analyzes and applies the semantics of change and clarifies FMs
evolution by a sequence of changes (see Section 3). Third, our approach limits
the consistency maintenance of an FM in a local range affected only by the
requested change instead of the whole FM, which reduces the maintenance cost
and improves the management efficiency.

2 Defining Atomic Operations on FMs

An FM is organized hierarchically and is graphically depicted as a feature dia-
gram [1]. By integrating many former definitions of FMs [1, 5, 8, 11], we adopt
the notation as Fig. 1 shows (The example is inspired from [2, 9]). An FM is
a tree of features [8]. Every node in the tree has one parent except the root
feature (‘r: HIS’). A terminal or concrete feature (e.g., ‘f4’) is a leaf and a non-
terminal or compound or abstract feature (e.g., ‘f1’) is an interior node of a
feature diagram [5,11]. Connections between a feature and its group of children
are classified as And- (e.g., ‘f1’, ‘f2’, and ‘f3’), Or- (e.g., ‘f10’ and ‘f11’), and
Alternative-groups (e.g., ‘f12’, ‘f13’, and ‘f14’). The members of And-groups can
be either mandatory (e.g. ‘f1’) or optional (e.g. ‘f3’). Or-groups and Alternative-
groups have their own cardinalities [8]. Additional constraints comprise requires
and excludes relationships [1], e.g., ‘f4 requires f7’.

r: HIS

f1: Detection (Det) f2: Monitor (Mon) f3: Service

f4: Fire Det

f5: Intrusion Det

f6: Flood Det f7: Smoke Mon

f8: Motion Mon

f9: Moisture Mon f11: Video
on demand

f10: Internet
connection

f13: ADSL f14: Wirelessf12: Power Line

Mandatory feature
Alternative-group
Or-group

f4 requires f7. f5 requires f8. f6 requires f9.
Constraints:

And-groupNon-terminal feature
Terminal feature

Optional feature [1..n] Cardinality

[1..1]

[1..2]

Fig. 1. Partial FM for the Home Integration Systems SPL

Based on the above definition of FMs, we can analyze the primitive elements
of FMs. Since each element of FMs can be changed by one of the meta-change
transformations [13], we suggest a set of atomic operations on FMs in Table 1.
These operations are defined by the cross product of the set of FM elements and
the set of meta-changes (‘Add’, ‘Remove’, and ‘Set’). They represent the changes
to FMs at the lowest level of complexity and can compose various complex
changes.

Towards Consistent Evolution of Feature Models 453

Table 1. Atomic operations on FMs

Entity Operation Attribute Operation
Primitive Elements/Meta-Changes

Add Remove Set

Non-terminal
Feature

AddNF(new-nf, old-node) RevNF(old-nf)Node

Terminal Feature AddTF(new-tf, old-nf) RevTF(old-tf)
Group Feature Group AddFG(new-fg, old-nf) RevFG(old-fg)

Parent Link
AddPL(new-pl, start-node,
end-node)

RevPL(old-pl)

Requires Link
AddRL(new-rl, start-node,
end-node)

RevRL(old-rl)

Entity

Link

Excludes Link
AddEL(new-el, start-node,
end-node)

RevEL(old-el)

Name (for all entities) SetName(entity, ‘name’)

Group Type (for all groups)
SetGT(fg,
‘And/Or/Alternative’)

Optionality
(for AND group members)

SetOpt(node,
‘Mandatory/Optional’)

Attribute

Cardinality
(for OR/Alternative groups *)

SetCard(fg,
‘mincard’, ‘maxcard’)

* Every Alternative group has the fixed cardinality [1..1].

3 Semantics of Change to FMs

The evolution of FMs can be seen as a sequence of changes to FMs. Such changes
can be composed of atomic operations on FMs. A change to FMs can be seen
as a surjective mapping between FMs. As is shown in Fig. 2, given an FM
and a requested change Ch, the application of the change Ch to the FM re-
sults in another FM ′, i.e., FM ′ = Ch(FM), under preconditions(FM, Ch) =
true ∧ postconditions(FM ′, Ch) = true. Here, preconditions of a change com-
prise a set of assertions that must be true to be able to apply the change, while
postconditions of a change comprise a set of assertions that must be true after
applying a change.

Since the application of a single change will not always leave an FM in a
consistent state, it often derives a series of additional changes. Hence, the res-
olution of the requested change requires obtaining and executing these derived
changes to maintain the consistency of the FM. If we decide whether a given
FM is consistent or not by a decision function consistency(FM), then:

Definition 1. Given an FM and a requested change Ch, the semantics of
change to FM is defined as:

SemanticsOfChange(FM, Ch) = (Ch1, ..., Chi, Chi+1, ..., Chn−1)

where:

– FM is a given consistent FM, i.e., consistency(FM) = true;
– Ch is a requested change that can be applied to the FM, i.e.,

preconditions(FM, Ch) = true;
– FM1 = Ch(FM) is an FM representing the result of applying the requested

change Ch to the FM, i.e., postconditions(FM1, Ch) = true;
– Chi, 1 ≤ i ≤ n − 1, is a derived change that satisfies the following set of

conditions:

454 J. Guo and Y. Wang

Fig. 2. Applying a change Ch to an FM

Fig. 3. The semantics of change to an FM

Fig. 4. Different evolution strategies. (a) Applying the RevNF (“f10”) alone to the

FM shown in Fig. 1. (b) All child features are removed. (c) All child features are

reconnected to the parent. (d) All child features are reconnected to some feature.

• FM i+1 = Chi(FM i), which implies that preconditions(FM i, Chi) =
true and postconditions(FM i+1, Chi) = true;

• consistency(FM i) = false, 1 ≤ i ≤ n − 1, and consistency(FMn) =
true.

Thus, as is shown in Fig. 3, the result of applying the requested change Ch to
the FM is the FM ′: FM ′ = FMn = Chn−1(...Chi+1(Chi(...Ch1(Ch(FM))))).

Next, how to find and organize these derived changes that resolve the re-
quested change and maintain the consistency of the FM? It is impractical to de-
mand engineers to track down and keep in mind all the changes that are pending.
Hence, we adapt the procedural approach [12] to realizing the task automati-
cally. Our approach comprises five steps: first, a requested change is represented
as a series of atomic operations defined in Table 1; second, the illegal changes are
prohibited by checking the preconditions of each change; third, according to the
cause and effect relationships between changes, additional changes are derived
from the requested change for keeping consistency; fourth, the execution order
of the requested and derived changes is determined in terms of the evolution
strategy; fifth, all the confirmed changes are applied to the FM. Here, an evolu-
tion strategy unambiguously defines the way in which a change will be resolved.
Fig. 4 demonstrates three evolution strategies for resolving a change.

Towards Consistent Evolution of Feature Models 455

4 Conclusion

This paper explores the possibility of consistency evolution of FMs from a per-
spective of atomic operations and their semantics. We contribute a set of atomic
operations and the semantics of change to the consistency maintenance of an
evolving FM. Our approach limits the consistency maintenance of an FM in a
local range affected only by the requested change and thus reduces the effort and
improves the efficiency. It is well suited to the incremental management of FMs
evolution. Next, we plan to apply our approach to a large-size SPL and obtain
more comprehensive evaluation.

Acknowledgments. Funding was provided by NSFC (No. 60773088), 863 Pro-
gram (No. 2009AA04Z106), and Shanghai Municipal S&T Commission (No.
08JC1411700).

References

1. Kang, K.C., Cohen, S.G., Hess, J.A., Novak, W.E., Peterson, A.S.: Feature-

Oriented Domain Analysis (FODA) Feasibility Study. Technical Report CMU/SEI-

90-TR-021. Software Engineering Institute, CMU (1990)

2. Kang, K.C., Lee, J., Donohoe, P.: Feature-oriented product line engineering. IEEE

Software 19, 58–65 (2002)

3. Clements, P., Northrop, L.: Software Product Lines: Practices and Patterns.

Addison-Wesley, Reading (2001)

4. Pohl, K., Bockle, G., van der Linden, F.: Software Product Line Engineering: Foun-

dations, Principles, and Techniques. Springer, Heidelberg (2005)

5. Batory, D.: Feature Models, Grammars, and Propositional Formulas. In: Obbink,

H., Pohl, K. (eds.) SPLC 2005. LNCS, vol. 3714, pp. 7–20. Springer, Heidelberg

(2005)

6. Batory, D., Benavides, D., Ruiz-Cortes, A.: Automated analysis of feature models:

challenges ahead. Communications of the ACM 49, 45–47 (2006)

7. Czarnecki, K., Helsen, S., Eisenecker, U.W.: Formalizing cardinality-based feature

models and their specialization. Software Process: Improvement and Practice 10,

7–29 (2005)

8. Czarnecki, K., Wasowski, A.: Feature Diagrams and Logics: There and Back Again.

In: SPLC 2007, Kyoto, Japan, pp. 23–34 (2007)

9. Benavides, D., Martin-Arroyo, P.T., Cortes, A.R.: Automated reasoning on feature

models. In: Pastor, Ó., Falcão e Cunha, J. (eds.) CAiSE 2005. LNCS, vol. 3520,

pp. 491–503. Springer, Heidelberg (2005)

10. Alves, V., Gheyi, R., Massoni, T., Kulesza, U., Borba, P., Lucena, C.: Refactoring

product lines. In: GPCE 2006, Portland, Oregon, USA, pp. 201–210 (2006)

11. Thum, T., Batory, D.S., Kastner, C.: Reasoning about edits to feature models. In:

ICSE 2009, Vancouver, Canada, pp. 254–264 (2009)

12. Stojanovic, L.: Methods and Tools for Ontology Evolution. PhD. Dissertation.

University of Karlsruhe (2004)

13. Huersch, W.: Maintaining consistency and behaviour of object-oriented systems

during evolution. ACM SIGPLAN Notices 32, 1–21 (1997)

SOPLE-DE: An Approach to Design
Service-Oriented Product Line Architectures

Flávio M. Medeiros1, Eduardo S. de Almeida2, and Silvio R.L. Meira1

1 Federal University of Pernambuco (UFPE)
2 Federal University of Bahia (UFBA)

{fmm2,srlm}@cin.ufpe.br, esa@dcc.ufba.br

Abstract. Software reuse is crucial for enterprises interested in software

quality and productivity gains. In this context, Software Product Line

(SPL) and Service-Oriented Architecture (SOA) are two reuse strategies

that share common goals and can be used together to increase reuse

and produce service-oriented systems faster, cheaper and customizable

to specific customers. In this sense, this work investigates the problem of

designing software product lines using service-oriented architectures, and

presents a systematic approach to design software product lines based

on services. The proposed approach provides guidance to identify, design

and document architectural components, services, service compositions

and their associated flows. In addition, an initial experimental study per-

formed with the intention of validating and refining the approach is also

depicted demonstrating that the proposed solution can be viable.

Keywords: Service-Oriented Architecture (SOA), Software Product Line

(SPL), Software Architecture and Software Development Processes.

1 Introduction

Software reuse is a key factor for enterprises interested in reducing development
costs and increasing software quality [1]. In this context, SPL and SOA are two
reuse strategies that share common goals, i.e., they both support the reuse of
existing software and capabilities during the development of new systems and
encourage the development of flexible and cost-effective software systems [2].

In this way, SPL and SOA concepts can be used together with the purpose
of increasing and systematizing reuse during the Service-Oriented Development
(SOD) and producing service-oriented systems faster, cheaper and customizable
to specific customers [3]. Moreover, some service characteristics, e.g., dynamic
discoverability and binding, can be used to support the development of Dynamic
Software Product Lines (DSPL) [4].

This work investigates the problem of designing Service-Oriented Product
Line Architectures (SO-PLA). This combination raises several challenges, such as
how to identify and design services for the domain, decide the variation points to
be considered in the context of SOD, identify service variability implementation
mechanisms and define architectural views to represent the SO-PLA.

J. Bosch and J. Lee (Eds.): SPLC 2010, LNCS 6287, pp. 456–460, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

SOPLE-DE 457

In this sense, a systematic design approach with a set of activities, with clearly
defined inputs and outputs, and performed by a predefined set of roles is de-
scribed in this work with the purpose of providing guidance to solve the prob-
lems of designing a SO-PLA. A service-oriented product line is considered as a
set of similar service-oriented systems that supports the business processes of a
specific domain and can be developed from a common set of core assets [5].

In order to define a SO-PLA, an approach is essential to provide guidance
to the team, specify the artifacts to be produced, and associate activities with
specific roles and the team as a whole. Without it, the development team may
develop software in an ad-hoc manner, with success relying on the efforts of a
few dedicated individual participants [6].

2 Related Work

An approach for developing service-oriented product lines was presented in [4]. In
this work, a method to identify services and service compositions from feature
models is depicted. In our work, we also provide methods to identify service
candidates, not only from feature models, but also using business processes, use
cases and quality attributes scenarios. In addition, some architectural views are
proposed to represent the interactions among architectural elements.

The concept of Business Process Line (BPL) is used in [3]. This work provides
a process to develop service-oriented product lines based on business processes
that contain variability and can be customized to specific customers. Our work
also considers variability in the business processes, but we also use feature models
to represent variability in an easy and exploitable way.

In [7], an initial process for service-oriented product lines is presented. This
work discusses the characteristics of SOA and SPL processes, but a systematic
process for service-oriented product lines is not provided. The key difference of
our work is the systematization of design. In addition, our approach was validated
and refined through an initial experimental study.

3 The Proposed Approach (SOPLE-DE)

The SOPLE-DE is a top-down approach for the systematic identification, design
and documentation of service-oriented core assets supporting the non-systematic
reuse of SOD. It is divided in two cycles as SPL engineering. The core asset
development cycle aims to provide guidelines and steps to identify, design and
document architectural elements with variability. In the product development
cycle, the architectural elements are specialized to a particular context according
to specific customer requirements [5].

The SOPLE-DE considers the architectural style shown in Figure 1. This
architectural style presents the layers that are commonly used in SOA [8]. Thus,
SOPLE-DE provides guidelines to identify, design and document architectural
elements for these layers. We use this architectural style because we believe that
these layers are essential for any SOA solution.

458 F.M. Medeiros, E.S. de Almeida, and S.R.L. Meira

Components

Services

Service

Orchestrations

Graphical User

Interfaces (GUI)

Legend:

Q
u

a
li
ty

A
tt

r
ib

u
te

s

M
o

n
it

o
r
in

g

VariabilityService Component OptionalAlternative GUI Component Activity End FlowBegin

2. SOA Architect

1. Domain Architect

3. Service Designer

4. Domain Designer

5. Business Analyst

Architectural Elements

Identification

Roles: 1, 2 and 5

Variability Analysis

Roles: 1

Architecture Specification

Roles: 1 and 2

Architectural Elements

Specification

Roles: 3 and 4

Design Decisions

Documentation

Roles: 1 and 2

Architectural Elements

Identification

Variability Analysis

Architecture Specification

Architectural Elements

Specification

Design Decisions

Documentation

Roles Activities / Roles

Fig. 1. Layered Architectural Style / SOPLE-DE Activities and Roles

The SOPLE-DE considers that a SO-PLA supports two variability levels as
described next [3]: Configuration variability, in which architectural elements are
selected from the core assets in order to obtain the target system, i.e., optional
and alternative architectural elements are selected or excluded; Customization
variability, in which architectural elements already selected for the architecture
are customized according to specific requirements, i.e., architectural elements
with variability are customized internally. SOPLE-DE also considers variability
in the communication among the architectural elements, e.g., different protocols
can be used for communication and the messages exchanged can be sent in a
synchronous or asynchronous way.

The activities and roles of the SOPLE-DE are presented in Figure 1. It starts
with the architectural elements identification activity, which receives the domain
feature model, the business process models and the quality attribute scenarios as
mandatory inputs. The domain use cases are optional inputs. It produces a list
of components, services and service orchestration candidates for the SO-PLA.
Moreover, the communication flows among these elements are also defined.

Subsequently, there is the variability analysis activity. It receives the list of
components, services, service orchestrations and their flows identified previously,
and defines and documents key architectural decisions regarding variability. In
this activity, it is defined how the variability will be implemented. It refines the
architectural elements identified previously.

Architecture specification is the next activity, in which the architecture is doc-
umented using different views in order to represent the concerns of the different
stakeholders involved in the project [9]. An architecture is a complex entity that
should be represented and documented upon several views (see Figure 2).

In the architectural elements specification activity, the low-level design of
components and services is performed. SOPLE-DE suggests some UML diagrams
to document the internal behavior of the architectural elements [10]. In parallel
with these four activities described, the design decisions documentation activity
is performed concurrently. In this activity, important design decisions, such as
the selection of technologies and variability mechanisms, are documented.

SOPLE-DE 459

Layer View Integration View

Hub-and-spoke Peer-to-peer

Component View Interaction View

A B C

SOAP

Message()
Message()

Message()

REST

SOAP

REST

SOAP

SOAPESB

B C

A

Entity
Service

Task
Service

Orchestration
Service

Utility
Service

Fig. 2. Architectural Views

4 Experimental Study

An experimental study on the Travel Reservation domain was performed with
the purpose of evaluating and refining the SOPLE-DE. In this experiment, the
process of Wohlin [11] was used to define, plan and execute the experimental
study. In addition, the Goal Question Metric (GQM) framework was also used
to define the experiment [12]. The goal of this experiment was to analyze the
SOPLE-DE for the purpose of evaluation with respect to its efficacy from the
point of view of researcher in the context of service-oriented product line projects.

After collecting the information about the service coupling, instability and
cohesion, the data collected was analyzed. Figure 3 shows the metric results for
the services identified by the subjects. In the graphics, the axis (X) shows the ID
of the subjects, while the axis (Y) represents the service coupling mean, service
instability mean and the average cohesion of the service operations.

0.83 0.94
1.1 1.17

1.75
1.63

1.83
2

0

0.5

1

1.5

2

2.5

1 2 3 4 5 6 7 8

Subjects ID

Service Coupling

Service Coupling

0.17

0.35

0.24

0.36

0.47
0.51 0.54

0.59

0

0.2

0.4

0.6

0.8

1 2 3 4 5 6 7 8

Subjects ID

Service Instability

Service Instability

1.17 1.17
1.1

1

1.18 1.13 1.17
1.3

0

0.5

1

1.5

1 2 3 4 5 6 7 8

Subujects ID

Service Cohesion

Service Operation Cohesion

SC(s) = number of service providers used by
a service consumer (s), where (s) is a service

of a given system.

SI(s) = P / (P + C), where C is the number of
service consumers that call service (s), and P

is the number of service providers that
service (s) uses.

LSC (s) = Number of business entities
accessed by the operations of service (s).

Fig. 3. Metric Results

The subjects with Id = 1, 2, 3 and 4 used the SOPLE-DE during the ex-
periment, while subjects with Id = 5, 6, 7 and 8 designed the project without
following a structured method. As it can be seen in Figure 3, the coupling, in-
stability and cohesion of the services generated using the SOPLE-DE are lower
when compared with the services identified by the subjects without use the
method. The full description of this experiment can be found in [10].

460 F.M. Medeiros, E.S. de Almeida, and S.R.L. Meira

5 Conclusions and Future Work

This work proposed an approach to design service-oriented product lines focusing
on increasing reuse and flexibility, and supporting the development of service-
oriented systems faster, cheaper and customizable to specific customers.

The SOPLE-DE approach was based on an extensive review of the available
service-oriented processes, their weak and strong points and gaps in the area [10].
It can be seen as a systematic way to design service-oriented product line archi-
tectures through a well-defined sequence of activities with clearly defined inputs
and outputs. Additionally, the approach was evaluated in an experimental study
that presented findings that the SOPLE-DE can be viable to aid software ar-
chitects to design service-oriented product line architectures with good coupling
and instability, and identify services with cohesive operations.

Even it being a relevant contribution for the field, new routes need to be inves-
tigated in order to define a more complete process that consider all the software
development disciplines, such as requirements, design and implementation, for
product lines based on services. In addition, new experiments in different do-
mains are necessary to gather more evidences about the efficacy of the proposed
approach. Experiments in industry are also considered as future work.

References

1. Krueger, C.W.: Software reuse. ACM Computing Surveys 24(2) (1992)

2. Medeiros, F.M., de Almeida, E.S., Meira, S.R.L.: Towards an approach for service-

oriented product line architectures. In: SOAPL 2009 (2009)

3. Boffoli, N., Caivano, D., Castelluccia, D., Maggi, F.M., Visaggio, G.: Business

process lines to develop service-oriented architectures through the software product

lines paradigm. In: SOAPL, pp. 143–147 (2008)

4. Lee, J., Muthig, D., Naab, M.: An approach for developing service-oriented product

lines. In: SPLC, pp. 275–284. IEEE Computer Society, Los Alamitos (2008)

5. Clements, P., Northrop, L.: Software Product Lines: Practices and Patterns.

Addison-Wesley, Reading (2001)

6. Booch, G.: Managing the Object-Oriented Project. Addison-Wesley, Reading

(1995)

7. Günther, S., Berger, T.: Service-oriented product lines: Towards a development

process and feature management model for web services. In: SOAPL (2008)

8. Arsanjani, A.: Service-oriented modeling and architecture. Technical report,

Service-Oriented Architecture and Web services Center of Excellence, IBM (2004)

9. Bass, L., Clements, P., Kazman, R.: Software Architecture in Practices. Addison-

Wesley Longman Publishing Co., Inc., Boston (2003)

10. Medeiros, F.M.: An approach to design service-oriented product line architectures.

Master’s thesis, Federal University of Pernambuco (2010)

11. Wohlin, C., Runeson, P., Höst, M., Ohlsson, M.C., Regnell, B., Wesslen, A.: Exper-

imentation in Software Engineering: An Introduction. Springer, Heidelberg (2000)

12. Basili, V., Caldiera, G., Rombach, D.H.: The goal question metric approach. In:

Encyclopedia of Software Engineering. Wiley, Chichester (1994)

J. Bosch and J. Lee (Eds.): SPLC 2010, LNCS 6287, pp. 461–465, 2010.
© Springer-Verlag Berlin Heidelberg 2010

Multidimensional Classification Approach for Defining
Product Line Engineering Transition Strategies

Bedir Tekinerdogan1, Eray Tüzün2, and Ediz Şaykol2

1 Bilkent University, Department of Computer Engineering,
06800 Bilkent Ankara, Turkey

bedir@cs.bilkent.edu.tr
2 Havelsan A.Ş., Peace Eagle Program, Research and Development Team,

ODTU Teknokent, 06531, Ankara, Turkey
{etuzun,esaykol}@havelsan.com.tr

Abstract. It is generally acknowledged that the transitioning process to a
product line engineering approach is not trivial and as such requires a planned
transition process. Different classifications of transition strategies have been
proposed in the literature. It appears that these classification schemes are
usually based on a single dimension. However, the adoption of a transition
strategy is dependent on various criteria and very often it is not easy to
characterize the required transition strategy. An appropriate characterization of
the transition strategy is important for carrying out the right transition activities
and steps to provide an operational product line engineering approach. In this
paper, we first provide a conceptual model for defining the concepts related to
transition strategies and then propose a multi-dimensional classification
approach that aims to provide a more complete view on transition strategies.

Keywords: software product line engineering, product line transition strategy,
multi-dimensional classification.

1 Introduction

It is generally acknowledged that transitioning to a product line engineering approach
needs to be performed carefully to avoid failures and mitigate risks that are inherent
to product line engineering and the transitioning process [7][9]. Likewise, the product
line engineering community has proposed different transition strategies that aim to
support the transition process and as such help to define a proper product line
engineering approach for the organization. The selection of a transition strategy is
largely driven by the specific business goals of the organization. To achieve these
goals the organization needs to select one or more transition strategies that help to
settle and carry out a product line engineering approach. Despite the benefits of each
of these approaches we can observe that the transition strategies, as described in the
literature, are classified differently, and likewise include somehow different transition
strategies. Very often, it appears that the classification of the transition strategies is
based on a single dimension. In reality, it seems that it is usually not easy to select a
transition strategy based on the characterization of the existing, often complex state of

462 B. Tekinerdogan, E. Tüzün, and E. Şaykol

a non-product line engineering approach. Yet, an appropriate characterization of the
transition strategy is important for the selection of the right transition strategy and the
healthy execution of the transition process.

In this paper we first provide a conceptual model that defines the key concepts for
the transition process. The conceptual model represents a general model that can be
used to instantiate multiple transition processes. Based on the conceptual model and
the existing transition strategies, we propose a multi-dimensional classification
approach for defining the space of transition strategies. The dimensions in this
classification approach represent the criteria for classification while the values on the
dimensions represent the separate transition strategies. The novel classification
approach is complementary to existing approaches, reuses existing classification
dimensions and proposes new classification dimensions to characterize a transition
strategy. We believe that the analysis and the survey can support both practitioners
and researchers. Practitioners will be supported by providing the first guidance in
understanding the transition process and defining a more accurate transition strategy.
For researchers the study may provide better insight in the current approaches and, if
necessary, define new classification dimensions or new transition strategies.

The remainder of the paper is organized as follows. In Section 2 we provide the
conceptual model for a transition strategy. Section 3 proposes the multidimensional
classification approach for product line transition strategies. Finally, Section 4
concludes the paper.

2 Conceptual Model

The methodology and roadmap for switching to product line engineering from a
traditional way of software development is defined as adoption or transition, and a
plan of actions during this process is called the transition strategy [9]. Based on the
existing literature [1][2][3][4][5][8][9][10] we have defined a conceptual model
related to transition strategies in software product line engineering. The model is
depicted in Figure 1. The rectangles represent concepts; the relations define
association and inheritance relations similar to UML. In principle this conceptual
model aims to represent the different transition strategies which can be found in the
literature. A particular transition approach should be considered as an instance of this
conceptual model.

3 Multidimensional Classification

An extensive review of the literature shows that there is actually no clear consensus
yet on the transition strategies and the proposed transition strategies are defined from
a particular standpoint only. Although the literature represents different classification
mechanisms, based on the model as depicted in Figure 2 we can define the design
space as a combination of multiple classification mechanisms or dimensions. Each
dimension will have its own values or transition strategies. To identify the dimensions
(classifications), initially we looked at the literature (domain) of the transition
strategies. Unfortunately, deriving orthogonal dimensions from the domain is not as

 Multidimensional Classification Approach for Defining Product Line 463

Transition
Process

Non-PLE

Transition
Decision

Transition
Activity

System Development
Approach

Goal

External
Motivation

Internal
Motivation

Product Line
Engineering

Cost

triggers

has

implies Adapting
Organization

Asset Base
Development

Product
Development

source
target

based on

Unique
Development

Reuse-Based
Development

State
Characterization

Launch &
Instutionalize

Transition
Plan

Transition
Strategy

realized by

has

Practice
Area

has

1..*

1..*

Organization
State

Adopted
Process

Existing
Artefacts

Transition
Step

checks

requires

1..*

1..*

Selection
Criteria

depends on

1..*

Fig. 1. Conceptual Model for Transition Strategies in Software Product Line Engineering

easy as it might look. The reason for this is that the existing classification approaches
do not only use different dimensions and dimension names, but these also seem to
overlap with each other. Very often the dimension is not explicitly defined but
directly the transition strategies are listed.

Transition
Strategy Space Dimension

has

Transition
Process

has

Transition
Strategy

has

Selection
Criteria

determines

1..* 1..*
Organization

defines

applies

adopts

1..*

1..*

1..*

Fig. 2. Conceptual Model for Product Line Classification Schemes

Nevertheless, to illustrate the idea we have abstracted from the dimensions in the
literature and defined and aligned a set of dimensions that we think are orthogonal
and relevant for defining a space of transition strategies. These dimensions are
defined in Table 1.

It should be noted here that Table 1 is a proposal for dimensions and as such we do
not pretend that the dimensions are complete or fixed. New dimensions may be added
to the list or the existing dimensions might be removed. Given the dimensions in
Table 1, an organization can define its own transition strategy space that is spanned by
a selected set of dimensions in the table. A coordinate in the space typically represents

464 B. Tekinerdogan, E. Tüzün, and E. Şaykol

Table 1. Description of multiple dimensions for classification of transition strategies

Dimension Description Transition Strategies
Required Effort What is the required effort for the product line

engineering transition process?
 Lightweight
 Heavyweight

Time of Adoption When is the product line process adopted (e.g.
from scratch, during development etc)?

 Cold start
 In Motion
 Operational

Source of
Products

What is the source for the development of
product line artefacts?

 Existing Products
 Products developed from
scratch

Target of Products Which products are aimed to be included in
asset base?

 Refactor existing assets
 New Assets

Approach How is the product line engineering process
adopted?

 Pilot project
 Incremental
 Tactical
 Big Bang

Anticipation How is the product line scope defined? Reactive
 Proactive

the customized strategy that is defined from multiple perspectives (i.e. dimensions). As
such, a transition strategy in this view is defined as a vector consisting of multiple values.
For example, based on Table 1 we might derive the following transition strategy:

Transition Strategy Alternative = { (Required Effort.Lightweight,
 Time of Adoption.Cold Start, Source of Products.Products from Scratch,
 Target of Products. New Assets, Approach.Pilot Project, Anticipation.Proactive) }

Once the transition strategy space is defined, transition strategies can be selected.
Based on a reflection and abstraction from the existing literature, in Table 2 we have
compiled a set of selection criteria that we think are relevant for determining the
transition strategy. An organization may derive a transition strategy by defining
values for selection criteria. The nature and the exact number of selection criteria will
be unique for each organization. In principle these selection criteria queries will
reduce the transition space. To identify the feasible transition strategy for an
organization sufficient selection criteria and their values must be defined.

Table 2. Description of selection criteria for adoption strategies

Selection Criteria Description Values
Maturity of the
Organization

Is there a well-defined structure, are the
communication channels well-defined, etc?

Low, Medium, High

Maturity of the
application domain

How stable is the application domain? Low, Medium, High

Maturity of the products What is the quality of the products? How
mature are the products?

Low, Medium, High

Maturity of practice
areas

What is the degree of knowledge in the
practice areas?

Low, Medium, High

Predictability of the
product requirements

How easy is it to predict changes in the
product requirements?

Not predictable, Changing,
Fixed

Business goals What are the high level costs that are of key
interests to the business?

Time-to-market, Quality, Low
Cost

 Multidimensional Classification Approach for Defining Product Line 465

4 Conclusions

In this paper, we have proposed a multi-dimensional classification approach that aims
to provide a complementary and broader view on transition strategies. We have
provided a conceptual model that summarizes the existing transition strategies. Based
on the conceptual model and the study to existing transition strategies we have
proposed a multi-dimensional classification approach for organizing the transition
strategies. In our future work we aim to formalize the multidimensional approach and
provide tool support for defining, selecting and prioritizing the dimensions and the
selection criteria.

References

[1] Bayer, J., et al.: PuLSE: A Methodology to Develop Software Product Lines. In: Proc.
Symposium Software Reusability (SSR 1999), pp. 122–131. ACM Press, New York
(1999)

[2] Boeckle, G., Bermejo, J., Knauber, P., Krueger, C., Leite, J., van der Linden, F.,
Northrop, L., Stark, M., Weiss, D.: Adopting and institutionalizing a product line culture.
In: Chastek, G.J. (ed.) SPLC 2002. LNCS, vol. 2379, p. 49. Springer, Heidelberg (2002)

[3] Bosch, J.: Maturity and Evolution in Software Product Lines: Approaches, Artefacts and
Organization. In: Chastek, G.J. (ed.) SPLC 2002. LNCS, vol. 2379, pp. 257–271.
Springer, Heidelberg (2002)

[4] Bühne, S., Chastek, G., Kakola, T., Knauber, P., Northrop, L., Thiel, S.: Exploring the
context of product line adoption. In: van der Linden, F.J. (ed.) PFE 2003. LNCS,
vol. 3014, pp. 19–31. Springer, Heidelberg (2004)

[5] Clements, P.C., Northrop, L.: Software Product Lines: Practices and Patterns. Addison-
Wesley, Boston (2002)

[6] Clements, P.C., Jones, L.G., McGregor, J.D., Northrop, L.M.: Getting there from here: A
Roadmap for Software Product Line Adoption. CACM 49(12) (December 2006)

[7] IEEE Software, Special Issue of Software Product Lines (July/August 2002)
[8] Krueger, C.W.: New Methods in Software Product Line Development. In: Proc. of 10th

Software Product Line Conference, BigLever Software, Austin, TX (2006)
[9] Pohl, K., Böckle, G., van der Linden, F.: Software Product Line Engineering –

Foundations, Principles, and Techniques. Springer, Heidelberg (2005)
[10] Schmid, K., Verlage, M.: The Economic Impact of Product Line Adoption and Evolution.

IEEE Software 19(4), 50–57 (2002)

J. Bosch and J. Lee (Eds.): SPLC 2010, LNCS 6287, pp. 466–470, 2010.
© Springer-Verlag Berlin Heidelberg 2010

MARTE Mechanisms to Model Variability When
Analyzing Embedded Software Product Lines

Lorea Belategi, Goiuria Sagardui, and Leire Etxeberria

Mondragon Unibertsitatea, Loramendi 4,
20500 Arrasate-Mondragón, Spain

{lbelategui,gsagardui,letxeberria}@eps.mondragon.edu

Abstract. Nowadays, embedded systems development is increasing its
complexity dealing with quality among others. Model Driven Development
(MDD) and Software Product Line (SPL) can be adequate paradigms to
traditional development and validation methods. MARTE (UML Profile for
Modeling and Analysis of Real-Time and Embedded systems) profile facilitates
model analysis thus ensuring quality achievement from models. SPL requires
taking into account variability like functional, quality attributes, platform and
allocation. Therefore, variability mechanisms of MARTE profile have been
studied in order to perform embedded SPL model analysis.

Keywords: MARTE, model analysis, software product lines, variability,
embedded software.

1 Introduction

Embedded software architectures are usually complex and fragile, technological
platforms evolve and change constantly and requirements such as reliability or safety
add even more complexity to development.

Embedded systems distinguish themselves especially by following specific
characteristics: heterogeneity (hardware/software), distribution (on potential multiple
and heterogeneous hardware resources), ability to react (supervision, user interfaces
modes), criticality, real-time and consumption constraints [1].

Embedded systems usually have to meet critical temporal requirements. Therefore,
validation process must ensure not only functional requirements, but also non-
functional ones, e.g., time requirements. Making embedded software validation is not
trivial. Among other difficulties, in most cases, embedded software is hardware-
dependent (the hardware imposes requirements on the software, which the software
has to cope with) and may run under different configurations (communicating with
different number and kind of devices).

MDD methodology abstracts from system complexity by the use of models where
non-functional properties are attached in order to support validation through model
analysis, simulations and testing. MARTE profile [1] standardized by OMG, allows
performing schedulability and performance analysis based on models, suitable to
validate single-product embedded systems where temporal aspects are critical.

 MARTE Mechanisms to Model Variability 467

On the other hand, embedded systems are favourable to be developed by SPL
methodology due to their features; similar products with variability. Embedded SPL
validation is much more complicated that in single-systems as variability in aspects
related to validation must be taken into account: functional, quality attributes,
platform, allocation and analysis variability [4]. Architecture assessment becomes
crucial to ensure that the product line architecture is flexible enough to support
different products and ensure quality attributes compliance.

This paper presents a study about the MARTE profile and its capability to annotate
a SPL. The study has two phases: 1) identifying mechanisms the profile has to model
variability and 2) analyzing which other existing mechanisms can be combined to fill
the gaps in MARTE. Results of the study indicate the ability to perform embedded
SPL model analysis with MARTE.

1.1 MARTE Elements for Analysis: AnalysisContext

MARTE analysis is intended to support accurate and trustworthy time related
evaluations using formal quantitative analyses based on mathematical models [1].
Quantitative analysis techniques determine the output values such as response times,
deadline failures, resource utilizations, etc. based on data provided as input; e.g.,
execution demands or deadlines.

Information from application model (where constraints, scenarios and software
design is specified, including functional and quality requirements), platform model
(where resources and their properties are described and platform design is specified)
and software allocation (application to platform mapping) is required to perform
model analysis. “Extra annotations needed for analysis are to be attached to an
actual design model, rather than requiring a special version of the design model to be
created only for the analysis” [1] by the use of stereotypes (that map model elements
into the semantics of an analysis domain) and tagged values.

AnalysisContext identifies diagrams that gather information about systems behaviour
and workload, execution platform and allocation for the analysis and specifies global
parameters (properties that describe different cases being considered for analysis).

1.2 Variability in Model Analysis with MARTE

Variability is the key aspect of SPL that must be considered when analyzing models:
not all products of the PL have the same functionalities; often, some of the hardware
devices and other performance-affecting factors can vary from one product to another
[10]; software can be allocated in different ways in a specific platform to optimize
system objectives [3]; and two products with the same functionality may require
different quality attributes, as well as the degree or priority of them [5]. Thus, analysis
can vary from one product to another one. As a result, analysis process and
AnalysisContext term must be extended to address SPL analysis.

2 Evaluation of Variability Mechanisms of MARTE

Although MARTE is not a profile for SPL it has some mechanisms such as
CombinedFragments, abstract class, inheritance, interface implementation, variables,

468 L. Belategi, G. Sagardui, and L. Etxeberria

V
ar

ia
bi

li
ty

 T
yp

e
Ju

st
if

ic
at

io
n

M
A

R
T

E
 a

ff
ec

te
d

el
em

en
ts

M

A
R

T
E

 A
ll

ow
s

–
D

ir
ec

t/
In

di
re

ct
 w

ay

C
om

pl
em

en
ta

ry
 p

ro
po

sa
ls

Fu
nc

ti
on

al

So
m

e
fu

nc
ti

on
al

it
y

m
ay

 v
ar

y
fr

om
 o

ne

pr
od

uc
t t

o
an

ot
he

r.
 N

ot
 a

ll
 p

ro
du

ct
s

ha
ve

th

e
sa

m
e

fu
nc

ti
on

al
it

ie
s.

A
pp

li
ca

ti
on

 m
od

el
 (

U
M

L

di
ag

ra
m

s:
 c

ol
la

bo
ra

ti
on

, a
ct

iv
it

y,

se
qu

en
ce

, i
nt

er
ac

ti
on

, c
om

po
ne

nt
,

cl
as

s,
 c

om
po

si
te

 s
tr

uc
tu

re
, s

ta
te

m

ac
hi

ne
 a

nd
 u

se
 c

as
e

di
ag

ra
m

s)

N
o.

 A
lt

ho
ug

h
va

ri
ab

le
s

an
d

C
om

bi
ne
dF
ra
gm

en
ts

 f
ac

il
it

at
e

va
ri

ab
il

it
y

m
od

el
li

ng
 in

 s
eq

ue
nc

e
di

ag
ra

m
 a

nd
 U

M
L

ab

st
ra

ct
 c

la
ss

, i
nh

er
it

an
ce

 a
nd

 in
te

rf
ac

e
im

pl
em

en
ta

ti
on

 in
 c

la
ss

 d
ia

gr
am

s.

It
 h

as
 n

o
m

ec
ha

ni
sm

 f
or

 v
ar

ia
bi

li
ty

m

an
ag

em
en

t.

V
ar

ia
bi

li
ty

 p
ro

fi
le

s
(P

L
U

S,
 Z

ia
di

)
E

A
ST

-A
D

L
2

(f
ea

tu
re

 m
od

el
 a

nd

A
D
L
V
ar
ia
bl
eE
le
m
en
t)

C

V
L

 Q
ua

li
ty

 a
tt

ri
bu

te
s

(P
er

fo
rm

an
ce

 a
nd

sc

he
du

la
bi

li
ty

)
 -

 O
pt

io
na

li
ty

 -

 D
eg

re
e

 -
 I

m
pa

ct

T
w

o
pr

od
uc

ts
 w

it
h

th
e

sa
m

e
fu

nc
ti

on
al

it
y

m
ay

 r
eq

ui
re

 d
if

fe
re

nt
 q

ua
li

ty
 a

tt
ri

bu
te

s,
 a

s
w

el
l a

s
th

e
pr

io
ri

ty
 o

r
de

gr
ee

 o
f

th
em

.
Im

pa
ct

s
m

ay
 a

ls
o

ar
is

e
am

on
g

di
ff

er
en

t
qu

al
it

y
at

tr
ib

ut
es

 a
nd

/o
r

am
on

g
fu

nc
ti

on
al

it
ie

s/
 p

la
tf

or
m

s/
al

lo
ca

ti
on

s
an

d
qu

al
it

y
at

tr
ib

ut
es

.

St
er

eo
ty

pe
s

of
 th

e
M

A
R

T
E

 p
ro

fi
le

A
lt

ho
ug

h
M

A
R

T
E

 D
at

aT
yp

es
 (
C
ho
ic
eT
yp
e

an
d
T
up
le
T
yp
e)

 c
an

 h
el

p
fo

r
qu

al
it

y
at

tr
ib

ut
e

va
lu

e,
 p

ri
or

it
y

or
 d

eg
re

e
is

 n
ot

 s
pe

ci
fi

ed
 a

nd

ei
th

er
 o

pt
io

na
li

ty
 o

f
th

e
st

er
eo

ty
pe

s.

Im
pa

ct
s

by
 O

C
L

 [
8]

O

pt
io

na
li

ty
 b

y
fe

at
ur

e
m

od
el

 o
f

E
A

S
T

-A
D

L
2

Pl
at

fo
rm

V

ar
ia

bl
e

pl
at

fo
rm

s
in

 d
es

ig
n

or
 in

 r
es

ou
rc

es

th
at

 m
ak

e
it

 u
p

E
xe

cu
ti

on
 P

la
tf

or
m

 m
od

el

B
ui

ld
 d

if
fe

re
nt

 p
la

tf
or

m
s

(b
y

su
bm

od
el

s
li

br
ar

y)
 a

nd
 c

on
fi

gu
ri

ng
 b

y
pa

ra
m

et
er

s.

U
M

L
 in

te
rf

ac
e

im
pl

em
en

ta
ti

on
.

E
A

S
T

-A
D

L
2:

 A
D
L
H
w
E
le
m
en
t

in
he

ri
ts

 f
ro

m

A
D
L
V
ar
ia
bl
eE
le
m
en
t.

Sy
sM

L
: P

ar
am

et
ri

c
di

ag
ra

m
s.

V

ar
ia

bi
li

ty
 p

ro
fi

le
s

(P
L

U
S,

 Z
ia

di
)

C
V

L

A
ll

oc
at

io
n

D
if

fe
re

nt
 s

of
tw

ar
e

de
pl

oy
m

en
t i

n
a

sp
ec

if
ic

pl

at
fo

rm

A
ll

oc
at

io
n

m
od

el

N
o.

 B
ut

 it
 is

 p
os

si
bl

e
to

 u
se

 v
ar

ia
bl

es
 f

or
 th

e
li

nk
 b

et
w

ee
n

ap
pl

ic
at

io
n

an
d

se
rv

ic
e

pr
ov

id
ed

 b
y

th
e

re
so

ur
ce

. T
he

 li
nk

 b
et

w
ee

n
re

so
ur

ce
 a

nd
 s

er
vi

ce
 m

us
t b

e
do

ne
 m

an
ua

ll
y.

C
V

L

A
na

ly
si

s

N
ot

 a
ll

 p
ro

du
ct

s
re

qu
ir

e
th

e
sa

m
e

an
al

ys
is

.
E

ac
h

pr
od

uc
t r

eq
ui

re
s

sp
ec

if
ic

 a
na

ly
si

s
th

at

ta
ke

s
in

to
 a

cc
ou

nt
 q

ua
li

ty
 a

tt
ri

bu
te

,
fu

nc
ti

on
al

, p
la

tf
or

m
 a

nd
 a

ll
oc

at
io

n
va

ri
ab

il
it

y.

A
na
ly
si
sC
on
te
xt

 (
T

hi
s

co
nc

ep
t

al
lo

w
s

pe
rf

or
m

in
g

di
ff

er
en

t
an

al
ys

is
. I

t r
el

at
es

 s
of

tw
ar

e
be

ha
vi

ou
r

an
d

w
or

kl
oa

d
to

ex

ec
ut

io
n

pl
at

fo
rm

)

A
na
ly
si
sC
on
te
xt

 a
ll

ow
s

de
fi

ni
ng

 d
if

fe
re

nt

an
al

ys
is

. I
n

an
 A
na
ly
si
sC
on
te
xt

 a
 s

ce
na

ri
o

is

an
al

yz
ed

 u
nd

er
 a

 p
la

tf
or

m
.

C
as

e
ta

bl
e

to
 m

an
ag

e
co

nc
re

te
 v

al
ue

s
fo

r
th

e
pa

ra
m

et
er

s
of

 th
e
A
na
ly
si
sC
on
te
xt

E
A

ST
-A

D
L

2
al

lo
w

s
sp

ec
if

yi
ng

an

al
ys

is
 c

as
es

 f
or

 e
ac

h
m

od
el

el

em
en

t.

A
na

ly
si

s
co

m
po

si
ti

on
 v

ie
w

pr

op
os

ed
 in

 [
2]

T
ab

le
 1

. M
A

R
T

E
 p

ro
fi

le
 s

tu
dy

 r
el

at
ed

 to
 v

ar
ia

bi
lit

y
in

 a
na

ly
si

s
st

ag
e

 MARTE Mechanisms to Model Variability 469

etc. that can help when analysing SPL models. There are profiles for variability
annotation on UML models such as PLUS [6], Ziadi’s UML profile for PL [13] and
UML-F [9] UML profile for frameworks. CVL (Common Variability Language) is a
variability specification language (still in development), that follows a separate
language approach, and allows expressing variability in a base model and
relationships between possible choices and the base model [7].

Other modelling languages that have been specified for embedded systems can also
be complementary on SPL analysis.

SysML [11] complements UML with two new diagrams (requirements and
parametric) and modifies some existing (activity, block definition and internal block).

Espinoza et al. [2] propose to use a similar diagram to SysML parametric diagrams
in MARTE analysis for complex non-functional evaluation scenarios taking into
account variations in the mapping from structure to architectural resources and
parameterization i.e., propose to composite existing design models to experiment with
different implementation or design decisions for the purpose of quantitative analysis.

EAST-ADL2 is a domain specific modelling language where functionalities are
decomposed through different abstraction levels and development phases. It takes
feature modelling as a reference and uses variation point concept.

Table 1 summarizes the results of the study of MARTE for variability support.
Both MARTE mechanisms for variability and most relevant complementary
modelling languages and approaches have been considered in the study.

3 Related Work

Tawhid and Petriu [12] propose a SPL modelling with functional variability and
annotated with MARTE profile for performance. As stated in previous section
Espinoza et al. [2] propose analysis composition view for analysis which can help on
SPL analysis. There is a lack of how this approach may be linked to variability
management or feature-oriented methods as it was a proposal for the analysis of a
single-system.

4 Conclusions and Future Trends

This paper has analyzed MARTE profile and its capability to model variability. As
MARTE was defined for single systems analysis, it can be combined with mechanisms
from other profiles to tackle variability modelling and management for SPL.

Proposed modelling languages for embedded software can be complementary
when SPL analysis. However, some modelling concepts can be overlapped creating
an inconsistent modelling. A suitable combination of specific mechanisms of each
modelling language is needed.

The next work to be carried out includes the definition of a management
mechanism for all variability types identified for analysis. The combination of the
studied mechanisms for embedded SPL analysis will be specified and new
mechanisms will be proposed if necessary. A case study will be also performed to
check the proposal and identify possible conflicts or problems.

470 L. Belategi, G. Sagardui, and L. Etxeberria

Acknowledgments. This work was partially supported by OPTIMA (Basque
Government under grants PI2009-1 and the Spanish Ministry of Science and
Education under grants TIN2007-61779), by TESMO (OF157/2009) and VALINC
(UE09+/99). It has been developed by the embedded systems group supported by the
Department of Education, Universities and Research of the Basque Government.

References

1. UML Profile for Modeling and Analysis of Real-Time Embedded Systems. formal/2009-
11-02 (2009)

2. Espinoza, H., Servat, D., Gérard, S.: Leveraging Analysis-Aided Design Decision
Knowledge in UML-Based Development of Embedded Systems. In: SHARK 2008: Proc.
of the 3rd Int. Workshop on Sharing and Reusing Architectural Knowledge, pp. 55–62.
ACM, New York (2008)

3. Espinoza, H.: An Integrated Model-Driven Framework for Specifying and Analyzing Non-
Functional Properties of Real-Time Systems, Thesis, DRT/LIST/DTSI/SOL/07-265/HE
(2007)

4. Etxeberria, L., Sagardui, G.: Variability Driven Quality Evaluation in Software Product
Lines. In: 12th International Software Product Line Conference (SPLC), pp. 243–252.
IEEE, Los Alamitos (2008)

5. Etxeberria, L., Sagardui, G., Belategi, L.: Quality Aware Software Product Line
Engineering. Journal of the Brazilian Computer Society (JBCS) 14 (2008)

6. Gomaa, H.: Designing software product lines with UML: From use cases to pattern-based
software architectures. Addison Wesley Longman Publishing Co., Amsterdam (2004)

7. Haugen, Ø., Oldevik, B., Olsen, J.: Adding Standardized Variability to Domain Specific
Languages. In: 12th International Software Product Line Conference, pp. 139–148. IEEE,
Los Alamitos (2008)

8. UML 2.0 OCL Specification. ptc/03-10-14 (2003)
9. Pree, W., Fontoura, M., Rumpe, B.: Product Line Annotations with UML-F. In: Chastek,

G.J. (ed.) SPLC 2002. LNCS, vol. 2379, pp. 188–197. Springer, Heidelberg (2002)
10. SEI: A Framework for Software Product Line Practice, Version 5.0 (2008)
11. OMG System Modeling Language (OMG SysML) V1.0. formal/2007-09-01 (2007)
12. Tawhid, R., Petriu, D.: Integrating Performance Analysis in the Model Driven

Development of Software Product Lines. In: Czarnecki, K., Ober, I., Bruel, J.-M., Uhl, A.,
Völter, M. (eds.) MODELS 2008. LNCS, vol. 5301, pp. 490–504. Springer, Heidelberg
(2008)

13. Ziadi, T., Hélouët, L., Jézéquel, J.: Towards a UML Profile for Software Product Lines. In:
van der Linden, F.J. (ed.) PFE 2003. LNCS, vol. 3014, pp. 129–139. Springer, Heidelberg
(2004)

J. Bosch and J. Lee (Eds.): SPLC 2010, LNCS 6287, pp. 471–475, 2010.
© Springer-Verlag Berlin Heidelberg 2010

The UML «extend» Relationship as Support for Software
Variability

Sofia Azevedo1, Ricardo J. Machado1, Alexandre Bragança2, and Hugo Ribeiro3

1 Universidade do Minho, Portugal
{sofia.azevedo,rmac}@dsi.uminho.pt

2 Instituto Superior de Engenharia do Porto, Portugal
alex@dei.isep.ipp.pt

3 Primavera Business Software Solutions, Portugal
hugo.ribeiro@primaverabss.com

Abstract. The development of software product lines with model-driven
approaches involves dealing with diverse modeling artifacts such as use case
diagrams, component diagrams, class diagrams, activity diagrams, sequence
diagrams and others. In this paper we focus on use cases for product line devel-
opment and we analyze them from the perspective of variability. In that context
we explore the UML (Unified Modeling Language) «extend» relationship. This
work allows understanding the activity of use case modeling with support for
variability.

Keywords: use case, software product line, variability, «extend», alternative,
option, specialization.

1 Introduction

Use case diagrams are one of the modeling artifacts that modelers have to deal with
when developing product lines with model-driven approaches. This paper envisions
use cases according to the perspective of variability. The «extend» relationship plays a
vital role in variability modeling at the level of use cases and allows for the use case
modeling activity to be applicable to the product line software development approach.
This paper’s contribute is on the understanding of the use case modeling activity with
support for variability. We will illustrate our approach with some examples from the
Fraunhofer IESE’s GoPhone case study [1], which presents a series of use cases for a
part of a mobile phone product line. We will propose different kinds of variability in
use case diagrams.

The paper is structured as follows. Section 2 elaborates on the differences between
others’ approaches to variability modeling and ours. Section 3 analyzes the differ-
ences between our approach to modeling different types of variability with the UML
(Unified Modeling Language) «extend» relationship and others’ approaches. Section
4 illustrates our approach with some examples from the GoPhone. Finally Section 6
provides for some concluding remarks.

472 S. Azevedo et al.

2 An Outline of Software Variability Modeling

Despite use cases being sometimes used as drafts during the process of developing
software and not as modeling artifacts that actively contribute to the development of
software, use cases shall have mechanisms to deal with variability in order for them to
have the ability to actively contribute to the process of developing product lines. For
instance modeling variability in use case diagrams is important to later model vari-
ability in activity diagrams [2]. In this paper we shortly talk about alternative, spe-
cialization and option use cases as the representation of the three variability types we
propose to be translated into stereotypes to mark use cases.

We consider that product line modeling shall be top-down (rather than bottom-up),
which means that the product line shall support as many products as possible within
the given domain. In [3] Bayer, et al. refer that all variants do not have to be antici-
pated when modeling the product line. In [4] John and Muthig refer to required and
anticipated variations as well as to a planned set of products for the product line,
which indicates that their approach to product line modeling is bottom-up. A bottom-
up approach would consider that all the products from the product line are known a
priori. Bragança and Machado [5] represent variation points explicitly in use case
diagrams through extension points. Their approach to product line modeling is bot-
tom-up because they comment «extend» relationships with the name of the products
from the product line on which the extension point shall be present.

In [4] John and Muthig refer the benefits of representing variability in use cases.
Although we totally agree with the position of these authors towards those benefits,
we cannot agree when they state that information on whether certain use cases are
optional or alternatives to other use cases shall only be in decision models as it would
overload use case diagrams and make them less readable. Our position is that features
as well as use cases shall be suited for treating variability in its different types. Bach-
mann, et al. mention in [6] that variability shall be introduced at different phases of
development of product families. If a use case is an alternative to another use case,
then both use cases shall be modeled in the use case diagram, otherwise the use case
diagram will only show a part of the possibilities of the possible products John and
Muthig mention in [4].

Coplien, et al. defend in [7] the analysis of commonality and variability during the
requirements analysis in order for the analysis decisions not to be taken during the
implementation stage by the professionals who are not familiar with the implications
and impact of decisions that shall be made much earlier during the development cy-
cle. They refer that early decisions on commonality and variability contribute to large-
scale reuse and the automated generation of family members.

Maßen and Lichter talk about three types of variability in [8]: optional, alternative
and optional alternative (as opposite to alternatives that represent a “1 from n choice”,
optional alternatives represent a “0 or 1 from n choice”). In this context they propose
to extend the UML metamodel to incorporate two new relationships for connecting
use cases. Our approach considers options and alternatives as well but we introduce
these concepts into the UML metamodel through stereotypes (we consider that the
«extend» relationship is adequate for modeling alternatives and a stereotype applica-
ble to use cases for modeling options).

 The UML «extend» Relationship as Support for Software Variability 473

3 Different Perspectives on the «extend» Relationship

Gomaa and Shin [9] analyze variability in different modeling views of product lines.
They mention that the «extend» relationship models a variation of requirements
through alternatives. They also model options in use case diagrams by using the
stereotype «optional» in use cases. We adopt these approaches to alternatives and
options but we elaborate on another form of variability (specializations, which we
consider to be a special kind of alternatives; Gomaa and Shin refer specialization as a
means to express variability in [9]). Besides alternative and optional use cases, Go-
maa and Shin consider kernel use cases (use cases common to all product line mem-
bers). Gomaa models in [10] kernel and optional use cases both with the «extend» as
well as with the «include» relationships (our approach is towards modeling kernel and
optional use cases independently of their involvement in either «extend» or «include»
relationships).

Halmans and Pohl propose in [11] use cases as the means to communicate variabil-
ity relevant to the customer. Halmans and Pohl consider that generalizations between
use cases are adequate to represent use cases’ variants. This is not our position. We
recommend to use the «extend» relationship instead of the generalization relationship.
Halmans and Pohl consider that modeling mandatory and optional use cases with
stereotypes in use cases is not adequate because the same use case can be mandatory
for one use case and optional for another. Again this is not our position. We consider
that a mandatory use case is not mandatory with regards to another use case, rather it
is mandatory for all product line members. We also consider that an optional use case
is optional with regards to one or more product line members.

Fowler suggests in his book “UML Distilled” [12] that we ignore the UML rela-
tionships between use cases besides the «include» and concentrate on the textual
descriptions of use cases. We completely agree with Fowler on the textual descrip-
tions but we cannot agree with the rest. The «extend» relationship is needed in order
to formalize at an early stage (the use case modeling) where variation will occur when
instantiating the product line. Bosch, et al. mention in [13] the need for describing
variability within different modeling levels such as the requirements one.

4 Variability Types in the GoPhone Case Study

We consider that the «extend» relationship is adequate for modeling alternatives and
specializations, and a stereotype applicable to use cases for modeling options. The
three variability types we propose to be translated into stereotypes to mark use cases
are: alternative, specialization and option. From now on we either use the «extend»
relationship without stereotypes or with one of the two stereotypes applicable to this
relationship (depending on whether we are modeling alternatives or specializations).
We propose the stereotypes «alternative», «specialization» and «option» to distin-
guish the three variability types. We also propose the stereotype «variant» to mark
use cases at higher levels of abstraction before they are realized into alternatives or
specializations. The stereotypes «alternative» and «specialization» shall be applicable
to the «extend» relationship for modeling alternatives and specializations

474 S. Azevedo et al.

respectively, and the stereotype «option» shall be applicable to use cases that repre-
sent options. Figure 1 shows some examples of alternative, specialization and option
use cases from the GoPhone’s message sending functionality.

Fig. 1. Some examples of alternative, specialization and option variability types from the Go-
Phone’s messaging domain

Consider that an extending use case is a use case that extends another use case and
that an extended use case is a use case that is extended by other use cases. In the con-
text of alternatives both extending and extended use cases represent supplementary
functionality since both represent alternatives, which are not essential for a product
without variability to function. If we have more than one alternative use case for the
same functionality, one of those use cases shall be the alternative to all the others and
extended by them. That use case is the one to be present in the products less robust in
terms of functionality.

If the intention is to use differential specification, specializations shall be modeled
with the «extend» relationship, otherwise they shall be modeled with the
generalization relationship. Differential specification of specializations means that
specialization use cases represent supplementary functionality regarding the use case
they specialize, therefore a product without variability does not require the
specialization use cases to function.

Options represent functionality that is only essential for a product with variability
to function, therefore options represent supplementary functionality. However we do
not recommend modeling options with the «extend» relationship because if the stereo-
type was on the relationship, the relationship itself would be optional and that is not
the case (the use case is not optional with regards to any other use case, rather it is
optional by itself). Options shall be modeled with a stereotype in use cases. The
involvement of an option use case in either «extend» or «include» relationships, or
even in none of those does not imply the presence of that use case in all product line
members (which makes of it optional).

5 Conclusions

This paper has elaborated on the representation of variability in use case diagrams. It
began by providing an analysis of the state-of-the-art concerned with this topic. Based
on our position towards the related work we proposed three variability types to be

 The UML «extend» Relationship as Support for Software Variability 475

translated into stereotypes to mark use cases: alternative, specialization and option.
We proposed both alternative and specialization use cases to be modeled with the
«extend» relationship, and a stereotype applicable to use cases for modeling option
use cases.

References

[1] Muthig, D., John, I., Anastasopoulos, M., Forster, T., Dörr, J., Schmid, K.: GoPhone - A
Software Product Line in the Mobile Phone Domain, Fraunhofer IESE, IESE-Report No.
025.04/E (March 5, 2004)

[2] Bragança, A., Machado, R.J.: Extending UML 2.0 Metamodel for Complementary Us-
ages of the «extend» Relationship within Use Case Variability Specification. In: 10th In-
ternational Software Product Line Conference (SPLC 2006). IEEE Computer Society,
Baltimore (2006)

[3] Bayer, J., Gerard, S., Haugen, Ø., Mansell, J., Møller-Pedersen, B., Oldevik, J., Tessier,
P., Thibault, J.-P., Widen, T.: Consolidated Product Line Variability Modeling. In:
Käköla, T., Duenas, J.C. (eds.) Software Product Lines - Research Issues in Engineering
and Management, pp. 195–241. Springer, Heidelberg (2006)

[4] John, I., Muthig, D.: Product Line Modeling with Generic Use Cases. In: Workshop on
Techniques for Exploiting Commonality Through Variability Management. Springer, San
Diego (2002)

[5] Bragança, A., Machado, R.J.: Deriving Software Product Line’s Architectural Require-
ments from Use Cases: An Experimental Approach. In: 2nd International Workshop on
Model-Based Methodologies for Pervasive and Embedded Software (MOMPES 2005).
TUCS General Publications, Rennes (2005)

[6] Bachmann, F., Goedicke, M., Leite, J., Nord, R., Pohl, K., Ramesh, B., Vilbig, A.: A
Meta-model for Representing Variability in Product Family Development. In: van der
Linden, F.J. (ed.) PFE 2003. LNCS, vol. 3014, pp. 66–80. Springer, Heidelberg (2004)

[7] Coplien, J., Hoffman, D., Weiss, D.: Commonality and Variability in Software Engineer-
ing. IEEE Software 15, 37–45 (1998)

[8] Maßen, T.v.d., Lichter, H.: Modeling Variability by UML Use Case Diagrams. In: Inter-
national Workshop on Requirements Engineering for Product Lines (REPL 2002), Avaya
Labs, Essen (2002)

[9] Gomaa, H., Shin, M.E.: A Multiple-View Meta-modeling Approach for Variability Man-
agement in Software Product Lines. In: Bosch, J., Krueger, C. (eds.) ICOIN 2004 and
ICSR 2004. LNCS, vol. 3107, pp. 274–285. Springer, Heidelberg (2004)

[10] Gomaa, H.: Designing Software Product Lines with UML: From Use Cases to Pattern-
Based Software Architectures. Addison-Wesley, Upper Saddle River (2004)

[11] Halmans, G., Pohl, K.: Communicating the Variability of a Software-Product Family to
Customers. Software and Systems Modeling 2, 15–36 (2003)

[12] Fowler, M.: UML Distilled: A Brief Guide to the Standard Object Modeling Language.
Addison-Wesley, Upper Saddle River (2004)

[13] Bosch, J., Florijn, G., Greefhorst, D., Kuusela, J., Obbink, J.H., Pohl, K.: Variability Is-
sues in Software Product Lines. In: van der Linden, F.J. (ed.) PFE 2002. LNCS,
vol. 2290, p. 13. Springer, Heidelberg (2002)

Feature Diagrams as Package Dependencies�

Roberto Di Cosmo and Stefano Zacchiroli

Université Paris Diderot, PPS, UMR 7126, Paris, France

roberto@dicosmo.org, zack@pps.jussieu.fr

Abstract. FOSS (Free and Open Source Software) distributions use

dependencies and package managers to maintain huge collections of pack-

ages and their installations; recent research have led to efficient and com-

plete configuration tools and techniques, based on state of the art solvers,

that are being adopted in industry. We show how to encode a significant

subset of Free Feature Diagrams as interdependent packages, enabling to

reuse package tools and research results into software product lines.

Keywords: software product lines, open source, package, component,

feature diagram, dependencies.

1 Introduction

Feature models [11] are essential devices to reason about software product lines
(SPLs). As features and their interdependencies get more complex, managing
models quickly turns into a non-trivial task for humans. Researchers have worked
to improve the situation by establishing connections between Feature Diagrams
(FD) and notions like grammars [6], propositional logics [2], and constraint pro-
gramming [3], paving the way to use automatic tools like SAT solvers [9,12] and
proof assistants [10] for SPL configuration.

Meanwhile FOSS distributions like Debian, Red Hat, and Suse have used for
the past 15 years packages and dependencies to maintain some among the largest
software collections known: package managers are used daily to maintain millions
of installations built by selecting components from repositories of tens of thou-
sands packages. Recent research efforts [1,4,13,16] have led to the development
of efficient and complete configuration and maintenance tools, as well as metrics
for FOSS distributions, based on state of the art solvers, which are rapidly being
adopted in industry.

We show how a significant subset of Free Feature Diagrams can be compactly
encoded as interdependent packages, opening the way to massive reuse in SPLs
of research results and tools coming from FOSS research. In particular, package
management tools are able to scale up to tens of thousands components and
hundreds of thousands dependencies, and cope well with component evolution,
which is routine in FOSS. Both aspects may be of great interest for the SPL
community.
� This work is partially supported by the European Community FP7, MANCOOSI

project, grant agreement n. 214898.

J. Bosch and J. Lee (Eds.): SPLC 2010, LNCS 6287, pp. 476–480, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Feature Diagrams as Package Dependencies 477

2 Package Dependencies for Distribution Maintenance

In FOSS distributions a package is a bundle that ships a (software) component,
the data needed to configure it, and metadata which describe its attributes and
expectations on the deployment environment [7]. For simplicity, we focus on
packages as used in the Debian distribution, but the discussion applies almost
unchanged to other popular package formats like RPM (see [13] for details).

Here is a sample metadata excerpt from the firefox package:
Package: firefox
Version: 1.5.0.1 -2 ...
Depends: fontconfig , psmisc, libatk1 .0-0 (>= 1.9.0) , libc6 (>= 2.3.5-1) ...
Suggests: xprint , firefox -gnome -support (= 1.5.0.1-2), latex -xft-fonts
Conflicts : mozilla -firefox (<< 1.5-1)
Replaces: mozilla -firefox
Provides: www -browser , ...

Every package has a version that is used to give a temporal order to the
packaged component release. The kinds of relationships that can be expressed
in the metadata of a package p are numerous, but the most important are:

– Depends: a list of package disjunctions p1 | . . . | pn, . . . , q1 | . . . |qm, where
each atom can carry a version predicate (e.g. ≥ 1.9.0). For the owner package
to be installable, at least one package in each disjunction must be installed.

– Conflicts: a list of package predicates p1, p2, . . . pn. For the owner package
to be installable, none of the pi must be installed. Self conflicts are ignored.

– Recommends similar to Depends, it indicates an optional dependency; it might
be advisable to satisfy it, but it is not needed to obtain a working system.

A repository R is a set of packages; a subset I ⊆ R of it is said to be a healthy
installation if all dependencies of packages in I are satisfied, and none of the
conflicts is. Precise formal meanings to all these notions have been given else-
where (see [8,13] and the Mancoosi project http://www.mancoosi.org). Tools
are available in the distribution world to choose healthy installations according
to user requests [15] and to perform sophisticated repository analysis [1,5].

3 Encoding Feature Diagrams as Package Dependencies

We show how a core subset of Feature Diagrams (FD) can be compactly encoded
as packages. Due to the differences among FD formalisms, we provide the encod-
ing for a significant subset of Free Feature Diagrams (FFD) [14] that captures
many known formalisms, and allows to claim that our encoding is of general
interest.

FFD is a general framework that allows to capture different classes of FD by
specifying a few parameters: the kind of graph GT (Tree or DAG); the node
type NT (and, or, xor, or opt; the latter encoding explicit optionality within
a node-based semantics [14]); the graphical constraint type GCT (⇒ for impli-
cation, and | for mutual exclusion); and the textual constraint language TCL
(usually including just implication and mutual exclusion, noted n implies n′ and
n mutex n′, respectively).

http://www.mancoosi.org

478 R. Di Cosmo and S. Zacchiroli

Definition 1 (Free Feature Diagram). d ∈ FFD(GT, NT, GCT, TCL) =
(N, P, r, λ, DE, CE, Φ) where:

– N is a set of nodes
– P ⊆ N is a set of primitive nodes
– r ∈ N is the root node
– λ : N → NT labels each node with an operator from NT
– DE ⊆ N ×N is the set of decomposition edges; (n, n′) ∈ DE is noted n → n′

– CE ⊆ N × GCT × N is the set of constraint edges
– Φ ⊆ TCL are the textual constraints

A few well-formedness constraints are imposed: only r has no parent; the de-
composition edges do not contain cycles; if GT is Tree, then DE forms a tree;
nodes are labeled with operators of the appropriate arity.

Precise formal semantics of FFD is given in terms of valid models [14]:

Definition 2 (Valid model). A valid model of a feature diagram d is M ⊆
N such that: (a) r ∈ M , (b) M satisfies the operators attached to each node,
as well as all the (c) graphical and (d) textual constraints, with the additional
requirement that (e) if a node is in the model, then at least one of its parents
(called the justification) is in the model too.

We call FFDcore the fragment of FFD obtained by restricting the operators in NT
to or, and, xor, opt, and the operators in GCT and TCL to implies and mutex;
this fragment is enough to cover several well known Feature Diagram formalisms
(OFT, OFD, RFD, VBFD, GPFT and PFT in the classification given in [14]).

We will now show how to encode any d ∈ FFDcore as a package repository
R(d), so that valid models correspond to healthy installations of a specific pack-
age pr ∈ R(d).

Definition 3 (FFDcore encoding). Let d ∈ FFDcore(GT, NT, GCT, TCL) =
(N, P, r, λ, DE, CE, Φ), we define the package repository R(d) as follows:

– the packages P are defined as {(n, 1)|n ∈ N}, so we have a package for each
node in the diagram, with a unique version number, 1

– ∀ node n with sons n1, . . . , nk, add dependencies as follows:
• if λ(n) = or, add n1, . . . , nk as disjunctive dependencies for n
• if λ(n) = and, add n1, . . . , nk as conjunctive dependencies for n
• if λ(n) = xor, add n1, . . . , nk as disjunctive dependencies of n, and add

n1, . . . ni−1, ni+1, . . . , nk as conflicts for ∀ni

– ∀ node n with son n′ and λ(n) = opt, add n′ as a recommend of n
– ∀ constraint c in CE or Φ, add the following dependencies:

• if c is n ⇒ n′ or n implies n′, add n′ as a conjunctive dependency of n
• if c is n|n′ or n mutex n′, add n′ to the conflicts of n

– if GT = Tree, ∀n → n′ ∈ DE, add n as a conjunctive dependency for n′

– if GT = DAG, ∀n �= r, add a dependency on n1 | · · · | nk where n1, . . . , nk

are all the parents of n

Feature Diagrams as Package Dependencies 479

Fig. 1. Sample E-Shop feature model: as FD (on the left) and FFD (on the right)

An even more compact, linear-space encoding for justifications and xor nodes
can be given using virtual packages [7], exploiting the property that self-conflicts
are ignored; it has been omitted here due to space constraints.

Example 1. A feature model using an edge-based semantics for an e-shop is
shown in Figure 1 as FD (on the left) and FFD (on the right). Its encoding as
package repository is reported below, where we drop Version: 1.

Package: E-Shop
Depends: Catalogue , Payment , Security , SearchOpt

Package: Catalogue
Depends: E-Shop

Package: Payment
Depends: BankTransfer | CreditCard , E-Shop

Package: BankTransfer
Depends: Payment

Package: CreditCard
Depends: Payment , High

Package: Security
Depends: High | Standard , E-Shop

Package: High
Depends: Security
Conflicts : Standard

Package: Standard
Depends: Security
Conflicts : High

Package: SearchOpt
Depends: E-Shop
Recommends: Search

Package: Search
Depends: SearchOpt

Notice how all kinds of metadata are used: conflicts encode mutual exclusion,
recommends encode optional features, conjunctive depends encode and nodes
and implications, disjunctive dependencies encode or nodes. It is now possible
to establish the key property of the detailed encoding.

Theorem 1 (Soundness and completeness). A subset M ⊆ N of the nodes
of a d ∈ FFDcore is a valid model of d if and only if m is a healthy installation
for the package repository encoding R(d).

Proof. The proof is by case analysis on the definition of a valid model, and the
structure of the encoding. Details are omitted due to lack of space.

4 Conclusions and Future Work

We have established a direct mapping from a significant subset of Free Fea-
ture Diagrams to packages of FOSS distributions. This paves the way to reuse of

480 R. Di Cosmo and S. Zacchiroli

theoretical results as well as tools coming from FOSS research. Package manage-
ment tools scale to tens of thousands packages and hundreds of thousands depen-
dencies, and cope with evolving components. For instance, the edos.debian.net
site provides quality metrics for FOSS distributions comprising more than 20’000
packages and 400’000 dependencies, daily, since 2006. Also, model construction
with respect to user-defined optimizations is implemented by several tools, and
competitions like www.mancoosi.org/misc-2010 are improving their efficiency.

We plan to extend the current encoding to all FFDconstructs such as cardinality
constraints and to validate the proposed approach by providing a full toolchain
that attacks SPL problems using existing package management technology.

We hope that our work will contribute to establish a connection between SPLs
and package management, for the joint benefit of both communities.

References

1. Abate, P., Boender, J., Di Cosmo, R., Zacchiroli, S.: Strong dependencies between

software components. In: ESEM 2009, pp. 89–99. IEEE, Los Alamitos (2009)

2. Batory, D.: Feature models, grammars, and propositional formulas. In: Obbink, H.,

Pohl, K. (eds.) SPLC 2005. LNCS, vol. 3714, pp. 7–20. Springer, Heidelberg (2005)

3. Benavides, D., Mart́ın-Arroyo, P.T., Cortés, A.R.: Automated reasoning on feature

models. In: Pastor, Ó., Falcão e Cunha, J. (eds.) CAiSE 2005. LNCS, vol. 3520,

pp. 491–503. Springer, Heidelberg (2005)

4. Berre, D.L., Rapicault, P.: Dependency management for the Eclipse ecosystem. In:

IWOCE 2009. ACM, New York (2009)

5. Boender, J., Di Cosmo, R., Vouillon, J., Durak, B., Mancinelli, F.: Improving the

quality of GNU/Linux distributions. In: COMPSAC, pp. 1240–1246. IEEE, Los

Alamitos (2008)

6. de Jonge, M., Visser, J.: Grammars as feature diagrams. In: ICSR7 Workshop on

Generative Programming. pp. 23–24 (2002)

7. Di Cosmo, R., Trezentos, P., Zacchiroli, S.: Package upgrades in FOSS distribu-

tions: Details and challenges. In: HotSWup 2008. ACM, New York (2008)

8. EDOS project, WP2 team: Report on formal management of software dependen-

cies. Deliverable Work Package 2, Deliverable 2 (2006)

9. Janota, M.: Do sat solvers make good configurators? In: SPLC 2008, Second Vol-

ume (Workshops), pp. 191–195 (2008)

10. Janota, M., Kiniry, J.: Reasoning about feature models in higher-order logic. In:

SPLC, pp. 13–22. IEEE Computer Society, Los Alamitos (2007)

11. Kang, K.C., Cohen, S.G., Hess, J.A., Novak, W.E., Peterson, A.S.: Feature-oriented

domain analysis (FODA) feasibility study. Tech. rep., CMU (1990)

12. Le Berre, D., Parrain, A.: On SAT technologies for dependency management and

beyond. In: ASPL 2008 (2008)

13. Mancinelli, F., Boender, J., Di Cosmo, R., Vouillon, J., Durak, B., Leroy, X.,

Treinen, R.: Managing the complexity of large free and open source package-based

software distributions. In: ASE 2006, pp. 199–208. IEEE, Los Alamitos (2006)

14. Schobbens, P.Y., Heymans, P., Trigaux, J.C.: Feature diagrams: A survey and a

formal semantics. In: RE 2006, pp. 136–145. IEEE, Los Alamitos (2006)

15. Treinen, R., Zacchiroli, S.: Solving package dependencies: from EDOS to Mancoosi.

In: DebConf 8: proceedings of the 9th conference of the Debian project (2008)

16. Tucker, C., Shuffelton, D., Jhala, R., Lerner, S.: OPIUM: Optimal package instal-

l/uninstall manager. In: ICSE 2007, pp. 178–188 (2007)

http://edos.debian.net/
http://www.mancoosi.org/misc-2010

J. Bosch and J. Lee (Eds.): SPLC 2010, LNCS 6287, pp. 481–485, 2010.
© Springer-Verlag Berlin Heidelberg 2010

Visualizing and Analyzing Software Variability with Bar
Diagrams and Occurrence Matrices

Slawomir Duszynski*

Fraunhofer Institute for Experimental Software Engineering (IESE), Fraunhofer-Platz 1,
67663 Kaiserslautern, Germany

Slawomir.Duszynski@iese.fraunhofer.de

Abstract. Software product lines can be developed in a proactive, reactive or
extractive way. In the last case, an essential step is an analysis of the existing
implementation of a set of similar software products to identify common and
variable assets. If the variability across the similar products was not explicitly
managed during their development, the information about it can be recovered
with reverse engineering techniques. This paper proposes a simple and flexible
technique for organizing and visualizing variability information, which can be
particularly useful in the extractive product line adoption context. The tech-
nique can be applied to source code, models, and other types of product line ar-
tifacts. We discuss the advantages of using bar diagrams and occurrence matri-
ces and demonstrate an example usage in an n-ary text diff.

Keywords: product lines, visualization, variability, reverse engineering.

1 Introduction

Adoption of the product line paradigm in a development organization can bring con-
siderable advantages, such as reduced development cost and faster time-to-market.
However, the need for disciplined reuse often becomes apparent only when software
products already exist. For example, the software mitosis phenomenon [1] leads to
creation of many similar copies of a software system, independently evolving from a
common ancestor system. For embedded software, the mitosis can be driven by port-
ing the software to many underlying hardware platforms. In response to the mitosis,
the organization can follow the extractive product line adoption approach [2].

In software mitosis, the variability across the similar systems is introduced in a dis-
tributed, unmanaged way. Consequently, the exact variability distribution is usually
unknown. However, detailed information on variability is indispensable, both to the
creation of a product line from existing similar systems and to the subsequent product
line evolution (e.g. product maintenance, adding new features, product derivation). To
recover detailed variability information, using reverse engineering techniques on the
source code of similar products has been proposed [4] [5].

* This work was performed within the Fraunhofer Innovation Cluster for Digital Commercial

Vehicle Technology (DNT/CVT Cluster).

482 S. Duszynski

In this paper we present a simple, yet flexible technique for organizing, visualizing
and analyzing detailed variability information in a reverse engineering context. The
technique supports efficient identification of core and variable parts in the analyzed
assets, and enables versatile analyses of variability distribution. Unlike the high-level
variability representations, such as decision models, feature models [3] or product
maps [7], it provides sufficient details for common and variable asset extraction on
the source code level. Section 2 describes the technique and its example usage in an
n-ary diff, while Section 3 generalizes it. Section 4 gives outlook on the future work.

Related work. Venn diagrams [6] and Euler diagrams visualize relations between
sets of elements. Feature models [3] specify product line variability on the semantic
level. The occurrence matrix idea is inspired by product maps [7] and truth tables.

2 Occurrence Matrices and Bar Diagrams

To illustrate the idea of occurrence matrices and bar diagrams, we present an exam-
ple: a diff technique capable of comparing n files at once. Consider three variants of a
source code file: A.c, B.c and C.c (Table 1).

Table 1. Source code of the three example file variants

Source code of A.c Source code of B.c Source code of C.c
#include "cal.h"
int f(int x)
{
 if(x > 1024)
 x = x % 1024;
 x += 3;
 x = cal(x, NO_A);
 return x;
}

#include "cal2.h"
int f(int x)
{
 x = cal2(x, NO_B);
 if(x > 1024)
 x = x % 1024;
 return x;
}

#include "cal2.h"
int f(int x)
{
 x = cal2(x, NO_C);
 x += 3;
 return x;
}

There exist some similarities across the three variants, as well as some differences.

However, using the diff tool on each pair of the variants (Figure 1) does not deliver
information directly useful for common and variable asset identification, such as the
locations of common or variant-unique code parts. To identify common and variable
code, further interpretation of the results by a human is required. This task needs
some effort for three compared variants, and it would be much harder for a larger
number of variants, since the number of compared pairs grows in a quadratic way.

Fig. 1. Results of a standard diff tool for each pair of the three analyzed variants. The small
rectangles represent code lines, and the numbers are line numbers in the respective file.

 Visualizing and Analyzing Software Variability 483

Occurrence matrices. To support the reasoning about common and unique code
parts, we introduce a new technique of occurrence matrices. The matrices use the diff
results and are constructed for each compared variant in the following way: the rows
of the matrix represent the lines of the given file variant, while the columns represent
all the compared variants. A field of the matrix has a value of “1” if the line repre-
sented by the field’s row was found by diff as being equal to a line from the variant
represented by the field’s column, and a value of “0” otherwise. In addition, each
matrix has a summary column which contains the number of occurrences of each line
in all analyzed variants. Figure 2 shows the three occurrence matrices for files A.c,
B.c and C.c, and a summary matrix. The rows of summary matrix represent the union
of all lines of A, B and C. The union is constructed by first taking all the rows from
the first variant, and then for each subsequent variant adding only these rows which
were not found equal to any of the rows already in the matrix (for example, line 2
from file B is not added since the very same line is already represented by line 2 from
file A). In the result, the summary matrix contains all the lines that exist in the ana-
lyzed code, but lines shared across the variants are counted only once.

Fig. 2. Occurrence matrices for A.c, B.c and C.c, and the summary matrix for union of all lines

The information stored in the occurrence matrices can be used in a number of ways:
• Variability status information for each line is given by the “Sum” column. The

lines where the sum value is equal to the number of analyzed variants n are core
lines that are identical in all variants. The lines with a value of 1 exist in only one
variant and are unique to it. The lines with values in the 2..n-1 range are shared
across some, but not all of the variants. Since the status of each line is known, the
variability analysis on the source code level can be supported in a text editor by
coloring or marking the code lines according to their status (Figure 3 left). Hence,
the diff results are lifted to higher abstraction level of commonality and variability.

Fig. 3. Variability status shown for the lines of analyzed files A.c, B.c and C.c, with diff results
in between for reference (left). Bar diagram constructed from the occurrence matrices (right).

484 S. Duszynski

• Bar diagrams are a useful way to visualize the variability information (Figure 3
right). Bar diagrams are a visualization of the occurrence matrices. n+1 bars are
created, one for each occurrence matrix. The length of each bar equals the number
of rows in the respective matrix. Each bar is divided into three parts, with the
lengths according to the number of core, shared and unique elements in each ma-
trix. Bar diagram provides a quick overview over the amount of lines falling into
each variability category, as well as over the sizes of variants relative to each other
and to the total size of the union of all variants.

• Support for more variants is straightforward. Occurrence matrices and bar dia-
grams can be constructed for any number of compared variants, using the construc-
tion principles described above.

• Subset calculations can be run on the matrices, and their results can be visualized
as additional colored bars in the bar diagram (Figure 4) or by highlighting the
source lines in a text file. This dynamic visualization can be particularly useful for
analyzing a larger number of variants and for complex calculations that involve
many subsets of a Venn diagram. A calculation can for example return all lines in
each variant that are shared with a given variant A, or all lines that belong to a set
intersection such as A∩B. The shared asset category can also be explored in more
detail, for example by retrieving lines shared by exactly k variants. The calcula-
tions can be easily combined with each other (e.g. lines shared by exactly k vari-
ants, where one of the variants must be the variant A).

• Computation time of calculations can be held low by encoding each of the matrix
rows as a bit vector. Then, each calculation can be run as a combination of bitwise
AND, XOR and NOT operations performed on the matrix rows and on “calculation
vectors” encoding the specific calculation. An int32 holds enough space to store a
single bit-encoded matrix row, so the memory use for the matrices is also low.

Fig. 4. Venn diagram for four example element sets (left). Bar diagram for shared by 3 and
shared by 2 calculations performed on these sets (middle). Bar diagram with a further calcula-
tion: shared by 2 variants, where one of these variants is A (right).

3 Generalization of the Technique

The demonstrated technique can be applied not only for diff results. Generally, the
input data for occurrence matrices can be produced by a comparison operation per-
formed on any kind of ordered or unordered lists of arbitrary comparable elements,
such as strings, methods, classes, model elements, or other artifacts. The following
conditions need to be met to construct the occurrence matrices in the general case:

 Visualizing and Analyzing Software Variability 485

• Equivalence relation on the compared elements needs to be defined. In the n-diff
example, the relation was defined as string equality. In the context of product lines,
the semantics of the equivalence relation is “can be treated as the same asset”. Note
that an equivalence relation has to be reflexive, symmetric and transitive.

• Unambiguous assignment of equivalent elements across variants needs to be
assured. In case one or more elements from variant B are equivalent to the given
element of variant A, there needs to be a clear rule, specifying whether an assign-
ment can be made and if yes, which one of the potential matches should be used. In
the n-diff example, this selection was defined by the ordering of the lines in the
compared files and by the longest common sequence algorithm used by diff.

Example. Occurrence matrices and bar diagrams can be used to analyze variability in
the sets of features of product line members: features can be treated as comparable
elements, with the equivalence relation defined as “is the same feature”. Since each
feature exists only once in a given product, and the set of features can be treated as
unordered, the unambiguous assignment of elements across variants is also assured.

4 Conclusions and Future Work

We proposed occurrence matrices and bar diagrams as a technique facilitating orga-
nizing, visualizing and processing of variability information. The proposed technique
is well-suited for supporting detailed variability analysis in the context of reverse
engineering and extractive product line adoption. As an example of using the tech-
nique, we demonstrated an n-ary text diff.

In the ongoing work, we plan to use the technique on other types of system repre-
sentations and comparison functions (e.g. model-based), and to integrate it in a system
structure browsing tool in order to enable variability analysis on all levels of the sys-
tem structure hierarchy (source files, folders, subsystems and whole systems). We
also plan to validate the technique by applying it to industrial software systems.

References

1. Faust, D., Verhoef, C.: Software Product Line Migration and Deployment. Softw. Pract.
Exper. 33, 933–955 (2003)

2. Krueger, C.: Easing the Transition to Software Mass Customization. In: van der Linden, F.J.
(ed.) PFE 2002. LNCS, vol. 2290, pp. 282–293. Springer, Heidelberg (2002)

3. Batory, D.: Feature Models, Grammars, and Propositional Formulas. In: Obbink, H., Pohl,
K. (eds.) SPLC 2005. LNCS, vol. 3714, pp. 7–20. Springer, Heidelberg (2005)

4. Mende, T., Beckwermert, F., Koschke, R., Meier, G.: Supporting the Grow-and-Prune
Model in Software Product Line Evolution Using Clone Detection. In: 12th European Con-
ference on Software Maintenance and Reengineering (2007)

5. Duszynski, S., Knodel, J., Naab, M., Hein, D., Schitter, C.: Variant Comparison – A Tech-
nique for Visualizing Software Variants. In: 15th Work. Conf. on Reverse Eng. (2008)

6. Venn, J.: On the Diagrammatic and Mechanical Representation of Propositions and Reason-
ings. Philosophical Magazine Series 5, 10(59), 1–18 (1880)

7. Schmid, K.: A Comprehensive Product Line Scoping Approach and Its Validation. In: 24th
International Conference on Software Engineering, pp. 593–603 (2002)

J. Bosch and J. Lee (Eds.): SPLC 2010, LNCS 6287, pp. 486–490, 2010.
© Springer-Verlag Berlin Heidelberg 2010

Recent Experiences with Software Product Lines in the
US Department of Defense

Lawrence G. Jones and Linda Northrop

Software Engineering Institute
Pittsburgh, PA USA

lgj@sei.cmu.edu, lmn@sei.cmu.edu

Abstract. Since 1998, the Software Engineering Institute has held a series of
annual software product line workshops with participants from the US Depart-
ment of Defense (DoD) community. Over the years, the emphasis in the work-
shops has shifted from asking, “How can we do software product lines?” to
sharing, “This is how we are doing software product lines.” Both defense ac-
quisition offices and their suppliers reported particularly impressive results in
the 2010 workshop. This paper summarizes these recent workshop results, in-
cluding descriptions of DoD product line efforts, implementation issues, and
lessons learned.

Keywords: Software Product Lines, Software Product Line Adoption.

1 Introduction

In 1998, the Software Engineering Institute (SEI) began a series of annual product
line practice workshops for the US Department of Defense (DoD)1. For the first few
years, the workshop theme was Product Lines: Bridging the Gap—Commercial Suc-
cess to DoD Practice. This theme demonstrated the main problem at the time: How
do you transition proven product line practices into widespread use in the DoD? Over
the years the workshop format and sponsorship have varied, but one thing is clear:
product line practice is taking hold in the DoD. Early workshop discussions focused
on why product line practice was difficult in the DoD; recent workshops have focused
on how it is being done.

This paper summarizes four featured experience presentations from the 2010 SEI Soft-
ware Product Line Workshop sponsored by the US Army and held in Orlando, Florida.
For each we provide a description of the application, some implementation considerations,
and key lessons learned. We conclude with some overall themes and observations.

2 Experience Summaries

2.1 Common Driver Training Product Line

Using simulators to train Army vehicle drivers is an attractive alternative to training on
the actual vehicles, which have become increasing complex and expensive to operate.

1 All workshop reports may be found at
http://www.sei.cmu.edu/productlines/start/dodplpworkshop/

 Recent Experiences with Software Product Lines in the US Department of Defense 487

In 2004 the US Army Program Executive Office for Simulation, Training, and Instru-
mentation (PEO STRI) identified a need to develop a common line of driver training
simulators for a range of ground vehicles. The goal was to exploit the commonality of
training requirements to create common simulator elements, such as the instruc-
tor/operator station, motion base, image projectors, and data bases, while factoring out
variant items, such as the vehicle cab, dashboard, and vehicle dynamics, as program-
specific elements. Interchangeable vehicle cabs and dashboards coupled with vehicle-
specific motion cues and realistic terrain databases provide a range of training scenarios.

The resulting Common Driver Trainer (CDT) product line provides the ability to
create 80% of a new driver trainer from the CDT common elements. Use of CDT fa-
cilitates the rapid fielding of trainers for a range of vehicles, including the Abrams
tank, the Stryker light armored vehicle, and the Mine-Resistant Ambush Protection
(MRAP) vehicle.

Fielding CDT as a product line has yielded benefits in these areas:

1. Requirements. There is a common system requirements documents for all trainers.
Vehicle-specific variants are covered in appendices.

2. Time to field. A training simulator can be put in the field very quickly – it literally
takes more time to “bend the metal” than reuse the software. Use of CDT en-
abled meeting the aggressive MRAP simulator schedule: 120 days from contract
award to first simulator delivery.

3. Component reuse. Eighty percent of a trainer comes from CDT common elements.
The biggest factor in vehicle-specific variants is the difference between tracked
and wheeled vehicles.

Lessons learned from the effort include:

• Configuration Management. CM was seen as the number one issue for any prod-
uct line. Worse yet, CM tools do not provide adequate support for software prod-
uct lines.

• Personnel. Personnel changes in government positions have a great impact on
product line programs: There is a relatively small pool of people with product
line experience to draw upon when filling vacancies and newcomers face a sig-
nificant learning path.

• Information Assurance. Current regulations and guidance for information assur-
ance don’t even mention product lines. Until the people who write regulation and
guidance documents become knowledgeable about product lines, compliance will
be a struggle.

2.2 The Joint Fires Product Line

A military fire control system supports an observer in directing artillery fire and close
air support. Developed under the auspices of PEO STRI, the Joint Fires Product Line
(JFPL) is a set of training systems providing fire control virtual training for cross-
service (currently special operations forces) observers and built from legacy systems.

Across the different products, variants include options for portable systems, class-
room systems, and immersive trainers. Core assets include a system architecture (cov-

488 L.G. Jones and L. Northrop

ering both hardware and software) and software modules. Non-software assets include
guidance, support, and configuration documents, as well as user manuals and catalogs
of products and software assets; savings in documentation was a key business motiva-
tion for the product line.

The actual government JFPL organization is small, with external teams responsible
for product development. A “distribution agreement” complemented with a configura-
tion management and quality assurance process governs the transfer of core assets to
product developers and the acceptance of products and additional core assets back
into the product line.

Lessons learned from the effort include:

• Don’t underestimate the power of a cost-benefit analysis. If the effort is properly
managed, the benefits far exceed the costs.

• Change management and collective vision are essential, as are champions with
appropriate rank and influence to handle political roadblocks.

• Shared core assets require special testing processes.

• An early diagnostic is very helpful; the SEI’s Product Line Technical Probe2 was
valuable.

2.3 Marine Corps Instrumentation Training System (MC-ITS)

The Army’s Live Training Transformation (LT2) product line, developed by PEO
STRI, is a family of systems supporting Army live training environments. The live
training domain is also a responsibility of the U.S. Marine Corps (USMC) Range
Modernization/Transformation (RM/T) program. The RM/T program office con-
ducted an analysis and determined that they could leverage the capabilities of the
Army’s LT2 product line with over 80% direct mapping of requirements.

The first MCS-ITS increment was able to leverage the Army’s Homestation In-
strumentation System (HITS) (a member of the LT2 product line) to achieve 87% as-
is reuse of common LT2 components. The remaining 13% are a combination of modi-
fied LT2 components and new Marine-Corps-specific components. Reusing LT2
components reduced the time to field the MCS-ITS increment by an estimated six-to-
twelve months, and the reuse strategy allows two additional software development
increments at no additional cost. There are also cost savings associated with integra-
tion and test, user training, and sustainability and maintenance. Other benefits identi-
fied included: the software is fully government-owned, allowing further sharing and
avoiding intellectual property issues; improved exercise planning tools, and reduced
problems of interfaces among joint applications.

2.4 Common Link Integration Processing Product Line

The Common Link Integration Processing (CLIP) is a software tactical data link
(TDL) message processor that can be hosted on multiple platforms. Currently, CLIP
is targeted to support B-1 and B-52 bombers, and F-35 fighters. The purpose of CLIP
is to reduce cost (ownership, maintenance, and upgrade/refresh), to improve interop-

2 Product Line Technical Probe is a service mark of Carnegie Mellon University.

 Recent Experiences with Software Product Lines in the US Department of Defense 489

erability by providing common implementations of TDL standards, and to eliminate
stovepipe systems

Northrop Grumman, the developer of CLIP, was motivated to propose a product
line approach because of the wording of the CLIP request for proposal (RFP) that
referenced a “family of systems.” However, since the RFP and statement of work
(SOW) did not require a product line approach, the contract paid little attention to
many product line practice aspects—there was no requirement for important contract
deliverables such as a product line concept of operations, a product line practice de-
scription document, or a product line production plan.

Even so, the CLIP program achieved remarkable results because of their product
line approach. The requirement to be able to use different data links for different mis-
sions meant that there were over 41,000 configuration parameters to handle, mainly
because of the many message types. CLIP is able to handle all message formats, and
changes to message formats, without requiring changes to the host platform software.
Moreover, any required customization can be done on either the development side or
the platform integration side. As a result, Northrop Grumman was able to build a
CLIP system for another platform with just 10% of the effort that would previously be
required while achieving 94% reuse of existing code. While these are impressive re-
sults, a lot of wasted effort could have been prevented by an RFP that explicitly speci-
fied a product line approach.

The lessons learned from the CLIP effort to date include:

• Both the government and the contractors must be ready to pursue product line
engineering practices.

• Product line engineering must be built into the RFP, SOW, contract data re-
quirements lists, and the system requirements document.

• The cost and schedule implications of a product line approach must be considered
up front.

• Product line artifacts must be carefully managed by both the government and the
contractors; traceability must be maintained throughout the development artifacts
and documents.

• A product line approach requires both business and engineering buy-in.

3 Conclusions

Some common themes emerged during the workshop.

• Strategic reuse yielded benefits of reduced cost, reduced schedule, improved
quality, and improved interoperability among systems.

• While a supplier can proceed without government support, a product line ap-
proach is much more effective if the government acquirer understands the ap-
proach and constructs their acquisition strategy and documents accordingly.

• Information assurance (IA) certification is becoming a real bottleneck in releas-
ing systems. Work is needed to connect product line practice and IA so that the
IA process can be streamlined to take advantage of the fact that a product within
a product line can have a great deal of “pre-certification” built in.

490 L.G. Jones and L. Northrop

• Configuration Management continues to be a challenge; it is difficult to keep
multiple products in parallel development under configuration management

• Champions and executive sponsorship are critical.

• An architecture-centric approach is central to a product line effort; all programs
explicitly used architecture methods from the SEI and others.

• Robust feedback loops between core assets and products were established.

• A cost-benefit analysis for the product line is important.

• A funding model that provides life cycle support to the product line is necessary.

• There is a need for coordination, communication, and education across all stake-
holders (the ecosystem perspective).

• There is a need for more support for product line approaches from higher levels
within the Army/DoD (e.g., acquisition guidance documents, information assur-
ance requirements).

The reader will notice that two of the presentations were from PEO STRI programs
and a third had ties to a PEO STRI effort. This is no accident. Product line thinking is
endorsed by Dr. James T. Blake, the Program Executive Officer himself. Dr. Blake
has said

The current operational environment requires quickly adaptable systems ... To
better support this challenging environment, PEO STRI is adopting the deliberate
and disciplined tenets of Product Line Acquisition to maximize adaptability.

This kind of leadership support for product lines breeds success irrespective of the
environment. The three successful product lines in PEO STRI are evidence of what is
possible. The CLIP experience is evidence that defense contractors are attracted to
(and can be successful with) software product lines even without DoD direction.
These four experiences and others from other recent workshops in the series prove the
viability and the benefits of software product lines within the US DoD.

Leviathan: SPL Support on Filesystem Level

Wanja Hofer1, Christoph Elsner1,2, Frank Blendinger1,
Wolfgang Schröder-Preikschat1, and Daniel Lohmann1

1 Friedrich–Alexander University Erlangen–Nuremberg, Germany
2 Siemens Corporate Research & Technologies, Erlangen, Germany

{hofer,elsner,wosch,lohmann}@cs.fau.de

A lot of configurable software, especially in the domain of embedded and operat-
ing systems, is configured with a source preprocessor, mostly to avoid run-time
overhead. However, developers then have to face a myriad of preprocessor di-
rectives and the corresponding complexity in the source code, even when they
might only be working on the implementation of a single feature at a time. Thus,
it has long been recognized that tool support is needed to cope with this ‘#ifdef
hell’. Current approaches, which assist the software developer by providing pre-
processed views, are all bound to a special integrated development environment.
This eliminates them from being used both in industry settings (where domain-
specific toolchains are often mandated) and in open-source projects (where di-
verse sets of editors and tools are being used).

We therefore propose to tackle the problem at a lower level by providing
variant views via a virtual filesystem. Our Leviathan filesystem allows the de-
veloper to mount one or more concrete product variants to work on. A variant
is hereby defined as a set of enabled and disabled features (possibly output by
a feature modeling tool to ensure correctness). A mounted variant essentially
provides virtual files and directories, which are in fact slices of the original con-
figurable code base, preprocessed by Leviathan’s corresponding preprocessor
component (e.g., CPP or M4). This technique enables the use of arbitrary file-
based tools and tasks on that view. Operation includes read-only tasks such as
reasoning about variants by viewing the differences between, or feeding them
into syntax validators or code metric analysis tools. Furthermore, Leviathan’s
virtual files are also editable with arbitrary tools; Leviathan will merge back
the changes into the configurable code base transparently in the background.

Leviathan’s write-back support enables the developer to make changes di-
rectly on the mounted view. For instance, he can directly debug a mounted
variant and modify the variant’s code to get rid of a bug, eventually saving the
changes in his editor. In the background, the write request will be handled by
Leviathan’s write-back engine, which is responsible for mapping source config-
uration blocks (enclosed in preprocessor directives) to variant blocks (actually
visible in the view). This mapping and merging is either done heuristically (if
the source configuration blocks are rather large in a given SPL) or with the help
of markers, which Leviathan inserts as language-dependent comments in the
mounted view to make the write-back process completely unambiguous.

By providing toolchain-independent views on preprocessor-configured code
bases, Leviathan introduces SPL support in unprecedented domains like open-
source projects (e.g., Linux) and industry projects.

J. Bosch and J. Lee (Eds.): SPLC 2010, LNCS 6287, p. 491, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

J. Bosch and J. Lee (Eds.): SPLC 2010, LNCS 6287, pp. 492–493, 2010.
© Springer-Verlag Berlin Heidelberg 2010

Introducing a Conceptual Model of Software Production

Ralf Carbon1 and Dirk Muthig2

1 Fraunhofer IESE,
Fraunhofer-Platz 1, 67663 Kaiserslautern, Germany

ralf.carbon@iese.fraunhofer.de
2 Lufthansa Systems,

Am Prime Parc 2a, 65479 Raunheim, Germany
dirk.muthig@lhsystems.com

Abstract. Software development organizations today have to deliver products
fast and tailored to the specific needs of customers. Software Product Line En-
gineering (PLE) has proven to support organizations in reducing time to market
and increase the level of customization, but still software is not produced with
similar efficiency than many hard goods today. We claim that organizations can
improve the efficiency of software development if they apply a software pro-
duction approach similar to other engineering disciplines. Key to successful
software production is a product line architecture that is aligned with the pro-
duction plan. As a first, step we introduce a conceptual model of software pro-
duction that captures the relationship between the product line architecture and
the production plan.

Keywords: Software production, Conceptual Model, Product Line Engineering,
Product Line Architecture, Production Plan.

The product line architecture (PLA) is a core artifact of software production [1]. It
defines, for instance, the architectural elements that make up a product line member.
From the point of view of an architect, producing a product means to create, modify,
remove, or assemble architectural elements. The production plan (PP) is another core
artifact of software production. It describes the overall project approach, for instance,
the iterations that are typically performed to incrementally product a product and the
respective milestones. Furthermore, it defines the processes describing how the archi-
tectural elements are created modified, removed, or assembled in detail.

The conceptual model of software production elaborates on the relationships be-
tween conceptual elements of PLAs and PPs. Architectural elements, as one concep-
tual element of PLAs are related, for instance, to milestones. Typically, a certain
number of architectural elements need to be touched to reach a milestone.

The knowledge captured in the conceptual model is supposed to be leveraged by
product line architects and production planners to align PLAs and PPs. They should
check, for instance, that not too many architectural elements need to be touched to
reach a certain milestone, especially if such architectural elements are complex or if
developers are not yet completely familiar with the used technologies. Hence, poten-
tial production problems, for instance, delays in reaching a certain milestone, can be
detected early and appropriate solutions can be elaborated proactively.

 Introducing a Conceptual Model of Software Production 493

The relevance of the relationship between architectures and project plans has al-
ready been mentioned in the literature, for instance, in [2]. Especially in PLE, where
the production process will be repeated many times, an up-front investment in align-
ing PLA and PP to prevent production problems promises high returns on investment.

References

[1] Carbon, R.: Improving the Production Capability of Product Line Organizations by Archi-
tectural Design for Producibility. In: Proceedings of the SPLC 2008, vol. 2, pp. 369–375
(2008)

[2] Paulish, D.J.: Architecture-Centric Software Project Management. Addison-Wesley, Read-
ing (2002)

J. Bosch and J. Lee (Eds.): SPLC 2010, LNCS 6287, p. 494, 2010.
© Springer-Verlag Berlin Heidelberg 2010

Product Line Engineering in Enterprise Applications

Jingang Zhou1,*, Yong Ji2, Dazhe Zhao1,2, and Xia Zhang1,2

1 Northeastern University, 110819, Shenyang, China
2 Neusoft Corporation, 110179, Shenyang, China

{zhou-jg,jiy,zhaodz,zhangx}@neusoft.com

Keywords: Enterprise application, enterprise application platform, software
product line.

Software product line engineering (SPLE) has been gotten considerable adoption in
software intensive domains. Enterprise applications, a long lived application domain
for enterprise operations with IT, are mainly developed as single system engineering.
It is hard to adopt SPLE in enterprise application domain (EAD) with so much
diversity, plus the complex and fast evolving technologies.

Neusoft provides application solutions for the fields of e-government, education,
finical, telecom, traffic, electric power, enterprise, and so on. To deliver products
efficiently and keep competitive, we introduce SPLE and have developed a common
technical platform, called UniEAPTM for enterprise solutions, which contains
application frameworks, as well as many technical components (e.g., workflow, rule
engine, report, cache, etc.). Due to the diversity in EAD, some derived platforms have
been developed to include more general business components in fields like social
insurance, electric power, and telecom to facilitate application development in these
sub-domains. By this hierarchical domain engineering (DE) units organization [1],
application engineering (AE) teams have successfully constructed more than two
hundreds of solutions annually for different business lines in Neusoft.

Technical and organization management plays an important role to collaborate the
decentralized AE and DE teams. In such a context, periodic workshops are important
to platform features timeline schedule and training. In a fast evolving domain, it is
useful to layer assets by reusability and pay more attention to those with high
reusability. Black/white box components, frameworks, application templates, partial
code generators and even code snippets are all enabling strategies. The synthesized
approach makes SPLE in EAD showing characteristics in higher maturity levels [1]
than just platform. For assets assembly, OSGi bundles can be used as components
packaging format to realize modularity and features metadata can be defined in
MANIFEST.MF to easing mapping between requirements and software artifacts.

One of the most difficulties is assets evolution in which multi-version control,
dependency management, requirements/features traceability, all need consideration
and tools support. Thus it is key to constraint the number of variation points, e.g., by
specifications, however, flexibility and configurability must be taken into account.

Reference
1. Bosch, J.: Maturity and Evolution in Software Product Lines: Approaches, Artefacts and

Organization. In: Chastek, G.J. (ed.) SPLC 2002. LNCS, vol. 2379, pp. 257–271. Springer,
Heidelberg (2002)

* Corresponding author. Sponsored by the State 863 High-Tech Program (2008AA01Z128).

J. Bosch and J. Lee (Eds.): SPLC 2010, LNCS 6287, p. 495, 2010.
© Springer-Verlag Berlin Heidelberg 2010

Case Study of Software Product Line Engineering in
Insurance Product

Jeong Ah Kim

Department of Compter Education, Kwandong Univeristy,
522 NaeKok Dong, KangNung, KangWon, 210-701, Korea

clara@kd.ac.kr

SPLE is a process to analyze a set of products and to identify the reusable components
in the product family. And these components can be used for developing a new product
in the product domain. Insurance sales system is software intensive system and the
competitive power of software system determines the growth rate of business in insur-
ance market. Sale system of insurance product is main target for improving their com-
petition. Since the number of new insurance product is increasing and time-to-market
is getting shorten, the needs for software product line engineering adoption is in-
creased. As new insurance products are released, small-sized projects should be
launched to add new software insurance products into existing information system.
Since a software product module was implemented for each insurance product, there
are so many redundant parts among the software insurance modules. Redundant codes
make the problems in updating the already registered insurance products and make the
cost of maintenance increasing. Software product line engineering can be the solution
for redundancies in software systems and for reducing the cost of maintenance. To
adopt the software product line to insurance sales system, 2 areas can be candidates (1)
insurance sales system, (2) software insurance products. To smooth the adaptation,
software insurance products is the first target for SPLE.

Variability in software insurance products is classified as (1) variability of attribute,
(2) variability of the domain of attribute (3) variability of attribute value, (4) variability
in computation logic, (5) variability of condition. (6) variability in work flows. Result
of domain engineering was described as feature model to explain what features are
common and what features are variant points. Variation mechanism with XML-based
ontology modeling was introduced. XML-based variability specification can be flexi-
ble way to extend the scope of variability without affecting other modules. With XML,
if existing modules are not interested in new added attributes, then they can ignore new
attributes. New added attribute and related computational logic and condition can af-
fect to new insurance product which is the reason of variability. It means that fixed
variability modeling is not required at the early stage of software insurance product
SPLE. In XML schema, variation point is defined as tag with business meaning and is
defined as rule expression name. In XML instance, variant is modeled as value and
rule. Evolution of variability modeling is very important issue since new concepts and
new attributes are increasingly added. XML-based variability specification make pos-
sible to add new features and to ignore existing features so that the version control of
XML-based variability specification is important and traceability from features to
application module should be managed.

Using Composition Connectors to Support Software
Asset Development

Perla Velasco Elizondo

Centre for Mathematical Research, (CIMAT). 36240 Guanajuato, Mexico
pvelasco@cimat.mx

Software Product Line (SPL) approaches enable the development of software product
variants by reusing a set of software core assets. These assets could have variant features
themselves that can be configured in different ways to provide different behaviours. Un-
fortunately, in many SPL approaches software core assets are constructed from scratch
and in an ad hoc manner.

In previous work, it has been introduced a new approach to component composi-
tion within the context of Component-based Development [1]. In this approach, com-
ponents are passive and they do not request services from other components. Rather,
they execute their provided services only when invoked by connectors. Connectors are
exogenous to components and they encapsulate well-known communication schemes,
e.g. [2]. These connectors are indeed first-class compilation units that admit some sort
of parametrisation to indicate the components they compose and the services that should
be considered in these compositions.

In [3] a catalogue of these connectors is presented. Thus, this work shows the feasi-
bility of utilising these connectors to generate software core assets. Specifically, the
feasibility of generating a set of reusable software core assets for a Home Service
Robots product line. The assets are generated by composing a set of passive technology-
intensive components (e.g. speech and sound recognisers, obstacle detectors) into spe-
cific arrangements via our connectors. Although this piece of work is only at an initial
stage, we realised that it has a set interesting features: (i) it provides a systematic and
consistent means to generate software core assets -it allows reuse of a well-defined
composition process, (ii) it maximises reuse –it promotes reuse of both components
and connectors and (iii) it admits some level of automation –it mitigates software asset
development effort.

We agree, however that a complete case study implementation must be carried out to
better support all these claims. Similarly, a better integration of the artefacts describing
the product line’s variability with our approach is required. Thus, our future work will
focus on these issues.

J. Bosch and J. Lee (Eds.): SPLC 2010, LNCS 6287, pp. 496–497, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Using Composition Connectors to Support Software Asset Development 497

References

1. Lau, K.-K., Velasco Elizondo, P., Wang, Z.: Exogenous connectors for software components.
In: Heineman, G.T., Crnkovic, I., Schmidt, H., Stafford, J., Szyperski, C., Wallnau, K. (eds.)
Proceedings of 8th International SIGSOFT Symposium on Component-based Software Engi-
neering, pp. 90–106. Springer, Heidelberg (2005)

2. Russell, N., ter Hofstede, A.H.M., van der Aalst, W.M.P., Mulyar, N.: Workflow control-flow
patterns: A revised view. Technical Report BPM-06-22, BPM Center (2006)

3. Velasco Elizondo, P., Lau, K.-K.: A catalogue of component connectors to support develop-
ment with reuse. Journal of Systems and Software 83(7), 1165–1178 (2010)

Feature-to-Code Mapping in Two Large Product
Lines

Thorsten Berger1, Steven She2, Rafael Lotufo2,
Krzysztof Czarnecki2, and Andrzej Wąsowski3

1 University of Leipzig, Germany
berger@informatik.uni-leipzig.de

2 University of Waterloo, Canada
{shshe,rlotufo,kczarnec}@gsd.uwaterloo.ca

3 IT University of Copenhagen, Denmark
wasowski@itu.dk

Large software product lines have complex build systems that enable compiling
the source code into different products that make up the product line. Unfortu-
nately, the dependencies among the available build options, which we refer to as
features and their mapping to the source code they control, are implicit in com-
plex imperative build-related logic. As a result, reasoning about dependencies
is difficult; this not only makes maintenance of the variability harder, but also
hinders development of support tools such as feature-oriented traceability sup-
port, debuggers for variability models, variability-aware code analyzers, or test
schedulers for the product line. Thus, we advocate the use of explicit variability
models, consisting of a feature model specifying the available features and their
dependencies and a mapping between product specifications conforming to the
feature model and the implementation assets.

Previously, we extracted feature models from the Linux kernel and the Ecos
embedded operating system. The Ecos model directly embeds the feature-to-code
mapping. However, this is not the case for Linux. Now, we extract the feature-to-
code mapping from the build systems of the prominent operating systems Linux
and FreeBSD.

We represent the mapping as presence conditions. A presence condition (PC)
is an expression on an implementation artifact written in terms of features. If
a PC evaluates to true for a configuration, then the corresponding artifact is
included in the product.

We show that the extraction of mappings from build systems is feasible. We
extracted 10,155 PCs, each controlling the inclusion of a source file in a build.
The PCs reference the total of 4,774 features and affect about 8M lines of code.
We publish1 the PCs for Linux and FreeBSD as they constitute a highly realistic
benchmark for researchers and tool designers.

1 http://code.google.com/p/variability

J. Bosch and J. Lee (Eds.): SPLC 2010, LNCS 6287, pp. 498–499, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

http://code.google.com/p/variability

Feature-to-Code Mapping in Two Large Product Lines 499

In the poster, we describe the build systems of the Linux and FreeBSD ker-
nel as well as our approach to transforming the imperative build-system logic
into a large Abstract Syntax Tree (AST) and to deriving presence conditions.
Furthermore, we expand on basic characteristics of the resulting expressions.
We hope our work deepens understanding of variability in build systems and
that the insights will eventually lead to extracting complete variability models
encompassing the feature model and the mapping from features to code.

J. Bosch and J. Lee (Eds.): SPLC 2010, LNCS 6287, pp. 500–501, 2010.
© Springer-Verlag Berlin Heidelberg 2010

The Rise and Fall of Product Line Architectures

Isabel John1, Christa Schwanninger2, and Eduardo Almeida3

1 Fraunhofer Institute for Experimental Software Engineering (IESE)
Isabel.John@iese.fraunhofer.de

2 Siemens AG
christa.schwanninger@siemens.com
3 Federal University of Bahia (UFBA) and RiSE
esa@dcc.ufba.br, esa@rise.com.br

Abstract. This panel addresses questions around architecture like: How do you
think a good product line architecture should look like? How much up-front
design do we need for a product line architecture? What are hot research topics
in product line architecture? The panel is organized as a goldfish bowl, where
the panelists are in the middle of the audience and panelists change during the
panel.

1 Motivation

Although architecture has been recognized as the central artifact in product line
engineering since many years, it doesn’t seem to be the hot topic anymore. There was
no session on architecture at last SPLC, there was only one tutorial mentioning
architecture in the title. So, is the concept of a product line architecture dead? Or is it
just normal to have one, so we don’t have to talk about it anymore? In this panel we
want to have a look at these questions: Product line architectures might be irrelevant
in the era of agile processes and open source, but if they are not we want to revive this
topic for the SPL community.

Questions to start the panel with could be:

• How do you think a good product line architecture should look like?
• How much up-front design do we need for a product line architecture?
• Is parallelizing Domain Engineering (DE) and Application Engineering (AE)

possible without a stable product line architecture?
• How do DE and AE collaborate in evolving architecture? What are the extremes in

the spectrum from DE controlled to collaborative?
• What are hot research topics in product line architecture?
• What is the relationship between architecture and scope?
• What are the experiences creating architecture from available assets and products?
• How to deal with varying quality attributes for a product line?
• Who has a product line architecture? How does it look like? Is it easy to handle?
• And what to do with the architecture when it comes to application engineering?
• Do we really need a dedicated product line architecture?

 The Rise and Fall of Product Line Architectures 501

• Do we need research on product line architectures?
• And how do the variabilities in the architecture look like (if there are any)?

2 Panel Format

We chose a format called “Goldfish bowl” instead of the typical panel format.
Goldfish bowls provide broad-ranging discussion on a general topic. There already
was a Goldfish bowl panel on PL business return a SPLC 2009 [1], which was a great
success. We largely will follow the organization and format that we had last year.

There are several variants of a goldfish bowl. We roughly follow the variant
described in [2]:

A goldfish bowl is a bit like a panel discussion, but the people on the panel change
during the discussion. The rules are:

• start with a small circle or semi-circle of about 5 chairs in the middle of the room;
• arrange all the other chairs facing towards these, so you have several concentric

circles;
• the goldfish bowl has a topic which is usually quite broad, and the organizer

usually asks two or three people to get the discussion started and explains the rules
to the audience;

• during the discussion, anyone sitting on one of the central chairs can speak, but no-
one else can;

• if someone wants to speak, they have to sit on one of the central chairs, even if it’s
just to ask a question;

• one of the central chairs is always kept free for this purpose;
• whenever all of the central chairs are occupied, at least one person has to leave to

create a new vacant chair.

References

[1] http://www.sei.cmu.edu/splc2009/files/Goldfish_Bowl_Panel_
SPLC_2009-A3.pdf

[2] http://www.xpday.org/session_formats/goldfish_bowl

The Many Paths to Quality Core Assets

John D. McGregor

Clemson University

johnmc@cs.clemson.edu

Can all of the different approaches to software product line operation lead to
quality core assets? Some organizations use a recognized method such as the
Software Engineering Institute’s Framework for Product Line Practice [4] while
others use a homegrown variant of their non-product line process. Some organi-
zations iteratively mature their core assets while others build proactively.

Is there value in quality? The Craftsman approach to software development
believes there is and takes extra time to ensure high levels of quality [5]. Others
view quality like any other requirement. Satisfying the requirement by whatever
small amount is sufficient.

Should discussions of quality in a product line address separate quality factors
for core assets and product-specific components? Product line organizations of-
ten issue reports of reduced defect density rates that do not distinguish between
the defect densities of core assets and product-specific components. Time spent
on core assets has a multiplier effect by exporting that improved defect count to
a large percentage of products [1].

How do core assets reach maturity most rapidly? Some organizations plan a
migration path for each asset [2], some scratch their collective heads when a late
change in the core assets suddenly becomes necessary, and others keep a loose,
iterative approach that allows flexibility.

How are quality requirements different in a software product line? In a software
product line, everything can be variable including quality [3]. That is, different
products may have very different requirements for specific quality attributes.

This panel session will present diverse views on how to achieve quality prod-
ucts in a software product line organization. We will aggressively seek audience
participation in an effort to answer these questions with actual experience.

References

1. In, H.P., Baik, J., Kim, S., Yang, Y., Boehm, B.: A quality-based cost estimation

model for the product lin life cycle. Communications of the ACM 49(12) (2006)

2. McGregor, J.D.: The evolution of product line assets. Tech. rep., Software Engineer-

ing Institute (2003)

3. Myllärniemi, V., Männistö, T., Raatikainen, M.: Quality attribute variability within

a software product family architecture. In: Proceedings of the Conference on the

Quality of Software Architectures (2006)

4. SEI: Framework for software product line practice. Tech. rep., Software Engineering

Institute (2010)

5. Völter, M., McGregor, J.D.: The model craftsman. Executive Update (2010)

J. Bosch and J. Lee (Eds.): SPLC 2010, LNCS 6287, p. 502, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

J. Bosch and J. Lee (Eds.): SPLC 2010, LNCS 6287, pp. 503–504, 2010.
© Springer-Verlag Berlin Heidelberg 2010

Pragmatic Strategies for Variability Management in
Product Lines in Small- to Medium-Size Companies

Stan Jarzabek

School of Computing, National Univeristy of Singapore, Singapore
stan@comp.nus.edu.sg

Most SPLs in small- to medium-size companies evolve from a single successful
product. Initially, each new product variant is often developed by ad hoc reuse - copy
and modify - of source code files implementing existing products. Versions of source
files pertinent to different products are stored under a Software Configuration
Management (SCM) tool such as CVS or SVN. As the number of customers and
relevant product variants increases, such ad hoc reuse shows its limits: The product
size grows as we implement new features in response to customer requests. At the
same time, we need maintain all the released product variants, so we have more and
more code to maintain. Also with a growing customer base (good for our business!),
increasing product variability becomes a challenge for ad hoc reuse: How do we know
which versions of source files should be selected from SCM repository for reuse in
development of a new product? How should we customize them and then integrate to
build a new product? These problems may become taxing on company resources.

We can already start observing initial symptoms of the above problems as the
number of product variants reaches 4-5. As maintaining product variants and
implementing new ones become more and more time-consuming, managing
variability using systematic software Product Line (SPL) techniques can help a
company sustain the business growth.

Setting up and stabilizing a common architecture for SPL product variants is the
first step. Some variant features of products can be nicely mapped into architectural
components. Handling such features becomes easy with plug-in components.

Component-based approaches and platforms provide effective reuse solutions at
the middleware level. However, in application domain-specific areas such as business
logic or user interface, despite many similarities, software is still developed very
much from scratch. One of the reasons why this happens is that variability affecting
middleware components is lesser and can be easier localized than variability affecting
upper system layers.

In most application domains, plug-in component technique is not enough. The impact
of variant features cannot be contained at the component level, but spreads freely across
many components, affecting their code at many variation points. To manage such
“troublesome” variability in core assets, companies typically adopt variation mechanisms
such as preprocessing, manually commenting out variant feature code, parameter
configuration files, Ant, or annotations (Java/JEE). Such variation mechanisms are
simple and available for free. Most developers can understand them without training.

The need for multiple variation mechanisms arises because we face many different
variability problems when designing core assets of an SPL: Some variant features
require customizations at the file level, others trigger many customizations in core

504 S. Jarzabek

asset code, yet others may involve a combination of file- and code-level
customizations. Each variation mechanism is meant to handle only one type of
variability situation, and sometimes we must use variation mechanisms together to
handle a give variability situation.

The above strategy to building an SPL is cost-effective and works well, as long as
the number of variant features differentiating products is below 50, and the product
size is below 50 KLOC.

As our SPL grows, problems usually emerge: Features get complicated; One
variant feature may be mapped to many variation points, in many components, and it
is difficult to figure out to which ones and how; Features often are inter-dependent,
and inclusion of one feature into a custom product must be properly coordinated with
modifications of yet other features; Core reusable assets become heavily instrumented
with variation points, and using multiple techniques to manage variability makes the
core assets even more complex to work with.

If the above picture reflects your experience, you may find this tutorial useful. We
review techniques commonly employed for SPL variability management at
architecture and the detailed code level. This part of the tutorial gives a balanced
view on how far they can lead you, and complications that typically arise in time. If
you experience the pains already, you will better know their sources.

In the second part of the tutorial, we examine XVCL (XML-based Variant
Configuration Language) variation mechanism [1][2] that exercises the total control
over SPL variability, from architecture, to component configuration, to any detail of
code (e.g., variations at the source statement, expression or keyword level). XVCL
streamlines and automates customizations involved in implementation of selected
variant features into custom products, from component re-configuration, to detailed
customizations of component code. The approach replaces the need for multiple
variation mechanisms, and avoids the problems of digging out feature customization
and reuse information from SCM repositories. It complements conventional
architecture-centric, component based design for reuse, and works with any
conventional programming language and/or platform such as JEE, .NET, Ruby on
Rails or PHP.

In the tutorial, we discuss two industrial case studies of small- to medium-size
SPLs with XVCL: We review histories of Web Portals by ST Electronics (Info-
Software Systems) Pte Ltd in Singapore, and Wingsoft Financial Management
Systems by Fudan Wingsoft Ltd., a software company in China. We describe the
strengths and weaknesses of managing variability using advanced conventional
techniques, migration into XVCL-based SPLs, and costs/benefits of managing SPLs
with XVCL.

References

[1] Jarzabek, S.: Effective Software Maintenance and Evolution: Reuse-based Approach.
Taylor & Francis, CRC Press (2007)

[2] XVCL (XML-based Variant Configuration Language) method and tool for managing
software changes during evolution and reuse, http://xvcl.comp.nus.edu.sg

Building Reusable Testing Assets for a Software
Product Line

John D. McGregor

Clemson University

johnmc@cs.clemson.edu

Abstract. A software product line presents all of the usual testing chal-

lenges and adds additional obligations. While it has always been impor-

tant to test the earliest products of development, a product line makes

this much more important in order to avoid a combinatorial explosion of

test suites. We will consider ways to reuse test cases, test infrastructure,

and test results. We will consider fault models for software product lines

and then develop a set of test plans based on those fault models.

Testing consumes a significant percentage of the resources required to produce
software intensive products. Data from one company, reported at SPLC 2009,
indicated that 31% of the product line organizations effort was required for com-
ponent test, integration, and validation while only 10% was required to develop
the code. This obviously includes the testing effort for the product line and
suggests room for considerable savings. The exact impact on the project is of-
ten hard to evaluate because testing activities are distributed over the entire
scope of the development effort as it is in any product development effort. In
fact few product line organizations have a coordinated plan for all of the testing
activities. Those test activities conducted by developers, integration teams, and
system testers often operate in separate compartments with little or no commu-
nication with each other. In this tutorial we take a comprehensive end-to-end
view of the testing activities and roles that should be present in a software prod-
uct line organization. We consider testing activities that begin during product
conception and that continue after deployment to customers.

Testing “a product line” is like testing several products, but since there are
many dependencies among the products, we can plan and execute the testing
activities as a group and realize significant savings. The commonality and vari-
ability analysis performed early in the life of the product line provides valuable
information for testing. The structure of the test cases should approximate that
of the products and the variation points in the product line architecture give
information for identifying separate test fragments. [2]

The Software Engineering Institute (SEI) identifies three areas of responsibil-
ity in a product line organization we relate these to testing:

– Organizational managers have responsibility for establishing the test strategy
for the organization in general and the product line in particular. These
activities are directly related to the business goals and scope of the product
line.

J. Bosch and J. Lee (Eds.): SPLC 2010, LNCS 6287, pp. 505–506, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

506 J.D. McGregor

– Technical managers have responsibility for planning the numerous test ac-
tivities needed to implement the test strategy. These activities are planned
in concert with the development activities to coordinate milestones and re-
sources.

– Software engineers have responsibility for implementing the planned activ-
ities. They select the specific test cases necessary to achieve specific test
coverage levels and implement any software needed to apply the test cases
to the software under test.

A fault model describes the types of faults that might be present in a given
environment. The fault model for a software product line covers a wide range of
fault types. In this tutorial we will examine several representative faults and use
them to motivate the testing technique we employ. These give a basic starting
point but each organization must construct their own fault model that works
with their development process.

The close relationship between developing software and testing it results in the
test activities being crafted with knowledge of the chosen development process.
The method engineer arranges the testing activities so that they are timely and
have the appropriate perspective for their position in the development process.
This tutorial considers test techniques and test process models.

The content of the tutorial is based on the software product line literature,
the applied research conducted at the Software Engineering Institute, and the
technical consulting of the SEI. [3] [1]

References

1. Kazman, R., Klein, M., Clements, P.: Atam: Method for architecture evaluation.

Tech. Rep. CMU/SEI-2000-TR-004, Software Engineering Institute (2000)

2. Knauber, P., Schneider, J.: Tracing variability from implementation to test using

aspect-oriented programming. In: Proceedings of the Software Product Line Con-

ference 2004 (2004)

3. McGregor, J.D.: Testing a software product line. Tech. Rep. CMU/SEI-2001-TR-022,

Software Engineering Institute (2001)

Production Planning in a Software Product Line
Organization

John D. McGregor

Clemson University

johnmc@cs.clemson.edu

Abstract. Production planning gives early guidance concerning how

products should be built and hence how core assets should be designed.

The production strategy addresses business goals through product build-

ing. The production method implements the production strategy by de-

lineating exactly how a product is built from core assets. The production

plan instantiates the production method for a specific product. In this

tutorial we will layout production planning in a software product line

and provide examples from a number of different product lines.

Most software product line organizations recognize the need for two roles: core
asset developers and product builders. These roles may both be assumed by an
individual or each may be assumed by persons who are in different administrative
units, in different geographic locations, or of vastly different skill levels. For
example, a corporation may have one lab assigned to produce core assets and
other labs around the world to use those assets to produce products. The greater
the separation among these people the greater the need for communication and
coordination regarding product production.

Production planning is used in many industries to coordinate the efforts of
external suppliers who supply parts and to structure the assembly line where
products are produced. The need for coordination in a software product line
organization is even greater than in hard goods manufacturing because product
production is less constrained by physical properties or industrial standards.
Our research has shown that organizations that fail to plan production are more
likely to fail than those that do plan. The goal of this tutorial is to provide
participants with techniques for conducting production planning.

Production planning takes place in the context of an ecosystem that encom-
passes the software product line. It consists of the vendors who supply parts of
the product and the different buyers of the product. Examining the ecosystem
gives the production strategist information about competition in the market and
about available resources.

Production planning begins with development of a production strategy that
ties the business goals of the product line organization to the means of pro-
duction. The strategy specifies an approach that addresses the forces posed by
existing competitors, potential entrants into the same markets, existing products
that could be substituted, suppliers of resources, and purchasers of products. The

J. Bosch and J. Lee (Eds.): SPLC 2010, LNCS 6287, pp. 507–508, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

508 J.D. McGregor

production strategy identifies the types and amounts of resources that will be
devoted to product production and how these allocations will meet specific goals.

The production strategy guides the creation of an implementation approach
which includes the method of production and specific production plans. The pro-
duction method implements the production strategy by defining process models,
modeling conventions, and technologies that will be used to produce core assets
and products. Techniques from method engineering are used to define the pro-
duction method. Each product team can specialize the product line method to
fit the specific circumstances of the product or customer.

The production method specifies the form of the attached process that is
suitable for building a production plan. The attached process for a core asset
provides detailed instructions for using the asset in building a product. Each
core asset has an attached process. As the variation points are resolved, the
attached processes for the assets used at the variation points are added to the
other attached processes to define the method specific to that product.

The production strategy and method are instantiated in a production plan.
The plan provides the details of how products will be produced, when they will
be produced, and by whom they will be produced. The variety of products in a
product line often requires a variety of production techniques. Each core asset
used in production is accompanied by an attached process that is integrated into
the production process that guides product production.

The content of this tutorial is based on the applied research and technical
consulting of the Software Engineering Institute. [4] [2] [3] [1]

References

1. Chastek, G., Donohoe, P., McGregor, J.D.: Product line production planning for

the home integration system example. Tech. Rep. CMU/SEI-2002-TN-009, Software

Engineering Institute (2002)

2. Chastek, G., Donohoe, P., McGregor, J.D.: A study of product production in soft-

ware product lines. Tech. Rep. CMU/SEI-2004-TN-012, Software Engineering Insti-

tute (2004)

3. Chastek, G., Donohoe, P., McGregor, J.D.: Formulation of a production strategy for

a software product line. Tech. Rep. CMU/SEI-2009-TN-025, Software Engineering

Institute (2009)

4. Chastek, G., McGregor, J.D.: Guidelines for developing a product line production

plan. Tech. Rep. CMU/SEI-2002-TR-006, Software Engineering Institute (2002)

J. Bosch and J. Lee (Eds.): SPLC 2010, LNCS 6287, pp. 509–510, 2010.
© Springer-Verlag Berlin Heidelberg 2010

Transforming Legacy Systems into Software Product
Lines

Danilo Beuche

Pure-systems GmbH, Agnetenstr. 14, 39106 Magdeburg, Germany
danilo.beuche@pure-systems.com

Abstract. This tutorial discusses many aspects of the migration process in an
organization when existing software systems are used as starting point for a
software product line. It is intended to provide food for thought as well as
practical approaches for the migration.

1 Tutorial Motivation

Often organizations face the problem that after a while their software system is
deployed in several variants and the need arises to migrate to systematic variability
and variant management using a software product line approach.

In practice most organizations cannot afford to start a software product line
development from scratch and therefore have to use as much existing software assets
as possible. Discussion of (successful) transition techniques thus helps those
organizations to decide for adoption of a software product line approach. Since the
software product line development is still in a phase were widespread use has not
been achieved the tutorial tries to help attendees to increase the number of SPL in the
industry.

2 Tutorial Contents

The tutorial will discuss issues coming up during this migration process mainly on the
technical level, but also discusses some of the organizational questions. The goal of
the tutorial is to give attendees an initial idea how a transition into a software product
line development process could be done with respect to the technical transition.

The tutorial starts with a brief introduction into software product line concepts,
discussing terms such as problem and solution space, feature models, versions vs.
variants.

Tutorial topics are how to choose adequate problem space modeling, the mining of
problem space variability from existing artifacts such as requirements documents and
software architecture. Also part of the discussion will be the need for separation of
problem space from solution space and ways to realize it. A substantial part of the
tutorial will be dedicated to variability detection and refactoring in the solution space
of legacy systems.

510 D. Beuche

3 Tutorial Audience

The intended audience is practitioners from industry (software product line novice to
intermediate). Attendees should have a basic understanding software design; some
knowledge about software product lines in general is helpful but not required.

J. Bosch and J. Lee (Eds.): SPLC 2010, LNCS 6287, pp. 511–512, 2010.
© Springer-Verlag Berlin Heidelberg 2010

Systems and Software Product Line Engineering with the
SPL Lifecycle Framework

Charles W. Krueger

BigLever Software, Inc.
Austin, TX, USA

Abstract. Mainstream forces are driving Software Product Line (SPL)
approaches to take a more holistic perspective that is deeply integrated into the
systems and software engineering lifecycle. These forces illustrate that SPL
challenges will not be solved at any one stage in the product engineering
lifecycle, nor will they be solved in independent and disparate silos in each of
the different stages of the lifecycle. We explore our response to these forces – a
SPL Lifecycle Framework. The motivation for this technology framework is to
ease the integration of tools, assets and processes across the full systems and
software development lifecycle. The goal is to provide product line engineers
with a common set of SPL concepts and constructs for all of their tools and
assets, at every stage of the lifecycle, and to assure that product line
development traceability and processes flow cleanly from one stage of the
lifecycle to another.

1 Introduction

In this tutorial, we describe how SPL Lifecycle Framework has enabled successful
large-scale deployments on highly recognizable systems in all three branches of the
US Department of Defense and some of the largest companies in aerospace and
defense, automotive manufacturing, alternative energy, industry automation, e-
commerce, medical systems and computer systems, as well as three inductees in the
SPLC Software Product Line Hall of Fame. We explore how the SPL Lifecycle
Framework provides all product line engineers and managers – including systems
analysts, requirements engineers, architects, modelers, developers, build engineers,
document writers, configuration managers, test engineers, project managers, product
marketers and so forth – with a common set of SPL concepts and constructs for all of
their tools and assets, at every stage of the lifecycle, and to assure that product line
development traceability and processes flow cleanly from one stage of the lifecycle to
another. The key constructs covered are:

• A feature model that you use to express the feature diversity (optional and varying
feature choices) among the products in your product line.

• A uniform variation point mechanism that is available directly within your tools
and their associated assets, to manage feature-based variations in all stages of the
engineering lifecycle.

512 Charles W. Krueger

• A product configurator you use to automatically assemble and configure your
assets and their variation points – based on the feature selections you make in the
feature model – to produce all of the assets and products in your product line.

A key capability of the SPL Lifecycle Framework is the integration of SPL concepts
into existing tools, assets and processes across the systems and software development
lifecycle, including many of the industry standards in programming languages and
compilers, integrated development environments, requirements management, change
and configuration management, build systems, quality management, model driven
development, word processors and documentation. SPL concepts and constructs in
the framework expand your collection of tools and processes – making them product
line aware – in three dimensions of distinct and synchronous SPL concerns.

• Multi-product. The feature-based variation management and automated production
line necessary to engineer and deliver the multiple products in a product line.

• Multi-phase. The tools and traceability necessary to support the multiple phases of
a product line engineering lifecycle – from business case, to requirements, design,
implementation, testing, delivery, maintenance and evolution.

• Multi-baseline. Change management and configuration management for a product
line are done on multiple evolving baselines of the SPL assets, analogous to the
supply chains for automotive manufacturing.

The final piece of the solution is a 3-tiered SPL Methodology. The methodology is a
pragmatic new-generation SPL methodology with a practical tiered approach that
allows you to make a non-disruptive transition and successfully operate your
production line. Each tier builds upon and is enabled by the previous tier:

• Base tier: Implement variation management and an automated production line by

leveraging existing tools and legacy assets.
• Middle tier: Organize teams for horizontal SPL asset focused development rather

than vertical product-centric development.
• Top tier: Transition business from product-centric to feature-based portfolio

management, where the portfolio evolves by adding or modifying common and
varying features supported by a production line.

We will describe observations and firsthand experiences on how the SPL Lifecycle
Framework has enabled mainstream organizations, with some of the largest, most
sophisticated and complex, safety-critical systems ever built, to transition legacy and
new systems and software assets to the SPL approach.

J. Bosch and J. Lee (Eds.): SPLC 2010, LNCS 6287, pp. 513–514, 2010.
© Springer-Verlag Berlin Heidelberg 2010

Managing Requirements in Product Lines

Danilo Beuche1 and Isabel John2

1 Pure-systems GmbH
danilo.beuche@pure-systems.com

2 Fraunhofer Institute for Experimental Software Engineering (IESE)
Isabel.John@iese.fraunhofer.de

Abstract. Any organizations develop software or software –intensive products,
which are can be seen as variants or members of a product line. Often the market
demands variability and the software organization expects productivity benefits
from reuse. In any case, complexity of the software development increases.
Requirements management plays a central role in this, when it comes to
mastering the complexity. In this tutorial we will give an overview on how to
analyze, build and manage common and variable requirements for a product line.

1 Topic

The tutorial aims at providing the essential knowledge for successfully running
requirements management for product lines and variant rich development scenarios.
Besides explaining methods also information about implementing the methods with
standard tools is given.

Special consideration is given to linking the presented methods into the practice
using examples and case studies (e.g. [1][2]). Interaction with the participants is
integral part of this tutorial.

In this tutorial we cover product line requirements management. Therefore this
tutorial covers the following topics:

• The importance of product line requirements management, difference to
traditional reuse strategies.

• Methods for managing requirements in a product line including discussion of
requirements reuse granularity.

• An approach for extraction of commonality and variability from existing
requirements documents (CAVE)[3].

• Embedding the requirements management activities into the overall
organization in a product line development.

With these topics we cover technological, organizational and business aspects of
requirements management for product line, enabling practitioners to start with
requirements management for product lines on a solid basis. The intended audience is
practitioners that want to learn how to carry out requirements management for
product line successfully, as well as researchers that want to learn about state of the
practice of product line requirements management.

514 D. Beuche and I. John

2 Plan

The tutorial consists of three parts:
1. Introduction

a. Product Line Basics
b. Development Scenarios

2. Methods and Tools

a. Variability Concepts for RE
b. Feature Modelling
c. Mapping to tools
d. Requirements Variation Point Extraction

3. Process and Organization

a. PL and PL RE Lifecycle
b. Roles and Boards in PL
c. Common Pitfalls

Both presenters have a year long experience in working with requirements
engineering and management in real projects. The tutorial is based on their experience
with product line engineering in many industrial projects and combines their
viewpoints to a holistic view on the topic.

Acknowledgements

The work of Isabel John was partially supported by the Fraunhofer Innovation Cluster
for Digital Commercial Vehicle Technology (DNT/CVT Cluster).

References

[1] Beuche, D., Birk, A., Dreier, H., Fleischmann, A., Galle, H., Heller, G., Janzen, D., John,
I., Kolagari, R.T., von der Maßen, T., Wolfram, A.: Using Requirements Management
Tools in Software Product Line Engineering: The State of the Practice. In: Proceedings of
SPLC 2007, pp. 84–96 (2007)

[2] Birk, A., Heller, G., John, I., Schmid, K., von der Maßen, T., Müller, K.: Product Line
Engineering: The State of the Practice. IEEE Software 20(6), 52–60 (2003)

[3] John, I.: Using Documentation for Product Line Scoping. IEEE Software 27(3), 42–47
(2010)

J. Bosch and J. Lee (Eds.): SPLC 2010, LNCS 6287, pp. 515–516, 2010.
© Springer-Verlag Berlin Heidelberg 2010

Evolutionary Product Line Scoping

Isabel John and Karina Villela

Fraunhofer Institute for Experimental Software Engineering (IESE),
Fraunhofer Platz 1, 67663 Kaiserslautern, Germany

{Isabel.John,karina.villela}@iese.fraunhofer.de

Abstract. Product Line Engineering has a widespread use in industry now.
Therefore there is a high need for customizable, adaptable, and also for mature
methods. Scoping is an integral part of Product Line Engineering. In this phase
we determine where to reuse and what to reuse, establishing the basis for all
technical, managerial, and investment decisions in the product line to come. In
this tutorial we will give an introduction on how to analyze an environment
with the purpose of planning a product line and its future evolution.

1 Introduction

This tutorial aims at giving an understanding of how to identify and analyze common
and variable capabilities of systems, and describing how to integrate scoping and
evolution planning in an architecture centric Product Line Engineering approach.
Systematic identification and description of commonalities, variabilities, and
volatilities are key steps in order to achieve successful reuse in the development of a
product line. The adequate selection of the rights products can be regarded as a key
factor of success for introducing the product line approach in a company. In this
tutorial, we show how to identify and analyze emergent features in the future, and
distinguish unstable from stable features. The aim is to prepare the product line for
likely future adaptation needs by planning for changes beforehand.

This tutorial covers product line scoping and product line evolution planning, by
discussing the following topics:

• The importance of product line scoping, analysis, and modeling as a key
factor for successful product line engineering.

• Key principles of scoping (e.g. common and variable features, domains, and
products).

• The PuLSE-Eco approach [1][2] and an overview of the approaches
mentioned in [3].

• Key concepts for predicting future adaptation needs, and consequent likely
changes in product lines.

• The PLEvo-Scoping approach for integrated and early evolution planning in
product line engineering [4].

These topics address technological, organizational, and business aspects of the
introduction of a product line, giving practitioners a solid basis to start with. The intended

516 I. John and K. Villela

audience is practitioners that want to learn how to scope product lines and manage their
evolution successfully, as well as researchers that want to know about an integrated
approach for product line scoping and planning for future evolution.

2 Plan

The tutorial consists of three parts:

1. Introduction
Overview of product line scoping, analysis, and modeling in an architecture
centric product line approach. Importance of a thoroughly planned product
line as a key factor for successful product line engineering and evolution.
Key principles of product line requirements engineering.

2. Scoping
Overview of existing scoping approaches, based on [3]. Introduction to the
PuLSE-Eco approach for scoping, which includes explanation about the
activities and key principles of scoping. Explanation on how to build up key
artifacts (e.g. a product–feature matrix).

3. Product Line Evolution
Overview of a model of software evolution, which defines key concepts for
systematic reasoning on product line requirements volatility. Introduction to
PLEvo-Scoping, a method based on such concepts, encompassing its
activities and a complete example of its usage. Integration with existing
scoping approaches.

The tutorial is based on our experience with product line engineering in many
industrial projects. It crystallizes the essence of the experience gained in those
industrial projects, and combines it with our latest research in the area of evolution in
product line engineering.

Acknowledgements

This work was partially supported by the Fraunhofer Innovation Cluster for Digital
Commercial Vehicle Technology (DNT/CVT Cluster).

References

[1] John, I., Knodel, J., Lehner, T., et al.: A Practical Guide to Product Line Scoping. In: Proc.
SPLC 2006, Baltimore, pp. 3–12 (2006)

[2] Schmid, K.: Planning Software Reuse – A Disciplined Scoping Approach for Software
Product Lines. Fraunhofer IRB Verlag, Stuttgart (2003)

[3] John, I., Eisenbarth, I.M.: A Decade of Scoping- a Survey. In: Proceedings of SPLC 2009,
pp. 31–40 (2009)

[4] Villela, K., John, I., Dörr, J.: Evaluation of a Method for Proactively Managing the
Evolving Scope of a Software Product Line. In: Wieringa, R., Persson, A. (eds.) REFSQ
2010. LNCS, vol. 6182, pp. 113–127. Springer, Heidelberg (2010)

[5] Bayer, J., Flege, O., Knauber, P., et al.: PuLSE: A Methodology to Develop Software
Product Lines. In: Proc. SSR 1999, Los Angeles, pp. 122–131 (1999)

J. Bosch and J. Lee (Eds.): SPLC 2010, LNCS 6287, pp. 517–518, 2010.
© Springer-Verlag Berlin Heidelberg 2010

Leveraging Model Driven Engineering in Software
Product Line Architectures

Bruce Trask and Angel Roman

MDE Systems Inc.

Abstract. Model Driven Engineering (MDE) is a promising recent innovation
in the software industry that has proven to work synergistically with Software
Product Line Architectures (SPLAs). It can provide the tools necessary to fully
harness the power of Software Product Lines. The major players in the software
industry including commercial companies such as IBM, Microsoft, standards
bodies including the Object Management Group and leading Universities such
as the ISIS group at Vanderbilt University are embracing this MDE/PLA
combination fully. IBM is spearheading the Eclipse Foundation including its
MDE tools like EMF, GEF and GMF. Microsoft has launched there Software
Factories foray into the MDE space. Top software groups such as the ISIS
group at Vanderbilt are using these MDE techniques in combination with
Software Produce Line Architectures for very complex systems. The Object
Management Group is working on standardizing the various facets of MDE. All
of these groups are capitalizing on the perfect storm of critical innovations
today that allow such an approach to finally be viable. To further emphasize the
timeliness of this technology is the complexity ceiling the software industry
find itself facing wherein the platform technologies have increased far in
advance of the language tools necessary to deal with them.

As more and more software products are or are evolving into families of systems, it is
vital to formally capture the commonalities and variabilities, the abstractions and the
refinements, the frameworks and the framework extension points and completion
code associated with a particular family. Model Driven Engineering has shown to be
a very promising approach to capturing these aspects of software systems and families
of systems which thereafter can be integrated systematically into Software Product
Lines and Product Line Architectures..

The process of Developing Software Product Line Architectures can be a complex
task. However, the use of Model Driven Engineering (MDE) techniques can facilitate
the development of SPLAs by introducing Domain Specific Languages, Graphical
Editors, and Generators. Together these are considered the sacred triad of MDE. Key
to understanding MDE and how it fits into SPLAs is to know exactly what each part
of the trinity means, how it relates to the other parts, and what the various
implementations are for each. This tutorial will demonstrate the use of the Eclipse
Modeling Framework (EMF) and Eclipse's Graphical Editor Framework (GEF) to
create an actual MDE solution as applied to a sample SPLA. When building
Graphical Modeling Languages using GEF and EMF one may find themselves
worrying about specific implementation details related to EMF or GEF. To address

518 B. Trask and A. Roman

this issue, the Eclipse community has created a generative bridge between EMF and
GEF called The Graphical Modeling Framework (GMF). During this tutorial we will
also illustrate how to model the visual artifacts of our Domain Model and generate a
Domain Specific Graphical Editor using GMF.

This tutorial continues to be updated each year to include recent and critical
innovations in MDE and SPL. This year will include information on key Model
Transformation and Software Product Line migration technologies as well as various
Model Constraint technologies.

The goal of this tutorial is to educate attendees on what MDE technologies are,
how exactly they relate synergistically to Product Line Architectures, and how to
actually apply them using an existing Eclipse implementation. The benefits of the
technology are so far reaching that we feel the intended audience spans technical
managers, developers and CTOs. In general the target audience includes researchers
and practitioners who are working on problems related to the design and
implementation of SPLAs and would like to understand the benefits of applying MDE
techniques towards SPLAs and leverage Eclipse as a framework to develop MDE
solutions. The first half will be less technical than the second half where we cover the
details of PLA and MDE in action in complete detail showing patterns and code.

J. Bosch and J. Lee (Eds.): SPLC 2010, LNCS 6287, pp. 519–520, 2010.
© Springer-Verlag Berlin Heidelberg 2010

Introduction to Software Product Lines Adoption

Linda M. Northrop and Lawrence G. Jones

Software Engineering Institute,
Carnegie Mellon University,

Pittsburgh, PA 15213
{lmn,lgj}@sei.cmu.edu

Abstract. This tutorial describes a phased, pattern-based approach to software
product line adoption. It reviews the challenges of product line adoption;
introduces a roadmap for phased, product line adoption; describes adoption
planning artifacts; and establishes linkages with other improvement efforts.

1 Introduction

The tremendous benefits of taking a software product line approach are well
documented. Organizations have achieved significant reductions in cost and time to
market and, at the same time, increased the quality of families of their software
systems. However, to date, there are considerable barriers to organizational adoption
of product line practices. Phased adoption is attractive as a risk reduction and fiscally
viable proposition.

2 Overview

This tutorial describes a phased, pattern-based approach to software product line
adoption. This tutorial will acquaint participants with product line adoption barriers
and two ways to overcome them:

1. a phased, pattern-based adoption approach

2. explicit linkage with other improvement efforts

The objectives of the tutorial are to acquaint participants with

• issues surrounding software product line adoption

• a phased, pattern-based adoption approach

• adoption planning artifacts

• explicit linkage of software product line adoption with other improvement efforts

The tutorial begins with a discussion of software product line adoption issues,
including benefits, barriers, risks and the technical and organizational factors that
influence adoption. We then present the Adoption Factory pattern [1]. The Adoption

520 L.M. Northrop and L.G. Jones

Factory pattern provides a roadmap for phased, product line adoption. The tutorial
covers the Adoption Factory in detail, including focus areas, phases, subpatterns,
related practice areas, outputs, and roles. Examples of product line adoption plans
following the pattern are used to illustrate its utility [2]. The tutorial also describes
strategies for creating synergy within an organization between product line adoption
and ongoing CMMI or other improvement initiatives [3,4,5].

Participants should have experience in designing and developing software-
intensive systems, some familiarity with modern software engineering concepts and
management practices, and be familiar with product line concepts. The tutorial is
aimed at those in an organization who are in a position to influence the decision to
adopt a product line approach, and those in a position to carry out that decision. This
includes technical managers at all levels, as well as those on the software
development staff. Anyone who can act as a technology change agent will benefit
from this tutorial.

References

1. Northrop, L.: Software Product Line Adoption Roadmap (CMU/SEI-2004-TR-022),
Software Engineering Institute, Carnegie Mellon University (2004),

 http://www.sei.cmu.edu/publications/documents/04.reports/
 04tr022.html

2. Clements, P., Jones, L., McGregor, J., Northrop, L.: Getting From There to Here: A
Roadmap for Software Product Line Adoption. Communications of the ACM (49, 12)
(December 2006)

3. Jones, L., Northrop, L.: Product Line Adoption in a CMMI Environment (CMU/SEI-2005-
TN-028), Software Engineering Institute, Carnegie Mellon University (2005),
http://www.sei.cmu.edu/publications/documents/05.reports/05tn
028.html

4. Jones, L.: Software Process Improvement and Product Line Practice : Building on Your
Process Improvement Infrastructure (CMU/SEU-2004-TN-044), Software Engineering
Institute, Carnegie Mellon University (2004),

 http://www.sei.cmu.edu/publications/documents/04.reports/
 04tn044.html

5. Jones, L., Soule, A.: Software Process Improvement and Product Line Practice: CMMI and
the Framework for Software Product Line Practice (CMU/SEI-2002-TN-012), Software
Engineering Institute, Carnegie Mellon University (2002),

 http://www.sei.cmu.edu/publications/documents/02.reports/
 02tn012.html

J. Bosch and J. Lee (Eds.): SPLC 2010, LNCS 6287, pp. 521–522, 2010.
© Springer-Verlag Berlin Heidelberg 2010

Introduction to Software Product Lines

Linda M. Northrop

Software Engineering Institute,
Carnegie Mellon University,

Pittsburgh, PA 15213
lmn@sei.cmu.edu

1 Introduction

Software product lines have emerged as a new software development paradigm of
great importance. A software product line is a set of software intensive systems
sharing a common, managed set of features, that satisfy the specific needs of a
particular market segment or mission and that are developed from a common set of
core assets in a prescribed way. Organizations developing a portfolio of products as a
software product line are experiencing order-of-magnitude improvements in cost,
time to market, staff productivity, and quality of the deployed products.

2 Overview

This tutorial introduces the essential activities and underlying practice areas of
software product line development. It is aimed at those in an organization who are in
a position to influence the decision to adopt a product line approach, and those in a
position to carry out that decision. Anyone who can act as a technology change agent
will benefit from this tutorial.

The tutorial reviews the basic concepts of software product lines, discusses the
costs and benefits of product line adoption, introduces the SEI’s Framework for
Software Product Line Practice1 [1], and describes approaches to applying the
practices of the framework.

This is a half-day introduction to software product lines. It provides a quick
overview rather than a detailed exposition. The tutorial is based on the book Software
Product Lines: Practices and Patterns [2] and includes material on the following
topics.

Software product line concepts

What software product lines are and aren’t; basic terminology; strategic reuse;
success stories

Costs and benefits
Economics of software product lines; individual and organizational benefits

1 SEI Framework for Software Product Line Practice is a service mark of Carnegie Mellon

University.

522 L.M. Northrop

The three essential activities
Core asset development; product development; organizational and technical
management

Product line practice areas
Practice area categories; the SEI’s Framework for Software Product Line Practice [1]

Making it happen
Applying the practice areas; gauging an organization’s ability to succeed with
software product lines

Wrap-up
Current research and remaining challenges

References

1. Northrop, L., Clements, P.: A Framework for Software Product Line Practice (2010),
http://www.sei.cmu.edu/productlines/framework.html

2. Clements, P., Northrop, L.: Software Product Lines: Practices and Patterns. Addison-
Wesley, Boston (2002)

4th International Workshop on Dynamic
Software Product Lines (DSPL 2010)

Svein Hallsteinsen1, Mike Hinchey2, Sooyong Park3, and Klaus Schmid4

1 SINTEF ICT, Norway
2 Lero – The Irish Software Engineering Research Centre, Limerick, Ireland

3 University of Sogang, South Korea
4 University of Hildesheim, Germany

As software systems increase in complexity and size their capabilities in adapt-
ing to a wide range of situations becomes increasingly important. Product line
techniques can be used to successfully such flexibility even at after development
time, like at initialization or even runtime. Over the last few years, this branch of
software systems has established itself successfully as dynamic software product
lines (DSPL).

In a DSPL various software variants are managed, variation points are bound
flexibly, but all this is done at runtime, in the most extreme cases this can mean
that the whole product derivation is fully automatic and that reconfiguration
can happen repeatedly at runtime. DSPL is strongly related to current research
topics like self-managing systems, autonomous, ubiquitous systems, etc. How-
ever, it adds product line engineering techniques, methods and processes to the
mix as a conceptual basis.

The objective of this workshop is to provide a forum for the exchange of ideas,
to establish cooperations, and to bring industry and research together.

J. Bosch and J. Lee (Eds.): SPLC 2010, LNCS 6287, p. 523, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

1st International Workshop on Product-Line
Engineering for Enterprise Resource Planning

(ERP) Systems (PLEERPS 2010)

Haitham S. Hamza1 and Jabier Martinez2

1 Cairo University and Software Engineering Competence Center (SECC), Egypt
2 European Software Institute (ESI-Tecnalia), Spain

Enterprise resource planning (ERP) is an industry term commonly used to de-
scribe a business management system that integrates activities across functional
departments including planning, manufacturing, purchasing of parts, controlling
and maintaining inventory, tracking orders, etc. Return on Investment (ROI)
and Return on Values (ROV) for developing ERP systems largely depend on the
capability of evolving, maintaining, and customizing/configuring ERP systems
to respond to new business needs and emerging market segments.

Software Product Line (SPL) fits naturally into the ERP business. ERP sys-
tems can benefit greatly from the concepts of commonalities and variabilities to
enhance evolutionability and maintainability. Moreover, product-line concepts
can substantially reduce current tedious configuration procedures that are not
only resource-intensive, but also error-prone.

The central theme of this workshop is to bring together researchers and prac-
titioners in SPL and ERP industry to report on their experience and investigate
current and future practical challenges in order to adopt product line architec-
tures (PLAs) for developing ERP systems. A broader objective of this workshop
is to investigate and to document practical experiences in adopting PLAs in
different domains. We believe that, sharing the challenges and barriers in intro-
ducing PLAs to a concrete domain can be useful for practitioners across various
domains.

J. Bosch and J. Lee (Eds.): SPLC 2010, LNCS 6287, p. 524, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

2nd International Workshop on Model-Driven
Approaches in Software Product Line

Engineering (MAPLE 2010)

Deepak Dhungana1, Iris Groher2, Rick Rabiser2, and Steffen Thiel3

1 Lero, University of Limerick, Limerick, Ireland
2 Johannes Kepler University, Linz, Austria

3 Furtwangen University of Applied Sciences, Furtwangen, Germany

Software product line engineering (SPLE) promises order-of-magnitude improve-
ments in time-to-market, cost, productivity, quality, and other business drivers.
Many of these expected benefits are based on the assumption that the additional
investment for setting up a software product line pays off during application
engineering. However, to fully exploit this we need to optimize application en-
gineering processes and systematically and efficiently handle reusable artefacts.
The goal of this workshop is to explore and explicate the current status within
the field of model-driven approaches in SPLE. The workshop has the following
aims: (i) Demonstrate how model-driven concepts and techniques can be applied
in SPLE; (ii) Show how model-driven approaches have already successfully been
applied; (iii) Explore how models with a sound semantic foundation can facilitate
automated and interactive SPLE.

Workshop topics include but are not limited to: modelling of software product
lines; product derivation and configuration; aspect-oriented approaches;
evolution and change; validation and verification of models; scalability of mod-
elling approaches; modelling in the context of software ecosystems; integrating
modelling approaches; industrial experiences; applied formal methods for mod-
els; dynamic architectures and variability; software and service configuration
approaches.

J. Bosch and J. Lee (Eds.): SPLC 2010, LNCS 6287, p. 525, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

1st International Workshop on Formal Methods
in Software Product Line Engineering

(FMSPLE 2010)

Ina Schaefer1, Martin Becker2, Ralf Carbon2, and Sven Apel3

1 Chalmers University of Technology, Gothenburg, Sweden
2 Fraunhofer IESE, Kaiserslautern, Germany

3 University of Passau, Germany

Software product line engineering (SPLE) aims at developing a family of systems
by reuse in order to reduce time to market and to increase product quality. The
correctness of the reusable development artifacts as well as the correctness of
the developed products is of crucial interest for many safety-critical or business-
critical applications. Formal methods have been successfully applied in single
system engineering over the last years in order to rigorously establish critical
system requirements. However, in SPLE, formal methods are not broadly applied
yet, despite their potential to improve product quality. One of the reasons is
that existing formal approaches from single system engineering do not consider
variability, an essential aspect of product lines.

The goal of the workshop “Formal Methods in Software Product Line En-
gineering (FMSPLE)” is to bring together researchers and practitioners from
the SPLE community with researchers and practitioners working in the area of
formal methods. The workshop aims at reviewing the state of the art in which
formal methods are currently applied in SPLE in order to initiate discussions
about a research agenda for the extension of existing formal approaches and
the development of new formal techniques dealing with the particular needs of
SPLE.

J. Bosch and J. Lee (Eds.): SPLC 2010, LNCS 6287, p. 526, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

3rd International Workshop on Visualisation in
Software Product Line Engineering

(VISPLE 2010)

Steffen Thiel1, Rick Rabiser2, Deepak Dhungana3, and Ciaran Cawley3

1 Furtwangen University of Applied Sciences, Furtwangen, Germany
2 Johannes Kepler University, Linz, Austria

3 Lero, University of Limerick, Limerick, Ireland

To leverage the explicit and extensive reuse of shared software artefacts, many
companies use a product line approach to build different variants of their prod-
ucts for use within a variety of systems. Product lines can be large and could eas-
ily incorporate thousands of elements together with diverse relationships among
them. This makes product line management and systematic product derivation
extremely difficult.

This workshop aims at elaborating on the idea of using information and soft-
ware visualisation techniques to achieve the economies of scale required to sup-
port variability management and product derivation in industrial product lines.
Visualisation techniques have been proven to support improvement in both the
human understanding and effective use of computer software. The workshop
aims to explore the potential of visual representations combined with the use of
human interaction techniques when applied in a software product line context.

Topics of interest focus on visualisation and interaction techniques and tools
for managing large and complex software product lines as well as related indus-
trial experience; variability representation, i.e., techniques and tools for coping
with large numbers of variation points; visualisation of large data sets, i.e., gen-
eral software visualisation techniques and tools for managing large data sets and
their applicability in a software product line context; representation of features
and software architecture; traceability visualisation, i.e., techniques and tools to
represent trace links in and among problem and solution space; visualisation and
interaction techniques and tools to support product derivation and product line
maintenance and evolution.

J. Bosch and J. Lee (Eds.): SPLC 2010, LNCS 6287, p. 527, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

4th Workshop on Assessment of Contemporary
Modularization Techniques (ACOM 2010)

Alessandro Garcia1, Phil Greenwood2, Yuanfang Cai3,
Jeff Gray4, and Francisco Dantas1

1 PUC-Rio, Brazil
2 Lancaster University, UK
3 Drexel University, USA

4 University of Alabama, USA

Various modularization techniques are prominent candidates for taming the
complexity of software product lines (SPLs), such as aspect-oriented software
development (AOSD) and feature-oriented software development (FOSD). The
ACoM workshop aims to bring together researchers and industrial practitioners
with different backgrounds to: (a) understand the role and impact of contempo-
rary modularization techniques on the design and implementation of SPLs; (b)
explore new, and potentially more effective, assessment methods to guide the
application of modularization techniques in SPL development, and (c) discuss
the potential of using modularity assessment results to improve SPL develop-
ment outcomes, to modularization techniques, and to foster the development of
new techniques. This is the fourth edition of the ACoM workshop, an itinerant
event previously held at ICSE and OOPSLA.

J. Bosch and J. Lee (Eds.): SPLC 2010, LNCS 6287, p. 528, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

2nd Workshop on Scalable Modeling Techniques
for Software Product Lines (SCALE 2010)

M. Ali Baba1, Sholom Cohen2, Kyo C. Kang3, Tomoji Kishi4,
Frank van der Linden5, Natsuko Noda6, and Klaus Pohl7

1 IT University of Copenhagen, Denmark
2 SEI, USA

3 POSTEC, Korea
4 Waseda University, Japan
5 Philips, The Netherlands
6 NEC Corporation, Japan

7 University of Duisburg-Essen, Germany

Modeling techniques play essential roles in software product line development
(PLD), and various modeling techniques have been proposed so far. However,
some of these techniques are not actually usable in the industries, due to the lack
of scalability. Although modeling techniques are essentially for reducing scale and
complexity, further development of techniques are indispensable to manage the
scale and complexity we are confronting today. Especially, in PLD, the problem
becomes more serious, because we have to model target domains, requirements,
architectures, designs along with complicated variabilities and configurations.

The objective of this workshop is to bring together both researchers and
practitioners to discuss the strengths and limitations of the current modeling
techniques for supporting large-scale PLD. At the last SCALE workshop, partic-
ipants brought various scalability problems and we categorized important issues
in this field. These are the basis of our next discussion. We also have to con-
sider the recent business and technical situations that demand scalable modeling
such as distributed development, offshore development, core asset evolution and
cloud computing. Based on above, we plan to make further analysis of scalability
problems and examine modeling techniques for each scalability issue.

J. Bosch and J. Lee (Eds.): SPLC 2010, LNCS 6287, p. 529, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Author Index

Abrahão, Silvia 121

Aguiar, Saulo B. de 346

Almeida, Eduardo 500

Almeida, Eduardo S. de 456

Andrade, Rossana M.C. 346

Apel, Sven 526

Asadi, Mohsen 300

Atarashi, Yoshitaka 425

Azevedo, Sofia 471

Babar, Muhammad Ali 166, 529

Bagheri, Ebrahim 16, 300

Bartholomew, Maureen 256

Bass, Len 393

Becker, Martin 526

Belategi, Lorea 466

Berger, Thorsten 136, 498

Bettini, Lorenzo 77

Beuche, Danilo 509, 513

Blendinger, Frank 491

Bono, Viviana 77

Bragança, Alexandre 471

Budnik, Christof J. 62

Cabral, Isis 241

Cai, Yuanfang 528

Carbon, Ralf 492, 526

Castro Jr., Alberto 446

Cawley, Ciaran 527

Cetina, Carlos 331

Chen, Lianping 166

Cirilo, Elder 446

Clements, Paul 393

Cohen, Myra B. 241

Cohen, Sholom 529

Czarnecki, Krzysztof 136, 498

Damiani, Ferruccio 77

Dantas, Francisco 528

Dantas, Valéria L.L. 346

Dao, Tung M. 377

Dhungana, Deepak 525, 527

Di Cosmo, Roberto 476

Di Noia, Tommaso 16

Doğru, Ali 286

Duszynski, Slawomir 481

Eklund, Ulrik 92

Elsner, Christoph 47, 181, 491

Etxeberria, Leire 466

Ferreira Filho, João B. 346

Fleurey, Franck 106

Fons, Joan 331

Fuks, Hugo 446

Fukuda, Takeshi 425

Furtado, Andre W.B. 316

Gadelha, Bruno 446

Ganesan, Dharmalingam 256

Garcia, Alessandro 528

Gasevic, Dragan 16, 300

Gerosa, Marco Aurélio 446

Ghanam, Yaser 211

Gil, Yossi 271

Giner, Pau 331

Gray, Jeff 528

Greenwood, Phil 528

Groher, Iris 525

Grünbacher, Paul 47

Guo, Jianmei 451

Gustavsson, H̊akan 92

Hallsteinsen, Svein 523

Hamza, Haitham S. 524

Hartmann, Herman 361

Haugen, Øystein 106

Heider, Wolfgang 47

Heuer, André 62

Hinchey, Mike 523

Hirayama, Masayuki 1

Hofer, Wanja 491

Jarzabek, Stan 440, 503

Ji, Yong 494

John, Isabel 500, 513, 515

Jones, Lawrence G. 486, 519

Kang, Kyo C. 32, 377, 529

Karataş, Ahmet Serkan 286

Keren, Mila 361

Kim, Jeong Ah 495

532 Author Index

Kishi, Tomoji 529

Konrad, Sascha 62

Kremer-Davidson, Shiri 271

Krishnan, Sandeep 430

Krueger, Charles W. 511

Lauenroth, Kim 62

Lee, Kwanwoo 32

Lehofer, Martin 47

Lima, Fabŕıcio 346

Linden, Frank van der 529

Lind-Tviberg, Roy 106

Lindvall, Mikael 256

Lin, Yuqing 435

Lohmann, Daniel 181, 491

Lotufo, Rafael 136, 498

Lucena, Carlos J.P. 446

Lutz, Robyn 430

Machado, Ricardo J. 471

Maia, Marcio E.F. 346

Maman, Itay 271

Mannion, Mike 406

Marinho, Fabiana G. 346

Markert, Florian 196

Martinez, Jabier 524

Matsinger, Aart 361

Maurer, Frank 211

McComas, David 256

McGregor, John D. 393, 502, 505, 507

Medeiros, Flávio M. 456

Medina, Barbara 256

Meira, Silvio R.L. 456

Metzger, Andreas 226

Møller-Pedersen, Birger 106

Muthig, Dirk 492

Nakajima, Shin 1, 420

Noda, Natsuko 529

Nolan, Andy J. 121

Northrop, Linda M. 486, 519, 521

Olsen, Gøran K. 106

Oster, Sebastian 196

Oğuztüzün, Halit 286

Park, Sooyong 523

Pelechano, Vicente 331

Pohl, Klaus 62, 226, 529

Rabiser, Rick 47, 525, 527

Ragone, Azzurra 16

Ramalho, Geber L. 316

Ribeiro, Hugo 471

Ritter, Philipp 196

Rocha, Lincoln 346

Roman, Angel 517

Rothermel, Gregg 241

Rubin, Julia 361

Sagardui, Goiuria 466

Santos, Andre L.M. 316

Savolainen, Juha 406

Şaykol, Ediz 461

Schaefer, Ina 77, 526

Schmid, Klaus 151, 523

Schröder-Preikschat, Wolfgang 181, 491

Schwanninger, Christa 47, 500

She, Steven 136, 498

Slegel, Steve 256

Soltani, Samaneh 300

Stricker, Vanessa 226

Svendsen, Andreas 106

Tang, Jianmin 435

Tanzarella, Nico 77

Teixeira, Eldânae 346

Tekinerdogan, Bedir 461

Thiel, Steffen 525, 527

Trask, Bruce 517

Trew, Tim 361

Tüzün, Eray 461

Ubayashi, Naoyasu 1

Ulbrich, Peter 181

Velasco Elizondo, Perla 496

Viana, Windson 346

Villela, Karina 515

Wang, Yinglin 451

W ↪asowski, Andrzej 136, 498

Weiss, David 430

Werner, Cláudia 346

Yang, Jingwei 430

Yatzkar-Haham, Tali 361

Ye, Huilin 435

Yoshimura, Kentaro 425

Zacchiroli, Stefano 476

Zhang, Hongyu 440

Zhang, Xia 494

Zhang, Xiaorui 106

Zhao, Dazhe 494

Zhou, Jingang 494

	Title Page
	Preface
	Organization
	Table of Contents
	Product Line Context
	Context-Dependent Product Line Practice for Constructing Reliable Embedded Systems
	Introduction
	Motivation
	Example — An Electric Pot
	Requirement Specification Process in PLE
	Problems in Traditional Approach
	Our Approach

	Context-Dependent PLE
	System Line and Context Line
	Activities in Context-Dependent PLE
	Context Analysis Method

	Modeling and Validation Using VDM++
	Core Asset Development Using VDM++
	Product Development Using VDMTools

	Related Work
	Conclusions
	References

	Configuring Software Product Line Feature Models Based on Stakeholders’ Soft and Hard Requirements
	Introduction
	Feature Modeling
	Formalism for Feature Modeling
	Conceptual Modeling
	Interactive Feature Model Configuration
	An Illustrative Example

	Related Work
	Concluding Remarks
	References

	Usage Context as Key Driver for Feature Selection
	Introduction
	Usage Context Driven Domain Knowledge Modeling
	Factors Affecting Feature Selection
	Usage Context
	Domain Knowledge Model

	Method Activities
	Running Example
	Product Feature Analysis
	Usage Context Analysis
	Quality Attribute Analysis
	Derivation of Product Feature Configuration

	Related Work
	Conclusion
	References

	Formal Approaches
	A Flexible Approach for Generating Product-Specific Documents in Product Lines
	Introduction and Motivation
	Approach
	Tool Architecture and Realization
	The DOPLER Approach and Tooling
	Modeling Documents and Their Variability with DOPLER
	A Variability Extension for DocBook
	Generating Documents Using DocBook

	Industrial Application Examples
	Industrial Application Example I: Generating Technical User Documentation for a Continuous Casting Automation Software Product Line
	Industrial Application Example II: Generating Sales Documents for an Electrode Control System for Electric Arc Furnaces (EAF)

	Related Work
	Conclusions and Future Work
	References

	Formal Definition of Syntax and Semantics for Documenting Variability in Activity Diagrams
	Introduction
	Related Work
	Formal Syntax and Semantics of Activity Diagrams
	Syntax and Semantics for Modeling Variability in Activity Diagrams
	Conclusion of Related Work

	Foundation: Formal Definition of Activity Diagrams ased on Petri-nets
	Formal Definition of Variability in Activity Diagrams
	Relationship between Variability Model and Activity Diagram
	Semantics of Variability in Activity Diagrams
	Binding Variability in Activity Diagrams

	Preliminary Evaluation
	Validation of Variability in Activity Diagrams
	Identification of Sample Products for Product Line Quality Assurance

	Summary and Outlook
	References

	Delta-Oriented Programming of Software Product Lines
	Introduction
	Delta-Oriented Programming
	Implementing Software Product Lines
	Comparing Delta-Oriented and Feature-Oriented Programming
	Feature-Oriented Programming
	Comparison

	Evaluation
	Related Work
	Conclusion and Future Work
	References

	Experience Papers
	Architecting Automotive Product Lines: Industrial Practice
	Introduction
	Background
	The Systems and Their Architecture
	Related Work

	Methodology
	Analysis Procedure

	The Case Study
	Context
	The Scania Product Line
	The Volvo Cars Product Lines
	Comparison of the Product Lines

	Results
	The Process
	Needs to Change the Architecture
	Architecture Impact Analysis
	Design Alternatives
	Deciding on the Architectures
	Validation
	The Resulting Artefacts from the Architects' Work
	The Timing
	Other Observations

	Discussion
	References

	Developing a Software Product Line for Train Control: A Case Study of CVL
	Introduction
	Background
	The Current Process of Designing Interlocking Source Code
	Train Control Language
	Software Product Lines

	Common Variability Language
	CVL Language
	CVL Tool Support

	Station Product Line
	Preparing the Product Line
	Choosing a Base Model
	CVL Library
	Creating the CVL Model
	Generating Products
	Validation and Verification of the Generated Products
	Summary

	Conclusions and Future Work
	References

	Dealing with Cost Estimation in Software Product Lines: Experiences and Future Directions
	Introduction
	Related Works
	Past Experiences on the Use of a Cost Estimation Tool
	Rolls-Royce Control Systems
	The Adoption of COCOMO II
	What an Estimation Tool Teaches You
	The Business Benefits

	The Estimation Tool for Software Product Lines
	The Software Product Line Initiative
	Need for New Estimation Factors
	How We Use the Estimation Tool
	Lessons Learned

	Future Directions
	The MULTIPLE Project
	Extension Mechanisms for the Rolls-Royce Cost Estimation Tool for SPL

	Closing Remarks
	References

	Variability Management
	Evolution of the Linux Kernel Variability Model
	Introduction
	The Linux Kernel and Its Variability Model
	The Experiment
	Linux Feature Model as a Subject
	Data Acquisition

	Evolution of the Linux Kernel Variability Model
	Evolution of Model Characteristics
	Summary of Model Content Changes

	Threats to Validity
	Related Work
	Conclusion
	References

	Variability Modeling for Distributed Development – A Comparison with Established Practice
	Introduction
	Research Questions
	Related Work

	Analysis of Case Studies
	Debian Linux Package Management
	Eclipse Package Management

	Package Managers as a Form of Variability Management
	Variability Management Concepts
	Analyzing Package Management as Variability Management

	Concepts in Package Management That Support Distribution
	Conclusions
	References

	Variability Management in Software Product Lines: An Investigation of Contemporary Industrial Challenges
	Introduction
	Research Method
	Define the Problem
	Plan Focus Group
	Select Participants
	Conducting the Focus Group Session
	Data Analysis

	Results
	Demographics and Frequency of Participants’ Participation
	Challenges Faced by Practitioners in Variability Management
	Frequency Analysis

	Discussion
	Limitations
	Conclusions and Future Work
	References

	Product Validation 1
	Consistent Product Line Configuration across File Type and Product Line Boundaries
	Introduction and Motivation
	Scenario: Quadrotor Helicopter Product Line
	Product Line Configuration and Modeling
	Modeling Terminology
	Mapping Product Line Configurations to Models

	Product Line Constraint-Checking Framework
	End User View on the PLiC Framework
	Builder
	Converters
	Validators

	Application Scenario: I4Copter
	Results
	Discussion
	Related Work
	Conclusion and Outlook
	References

	Automated Incremental Pairwise Testing of Software Product Lines
	Introduction
	Contribution
	Outline

	Fundamentals
	Software Product Lines and Feature Modeling
	Combinatorial Testing

	Our Approach — MoSo-PoLiTe
	Translation into Constraint Solving Problem
	Flattening
	Subset Extraction

	Testing the Implementation
	Systematic Validation
	Statistics

	Related Work
	SPL-Testing
	Cartesian Flattening

	Conclusion and Future Work
	References

	Linking Feature Models to Code Artifacts Using Executable Acceptance Tests
	Introduction
	Executable Acceptance Tests
	Traceability from EATs to Code Artifacts

	Literature Review
	Using Feature Models with EATs
	Linking Features to EATs

	Implications of Using EATs as Traceability Links
	Consistency between the Feature Model and the Code Artifacts
	Supporting the Evolution of Variability in the Extended Feature Model
	Deriving Products Using the Extended Feature Model
	Tool Support

	Evaluation
	Conclusion and Future Work
	References

	Product Validation 2
	Avoiding Redundant Testing in Application Engineering
	Introduction
	Problem Statement
	Solution Idea and Contribution of the Paper

	Progress from State of the Art
	Fundamentals: Data Flow-Based Testing of Single Systems
	ScenTED-DF: Data Flow-Based Test for Product Lines
	Data Flow-Based Test Model with Variability
	Steps of ScenTED-DF

	Evaluation and Discussion
	Prototypical Implementation
	Example Product Line
	Experimental Evaluation

	Conclusion and Perspectives
	References

	Improving the Testing and Testability of Software Product Lines
	Introduction
	Background and Related Work
	Leveraging Redundancy for Testing via Feature Models
	Feature Inclusion Graph
	Selection Algorithms

	Case Study
	Study Objects
	Test Suites
	Fault Seeding
	Study Conduct

	Results
	Discussion

	Conclusions and Future Work
	References

	Architecture-Based Unit Testing of the Flight Software Product Line
	Introduction
	The CFS Product Line Architecture
	Technical Set-Up and Process for Reviewing Unit Tests
	Unit Testing of Core Modules
	Closing Remarks
	References

	Feature Modeling
	Sans Constraints? Feature Diagrams vs. Feature Models
	Introduction
	Cost and Utility of Constraints
	Feature Diagram Kinds
	SPL Problems
	Representability in Feature Diagrams?

	Definitions
	Feature Diagrams over Basic Features
	Feature Diagrams with Compound Features

	Expressive Power of Feature Diagrams
	Unrestricted Feature Diagrams
	Logical Feature Diagrams
	Monotone Feature Diagrams

	Polynomial Feature Diagrams
	Refactoring
	Mapping Constraints into Polynomial Feature Diagrams
	Equivalence and Inclusion of Polynomial Diagrams

	Related Work and Conclusions
	References

	Mapping Extended Feature Models to Constraint Logic Programming over Finite Domains
	Introduction
	Background and Related Work
	Feature Models
	Automated Reasoning on Feature Models
	Constraint Logic Programming over Finite Domains

	Abstract Syntax
	Mapping
	Mapping Decomposition Relationships

	An Example Mapping
	Discussions and Future Work
	References

	Stratified Analytic Hierarchy Process: Prioritization and Selection of Software Features
	Introduction
	Extending Cardinality- ased Feature Models
	Business Centered Staged Configuration
	Analytic Hierarchy Process
	Formalizing the Configuration Process
	Feature Configuration Stages

	Process Changes in Software Product Line Methodology
	Case Study
	User Evaluation
	Related Works
	Concluding Remarks
	References

	Examples of Product Lines
	Streamlining Domain Analysis for Digital Games Product Lines
	Introduction
	The Peculiarities of Digital Games Development
	Addressing Game Development Peculiarities via Domain Analysis
	Envisioning and Scoping the Game Domain
	Defining and Refining Game Domain Features
	Analyzing Game Samples
	Anticipating Features for a Game Domain

	Case Study: The ArcadEx Game SPL
	Conclusions
	References

	Designing and Prototyping Dynamic Software Product Lines: Techniques and Guidelines
	Introduction
	Case Study: The Smart Hotel DSPL
	The Run-Time Reconfigurations of the Smart Hotel DSPL

	Techniques for DSPL Prototyping
	Enabling Prototype's Users to Trigger Reconfigurations
	Enabling Prototype's Users to Evaluate the Reconfigurations
	Prototype Operation

	Guidelines for DSPL Design
	Introducing User Confirmations to Reconfigurations
	Improving Reconfiguration Feedback
	Introducing Rollback Capabilities to Reconfigurations

	Related Work
	Concluding Remarks
	References

	A Software Product Line for the Mobile and Context-Aware Applications Domain
	Introduction
	Related Work
	Software Product Line Development Process
	Feature Model and Context Feature Model Notation
	SPL Cycle 1: Domain Requirements Engineering of Mobile and Context-Aware Applications
	SPL Cycle 2: Domain Requirements Engineering of Mobile Guide Applications
	SPL Cycle 3: GREat Tour Application Engineering

	Lessons Learned
	Conclusions and Future Work
	References

	MDA and Business Context
	Using MDA for Integration of Heterogeneous Components in Software Supply Chains
	Introduction
	ZigBee Case Study
	MDA for the Integration of Heterogeneous Components
	Creation of a Feature Model and a Reference Architecture
	Configuration for Supplier Selection
	Identification of the Need for Glue
	Configure and Generate Glue Components
	Building the Components and Delivery to the Customer

	Development Roles
	Discussion and Further Research
	Comparison with Related Art
	Conclusions
	References

	Mapping Features to Reusable Components: A Problem Frames-Based Approach
	Introduction
	Concepts of Problem Frames
	Outline of the Method
	Mapping between Feature Models and Problem Frames
	Mapping Heuristics
	Feature Mapping Units

	Solution Modeling
	Problem Analysis
	Component Modeling

	Example: Home Integration System (HIS)
	Introduction to HIS
	From Feature Models to Problem Frame Models
	From Problem Frames to Reusable Components

	Related Works
	Conclusion
	References

	Eliciting and Capturing Business Goals to Inform a Product Line’s Business Case and Architecture
	Introduction
	Business Goals and the Product Line Business Case
	Business Goals and the Product Line Architecture
	A Canonical Set of Business Goals
	Expressing Business Goals
	A Method for Eliciting Business Goals
	Experience with PALM
	Related work
	Conclusions
	References

	Aligning Business and Technical Strategies for Software Product Lines
	Introduction
	Software Product Line and Technical Strategies
	Techniques for Managing Commonality and Variability
	Management of Commonality
	Feature modeling
	Feature Dependency Management and the Software Architecture

	Related Work
	Conclusion
	References

	Short Papers
	Non-clausal Encoding of Feature Diagram for Automated Diagnosis
	Introduction
	Propositional Logic-Based Analysis
	Proposed Approach
	Analysis Problem
	Constraint Propagation Algorithm
	Heuristics for Start Variable Selection

	Conclusions
	References

	A Method to Identify Feature Constraints Based on Feature Selections Mining
	Introduction
	Our Method
	Overview
	Association Rule Learning
	Mining Feature Selections

	Case Study
	Case Study Setting
	Evaluation

	Related Work
	Conclusion
	References

	Software Product Line Engineering for Long-Lived, Sustainable Systems
	Introduction
	LSS Example: The Voyager Spacecraft
	SPLE for LSS Change Management
	Anticipated Changes
	Unanticipated Changes

	Conclusion
	References

	An Approach to Efficient Product Configuration in Software Product Lines
	Introduction
	Configuration Coverage
	The Proposed Approach and Case Study
	Conclusions and Future Works
	References

	A Hybrid Approach to Feature-Oriented Programming in XVCL
	Introduction
	A Hybrid Approach to FOP
	A Realization of the Hybrid FOP in XVCL
	An Overview of XVCL
	Implementing FOP Using XVCL
	Experiments
	Tool Support

	Conclusions
	References

	An Approach for Developing Component-Based Groupware Product Lines Using the Groupware Workbench
	Introduction
	A Discussion Forum Collablet Product Line
	Domain Analysis
	Design and Implementation
	Product Derivation

	Conclusion
	References

	Towards Consistent Evolution of Feature Models
	Introduction
	Defining Atomic Operations on FMs
	Semantics of Change to FMs
	Conclusion
	References

	SOPLE-DE: An Approach to Design Service-Oriented Product Line Architectures
	Introduction
	Related Work
	The Proposed Approach (SOPLE-DE)
	Experimental Study
	Conclusions and Future Work
	References

	Multidimensional Classification Approach for Defining Product Line Engineering Transition Strategies
	Introduction
	Conceptual Model
	Multidimensional Classification
	Conclusions
	References

	MARTE Mechanisms to Model Variability When Analyzing Embedded Software Product Lines
	Introduction
	MARTE Elements for Analysis: $AnalysisContext$
	Variability in Model Analysis with MARTE

	Evaluation of Variability Mechanisms of MARTE
	Related Work
	Conclusions and Future Trends
	References

	The UML «extend» Relationship as Support for Software Variability
	Introduction
	An Outline of Software Variability Modeling
	Different Perspectives on the $«extend»$ Relationship
	Variability Types in the GoPhone Case Study
	Conclusions
	References

	Feature Diagrams as Package Dependencies
	Introduction
	Package Dependencies for Distribution Maintenance
	Encoding Feature Diagrams as Package Dependencies
	Conclusions and Future Work
	References

	Visualizing and Analyzing Software Variability with Bar Diagrams and Occurrence Matrices
	Introduction
	Occurrence Matrices and Bar Diagrams
	Generalization of the Technique
	Conclusions and Future Work
	References

	Recent Experiences with Software Product Lines in the US Department of Defense
	Introduction
	Experience Summaries
	Common Driver Training Product Line
	The Joint Fires Product Line
	Marine Corps Instrumentation Training System (MC-ITS)
	Common Link Integration Processing Product Line

	Conclusions

	Posters
	Leviathan: SPL Support on Filesystem Level
	Introducing a Conceptual Model of Software Production
	References

	Product Line Engineering in Enterprise Applications
	Case Study of Software Product Line Engineering in Insurance Product
	Using Composition Connectors to Support Software Asset Development
	References

	Feature-to-Code Mapping in Two Large Product Lines

	Panel Overviews
	The Rise and Fall of Product Line Architectures
	Motivation
	Panel Format
	References

	The Many Paths to Quality Core Assets
	References

	Tutorial Overviews
	Pragmatic Strategies for Variability Management in Product Lines in Small- to Medium-Size Companies
	References

	Building Reusable Testing Assets for a Software Product Line
	References

	Production Planning in a Software Product Line Organization
	References

	Transforming Legacy Systems into Software Product Lines
	Tutorial Motivation
	Tutorial Contents
	Tutorial Audience

	Systems and Software Product Line Engineering with the SPL Lifecycle Framework
	Introduction

	Managing Requirements in Product Lines
	Topic
	Plan
	References

	Evolutionary Product Line Scoping
	Introduction
	Plan
	References

	Leveraging Model Driven Engineering in Software Product Line Architectures
	Introduction to Software Product Lines Adoption
	Introduction
	Overview
	References

	Introduction to Software Product Lines
	Introduction
	Overview
	References

	Workshop Overviews
	4th International Workshop on Dynamic Software Product Lines (DSPL 2010)
	1st International Workshop on Product-Line Engineering for Enterprise Resource Planning (ERP) Systems (PLEERPS 2010)
	2nd International Workshop on Model-Driven Approaches in Software Product Line Engineering (MAPLE 2010)
	1st International Workshop on Formal Methods in Software Product Line Engineering (FMSPLE 2010)
	3rd International Workshop on Visualisation in Software Product Line Engineering (VISPLE 2010)
	4th Workshop on Assessment of Contemporary Modularization Techniques (ACOM 2010)
	2nd Workshop on Scalable Modeling Techniques for Software Product Lines (SCALE 2010)

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

